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Abstract

We consider a data set comprising encounters between grey seals off Sable Island

in the autumn of 2009. We apply Spatial Point Pattern data analysis approaches

to this data set and demonstrate the effectiveness of these techniques. Specifically

we propose using point processes for clustered data; the Inhomogeneous Poisson

process, and the subset of cluster processes called Cox processes. We utilize max-

imum likelihood methods to produce a model for the mean intensity of the seal

encounters which includes spatial covariates. We then consider the impact of in-

homogeneity and review minimum contrast methods for fitting the Cox process

models, specifically the Thomas and Matérn cluster processes. We demonstrate

that these methods allow us to gain valuable insight into the nature and extent

of grey seal encounters at sea. Finally we validate both our conclusions and the

approach taken using the most recent data available, that of autumn 2010.
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Chapter 1

Introduction

This thesis discusses some of the more important recent applications of spatial

statistics in general, and point pattern data analysis in particular, appearing in

the literature; with particular emphasis on those appearing in the marine realm.

A thorough review of techniques is presented followed by an illustrative analysis

of a data set comprised of at sea encounters between grey seals off Sable Island,

Nova Scotia.

The Ocean Tracking Network (OTN), (www.oceantrackingnework.org), is

a major research effort headquartered at Dalhousie University. The OTN has an

overall objective of fostering the conservation and sustainable use of the world’s

oceans. To effect this objective requires knowledge of the oceans, and knowledge

of the movements and habitats of marine animals and their relationships to the

ocean environment. While the scope of the OTN project is global, one specific

area of exploration is the biology and behaviour of marine life. Under the auspices

of the OTN, many marine species are being equipped with acoustic transmitters in

order to track their movements and behaviour at sea. Lines and arrays of oceanic

sensors are also being deployed as part of this effort to monitor environmental

factors such as temperature and salinity in the oceans and to understand the

ocean and it’s animal populations.

Also, as part of the OTN, new technologies are being explored to gather infor-

mation heretofore unavailable, one example being the deployment of a new type

of acoustic tag, a mobile transceiver called a VEMCO Mobile Transceiver (VMT).

Instead of acting as a recorder of animal movement the VMT records instances of

proximity to other tagged animals. In a prototype project the OTN has deployed

VMTs on the Sable Island grey seals (Halichoerus Grypus). This choice is due in

part to the need to recover the VMTs; the data is archival and the tag must be

1



2

retrieved in order to obtain the recorded information. Since the seals return to

Sable Island to breed they constitute a viable option. Of immediate interest here

are the 14 grey seals on Sable Island that were randomly selected and fitted with

VMT tags in 2009. Seals so instrumented are referred to as "bioprobes", reflecting

the fact that the organism itself is being used as the means of interrogating it’s

environment.

These bioprobes record a contact whenever one comes within approximately

500m of another. Thus they deliver a data set comprising the times and locations

of the pair-wise proximities of the tagged animals. Later it is hoped that by tagging

fish, e.g. Atlantic Cod (Gadus Morhua), a record of the bio-probe’s encounters

with other species may be recorded. Encounters with such fish, (as potential prey),

may yield further insight into the roles of, and relationships between, the species

of marine life in the study area. Data of this type, that is, times and locations

of encounters between animals, has simply not been available previously due to

the infeasibility of collecting it prior to the availability of technology such as the

VMT.

Traditionally, tagging efforts interested in behaviour have provided data on

the location of the tagged animal. Often utilizing satellite technology to track the

location of the marked animal over time, these tags have also recorded additional

parameters such as depth, salinity, speed etc. From these data models of the

animal movement and behaviour have been developed [17].

Mark-recapture studies capture and tag animals at a specific location and

time and then attempt to relocate or recapture the animal at future time(s).

Data acquired via these means can then be used to draw inference about many

aspects of the study population such as survival, mortality and movement. The

statistical techniques and models for describing and analyzing data of this type

are well developed [27], but what has not been readily accessible before is animal

behaviour between capture and recapture. The bioprobes offer the potential to

capture, in the form of these encounters, some of that behaviour.

The deployment of VMT technology is yielding a new data type that lends itself

to a different means of analytic approach. Bio-probe data consists of locations,
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(points), distributed across a space, through time. There is either an encounter

at a given location or there is not, and of course, we observe only the encounters.

Data of this spatial (or spatial-temporal) type may be viewed as a point pattern.

If we ignore the time component then the encounter locations become a pure

point pattern in the 2D plane. The methods of point pattern analysis are then

appropriate. We note that ignoring the time component is not unreasonable,

as here the time frame of the experiment is essentially one season and we are

interested in where and how the seals relate to one another and to the ocean

environment. That is; where do the seals encounter one another during the season,

how often, and what oceanographic or environmental factor(s) may be related?

Some illustrative examples of point processes are given by Baddeley [14].

1. Earthquake aftershocks. The latitude, longitude and time of earthquake

aftershocks. Author notes that by ignoring the time component this becomes

a spatial point pattern.

2. Locations of petty crime. Plotted on a map these can be analysed as a point

pattern; there is an issue as to whether any location is valid or whether the

points exist only on the street grid, perhaps making this lattice type data.

3. Locations of tree types. Tree locations in a natural stand. Are the locations

random by species?

Our encounter data are of this general form, points in the plane, and to con-

sider the structure of these encounters we will demonstrate the utility of spatial

methods. Chapter 2 will discusses in detail the means and methods contained in

the works above. Chapter 3 is the heart of this thesis, containing a description of

our data set followed by analysis and modelling, and concluding with a discussion

of the results and their biological context. Chapter 4 provides conclusions and

discusses further work that is possible and desirable.



Chapter 2

Statistical Methods for Spatial Data

2.1 The Literature

When considering data consisting of a point pattern we seek statistical approaches

that can address the questions how many points are where, and how do the points

influence one another? In the context of our particular application we seek to

answer not only whether and how many encounters the seals may have but also

to determine if there is a pattern to the encounters. That is, are the encounters

randomly distributed spatially and/or temporally or can we discern structure?

Further, can we relate this structure to factors of the physical environment?

The field of spatial statistics is an area of study that presents some interesting

aspects, drawing together as it does elements from many varied disciplines, both

from within and without traditional statistics. The examples come from every-

where; geology, botany, physics or meteorology, it doesn’t seem to matter, spatial

statistics have a role [26].

In order to gain insight into spatial statistics in general, and spatial point pat-

tern analysis in particular, several comprehensive works were consulted. Cressie

[8] provides an overview of the subject and in no particular order the books

by Schabenberger and Gotway [26], Daley and Vere-Jones [11] and Møller and

Waagepetersen [20] were often consulted. The field of stochastic geometry, as sur-

veyed by Stoyan, Kendall and Mecke [10], shares theoretical aspects with the study

of point processes and proved useful. The theory of Random fields, upon which the

doubly stochastic processes of Cox [7] depend, are to be found in Vanmarcke [29].

Ripley’s work [24] provides, in it’s modified form, the analytic and diagnostic

tool for point processes central to the analysis herein. Discussed by all above

except Vanmarcke, (who is not discussing point patterns), Ripley’s method of

second order analysis has become a popular tool for the analysis of point pattern

4
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data. Ripley’s original work was modified and extended significantly by Baddeley,

Møller and Waagepetersen [1]. This extension figures prominently herein.

These fundamental writings on the topic of point patterns and point pattern

data analysis led to consideration of the ideas of Cox [7] and Matérn, [21] as likely

candidates for our particular data. Interesting, informative and illuminative exam-

ples of modern applications of these ideas include the identification and tracking

of spatial and temporal lightning clusters [31], using spatial point processes to

model forest fire outbreaks [19]. As was briefly mentioned in the introduction,

pattern data in the marine biology context has been largely unavailable, espe-

cially at the scale we are considering, mainly due to the difficulty in obtaining

point data sets of locations for mobile and wide ranging animals. This difficulty

has largely limited the application of point pattern data analysis in ecology to

the study of plants or sedentary invertebrates at small spatial scales [22]. Indeed

O’Driscoll [22] discusses analogous methods for use in the absence of the pattern

information. Exceptions exist; an interesting application of spatial point pattern

techniques to large animals in the marine environment is the modelling of sea tur-

tle bycatch [3] where locations were available and were examined in relation to the

spatial distribution of the fishery activities as a whole. The only attempt to link

the spatial distribution of a seagoing animal to the oceanic environment itself is

found in Royer, Fromentin and Gaspar [15]. Here Bluefin Tuna, Thunnus Thyn-

nus, schools were spotted from an aircraft in the Gulf of Lions. The techniques of

pattern analysis were then used to relate the locations to the hydrography of the

gulf, surface temperature fronts and chlorophyll content fronts generated by the

outflow of the Rhône.

The remainder of Chapter 2 will discuss in more detail the means and methods

contained in the works above.

2.2 Types of Spatial Data

Cressie [8] classifies Spatial Data as being of 3 main types: geostatistical, lattice

and point pattern.
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Geostatistical data

The distinguishing feature of this data type, also referred to as "spatial data

with continuous variation", is that the domain (D) is fixed and the response at

location x, R(x), is continuous. The example given in Schabenberger [26] is that of

air temperature over the Continental US. The domain is fixed by the geographical

boundary, and the response is continuous and could be measured anywhere, at

least theoretically. Where it is measured does not change this property of the

response.

Lattice or regional data

Spatially aggregated data falls into this category. Typically, data reported by po-

litical boundary, postal code or census boundary is aggregated within that regional

boundary and a summary measure is reported. Thus (D) is the assembly of all

the reporting regions and R(xi), the response at the ith site, is an average for the

ith area as opposed to a measure at xi.

Point Pattern data.

When the data does not share the fixed and non random domain (D) of geostatisti-

cal or regional data then each realization of the process will have a set of locations,

(D∗), at which the process is observed. So the number of points in the pattern,

and their locations, are the outcome of a random process. The investigation of

these data concerns the properties of (D∗) itself and may require the estimation

of (D) if unknown. A data set of this type could be as simple as one where the

indicator, I(x) = 1, if x ∈ D∗. The collection of points is a point pattern. If

the data set also includes attributes for each point then the pattern is termed a

marked pattern. Without the attribute(s) the set is termed unmarked.

The seal to seal encounters are of the third type, point pattern data; each

season is a single realization of the process. If the experiment of 2009 is repeated,

as has been done in 2010, and is intended for 2011, then these and subsequent

realizations will each have a different (random) number of seal to seal encounters

and a different set of locations (D∗). The attributes, such as which pair of seals
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are present as well as the descriptive attributes of the seals themselves, will differ,

but attributes will be included. Thus each set of seal encounter data constitutes

a marked point pattern, a separate realization, generated by a (common) point

pattern process.

2.3 Spatial Point Processes

A point pattern data set is one composed of the locations of events or objects

in the region of study. In a two-dimensional point pattern, (X) would comprise

points (x) in the (2D) plane. The addition of a time component yields a spatial-

temporal or space-time pattern, (x,t). The 2D locations of the events are often

referred simply as xi(i = 1, ...., n), (X) referencing a 2D process.

Characterization of a Spatial Point Process

A Spatial Point Pattern consists of the locations of the events (xi), in a bounded

area on the plane R2, and is characterized by it’s first and second order intensities.

The pattern of points, or patterns if more than one is available, is a realization

of a spatial point process. So, for example, consider events in the plane that are

homogeneously, independently and identically distributed. The points constitute

a pattern, where the underlying process is said to be a homogeneous Poisson

process on the plane. A second pattern could be distributed the same as the first

and would be a second realization of the same process. The locations of the points

would be different for this second realization; but the underlying process would

still be the homogeneous Poisson.

The first order intensity, λ of a point pattern is the expected number of points

per unit area. Often called simply the intensity, this may be constant or it may

vary from place to place, and is referred to as being homogeneous or inhomogeneous

respectively. See Fig. 2.1 for an illustration of this important distinction.

The second order intensity, λ2(x, y), is the intensity associated with a second

point of the process being at y, given that one at x exists. Examining the nature of

this second order intensity may reveal the nature of the influence between points,

that is, the interaction.
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Homogenous Inhomogenous

Figure 2.1: Homogeneous Vs. Inhomogeneous Two Poisson process realizations.
The left panel is homogeneous, the right has λ(x) = 1000x. Each has 140 points.

In the context of spatial point processes, interaction refers to the relationship,

or dependence, between points. The points in the pattern may be independent,

regular or inhibitive, in which the points tend to "repel" one another, or clustered,

in which the points are "attracted" to one another. Attraction and repulsion

are used to characterize situations in which the probability of a second point

appearing within a given distance from a given point in the pattern is higher or

lower, respectively, than if purely random.

Marks are additional information attached to the points comprising the pat-

tern. A mark can be categorical or continuous; an example could be which pair

of tagged seals are associated with a given encounter.

A point process is stationary if, λ(u) = λ(u + h), that is, it depends only on

the distance between the two points.

A point process is anisotropic if, λ(u+ h) is a function of both the magnitude

and the direction of h. That is, the process varies in space differently dependent

upon direction. A process lacking such directional dependence is referred to as

isotropic.

The intensity measure; the expected number of points in the pattern, is also
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often used.

μ(W ) =

∫
W

λ(u)du

The standard model for a spatial point process (X) generating the pattern

assumes that the process extends throughout some 2D space, R ⊆ R2, but is

observed in a sampling window, (W). In the basic model W is fixed and known.

If W is not known it must either be defined or estimated since W is in fact part

of the process.

Poisson Point Processes

Poisson point processes are the simplest and most important class of point pro-

cess models. Homogeneous Poisson point processes represent "complete spatial

randomness" with "no interaction" between points [14]. The study of summary

statistics for point processes also relies frequently upon the Homogeneous Poisson

process as reference.

If the intensity, or intensity function of the Poisson process is a constant,

λ(x) = λ, then the process is a homogeneous Poisson process with intensity λ. The

special case λ(x) = 1 is the standard or unit rate Poisson process. If the intensity

function λ(x) is not a constant then the Poisson process is inhomogeneous. It is

with these simple models that we begin the analysis of the seal encounter data set

in Chapter 3, first looking at, and easily rejecting, Complete Spatial Randomness

(CSR). We then examine the possibility of modelling the seal encounters using an

inhomogeneous Poisson model; that is, proposing that the data can be modelled

as independent points drawn from a Poisson process with a spatially varying mean

or rate parameter. This is a much more realistic model than CSR.

Poisson Cluster Processes

More sophisticated yet are the cluster processes which introduce the notion of

parents and offspring. Cluster Processes are two stage process with parent points,

a spatial point process for the cluster centers, and offspring, a spatial point process

for additional points associated with each cluster center. The complete point
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pattern that is observed is the superposition of the two patterns. We consider the

cluster centers as points of a Poisson process. When the parent points are points of

a Poisson process, homogeneous or inhomogeneous, the result is termed a Poisson

cluster process. Normally it is not possible to distinguish between a cluster process

and an inhomogeneous Poisson process with only a single realization. Neither is

it normally possible to determine which points in the superposition constitute

parents and which are offspring. Making this distinction requires some special

feature(s) of the point(s), inherent in the marks. This approach is taken in Chapter

3.

Cox Processes

Cox [7], described doubly stochastic Poisson processes, where he considered the

intensity function λ(x) as the realization of a random field. These processes are

now known as Cox processes.

A random feild may be viewed as an indexed set of random variables, X(t).

The collective outcome is denoted x(t), this is a realization of the field. In the

discrete case the outcome, x(t), is the discrete state of the response at t. A random

point process results if the x(t) are points (or, in our case, small objects), located

in a random pattern in some space.

Cox took a random field Λ = Λ(x) : x ∈ D, where X, the points, given Λ, is a

Poisson process on D. X is said to be a Cox process driven by Λ.

The intensity function for a Cox process then is λ(x) = EΛ(x), and the intensity

measure is μ(D) =
∫
D
Λ(x)dx. If Λ is deterministic then X is a Poisson process

and λ = Λ and the Poisson process above is a special case.

Shot Noise Cox Processes are so named following Rice’s "shot noise" model [23]

for electronics, where shot noise consists of randomly timed and randomly sized

impulses. The parent points have an intensity function as above, and the offspring

points, xi, form a spatial process, U(X), conditional on a set of parent points,

cj, j = (1, 2, ...):

U(x) =
∑
j

γK(cj, x)
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The γ parameter is the expected number of offspring points associated with

each parent and K is a kernel defining the distribution of the offspring about the

parent.

A Matérn process [21] defines γ as a Poisson(μ) variable and K as the uniform

distribution on the ball (disk) of radius R, b(cj, R). So, conditional on the parent

points (cj) each cluster has μ expected points distributed uniformly over the disk

of radius R centered on the parent.

A Thomas process [28] defines γ as a Poisson(μ) variable and K as the N2(0, σ
2I2)

density, an isotropic bivariate normal.

The Poisson cluster processes (Thomas, Matérn), can accommodate spatial

inhomogeneity by generating the parent points from some inhomogeneous Poisson

process whose intensity function is conventionally noted as κ(u). The expected

number of offspring in each cluster is denoted μ. There is also a need for a

scale parameter, the standard deviation (σ) for the Gaussian distribution in the

Thomas process, or R, the radius of the disk in the Matérn process. Inhomogeneity

may also be modelled by making the distribution required for the offspring points

inhomogeneous, μ(u). The overall intensity of the process, λ(u) is then κ(u)μ or

κμ(u) respectively.

We consider these processes as candidates for describing the process that gen-

erated the seal encounter data and in Chapter 3 we discuss these data and the

reasons for believing that the cluster centers, the parents, can be identified. Once

parents identities are established the cluster models are natural choices.

Marked Point Processes

The point pattern data set may contain more information than simply the locations

of the points. For instance, the points may have an identifiable characteristic; these

characteristics may be of either of two types.

1. Continuous. A "real number". Each point in the pattern has a value at-

tached for some measurement. Such patterns have continuous marks.

2. Categorical. A factor. The value of the factor denotes the type of point

within the pattern. Such patterns are referred to as multitype point patterns.
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Marks can be considered as a coordinate. For example, a data set of the form

(longitude, latitude, time) may be considered a spatio-temporal pattern, or it may

be considered as a spatial patterm in the plane with a continuous mark, time.

Previously we discussed a point pattern dataset as one composed of the lo-

cations of events or objects in the region of study. In a two-dimensional point

pattern (X) would comprise points (x) in the (2D) plane. The 2D locations

of the events are often referred simply as xi(i = 1, ...., n), (X) referencing a

2D process with some domain R, the space in which the process occurs. A

marked pattern has the spatial domain R but also has the marks belonging to

some set M . Such a pattern is a point pattern in R x M . We now have

X = {(x1,m1), ...., (xn,mn)}, xi ∈ R,mi ∈ M , where the xi are locations and

the mi are the marks.

Marks are to be distinguished from covariates. Each mark is a property of the

datum itself and is measured at each datum. Covariates may be introduced when

modelling a point pattern. A covariate must exist for each point in the domain

D, not simply at each datum location (xi).

The seal encounter data are a marked point pattern. Additional information

included with each location datum includes time of occurrence and the identities

of the pair of seals involved. Since we treat the seal encounters as a spatial point

process and not a spatio-temporal point process we regard the time of encounter

as a mark and not as a co-ordinate.

2.4 Estimation and Inference

Estimating the Window

As mentioned above, a point pattern is observed within a window. If all that is

observed is the points in the pattern then the window, W , must be determined or

estimated. Ripley and Rasson [25] suggest a method for estimating an unknown

window. Their method is to inflate either a bounding box or a convex hull, ac-

cording to the number of data points and the number of vertices the convex hull

will require. The Ripley-Rasson scaling factor (RS) for the convex hull is:
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RS =
1√

1− m
n

where n is the number of data points and m is the number of vertices on the

convex hull. Alternatively, for a bounding box the scaling factor is:

RS =
1√
1− 4

n

We will use the method of Ripley and Rasson to estimate (W ) for the seal to

seal encounters.

Estimation of the Mean; uniform intensity.

The intensity of a point pattern is the expected number of points per unit area.

This is analogous to the mean or expected value of a random variable. If the point

process (X) is homogeneous then the expected number of points is proportional

to the area of the window (W),

E[N(X ∩W )] = λ · area(W )

where N is a counting operator. This is equally true for any subset of W.

E[N(X ∩ V )] = λ · area(V ), V ⊆ W

and,

λ̂ =
N(X)

area(W )

is an unbiased estimator for λ.

The simplest point pattern is the homogeneous Poisson process. The Poisson

process has no interaction between points. Rejecting the Poisson null hypothesis

is often seen as the first step towards fitting a more realistic model, and acts as

a reference process for exploratory and diagnostic tools since a Poisson process

with uniform intensity, λ(u) = λ, and no interaction (between points), connotes

"Complete Spatial Randomness".
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Estimation of the Mean; varying intensity.

If the intensity function λ(u) is not a constant then a Poisson process is said to

be inhomogeneous. If we assume that the expected number of points in a small

area du around a location u equals λ(u)du then λ(u) is the intensity function of

the process (X) [14] [26] and the expected number of points in some subset of the

window (V ) is,

E[N(X ∩ V )] =

∫
V

λ(u)du, V ⊆ W

The homogeneous case is the special case where λ(u) is a constant. Estimating

the intensity at location u is required; in practise this is done by methods of

quadrat counting or by methods of density estimation.

Kernel Estimation

A spatially varying estimate of intensity at location u can be found from an ex-

amination of the process in the area of u. Kernel estimation of this type yields

a local estimate of the intensity function λ̂(u). If the neighbourhood h is small,

λ̂(u) has small bias but large variance. Increasing h decreases variance but intro-

duces bias. The exact form of the kernel is of less importance to the performance

of the smoothing function than is the value specified for H [14]. Since the form

of the kernel is not influential [14] we choose the Gaussian kernel for reasons of

familiarity and ease of use:

k(t) =
1√
2π

exp(
−t2

2
)

In this specific case the kernel will be bivariate normal with variance covariance

matrix H, where H has the form:

H =

(
σ2x ρσxσy

ρσxσy σ2y

)

Appropriate values of the parameter H must be determined. Spherical contours

(circles in 2D) are common, but choosing different bandwidths is possible. A
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bivariate normal kernel will yield elliptical contours if the variances are unequal.

A non-zero co-variance will yield a rotation [26].

Bandwidth Selection

Methods for selecting the bandwidth parameter H are required. Options for

estimating H are Least Squares Cross Validation, common in the literature of

animal Range Utilization [18]. The value of H is chosen to minimize,

M(h) =
1

n2h2

n∑
i=1

n∑
j=1

K∗(
Xi −Xj

h
) +

2K(0)

nh

where K∗ = K(2)−2K, and K(2) is a bivariate normal with variance-covariance

matrix . Note that if the matrix is diagonal the kernels will be aligned with the

axes of the data. That is, there is no rotation due to covariance.

Plug-in Bandwidth Selectors are also available for Bivariate Kernel Estimation.

This method yields a non diagonal bandwidth matrix H [13]. Using the plug-in

algorithm yields a variance-covariance bandwidth matrix identical to the Least

Squares Cross Validation (LSCV) estimate.

2.5 Model Fitting

The R package spatstat [4] includes a model fitting algorithm [5] to fit a point

process model to point process data. It allows the fitting of models which employ

spatial covariates so long as the covariate Z(u) is measured at every location u.

The algorithm fits an inhomogeneous Poisson model for the intensity function in

which intensity is either a loglinear function of the covariate(s):

λ̂(u) = exp(β0 + β1Z(u))

or proportional to the covariates:

λ̂(u) = βZ(u)

The homogeneous Poisson process above is a simple special case where,
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λ̂(u) = λ̂ = exp(β0)

Interaction: Inhibition, Independance and Clustering

Investigation of the pattern with the aim of determining if the points are inhibited

(tending to avoid one another), independent or clustered (closer together than

expected), can be achieved using means of distance based methods. Worthy of

note is the issue of edge effects, which has substantial impact on distance methods.

Recall that the basic point process model has the process continuing indefinitely

in R but only viewed in the window W . If the nearest point of the process to

a given point is not in the window then the distance based calculation will not

take it into account, thereby introducing bias. In the seal encounter data we have

encounters between instrumented seals and (leaving aside failure to detect on part

of the tags themselves) since presumably we have them all, there is no pattern

outside of the window and so we need not account for edge effects, That is, the

nearest neighbour of any given point is also in the observed pattern. For the

cluster models this implies that there are no points observed that are offspring

of unobserved parents. This alternative construction views the point process as

finite, existing only within a defined boundary or domain [11].

Diagnostic functions for Spatial Data

Distance Methods

Classical distance based measures include;

• Empty space distance

d(u) = mini‖‖u−xi‖‖ distance from a fixed reference u to the nearest datum.

• Nearest neighbour distance

ti = mini �=jsij for each point xi to it’s nearest neighbour.

Each is discussed in detail below.
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The empty space function F

The empty space function F , also called the spherical contact distribution function

is a cumulative distribution function for the empty space distance being less than

or equal to some arbitrary distance r.

F (r) = P{d(u,X) ≤ r}

The empirical distribution is,

F ∗(r) =
1

m

∑
j

1{d(u,X) ≤ r}

The estimated F function is compared to a benchmark, the (homogeneous)

Poisson process which has an an empty space function

FPois(r) = 1− exp(−λπr2)

Using λ̂ = n(x)
area(W )

values of F̂ (r) > FPois(r) suggests regularity and F̂ (r) <

FPois(r) suggests clustering.

The nearest neighbour function G

The nearest neighbour function G, is a cumulative distribution function for the

nearest neighbour distance of a point in the pattern, u is an arbitrary point (the

origin is a common choice), {d(u,X\{u}) is the distance from u to a point in the

pattern excluding u.

G(r) = P{d(u,X\{u}) ≤ r‖u ∈ X}

The empirical distribution is

G∗(r) =
1

n(x)

∑
i

1{ti ≤ r}

The estimated F function is compared to a benchmark, the (homogeneous)

Poisson process which has an an empty space function
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Figure 2.2: Distance measures Empty space distances (left panel) and a Steinen
diagram showing each point surrounded by a circle equal to its nearest neighbour distance
(right panel).

GPois(r) = 1− exp(−λπr2)

The result for G(r) is the same as for F (r) since the two are equivalent, however

values of Ĝ(r) > GPois(r) suggests clustering and Ĝ(r) < GPois(r) suggests regu-

larity, opposite to interpreting F̂ (r). See Fig. 2.2 for a comparative illustration

using our data.

Ripley’s K function

Second order analysis

Ripley’s K function, originally defined for stationary and isotropic point processes

such that λK(r) is the expected number of points of the process not including u

within distance r of the given point u;

K(r) =
1

λ
E{n(X ∩ b(u, r)\{u}‖u ∈ X)}

K(r) =
2π

λ2

∫ r

0

xλ2(x)d(x)
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is a popular tool for analysis of spatial point data. The term λ2(x) is the second

order intensity, the intensity of a second point of the process given that there is

a point at x. If the process is homogeneous this depends only on the distance r.

Intuitively, K(r) is the expected number of further events within a distance r of

an event x, divided by the intensity at that event. The quantity λK(r) then is

the expected number of extra points within distance r of an arbitrary point in the

process. For example, if the process is homogeneous with intensity λ, then the

expected number of points is λπr2, and KPois(r) = πr2.

Interpretation of the K function is by means of comparison to the known K

function for the Poisson process.

KPois(r) = πr2

Values of K̂(r) > KPois(r) = πr2 suggest clustering and K̂(r) < KPois(r) =

πr2 suggest regularity.

Pair correlation function ρ

Also common is the pair-correlation function;

ρ(r) =
λ2(r)

λ2
=

1

2πr

dK(r)

dr

For a Poisson process ρ(r) = 1, ρ(r) > 1 indicates that pairs of points are more

likely to occur in proximity (jointly) than for a Poisson process. ρ(r) < 1 indicates

a repulsion.

Other related forms

Other functions that are used to study dependence in point patterns exist. They

are related to K(r) as follows:

The radial distribution function, or empty space function F (r), reviewed al-

ready, may be related to K(r):

F (r) = λ
dK(r)

dr
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and measures the rate of change of the expected number of extra points as r

increases.

The L function;

L(r) =

√
K(r)

π

is commonly used instead of the K function. The L function and the K function

are in one-to-one correspondence but the L function is the identity, L(r) = I(r) =

r, for a Poisson process. For small values of r, L(r)− r > 0 indicates aggregation

or clustering at distances less than r, L(r)−r < 0 indicates regularity or repulsion.

The J function combines F and G so that,

J(r) =
1− F (r)

1−G(r)

Since FPois(r) = GPois(r), JPois(r) is always unity. Values of JPois(r) < 1

suggest clustering, values of JPois(r) > 1 suggest regularity.

Regrettably, both theses distance based methods, F (r) and G(r) require the

pattern to be both stationary and homogeneous, as does K(r) in it’s original form

above, meaning none can be applied to our data.

Only the 2D forms of these functions, F(r), G(r), K(r), J(r), L(r) and ρ(r) are

provided for simplicity, although more complex general forms do exist for higher

dimensions. See Fig. 2.3 for an example and comparison of the F(r), G(r), K(r),

and J(r) functions. All represent the same data and each exhibits strong indication

of clustering although the shape of the curve characteristic of clustering is different

in each case.
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Comparison of diagnostic funtions
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Figure 2.3: Diagnostic functions F, G, J and K for the seal encounter data.
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Dealing with Inhomogeneity

The Inhomogeneous K function

Baddeley, Moller and Waagepetersen derived a modified form of Ripley’s K func-

tion for inhomogeneous processes [1]. By reweighting each point in the pattern

(xi) by the inverse of the intensity at that point so that wi = 1
λi

they define

the inhomogeneous K function. This results in a condition termed second order

reweighted stationary and permits the use of the modified form of Ripley’s K, the

Inhomogeneous K function, to be used for analysis of a pattern.

KInhom(r) = E

⎛
⎝ 1

λ(u)

∑
xj∈X

1

λ(xj)
1{0 < ‖u− xj‖ ≤ r

∣∣u ∈ X

⎞
⎠

Conveniently KInhom(r) reduces to K(r) and is a constant λ if applied to

a homogeneous Poisson process. Furthermore, KInhom(r) for an inhomogeneous

Poisson process is πr2, which is identical to the K(r) for a homogeneous Poisson

process.

K̂Inhom(r) =
1

area(W )

∑
i

∑
i �=j

1(‖xi − xj‖ ≤ r)

λ̂(xi)λ̂(xj)
e(xi, xj, r)

Baddeley [14] recommends the use of a parametric model such as will be seen

in Chapter 3 to provide the estimate of λ̂(u) required to estimate KInhom(r). The

e(xi, xj, r) term is an edge correction if needed. Plotting the KInhom(r) against

the theoretical KInhom,Pois(r) = πr2 shows evidence of clustering. There are "too

many" observed points within r at small values of r; KInhom(r) > KInhom,Pois(r) =

πr2, and "too few" for larger values of r. The impact of the inhomogeneity cor-

rection may be seen by comparison of the uncorrected K(r) in Fig. 2.3 above to

the Inhomogeneous K function in 2.4 below.

Simulation Envelopes

The observed pattern is a single realization of the underlying process. There

may be substantial variation displayed between separate realizations of the same

process. Comparing the estimated K̂(r) to the theoretical KPois(r) and looking
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Figure 2.4: Inhomogeneous K functionPlot of KInhom(r) for the seal encounter data.
The plot is indicative of the presence of clustering in the parent points at distances less
than .17 degrees, (approximately 18 km).

for divergence poses the question; how much difference due to divergence from the

theoretical process is there in these data’s generating process, and how much is

due to simple random variation in the data?

Pointwise Monte Carlo Tests

It is possible to address this question of divergence from the theoretical process

in the data’s generating process by simulating realizations from a given intensity

function. The maximum and minimum values of K̂(r) for each value of r form

the boundaries of an envelope. A K̂(r) lying outside of the envelope for a given

intensity is evidence that these data did not arise from a process driven by that

intensity. The language of hypothesis testing is used. The null hypothesis is some

reference point process model, say CSR. The alternative is not specified beyond

"the null is not true". Baddeley gives the alternative as "the pattern is a realization

of another process" [14].

In general, if we generate M realizations of CSR and then calculate K̂(j)(r) for

j = 1, 2, ...M , we determine the upper and lower bounds for our envelope.
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LB(r) = minjK̂
(j)(r)

UB(r) = maxjK̂
(j)(r)

Interpretation

Under the null hypothesis of CSR the probability that K̂(r) is not in [LB(r), UB(r)]

is 2
M+1

so the test has exact significance α = 2
M+1

. For any previously specified

value of r we would reject the null at α = .05, if K̂(r) lies outside the boundaries

for an envelope using M=39 simulations.

Simultaneous Monte Carlo Testing

The weakness of the pointwise method is that the value of r to be tested must be

specified in advance. It is not appropriate to plot the envelopes and simply look to

see if K̂(r) ever goes outside the bounds. It is possible to construct simultaneous

critical bounds which do have that interpretation, i.e. such that under the null the

probability of K̂(r) leaving the bounds is exactly α. This is done by computing

the maximum deviation for the Poisson K(r) for each of the M simulations:

Dj = maxr|K̂(r)−KPois(r)|

The maximum value for D is found and the boundaries of the envelope become,

LB(r) = πr2 −Dmax

UB(r) = πr2 +Dmax

and K̂(r) leaves this envelope, called a global envelope, when Ddata exceeds Dmax;

this happens with probability 1
M+1

under the null.

It is also possible to construct envelopes of this form from null hypotheses

other than CSR. For example one may construct an envelope from simulations

of a parametric model such as will be constructed in Chapter 3. We utilize this
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Figure 2.5: Envelopes for Inhomogeneous K function Plots of KInhom(r) versus
envelopes for these seal encounter data against the pointwise (left panel), and global
(right panel), envelopes generated by 39 and 19 realizations of CSR respectively, α=.05
for each.

method to test our models. The null hypothesis is the reference point process

model. The alternative is not specified beyond "the pattern is a realization of

another process" as above [14].

Fig. 2.5 shows a comparison of the pointwise envelope to the global envelope

for these seal encounter data. The pointwise envelope would reject the idea of CSR

for any previously chosen value of r except in a small region about r = .17. The

global envelope can be looked at for any departure of K̂(r) from the boundaries.

Since it does the idea of CSR is rejected. Since we have no prior expectations

about the seal encounter distances or their distribution, and hence no specific

values of r to test, we will use the global envelopes to check the fit of the models

that follow in Chapter 3 by simulating envelopes from those models and seeking

any departure of K̂(r) from the boundaries.



Chapter 3

Analysis of At Sea Seal Encounters

In this Chapter we describe our at sea seal encounter data and then perform

some exploratory analysis, first determining the appropriate window and then

considering how we may model these data as a point process within this window.

Starting with basic and formal ideas like the homogeneous Poisson model we go on

to develop more sophisticated parametric models for the point process. Eventually

two stage models called Cox models are investigated. These require us to model

the point process in two stages; first modelling the mean for a set of parent points

and then modelling the offspring separately. These models are checked using

simultaneous critical bounds for Ripley’s K function produced by Monte Carlo

simulation from the model.

3.1 Data

The data set we examine is comprised of at sea seal to seal encounters recorded

as part of the OTN bio-probe project. The first data set was recorded between

October and December of 2009. It is the expressed intention of the OTN program

to repeat this experiment in subsequent years. The 2009 data was received in the

form of 10 Excel spreadsheets, one each for 10 of the 14 tagged seals. Detections

of the 4 remaining seals appeared in these 10 files even though these 4 did not

have data files of their own. This would indicate that while these 4 seals were

detected by the tags of the animals represented by the 10 files, the VMTs on these

4 seals did not themselves record the presence of the animal detecting them. An

individual record in the data set consists of the date, time, latitude and longitude

of the encounter and the identity(s) of the seal(s) involved. In 2009 there were

1444 encounters initially, ranging from a low of 64 to a high of 346 per seal. Some

of these so called encounters were removed on the advice of the tag manufacturer

26



27

Locations of Seal Encounters off Sable Island
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Figure 3.1: Seal encounters off Sable Island

VEMCO (www.vemco.com); namely those in which the transmitting seal ID and

the receiving seal ID were one and the same, indicating a spurious self detection.

After cleaning in this way there remained 892 total encounters in the 2009 set.

Next, these data were rearranged in a more useful form. Instead of aggregating

the encounters by seal ID number, these data were resorted to show the pair of

seals involved. This produced a set that still contained 892 data points but indexed

by 22 pairs of seals rather than the original sorting by the 10 recording tag IDs.

The number 22 arises from the 22 distinct pairs of seals that were observed to

have encounters. It is notable that 22 is far fewer than the 91 (14 choose 2) that

were theoretically possible. The frequency with which these encounters occurred

is quite variable; 4 distinct pairs constitute 63 percent of the total observations.

Some pairs are represented by a single observation only.

Figure 3.1 serves to locate these data geographically, placing it in context of

the coast of Nova Scotia and Sable Island.
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3.2 Exploratory Analysis

Choice of Window

The Window within which a spatial point process is modelled is an integral part of

the model. The basic presumption is that the process is ongoing throughout some

space and that the window is a subset; implying that the process continues in-

definitely beyond the bounds of the window. Summary statistics and descriptions

based on distance must therefore take into consideration edge effects, correcting

for instances in which the nearest neighbour to a point lies outside the window.

The alternative construction is to view the point process as finite, existing only

within a defined boundary or domain [11]. The specific instance we are discussing

is a finite process since the at sea seal encounters have some geographical limit,

even if we don’t know what it is. This relieves us of the need to account for edge

effects but still requires that we choose a window appropriately. While the window

we choose must contain all of the data, too large a window will incorporate too

much "white space", and overstate the degree of clustering present. Consequently,

we have a statistical problem of estimating the unknown domain from which our

data are drawn.

There are several options for the window. For example, one could use the

boundaries of the plot of the data in Fig 3.1 as a window. However, there is

no data in the majority of the window although it does serve to illustrate the

geography nicely. For analytical purposes a much smaller window is desired. The

literature suggests the bounding box and the convex hull as likely candidates, and

we have adopted the inflated bounding box and inflated convex hull of the method

of Ripley and Rasson [25] for estimating an unknown window. Fig. 3.2, shows

the bounding box and convex hull estimated by Ripley and Rasson’s method and

inflated by a factor of 1√
1− 4

892

and 1√
1− 7

892

respectively. We also include a larger

bounding box inflated by a factor of 1.3 simply to show the effect of the inflation

on the K function; all shown within the same arbitrary rectangle used above to

locate the data geographically.

The four corresponding plots of the estimated Ripley’s K function follow in Fig.
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Comparison of Candidate Windows

Figure 3.2: Window Choice. Illustration of the progressively smaller candidate win-
dows discussed in the text.

3.3 in order to demonstrate the importance of window selection. Note that the

larger the window the larger the value of K̂(r) is for any given radius r. All show

evidence of clustering since K̂(r) > πr2, (the dashed red lines), but the same data

in a larger window show stronger clustering since K̂(r) exceeds πr2 by a larger

amount at a like r. This is the effect of the "empty space" in the window. The

pattern in the larger windows appears tightly clustered in relation to the window

than does the identical pattern in a smaller window.

In keeping with the principle that the window should include as little white

space as possible [4] [26] the inflated convex hull would seem to present a viable

choice. Such irregular polygons however present difficulties in calculating many

of the distance methods used in summarizing and analyzing point patterns and

methods for using them are not fully developed [4]. Given this we select the

bounding box as estimated by the method of Ripley and Rasson. The window is

illustrated overlaid over a simple, uninflated, bounding box in Fig. 3.4.



30

0.0 0.2 0.4 0.6

0
1

2
3

4
5

6
Arbitrary Rectangle

r 

K
(r
)

iso
theo

0.0 0.1 0.2 0.3 0.4

0.
0

0.
5

1.
0

1.
5

Inflated Bounding Box

r 

K
(r
)

iso
theo

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Estimated Inflated Bounding Box

r 

K
(r
)

iso
theo

0.0 0.1 0.2 0.3

0.
0

0.
2

0.
4

0.
6

0.
8

Estimated Inflated Convex Hull

r 

K
(r
)

iso
theo

Figure 3.3: Impact of Window choice. Ripley’s K: Top Left, Large rectangle. Top
Right, Bounding Box Inflated by 1.3. Bottom Left, Bounding Box. Bottom Left, Convex
Hull. All show clustering. Effect is magnified in larger windows, the K function increases
faster in a larger window for any given data set.
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Bounding Boxes, Simple and Inflated

Figure 3.4: Estimated window Degree of inflation is small in relation to a simple
convex hull. Both are overlaid on the data.

3.3 The Homogeneous Poisson Model

When speaking of a pattern we are speaking of the points themselves as arranged

in the space, either the original pattern (the data), or a simulated pattern, called a

realization. When speaking of a process we are speaking of the properties that give

rise to the pattern, for example a Poisson process. We reserve the term model for

the models we are constructing for the mean, or intensity, of the process. These

models are the parametric or non-parametric estimates of the intensity of the

process.

As discussed in Chapter 2, one common initial approach to spatial data is to

model them as distributed uniformly and randomly in the space. More formally, if

the intensity, or intensity function of a process at point u is a constant, λ(u) = λ,

then the process is a homogeneous Poisson process with intensity λ. The special

case λ(x) = 1 is the standard or unit rate Poisson process. Such Poisson point pro-

cesses are simultaneously the simplest and most important class of point process

models. A Poisson process with uniform intensity, λ(u) = λ, and no interaction

(between points) connotes "complete spatial randomness".

Recall, the intensity of a point pattern is the expected number of points per
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At Sea Seal Encounter Pattern Homogenous Poisson Realization

Figure 3.5: Complete Spatial Randomness The left panel displays the actual at sea
seal encounter pattern to compare with a realization of a homogeneous Poisson pattern
with the same number of points. There is no fit on the right.

unit area. This is analogous to the mean or expected value of a random variable.

If the point process (X) is homogeneous then the expected number of points (N)

is proportional to the area of the window (W ). That is,

E[N(X ∩W )] = λ area(W )

and,

λ̂ =
n(X)

area(W )

is an unbiased estimator for λ.

The homogeneous Poisson model with no interaction between points is not a

serious candidate model for our data. Even a cursory glance at the seal encounters

reveals a gross departure. However, rejecting the Poisson null hypothesis is often

seen as the first step towards fitting a more realistic model, insofar as the study

of summary statistics for point processes also relies frequently upon the Poisson

process as reference [14] [20]. We do this in the next section.
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Homogenous Poisson Intensity Smoothed raw residuals

Figure 3.6: Complete Spatial Randomness The left panel displays the actual seal
A novel approach to studying at-sea associations in marine predators pattern within its
window superimposed upon a homogeneous Poisson intensity (the blue); λ is a constant.
The right panel shows residuals.

Tests of Complete Spatial Randomness

Quadrat Count Test of CSR

The first question is whether or not our set of encounters could plausibly have been

generated by a homogeneous Poisson process. If so, then we have Complete Spatial

Randomness (CSR). The hypothesis that these data arose from a homogeneous

Poisson point process in the plane can be formally tested using a quadrat count

test. We begin by dividing the window into equal area subregions (quadrats) and

count the number of points lying in each. The homogeneous Poisson process of

intensity λ > 0 has the properties [14]:

1. The number N(X ∩B) of points falling in any region B is a Poisson random

variable,

2. The expected number of points falling in B is E[N(X ∩ B)] = λ · area(B),

3. If B1, B2 are disjoint then N(X ∩ B1) and N(X ∩ B2) are independent

random variables.
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Figure 3.7: Quadrat Counts for test of CSR. The test rejects the hypothesis of a
homogeneous Poisson process.

If the window W is divided into subregions (quadrats) B1, ..., Bm of equal area

the counts in each quadrat, nj = n(x ∩ Bj) for j = 1, ...,m, are, under the null

hypothesis of CSR, independant, identically distributed Poisson random variables

with the same expected value. Therefore the Pearson χ2 goodness-of-fit test can

be used. Performing this test yields a tiny p-value; less than 2.2e-16, hence we

can confidently proceed on the assumption that the points are not the realization

of a homogeneous Poisson process.

We can also look at a plot of residuals for validation. The right panel of Fig.

3.6 contains a plot of residuals left by the homogeneous Poisson model in the left

panel. These residuals display a pattern, or shape, which is undesirable. While

the residual plot does not quantify the disparity like the quadrat count test, it

does provide an easy, quick and intuitive validation method.
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Figure 3.8: Global Envelope for Ripley’s K functionPlot of K̂(r) for the seal
encounter data set against the global envelope generated by 19 realizations of CSR. This
corresponds to the rejection of a null hypothesis of CSR.

Simulation Testing

Simulation testing (as discussed in §2.5) supports a similar conclusion. Simultane-

ous Monte Carlo critical bounds, or envelopes, are shown in Fig. 3.8. K̂(r) clearly

strays beyond the boundaries of the envelope confirming our rejection of CSR at

the 1
M+1

significance. Here M = 19 and so α = .05.

This result is hardly surprising; indeed given that we are modelling animal

behaviour a result of CSR would have been quite unexpected. The animals are

presumably acting in accordance with some imperative of their environment such

as food sources and are likely to be found where such food is to be had. Any

model we propose may even be seen to represent a proxy for the distribution

of food sources for the seals if that is seen as the primary driver behind their

movements. Naturally we would like to have a much better model. In the next

section we continue our search for a more meaningful model by considering Poisson

models with spatially varying (inhomogeneous) intensity.
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3.4 Inhomogeneous Poisson Models

We are now at the point where we have found substantial evidence to suggest

that a spatially varying intensity function, λ(u) is required for our seal encounter

process (X). That is, we have found substantial evidence to suggest the intensity

function λ(u) is not a constant and hence our process is not homogeneous but

instead is inhomogeneous. If we assume that the expected number of points in a

small area du around a location u equals λ(u)du then λ(u) is the intensity function

of the process (X) [14] [26], and the expected number of points in some subset of

the window (V) is:

E[N(X ∩ V )] =

∫
V

λ(u)du, V ⊆ W

Estimating the intensity at location u is required; in practise this is done by

using either non-parmetric smoothers (e.g. kernel estimation) or by building a

parametric model for the intensity.

Kernel Estimation of the Intensity

A kernel estimate of intensity can be used as our estimate of the intensity function

for the process. Applying a kernel smoother to the seal encounters yields an

estimate of the intensity function as shown in Fig. 3.9. Superimposing data (as

in the right panel), shows good correspondence, however, this is expected since all

we have done is simply smooth the data.

Simulating the Process using the Kernel Estimate

The realization of an Inhomogeneous Poisson process with the kernel estimated

intensity function improves conformity to these data as can be seen in Fig. 3.10.

The simulated pattern (right panel), much more closely resembles these data (left

panel) than did the homogeneous Poisson simulation seen in Fig. 3.5 (right panel).

We can use the kernel estimate of intensity to simulate patterns generated

by the inhomogeneous process model defined by this intensity estimate. Having

done this we can also generate envelopes,such as the one seen in the right panel
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Figure 3.9: Kernel Estimated Density The left panel displays the intensity estimate
for the complete data set using a kernel smoother. The right panel has the actual
locations superimposed.

At Sea Seal Encounter Pattern Inhomogenous Poisson Realization

Figure 3.10: The Inhomogeneous Poisson The left panel displays the actual seal
to seal encounter pattern within its window to compare with a realization of a Inhomo-
geneous Poisson pattern with the same number of points in the same window and the
intensity function defined as the kernel estimated density. There is much better fit.
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Figure 3.11: Global Envelope for Inhomogeneous K function The plot of
KInhom(r) for the seal encounter data against the global envelope generated by 99 real-
izations of an Inhomogeneous Poisson process with the kernel estimate as the intensity
function. There is no reason to reject the hypothesis that the data was generated by a
process with the stated intensity. α = .01

of Fig. 3.10 and gives a global envelope as seen in Fig. 3.11. Clearly a reasonable

fit is achieved as we fail to reject the notion that the process is other than as

stated at α=.01. However, this isn’t really a meaningful model, since the intensity

function, λ(u) that we used is simply a smooth of these data. In this instance

all we have shown is that an inhomogeneous process with an intensity equal to

our sample mean fits the data well. In addition to this shortcoming there is

no way to link the kernel smoothed estimate to any covariates or to make any

explanatory inference from it. More informatively, in the next section we will

model the intensity function using an alternative, parametric method.

Model Fitting; Parametric Estimation of the Intensity

The R package spatstat [4] includes a model fitting algorithm [5] to fit a point

process model to point pattern data. It allows the fitting of models which employ

spatial covariates so long as the covariate Z(u) is measured at every location u.

The algorithm fits an inhomogeneous Poisson model for the intensity function in
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which intensity is either a loglinear function of the covariate(s):

λ̂(u) = exp(β0 + β1Z(u))

or proportional to the covariates:

λ̂(u) = βZ(u))

and the homogeneous Poisson process is a simple special case where,

λ̂(u) = λ̂ = exp(β0).

Available Covariates

Modelling spatial intensity implies that the intensity is expected to vary across

the space (window), so it would seems reasonable to use spatial covariates that

potentially directly influence intensity. Scientists who study seal behaviour have

noted that the seals display a preference for the banks off of Sable Island; ar-

eas where the seabed rises to form underwater bluffs or banks. Further, they

suggest that their foraging behaviour is governed by the need to maximize their

(caloric) benefit whilst minimizing their energy expended to achieve the bene-

fit [9]. The bathymetry of the ocean area where the seals interact used was ob-

tained from the US National Oceanic and Atmospheric Administration (NOAA)

(www.ngdc.noaa.gov/mgg/global/global.html) [2] with a resolution of 1 minute

of longitude/latitude and depth in feet. These data, together with the distance

from Sable Island, the seal’s base location, to forage will be used to quantify any

preference for the banks, thereby quantifying the seal’s imperative to minimize

energy expended while foraging.

Quadrat (Tesselation) Test of Preference by Depth

A glance at the seal encounter locations superimposed on the bathymetry in Fig.

3.12 seems to confirm the idea that the seals prefer the banks. We can test this

formally by defining our quadrats according to depth, creating divisions of our
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window by bathymetry, that is a tessellation by depth with each tile being a range

of depths and each tile being of equal area. Tessellating in this way retains all of

the properties enumerated in §3.3. Performing a χ2 test we obtain a p-value of less

than 2.2e-16 and can conclude that the seals show a strong locational preference

due to water depth and water depth is a likely covariate.

Quadrat (Tesselation) Test of Preference by Distance

A glance at the seal encounter locations superimposed on the plot of distance from

Sable Island seems to show that there is a preference by distance. Similarly we

can test this formally by defining our quadrats according to distance and creating

a tessellation of our window by distance, each tile being of equal area. Performing

a χ2 test we again see a p-value of less than 2.2e-16. We conclude that the seals

show a strong preference according to distance from Sable Island and this distance

is a likely covariate.

Having shown clearly that the seal encounter locations are not randomly dis-

tributed with respect to either of our proposed covariates we procede to construct

parametric models using them as predictors.
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Tesselation by Depth

Tesselation by Distance

Figure 3.12: Quadrats determined by bathymetry and distance for test of CSR
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Candidate Models

Letting B(u) be the depth at location u, and D(u) be the distance to Sable Is-

land from point u, we will now fit parametric models to these data using these

covariates. These models produce an estimate for the inhomogeneous intensity of

the Poisson model of the process λ(u). As stated earlier, encounters are expected

to occur more frequently in shallower areas, (the banks), however the relationship

is not expected to be linear. Distance is expected to act as a penalty from the

seals perspective [9]. In keeping with the penalty interpretation of depth we may

expect distance to appear so as to heavily penalize sites with long travel distances.

Given the objective we will favour models that have a meaningful biological in-

terpretation as opposed to simple explanatory efficacy. Many models were fitted,

examined and rejected. See Appendix for details. We will discuss the choice of

the best model and it’s properties.

A summary of the candidate models is given in Table 3.1. All of these models

possess some amount of predictive power, with the exception of Model 00, which is

the homogeneous Poisson model (shown in it’s parametric form for comparison).

Model Form
Model 00 λ̂(u) = exp(β̂0)
Model 01 λ̂(u) = exp(β̂0 + β̂1B(u) + β̂2D(u))

Model 02 λ̂(u) = exp(β̂0 + β̂1B(u) + β̂2B(u)2 + β̂3D(u) + β̂4D(u)2)

Model 03 λ̂(u) = exp(β̂0+ β̂1B(u)+ β̂2B(u)2+ β̂3B(u)3+ β̂4D(u)+ β̂5D(u)2+
β̂6D(u)3)

Model 04 λ̂(u) = exp(β̂0+ β̂1B(u)+ β̂2B(u)2+ β̂4D(u)+ β̂5D(u)2+ β̂6D(u)3)

Model 05 λ̂(u) = exp(β̂0+ β̂1B(u)+ β̂2B(u)2+ β̂3B(u)3+ β̂4D(u)+ β̂5D(u)2)

Table 3.1: Summary of candidate models for λ̂.(u)

In all models all parameters are significant at α=.01 except the B(u)2 term

in model 04 which is significant at α=.1. This gives weight to the results of the

previous section where we showed that the seal’s encounters were not randomly

located with respect to either of the covariates, see Fig. 3.12.
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Figure 3.13: Fitted Intensity Models The predicted intensity functions for the fitted
models.

The fitted intensities of these models are displayed graphically in Fig 3.13.

The fitted intensity functions are visually appealing in that they more closely

resemble the earlier kernel estimate and allow the spatial variation which we know

is required. See Fig. 3.9 for comparison to the kernel smooth of intensity derived

from these encounter data. Model selection is examined formally in the next

section.

For emphasis we repeat here that these parametric models are attempting to

model the entire process as a function of a single, spatially varying, mean; the

intensity of the process. This is in contrast cluster models which we examine in

§3.5.
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Model Selection

Model selection based on a likelihood ratio test (LRT) is possible for nested models

like we consider here. Performing likelihood ratio tests rejects any of the models,

00, 01, 02, 04 or 05 as subsets of Model 03 with a p-value of essentially 0. Based

on the LRT Model 03 is to be preferred.

Alternatively, one may also utilize the Akaike Information Criterion (AIC) as

a decision criterion. In cases where the models to be compared are not nested

Baddeley [14] suggests the use of AIC.

AIC

The Akaike Information Criterion is a means of model selection that imposes a

penalty on the number of parameters [16]. If p is the number of parameters then

the AIC is defined;

AIC = −2maximum log likelihood + 2p

and so small values of AIC indicate better fit. Table 3.1 illustrates that Model 03

best captures the spatial variation. The AIC values for Models 00-05 are shown

here.

Model AIC
Model 00 -8860.133
Model 01 -9866.568
Model 02 -10822.893
Model 03 -11211.269
Model 04 -11144.699
Model 05 -10878.207

Table 3.2: AIC Table of AIC values for each evaluated model.

By either of the selection criteria Model 03 has the best predictive properties

and is the best choice. All of the coefficients in model 03 are interpretable in

terms of the seal’s behaviour and, desirably, the coefficients of model 03 are in line
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At Sea Seal Encounter Pattern Inhomogenous Poisson Realization

Figure 3.14: Inhomogeneous Poisson The left panel displays the actual seal to seal
encounter pattern within its window to compare with a realization of a Inhomogeneous
Poisson pattern with the same number of points in the same window. The intensity
function of the realization is the fitted intensity of model 03.

with our a prori expectations. We have adopted Model 03 as the best choice for

modelling the mean of an inhomogeneous Poisson process for the seal encounters.

The fitted parameters of Model 03 are shown below.

Model 03

λ̂(u) = exp(β0 + β1B(u) + β2B(u)2 + β3B(u)3 + β4D(u) + β5D(u)2 + β6D(u)3)

λ̂(u) = exp(8.37 + 0.181B(u) + 0.00314B(u)2 + 0.0000202B(u)3

−2.61D(u) + 0.794D(u)2 − 0.0516D(u)3)

Simulating the Process from the Model

Figure 3.14 shows the seal encounters in the left panel and a realization of our

Model 03 in the right. The realization of the process, while clearly better than

the homogeneous Poisson realization seen in Fig. 3.5 is not as good as that of the
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Figure 3.15: Parametric Inhomogeneous Poisson Intensity Estimate The left
panel displays the actual seal to seal encounter pattern within its window superimposed
upon an Inhomogeneous Poisson intensity function; the predicted intensity of the para-
metric model 03. The right panel illustrates a remaining lack of fit, particularly between
r=.02 and r=.10

inhomogeneous Poisson process defined via the kernel intensity estimate, see Fig.

3.10. Superimposing the point pattern over the fitted intensity as in Fig. 3.15 (left

panel) reveals no obvious issues but the Global simulation envelope (right panel)

still displays a lack of fit; the K̂inhom(r) function strays out of bounds. It does so

between r=.02 and r=.1, indicating that even after allowing for the effects of the

covariates, the seal encounters are still clustered at these distances. Comparing

the simulation to the actual points in Fig. 3.14 shows the model to be blurring

or scattering the points more than is desirable, the impact of which is detected

in the behaviour of Ripley’s K function at these distances, as seen in the Global

envelope, Fig. 3.15 (right panel). We are forced to reject the null hypothesis that

the seal encounters are well modelled by the inhomogeneous Poisson parametric

model.

The Inhomogeneous Poisson intensity model fails to equal the performance of

that obtained via the kernel estimate. When simulated, a lack of fit is perceived

in the range between r=.02 and r=.1. The data are more clustered, or more

tightly clustered, than the model predicts. We now turn to the aptly named
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cluster processes in an attempt to further improve our ability to model the seal

encounters.

3.5 Cluster Processes

The foregoing models all attempt to model the process using a single mean func-

tion. That is, each point in the realization is considered as an event of a Poisson

process with a single, spatial mean, λ(u). The Ripley’s K function compared to the

best performing parametric model, Model 03, clearly shows (see Fig 3.15) evidence

of clustering in these data not accounted for by the model. The Cox processes

are a convenient way to model clustered data [20]. Accordingly we examine them

further here.

Effectively, a Cox process is a Poisson process with a random intensity func-

tion. The Thomas and Matérn processes are both Cox processes. Desirably, both

the Thomas and Matérn processes have K functions of known analytic form. This

makes possible the fitting of models for these processes using the method of Min-

imum Contrast [12].

The K function for a Thomas process is

Kθ(r) = πr2 +
1

κ
(1− exp(− r2

4σ2
)),

and that of the Matérn Cluster process is

Kθ(r) = πr2 +
h( r

2R
)

κ

where h(z) = 2+( 1
π
)((8z2−4)arccos(z)−2arcsin(z)+4z

√
((1− z2)3)−6z

√
(1− z2))

for z <= 1, and h(z) = 1 for z > 1.

The theoretical intensity of the Cluster process λ̂θ = κ ∗ μ, is a function of

the location u, where θ = (κ, μ, σ) is the parameter for the Thomas process and

θ = (κ, μ,R) that of the Matérn process. In both cases κ is an intensity function

for the parent points, and μ is the expected number of offspring points per cluster.

The Thomas process has parameter σ, the standard deviation of a bivariate normal

distribution; this distribution describes the offspring about each parent point. The
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Matérn process has parameter R, the radius of a disk, centered on each parent, in

which the offspring are uniformly distributed. By estimating these parameters we

can fit these Cox processes to these data.

The values of the parameter θ that best match Kθ(r), the theoretical K func-

tion under the model, to K̂Inhom(r), the K function estimated from these data,

are desired. In this fashion the properties of the model best describe the clus-

tering characteristics of these data. This is achieved by the method of minimum

contrast [12] which minimizes the difference between the 2 functions over some

range:

D(θ) =

∫ b

a

‖K̂inhom(r)
q −Kθ(r)

q‖pdr

where 0 ≤ a ≤ b, and p, q > 0 are indices. It is usual to choose p = 1
4

and q = 2 so

that the contrast criterion D(θ) is the integrated squared difference between the

fourth roots of the two functions [30].

These models can be fitted as either homogeneous or inhomogeneous. Given

the results of the analysis thus far inhomogeneous is the obvious choice. There are

two ways to incorporate the inhomogeneity into the model, either, generate the

parent points homogeneously with a constant κ and a spatially varying μ, that is

μ(u), or, generate the parents inhomogenously using a spatially varying κ, κ(u),

and a constant μ. Here we fit the model with spatially varying offspring:

λ̂(u) = κμ(u).

When fitting a cluster model by minimum contrast one can still specify an in-

tensity function for the mean that is a function of the covariate(s). The same, best

performing, mean function as was found earlier (with the inhomogenous process)

parametric model ( depth+ depth2+ depth3+ dist+ dist2+ dist3) is used because

λ̂(u), the overall intensity at point u, is the best estimate available based on the

covariates. What we are doing here is allowing λ̂(u) to be decomposed into κ, the

intensity of the parents, and μ(u), an inhomogeneous intensity for the clusters. In

this way a model of the form, λ̂(u) = κμ(u) is used and the parameters κ and σ

or R are estimated for the Thomas and Matérn processes respectively. Thus the
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model has an inhomogeneous overall intensity, λ̂(u) and inhomogeneous clusters

with the expected number of offspring μ(u). One should interpret this model as

the seals spending more or less time in proximity to one another depending on

where the encounter occurs.

For the Thomas cluster process we obtain κ=1.458 and σ=0.0004 and for the

Matérn cluster process the respective fitted values of the parameters are κ=1.458

and R=0.00068.

For the Thomas and the Matérn Inhomogeneous cluster point process mod-

els give similar results. The κ parameters are very similar. Simulating from our

Thomas and Matérn cluster models we can see, as in Figs. 3.16 and 3.17 respec-

tively, that the simulated processes from the two models are very similar to one

another but are not terribly good in comparison to the actual data.

Calculating simultaneous envelopes for the two models shows the lack of fit,

the K function leaves the boundaries in both cases. Fig. 3.18 also reveals the

nature of the lack of fit, the K function is well above the means for the models

(the red lines) at r < .15 and falls significantly below at r > .25. In other words,

there are not enough points at short separations in ether model and there are too

many at longer separations in both. Looking to the simulations in Figs. 3.16 and

3.17 we see that both appear overly dispersed, or spread out, in comparison to the

actual data, consistent with the interpretation of the envelopes.

It is important to note that when fit in this way it is the expected cluster size

that is varying over the window to create the inhomogeneity. Contrast this to the

results of the following section.
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Figure 3.16: Thomas Inhomogeneous Intensity Estimate The left panel displays
the actual seal to seal encounter pattern within its window superimposed upon the
Inhomogeneous mean intensity function for the Thomas process; that is, the intensity of
the parent points. The right panel shows a simulation from the model. The fit is poor.
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Figure 3.17: Matérn Inhomogeneous Intensity Estimate The left panel displays
the actual seal to seal encounter pattern within its window superimposed upon the
Inhomogeneous mean intensity function for the Matérn process; that is, the intensity of
the parent points. The right panel shows a simulation from the model. The fit is poor.
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Figure 3.18: Simultaneous Confidence Envelopes for the Thoams and Matérn
Inhomogeneous cluster models The left panel displays the global envelope for the
Thomas model. The right panel that of the Matérn model fit by minimum contrast.
Both display a lack of fit in that they predict too few points at short separations and
too many at long separations.

3.6 Including Mark Information

Temporal Clusters

There are properties of the seal encounter data that may allow us further refine-

ment. Specifically, there are groupings in the seal encounters related to the VMT

technology and how it works. Poisson cluster processes are two stage process with

parents, a spatial point process for the cluster centers, and offspring, a spatial

point process for the points associated with each cluster center. The complete

point pattern that is observed is the superposition of the two patterns. When

the cluster centers are points of a Poisson process it is termed a Poisson cluster

process. Normally it is not possible to distinguish between a Cox process (below)

and an inhomogeneous Poisson process with only a single realization. Neither is it

normally possible to determine which points in the superposition constitute par-

ents and which are offspring. Making this distinction requires some special feature

of the point(s), inherent in the marks. The seal encounter data include additional
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information, specifically the time at which the encounter occurred. While, up to

now, we have not examined the temporal component we can make use of the time

to refine our ability to model these data.

A VMT has a signal pulse rate of approximately two minutes. That is, it

sends out a signal, a pulse, every two minutes on average. This creates an a

priori expectation that the observations will be correlated in time. Since, once in

proximity a pair of seals are likely to be re-observed at the data sample rate of the

tag there will likely be subsequent encounters over the ensuing time at the 2 minute

refresh rate of the tags. Eventually the seals separate and the repeated series of

contacts ends. This short series of contacts can be viewed together as a cluster

event. The same pair of seals may have a subsequent encounter, so the question

arises, for what interval between sequential contacts will we judge a contact to be

of the same encounter cluster, and alternatively, when will we adjudge the contact

to be the initial contact of a new cluster.

In order to explore this feature of these data further we difference the obser-

vation times. That is, we calculate the set of times between each observation of a

given pair of seals and their next observation. A quick glance at the histogram of

these differences (in Fig. 3.19) reveals a preponderance of short separations and

a small number of much larger lags with separations of many hours or days. It

seems a reasonable assumption to treat the very long separations as new encoun-

ters rather than assuming the two seals have been in contact for that long without

a detection. Accordingly these are designated as initial encounters of new clusters

and the summary statistics are recalculated. The mean time of proximity, that

is the time from one pairwise encounter to the next encounter between the same

pair, excluding these long lags, was 8:28 (eight minutes-twenty eight seconds) and

the standard deviation was 22:44. Approximately 77 percent of the lags are less

than 10 minutes, 95 percent of all lags are less than 46 minutes, 98 percent are

less than 60 minutes. This is entirely in keeping with our a priori expectation.

Setting the threshold time higher results in more clusters; fewer clusters simplifies

analysis at the cost of information, so the threshold is kept high. Using a cutoff

of 1 hour, results in 122 initial encounter points for their respective clusters.
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Here we make use of the fact that the cluster generating process is known; we

know that the seals encounter one another and that the refresh rate of the tags

will continue to report the same two seals for so long as they remain in proximity.

It seems natural to view the initial encounters, i.e. the first observation in each

cluster, as the parent points of our cluster process. The subsequent re-observations

of the same pair of seals will then be offspring.

We now construct Poisson Cluster Models using the 122 initial points as our

parents. This is again a two step process: 1) create a parametric model for the

mean using the 122 parent points and our covariates, and 2) model the offspring

by estimating their distribution according to the Thomas and Matérn processes.

Unlike the previous section we are specifying an inhomogeneous intensity for the

designated parents κ, meaning that the spatial inhomogeneity is modelled by κ(u)

and therefore there is a constant expected number of offspring μ. The inhomo-

geneity in the model is therefore a function of the inhomogenous intensity of the

parent points, the offspring’s distribution does not vary spatially. Such models

have the interpretation that the seals encounter one another more or less fre-

quently depending on location, but then, having encountered one another, the

time they spend in proximity is independent of location. That is:

λ̂(u) = κ(u)μ.

Plotting only the set of initial encounters yields a display that is similar to the

full data set in appearance, see Fig. 3.21. This is not surprising since the points

not shown are those that are strongly dependent in time on the initial encounters

and are therefore proximate spatially. The density estimate derived from only the

initial encounter is not so strongly peaked. Again, this is not surprising, since

removing multiple proximately located data reduces the weight attached to those

locations, spreading out the density estimate.

Intensity Estimation for the Initial Encounters

Having identified the parent points we now need to estimate their mean κ(u).

This parrallels estimation of the mean for the inhomogeneous model earlier with
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Figure 3.19: Histogram of Time Separation between Points Difference between
observation times (in minutes). The 2 minute refresh rate of the VMT gives several data
for each encounter.
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Figure 3.20: Temporal Clusters. The circles are proportional to the number of re-
detections associated with each Distinct Encounter
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Locations of Initial Encounters

Figure 3.21: Initial Encounters. Locations of the 122 parent points making up the
reduced data set.

the distinction that only the 122 parent points are used. This can be done by

methods of kernel smoothing or by use of a parametric model. The limitations of

the kernel smoother are as they were when we were modelling the entire process.

We therefore proceed directly to parametric estimation.

Parametric Estimate of the Mean for the Parent Points

In order to estimate the intensity of the 122 parent points only, we fit parametric

models using the same covariates as we did earlier.

Model Form
Model 00 κ̂(u) = exp(β̂0)
Model 11 κ̂(u) = exp(β̂0 + β̂1B(u) + β̂2D(u))

Model 12 κ̂(u) = exp(β̂0 + β̂1B(u) + β̂2B(u)2 + β̂3D(u) + β̂4D(u)2)

Model 13 κ̂(u) = exp(β̂0+ β̂1B(u)+ β̂2B(u)2+ β̂3B(u)3+ β̂4D(u)+ β̂5D(u)2+
β̂6D(u)3)

Model 14 κ̂(u) = exp(β̂0+ β̂1B(u)+ β̂2B(u)2+ β̂4D(u)+ β̂5D(u)2+ β̂6D(u)3)

Model 15 κ̂(u) = exp(β̂0+ β̂1B(u)+ β̂2B(u)2+ β̂3B(u)3+ β̂4D(u)+ β̂5D(u)2)

Table 3.3: Summary of candidate models for κ̂(u)
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Figure 3.22: Fitted Intensity Model The fitted models, Model 12, Top left. Model
13, Top right. Model 14, Bottom left. Model 15, Bottom right.

The fitted intensities of these models are displayed graphically in Fig 3.22.

Model Selection

As previously, model selection based on a likelihood ratio test is possible if the

models are nested, i.e., if one model is a subset of the other. In cases where

the models to be compared are not nested then the Akaike Information Criterion

(AIC), is used [14] [16]. The AIC for the parametric models for parent point are

seen in Table 3.3. Model 13 is the best model for the 122 parent points.

Views of the fitted intensity of Model 13 and and the superimposed (parent)

pattern are shown in Fig. 3.23.

The parametric model for the mean of the parent points is κ in the parameter

θ = (κ, μ, σ) To build a Thomas or Matérn model using this mean function κ(u)
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Model AIC
Model 11 -914.9445
Model 12 -1049.4194
Model 13 -1113.9677
Model 14 -1113.5837
Model 15 -1047.5419

Table 3.4: AIC Table of AIC values for parent point models.

we need to estimate the other parameters in θ. μ is straightforward since the

expected number of offspring per cluster, μ, is,

μ =
892− 122

122
= 6.31

as there are 892 total points and 122 identified as parents, leaving 892-122 offspring

to be divided into 122 clusters.

For the Thomas process an estimate of σ2 is obtained by minimum contrast

as above in §3.5 but now specifying κ(u) as the predicted fit of Model 13, our

parametric model for the parents. This produces an estimate for σ2 of 0.00365.

For the Matérn process an estimate of R is obtained by minimum contrast in the

same way. This produces an estimate for R of 0.06985. Having parameterized our

models we can now simulate from them.

Simulating the respective Thomas and Matérn cluster processes with these new

parameter estimates yields realizations like those in Fig. 3.24. These realizations

much better duplicate the original pattern. Calculating the envelopes results in

Fig. 3.25. The Thomas model is rejected since the K function leaves the bounds.

The Matérn model on the other hand stays in. We cannot reject the Matérn

model.

3.7 Interpretation

Here we examine the eventual Matérn model with respect to our biological con-

jectures. Taking first depth, what is the impact of bathymetry on the seal’s
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Figure 3.23: Fitted Intensity of Parent process Plot of our parametric inhomoge-
neous Poisson model for the intensity of the parent points. The right panel has the 122
points identified as parents superimposed.

Thomas Realization Matern Realization

Figure 3.24: Simulated Patterns from our Thomas and Matérn models The
Thomas and Matérn models created using the new parameters.
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Figure 3.25: Simulated Patterns from our Thomas and Matérn models The
Thomas and Matérn models created using the new parameters.

encounters? Since our inhomogeneous Poisson model and our fitted inhomoge-

neous Matérn have the same overall intensity λ̂(u) the argument here applies to

both. The left panel of Fig. 3.26 shows the shape of the effect of depth on λ̂ (the

effect function). Shallow water has a very large, positive impact on the inten-

sity λ̂, consistent with the idea that the seals prefer the shallow water areas (the

banks). What appears inconsistent is the monotonicity of the effect function. The

shallowest water available to the seals is the immediate vicinity of Sable, where

encounters are scarce. The banks are shallow relative to the surrounding seafloor,

not absolutely. We might have expected a maximum, or at least a local maximum,

to have occurred in the effect function at a depth corresponding to that found on

the banks. Fig. 3.28 is a lurking variable plot, used to determine at which values

of a covariate the model fails to capture the impact of the covariate. The lurking

variable plot reveals some significant dynamic at depths of 40-80 feet. The model

under predicts from approximately 40 to 50 feet, then dramatically over predicts

around 60 feet, returns to under predicting from 70 to 80 feet and reaches equi-

librium by 100 feet. There are very few encounters in water deeper than 100 feet.

This pattern is indicative of a bi-modal distribution of water depth at point of
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Figure 3.26: Effect Function and Histogram of depth Left Panel. Effect function.
Right Panel. Histogram of water depth at point of encounter, overlaid is the effect
function.

encounter. The histogram in Fig. 3.27 (right panel) confirms the bi-modality and

confirms the information in the lurking variable plot; under prediction, then over

prediction then return to under prediction.

Reexamination of Fig. 3.1 reveals that there are two small areas of very high

intensity in the seal encounter pattern, in the north-center of the pattern and in

the south-west corner. These are the locations of the banks discussed previously.

Not coincidentally the depths of these banks are approximately 70 feet and ap-

proximately 40 feet. Plotting the pattern together with the bathymetry as in Fig

3.27 (right panel) elucidates the point more fully. A higher order polynomial may

have been able to capture the effect of depth (the bimodality) better by but orders

higher than 3 are not supported by spatstat, the R package available with which

to fit point process models [14]. Higher order polynomials are promised for the

forthcoming Version 2.0 [14], and investigation is warranted in future. Alterna-

tively an additive modelling approach would be very worthwhile and potentially

an avenue of future research.

Comparison of the effect function for distance to the histogram of distances

from Sable Island to point of encounter shows no such discrepancy, indeed the effect
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Figure 3.27: Lurking Variable plot for depth Lurking variable plot for depth, shows
cumulative residuals as a function of the covariate. Compare to locations versus the 40,
60 and 80 foot contours.

of distance seems to be well captured. The unimodal histogram is consistent with

the interpretation that the seals use the closest area of suitable depth, travelling

to it directly as evinced by the few encounters near Sable Island, and no farther;

note the absence of encounters at distance greater than required.

While not statistically significant it does appear that there is some shape re-

maining, the shape of K̂Inhom(u) does not follow the mean trend of the model

perfectly, the black and red lines in Fig 3.25 diverge, hinting that the seal encoun-

ters may still be exhibiting clustering after conditioning on the covariates. The

model still seems to under predict slightly at short separations, (small r), and over

predict slightly at long separations, (large r), even after conditioning on the model

covariates. The ocean seafloor topography is, at best, a proxy for whatever is ac-

tually driving the seals behaviour, presumably feeding. So the interpretation of

the foregoing must be that the spatial distribution of the food source is a function

of and clustered with reference to the depth of water. The clustering is at the scale

of approximately .067 degrees of longitude, or approximately 7 km. The covariates

are an issue, the resolution of the bathymetry is one sounding every minute of arc,

or approximately every 2 km. Given this fact the ability of the model to resolve
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Figure 3.28: Histogram of distance Histogram of distance from point of encounter to
Sable Island. The effect function for distance (smooth line) is overlaid. Correspondence
is good. Scale is 10 minutes of arc.

detail below that scale is unreliable. The Matérn parameter R, the radius of the

disk about each parent on which the offspring are distributed, which we estimated

to be 0.069, is further evidence of clustering in the approximately 7km scale.
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3.8 Validation

In an effort to validate the preceding analysis we now turn to the 2010 data. Fig.

3.26 locates the 2010 encounter locations in relation to the coast of Nova Scotia and

Sable Island. The 2010 data set consists of 1115 seal to seal encounters recorded

in a repeat of the experiment that generated the 2009 encounter data with some

emendations. The sample size was increased, instead of 14 seals as in 2009 there

were 20 seals in the 2010 data set. Notwithstanding the aforementioned changes

Fig. 3.26 places the encounters in the same general area as the 2009 data.

We consider first the need to estimate the window (W) for a point process

if unknown, as is the case here. Plotting the 2010 encounters and the window

(W ), estimated from the 2009 data (using the method of Ripley and Rasson as

in Fig. 3.27 (left panel)) reveals a problem. There are 40 encounters from the

2010 encounter set lying outside the estimated window. Clearly, the estimate of

the window derived from the 2009 data is too small to contain the entire process,

even though it was entirely suitable for the 2009 observations.

Using the 2010 observations to validate our models based on those of 2009

implies we regard the 2010 data as a second realization of the same process. In

order to consider the 2010 data as a second realization we must compare them on

a like basis. Here are three options;

•W Consider only the subset of 2010 encounters lying within the 2009 window.

Doing this does require some data loss, (40 observations), but has the advantage

of validating models based only on the 2009 data.

•(W2010) Calculate a new window calculated using the 2010 data only.

•(W2009−2010) Calculate a new window using all of the available 2009 and

2010 data.

With the caveat that (W2009−2010) is now our current best estimate of the true

domain for the seal encounters we choose to validate our 2009 based model using
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the first option, (W ), therefore including only the subset of 2010 encounters lying

within our originally calculated window. We do this because the window (W ) of

a point process model is part of the model, and this leaves us to believe that this

uses these data to best mimic a second realization of our model. Expanding the

window on the basis of the additional information received in the 2010 data is best

viewed as a refinement of the 2009 model rather than a validation exercise.

Fig. 3.27 (right panel) presents the 2009 data and the subset of the 2010 data

that lies within the original window (W ).

We calculate simultaneous Monte Carlo envelopes from this model and examine

the Inhomogeneous K function for the subset of the 2010 data. This allows the

assessment of the degree of clustering present in the 2010 data in reference to the

2009 data and in reference to the model. Fig. 3.28 shows the results. The envelope

is the global simulation envelope derived from our inhomogenous Matérn cluster

Model; κ is the parametric model of our 122 designated parent points, μ=6.31 and

R=0.06985. The dashed red line is the mean of the model prediction. The black

line is K̂Inhom2009(r) from the 2009 data and the solid red line is K̂Inhom2010(r) for

the 2010 data.

K̂Inhom2009(r) lies entirely within the envelope as it did before, K̂Inhom2010(r)

does not. The nature of the divergence shows that the 2010 data are more highly

clustered than the 2009 data. K̂Inhom2010(r) > K̂Inhom2009(r) for values of r < .25

and K̂Inhom2010(r) < K̂Inhom2009(r) for values of r > .25. In comparison to the 2009

based Matérn model the model significantly under predicts the 2010 clustering

between approximately r = .017, (the resolution limit) and r = .07. The 2010

data are more clustered than the 2009 data, and significantly so.

We are left with the caveat of whether and perhaps most importantly how we

can consider this 2010 data a second realization of the same process. One must

ask why and in what manner is the 2010 pattern different. One possibility is

that the relationship between the seal’s behaviour and the covariates has altered.

Perhaps depth and distance did not influence seal behaviour in 2010, or influenced

it differently.

To gain some insight we essentially redid our analysis of the 2009 data but
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2010 Seal Encounter Locations

Figure 3.29: Overall view of the 2010 locations of Seal to Seal encounters off
Sable Island

2010 Seal Encounter Locations in 2009 Window Overlay of 2009 and 2010 Subset

Figure 3.30: The 2010 data and the 2009 Window Left Panel. The 2010 data
require a larger window. Right Panel. The 2009 data and 2010 subset in the 2009
Window. 2009 locations in black.
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Figure 3.31: Simulated Patterns from our Matérn model The Matérn model is
not plausible for the 2010 data.

this time using only the 2010 data, and hence (W2010). The model for λ2010(u)

is very similar to the previous parametric model for λ2009(u). It contains each of

the covariates, depth and distance, at the third order. All of the coefficients are

significant at α = .01 except the depth3 term, which is significant at α = .1.

Using this model λ2010(u) we examine the impact of depth and distance in the

same manner as we did previously, compare Fig 3.32 to Fig.3.26. Each shows a

histogram of the water depths at point of encounter. Superimposed on each is the

effect function for depth from an inhomogeneous model for the mean, λ(u). While

not identical the shape of the effect function is similar, and is subject to the same

caveats raised during our discussion of Fig. 3.26. The histograms display some

difference, the bimodality seen in 2009 is missing and there is a notable difference

in the frequency of encounter in the 60-80 foot range; the reduction in the 60-80

foot encounters reflecting the near absence of encounters on the bank in the north

center of the window.

Repeating with the effect function of distance, as seen in the right panel of

Fig. 3.32 gives similar insight. The fit isn’t quite as good but nothing in Fig.

3.32 contradicts the findings we gave for the 2009 data. The 2010 encounters may
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Effect Function vs. Histogram of Depth
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Figure 3.32: Effect Function and Histogram of depth Left Panel. Effect function
and Histogram of water depth. Right Panel. Effect function and Histogram of distance.

have tended to be closer to Sable, in somewhat shallower water, but there is no

explanation for the difference in clustering to be found here. The conjectures that

the seals prefer certain water depths, the banks (between about 40 to about 70

feet), and forage in the closest places of suitable depth, (the penalty interpretation

of distance), remain intact.

As an aside, the histograms for 2010 display an appreciable number of encoun-

ters in shallower water and short distance (0-10 feet and 0-10 minutes of arc),

corresponding to an obvious grouping of encounters in the immediate vicinity of

Sable Island. Encounters of this type, close and shallow, are conspicuously absent

from the 2009 data. The VMTs have a feature that is intended to shut off the

transmitter when the device is dry, i.e. the seal is ashore. Since we are concerned

with at sea encounters, and the at sea status of this group is open to question,

further scrutiny of these points and the influence may be warranted.

Having cast doubt on the idea that influence of the covariates upon the seals

has altered we must look further to explain the difference in clustering present in

the patterns. A recent discussion with Don Bowen, (one of the scientists carrying

out the tagging project [6]) elicited the fact that the composition of the sampled
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2009 Female Encounters 2010 Female Encounters 2009 and 2010 Female Encounters

Figure 3.33: Point Patterns of Female Encounters Left Panel, The 2009 Female
Encounters. Center Panel, The 2010 Female Encounters. Right Panel, the Superimposed
Patterns

seals was not constant. As we described in §3.1 there were 14 seals in the 2009

sample, 8 females and 6 males. In 2010, based in part on the desire to record

encounters with tagged Atlantic Cod, the researchers tagged 20 seals, 14 females

and 6 males. If we conjecture that the movement patterns of seals are different

for males and females [9] it is reasonable to question if the increased proportion of

females in our 2010 data group is responsible for the difference in the encounter

clustering suggested by our analyses.

To explore the idea of sex differences further we subset both the 2009 and

2010 data to include only those encounters in which the recording seal is a female.

Females were chosen since there are more of them and hence, more data. Figure

3.33 shows these 2009, and 2010 encounter patterns.

We now construct a parametric model for λ̂(u) just as before but using only

the 2009 female encounters data subset. Perhaps unsurprisingly at this point this

proves to be cubic in both depth and distance with all parameters significant at

α = .01 except that of depth1. We will now calculate the simultaneous Monte

Carlo envelopes from this model and compare the result to the Inhomogeneous

K function for the female subset of the 2010. This allows the assessment of the

degree of clustering present in the 2010 female encounter data in reference to the

2009 female encounter data and in reference to the model based on the 2009 female

encounters.



69

0.0 0.1 0.2 0.3
-0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

Global Envelope

r 

K
in
ho
m
(r
)

obs
mmean
hi
lo

Figure 3.34: Simulated Patterns from our Matérn model The male and female
seals display different clustering.

Fig. 3.34 shows the results. The envelope is the global simulation enve-

lope derived from our inhomogenous model based on the 2009 female encoun-

ters. The dashed red line is the mean of the model prediction. The black line

is K̂InhomFem2009(r) from the 2009 female encounter data and the pink line is

K̂InhomFem2010(r) for the 2010 female encounter data.

Both K̂InhomFem2009(r), the black line, and K̂InhomFem2010(r), the pink, lie en-

tirely within the global envelope. The nature of the divergence shows that the

2010 female data are not significantly different than the 2009 female data. The

blue line is the estimate K̂InhomMale2010(r). It leaves the global envelope and is

therefore significantly (at α = .05) different from the clustering pattern for the

2009 females while the clustering for the 2010 females is not. The male and female

seals show different clustering and we conclude that changing the gender composi-

tion of the sample is likely responsible for the difference in the pattern from 2009

to 2010.



Chapter 4

Conclusions

In this study we have succeeded in providing statistical evidence of close associa-

tion between the locations where seals encounter one another, the distance from

their land habitat and the topography of the ocean floor. Indeed, conditioned on

the seafloor topography and distance, the seal encounters, highly clustered when

viewed in isolation, no longer exhibit the characteristic shape in their K function

betraying clustering to a significant degree. Point pattern data analysis techniques

enabled us to link the spatial distribution of these discrete events, the seal encoun-

ters, to water depth and to distance from Sable Island. This result relied not only

on the point pattern of seal encounters, but additionally on information contained

in the marks. That is, without the marks and the attendant ability to distinguish

the parent points, efforts to model these data were markedly less successful. While

this inability in distinguishing cluster processes from inhomogeneous processes is

well known and our difficulties in producing an effective Poisson cluster model

from the points alone was to some degree expected it does serve to underscore the

utility of mark data. The fact that the cluster model proved the better model in

comparison to the inhomogeneous Poisson is likely due to similar causes. The seals

behaviour, and the workings of the VMT technology, argue for a cluster process.

The seal’s behaviour because it is presumably driven by the need to forage, and

foraging, like most animal behaviours, is patchy and variable, highly dependent

upon local conditions. Any model almost certainly had to be of inhomogeneous

intensity. The VMT technology similarly argues for a cluster process since the

approximate 2 minute refresh rate gives rise to multiple data points closely asso-

ciated in time. Thus the eventual form of the model and the offspring status of

the many subsequent points in the model.

The eventual model conforms closely to what was expected based on previous
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knowledge of seal behaviour with the caveat that such encounters had not pre-

viously been directly observed. It has long been known that the bank areas of

the offshore are highly productive; for human fishing activity as for marine fauna.

Those who have studied marine mammals, as well as other animals, postulate

that their foraging behaviour is directed by the imperative of maximizing feeding

benefit while simultaneously minimizing energy expenditure to reap said benefit.

In this context a model which uses the seafloor topography, i.e. the banks, and

penalizes distance from Sable Island, i.e. the seal’s base, makes much ecological

sense.

Spatial distribution of the seal’s prey species would be a valuable augmentation.

At best the use of seafloor topography stands as a proxy for the spatial distribution

of the seal’s preferred or available prey. While practical difficulties have thus far

stymied efforts to build a data set from the tagged fish that constitute potential

prey it is hoped that eventually this effort will succeed. Should it succeed and

produce a point pattern of fish to seal encounters then the logical approach would

be to condition the seal to seal point pattern on the seal to fish pattern. Evidence of

clustering, in terms of elevated second order intensities for seals given the presence

of fish, could be interpreted as seals seeking the fish. It would also be possible to

condition the seal encounters on a continuous covariate such as a prey density. If

the prey density were estimated at every point in some (D) then the pattern of

seal to seal encounters (D∗) could be conditioned upon it as we have done here

with the bathymetry. If such patterns or density estimates were available for more

than one potential prey species, e.g. Atlantic Cod, Gadus Morhua and Atlantic

Halibut, Hippoglottus Hippoglottus, then conditioning on both patterns or densities

could be used to infer preference by prey species.

Data being forthcoming from this or other studies is not unlikely given the

continued availability of this type of tag. In point of fact it is an explicit goal of

the bioprobe project. Atlantic Cod, Gadus Morhua, were tagged on the Eastern

Scotian Shelf (202 fish), and in the Southern Gulf of St. Lawrence (200 fish),

however no encounters between these tagged Cod and the grey seal bioprobes

were detected, suggesting either habitat overlap is not as expected, and hence the
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highly politicized predator prey relationship unlikely, or that larger numbers of

fish or tagging of other alternative stocks are required for reasonable probabilities

of detection by the bioprobes.

4.1 Future Work

Time. In this study we have confined ourselves to a seasonal time scale. This is

equivalent to assuming that the intensity of the process is constant with respect to

time, λ(t) = λ. With the limited data available investigating the time component

was unprofitable, however, given the stated intention of OTN to carry on collecting

this data in future, this may change. With additional seasons of data the spatial

analysis presented here can be expanded to a spatio-temporal analysis; we can

look for intra season variation in the seal’s usage of the space.

Simulated densities for the hypothetical prey species could be created. The

bathymetry is a proxy for the distribution of the prey species. Replacing the

bathymetry covariate with a density surface estimate of prey stock to directly

model seal response to the prey distribution is a sensible refinement.

Investigate other non or semi-parametric methods for estimating intensity. In-

stead of the rather complex parametric models for the intensity a spatial GAM

could be attempted. Using a smoother to approximate the functions of depth,

distance or other covariate(s) is a logical extension.

There are other examples of encounter-type data both within and outside of

the OTN, yet still in the marine realm that may we may consider in future. These

include data that will be derived by gliders (they will have VMT type technol-

ogy on board) that are currently being considered for deployment (John Cullen,

Oceanography) as well as whale-ship collision data (Chris Taggart, Oceanogra-

phy).



Appendix A

Candidate Inhomogeneous Models

Model Form
Model 00 λ̂(u) = exp(β̂0)
Model 01 λ̂(u) = exp(β̂0 + β̂1B(u) + β̂2D(u))

Model 02 λ̂(u) = exp(β̂0 + β̂1B(u) + β̂2B(u)2 + β̂3D(u) + β̂4D(u)2)

Model 03 λ̂(u) = exp(β̂0+ β̂1B(u)+ β̂2B(u)2+ β̂3B(u)3+ β̂4D(u)+ β̂5D(u)2+
β̂6D(u)3)

Model 04 λ̂(u) = exp(β̂0+ β̂1B(u)+ β̂2B(u)2+ β̂4D(u)+ β̂5D(u)2+ β̂6D(u)3)

Model 05 λ̂(u) = exp(β̂0+ β̂1B(u)+ β̂2B(u)2+ β̂3B(u)3+ β̂4D(u)+ β̂5D(u)2)

Model 06 λ̂(u) = exp(β0 + β1B(u))

Model 07 λ̂(u) = exp(β̂0 + β̂1B(u) + β̂2B(u)2

Model 08 λ̂(u) = exp(β̂0 + β̂1B(u) + β̂2B(u)2 + β̂3B(u)3

Model 09 λ̂(u) = exp(β̂0 + β̂1D(u)

Model 10 λ̂(u) = exp(β̂0 + β̂1D(u) + β̂2D(u)2

Model 11 λ̂(u) = exp(β̂0 + β̂1D(u) + β̂2D(u)2 + β̂3D(u)3

Model 12 λ̂(u) = β̂0

√−B(u)

Model 13 λ̂(u) = exp(β̂0 + β̂1

√−B(u))

Model 14 λ̂(u) = β̂0logB(u)

Model 15 λ̂(u) = exp(β̂0 + β̂1logB(u))

Model 16 λ̂(u) = β̂0

√
D(u)

Model 17 λ̂(u) = exp(β̂0 + β̂1

√
D(u))

Model 18 λ̂(u) = β̂0logD(u)

Model 19 λ̂(u) = exp(β̂0 + β̂1logD(u))

Table A.1: Models Summary of models for λ̂.(u)
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Model AIC
Model 00 -8860.133
Model 01 -9887.9941
Model 02 -10822.7681
Model 03 -11218.7282
Model 04 -11144.8554
Model 05 -10903.8939
Model 06 -9553.4682
Model 07 -9921.7116
Model 08 -10007.0152
Model 09 -8976.8247
Model 10 -9468.3184
Model 11 -9745.0766
Model 12 -926.2856
Model 13 -9370.4628
Model 14 -9012.7676
Model 15 -9015.9637
Model 16 -9012.7676
Model 17 -9015.9637
Model 10 -9046.7771
Model 11 -9045.7829

Table A.2: AIC Table of AIC values for each evaluated model.



Appendix B

Code

library(spatstat)

Creates polygons

p1<-read.table("isadora’s shapefiles/stu005/poly1",sep="", header=FALSE)

p1x<-p1[,1]

p1y<-p1[,2]

p2<-read.table("isadora’s shapefiles/stu005/poly2",sep="", header=FALSE)

p2x<-p2[,1]

p2y<-p2[,2]

p3<-read.table("isadora’s shapefiles/stu005/poly3",sep="", header=FALSE)

p3x<-p3[,1]

p3y<-p3[,2]

p4<-read.table("isadora’s shapefiles/stu005/poly4",sep="", header=FALSE)

p5x<-p5[,1]

p5y<-p5[,2]

p5<-read.table("isadora’s shapefiles/stu005/poly5",sep="", header=FALSE)

p5x<-p5[,1]

p5y<-p5[,2]

p6<-read.table("isadora’s shapefiles/stu005/poly6",sep="", header=FALSE)

p6x<-p6[,1]

p6y<-p6[,2]

p7<-read.table("isadora’s shapefiles/stu005/poly7",sep="", header=FALSE)

p7x<-p7[,1]

p7y<-p7[,2]

p8<-read.table("isadora’s shapefiles/stu005/poly8",sep="", header=FALSE)

p8x<-p8[,1]
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p8y<-p8[,2]

p9<-read.table("isadora’s shapefiles/stu005/poly9",sep="", header=FALSE)

p9x<-p9[,1]

p9y<-p9[,2]

p10<-read.table("isadora’s shapefiles/stu005/poly10",sep="", header=FALSE)

p10x<-p10[,1]

p10y<-p10[,2]

p11<-read.table("isadora’s shapefiles/stu005/poly11",sep="", header=FALSE)

p11x<-p11[,1]

p11y<-p11[,2]

p12<-read.table("isadora’s shapefiles/stu005/poly12",sep="", header=FALSE)

p12x<-p12[,1]

p12y<-p12[,2]

p13<-read.table("isadora’s shapefiles/stu005/poly13",sep="", header=FALSE)

p13x<-p13[,1]

p13y<-p13[,2]

p21<-read.table("isadora’s shapefiles/stu005/poly21",sep="", header=FALSE)

p21x<-p21[,1]

p21y<-p21[,2]

p31<-read.table("isadora’s shapefiles/stu005/poly31",sep="", header=FALSE)

p31x<-p31[,1]

p31y<-p31[,2]

p41<-read.table("isadora’s shapefiles/stu005/poly41",sep="", header=FALSE)

p41x<-p41[,1]

p41y<-p41[,2]

p51<-read.table("isadora’s shapefiles/stu005/poly51",sep="", header=FALSE)

p51x<-p51[,1]

p51y<-p51[,2]

p61<-read.table("isadora’s shapefiles/stu005/poly61",sep="", header=FALSE)

p61x<-p61[,1]

p61y<-p61[,2]
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p71<-read.table("isadora’s shapefiles/stu005/poly71",sep="", header=FALSE)

p71x<-p71[,1]

p71y<-p71[,2]

p81<-read.table("isadora’s shapefiles/stu005/poly81",sep="", header=FALSE)

p81x<-p81[,1]

p81y<-p81[,2]

p91<-read.table("isadora’s shapefiles/stu005/poly91",sep="", header=FALSE)

p91x<-p91[,1]

p91y<-p91[,2]

p101<-read.table("isadora’s shapefiles/stu005/poly101",sep="", header=FALSE)

p101x<-p101[,1]

p101y<-p101[,2]

p111<-read.table("isadora’s shapefiles/stu005/poly111",sep="", header=FALSE)

p111x<-p111[,1]

p111y<-p111[,2]

p121<-read.table("isadora’s shapefiles/stu005/poly121",sep="", header=FALSE)

p121x<-p121[,1]

p121y<-p121[,2]

p131<-read.table("isadora’s shapefiles/stu005/poly131",sep="", header=FALSE)

p131x<-p131[,1]

p131y<-p131[,2]

p141<-read.table("isadora’s shapefiles/stu005/poly141",sep="", header=FALSE)

p141x<-p141[,1]

p141y<-p141[,2]

p151<-read.table("isadora’s shapefiles/stu005/poly151",sep="", header=FALSE)

p151x<-p151[,1]

p151y<-p151[,2]

p161<-read.table("isadora’s shapefiles/stu005/poly161",sep="", header=FALSE)

p161x<-p161[,1]

p161y<-p161[,2]

p171<-read.table("isadora’s shapefiles/stu005/poly171",sep="", header=FALSE)
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p171x<-p171[,1]

p171y<-p171[,2]

p181<-read.table("isadora’s shapefiles/stu005/poly181",sep="", header=FALSE)

p181x<-p181[,1]

p181y<-p181[,2]

p191<-read.table("isadora’s shapefiles/stu005/poly191",sep="", header=FALSE)

p191x<-p191[,1]

p191y<-p191[,2]

p201<-read.table("isadora’s shapefiles/stu005/poly201",sep="", header=FALSE)

p201x<-p201[,1]

p201y<-p201[,2]

p211<-read.table("isadora’s shapefiles/stu005/poly211",sep="", header=FALSE)

p211x<-p211[,1]

p211y<-p211[,2]

p221<-read.table("isadora’s shapefiles/stu005/poly221",sep="", header=FALSE)

p221x<-p221[,1]

p221y<-p221[,2]

p231<-read.table("isadora’s shapefiles/stu005/poly231",sep="", header=FALSE)

p231x<-p231[,1]

p231y<-p231[,2]

p241<-read.table("isadora’s shapefiles/stu005/poly241",sep="", header=FALSE)

p241x<-p241[,1]

p241y<-p241[,2]

p261<-read.table("isadora’s shapefiles/stu005/poly261",sep="", header=FALSE)

p261x<-p261[,1]

p261y<-p261[,2]

p271<-read.table("isadora’s shapefiles/stu005/poly271",sep="", header=FALSE)

p271x<-p271[,1]

p271y<-p271[,2]

Defines Windows

W<-owin(poly = list(list(x=c(-66.3,-66.3,-54,-54) , y=c
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(48,41,41,48)), list(x=(p261x), y=(p261y)), list(x=(p31x),

y=(p31y)),list(x=(p71x),y=(p71y)),list(x=(p1x), y=(p1y))))

V<-owin(poly = list(list(x=c(-63,-63,-59,-59) , y=c(46,43,43,46)),

list(x=(p271x), y=(p271y)), list(x=(p261x), y=(p261y))))

Seal Encounters

ALLpairs <- (read.csv("RealSealtoSeal/ALLpairwise.csv"))

m<-ALLpairs[,8]

Creates Point Processes

RSALLP <-ppp(ALLpairs[,6],ALLpairs[,7], window=RS)

BBALLP <-ppp(ALLpairs[,6],ALLpairs[,7], window=BB)

Convex Hull and Bounding Box

Z <- convexhull.xy(ALLpairs[,6],ALLpairs[,7],)

Y<-bounding.box.xy(ALLpairs[,6],ALLpairs[,7],)

Ripley-Rasson

RS<-ripras(ALLpairs[,6],ALLpairs[,7], shape="convex")

BB<-ripras(ALLpairs[,6],ALLpairs[,7], shape="rectangle")

Create Bathymetry

x<-read.table("Depth2/MyVBathy-2332.xyz")

vec<-xV 3

mat<-matrix(vec, nrow=181, ncol=241,byrow=TRUE)

newmat<-matrix(0,nrow=181,ncol=241)

for(i in 1:181){

newmat[i,]<-mat[181-i+1,]

}

plot1<-im(newmat, xcol=seq(-63,-59,length=241), yrow=seq(43,46,length=181))

Create Distance

sable<-NULL

sable[1]<-43.95000

sable[2]<–59.91666

dist<-dep

for(i in 1:43621){
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out = sin(sable[1]/(180.00*pi))*sin(dist[i,2]/(180.00*pi))

+cos(sable[1]/(180.00*pi))*cos(dist[i,2]/(180.0*pi))

cos(abs(sable[2]-dist[i,1])/(180.0*pi));

out = (acos(out)*180.0)/(pi)*60.0;

dist[i,3]<-out

}

vec<-distV 3

mat<-matrix(vec, nrow=181, ncol=241,byrow=TRUE)

newmat<-matrix(0,nrow=181,ncol=241)

for(i in 1:181) newmat[i,]<-mat[181-i+1,]

plot2<-im(newmat, xcol=seq(-63,-59,length=241), yrow=seq(43,46,length=181))

Quadrat Test

Q <- quadratcount(BBALLP, nx = 5, ny = 5)

plot(BBinitials, cex = 0.5, pch = "+")

plot(Q, add = TRUE, cex = .7)

quadrat.test(BBinitials, nx = 5, ny = 5)

Quadrats by Covariate

chd<-quantile(BBdepth, probs =(0:8)/8)

BBD<-cut(BBdepth, breaks=chd,labels = 1:8)

TESS<-tess(image=BBD)

plot(TESS, ribbon=FALSE, main="Tesselation by Depth")

plot(BBALLP, add=TRUE)

qb<-quadratcount(BBALLP,tess=TESS)

quadrat.test(BBALLP,tess=TESS)

chdd<-quantile(BBdist, probs =(0:8)/8)

BBD2<-cut(BBdist, breaks=chdd,labels = 1:8)

TESS2<-tess(image=BBD2)

plot(TESS2, ribbon=FALSE, main="Tesselation by Distance")

plot(BBALLP, add=TRUE)

qb<-quadratcount(BBALLP,tess=TESS)

quadrat.test(BBALLP,tess=TESS)
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Homogeneous Poisson

HP<-rpoispp(795,win=BB)

plot(HP, main="Homogenous Poisson Realization")

plot(BBALLP, main="Seal Encounter Locations")

fitPois<-ppm(BBALLP, 1)

plot(predict(fitPois), col="blue", main="Homogenous Poisson Intensity")

plot(BBALLP, add=TRUE)

diagnose.ppm(fitPois, which="smooth")

InhomoPoisson

Kernel Estimate

library(ks)

yack<-cbind(ALLpairs[,6],ALLpairs[,7])

varcov<-cov(yack)

H<- Hpi(x=yack)

X <- density(BBALLP, varcov=H, edge=FALSE)

IHP<-rpoispp(X,win=BB,edge=FALSE)

plot(IHP[BB], main="Inhomogenous Poisson Realization")

JJ<-J[BB, drop=FALSE]

ee <- expression(rpoispp(J))

EE <- envelope(BBALLP, Kinhom, nsim = 49, global = TRUE, simulate = ee)

Parametric models for the process

model00<-ppm(BBALLP, 1)

model01<-ppm(BBALLP, depth+dist, covariates=list

(depth=plot3, dist=plot2))

model02<-ppm(BBALLP, polynom(depth,2)+polynom(dist,2),

covariates=list(depth=plot3, dist=plot2))

model03<-ppm(BBALLP, polynom(depth,3)+polynom(dist,3),

covariates=list(depth=plot3, dist=plot2))

model04<-ppm(BBALLP, polynom(depth,2)+polynom(dist,3),

covariates=list(depth=plot3, dist=plot2))

model05<-ppm(BBALLP, polynom(depth,3)+polynom(dist,2),
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covariates=list(depth=plot3, dist=plot2))

model06<-ppm(BBALLP, depth, covariates=list(depth=plot3))

model07<-ppm(BBALLP, polynom(depth,2), covariates=list

(depth=plot3))

model08<-ppm(BBALLP, polynom(depth,3), covariates=list (depth=plot3))

model09<-ppm(BBALLP, dist, covariates=list(dist=plot2))

model10<-ppm(BBALLP, polynom(dist,2), covariates=list

(dist=plot2))

model11<-ppm(BBALLP, polynom(dist,3), covariates=list

(dist=plot2))

model12<-ppm(BBALLP, offset(sqrt(-depth)), covariates=list(depth=plot3))

model13<-ppm(BBALLP, sqrt(-depth), covariates=list

(depth=plot3))

model14<-ppm(BBALLP, offset(log(depth)), covariates=list(depth=plot3))

model15<-ppm(BBALLP, log(depth), covariates=list

(depth=plot3))

model16<-ppm(BBALLP, offset(sqrt(dist)), covariates=list

(dist=plot2))

model17<-ppm(BBALLP, sqrt(dist), covariates=list

(dist=plot2))

model18<-ppm(BBALLP, offset(log(dist)), covariates=list

(dist=plot2))

model19<-ppm(BBALLP, log(dist), covariates=list(dist=plot2))

AIC(model00,model01,model02,model03,model04,model05,model06,model07,

model08,model09,model10,model11,model12,model13,model14,model15,

model16,model17,model18,model19)

pp <- expression(rmh(model03))

PP <- envelope(BBALLP, Kinhom, nsim = 39, global = TRUE, simulate = pp)

PIHP<-rpoispp(predict(model03),win=BB,edge=FALSE)

plot(PIHP, main="Inhomogenous Poisson Realization")

plot(predict(model03), main="Inhomogenous Poisson Fitted Intensity")



83

diagnose.ppm(model03, which="smooth")

Minimum Contrast Models

modelT<-kppm(RSALLP, x+y+ploynom(depth,3)+ploynom(dist,3),

"Thomas", covariates=list(depth=plot1))

plot(rpoint(892, predict(Thomas))[RS], main="Realization from

minimum contrast Thomas")

modelM<-kppm(RSALLP, x+y+depth, "MatClust", covariates=list

(depth=plot1))

plot(rpoint(892, predict(Matern))[RS], main="Realization from

minimum contrast Matern")

Parametric Models for the Parents

model00<-ppm(BBinitials, 1)

model11<-ppm(BBinitials, depth+dist, covariates=list

(depth=plot1, dist=plot2))

model12<-ppm(BBinitials, polynom(depth,2)+polynom(dist,2),

covariates=list(depth=plot1, dist=plot2))

model13<-ppm(BBALL, polynom(depth,3)+polynom(dist,3),

covariates=list(depth=plot1, dist=plot2))

model14<-ppm(BBinitials, polynom(depth,2)+polynom(dist,3),

covariates=list(depth=plot1, dist=plot2))

model15<-ppm(BBinitials, polynom(depth,3)+polynom(dist,2),

covariates=list(depth=plot1, dist=plot2))

X<-predict(model

mm<-expression(rMatClust(X,.06985,6.31,RS))

MM <- envelope(BBALLP, Kest, nsim = 9, global = TRUE, simulate = mm)

tt<-expression(rThomas(X,.0365,6.31,BB))

TT <- envelope(BBALLP, Kest, nsim = 9, global = TRUE, simulate = tt)

Validation

BB09<-ripras(ALLpairs[,6],ALLpairs[,7], shape="rectangle")

BB10<-ripras(All2010[,3],All2010[,4], shape="rectangle")

BBALL<-ripras(G,H, shape="rectangle")



84

All09BB <-ppp(ALLpairs[,6],ALLpairs[,7], window=BB09)

All10BB <-ppp(All2010[,3],All2010[,4], window=BB10)

ALL<-ppp(G,H, window=BBALL)

modelBB09<-ppm(All09BB, polynom(depth,3)+polynom(dist,3),

covariates=list(depth=plot1, dist=plot2))

modelBB10<-ppm(All10BB, polynom(depth,3)+polynom(dist,3),

covariates=list(depth=plot1, dist=plot2))

modelBBALL<-ppm(ALL, polynom(depth,3)+polynom(dist,3),

covariates=list(depth=plot1, dist=plot2))

distplot09<-plot2[All09BB]

distplot10<-plot2[All10BB]

distplotALL<-plot2[ALL]

hist(distplot09,xlab="Distance from Sable Island", main="Effect

Function vs. Histogram of Distances")

plot(effectfun(modelBB09,depth=-40,"dist"), add=TRUE)

hist(distplot10,xlab="Distance from Sable Island", main="Effect

Function vs. Histogram of Distances")

plot(effectfun(modelBB10,depth=-40,"dist"), add=TRUE)

hist(distplotALL)

plot(effectfun(modelBBALL,depth=-40,"dist"), add=TRUE)

hist(distplotALL,xlab="Distance from Sable Island", main="Effect

Function vs. Histogram of Distances")

plot(effectfun(modelBBALL,depth=-95,"dist"), add=TRUE, col="blue")

plot(effectfun(modelBB09,depth=-95,"dist"), add=TRUE,)

plot(effectfun(modelBB10,depth=-65,"dist"), add=TRUE, col="red")

depthplot09<-plot3[All09BB]

depthplot10<-plot3[All10BB]

depthplotALL<-plot3[ALL]

hist(depthplot09)

plot(effectfun(modelBB09,dist=5,"depth"), add=TRUE)

hist(depthplot10,xlab="Depth at point of Encounter", main="Effect
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Function vs. Histogram of Depth")

plot(effectfun(modelBB10,dist=4,"depth"), add=TRUE, col="red")

hist(depthplotALL,xlab="Depth at point of Encounter", main="Effect

Function vs. Histogram of Depth")

plot(effectfun(modelBBALL,dist=5,"depth"), add=TRUE, col="blue")

plot(effectfun(modelBB09,dist=5,"depth"), add=TRUE,)

plot(effectfun(modelBB10,dist=5,"depth"), add=TRUE, col="red"

male/female?

Females09 <- (read.csv("RealSealtoSeal/females09.csv"))

Females10 <- (read.csv("2010detectionsgps/females10.csv”))

Fem09 <-ppp(Females09[,6],Females09[,7], window=BB09)

Fem10 <-ppp(Females10[,3],Females10[,4], window=BB09)

Males09 <- (read.csv("RealSealtoSeal/males09.csv"))

Males10 <- (read.csv("2010detectionsgps/males2010.csv”))

Male09 <-ppp(Males09[,12],Males09[,13], window=BB09)

Male10 <-ppp(Males10[,3],Males10[,4], window=BB09)

MALES<-superimpose(Male09,Male10)

FEMS<-superimpose(Fem09,Fem10)

fm <- expression(rmh(Fmodel09))

FM <- envelope(Fem09, Kinhom, nsim = 19, global = TRUE, simulate = fm)

plot(FM, main="Global Envelope")

plot(Kinhom(Fem10), c(border,theo) r, add=TRUE, col="pink")

plot(Kinhom(Male10), c(border,theo) r, add=TRUE, col="purple")

plot(Kinhom(MALES), c(border,theo) r, add=TRUE, col="blue")

plot(Kinhom(FEMS), c(border,theo) r, add=TRUE, col="purple")
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