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Abstract

Community-based Question Answering (CQA) services enable members to ask ques-

tions and have them answered by the community. These services have the potential of

rapidly creating large archives of questions and answers. However, their information

is rarely exploited.

This thesis presents a new statistical topic model for modeling Question-Answering

archives. The model explicitly captures topic dependency and correlation between

questions and answers, and models differences in their vocabulary.

The proposed model is applied for the task of Question Answering and its perfor-

mance is evaluated using a dataset extracted from the programming website Stack

Overflow. Experimental results show that it achieves improved performance in re-

trieving the correct answer for a query question compared to the LDA model. The

model has also been applied for Automatic Tagging and comparisons with LDA show

that the new model achieves better clustering performance for larger numbers of

topics.
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Chapter 1

Introduction

Community-based question answering (CQA) services [1] such as Linux Questions 1,

Yahoo! Answers 2, and Stack Overflow 3 have recently become very popular. They

enable members to ask questions and have them answered by the community. They

provide an alternative to traditional web search, and allow users to directly acquire

their information needs from other users. These services have the potential of rapidly

creating large archives of questions and answers. A considerable portion of their

archive can potentially be used as a valuable resource for the information needs of

other people. However, one of the main drawbacks of existing CQA services is that the

archive information is rarely exploited [5, 16, 17]. The high presence of redundant

questions and answers is an indication. This redundancy may be considered as a

failure of users to do proper diligence before asking questions or it might be regarded

as a failure of internal (or external) search features in locating information and making

it accessible.

Regarding the former, on the one hand, it is often difficult to formulate a question

using the terminology appropriate for a particular subject, especially if the asker is

unfamiliar with that subject. On the other hand, identifying the right terminology

to search the archive can also be problematic. As a result, many semantically similar

questions are generated. To avoid duplication and save time and effort for users, an

effective search mechanism that can identify the semantics of questions and is capable

of locating relevant information is needed.

The main problem with current search features arises from the characteristic of

natural language in which semantically similar content can have different literal rep-

resentations. Applying document representation techniques that rely on word oc-

currence will generate different representations for such content. Traditional lexical

1http://www.linuxquestions.org/questions/
2http://answers.yahoo.com/
3http://stackoverflow.com/
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similarity measures are adequate if sufficient word overlap exists. However, questions

and answers on CQAs are typically of a short length and have sparse representations

often with little word overlap. The problem is further exacerbated considering the fact

that different terminologies are used by users because their knowledge and expertise

levels differ. Methods that bridge this vocabulary gap and enhance the representation

of the documents by encoding information about their semantic structure are needed.

Moreover, an additional problem that exists on many legacy question-answering

archives is that they lack the semantic information needed to browse their content.

For such websites, a system that automatically annotates their content with meta

data that describe them, would be valuable and could help understand and browse

their content.

In this work, we propose a probabilistic topic model for the content of Question-

Answering archives. We use the model for the task of Question Answering, in which

existing question-answer pairs in the archive are automatically retrieved and ranked

given a newly submitted question. The model is also applied for the task of automatic

tagging of questions. In the following, we present our model and report experimental

results.



Chapter 2

Background and Related Work

One of the main objectives of current research in CQA is to develop methods that

automate tasks and help save time and effort of the users, whether they are asking or

answering questions. This research includes various areas such as question answering,

expertise modeling, automatic tagging, content quality prediction, spam detection,

and summarization of content.

CQA services offer two types of information sources that can be used to mine

and exploit their content (1) the textual content, such as the content of question and

answers (2) the structural or social features, such as votes, click counts, and tags.

Structural features are forum-dependent. Appendix B gives a brief summary of these

features. Usually textual features, such as content, are used to evaluate the relevance

of a document to a query, and non-textual features, such as user votes or user ranks,

are used to measure the quality of documents [16].

2.1 Question Answering

2.1.1 Combination of Textual Content and Non-Textual Features

In the question answering task, the archive is examined to locate relevant questions

and answers for a newly submitted question. Non-textual features are utilized to

predict the quality of documents in [16]. This quality measure is then incorporated

into the language modeling-based retrieval model to retrieve high quality as well

as relevant question-answer pairs. Quality ranking is cast as a binary classification

problem and stochastic gradient boosted trees are used to classify the content into

high-quality and low-quality content in [1]. Features are constructed using textual

elements, usage data (clicks), and community ratings. A ranking framework that

combines both relevance and quality is presented in [5], where the regression-based

gradient boosting framework is applied for the problem of learning a ranking function

3
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for question-answer pair retrieval. A combination of social features (i.e. user inter-

action activities), textual features (i.e. textual similarity and overlap between query,

question and answers), and statistical features (i.e. independent features like the

number of tokens for query, question and answers) is used to represent each query-

question-answer triplet. To train the ranking function, votes obtained from users

are used to extract preference data. The dataset consists of a query set extracted

from TREC, where, for each query, relevant question-answer pairs are extracted from

Yahoo! Answers. The approach is later modified to make it more resilient to vote

spam [4].

The aforementioned approaches rely on community-based elements (e.g. user

votes, user interaction information) which may or may not be offered by some CQA

services. In contrast, a variety of techniques focus on the abundant textual informa-

tion offered by the forums.

2.1.2 Textual Content

A variety of techniques utilize the textual content available on CQA services to address

problems such as question answering. For these approaches, an important issue that

must be resolved is how to make information in the text collection accessible. Text

can contain information at different levels of granularity, from simple word-based

representations, to rich hierarchical syntactic representations, to high-level semantic

representations obtained using document collections. The right level of analysis must

be chosen with respect to the properties of the text collection.

The vector space or bag of words model [25, 26] is a word-based representation

model. In this model, each document is viewed as a vector of words where weights for

the words are assigned based on term occurrence statistics. TFIDF term weighting is

one of the most common schemes for computing these weights. A problem associated

with this model is the generation of high-dimensional sparse vectors in which terms

are assumed to be independent. Dimension reduction techniques such as Latent

Semantic Indexing (LSI) [10] and Probabilistic Latent Semantic Indexing (PLSI) [15]

aim to map the high dimensional vector representation into a lower dimension latent

semantic space. To compare documents, a matching function such as cosine similarity

is generally used.
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Language models [24] also analyze documents on a word-based level. However,

they integrate document indexing and document retrieval into one model. For each

document in the collection they infer a probability distribution referred to as the

language model of the document. To retrieve similar documents to a query, they

estimate the probability of generating the query according to the language model for

each document.

There are two assumptions in both these word-based models that may limit their

application for CQA services: 1) The main intuition in both approaches is that queries

are composed of distinguishing keywords that allow the model to retrieve relevant doc-

uments. For community question answering services, this notion implies users know

what they are looking for and can choose query terms that distinguish documents

of interest from the rest of the collection. However, because of differing levels of

knowledge and technical competency, users may or may not generate such queries 2)

In addition, sufficient overlap between the document and query vectors is required to

derive similarities. But a significant property of the content on CQA’s is that they

are short with many linguistic variations.

To overcome the word-mismatch problem, documents can be represented using a

finer level of granularity. To find similar questions, a retrieval framework based on

syntactic tree structure is proposed in [29]. They use structural representations of

questions to encode lexical, syntactic, and semantic features into the matching model.

An alternative approach is to augment document representations with semantic

information. This information is either extracted from an external resource or derived

from text automatically. A question answering system that combines statistical sim-

ilarities with semantic information for retrieving existing answers in frequently asked

questions (FAQs) is described in [7]. Conventional vector space models are used to

calculate the statistical similarity and WordNet [11] is used to estimate the semantic

similarity. The question answering process is broken down to sub-procedures that

include question analysis, document retrieval, answer extraction and answer selection

in [18]. A probabilistic answer selection framework that uses external semantic sources

is proposed. In particular, logistic regression is used to estimate the probability that

an answer candidate is correct given features obtained from external resources.

There are also statistical techniques that use word patterns to derive semantic
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information from the text collection itself. This information is then integrated into the

retrieval framework. A statistical machine translation model for retrieving questions

from a CQA archive that are semantically similar to a user’s question, is proposed in

[17]. In this approach, the lexical mismatch problem between questions is overcome

by implicitly expanding queries with the help of translation models. In particular,

translation probabilities are integrated into a query likelihood model.

2.1.3 Topic Models

Probabilistic topic models [6, 13] can derive semantic information from text automat-

ically, on the basis of the observed word patterns. These unsupervised probabilistic

models use the co-occurrence structure of terms in text collections to recover the la-

tent topic structure and map items of different literal representation into a smaller

topic space. This topical representation of text allows modeling of linguistic phe-

nomena like synonymy and polysemy and lessens the semantic relatedness problems

inherent in natural language.

Latent Dirichlet Allocation (LDA) [6] is a widely used topic model. It treats

words in a document as multinomial observations. For each document, a distribution

over topics is estimated where each topic is a distribution over the words in the

corpus. The derived topics allow the model to map the sparse high dimensional

literal representations into a lower dimensional topic space. The similarity between

documents and queries can then be computed at a semantic level using the distance

between documents and queries in this topical space.

The use of topic models for information retrieval tasks is investigated in [30].

Experimental results show that directly employing the output of topic models hurts

retrieval performance. The reason for this is over-generalization; topic models provide

coarse-grained topics that have been inferred using the whole corpus. Consequently,

an ad-hoc method that combines LDA and query-likelihood retrieval is presented.

The utility of different types of topic models for information retrieval is also explored

in [31]. The research examines the practicality of sophisticated topic models for doc-

ument retrieval. An important conclusion of this work is that topic models are helpful

when query topics are very broad, even when different topic models are combined to

represent fine-grained topics.
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A different approach is proposed in [9] and a topic model that can handle the

trade-off between general and specific information in documents is proposed. The

model is called special words with background (SWB) model. A novel similarity

measure that utilizes semantic-level similarities based on hidden concepts on top of

lexico-syntactic features is described in [8].

The idea of using the thematic structure of a document collection as indications of

the semantics of the collection has also been employed for the task of expertise model-

ing. Capturing the expertise of users has a number of applications, most importantly

it allows questions to be automatically directed to experts who can ask answer them.

A probabilistic framework for predicting the best answers for new questions is pro-

posed in [20]. The answering history of answerers is tracked and their interests are

modeled using a combination of Language Modeling and LDA. The activity and au-

thority of users is also considered to find active users who can give accurate answers.

The Author-Topic-Persona model is introduced in [23]. It addresses the task of

matching reviewers with scientific papers. The expertise of reviewers is modeled based

on papers they have written in the past. Each author is assumed to have one or more

personas, which are represented as independent distributions over hidden topics. For

a new paper, they rank the reviewers based on the likelihood of the words of the new

paper under each reviewer’s distribution.

2.2 Automatic Tagging

Many resources and websites allow users to collaboratively tag their content. Tags

categorize similar content and facilitate browsing and search. However, most resources

with this feature often lack a predefined tagging vocabulary. As a result, a variety

of different tags are generated by users. Three major problems are associated with

current tagging systems [12]: polysemy, synonymy and level variation. Polysemy

refers to the case where a single tag can have multiple meanings. Synonymy refers to

instances where multiple tags with the same meaning are used. The third problem

is the inconsistency of tags in terms of specificity or generality; users do not use the

same level of abstraction. In addition, many unique but rare tags are generated by

users; tags that are inefficient for browsing or searching the archives. One of the main

reasons behind these problems is that users do not have any indications regarding the
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topical structure of the archive.

Hence, a mechanism that provides insights regarding the archive’s topical struc-

ture, or the tagging vocabulary in use, can help alleviate the aforementioned prob-

lems and save time and effort of the users. The problem of automatically grouping

questions on Yahoo! Answers into predefined categories is addressed in [22]. The

effectiveness of K-means and PLSI for solving this problem is investigated. The work

concludes that incorporating user information, such as areas of expertise , can improve

the outcome of clustering. In a different approach [14], LDA is applied to a corpus

of about 20000 news stories and a clustering of the corpus is obtained. The resulting

document-topic associations are then compared to categories assigned manually to

them.



Chapter 3

Methodology

3.1 Question Answering Topic Model

Word mismatch refers to the phenomenon in which a concept is described by different

terms in user queries and in source documents. Questions and answers on CQAs are

typically short in length and have sparse representations often with little word overlap.

To resolve the word mismatch problem in this domain, one approach is to bridge the

vocabulary gap by encoding information about the semantics of documents.

To enhance the representation of questions and answers, and encode information

about their semantics we propose a new topic model. Our model builds upon the

common assumption in topic models [6] that a document is a mixture of topics, where

each topic is defined to be a distribution over words. This assumption is appropriate

for data from CQA services because questions are typically assigned multiple tags or

topics. Furthermore, it is natural to expect that topics in the answers are influenced

by topics in the question. However, subjects raised in answers are typically more

technical and specific. This is because the knowledge and expertise of the answerers

and askers differs; answerers, who can be regarded as experts on the subjects, are

more likely to use terms appropriate for the particular realm of knowledge whereas the

askers may use less technical terminology. Answers may also contain additional topics

that are correlated to the topics in the question, topics that the asker was unaware of

and are not explicitly contained in the question. For instance, given a question about

string manipulation, the answer might contain topics such as regular expressions or

pattern matching. Additional features relevant to text processing languages such as

Python or Perl may also be introduced by the answerer (Figure 3.1).

A simple topic model such as LDA [6] is incapable of modeling the dependencies

between topics in the answers and topics in questions and may therefore prove to

be ineffective for such a setting. The aforementioned aspects of topics in question

and answers, emphasize the need for a model that distinguishes between topics in

9
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Question:
How do I replace all occurrences of a word in a document with another word? Any

solution is welcome!

Answer:
Regular expressions(regex) allow you to search and manipulate text based on

patterns. In some languages, standard string manipulation functions are available

e.g. replaceAll() method from Java’s string class. In other languages, such as

Perl, regex’s are integrated into the language itself. Utilities such as grep, vi

can also perform this type of pattern matching and replacement.

Figure 3.1: Questions and answers on CQA’s exhibit multiple topics. Topics in
answers are influenced by topics in questions.

questions and answers and that can capture topic dependency and correlation across

the whole corpus.

Using this intuition we introduce a model that incorporates two types of latent

variables, question topic (Q-topics) and answer topic (A-topics). We refer to our

model as Question Answering Topic Model or QATM. The two types of topics allow

us to model the differences in the vocabulary of questions and answers. They also

allow the model to capture the correlation between topics.

Q-topics (βQ) and A-topics (βA) are Multinomial distributions over distinct vocab-

ularies for questions and answers respectively. We assume that there are K Q-topics

and L A-topics. Each word (W n
Qi
) in question Qi is assigned to a Q-topic Zn

Qi
drawn

from a Multinomial distribution θQi
over Q-topics.

Each word (W n
Ai,j

) in answer j of question i is assigned to an A-topic (Zn
Ai,j

) that

is conditioned on a Q-topic (Y n
Ai,j

). This Q-topic is drawn from the topic distribution

of the corresponding question. By conditioning A-topics in an answer on Q-topics

drawn from the topic distribution of the corresponding question, topics in answers

are influenced by topics in the question and the model captures such a dependency.

This is done through the latent variable φ, a K × L matrix. Each row k in φ defines

mixture weights for A-topics corresponding to Q-topic k. This results in each Q-topic

being associated with a distribution over A-topics. Dirichlet priors are defined over

all θQi
and rows in βQ, βA and φ with parameters αθ, αβQ

, αβA
and αφ respectively.

We use the plate notation to show the QATM model in Figure 3.2.

The generative process for the model, which explains how observations could have

been generated by realizations of random variables and their propagation along the
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αθ

θQi

Zn
Qi

Wn
Qi

βQαβQ

Wn
Aij

Zn
Aij

Y n
Aij

φ

βA αβA

αφ

Qi

NQi

NAQi

K L

K

Ai,j

NAi,j

Figure 3.2: Question Answering Topic Model (QATM). The model explicitly cap-
tures topic dependency and correlation between questions and answers, and models
differences in their vocabulary.
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directed edges of the network, is given in Algorithm 1 while Figure 3.3 gives a list of all

involved quantities. The plate diagram in Figure 3.2 represents the joint distribution

of all known and hidden variables given the hyperparameters, for a single document:

P(WQi
,WAi

, ZQi
, YAi

, ZAi
, θQi

, φ, βQ, βA|αθ, αβQ
, αβA

, αφ) =⎛
⎝P(θQi

|αθ)

⎛
⎝NQi∏

n=1

P(Zn
Qi
|θQi

)P(W n
Qi
|Zn

Qi
, βQ)

⎞
⎠
⎞
⎠

NAQi∏
j=1

NAi,j∏
n=1

P(Y n
Ai,j

|θQi
)P(Zn

A|Y n
Ai,j

, φ)P(W n
Ai,j

|Zn
Ai,j

, βA)

K∏
k=1

P(βk
Q|αβQ

)

L∏
l=1

P(βl
A|αβA

)

K∏
k=1

P(φk|αφ) (3.1)

where ZQi
, YAi

, ZAi
, θQi

, φ, βQ, and βA are the hidden variables. The input param-

eters include αθ, αβQ
, αβA

, αφ. WQi
and WAi

are the observations which are given for

a single question and its answers. To obtain the joint distribution of all known and

hidden variables given the hyperparameters, for the entire corpus, Equation 3.1 can

be rewritten as a product over all documents in the entire corpus:

P(WQ,WA, ZQ, YA, ZA, θQ, φ, βQ, βA|αθ, αβQ
, αβA

, αφ) =⎛
⎝NQ∏

i=1

P(θQi
|αθ)

⎛
⎝NQi∏

n=1

P(Zn
Qi
|θQi

)P(W n
Qi
|Zn

Qi
, βQ)

⎞
⎠
⎞
⎠

NQ∏
i=1

NAQi∏
j=1

NAi,j∏
n=1

P(Y n
Ai,j

|θQi
)P(Zn

A|Y n
Ai,j

, φ)P(W n
Ai,j

|Zn
Ai,j

, βA)

K∏
k=1

P(βk
Q|αβQ

)

L∏
l=1

P(βl
A|αβA

)

K∏
k=1

P(φk|αφ) (3.2)

where ZQ, YA, ZA, θQ, φ, βQ, and βA are the hidden variables and the observations,

WQ and WA, are given over the entire corpus. The next step is to do inference

and estimate the parameters of the model. This procedure estimates the posterior

probability of the latent variables given the input parameters and observations. It

is explained in detail in the next section. Inference can also be considered as an

optimization process where the likelihood of the entire corpus of questions and answers
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is optimized with respect to the hyperparameters θQ, φ, βQ, βA given the dataWQ,WA:

L(θQ, φ, βQ, βA|WQ,WA) � P(WQ,WA|θQ, φ, βQ, βA) =

NQ∏
i=1

P(WQi
|θQi

, φ, βQ, βA)

NQ∏
i=1

NAQi∏
j=1

P(WAi,j
|θQi

, φ, βQ, βA) (3.3)

Algorithm 1: Generative process for Question Answering Topic Model

for all question topics k in [1, K] do

sample question mixture components �βk
Q ∼ Dir( �αβQ

, V );

for all answer topics l in [1, L] do

sample answer mixture components �βl
A ∼ Dir( �αβA

, V );

for all question topics k in [1, K] do

sample �φk ∼ Dir( �αφ, L);

for all questions Qi ∈ [1, NQ] do

sample mixture proportion �θQi
∼ Dir( �αθ, K);

sample question length NQi
∼ Poiss(ξ);

for all words n ∈ [1, NQi
] in question Qi do

sample question topic index Zn
Qi

∼ Mult( �θQi
);

sample term for word W n
Qi

∼ Mult(
�

β
Zn
Qi

Q );

for all answers Ai,j ∈ [1, NAQi
] do

sample answer length NAi,j
∼ Poiss(ξ);

for all words n in [1, NAi,j
] in answer Ai,j do

sample question topic index YAn
i,j

∼ Mult( �θQi
);

sample answer topic index Zn
Ai,j

∼ Mult( �φY n
Ai,j

);

sample term for word W n
Ai,j

∼ Mult(
�

B
Zn
Ai,j

A );
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NQ number of Questions to generate.
NAQi

number of Answers to generate (question specific)

K number of Q-topics.
L number of A-topics.
V number of terms t in vocabulary.
αθ hyperparameter on the mixing proportions (K-vector or scalar if symmet-

ric).
αφ hyperparamter.
αβA

hyperparameter on the mixing components.
αβQ

hyperparameter on the mixing components.
θ (NQ ×K matrix)
φ (K × L matrix)
βQ (K × V matrix)
βA (L× V matrix)
NQi

question length (question specific), here modeled with a Poisson distribu-
tion, with constant parameter ξ.

NAi,j
answer length (answer specific), here modeled with a Poisson distribution,
with constant parameter ξ.

Zn
Qi

mixture indicator that chooses the Q-topic for the nth word in question Qi.
Y n
Ai,j

mixture indicator that chooses the Q-topic for the nth word in answer Ai,j .

Zn
Ai,j

mixture indicator that chooses the A-topic for the nth word in answer Ai,j .

W n
Qi

term indicator for the nth word in question Qi.
W n

Ai,j
term indicator for the nth word in answer Ai,j .

Figure 3.3: Quantities in Question Answering Topic Model.
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3.2 Inference and Parameter Estimation

In this section, we present a Gibbs sampling procedure for doing inference in the

proposed model. The procedure estimates the parameters of our model, and identifies

the structure posited in our data collection. For doing inference, we need to compute

the posterior probability of the latent variables ZQ, YA, ZA, θQ, φ, βQ, and βA given

the input parameters αθ, αβQ
, αβA

, αφ and observations WQ and WA:

P(ZQ, YA, ZA, θQ, φ, βQ, βA|WQ,WA, αθ, αβQ
, αβA

, αφ) =

P(ZQ, YA, ZA, θQ, φ, βQ, βA,WQ,WA|αθ, αβQ
, αβA

, αφ)

P(WQ,WA|αθ, αβQ
, αβA

, αφ)
(3.4)

However, exact inference for the posterior is intractable. Gibbs sampling is an ap-

proximate inference algorithm. To emulate high dimensional probability distribu-

tions, Gibbs sampling constructs a Markov chain. Each dimension of the probability

distribution is then sampled one at a time, conditioned on the values of all other

dimensions. The Markov chain converges to the posterior distribution of the latent

variables and the results can then be used to approximate the parameters of the

model. Collapsed Gibbs sampling [13] is a variation of Gibbs sampling where one or

more parameters are integrated out when sampling other variables. We use collapsed

Gibbs sampling to sample the variables ZQ, YA, and ZA, integrating out θQ, φ, βQ,

and βA.

For QATM, we sample YA, and ZA jointly and ZQ separately. We need to compute

two conditional distributions P(Zn
Qi
|Z−n

Q , YA, ZA,WQ,WA) and P(Y n
Ai,j

, Zn
Ai,j

|Y −n
Ai,j

,

Z−n
Ai,j

, ZQ,WQ,WA) where Zn
Qi

represents Q-topic assignment for word n in question

Qi and Z−n
Q denotes Q-topic assignments for all other words except the current word

W n
Qi
. Moreover, Y n

Ai,j
denotes the Q-topic assignment for word n in answer j of ques-

tion i and Zn
Ai,j

represents the A-topic assignment for the same word conditioned on

Y n
Ai,j

. We have:

P(Zn
Qi

= k|Z−n
Q , YA, ZA,WQ,WA) ∝

αβQ
+ C

kWn
Qi

Q

V∑
v=1

(αβQ
+ Ckv

Q )

αθ + Ck
Qi

+ Ck
AQi

k∑
i′=1

(αθ + C i′
Qi

+ C i′
AQi

)

(3.5)

where Ckv
Q is the number of times word v is assigned to Q-topic k. Moreover, Ck

Qi
is



16

the number of times Q-topic k is assigned to words in question Qi and Ck
AQi

denotes

the number of times A-topics for words in the set of answers for question Qi are drawn

conditioned on Q-topic k.

P(Y n
Ai,j

= k, Zn
Ai,j

= l|Y −n
Ai,j

, Z−n
Ai,j

, ZQ,WQ,WA) ∝
αβA

+ C
lWn

Ai,j

A

V∑
v=1

(αβA
+ C lv

A )

αθ + Ck
Qi

+ Ck
AQi

k∑
i′=1

(αθ + C i′
Qi

+ C i′
AQi

)

C l
k + αφ

L∑
i=1

(αφ + C i
k)

(3.6)

where C lv
A is the number of times word v is assigned to A-topic l. Moreover, C l

k is

the number of times an A-topic l is drawn conditioned on a Q-topic k in the entire

corpus. More detailed derivations are given in Appendix A.

Algorithms 2, 3, and 4 show the inference procedure for our model. The Gibbs

sampling algorithm is initialized by assigning each question word token to a random

Q-topic in [1..K] and each answer word token to a random Q-topic [1..K] and ran-

dom A-topic [1..L]. A number of initial samples (referred to as burn-in samples) are

disregarded to eliminate the influence of initialization parameters. However, the sub-

sequent samples start to approximate the target distribution and a subset of them

are reserved as representatives from the distribution. To draw independent samples

and prevent correlations between them, this subset is sampled at regularly spaced

intervals.
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Algorithm 2: QATM General

Data: word vectors or observations { �WQ} and { �WA}, hyperparameters αθ,

αβQ
,αβA

,αφ, Q-topic number K, A-topic number L

Result: Q-topic associations { �ZQ}, { �YA}, A-topic associations { �ZA},
multinomial parameters θQ, φ, βQ, and βA, hyperparameter estimates

αθ, αβQ
, αβA

, αφ

// initialization

QATMInitializeCountV ariables();

// Gibbs sampling over burn-in period and sampling period

QATMGibbsSampling();

if converged and L sampling iterations since last read out then

// different parameters read out are averaged

read out parameter sets;

Algorithm 3: QATM Initialize Count Variables

zero all count variables Ckv
Q , C lv

A , C
k
Qi
, Ck

AQi
, C l

k, Ck, Cl, SUMC l
k ;

for all questions Qi in [1, NQ] do

for all words n in [1, NQi
] in question Qi do

sample Q-topic index Zn
Qi

= k ∼ Mult(1/K);

increment Q-topic-term count: C
kWn

Qi
Q + = 1;

increment Q-topic-term sum: Ck+ = 1;

increment question-Q-topic count: Ck
Qi
+ = 1;

for all answers Ai,j in [1, NAQi
] do

for all words n in [1, NAi,j
] in answer Ai,j do

sample Q-topic index YAn
i,j

= k ∼ Mult(1/K);

sample A-topic index ZAn
i,j

= l ∼ Mult(1/L);

increment A-topic-term count: C
lWn

Ai,j

A + = 1;

increment A-topic-term sum: Cl+ = 1;

increment answer-Q-topic count: Ck
AQi

+ = 1;

increment Q-topic-A-topic count C l
k+ = 1;

increment Q-topic-A-topic sum: SUMC l
k+ = 1 ;
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Algorithm 4: QATM Gibbs Sampling

while not finished do

for all questions Qi in [1, NQ] do

for all words n in [1, NQi
] in question Qi do

// for the current assignment of k to a term n for word

W n
Qi
:

decrement counts and sums: C
kWn

Qi
Q − = 1, Ck− = 1, Ck

Qi
− = 1;

// multinomial sampling acc. to Eq. 3.5 (decrements

from the previous step)

sample Q-topic index k̃ ∼ P(Zn
Qi

= k|Z−n
Q , YA, ZA,WQ,WA);

// for the new assignment of k̃ to the term n for word

W n
Qi

increment counts and sums: C
k̃Wn

Qi
Q + = 1, Ck̃+ = 1, C k̃

Qi
+ = 1;

for all answers Ai,j in [1, NAQi
] do

for all words n in [1, NAi,j
] in answer Ai,j do

// for the current assignment of k and l to a term n

for word W n
Ai,j

:

decrement counts and sums:

C
lWn

Ai,j

A − = 1, Cl− = 1, Ck
AQi

− = 1, C l
k− = 1, SUMC l

k− = 1;

// multinomial sampling acc. to Eq. 3.6 (decrements

from the previous step)

sample Q-topic index and sample A-topic index

k̃, l̃ ∼ P(Y n
Ai,j

= k, Zn
Ai,j

= l|Y −n
Ai,j

, Z−n
Ai,j

, ZQ,WQ,WA);

// for the new assignment of k̃ and l̃ to the term n for

word W n
Ai,j

increment counts and sums:

C
l̃Wn

Ai,j

A + = 1, Cl̃+ = 1, C k̃
AQi

+ = 1, C l̃
k̃
+ = 1, SUMC l̃

k̃
+ = 1;
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3.3 Approximate Inference Algorithm Evaluation

To examine the approximate inference algorithms ability in recovering true model

parameters, we used the model to simulate a small dataset and applied the inference

algorithm. Our simulated dataset had three Q-topics (K = 3) and four A-topics

(L = 4). These statistics were chosen so that validation process was simplified and

results were interpretable. For the simulated dataset, the true Q-topic distribution,

represented by θ, has three components θ1, θ2, and θ3. After applying the infer-

ence algorithm, this distribution is estimated for each document, and is represented

by θ′, with the components θ′1, θ′2, and θ′3. The difference between corresponding

components of the true Q-topic distribution and the retrieved Q-topic distribution

is presented in Figure 3.4. The small differences show that the approximate infer-

ence algorithm is capable of retrieving the actual parameters from a dataset that is

generated by the model.

3.4 Model Analysis

QATM models the content of CQA archives and extracts their topical structure.

This structure is represented by soft associations between the hidden topics and the

observed variables. To analyze the predicted structure, we used it for the tasks of

Question Answering and Automatic Tagging.

3.4.1 Question Answering

We use the model for the task of Question Answering, in which existing question-

answer pairs in the archive are automatically retrieved and ranked given a newly

submitted question. To retrieve documents similar to a query, the topics associated

with the query can be compared against the topics associated with the documents in

the collection [13]. In particular, the topic distribution of the query is estimated using

the model and the trained topic distributions. A similarity measure is then utilized

to compare the query topic distribution with the topic distributions of individual

documents in the collection. Kullback-Leibler (KL) divergence [19] is a similarity
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(c) θ3 − θ′3

Figure 3.4: Vector difference of the true Q-topic distribution(θ) and the retrieved
Q-topic distribution(θ′).

measure that is defined between two discrete random variables X and Y , as:

DKL(X||Y ) =

N∑
n=1

p(X = n)[log2 p(X = n)− log2 p(Y = n)] (3.7)

However, KL divergence is not a symmetric measure. We have used the Jensen-

Shannon (JS) distance, a symmetrised extension of KL divergence as our similarity

measure:

DJS(X||Y ) =
1

2
[DKL(X||M) +DKL(Y ||M)] (3.8)

whereM = 1
2
(X+Y ). This similarity measure produces a ranking over the documents

in the collection [13].
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3.4.2 Automatic Tagging

Tagging is the process of annotating a resource with metadata or keywords that

describe it. Tags help categorize content and can therefore be used to browse and

organize electronic archives. The QATM model provides a soft clustering of the

documents and of the terms of a collection by associating them to topics. In particular,

the mixed membership vector estimated for each document, assigns topics or tags to

documents. To evaluate the predicted clustering we use the clustering performance

measures introduced in [27] and compare the clustering performance of the model

against a gold standard extracted from Stack Overflow. We describe the details of

this procedure and present experimental results in the following chapter.



Chapter 4

Experimental Study

In the previous chapter, we presented a new topic model for the content of CQA

archives. The model is designed to explicitly capture topic dependency and correlation

between questions and answers, and model differences in their vocabulary. To analyze

this model, we utilize it for the tasks of Question Answering and Automatic Tagging.

In this chapter we present experimental results that evaluate the model’s perfor-

mance against a dataset extracted from the programming website, Stack Overflow.

We compare QATM’s performance with a keyword based model, TFIDF and a topic

model, LDA.

4.1 Dataset

4.1.1 Stack Overflow

We evaluate our model using a real world dataset extracted from Stack Overflow 1.

This is a programming Question and Answering (Q & A) website, where developers

can share technical information amongst themselves. To maintain an archive of high

quality questions and answers, Stack Overflow employs popularity voting and allows

users to vote upon and edit questions and answers. The users’ contribution to the

website is represented by reputation points and badges, based upon which they are

granted more moderation capabilities and permissions. An archive of the content of

this website is released every two months. For our experiments, we used the January

2011 data dump. Some statistics of this data are given in Table 4.1. Appendix B

depicts a summary of the main entities on Stack Overflow.

In the next section, we describe the dataset creation procedure. This data is used

to evaluate QATM model for both the Question Answering task and the Automatic

Tagging task.

1http://stackoverflow.com/

22
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#Questions 1,188,585
#Answers 2,939,767
#Tags 27,659
#Users 440,672
Avg #answer per question 2.4818
Avg #tags per question 2.9254
Avg score of questions 1.4967
Avg score of answers 1.8478

Table 4.1: Stack Overflow statistics, January 2011

4.1.2 Train Data

When a question is posted on Stack Overflow, it is tagged with labels or tags. To

extract a representative subset of questions and answers from the large archive avail-

able on this website, we initially extracted a smaller subset of tags. We examined

tag frequency and tag co-occurrence statistics, as shown in Figure 4.1, and identified

three criteria for tag selection:

1. To ensure that there would be sufficient data available for training the model,

popular tags were required.

2. To maintain a similar tag distribution as the original data collection, and con-

struct a realistic dataset, tag overlap (or tag co-occurrence) had to be preserved.

3. However, to ensure the model could uncover challenging patterns in the data, we

required a set of conceptually overlapping tags and a set of distinctly different

tags with distinguishable keywords.

With regard to the three criteria, we manually selected a total of 21 tags. We

chose 7 tags that were popular and that co-occurred frequently with other tags, 7

tags that were popular but co-occurred less frequently, and 7 tags that were popular

and rarely co-occurred with other tags. The selected tags are shown in Table 4.2.

Subsequently, for each tag we randomly collected 200 questions (4200 questions in

total).

The content on Q&A websites is user-generated and therefore, numerous ques-

tions and answers with varying quality levels have been created. However, on Stack

Overflow, users score posts based on their relevance and correctness. As a result,
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Figure 4.1: Tag frequencies.

correctly posed questions or more relevant answers usually have higher scores. To

allow the model to correctly learn the topic dependencies of a question and its an-

swers, we extracted the 4 most relevant answers for each question using the scores

given to answers by users based on their perceived relevance and correctness. At the

end of this step we had extracted 15822 question-answer pairs for the train dataset2.

Appendix C.1 describes a summary of the train data creation steps.

Our model requires information about the answers of a question. Hence, to create

the training set for our model, we merged individual questions with their relevant

answers into one document. Therefore each document consists of a question and

2Some of the questions had less than 4 answers. Furthermore, the 15822 question-answer pairs
correspond to 4184 questions. There are two reasons for the decrease in the number of QAs from
4200 to 4184: 1) Around 12 of the Questions were invalid, meaning that they were identified as
duplicates of other questions that existed in our train data, so these duplicates were removed (4200
-12 = 4188) 2) 4 of the questions selected in the second step did not have answers and so were
dropped, that left us with 4184 valid QAs.
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C# .net Sql
Sql-server Java-script css
Java Ruby Ruby-on-rails
Wpf iphone Web-development
Android Windows Delphi
Django Python C
Bash Linux homework

Table 4.2: Subset of 21 selected tags

at most four of its most relevant answers. However, because the model distinguishes

between questions and answers, it is capable of retrieving and ranking question answer

pairs.

To retrieve and rank question-answer pairs, LDA and TFIDF require that docu-

ments in their training set consist of question answer pairs. Hence, for these models,

we have used the same information to create a training set in which a document

consist of a single question answer pair.

4.1.3 Test Set

Question Answering

To evaluate the answer retrieval performance of our model, we extracted a set of

questions from Stack Overflow referred to as duplicates. These are questions that are

similar to one or more existing questions in the archive but use different words and

structure. Because they increase the archive’s redundancy, duplicates are considered

as a negative feature of CQA websites. Therefore, Stack Overflow users identify, vote

upon and close such questions.

However, there are also benefits to having alternates for the same question. Users

often tend to search the archive using different terminology; duplicates increase visibil-

ity and make it more likely for users to find relevant information. From the viewpoint

of our research however, duplicates are extremely important because they provide

multiple variants for a question. We create a gold standard set from these duplicates

and incorporate them into our evaluation paradigm. Appendix C.2 gives a detailed

description of the duplicate extraction process.
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Without duplicates, a possible methodology for evaluating the models perfor-

mance, would have been to conduct a user study. However, there are some disad-

vantages with user studies. In particular, they are expensive to conduct, both in

terms of user’s time and compensations. A significant amount of time and effort is

required to carefully consider various components of the study and conduct successful

user studies. Experiments have to be designed so that they provide robust answers

to the questions of interest and lead to statistically significant results, the partici-

pants have to be chosen so that they represent the true population of users, future

information needs have to be predicted, and important decisions must be made based

on vague expectations. In addition analyzing and interpreting experimental results

can be hard. Typically, the outcome of studies can only answer small questions, and

larger conclusions cannot be drawn.

Duplicates enabled us to incorporate perceptions of the end-users of the technology

into the evaluation without the need to conduct a user study. They also represent

natural information seeking behavior which is important because the results are real

world and can lead to valid generalizations.

On Stack Overflow three classes of duplicate questions have been identified and

different handling mechanisms have been defined 3:

1. Cut-and-paste duplicates: These questions are the exact copy of a previous

question. They are the very definition of exact duplicates. This group of du-

plicate questions are voted down by users and flagged for moderator attention.

They are then deleted from the system by the moderators.

2. Accidental duplicates: These questions are semantically similar but lexically

different from a previously asked question in the archive. They have the same

answer. Stack Overflow users identify, vote upon and close them as “exact

duplicates” of another question. They link these duplicates to the original

question by posting the URL of the original question as a comment or edit in

3Refer to:

1. http://blog.stackoverflow.com/2009/04/handling-duplicate-questions/

2. http://meta.osqa.net/questions/1086/

3. http://blog.stackoverflow.com/2009/05/linking-duplicate-questions/
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the duplicate.

3. Borderline duplicates: The questions in this set cover the same grounds as a

previous question in the archive, however their overlap with those questions is

ambiguous. This means that their uniqueness and commonality is subject to

interpretation. These questions are tagged by users of Stack Overflow so that

they naturally group with other relevant questions.

We extracted a set of accidental duplicates for questions in our train data and created

a gold standard set. Examples of accidental and borderline duplicates are given in

Appendix C.3.

Automatic Tagging

We evaluate the clustering quality of our model against a gold standard available in

the data on the website. This gold standard consists of the tags assigned to questions

in our training dataset by users of Stack Overflow.

4.1.4 Dataset Preprocessing

Both the training and test datasets were preprocessed to remove HTML markup, num-

bers, punctuation, signs such as ‘@,%, !,‘. In addition, the documents were stemmed

(Porter stemmer 4) and stop-words were removed (using Mallet [21])5.

4.1.5 Dataset Tag Statistics

Figure 4.2 compares the distribution of tags in the training and the test set. The

figure shows that the tag selection procedure has resulted in balanced classes of tags

in the training data. In addition, even though there are some discrepancies between

the test and train set tags, they generally follow the same probability distribution

(the data samples come from the same statistical populations).

4http://tartarus.org/martin/PorterStemmer/
5Two options were used for mallet, –keep-sequence and remove-stopwords
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Figure 4.2: Tag distribution in train set and test set.

4.2 Baselines

4.2.1 TFIDF

TFIDF is a common term weighting scheme. It can be used to assign weights to

terms in the vector space model. The TFIDF weight for a term has two components,

the term frequency and the inverse document frequency. Term frequency of term t

in document d is denoted by TF (t, d). It is the number of times term t appears in

document d. This component is normalized to prevent bias towards longer documents.

The inverse document frequency of term t in corpus C is denoted by IDF (t, C). It

describes the general importance of a term in a document collection. Altogether the

TFIDF weight for a term is:

TFIDF(t, d, C) = TF(t, d)× IDF(t, C)

= TF(t, d)× log
|C|

1 + |{d ∈ C : t ∈ d}| (4.1)

where |C| is the size of the train corpus. |{d ∈ C : t ∈ d}| is the number of documents

in the train corpus where the term t appears. The TFIDF value increases propor-

tionally to the frequency of a term in a document, but is counterbalanced by the

frequency of the term in the whole corpus.

Given two objects a and b, their similarity can be defined as the cosine of the

angle between their vector representations (i.e. va and vb):

Cosine Similarity(va, vb) =
va · vb

||va||||vb|| (4.2)
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In this work, TFIDF is used as a representative of word-based approaches to the

question answering task. TFIDF vectors are obtained for the train data. Using IDF

values obtained for terms in the train data, TFIDF vectors are computed for the

queries in the ground truth. Subsequently, for each of these queries, documents in

the train data are ranked using cosine similarity between their vector representations.

4.2.2 LDA

LDA is a widely used topic model. It treats words in a document as multinomial

observations. For each document, a distribution over topics is estimated where each

topic is a distribution over the words in the corpus. The derived topics allow the

model to map the high dimensional literal representations into a lower dimensional

topic space. The similarity between documents and queries can then be computed

at a semantic level using the distance between documents and queries in this topical

space.

The graphical model for LDA is given in Figure 4.3. Essentially, to generate words

in a given document m, the generative process of LDA assumes to first draw a topic

Zn
m from the document-specific topic distribution θm. Then, the corresponding topic-

specific term distribution φZn
m
is used to draw a word. This procedure is repeated for

each word in the document.

In this work, LDA is applied to the data to obtain semantic-level representations

of the corpus. We used the LDA implementation in Mallet [21]. For each query in

the ground truth, documents in the train data are ranked according to the procedure

described in 3.4.1.
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Figure 4.3: Latent Dirichlet Allocation (LDA) Topic Model. The simple intuition
behind this model is that documents exhibit multiple topics.
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4.3 Evaluation

4.3.1 Question Answering

We compare our model with LDA and TFIDF in terms of retrieving the right answer

for a given query and report TopN and Mean Average Precision (MAP) performance

measures:

• Mean Reciprocal Rank (MRR): Reciprocal Rank for a query is the recip-

rocal rank of the first relevant answer. The mean reciprocal rank for a set of

queries [28] is the average of their reciprocal ranks. TopN for a set of queries,

considers a cut-off N and measures the reciprocal rank for each query and the

mean reciprocal rank for the set of queries:

MRR(Q) =
1

|Q| ∗
Q∑

q=1

1

rankq
(4.3)

where Q is the set of queries and rankq is the rank of the first relevant document

for query q.

• Mean Average of Precision (MAP): Since each duplicate can have multi-

ple correct answers (each query question can have several relevant answers), a

measure that considers the order of the correct answers and emphasizes ranking

them higher, is needed. Average precision for a query, is the average of the

precisions computed at the point of each of the relevant answers in the ranked

list:

AveP (Q) =

∑N
rank=1(P (rank) ∗ rel(rank))

Number of relevant documents
(4.4)

where rank is a given rank in the sequence, N the number retrieved, rel(rank)

is a binary function on the relevance of a given rank, and P (rank) is precision

at a given cut-off rank. Mean average precision for a set of queries is the mean

of the average precision scores for each query:

MAP (Q) =
1

|Q| ∗
Q∑

q=1

AveP (q) (4.5)
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Figure 4.4: LDA configuration.

In this work we report two types of MAP, MAPf and MAPa. This is be-

cause each duplicate can have several correct questions in the train data. Each

question has at most four answers, hence each duplicate has several relevant

question answer pairs. To calculate MAPf (MAPfirst) we group the question-

answer pairs by distinct questions and return the first ranked question-answer

pair in each group. To calculate MAPa (MAPall) for each duplicate we simply

take the average of all the question-answer pairs without grouping them.

LDA Configuration

The Dirichlet hyperparameters in LDA generally denote the belief about observa-

tions. They control the sparsity of the mulitominal distributions. Lower values of

these parameters results in sparse distributions and higher values result in dense dis-

tributions. Good model quality has been reported for α = 50/k and β = 0.01. To

find the optimal value of these parameters for our dataset, we conducted two sets of

experiments with α = 50/k and α = 100/k and found the former results in the best

performance. Figure 4.4.a shows MAPa results and Figure 4.4.b shows MAPf results.

Results

We compare the retrieval performance of our model with LDA and TFIDF. Results

for MAP at various numbers of topics are plotted in Figures 4.5.a and 4.5.b. Our

model has two sets of topics, Q-topics and A-topics. Since the Q-topics in our model
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Figure 4.5: MAP results for question-answer pair retrieval.

Top1 Top2 Top3 Top4 Top5
LDA 0.038 0.054 0.059 0.063 0.066
QATM-Worst 0.108 0.127 0.138 0.144 0.148
QATM-Average 0.122 0.142 0.151 0.156 0.16
QATM-Best 0.131 0.152 0.161 0.164 0.168
TFIDF 0.363 0.395 0.417 0.426 0.433

Table 4.3: TopN results for question-answer pair retrieval
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Figure 4.6: Topical dependencies captured by QATM with examples of Q-topics and
A-topics represented by their first 20 most probable words.

are similar to topics in the LDA model, when comparing to the LDA model, we report

three MAP performance values for our model. Given the same number of topics for

both models, we report an average, worst and best performance over a range of A-

topic numbers for our model. These are denoted by QATM-Average, QATM-Worst

and QATM-Best respectively. In addition, because of the computational costs of

running our model (Appendix E), we only experimented with a maximum of 140

Q-topics and A-topics. But the lower computational costs for LDA allowed us to run

experiments with a maximum of 400 topics. TFIDF is not a topic-based approach,

and its performance is independent of the number of topics. The results show that our

model performs significantly better than LDA. However, TFIDF outperforms both

methods. Table 4.3 shows the TopN retrieval performance of the three models. Again,

TFIDF performs better than the topic-based approaches, but our model outperforms

the LDA model. This indicates that our model can be used in combination with other

information retrieval methods for improving results.

Our model is capable of capturing topical dependencies between questions and

answers. Examples of topics from a model trained with 140 Q-topics and 120 A-topics

are shown in Figure 4.6. Each topic is represented by its first 20 most probable words.

In addition, the graph in Figure 4.6 shows the dependencies discovered between topics

in questions and answers.
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Analysis of Results

Figure 4.7 shows the rank distribution for QATM and TFIDF, where the rank domain

has been broken into intervals of 100. From this figure it can be seen that TFIDF

retrieves a greater number of question-answer pairs in the top 100 results of each query.

To understand TFIDF’s superior performance, we assess the data. We define two

metrics for measuring the lexical overlap between a query and a document (i.e in this

case, a document consists of a question-answer pair). The first measure, Proportion

of Distinct Common Words over Distinct Query Words (DCoDQ) is defined as:

DCoDQ(q, d) =
|Distinct Common Words(q, d)|

|Distinct Words(q)| (4.6)

where q is the query, and d is the document. The numerator is the the number of

distinct common words between a query and a document, and the denominator is the

number of distinct words in the query. The second measure, Proportion of Length of

Common Words over Length of Query Words (LCoLQ) is defined as:

LCoLQ(q, d) =
|Common Words(q,d)|

|Words(q)| (4.7)

where q is the query, and d is the document. The numerator is the length (or number)

of common words between a query and a document, and the denominator is the length

of words in the query.

The 822 duplicates (queries) in our ground truth correspond to 3381 relevant

question-answer pairs in the train data. Hence, for each data point consisting of a

duplicate and a question-answer pair (3381 data points), we calculated DCoDQ and

LCoLQ measures. Figure 4.8 plots the difference in ranks produced by QATM and

TFIDF against the DCoDQ of each data point. Figure 4.9 plots the difference in

ranks against the LCoLQ.

We also calculated the percentage of question-answer pairs that are retrieved in

the top 100 results for their corresponding query. This percentage is 33.5% for QATM,

76% for TFIDF, and an overlap of 29.5%. Figures 4.8b and 4.9b denote the ranking

difference against lexical similarity of these data items.

To conclude, the figures presented in this section indicate that our ground truth

and train data are more lexially similar than semantically similar; this means that the

nature of the dataset is such that it favors keyword-based methods such as TFIDF.
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Figure 4.7: QATM and TFIDF rank distribution.
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(c) Datapoints with at least one method
producing rank less than 100

Figure 4.8: Ranking difference of datapoints against their lexical overlap (DCoDQ).
Data points in the left of the diagrams correspond to query questions that do not
have much word overlap with the retrieved question-answer pair.
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(a) All datapoints
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(b) Datapoints for which both methods pro-
duce rank less than 100
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Figure 4.9: Ranking difference of datapoints against their lexical overlap (LCoLQ).
Data points in the left of the diagrams correspond to query questions that do not
have much word overlap with the retrieved question-answer pair.
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4.3.2 Automatic Tagging

The QATM model provides a soft clustering of the documents and of the terms of a

collection by associating them to topics. In particular, the mixed membership vector

estimated for each document, assigns topics or tags to documents. We evaluate the

clustering quality of our model based on a gold standard available in the data on the

website. This gold standard consists of the tags assigned to questions in our dataset

by users of Stack Overflow. To compare the tag distribution of individual documents

with the mixed membership vector the model has estimated for the document, we

use the performance metrics introduced in [27]. The proposed metrics are based on

the concept of BCubed metrics [3]. BCubed metrics measure precision and recall for

each data point. The precision of one data item is the proportion of items in the same

cluster that belong to its category. Recall of a data item is the proportion of items

from its category that appear in its cluster. The category of a data point is assigned by

the gold standard. The cluster for a data point is assigned by the clustering algorithm.

Aggregate precision and recall measures are obtained by averaging over all pairs of

items. The harmonic mean of precision and recall is defined as the F-measure.

In the case of overlapping clusters [2], where there is a 0/1 assignment in which

items can be assigned to multiple clusters, precision and recall are defined as:

Precision(e, e′) =
Min(|C(e), C(e′)|, |L(e), L(e′)|)

|C(e), C(e′)| (4.8)

Recall(e, e′) =
Min(|C(e), C(e′)|, |L(e), L(e′)|)

|L(e), L(e′)| (4.9)

where e and e′ are two data items, L(e) is the set of categories and C(e) is the set of

clusters assigned to e. |C(e), C(e′)| is the number of categories common to e and e′.

In the case of overlapping clusters, in which each item has a mixed membership

vector assigned to it by the model and a true mixed membership vector, the metrics

are extended as:

Precision(e, e′) =
Min(|π(e), π(e′)|.|γ(e).γ(e′)|)

|π(e).π(e′)| (4.10)

Recall(e, e′) =
Min(|π(e).π(e′)|, |γ(e).γ(e′)|)

|γ(e).γ(e′)| (4.11)
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Figure 4.10: LDA configuration.

where π(e) is the estimated membership probability vector, γ(e) is the true mem-

bership probability vector for data point a, and |a.b| = aT b for two vectors a and

b.

To calculate the true membership probability vector, we create a smoothed prob-

ability vector by assuming a value of one for tags assigned to the document, and a

value of 0.01 for tags that are not assigned to the document. We then normalize the

vector to get mixed membership assignments for the document.

LDA configuration

For the Automatic Tagging task, LDA achieves better clustering performance with

α = 100/k. Figure 4.10 demonstrates this (β = 0.01 in both experiments.)

Results

Figure 4.11 compares precision, recall and F-measure for our method with values

obtained for LDA. We compared the mixed membership probability vectors produced

by our model and LDA with the tag distribution obtained from the data, using the

metrics described in Eq. 4.10 and 4.11. It appears both methods achieve similar
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performance for small number of topics. However, for larger numbers of topics, our

model achieves better clustering performance in terms of F-measure.
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Figure 4.11: Clustering results.



Chapter 5

Conclusions

Community Question Answering services provide a rich source of practical informa-

tion. With the growth of the web these services are employed more and more by

users. To address their needs and utilize this vast source of knowledge, methods that

exploit these archives are needed. This thesis presented a new probabilistic model,

QATM, for representing the content of CQA archives. The model was designed to

capture the archive’s topical dependencies. In particular, three main assumptions

were involved in its design:

1. Topics in answers are influenced by topics in questions.

2. Topics in answers are more technical and more specific than topics in questions.

3. Answers contain additional topics that are correlated with the topics in the

question.

To analyze the model, it was applied for the tasks of Automatic Tagging, and

Question Answering. In the Automatic Tagging task, QATM obtained almost similar

performance as LDA, but for larger numbers of topics, it obtained better clustering.

For Question Answering, we argued that traditional methods, such as TFIDF or Lan-

guage Models, rely on word occurrence and are effective when the corpus contains

lexically similar content with sufficient word overlap. Hence, because of the short

length of questions and answers on CQAs and their sparse representations, we ex-

pected lexical based methods to perform worse than a topic-based method. However,

the results showed the reverse. Further analysis of the experimental results in Sec-

tion 4.3.1 provided insights about the dataset. The results denoted that the nature

of our dataset was such that it favored word-based methods such as TFIDF. Partic-

ularly, the ground truth was created from accidental duplicates. As described by the

website:

41
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... their overlap (with another question) is not ambiguous; the question

uses the same words and asks the same fundamental question, with no

variation at all ...

Our analysis of the experimental results also confirmed the fact that these duplicates

were more lexically similar than semantically similar to the data in our train data.

In addition, the fact that our dataset was chosen from a technical CQA website,

where the vocabulary domain is restricted and users are more likely to use the same

recurring words, may also have contributed to the final results.

For future work, there remain a number of modifications and extensions that can

be made to both the dataset and the model itself:

1. The ground-truth dataset was constructed using accidental duplicates from

Stack Overflow. Alternatively, it could have been constructed using the Bor-

derline duplicates on Stack Overflow. The questions in this set cover the same

grounds as a previous question in the archive but their overlap with that ques-

tion is ambiguous. Consequently, the uniqueness of these questions is subject

to interpretation. These duplicates are tagged by users of Stack Overflow so

that they naturally group with other relevant questions. A possible extension

to the current work is to consider constructing a ground truth from this set.

2. The content of programming forums contains a combination of text and code.

These forums naturally fall within the category of technical writings (commu-

nication) where the language is clear, unambiguous, concise and efficient in

terms of chosen vocabulary. As a result, the domain of their vocabulary is re-

stricted, and their content contains frequently occurring domain-specific words.

In contrast, general purpose forums such as Yahoo! answers, utilize a more

extensive vocabulary; their language is lucid and their structure more flexible.

A possible extension to the current work is to evaluate the performance of the

model against a dataset extracted from these general purpose forums and to

test whether our assumptions, with which the model was designed, apply to

these forums.

3. Topic-based models provide coarse topics inferred using the whole corpus [13].
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Using only these broad topics to represent documents, can hurt retrieval per-

formance. To resolve this over-generalization issue, a common approach is to

use an ad-hoc method in which a lexical-based representation is combined with

topic-based representations [30, 31]. Future work can also consider improving

the performance of QATM by combining its output with a lexical-based repre-

sentation such as Language models or TFIDF.
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Appendix A

Derivations

Factoring the joint distribution in Equation 3.2:

P(WQ,WA, ZQ, YA, ZA|αθ, αβQ
, αβA

, αφ) =∫∫∫∫
P(WQ,WA, ZQ, YA, ZA, θQ, φ, βQ, βA|αθ, αβQ

, αβA
, αφ)dθQdφdβQdβA =∫

P(WQ|ZQ, βQ)P(βQ|αβQ
)dβQ × (A.1)∫

P(WA|ZA, βA)P(βA|αβA
)dβA × (A.2)∫

P(ZQ|θQ)P(YA|θQ)P(θ|αθ)dθQ × (A.3)∫
P(ZA|YA, φ)P(φ|αφ)dφ (A.4)

The conditional A.1 can be rewritten into two products:

∫
P(WQ|ZQ, βQ)P(βQ|αβQ

)dβQ =

∫ NQ∏
i=1

NQi∏
n=1

P(W n
Qi
|Zn

Qi
, βQ)P(βQ|αβQ

)dβQ =

∫ K∏
k=1

V∏
v=1

[
βkv
Q

]Ckv
Q

K∏
k=1

⎛
⎝Γ(VQαβQ

)

Γ(αβQ
)VQ

VQ∏
v=1

[
βkv
Q

]αβQ
−1

⎞
⎠dβQ =

K∏
k=1

Γ(VQαβQ
)

Γ(αβQ
)VQ

VQ∏
v=1

Γ(αβQ
+ Ckv

Q )

Γ

⎡
⎣ VQ∑

v=1

(αβQ
+ Ckv

Q )

⎤
⎦

(A.5)

where Ckv
Q is the number of times word v is assigned to Q-topic k. The conditional A.2

can be also be rewritten into two products:

47



48

∫
P(WA|ZA, βA)P(βA|αβA

)dβA =

L∏
l=1

Γ(VAαβA
)

Γ(αβA
)VA

VA∏
v=1

Γ(αβA
+ C lv

A )

Γ

[
VA∑
v=1

(αβA
+ C lv

A )

] (A.6)

where C lv
A is the number of times word v is assigned to A-topic l. Similarly, the

conditional A.3 can be rewritten as:

∫
P(ZQ|θQ)P(YA|θQ)P(θ|αθ)dθQ =

∫ NQ∏
i=1

NQi∏
n=1

P(Zn
Qi
|θQi

)

NQ∏
i=1

NAQi∏
j=1

NAj∏
n=1

P(Y n
Ai,j

|θQi
)P(θQ|αθ)dθQ =

∫ NQ∏
i=1

K∏
k=1

[
θkQi

]Ck
Qi

NQ∏
i=1

K∏
k=1

[
θkQi

]Ck
AQi

NQ∏
i=1

Γ(kαθ)

Γ(αθ)k

K∏
k=1

[
θkQi

]αθ−1
=

NQ∏
i=1

Γ(Kαθ)

Γ(αθ)K

∏K
k=1 Γ(αθ + Ck

Qi
+ Ck

AQi
)

Γ

[
K∑
i=1

(αθ + C i
Qi

+ C i
AQi

)

] (A.7)

where Ck
Qi

is the number of times Q-topic k is assigned to words in question Qi and

Ck
AQi

denotes the number of times A-topics for words in the set of answers for question

Qi are drawn conditioned on Q-topic k. Similarly the conditional A.4 can be rewritten

as:

∫
P(ZA|YA, φ)P(φ|αφ)dφ =

∫ NQ∏
i=1

NAQi∏
j=1

NAi,j∏
n=1

P(Zn
Ai,j

|YAi,j
, φ)

K∏
k=1

P(φk|αφ)dφ =

∫ K∏
k=1

L∏
l=1

[φkl]
Cl

k

K∏
k=1

Γ(Lαφ)

Γ(αφ)l

L∏
l=1

[φkl]
αφ−1 dφ =

K∏
k=1

Γ(Lαφ)

Γ(αφ)L

L∏
l=1

Γ(C l
k + αφ)

Γ

[
L∑
i=1

(αφ + C l
k)

] (A.8)
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where C l
k is the number of times an A-topic l is drawn conditioned on a Q-topic k in

the entire corpus.

Using the above equations the update equation from which the Gibbs sampler

draws the Q-topic for a question word is:

P(Zn
Qi

= k|Z−n
Q , YA, ZA,WQ,WA) ∝

αβQ
+ C

kWn
Qi

Q

V∑
v=1

(αβQ
+ Ckv

Q )

αθ + Ck
Qi

+ Ck
AQi

k∑
i′=1

(αθ + C i′
Qi

+ C i′
AQi

)

(A.9)

update C
kWn

Qi
Q , Ck

Qi
and decrement count by one

Similarly, the update equation for drawing the A-topic and Q-topic of a word in the

answer is:

P(Y n
Ai,j

= k, Zn
Ai,j

= l|Y −n
Ai,j

, Z−n
Ai,j

, ZQ,WQ,WA) ∝
αβA

+ C
lWn

Ai,j

A

V∑
v=1

(αβA
+ C lv

A )

αθ + Ck
Qi

+ Ck
AQi

k∑
i′=1

(αθ + C i′
Qi

+ C i′
AQi

)

C l
k + αφ

L∑
i=1

(αφ + C i
k)

(A.10)

update C l
k, C

lWn
Ai,j

A , Ck
AQi

and decrement count by one



Appendix B

Main Entities on Stack Overflow

1. Questions Software questions posted by users

Properties include

(a) Tags

(b) Author

(c) Total points

(d) Votes

(e) Favorite

(f) Can be commented on, edited, revised

2. Answers Answers posted to questions by users

Properties include

(a) Author

(b) Point

(c) Votes

(d) Can be commented on, edited, revised

3. Users Members of the community who post or answer questions .

Properties include

(a) Profile

(b) Reputation, profile views, badges, etc

(c) Questions asked (Question ID, how many times the question has been

favorite, number of answers, number of views, tags, person who an-

swered and his reputation)

(d) Questions answered(Question ID, total number of votes for the an-

swers)
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(e) Total number of votes (positive and negative)

(f) Total number of tags

(g) Total number of badges

(h) Detailed overview of activity( badges awarded, comments, answers,

revisions, etc)

(i) Reputation

(j) Favorites

(k) Accounts



Appendix C

Dataset Extraction

C.1 Train Data

In brief, the Train Data Preparation Steps:

1. We collected statistics about tag frequencies and also tag co-occurrence frequen-

cies. To be specific, the tag frequency of questions with more than two answers

was calculated. In addition, the pairwise tag frequency of questions with more

than two answers was calculated.

2. These statistics were examined, and with regard to our objectives we manually

selected a total of 21 tags. We chose 7 tags that were popular and that co-

occurred frequently with other tags, around 7 tags that were popular but co-

occurred less frequently, around 7 tags that were popular and rarely co-occurred

with other tags. The tags in Table 4.2 were chosen.

3. For each of the tags selected in the previous step, we randomly collected 200

questions. 4200 questions were extracted.

4. For each of the questions selected in the previous step, we extracted at most

four of its most relevant answers. At the end of this step, we had extracted

15,822 answers.

C.2 Test Data (Duplicate Questions)

To compare the answer retrieval performance of our model with existing methods, we

extracted a ground truth set from the accidental duplicates. To extract the duplicates

the following steps were taken:
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1. Duplicate questions that had been voted on and closed as exact duplicates

were identified and extracted. 5783 questions were marked as duplicates in the

January data dump.

2. This group was refined to extract questions that were duplicates of the questions

in our train dataset. 822 duplicate questions were found. Since each duplicate

question may be a duplicate of multiple questions and a question may have

multiple duplicates (cardinality of the relation is many to many) these 822

duplicate questions correspond to 852 relations.

3. The 822 duplicates were split into two subsets consisting of 700 duplicate ques-

tions for the train set and 122 duplicate questions for the validation set. The

700 duplicate questions correspond to 722 duplication relations and the 122

duplicates in the validation set correspond to 130 duplication relations.

C.3 Examples of Duplicate Questions on Stack Overflow

1. Original Question (Train 113547)

URL http://stackoverflow.com/questions/113547/

Title iPhone development on Windows

Content Is there a way to develop iPhone (iOS) applications on Windows?

I really don’t want to get yet another machine. There is a project on

http://code.google.com/p/winchain/wiki/HowToUse that seemed to work

with iPhone 1.0, but had limited success with iPhone 2.0, plus it requires

all the Cygwin insanity.Is there anything else, or do I have to buy a Mac?

2. Accidental Duplicate (Test 68196), lexically similar to original question

URL http://stackoverflow.com/questions/68196/

Title Develop iPhone applications using Microsoft Windows [closed]

Content I don’t have a mac, but I wish to develop iPhone applications on

Windows platform. Is this possible?

3. Borderline Duplicate, semantically related to the original question
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URL http://stackoverflow.com/questions/22358/

Title How can I develop for iPhone using a Windows development machine?

Content Is there any way to tinker with the iPhone SDK on a Windows ma-

chine? Are there plans for an iPhone SDK version for Windows? The

only other way I can think of doing this is to run a Mac VM image on a

VMWare server running on Windows, although I’m not too sure how legal

this is.

4. Borderline Duplicate, semantically related to the original question

URL http://stackoverflow.com/questions/2642877/

Title Best windows iphone app development alternative

Content What do you think is the best way to develop iphone apps on win-

dows? What are the pros / cons of your method, and why do you use

it over other options? How complex is your method in relation to other

options? I am more interested in standalone and web apps but fell free to

discuss gaming graphics. Yes I know you need to build on a mac to be

able to put it on the app store, so no ”use a mac” answers please.

5. Borderline Duplicate, semantically related to the original question

URL http://stackoverflow.com/questions/2261267/

Title iPhone development on PC

Content Can anybody shortly describe solutions to start develop for iPhone

on PC?

6. Borderline Duplicate, semantically related to the original question

URL http://stackoverflow.com/questions/2438718/

Title developing iphone apps on windows is it worth the hassel

Content I’m only after a simple solution and won’t be developing anything

particularly complex. But I’m wondering whether the hassals of developing

an iPhone app NOT on MacOS are really that significant to avoid giving

it a shot. Bearing in mind that I do have access to a mac every now and
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again. So I would be able to compile it using the official Apple supported

SDK, but I just want to be able to develop it in my own environment

(windows laptop). I heard someone mention a while ago that there are

various objective C compilers that allow writing code in various other web

technologies as well. Are these really valid. And am I alone in thinking

Apple’s whole attitude towards this is totally imoral. Charging 200 for the

privelege of having your app unequivocally rejected etc etc and then not

being allowed to look directly at Steve Jobs or his golden retrievers.



Appendix D

Question-All-Answer Retrieval

To evaluate the answer retrieval performance of our model, we designed two types of

retrieval tasks. In the first task, referred to as Question-Answer-Pair Retrieval, the

model was used to retrieve and rank documents consisting of a question and answer

pair. We reported the experimental results for this type of retrieval in Section 4.3.1.

For the second task, referred to as Question-All-Answers Retrieval, we combined each

question with at most four of its relevant answers into one document. Hence, each

document in the train set consisted of a question and its several answers. We then used

different models (QATM,TFIDF, and LDA) to retrieve and rank those documents.

D.1 LDA Configuration

To find the optimal value of LDA hyperparameter α, we ran two sets of experiments

with α = 50/k and α = 100/k (β = 0.01 in both experiments). The former resulted

in better performance as shown in Figure D.1.

D.2 Results

Figure D.2 denotes MAP performance results for the Question-All-Answers-Retrieval

experiments. As the number of topics increase, LDA performs better compared to our

model. Table D.1 compares the TopN performance results. Similar to the Question-

Answer-Pair retrieval experiments, TFIDF outperforms both of the topic-based ap-

proaches.

D.3 Analysis of Results

Figure D.3 shows the rank distribution for QATM and TFIDF, where the rank domain

has been broken into intervals of 100. From this figure it can be seen that the

retrieval results of TFIDF are superior to those of QATM. Similar to Section 4.3.1,
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Figure D.1: LDA configuration.
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Figure D.2: MAP results for question-all-answers retrieval.

Top1 Top2 Top3 Top4 Top5
LDA 0.054 0.074 0.083 0.088 0.091
QATM-Worst 0.041 0.05 0.054 0.056 0.058
QATM-Average 0.049 0.06 0.066 0.069 0.071
QATM-Best 0.052 0.066 0.072 0.074 0.076
TFIDF 0.304 0.353 0.372 0.383 0.392

Table D.1: TopN results for question-all-answers retrieval
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Figure D.3: QATM and TFIDF rank distribution.

the data is examined using metrics that describe the lexical overlap between queries

and documents (i.e in Question-All-Answer retrieval each document consists of a

question and at most four of its relevant answers).

The 822 duplicates(queries) in our ground truth correspond to 852 relevant doc-

uments in the train data. Hence, for each of these data points, we calculated the

measures presented in Section 4.3.1. Figure D.4 plots the difference in ranks pro-

duced by QATM and TFIDF against the DCoDQ of each data point. Figure D.5

plots the difference in ranks against the LCoLQ.

For these 852 data points, we also calculated the percentage of documents that

are retrieved in the top 100 results for their corresponding query. This percentage

is 42% for QATM, 91% for TFIDF and an overlap of 41%. Figures D.4b and D.5b

denote the ranking difference against lexical similarity of these data items.

The figures confirm the conclusion in Section 4.3.1; that the ground truth and

train data are more lexially similar than semantically similar.
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(c) Datapoints with at least one method
producing rank less than 100

Figure D.4: Ranking difference of datapoints against their lexical overlap (DCoDQ).
Data points in the left of the diagrams correspond to query questions that do not
have much word overlap with the retrieved question-answer pair.
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(c) Datapoints with at least one method pro-
ducing rank less than 100

Figure D.5: Ranking difference of datapoints against their lexical overlap(LCoLQ).
Data points in the left of the diagrams correspond to query questions that do not
have much word overlap with the retrieved question-answer pair.



Appendix E

Computational Costs

The computational cost of inferring the parameters of any probability distribution is

directly proportional to the dimensions (the number of parameters) of the distribu-

tion. For topic models, inferring their parameters can be a relatively difficult problem

if they specify a high-dimensional probability distribution. The complexity of LDA is

compared to K-means in [30] and it is concluded that the two algorithms are similar

in terms of efficiency and running time.

The Gibbs sampling procedure in LDA is linear with I,K,M ∗ W̄D where I is the

number of iterations, K is the number of topics, M is the number of documents, and

W̄D is the average number of words in one document.

However, our model has more parameters compared to LDA; QATM has two sets

of topics, Q-topics and A-topics. It is linear with I,K, L,M ∗ (W̄Q+2 ∗ W̄A) where I

is the number of iterations, K is the number of Q-topics, L is the number of A-topics,

M is the number of documents, W̄Q is the average number of tokens in a question, W̄A

is the average number of tokens in the answers of a question, and W̄Q + W̄A = W̄D.

In terms of space requirements, the Gibbs sampling procedure for LDA uses mainly

five large data structures [13]: there are two count variables, which are matrices with

dimensions M ∗K and K ∗V where M is the number of documents, K is the number

of topics, and V is the length of the vocabulary of the corpus. In addition, the row

sums of these count variables are also stored, corresponding to a dimension of M and

K respectively. The fifth data structure is the state variable Zn
m which is stored for

every word in every document, resulting in a dimension of M ∗ W̄D.

QATM requires the count variable CKV
Q , which is a matrix with a dimension of

K∗V , its row sum CK which has a dimensionality ofK, the count variable CLV
A which

is matrix with dimensionality of L ∗V , its row sum CL which has a dimensionality of

L. The count variable CQK with a dimensionality of Q∗K, where Q is the number of

questions in the corpus (it is equal to the number of documentsM). the count variable
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CQK
A with a dimensionality of Q ∗K , the count variable CLK with a dimensionality

of L ∗ K. The state variable Zn
Qi

is stored for every word in the questions in the

corpus, resulting in a dimension of Q ∗ W̄Q. The state variables ZAn
i,j
, YAn

i,j
are stored

for every word in the answers of a question in the corpus, resulting in a dimension of

2 ∗Q ∗ W̄A.

The training and test phases for both QATM and LDA were run on ACEnet 1.

ACEnet has a number of clusters. We ran experiments on the Placentia cluster 2.

This cluster has 114 nodes, with a total of 856 cores. The amount of ram per node is

either 8 GB, 16 GB, or 32 GB. The CPU’s range from Dual-Core AMD Opteron 2.6

GHz to Quad-Core AMD Opteron 2.7 GHz. Specific details are on the website.

The number of Gibbs iterations for QATM in the training phase was 3000, and

it was 5000 in the test phase. For LDA, the number of Gibbs iterations for both the

training and test phase was 2000.

1http://www.ace-net.ca/wiki/ACEnet
2http://www.ace-net.ca/wiki/Placentia


