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ABSTRACT 
The objectives of this study were to examine the effects of starter N inputs and 
Bradyrhizobium inoculation on soybean symbiotic N fixation and grain yield under field 
and greenhouse conditions. The study was conducted in the Wellington and the Habitant 
dykelands in NS. The treatments consisted of 0, 1.5, 3 and 4.5 g/kg seed rates of inoculant 
and 0, 10, 20, and 30 kg/ha rates of N fertilizer. Under acidic soil conditions, the 
inoculated plants showed significant N fixation responses in the Wellington field while 
saline soil conditions suppressed N fixation in the Habitant field. The soybean grain yield 
showed an increasing trend with the inoculant rate 4.5 g/kg seed. The starter N fertilizer 
did not facilitate the soybean grain yield in the dykelands. Under controlled environment 
conditions, inoculant rate 3 g/kg seed alone produced the same amount of yield as 1.5 and 
4.5 g/kg seed rates with N fertilizer. 
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CHAPTER 1   INTRODUCTION 

1.1 INTRODUCTION 
 

Dykeland developed from marshlands, is a unique agricultural resource found in 

Atlantic Canada. Nova Scotia has over 75% (or 18,000 ha) of the total Atlantic Canada’s 

dykeland resources (Anonymous, 1987). Most of the dykeland soils have poor internal 

drainage and excess salts, which limit the crop growth (Rodd et al., 1993). Historically, 

dykelands have been used for hay production. 

At present, soybean is grown as animal feed for dairy production in dykelands. 

Soybean is one of the highest value crops grown in dykeland. Since, soybean is rich in 

protein and oil, proper management of growing conditions is necessary to harvest its full 

potential. 

Growing high quality of soybean is needed to ensure high quality dairy 

production. Soybean contains 42% of protein and 19.5% of oil (Wilcox and Shibles, 

2001). Therefore, the crop is a heavy user of nitrogen (N). Soybean N requirements are 

met by either soil mineral N acquisition or symbiotic N fixation. To obtain the maximum 

yield of soybean, it is necessary to use N fixation by root nodules and absorb N from soil 

(Harper, 1974). It has been reported that high nodulation and high N fixation rates 

increase soybean yield (Burias and Planchon., 1990). Furthermore, the inoculation of 

soybean with Bradyrhizobium species increased the seed protein content (Egamberdiyeva 

et al., 2004).  

However, the ability of soybean to fix atmospheric N is not always adequate for 

yield maximization (Wesley et al., 1998). Several soil and climatic factors have an effect 

on N fixation in soybean under field conditions. Studies revealed that soybean grain yield 
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is enhanced through N fertilizer application (Gan et al., 2002; Barker and Sawyer, 2005; 

Taylor et al., 2005; Osborne and Ridell, 2006; Tahir et al., 2009). However, crop 

production is not constantly increased with N rates. Excessive N fertilizer appears to be 

subjected to loss from the root zone and pollute the ground water (Li et al., 2003). The 

balanced supplement of the amount of N nutrients required by the particular crop is 

necessary to increase yields (Li et al., 2006). 

There is research-based information for N fixation in soybean for non dykeland 

soil. Inoculation of soybean with Bradyrhizobium strains improves the plant dry matter, 

N concentration, N accumulation, and grain yield (Diaz et al., 2009). High rates of N 

fertilizer reduce the number of nodules and the nodule dry weights of the plant (Taylor et 

al., 2005). The application of 200 kg ha-1 of N fertilizer without inoculant does not 

improve the soybean yield compared with inoculated plants in loam and sandy loam soils 

(Aldbareda et al., 2009). Thus, there is a lack of research-based information about 

soybean and N nutrition relations under the specific dykeland conditions to produce high 

quality soybean grains. In this research, the soybean symbiotic N fixation and the grain 

yield responses to Bradyrhizobium inoculant and the fertilizer N application in dykelands 

were studied.  
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1.2 LITERATURE REVIEW 

1.2.1 Dykelands 

1.2.1.1 History of Dykelands 

 
The dykelands were built up with silt and clay that was carried by the spring tide 

from the Bay of Fundy. Over thousands of years, tides deposited sediments (layers of silt) 

along the riverbanks to a depth of more than 40 cm. After salts leached out, the lands 

became productive for crop growth. The early Acadian settlers who had come from the 

lowland regions of France found huge, muddy, flat, salt marshes along the coast. They 

found the reclamation of the dykelands through ditching and dyking was easier than 

clearing the forest (Anonymous, 1987).  

Preventing inland water movements into the dykelands and the discharging the 

fresh water accumulated in sources behind the dykes into the sea were the two major 

challenges associated with the reclamation of dykelands. Early settlers used “aboiteau”, a 

wooden tunnel covered with marsh mud and sods with an inside hinged door to build the 

dykes. Since, 1948 the government built large concrete and steel “aboiteaux” to keep the 

upstream lands tides off (Anonymous, 1987).  

Early Acadian settlers utilized the salt marsh grasses as a fodder for livestock and 

later they started to plant European grasses such as timothy (Ganong, 1903). They 

discovered that these lands could produce abundant crops year after year without adding 

fertilizers. Today, dykelands cover 18,000 and 15,000 ha of lands in Nova Scotia and 

New Brunswick, respectively (Bishop et al., 1968). Approximately, 33,000 hectares of 
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dykelands in Maritime province produce hay, corn, soybean and root vegetables; while 

others produce grass meal as a food for hogs and cattle (Anonymous, 1987). 

1.2.1.2 Characteristics of Dykeland Soils 

 
The topography of dykelands is level to undulating (Bishop et al., 1968). 

Dykeland soils were classified as Acadia soil or Gleyed Regosols which formed by the 

tidal action. These soils are believed to be derived from soft Carboniferous, Triassic 

sandstones, and shale from the surrounding uplands and those underlying the Bay of 

Fundy (Brydon and Heystek, 1958). Although, the soils are pedogenetically young, they 

are one of the first soils used by European settlers +for agriculture in North America. The 

soils have silty clay loam texture with fairly uniform particle size distribution. The soil 

profiles have a weakly expressed horizon development (A-B-C horizon sequence) with 

moderate to strong structural development. These soils contain a Bm horizon, where 

cation exchangeable sites dominate with magnesium (Mg2+) ions (Beke, 1990). Dykeland 

soils containing high levels of salts have sodic or saline characteristics (Rodd et al., 

1993).  

1.2.2 Morphology and Development of Soybean Plant 
 

The soybean is a dicotyledonous plant, which has an epigeal emergence (Koda et 

al., 1988). This leguminous plant is native to East Asia. Soybean plant shows an erect, 

sparsely branched, and bush-type growth habit with pinnately trifoliate leaves (Wilcox, 

1987). The unifoliolate node produces the first true leaf, which is an un-trifoliate (Koda et 

al., 1988).  
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The vegetative stages of the soybean plants are determined by considering the 

number of nodes on the main stem starting with the unifoliolate node, which produces a 

first completely unrolled leaf (only two leaflets). The unifoliolate node is the first node 

where the plant produces its first true leaves. These leaflets are fully developed and 

located immediately opposite on the main stem. For example, if the plant contains five 

nodes, it is in V5 stage (Figure 1.1) and the plant with 18 nodes belongs to the V18 stage 

(Fehr et al., 1971).  

Identification of the reproductive stages varies depending on the plant growth 

habit. In indeterminate type cultivars, start flowering, when about half of the nodes on the 

main stem develop. In these plants, flowering occurs continuously upward as plants 

produce new nodes. The flowering, the pod formation, and the seed development are 

predominant in the bottom portion of main stem. In the determinate type cultivars, 

flowering starts after all nodes on the main stem are developed. Therefore, the flowers, 

the pods, and the seeds are equally distributed all over the plant. Fehr et al. (1971) 

identified the developmental stages, which can be applied to all soybean genotypes grown 

in any environment (Figure 1.1). 

At V 1 stage the unifoliated node, produce a completely unrolled leaf. V2 stage, first 

node above the unifoliolated node produces a completely unrolled leaf. There will be 

three nodes on the mains stem including with the unifoliolate node at V3. In the 

beginning of the reproductive stage (R1), there is one flower in every node. At R2 stage 

there is a flower immediately after the topmost completely unrolled leaf. At R3 stage, the 

length of the pod  of four uppermost nodes with completely unrolled leaf is 0.5 cm while 

at R4 stage 2 cm.   
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At R5 stage beans started to develop at one of the four uppermost nodes with 

completely unrolled leaf. The full size green bean can be obtained at one of the 

uppermost node at R6. R7 is the physiological maturity stage while R8 is the harvest 

maturity stage (Fehr et al., 1971). 

1.2.3 N Nutrition and Plant Relations 

1.2.3.1 N Cycling Processes in Plant and Soil Systems 

 
Nitrogen cycling occurs in the atmosphere, the biosphere and the pedosphere. N 

exists in both inorganic and organic forms as well as many different oxidation states. In 

soil, about 95% to 98% of total N is bound to organic complexes, while the rest of the 

inorganic N is readily available to the plants. Whereas, availability of N is low in soils 

containing high levels of fixed ammonia (NH4
+) (Stevenson, 1982). The predominant 

form of soil N is nitrate (NO3
-) and it is suceptible to leaching. Further, soil N is 

bioavailable as NH4
+, which is usually bound to the soil particles through cation 

exchange, and reduces the leaching losses. Organic N acts as a form of slow releasing 

nurient source for the plants. The release of soluble N from organic compounds largely 

depend on the charcteristics of the decomposer environment. The inorganic N released 

through mineralization and nitrification is dissolved in soil suspension (Heathwaite et al., 

1996).  

1.2.3.2 N Nutrition and Plant N Uptake 
 

The N consumption of plants varies from one plant species to another. Within the 

species, the N amount varies depending on the genotype and the enviorenmental factors. 

There is a considerable variation among the plant parts (grain, stem, root, leaves etc.) 
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interms of relative amounts of N content. In general, most of the N is stored in the 

harvesting parts (seeds in most grain crops) than in stover, vines, stem, roots or straw. N 

aquisition can vary depending on the soil N status, agronomic practices and the climate 

(Stevenson and Cole, 1999).  

Plants generally take up nutrients from the soil solution through the root system. 

The soil mineral uptake by plants becomes effective process due to the larger surface area 

of roots and their ability to absorb ions at low concentrations (Taiz and Zeiger, 2006). 

The two N fractions that can be utilized by the plants are inorganic N (NO3
- and NH4

+) 

and decomposable organic N (Schulten and Schnitzer, 1998). Usually NO3
- concentration 

in the soil solution is low. Ammonium (NH4
+) ions are tightly bound to cation exchange 

sites and present in low concentrations in soil solution. In aerated soil, NO3
- is the 

predominant form of plant available N. First, the NO3
- is absorbed into the root cell wall 

space and then transported to the plant cell. Nitrate uptake is occurred by either active or 

passive transportation depending on the NO3
- concentration in the soil solution (Novoa 

and Loomis, 1981). 

The soybean plant has protein-rich seeds and requires high levels of N to attain 

greater yield (Sinclair and DeWitt, 1975). It is reported that there is a good correlation 

between the total amount of N accumulated by the plant and the seed yield (Tewari et al., 

2004). At the vegetative stage, plants are capable of absorbing mineral soil N rapidly and 

the leaf tissue has high NO3
- content. As the plant reaches the reproductive stage 

(flowering), there is a rapid reduction in tissue NO3
- content. There is a gradual decline of 

tissue NO3
- content from flowering to early pod filling stage (Thibodeau and Jaworski, 

1975). The maximum N fixation (acetylene reduction) is observed from late flowering to 
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early pod filling stage (Marcus-Wyner and Rains, 1983). At pod filling stage, developing 

ovules act as a competing sink for photosynthate resulting in a rapid decline in N fixation 

at mid pod filling stage (Thibodeau and Jaworski, 1975). 

Nitrate uptake in the soybean can occur either in light or dark conditions. During 

the seedling and early vegetative stages, the plant N uptake is saturated at very low level 

of soil NO3
- concentrations (0.5 mM) (Wilcox, 1987). The maximum NO3

- uptake of 

soybean plant can be observed during early to mid-pod filling stages. The increase in the 

plant NO3
- content with plant age is resulting from the increase in root mass rather than 

the increase in specific rate of NO3
- uptake. The assimilated NO3

- is temporary stored in 

the soybean roots or translocated to the shoots where NO3
- reduction occurs (Wilcox, 

1987). Nelson et al (1984) reported that 60% of seasonal N2 fixation in soybean occurred 

after R5 stage and there was a high correlation between the seasonal acetylene reduction 

and the soybean yield. Symbiotic N2 fixation is considered the main source for soybean 

seed protein synthesis. 

1.2.4 N Nutrition of Plant 

1.2.4.1 N Compounds and Metabolism in Plants 
 

Ammonium taken up by the plant can directly enter into the amino acid synthesis 

pathway. In addition, absorbed NO3
- has to be reduced to NH4

+ before entering into the 

amino acid synthesis pathway (Novoa and Loomis, 1981). The reduction of NO3
- is 

occurred in the cytosol by the NO3
- reduction enzyme. The produced NO2

- enters the 

chloroplast of the shoot and is reduced to NH4
+ by nitrite reductase enzyme. The NH4

+ 

assimilates to the amino acid pathway, which serves as the substrate for the 

transamination reaction to produce all the amino acids and proteins (Tischner, 2000). 
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N is a constituent of many important molecules, such as proteins, nucleic acids, 

certain hormones (eg. cytokinin, indol-3- acetic acid) and chlorophyll (Hopkins and 

Huner, 2004). Most of the N absorbed by the plants is translocated to the leaves through 

the transpiration stream and lesser amount of absorbed N is assimilated to amino acids in 

those organs. The amino acid synthesis is mostly occurred in the leaves, whereas the root 

exports very little amount of amino acids (Novoa and Loomis, 1981).  

1.2.4.2 Soybean Responses to N Fertilizer Application 
 

Application of starter N at an early vegetative growth stage or flowering can 

increase the pod yield and crop biomass by 44% and 16%, respectively. The proportion 

of the plant N derived from the N fixation is highest when N is applied at the pod filing 

stage where the plant N demand is high (Yinbo et al., 1997). It has been reported that the 

use of urea ((NH2)2 CO) or ammonium nitrate (NH4NO3) as the starter N fertilizer at rates 

of 8, 16, and 24 kg ha-1 promoted the early plant biomass and plant N compared to the no 

N treatment. Further, the soybean grain yield increased by 16 % at the N rate of 16 kg ha-

1 over control treatment, with no improvement either in seed protein or oil content 

(Osborne and Riedell, 2006).  

Schmitt et al (2001) conducted a study to identify the effects of application time, 

application method, and the source of N on soybean plant growth, grain yield, protein, 

and oil content at 12 sites. The study concluded that in-season application of N fertilizer 

did not increase the soybean grain yield or the oil content. However, there was a combine 

effect of all above factors on increasing soybean protein content at a rate of 0.4 g kg-1 

(Schmitt et al., 2001). The soybean grain yield, protein, oil and fiber content did not 
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increase with the fertilizer N rates of 45 and 90 kg ha-1 (urea/slow releasing N) 

application at early reproductive stage (Barker and Sawyer, 2005). The early application 

(V2/R1) of N as a top dressing at a rate of 25 kg ha-1 promoted the soybean plant total 

biomass and the N accumulation during the seed filling stage (R5) which boosted the 

grain yield (Gan et al., 2003). N top dressing application at the seed filling stage (R3/R5) 

could not improve the plant total biomass, N accumulation and the grain yield (Welch et 

al., 1973; Gan et al., 2003). N top dressing application at R1 and R3 stages drastically 

reduced the soybean nodulation, whereas at V1 stage there was an optimistic effect, 

which increased the soybean nodulation (Gan et al., 2003).  

The broadcasting of fertilizer N as urea (50 and 100 N kg ha-1) at the pod 

formation (R3) and the seed filling stage (R5) increased the available N at the top 30 cm 

of soil compared to the unfertilized plots. However, increase in soil NO3
- availability 

during the seed filling stage had no relevant effect on leaf senescence and the seed growth 

(Gutiérrez-Boem et al., 2004). The response of the soybean towards the fertilizer N was 

not temporally stable (Lambert et al., 2006).  

1.2.5 Biological N Fixation 
 

Atmospheric nitrogen (N2) makes up about 78% of the air in the atmosphere; it is 

a colourless, odourless, tasteless and chemically an inert gas at the room temperature. 

This huge reservoir of N2 is not available for organisms. In order to be utilized by the 

plants and the animals, the inert N2 must be broken down to reactive compounds that can 

be easily metabolised. Further, N atoms must be bonded chemically with oxygen and 
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hydrogen through the N2 fixation process and carbon through N assimilation process 

(Vitousek et al., 2002).  

Earth’s atmosphere contains 78% (4× 1021 g N) of N2 gas; however the plant and 

the animals do not have easy access to utilize the atmospheric N2 for their growth. This is 

mainly due to the stability of the N2 molecule. The triple bond between the N atoms 

requires large amount of energy to break. Annually 3×1014 g of N is fixed as NH4
+ (Rees 

et al., 2005). The amounts of energy required to break the triple, double and the single 

bonds of N2 molecule are 225, 100, and 39 Kcal mol-1, respectively (Howard and Rees, 

1994). Before assimilation, N2 must be fixed and converted into the biologically usable 

forms. The most common forms of fixed N2 are NH4
+ and NO3

-. In biogeochemical N 

cycle, the N2 fixation is the process of converting atmospheric N2 into NH4
+ (Fisher and 

Newton, 2002). 

Reduction of N2 into NH4
+ requires high amount of activation energy. To produce 

NH3 by Haber-Bosch reaction needs the temperature of 300-500 oC and the pressure over 

300 atmospheres in the presence of Fe based catalysts. In the nature, the limited group of 

organisms called as diazotrophs are capable of converting atmospheric N2 into 

metabolically usable forms of NH4
+. These diazotrophs can range from free-living forms 

to associations with various plants (Kim and Rees, 1994).  

Leguminous plants are able to fix atmospheric N2 through the association with 

Rhizobia. Rhizobium is a bacterium, which is hosted by the root system of certain legume 

plants. The legume plant supplies the carbohydrate for bacterial growth while the bacteria 

fix atmospheric N2 into NH4
+, to be converted into plant usable amino acids (Russelle, 

2008). Symbiotic association is a highly specified relationship between the host plant and 
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the bacteria. Rhizobium-legume symbiosis involves the interaction between the plant and 

the bacteria leading to initiation and development of the root nodules (Trichine, 2006). N 

fixing symbiotic association is a mutualistic interaction between the plants that belongs to 

the family leguminosae and the soil bacteria genera Azorhizobium, Bradyrhizobium, 

Mesorhizobium, and Rhizobium (Broughton et al., 2000). These organisms live in nodules 

as N fixing bacteroids. A single Rhizobial cell that infects a root hair can increase the 

progeny by 1010 within few weeks. These organisms adapted to different types of 

environmental conditions since the genes are not necessary at the free-living stage and 

these genes become “turned on” only after interacting with the host plant (Russelle, 

2008).  

1.2.5.1 Biochemistry of Biological N Fixation 
 

Atmospheric N2 fixation is catalyzed by the nitrogenase enzyme. The prokaryotes 

having gene coding for nitrogenase enzyme are capable to fix atmospheric N2. The 

nitrogenase enzyme present in bacteroids consists of two metalloproteins designated as 

iron (Fe) protein and molybdenum-iron (Mo-Fe) protein which catalyze the energy 

dependent reduction of N2 (Hopkins and Hürner, 2004). The Mo-Fe protein contains the 

active site for the substrate reduction. There are three steps involved in dinitrogen 

reduction (Figure 1.2) (Rees et al., 2005). First, the Fe-protein is reduced by electron 

carriers such as flavodoxin and ferredoxin. Then, single electron is transferred from Fe-

protein to Mo-Fe protein in Mg-ATP dependent process. Finally, the electron is 

transferred to the substrate, which already bound to the active site of Mo-Fe protein 

complex and the cycle is repeated until sufficient electrons and protons form to reduce 

the substrate (Kim and Rees, 1994; Rees et al., 2005). 
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depolarization of the plasma membrane, change in the flux of calcium (Ca2+), proton 

efflux, rearrangement of the active filaments and increase cytoplasmic streaming (Hirsch, 

1992). Curling occurs due the continuous redirecting of the growth towards the one side 

of the root hair where the bacteria attach. The root hairs sense the node factor secreted by 

the bacteria and grow towards it, turning 360 0 and entrapping the bacteria in the pocket 

formed by the curl. The Rhizobia degrade the cell wall and the plasma membrane and 

enter into the plant cell where they trigger the growth of infection threads, which 

penetrate into the root cortex (Figure 1.3). In the host cells, bacteria differentiate into 

bacteroid, which is surrounded by a peribacteroid membrane (Hopkins and Hürner, 

2004). The nodule primodia formation is initiated within the root cortex (Geurts et al., 

2005). 

1.2.5.3 Different Types of Root Nodules 
 

Rhizobium, Bradyrhizobium and Azorhizobium are the three genera associated 

with legume plants. After pre-infection of the roots cortical cells division takes place. 

Type of nodule form depends on the place of cortical cell division, which is determined 

by the host plant. Cell divisions occurs either in inner or outer cortex of the root. There 

are two types of nodules as determinate and indeterminate (Figure 1.4). Indeterminate 

type nodules consist of persistent nodule meristem, while determinate type lacks 

persistent meristem. Meristematic region is a zone of the nodule where cells actively 

divide and differentiate. Because of the continuous cell division, the indeterminate type 

nodule structure elongate resulting in a club shaped nodule. The plants, having 

indeterminate type nodules are alfalfa, clover, and pea. Determinate nodules are spherical 

in shape. The cell division occurs at the beginning, whereas only the cell enlargement is 
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first product of the N fixation in all indeterminate and determinate type nodules. The 

NH4
+ is assimilated to the cytoplasm of the nodule cells to the glutamine synthase 

pathway. Depending on the nodule type, glutamate is transformed into different N 

transport forms (Mylona et al., 1995). 

In determinate type nodules, glutamate is converted into ureides. In the nodules, 

the glutamine synthase is present in both infected and uninfected cells of soybean. In 

uninfected cells, uricase catalyzes the conversion of uric acids into allantoin. Allantoinase 

catalyzes the next step of purine oxidase in uninfected cells. In determinate type nodules, 

the uninfected cells also participate in N transportation, where ureide is transported to the 

uninfected cell through plasmodestmata. In indeterminate type nodules, no specific 

function has been assigned for the uninfected cells. As a result, an efficient transport of 

fixed N2 is achieved (Mylona et al., 1995). 

Fixed N must diffuse as NH4
+ across the peribacteroid membrane. Within the 

plant cytoplasm, the NH4
+ is assimilated by glutamine synthatase to glutamine. 

Glutamine is converted to glutamate by transferring the amide group to α- ketoglutarate 

and catalyzed by glutamate synthase. Although the glutamine is the principle organic 

product of N fixation, in the legumes of tropical origin (eg. soybean and cowpea), ureide 

is the predominant form, translocating the fixed N. In synthesis of ureide, allatonin and 

allantoic acids are formed by the oxidation of purine nucleotides (Hopkins and Huner, 

2004). 
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1.2.5.5 N Fixation Responses in Soybean 
 

Soybean is capable of fixing large quantities of atmospheric N2 resulting 

significantly high yield (Imsande, 1989). It has been reported that the proportion of N 

derived from BNF of the plant total N was 50% in soybean grown in a soil having a 

moderate N content (Hardarson et al., 1984). In a soil of low N content, the soybean plant 

can fix 300 kg of N ha-1 in the presence of effective Rhizobial strains. Soybean forms N 

fixing symbiosis with either Bradyrhizobium japonicum or Sinorhizobium species 

(Keyser and Li, 1992). Seed inoculation with rhizobium can increase the total N and grain 

yield in early maturing soybean cultivars. The total N accumulation and N fixation are 

low during the early growth stage and then they increase rapidly at later stage (Sanginga 

et al., 1997).  

N fixation reaches maximum at R3/R4 stage, and then drops (Sanginga et al., 

1997). During the seed filling stage, the translocation of fixed N is greater compared to N 

derived from the soil (Koutroubas et al., 1998). Rapid N fixation during the grain filling 

stage enhances the net photosynthesis rate and respiration leading to higher amount of 

usable N in soybean plant. N fixation is energy dependent process. Rhizobium generates 

energy required for N fixation through oxidation of host plant photosynthates. At R5 

stage, high demand for photosynthates from pods and nodules facilitate the initial rate of 

energyzation of the thylakoid membrane and stimulate the photosynthesis (Mury et al., 

1993). The higher photosynthesis rate at R5 stage increased the plant biomass and the 

soybean grain yield (Imsande, 1989). Rapid N fixation during the pod filling stage 

increased the seed yield and protein content (Imsande, 1992). It has been reported that the 
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soybean residual N contribution to the soil was approximately 18 kg N ha-1 (Sanginga et 

al., 1997). 

1.2.5.6 Factors Affecting BNF 
 

There are several environmental factors affecting BNF. The process of N fixation 

is strongly related to the physiological states of the host plant. The severe environmental 

conditions such as salinity, unfavourable soil pH, nutrient deficiency, mineral toxicity, 

extreme temperature conditions, low or extremely high levels of soil moisture, inadequate 

photosynthates, and disease conditions can affect the plant growth and development. As a 

result, the persistent rhizobium strains will not be able to perform root infection and N 

fixation in their full capacity (Zahran, 1999).  

The rate of BNF is highly variable and depends on bacterial strain, legume 

cultivar, soil, and environmental conditions (Shantharam and Mattoo, 1997). The 

moisture stress can adversely affect the nodule functions. The drought conditions can 

reduce nodule weight and nitrogenase activity. After exposing to the moisture stress for 

10 days, the nodule cell wall starts to degrade resulting in senescence of bacteroids 

(Ramos et al., 2003). Under salinity conditions, the accumulation of Na+ reduces the plant 

growth, nodule formation, and symbiotic N fixation capacity (Soussi et al., 1998; Kouas 

et al., 2010). High salt level can directly affect the early interaction between the 

rhizobium legumes in nodule formation (Singleton and Bohlool, 1984). The plant 

nitrogenase activity reduces dramatically as a result of formation of ineffective nodules at 

high temperature (40 oC) (Hungria and Franco, 1993).  
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Extreme soil pH can reduce the Rhizobial colonization in the legume rhizosphere. 

N fixation can be inhibited by low soil pH (van Jaarsveld, 2002). The characters of highly 

acidic soils (pH < 4) are low level of phosphorous, calcium and molybdenum along with 

aluminum and manganese toxicity, which affects both plant and the Rhizobia. As a result, 

of low soil pH conditions nodulation and N fixation is severely affected than the plant 

growth. Highly alkaline (pH > 8) soils tend to be high in sodium (Na+), chloride (Cl-), 

bicarbonate (HCO3
-) and borate (BO3

-) which reduces the N fixation (Bordeleau and 

Prévost, 1994). Uddin et al. (2008) revealed that the nodule number (NN) and size were 

significantly inhibited by the application of N fertilizer (urea). Symbiotic N fixation 

varies according to the carbon allocation to the nodules, in relation to endogenous factors, 

current photosynthesis, crop growth rate and other competing sinks for carbon (Voisin et 

al ., 2003). 

1.2.6 Quantification of Symbiotic N Fixation 
 

There are different methods to quantify the symbiotic N fixation. Some of these 

methods are non-destructive while other methods are destructive. Depending on the 

method of quantification, estimates of BNF can vary. One of the commonly use method 

is total N difference method. In the method amount of N fixed is quantify by using plant 

total N of N fixing plant and non-fixing reference plant (Hardarson and Danso, 1993). 

Acetylene reduction assay is one of the methods that adopted to measure the N fixation in 

legume plants. The principle of this method is that the N2 reducing enzyme can reduce the 

acetylene (C2H2) to ethylene (C2H4). In this method, whole plant or plant part is 

incubated in a closed system, which contains 10% C2H2 gas for 0.5-2 hours. The C2H2 

and C2H4 are measured by using the flame ionization gas chromatography (Minchin et al., 
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1994). This method often shows a good qualitative agreement with direct measurement of 

symbiotic N fixation.  

In 15N dilution method, an estimate of different N sources in the plant is 

measured. Prior to planting, a small quantity of 15N enriched fertilizer is incorporated to 

the soil. The proportion of N obtained by the plant through BNF is calculated by 

assuming the non-fixing reference crop uptake is similar to the ratio of soil mineral-N and 

fertilizer 15N of the N fixing plant (McAuliffe et al., 1958). The drawbacks associated 

with this method are high fertilizer cost, decline of plant available 15N in the soil over the 

time, and non-uniform distribution of 15N along the soil depth (Witty, 1983). 

Natural abundance method is one of the methods extensively used to quantify the 

N fixation. Soils are enriched with 15N in relation to the atmospheric N2. N fixing plants 

will have a 15N abundance intermediate between the atmosphere and the reference plant 

relies on the soil mineral N, which reflects the proportion of N2 fixation and N uptake. 

The amount of N gain through N fixation is obtained by multiplying the proportion of N 

fixation by the total plant N (Myrold et al., 1999). The natural abundance is expressed as 

parts per thousand deviations from the atmospheric N2. This method facilitates the 

measurement of N fixation without disturbing to the system when both fixing and non-

fixing reference plants are present (Peoples et al., 2002).  

Herridge and Peoples (1990) described about the use of ureide method to 

determine the symbiotic N fixation of the field grown soybean. They explained the ability 

to use vacuum extracted stem sap and stem extract methods to calculate the N fixation. 

The estimate of N fixation by 15N ranged between 68% and 59% for ureide are highly 
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correlated (r2 = 0.97). The proportion of the N derived from the N fixation is not varying 

depending on the plant genotype and strain of Rhizobia (Peoples and Herridge, 1990). 

Further, Herridge and Peoples (1990) reported that the relative abundance of ureide -N in 

root bleeding sap, vacuum extracted sap ([100× ureide-N]/ [ureide-N+ α-amino-N+ 

Nitrate-N]) and stem extracts ([100× ureide-N]/[ureide-N+ Nitrate-N]) are highly 

correlated with the proportion of plant N derived through N fixation. The stem ureide 

method is effectively used to quantify N fixation under dry field conditions (Elowad et 

al., 1987). 
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1.3 OBJECTIVES 
 

The objectives of my research were as follows: 

1) To evaluate the individual and interactive effects of seed inoculation and varying 

rates of starter N inputs on soybean symbiotic N fixation, plant growth and yield 

in dykeland soils. 

2) To isolate and characterize the rhizobium associated with dykeland soils. 
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CHAPTER 2   ISOLATION OF RHIZOBIUM FROM DYKELAND SOILS 

2.1. INTRODUCTION 
 

Soybean is one of the important field crops grown in North America as a feed for 

the dairy industry. Soybean nodulating Rhizobia are genetically diverse and classified 

into different genera and species. Based on the phylogenetic and phenotypic 

characteristics, Rhizobia are categorized into five different genera; Azorhizobium, 

Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium (Young, 1996).  

The response of soybean to inoculant is inversely related to the indigenous 

Rhizobial population in the soil (Thies et al., 1991). If the indigenous Rhizobial 

population is over a previously define threshold level, benefits of inoculation may not be 

obtained (Singleton and Tavares, 1986; Moawad et al., 1988). Failure of the inoculant can 

occur due to the greater number of competitive Rhizobial strains in the soil (Moawad et 

al., 1988). Legume inoculation with native Rhizobia has been shown to enhance plant 

growth (Rodrίguez-Echeverrίa and Perez-Fernàndez, 2005). The existing Rhizobia in 

dykeland soils of Nova Scotia could have wider adaptability to the particular soil 

conditions. Inoculating with a Rhizobia which has a wider adaptability may improve 

soybean symbiotic N fixation on dykelands. 

2.2 OBJECTIVES 
 

The objective of this study was to isolate and characterize the Rhizobium 

associated with soybean root nodulation in the Habitant and the Wellington dykelands. 
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2.3 MATERIALS AND METHODS 

2.3.1 Capture Experiment 
 

A trap host study method was used to isolate the Rhizobium from the dykeland 

soils. The capture experiment was performed on April 2010 in a growth chamber at the 

Department of Plant and Animal Sciences of the Nova Scotia Agricultural College 

(NSAC), Truro, NS. Soybean cultivar “Lynx RR” was used as the trap host. 

Prior to the capture experiment, the growth chamber and the pots were surface 

sterilized with a bleach solution and later wiped with 75% of ethanol (C2H5OH) to avoid 

contamination. Sterilized Pro-mix BX (Premier Horticulture, Canada) was used as the 

growing medium. The medium was moistened by adding water and placed in a shallow 

autoclavable tray, covered with an aluminum foil and sterilized in the autoclave for 15 

minutes at 121 oC. After the sterilization, the Pro-mix was kept in a clean environment 

covered with the aluminum foil and then transferred into 2 L pots.  

Soybean seeds were placed in a previously sterilized Erlenmeyer flask covered by 

a bottom half of a sterilized Petri dish. Then, the seeds were rinsed with 95% C2H5OH for 

10 minutes and drained. Further, the seeds were swirled with 3% hydrogen peroxide 

(H2O2) for 3-5 minutes. The sterilized seeds were rinsed 4-5 times with sterilized distilled 

water. Then, the seeds were submerged in sterilized distilled water and kept in a 

refrigerator for 4 hours (Somasegaran and Hoben, 1985). Finally, the seeds were sown 

(10 seeds/pot) in the growing medium using sterilized forceps. 

One week after germination, the seedlings were thinned out leaving three healthy 

plants in each pot. The seedlings were treated with different volumes of soil suspension 
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prepared from the dykeland soils. For this, fresh soil samples (10 samples) were taken at 

a depth of 0-20 cm from randomly selected locations in the Habitant and the Wellington 

fields. The fields were subjected to a crop rotation of corn-soybean-grass-soybean. The 

soil type is an Acadia marine loam (silty clay loam in texture), whose soil classification is 

referred to in Appendix A. Ten grams of representative soil sample were mixed with 100 

ml of sterilized distilled water (10-1 dilution) and shaken on the rotary shaker (Model KS, 

130 CS 1, IKA, KS, USA) for 2 minutes (Freidericks et al., 1990; Coutinho et al., 1999). 

The pots (three seedlings) were inoculated with four rates of 10-1 soil suspension. This 

was carried out to reduce the Rhizobial population density and facilitate the nodule 

formation with different Rhizobial strains. They were; 0 ml (S0), 1 ml (S1), 2 ml (S2) and 

3 ml (S3). As the control treatment (S0), 1 ml of sterilized distilled water was added. 

Each treatment consisted of three pots (6 replicates). In addition to the plants grown in 

the Pro-mix, sterilized soybean seeds were also directly sown in pots containing 

Wellington and the Habitant dykeland soils. The pots were arranged in a completely 

randomized design (CRD) in the growth chamber. 

The growth chamber conditions were; day and night temperatures of 25/20 oC, 

and relative humidity of 80% (Gan et al., 2002). Soybean plants were watered with 

sterilized distilled water and once in every two days supplemented with 15 ml of 

modified N free Hoagland solution (Hoagland and Arnon, 1950), which includes 5 mM 

KH2PO4, 2 mM MgSO4, 2.5 mM CaSO4 and micronutrients 46 µM H3BO3, 0.3 µM 

CuSO4, 0.8 µM ZnSO4, 9 µM MnCl2.4H2O, 0.1 µM H2MoO4.H2O, and 89 µM Fe-EDTA 

(pH 5.5-5.8). 
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The plant height (20 and 55 DAP (days after planting)), nodule number (NN), pod 

number (PN) and the plant fresh weight (PFW) at 55 DAP were measured in each soil 

suspension treatment to identify the most effective soil suspension level for Rhizobium 

isolation. The leaf chlorophyll content was measured in the youngest mature leaf (55 

DAP) of each soybean plant by using a hand held chlorophyll content meter 200 

(CCM200, Opti-sciences, INC, NH, USA). Available N (NH4
+ and NO3

-) in soil and Pro-

mix was measured by using Kjeldahl distillation method (Bremner, 1965; Li et al., 2003). 

2.3.2 Rhizobium Isolation 
 

Thirty-five days after inoculation, three plants were uprooted without damaging the 

root system. For the isolation stage, fresh roots were collected and washed with sterilized 

distilled water to remove the Pro-mix and the soil particles. The nodules were detached 

from the roots by using a sterilized scalpel blade and then nodules were surface sterilized 

by immersing them in 95% C2H5OH for 10 seconds. Further, sterilization was carried out 

by soaking those nodules in a 3% H2O2 solution for 4-5 minutes. Finally, the nodules 

were five times washed with sterilized distilled water and kept in sterilized Petri plates. In 

order to identify the best Rhizobial isolation method, several techniques, as described by 

the Somasegaran and Hoben (1985), were practiced. They were: 

1) One millilitre of sterilized distilled water was transferred into the Petri plate with 

nodules. The nodules were crushed using a sterilized toothpick and properly 

mixed. From the slurry, 0.5 ml was transferred into a Petri plate and then 15- 20 

ml of yeast manitol agar (YMA) with Congo red was poured into the each dish 

(pour plate technique). YMA consists of 0.5 g of KH2PO4, 0.2 g of MgSO4. 7 
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H2O, 0.1 g of NaCl, 0.5 g of yeast extract, 10 g of mannitol, 0.5% of Congo red 

solution and 15 g of agar per litre. After that, the content was mixed properly by 

gently moving the covered dish clockwise and counter-clockwise. Then the plates 

were kept in a laminar flow hood to solidify the agar. The inoculated Petri plates 

were incubated in an inverted position in an incubator (307C, Cole-Parmer, IL, 

USA) at 28 oC for 3-4 days until colonies appeared (Figure 2.1).  

2) One millilitre of sterilized distilled water was transferred into the Petri plate 

containing nodules. The nodules were crushed by using a toothpick and mixed 

properly. Then the slurry was diluted. For this, 0.5 ml of slurry was transferred 

into a conical flask containing 5 ml of sterilized distilled water. From the diluent, 

0.5 ml was transferred into the sterilized Petri plate and then 15- 20 ml of YMA 

with Congo red was poured into the each dish (pour plate technique). The plates 

were kept under the laminar flow hood until agar got solidified and an incubated 

in inverted position in the incubator (307C, Cole-Parmer, IL, USA) at 28 oC for 3-

4 days until colonies appeared (Figure 2.1). 

3) One millilitre of sterilized distilled water was transferred into the Petri plate 

containing nodules. The nodules were crushed by using a sterilized toothpick and 

properly mixed. A sterilized loop was dipped in the slurry and then streaked on 

the surface of YMA plates with Congo red. The plates were kept under the 

laminar flow hood until agar solidified and incubated in an inverted position in the 

incubator (307C, Cole-Parmer, IL, USA) at 28 oC for 3-4 days until colonies 

appeared (Figure 2.1). 
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nodulation. Surface sterilized pre-germinated (10 seeds) soybean seeds were sown in 

sterilized Pro-mix medium. After germination, the seedlings were thinned out by keeping 

three healthy seedlings. YMA broth cultures were prepared and morphologically 

identified isolates were cultured (incubated at 28 oC) until they grew. One millilitre from 

the each broth culture was introduced to the pre-germinated seedlings and kept in a 

growth chamber. The same routine practice described for the capture experiment above 

was followed. Nodule formation was observed at 30 DAP. 

2.3.3 Statistical Analysis 
 

The experiment was a single factor factorial, arranged in completely randomized 

design. Before running the ANOVA, the normality and constant variance were checked 

by using Minitab 15 statistical software. The independence was assumed through 

randomization. The PROC MIXED procedure was used in SAS 9.2 statistical software 

for analysis. The statistical significance criteria was a Type III error rate of P = 0.05 with 

95% confident interval. LS means (Least Square Means) were used as the multiple mean 

comparison method when the effects were significant. 

 

  



 

2

2
 

di

pl

so

th

W

tr

co

F
A

 

0.

.4 RESULTS 

.4.1 Effect o

Five d

ifference (P 

lant height i

oil. There w

he Wellingt

Wellington s

reatments. S

ontrol. 

Figure 2.2 Pl
Along a line, 

Applic

.0244) the N

of Soil Inocu

days after s

< 0.5893) i

increased si

ere 58% and

on and the

oil was sign

Soil suspens

lant heights
means with 

cation of so

NN (Figure 

ulation on S

sowing, the 

in the plant h

gnificantly (

d 21% increa

e Habitant 

nificantly re

ion did not

s versus grow
same letter 

oil suspensio

2.3) compar

32 

Soybean Pla

soybean see

height (Figur

(P < 0.0011

ases in plant

soil. The p

etarded, resu

t increase th

wing mediu
are not signi

on from dyk

red to the co

ant Growth

eds started 

ure 2.2) at 20

1) in Pro-mi

t height in P

plant height 

ulting in the

he plant he

um condition
ificantly diff

keland soil 

ontrol and p

(Capture E

to germinat

0 DAP. How

ix medium, 

Pro-mix med

t of soybea

e lowest he

ight compar

ns at 20 and
fferent (P < 0

significantly

plants grown

Experiment)

te. There wa

wever, at 55 D

compared t

dium compar

an grown in

eights among

red to the w

 
d 55 DAP. 
0.05). 

y increased 

n in soil med

) 

as no 

DAP, 

to the 

red to 

n the 

g the 

water 

(P < 

dium. 



 

T

su

=

co

F
w

 

co

re

dy

pr

af

The highest n

uspension, w

 5, Habitant

ontamination

Figure 2.3 N
with same let

The s

ompared to 

espectively. 

ykeland soi

roduced the

ffect PFW (F

number of n

while the pla

t = 4). The c

n of the syst

odule numb
tter are not si

soil suspens

the control 

Low pod 

ils above. O

 highest num

Figure 2.5). 

nodules were

ants grown o

control plant

em. 

ber versus g
ignificantly 

ion rate sig

plants, resu

numbers w

On average,

mber of pod

The plant gr

33 

e observed i

on dykeland 

ts did not yi

growing med
different (P

gnificantly (

ulting in 33%

ere observe

, the plants

ds (Figure 2

rowth was si

in plants tre

soils had the

ield any nod

dium condit
< 0.05). 

(P < 0.0458

% and 16%

ed in the tr

s treated wi

2.4). The rat

ignificantly r

ated with 2 

e lowest num

dules and co

tions at 55 D

8) affected 

% gains in S

reatments d

ith soil sus

te of soil su

retarded in d

and 3 ml o

mber (Wellin

onfirmed the

 
DAP. Means

the pod nu

S2 and S3 p

derived from

spension rat

uspension di

dykeland soi

f soil 

ngton 

 non-

s 

umber 

lants, 

m the 

te S2 

d not 

ils.  



 

pe

gr

th

F
sa

F
w
 

The le

eak period o

reater (P < 

here was no 

Figure 2.4 Po
ame letter ar

Figure 2.5 Pl
with same let

eaf chloroph

of soybean s

0.0440) (Fig

significant d

od number 
re not signifi

lant fresh w
tter are not si

hyll content

symbiotic N2

gure 2.6) in 

difference in 

versus grow
icantly differ

weights versu
ignificantly 

34 

was measur

2 fixation. T

all treatmen

chlorophyll

wing medium
rent (P < 0.0

us growing 
different (P

red 55 DAP

The chloroph

nts compared

l content bet

m condition
05). 

medium co
< 0.05). 

P, which was

hyll content 

d to control 

tween soil su

ns at 55 DAP

onditions at 

s presumabl

was signific

plants. How

uspension rat

 
P. Means wi

 
55 DAP. M

ly the 

cantly 

wever, 

tes. 

ith 

eans 



 

F
M

 

2

  

m

1

N

m

gr

fr

m

 

Figure 2.6 Le
Means with s

.4.2 N Cont

At the

medium com

6% greater t

NO3
- (P < 0.0

mix media wa

rown in the 

rom the initi

medium as it 

 

 

eaf chloroph
ame letter ar

ent of the G

e time of p

mpared to the

than in the d

0958) and N

as remarkab

Pro-mix me

ial levels. T

was the com

hyll content
re not signif

Growing Me

planting, the

e dykeland s

dykeland soil

NH4
+ (P < 0.

ly lower in S

edium, the co

The plants as

mmon source

 

35 

t versus gro
ficantly diffe

edium at 55 

re was a hi

soil (Table 2

ls. At 55 DA

1107) in gro

S0 and S1 tr

ontrol plants

ssimilated la

e of N.  

owing mediu
erent (P < 0.0

DAP. 

igher amoun

2.1). The NO

AP, there wa

owing media

reatments (T

s had taken u

arge amount

um conditio
05). 

nt of miner

O3
- level of 

as no signific

a. The NO3
- 

Table 2.2). C

up 45% NH

ts of NO3
- f

 
ons at 55 DA

ral N in Pro

the Pro-mix

cant differen

level of the

Considering p

H4
+ and 78% 

from the Pro

AP. 

o-mix 

x was 

nce in 

e Pro-

plants 

NO3
- 

o-mix 



36 
 

Table 2.1 The available N content of growing media at seed sowing 
 
 
 
 
 
 

 
Table 2.2 The available N content of growing media at 55 DAP 
Treatments Soil NH4

+ 
(mg kg-1) 

Soil NO3
- 

(mg kg-1) 
Control 6.06  14.93 
1 ml of suspension 7.93  11.66 
2 ml of suspension 8.40  20.06 
3 ml of suspension 7.46  21.46 
Wellington 4.43  12.36 
Habitant 3.96    7.93 
 

2.4.3 Identification and Characterization of Isolated Rhizobium Strains (Capture 
Experiment) 
 

Compared to the Wellington soil, nodulation in the Habitant soil was poor. The 

nodules produced by the Habitant soil were smaller in diameter. At the beginning of the 

isolation, numerous types of colonies appeared on the primary isolate plates prepared 

with YMA medium. Even the plates streaked with single nodules produced more than 

one type of Rhizobial colony. The pour plate technique produced a variety of colonies 

while the streak plate technique produced identical colonies in the primary plates. Typical 

Rhizobial colonies were selected based on the appearance of the colonies and with little 

or no Congo red absorption. At the beginning, 11 types of colonies were selected from 

the Habitant and Wellington dykeland soils. They were denoted as W0, W1, W2, W3, W5 

(from Wellington soil), H1, H2, H3 (from the Habitant soil), P1, P2 and P3 (from the Pro-

mix). A greater diversity in colony appearance of isolates was observed in the Wellington 

compared to the Habitant soil.  

Media Soil NH4
+ 

(mg kg-1) 
Soil NO3

-  
(mg kg-1) 

Autoclaved pro-mix       11.2 53.2 
Wellington soil         8.4 21.0 
Habitant soil         8.4 19.6 
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In YMA medium with BTB, the blue colour is an indication of alkaline reaction, 

which represents the slow growing Bradyrhizobium species, while the yellow colour 

resembles the acidic reaction of fast growing Rhizobium species. Except for W5, the 

isolates changed to yellow from the colour of the BTB medium. Most of the isolated 

strains were fast growing Rhizobium species. The isolates did not grow well in the PGA 

medium, which is a characteristic of the Rhizobium species (Table 2.3).  

The isolates from the Pro-mix also resembled those from the Wellington soil. 

Based on the KOH test W0, W1, W3, H2, H3, P1, P2, and P3 were identified as the gram 

negative bacteria. Colony morphological characters of W3 were similar to W2. The 

authentication study verified that isolates W0 had a greater ability for soybean nodule 

formation. The W0 was isolated from the Wellington site and formed larger active 

nodules in the authentication study. 
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Table 2.3 The characteristics of the isolated strains based on KOH test, colour 
change on the YMA containing BTB medium and the growth on the peptone glucose 
agar (PGA). 
Strains KOH test 

Gram status 
 

YMA+ BTB 
Growth rate  

PGA 

W0 G- yellow NG 

W1 G- yellow NG 

W2 G- yellow NG 

W3 G- yellow PG 

W5 G+ Blue NG 

H1 G+ yellow NG 

H2 G- yellow PG 

H3 G- yellow NG 

P1 G- yellow NG 

P2 G- yellow MG 

P3 G- yellow NG 

KOH test: G+-gram positive, G- gram negative, YMA with BTB medium: Yellow colour associate 
with fast growers and blue colour associate with slow growers, PGA medium: NG- no growth, 
PG- poor growth, MG-mild growth. 
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2.5 DISCUSSION 
 

During the isolation stage, diluents were prepared with soil samples in order to 

reduce bacterial competition for nodulation, facilitating isolation (Yang et al., 2001). 

Vincent (1970) reported that for a particular legume, the number of nodule forming plants 

at each diluted level is correspondent to the number of bacterial cells that nodulate. In the 

capture experiment, the plants supplemented with different levels of diluted soil (10-1) 

suspension produced greater number of nodules than the plants grown in the soil medium. 

The diluted soil suspensions (1, 2, and 3 ml) contained lesser numbers of Rhizobia than 

was found in the soil, which may reduce bacterial competition for nodulation. 

In the current study, plant height, plant fresh weight, and pod number were 

significantly higher in Pro-mix medium than in soil medium. The major difference may 

be due to the amount of available N growing in the media. Greater amounts of available 

N in Pro-mix media facilitated plant growth and pod formation. As a result, there was a 

significant difference between the Pro-mix and soil media in terms of plant fresh weight, 

height, and pod number. Previous studies have reported that reduced symbiotic N fixation 

is due to high mineral N levels in the growing media (Bergersen et al., 1989; Albareda et 

al., 2009). Furthermore, the greater amount of available N in Pro-mix media can suppress 

root infection and nodule formation since the plants get sufficient amounts of N from the 

growing medium. In agreement with Brockwell et al (1989), the S3 and S2 soil 

suspension levels produced the highest number of nodules. Therefore, use of 2 and 3 ml 

(10-1) soil suspension in the capture experiment was effective in Rhizobial isolation. 
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According to Waterer and Vessey (1993), N concentration and water holding 

capacity of growing media can alter the nodule number and N fixation. The dykeland 

soils are sandy clay loam in texture and frequently compacted with reduced water 

percolation. In our study, we observed lower numbers of nodules in compacted soil 

medium compared to the Pro-mix media. This is consistent with the results of Buttery et 

al (1998), who showed a reduction of the nodule number and the nodule size in sandy 

loam soil with high bulk density. In addition, the poor root growth associated with the 

soil conditions could be the other reason for the reduced nodulation and plant growth. 

The root volume reduction is associated with the nutrient uptake by the plant, which 

retarded plant growth. However, leaf chlorophyll content of plants grown in the dykeland 

soil was similar to the inoculated plants in the Pro-mix medium. Reeves et al (1993) 

reported that there was a good correlation between chlorophyll content and leaf nitrogen 

content. Therefore, it can be concluded that the nodules formed in the plants grown in the 

soil medium fixed N effectively. The leaf chlorophyll content of the control plants in Pro-

mix medium was significantly low. This indicates that they have not obtained the 

advantage of the higher NO3
- content in the Pro-mix medium.  

Soil conditions and the number of nodulating Rhizobia in the soil were identified 

as the main factors for multiple nodule occupancy (May and Bohlool, 1983). In addition, 

are considerable amount of dual nodule occupancy was reported under in vitro conditions 

than in the field (Pinochet et al., 1993: Palaniappan et al., 1997). More than one 

Rhizobium species was isolated from a nodule during the capture experiment in this 

study.  
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The majority of isolates in this study were fast growers. The soil samples were 

obtained from non-tilled soils during the spring. Coutinho et al (1999) reported that the 

majority of isolates from non tilled soils are fast growers. However, in the Habitant site, 

the soil was poorly enriched with Rhizobia compared to the Wellington soil. This may be 

due the variability in soil conditions and soil management practices, which can greatly 

influence the soil Rhizobial profile. Solid dairy manure was added to the Wellington field 

and therefore, the soil biological properties were likely enhanced. Application of dairy 

manure increased the soil organic carbon content, resulting in an increase in the microbial 

biomass. Further, Zengeni and Mpepereki (2003) reported that manure application 

augmented the Rhizobial population, acting as an energy source. The Habitant soil has 

inherent soil salinity (see chapter V), which reduced the survival of previously introduced 

Rhizobia and limited the Rhizobial population to saline tolerant strains. 

2.6 CONCLUSION 
 

The isolation and identification of existing soil Rhizobia from dykeland soils can 

be beneficial in terms of promoting and improving soybean symbiotic N fixation. 

Depending on the dykeland soil conditions, there was a great variability in isolates. The 

majority of the isolates were fast growers. The isolate W0 had the greatest ability for 

soybean nodulation in the authentication trials. Use of a growing medium with greater 

available N levels for Rhizobium isolation can alter the observations and results of 

isolation studies. However, further investigations are necessary to confirm the effective N 

fixation ability of these isolates in the growth chamber, as well as in the dykeland fields. 
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CHAPTER 3   SYMBIOTIC NITROGEN FIXATION AND GRAIN YIELD 
OF SOYBEAN IN RELATION TO BRADYRHIZOBIUM INOCULATION AND 

NITROGEN USE IN ACIDIC DYKELAND SOIL 

3.1. INTRODUCTION 
 

Soybean plants utilize both N fixed in the root nodule and N absorbed from the 

soil and fertilizer (Wery et al., 1986). It was reported that in an agricultural system, the 

maximum soybean yield can be obtained by optimum use of symbiotic N fixation and the 

mineral N uptake. At the early growth stages, the soybean plant mainly depends on the 

mineral N assimilation and in later stages, on symbiotic N fixation (Harper, 1974).  

There are several studies focused on soybean inoculation and inorganic fertilizer 

N responses at different growth stages and climatic conditions. It was reported that 

Bradyrhizobium inoculant promoted soybean grain yield (Albareda et al., 2009). 

Furthermore, there should be 105-106 Rhizobial cells per seed to maximize the grain yield 

(Catroux et al., 2001). It was found that under favourable soil conditions, N fertilization 

is not necessary for inoculated soybean (Welch et al., 1973; Duong et al., 1984; Schmitt 

et al., 2001; Barker and Sawyer, 2005; Diaz et al., 2009). However, other studies showed 

that the symbiotic N fixation is not adequate to fulfill the soybean N demand and 

fertilizer application is necessary (Gan et al., 2003; Osborne and Ridell, 2006; Ray et al., 

2006; Caliskan et al., 2008).  

In Nova Scotia, there are about 18,000 ha of dykelands and soybean is one of the 

field crops grown on these lands. However, there is a lack of information about soybean 

symbiotic N fixation performance under dykeland conditions with respect to 

Bradyrhizobium inoculant and starter N fertilizer on an acidic dykeland site.  
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3.2 OBJECTIVES 
 

The aims of this study were to investigate the effect of inoculant and starter N 

fertilizer on soybean symbiotic N fixation as well as grain yield under dykeland 

conditions. 

3.3 MATERIALS AND METHODS 

3.3.1 Site Description 
 

The experiment was conducted during the summer of 2010 in the Wellington 

dykeland, located in the Annapolis valley in Nova Scotia. The soil type is an Acadia 

marine loam (silty clay loam in texture) whose soil classification is referred to in 

Appendix A. According to the previous year (fall 2009) soil analysis, the chemical 

properties of the soil (depth of 0-15 cm) were as follows: 8.4 mg NH4
+, 21 mg NO3

-, 100 

mg of phosphorous, 200 mg of potassium per kilogram of soil and pH of 4.8. Nova Scotia 

has a modified continental climate with a mean annual rainfall of 1250 mm. The land was 

subjected to crop rotation, which in the first year was soybean followed by corn in the 

second year, followed by grass in the third year (corn -grass-soybean). The field was 

cultivated with corn the previous year. 

3.3.2 Field Experimental Setup 
 

In the field, the treatments were assigned in a split plot design with three 

replications where the main plot treatments were arranged in an RCBD. The treatments 

consisted of four rates of Bradyrhizobium japonicum inoculant and four rates of starter N 

fertilizer. The levels of inoculant used were: 0 (IR0), 1.5 (IR1.5), 3 (IR3) and 4.5 (IR4.5) 

g kg-1 seed. The standard rate of commercial inoculant ‘Nitragin’ for soybean is 3 g kg-1 
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of seed. The levels of N applied were; 0 (N0), 10 (N10), 20 (N20) and 30 (N30) kg N ha-

1. The N0 is the recommended N fertilizer level used in NS. To minimize cross 

contamination, the different rates of inoculant were used as main plots, while N fertilizer 

treatments were sub-plots. Different inoculant levels were randomly assigned to the four 

main plots in each block and the N fertilizer treatments were randomly assigned to the 

subplots within each main plot (Figure 3.1).  

The size of a sub plot was 2 m × 4 m (area of 8 m2). Inter and intra row spacing 

was 17.5 cm and 9.5 cm, respectively. There was a 0.5 m of buffer zone in between two 

sub-plots. There were total of 12 (3× 4) main plots and 48 (4× 4× 3) sub-plots in this 

study. 

Block/Rep 1 
IR0 IR4.5 IR3 IR1.5 

N10 N0 N20 N30 N30 N10 N20 N0 N0 N10 N30 N20 N20 N30 N10 N0 

Block/Rep 2 
IR1.5 IR3 IR4.5 IR0 

N10 N30 N0 N20 N30 N20 N0 N10 N10 N0 N20 N30 N20 N10 N0 N30 

Block/Rep 3 
IR0 IR3 IR1.5 IR4.5 

N20 N0 N10 N30 N0 N10 N20 N30 N30 N20 N10 N0 N10 N0 N20 N30 

Figure 3.1 Field experiment in the Wellington dykeland 
 

Seeds of genetically modified Soybean cultivar “LynX” were used. This cultivar 

was selected specifically due to superior performance in the Maritime region. Because of 

its high yield, “Lynx” has been ranked number one in the Maritime trials. Commercial 

peat based inoculant “Nitragin” was used as the Bradyrhizobium japonicum inoculant 

source. To ensure the adhering of bacteria to the seed surface, seeds were mixed with the 
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inoculant prior to sowing. The slurry of inoculant was prepared by using 2 ml of distilled 

water (H2O) and uniformly mixed with the seeds. The field planting was carried out by 

hand on May 31, 2010 at a rate of 20, 0000 seeds ha-1. Seed sowing was performed prior 

to a rainy period, according to the weather report of Environment Canada 

(www.weatheroffice.gc.ca). First, the seeding was carried out in un-inoculated (IR0) plots 

to prevent contamination with inoculated seeds. Since the selected starter N levels were 

low in quantity, they could be easily lost from the soil with early application. Therefore, 

ten DAP, N rates (0, 10, 20, and 30 kg ha-1) were broadcast as ammonium nitrate 

(NH4NO3). As the potassium (K) source, murate of potash (KCl) was applied (K=22 kg 

ha-1, based on the previous year testing) to each sub-plot. At the beginning, the weeding 

was manual; Round up (Glyphosate) was applied later in the early pod filling stage due to 

the severe weed infestation. At the vegetative stage, the herbicides were not applied as 

there was no severe weed problem.  

3.3.3 Soybean Field Plant Sampling 
 

Seedling emergence occurred ten days after the sowing. Soybean plant samples 

were obtained at three different growth stages. The plant sampling stages were R2, R5 

and R7 (Table 3.1). At R2 and R5 stages, ten plants were randomly uprooted from each 

plot, while 20 plants were uprooted at R7. The plants and the rhizosphere soils were 

gently uprooted with the help of a spade and the soil was removed carefully.  
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Table 3.1 Soybean plant-sampling stages 
Days after sowing Growth stage 
  60 Full flower (R2) 
105 Begin seed (R5) 
132 Harvest maturity (R7) 

 

Since the extraction of root bleeding sap was difficult to perform at the field level, 

the soybean stem segments were used to quantify the N fixation. The ureide-N in stems is 

insensitive to diurnal fluctuations and unchanged by temperatures of 20-30 oC (Herridge, 

1982). Therefore, the temperature of the uprooted plant materials was maintained at 20-

30 oC (ambient temperature) until they were processed. Three plants from the uprooted 

sample were partitioned into leaves, petioles, stem, pods, and nodulated roots for the 

analysis of ureide-N and NO3-N at R2 and R5 stages. The plant fresh weight (PFW), 

plant height, root length (the length from shoot base to main root tip), nodule number, 

nodule weight, pod number and fresh pod weight were obtained from the three randomly 

selected plants. The plant samples were dried for 48 hours in a conventional oven at 60 

oC. The dried stem parts were ground using a Wiley mill and passed through the 60 mesh 

size (1 mm) screen and stored until analysis.  

The sap nitrate (NO3-N) and K concentrations in soybean leaves, petioles, stem 

were measured at both R2 and R5 stages, and pod sap was measured at R5 stage. The sap 

was collected using a handheld plant sap presser (Spectrum Technologies, IL, USA). The 

sap NO3-N and K were measured with a cardy nitrate meter (Spectrum Technologies, IL, 

USA) and a cardy potassium meter (Spectrum Technologies, IL, USA). 

At the R7 stage, the harvested plants were divided into seeds, pod walls and stems 

and the dry weight of each component was determined by oven drying at 60 oC until a 
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constant weight was obtained. Harvest index (HI) was calculated using the fraction of the 

seed, which contributed to the total biomass.  

3.3.4 Soil Sampling 
 

Soil samples were obtained at the R2 stage to determine the effect of applied N 

fertilizer. Soils samples were collected randomly (mostly from the front, middle and rear 

sections of the plot) at a depth of 0-15 cm, using an Edmonton auger. The representative 

samples for the chemical analysis were obtained from composite soil samples. Soil 

moisture was determined by oven drying 10 g of fresh soil at 105 oC for 48 hours. The 

rest of the soil samples were air dried and debris was removed, sieved through a 2 mm 

mesh size and stored for later chemical analysis.  

3.3.5 Plant Tissue Chemical Analysis 
 

To determine the plant total N concentration, the plant samples were acid digested 

and distilled by using the Kjeldahl distillation method (Bremner and Mulvaney, 1982). It 

was then titrated with 0.01 N hydrochloric acid (HCl).  

The N fixation was quantified by the method suggested by Herridge (1982). 

Distilled water was used to extract the ureide-N and NO3-N compounds from the ground 

stems. The ureide-N and NO3-N were then colorimetrically analyzed. 
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3.3.5.1 Determination of Plant Total N 
 

The Labconco digestion unit (Rapid digestor, Labconco cooperation, Kansas City, 

Missouri) was employed to digest the soybean plant samples. Ground plant tissue 

samples of 0.5 g were weighed and 10 ml of concentrated sulphuric (H2SO4) acid was 

added to a digestion tube, followed by placing on a preheated (300 oC) digestion block 

for 40 minutes in the fume hood. Digestion tubes were removed from the digestion block 

and cooled for 5 minutes. Then, 2 ml of 30% hydrogen peroxide (H2O2) was mixed with 

the partially digested tissues sample and kept on the digestion block for another 15 

minutes. Again, the sample was removed from the digestion block and cooled for 5 

minutes, after which 2 ml of H2O2 was added. This step was repeated until the digestion 

solution was colourless. Once the process was completed, the digested plant tissues were 

kept under the fume hood for 30 minutes. Then the solution was transferred into a 50 ml 

volumetric flask and volumerized by using distilled water. The diluted digestion solution 

was employed for plant total N analysis, as described below. 

Total N content was determined by the Kjeldahl distillation method in the Labconco 

distillation unit (Model 64132, Labconco cooperation, Kansas City, Missouri). Ten 

millilitres of the digested solution were transferred into a distillation tube and mixed with 

10 ml of 40% (10 N) sodium hydroxide (NaOH) solution. It was then distilled until the 

volume of the receiving flask, which contained 5 ml of boric acid (H3BO3) and 5 drops of 

mixed indicator (methyl red and green bromocresol), doubled (approximately 7 minutes). 

Finally, the distillate was titrated against 0.01 N HCl until the colour became pinkish 

grey. The total plant N was calculated as N mg plant-1. 
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3.3.5.2 Determination of Stem Ureide Compounds 
 

a) Extraction of ureide compounds 

The ureide compounds were extracted from the dried stem tissues (Herridge, 1982). A 

ground stem tissue sample of 0.5 g was mixed with 25 ml of distilled water in a boiling 

tube and heated for 1-2 minutes in a boiling water bath. The suspension was filtered into 

a 50 ml of volumetric flask by passing it through Whatman No: 40 filter paper in a 

funnel. The residues were washed onto the filter and rinsed with the distilled water. When 

the content cooled, the filtrate was volumerized into 50 ml by using the distilled water. 

The concentration of ureide-N was measured as per the Young and Conway (1942) 

method and NO3-N by the Cataldo method (Cataldo et al., 1974). 

b) Ureide assay 

From the stem extract, 0.5 ml was taken and transferred into a test tube and mixed 

with 2 ml of distilled water (1:5 dilutions). The diluted solution was mixed with 0.5 ml of 

0.5 N NaOH and kept in a boiling water bath for 10 minutes. One millilitre of ice-cooled 

0.65 N HCl /phenylhydrazinium solution was added into the reaction mixture and kept in 

a boiling water bath for another 2 minutes. Then, the test tubes were removed from the 

boiling water bath and immediately placed in an ice bath for 15 minutes. Finally, 2.5 ml 

of ice-cooled potassium ferricyanide (HCl/K3FeCN6) were added. The solution was 

allowed to rest for 10 minutes for optimum colour development. The absorbance was 

measured at 525 nm by the spectrophotometer (Ultrospec 2100 pro UV/Visible 

Spectrophotometer, Biochrom Ltd, CB, UK). Standard solutions of ureide (0, 0.01, 0.02, 
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0.04, and 0.1 mM) were prepared by using 1 mM of allantoin stock solution. Based on 

the standard curve, the stem ureide concentrations were determined. 

c) Nitrate assay 

From the stem extract, 0.05 ml was transferred to the test tube and mixed with 0.20 

ml of 5% salicylic/sulphuric acid solution and left on the bench for 20 minutes. Then, 

4.75 ml of 2 N NaOH was added and kept for 10 minutes for optimum colour 

development. The absorbance at 410 nm was measured by the spectrophotometer 

(Ultrospec 2100 pro UV/Visible Spectrophotometer, Biochrom Ltd, CB, UK). Standard 

solutions of NO3
- (0, 1.25, 2.50, 5.00, 10.00, and 15.00 mM) were prepared by using 25 

mM standard potassium nitrate (KNO3) stock solution. The NO3
- concentrations in the 

stems were calculated from a standard curve. 

d) Calculation of daily N fixing activity and daily N absorption rate 

The relative abundance of ureide was determined by using the following equation 

described by Herridge (1982).  

% of N derived from atmospheric N2    (RU%)   =                4×Ureide- N               ×100 

 

The average of daily N fixation rate and N absorption rate over the growth stages were 

estimated according to the method described by Tewari et al (2004). To calculate the 

daily N gain, the total N determined by the Kjeldahl digestion method was used. The total 

N for each sampling date was assigned as N1 (R2) and N2 (R5) and corresponding 

[4×Ureide- N + Nitrate- N] 
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sampling dates as D1 (R2=65 DAP) and D2 (R5=105 DAP). D0 was designated as the date 

of sowing. The average daily N gain (∆N) was estimated as follows: 

∆ N 2-1 = N2 –N1/ D2 – D1 

The total amount of N assimilated (uptake + N fixation) by the plant was assumed to 

be the same as the RU%. The average RU% was calculated as, 

RU% 2-1 = (RU% 1+ RU% 2)/2. 

From sowing to the first date of sampling (D1), the average RU% 0-1 was assumed to 

be RU%1. The daily N fixing rates and daily N absorption rates were calculated as below: 

Daily N fixation rate = (∆ N 2-1 × RU% 2-1/ 100 ) / D2 – D1 

Daily N uptake rate = [∆ N 2-1 × (100 - RU% 2-1) / 100 )] / D2 – D1 

3.3.6 Soil Chemical Analysis 
 

Soil available N (NH4
+ and NO3

-) was measured with the Kjeldahl distillation 

method (Bremner, 1965; Li et al., 2003). Soil pH (1: 2.5, water) and electrical 

conductivity (EC) (1: 1) were measured by using a combined pH and conductivity meter 

(Model 3540, Jenway, Bibby scientific Ltd., ST, UK ). 

To extract the soil available N, 10 g of soil were mixed with 25 ml of 2 N KCl. 

The solution was placed on a rotating shaker (Model KS, 130 CS 1, IKA, KS, USA) and 

agitated at 180 rpm for 30 minutes. The extract was filtered through a Whatman No: 40 

filter paper. To determine the soil NH4
+-N, 10 ml from the aliquot were transferred to a 

distillation flask and 0.2 g of magnesium oxide (MgO) and calcium chloride (CaCl2) were 

added. The distillation flask was connected to the Labconco distillation apparatus (Model 
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64132, Labconco cooperation, Kansas City, Missouri). The released NH4
+ was collected 

to a receiving flask which contained 2% boric acid (H3BO3) and 5 drops of mixed 

indicator (methyl red and bromocresol green). The distillation was carried out for 6 

minutes. Once the distillation was completed, the receiving flask was removed. In order 

to determine the soil available NO3
-N, 0.2 g of Devarda alloy was subsequently added to 

the distillation flask and distilled for 6 minutes. The ammonium borate trapped in the 

receiving flask was titrated by using 0.01 N HCl until the colour changed from greenish 

blue into pinkish gray. The soil available N was calculated using the HCl acid volume. 

3.3.7 Statistical Analysis 
 

Before running the ANOVA, the normality and constant variance were checked 

with the Minitab 15 statistical software. The independence was assumed to be through 

randomization. The PROC MIXED procedure in SAS 9.2 statistical software was used 

for the data analysis of each variable obtained in the experiment. The block and the 

interaction between the block and inoculant were considered as random effects. The rate 

of inoculant and the rate of starter N were considered to be fixed effects. The statistically 

significant criterion was a Type III error rate of P = 0.05, with 95% confidence interval. 

When the interaction effects were significant, the multiple mean comparison method of 

LS means (Least Square Means) was used. If the main treatment effects (rate of inoculant 

and rate of starter N) were significant, LSD (Least Square Difference) analysis was 

computed. To evaluate the differences in treatment means, orthogonal contrasts were 

constructed for the inoculant and the N fertilizer comparison. For all the measured 

variables, the contrasts were determined by comparing the different levels of inoculant 

and starter N rates.  
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3.4 RESULTS 

3.4.1 Effects of Bradyrhizobium Inoculant and Starter N on Soybean Plant at the 
Vegetative Stage 
 

There was 85% seed emergence in the Wellington field. Flowering and pod 

elongation was observed at 45 and 60 DAP, respectively. Early flower initiation was 

observed in N fertilized plots. The field was subjected to rapid moisture fluctuations 

throughout the growing season (dried and water logged conditions depending on 

precipitation). 

At 60 DAP, the plants were at early pod filling stage (R2). There was no 

significant interaction effect between the rates of inoculant and the rates of fertilizer N on 

PFW and plant dry weight (PDW) at this stage (Table 3.2). The effect of starter N 

fertilizer was not significant on PFW, PDW, plant height, and nodule weight at 60 DAP. 

The height of the inoculated plants was significantly greater than un-inoculated plants.  

There was a significant increase in the root length of inoculated plants, while un-

inoculated plants had the lowest root length. The effect of starter N on soybean root 

length was not significant (Table 3.2). 
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Table 3.2 Soybean plant fresh weight (PFW), dry weight (PDW), plant height, root 
length, nodule number, and nodule weight of soybean as affected by inoculation and 
starter N rates at Wellington dykeland at 60 DAP 
Means 
 
Source 

PFW 
(g) 

PDW 
(g) 

Plant 
height 
(cm) 

Root 
length 
(cm) 

Nodule 
number 

Nodule 
fresh 
weight 
(g) 

I0 34 9 28 13 16 0.41 
I1.5 50 16 37 15 38 1.07 
I3 52 17 39 14 32 1.08 
I4.5 43 13 37 14 31 1.02 
LSD (5%) 26   7    7    2 7 0.26 
N0 40 13 36 14 30 1.01 
N10 47 14 35 14 31 0.94 
N20 46 15 34 14 29 0.83 
N30 47 13 36 14 27 0.81 
LSD (5%) 26    7   7    2 7 0.26 
Variation                                            F test values 
I 0.5308 0.2742 0.0235* 0.0407* 0.0028** 0.0085** 
N 0.3867 0.6802 0.9510 0.9503 0.3305 0.3267 
I× N 0.4236 0.2109 0.9322 0.6014 0.0011* 0.4744 
Contrasts       
I0 vs I1.5,I3& I4.5 0.2157 0.0867 0.0297* 0.0169* 0.0006** 0.0014** 
I1.5 vs I3& I4.5 0.8351 0.8250 0.7325 0.1756 0.0808 0.8366 
I3 vs I4.5 0.5132 0.4271 0.5490 0.3227 0.5782 0.6813 
N0 vs N10,N20& N30 0.0930 0.6893 0.5524 0.5855 0.4603 0.1405 
N10 vs N20&N30 0.8361 0.8451 0.7157 0.8452 0.1407 0.2685 
N20 vs N30 0.8098 0.2615 0.3121 0.9451 0.4048 0.8666 
*and ** significant at 5 and 1% probability level, respectively. 

 

The nodule number and the nodule weight were significantly greater in inoculated 

plants than un-inoculated plants. The interaction between the inoculant and the N 

treatments was significant for the nodule number (Figure 3.2). The greatest nodule 

number was observed with IR1.5 with N20. However, higher numbers of nodules were 

also observed in the treatment combinations of IR1.5-N0, IR1.5-N10, IR3- N20, and 

IR4.5- N10. 
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3.4.2 Effects of Bradyrhizobium Inoculant and Starter N on Soybean Plant at the 
Seed Filling Stage 
 

Grain development was observed at 105 DAP. At this stage, the interaction 

between the inoculant and starter N rates was not significant on the PFW and the PDW. 

Furthermore, starter N fertilizer did not increase the PFW at 105 DAP.  

 

Table 3.3 Soybean plant fresh weight (PFW), dry weight (PDW), pod number, pod 
fresh weight, and pod dry weight as affected by inoculation and starter N rates at 
105 DAP 
Means 
 
Source 

Plant 
Fresh 
weight(g) 

Plant Dry 
weight 
(g) 

Pod 
Number 

Pod Fresh 
weight 
(g) 

Pod Dry 
weight 
(g) 

I0   83 28 40 50 14 
I1.5 132 42 56 77 22 
I3 145 45 57 80 24 
I4.5 128 41 54 73 22 
LSD (5%)   34 12 13 20    7 
N0 117 36 50 66 19 
N10 114 37 51 67 20 
N20 129 40 51 70 21 
N30 130 42 55 76 22 
LSD (5%)   34 12. 13 20   7 
Variation               F- test values   
I 0.0178* 0.0322* 0.0517* 0.0380* 0.0570* 
N 0.4773 0.5560 0.8254 0.6302 0.7717 
I× N  0.5496 0.6104 0.4792 0.4984 0.7173 
Contrasts      
I0 vs I1.5,I3& I4.5 0.0037** 0.0062** 0.0103** 0.0076** 0.0124** 
I1.5 vs I3& I4.5 0.7385 0.8571 0.8500 0.9360 0.5905 
I3 vs I4.5 0.2487 0.4593 0.5345 0.4183 0.4788 
N0 vs N10,N20& N30 0.4690 0.3770 0.5916 0.4664 0.4858 
N10 vs N20&N30 0.1688 0.3342 0.7304 0.4209 0.5369 
N20 vs N30 0.9091 0.5617 0.4946 0.4702 0.6346 
*and ** significant at 5 and 1% probability level, respectively. 

The inoculated PFW and PDW were significantly high, compared to the control 

plants. PN and pod dry weight (PODW) were marginally significant in the inoculated 
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plants, compared to the control plants, while pod fresh weight (POFW) was significantly 

high in inoculated plants (Table 3.3). However, these effects were not significant between 

IR1.5, IR3 and IR4.5. 

3.4.3 Effects of Bradyrhizobium Inoculant and Starter N on Soybean Grain Yield 
 

The soybean harvest was taken at 132 DAP (physiological maturity stage). The 

interaction effect of the rates of inoculant and starter N fertilizer on soybean grain yield 

was not significant. However, the grain yields of inoculated plants were significantly 

increased (Figure 3.3) compared to the un-inoculated plants (2420 kg ha-1). An increasing 

trend in the seed yield was observed from IR1.5 to IR4.5 inoculant rates. The seed yield 

was vary as IR4.5 (3666 kg ha-1) and IR3 (3404 kg ha-1), followed by IR1.5 (3164 kg ha-

1). Application of starter N fertilizer did not increase the soybean grain yield.  

The seed weight (SW), residual biomass (RBM) (stems+ pod wall) and the total 

biomass (TBM) (seeds +stems+ pod wall) were significantly higher in the IR1.5, IR3, and 

IR4.5 than in un-inoculated plants (Table 3.4). Compared to the un-inoculated plants, 

there was an average of 42% (IR1.5), 64% (IR3), and 64% (IR4.5) increase of TBM in 

the inoculated plants. According to the contrast analysis, inoculant rate IR3 and IR4.5 

were marginally significantly greater than IR1.5. The RBM of inoculated treatments was 

76% (IR3), 70% (IR4.5), and 49% (IR1.5) higher than in the un-inoculated plants. 
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Table 3.4 Soybean seed weight, residual biomass, total biomass, and HI as affected 
by inoculation and starter N rates at Wellington dykeland at harvest 
Means 
 
Source 

Seed 
weight 

(g m-2) 

Residual 
biomass 
(g m-2) 

Total 
biomass 
(g m-2) 

HI% 

I0   242 470   712 36 
I1.5   316 699 1016 31 
I3   340 829 1169 29 
I4.5   367 800 1167 32 
LSD (5%)      64 124   154   6 
N0   296 596   891 34 
N10   314 713 1027 31 
N20   321 737 1058 32 
N30   335 752 1087 31 
LSD (5%)     64   124   154   6 
Variation      F- test values  
I 0.0488* 0.0039** 0.0025** 0.2209 
N 0.5300 0.0668* 0.0650* 0.5991 
I× N  0.8463 0.1981 0.1849 0.9452 
Contrasts     
I0 vs I1.5,I3& I4.5 0.0126* 0.0009** 0.0005** 0.0639 
I1.5 vs I3& I4.5 0.2619 0.0721 0.0547* 0.8754 
I3 vs I4.5 0.4769 0.6551 0.9747 0.4278 
N0 vs N10,N20& N30 0.2166 0.0103* 0.0110* 0.2077 
N10 vs N20&N30 0.5477 0.5616 0.4878 0.7477 
N20 vs N30 0.5986 0.8057 0.6953 0.7261 
*and ** significant at 5 and 1% probability level, respectively. 

3.4.4 N Uptake Pattern of Soybean Plant at Different Growth Stages 

3.4.4.1 Effects of Rate of Inoculant and Starter N on Soybean Plant Total N 

 
At the full flower stage (60 DAP), the soybean plant total N was not affected by 

the rates of inoculant nor starter N (Table 3.5). All three rates of inoculant had a 

significantly higher plant total N content at the grain filling stage (105 DAP).  

At harvest (132 DAP), the interaction effect between the rates of inoculant and the 

rates of fertilizer N was not significant on soybean residual biomass N (RBMN) or the 
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total biomass N (TBMN) or the seed N but, seed N, RBMN and TBMN were 

significantly high in inoculated plants (Table 3.6). 

Table 3.5 Soybean total plants N as affected by inoculation and starter N rates at 60 
and 105 DAP at Wellington.  
Means 
 
Source 

Plant N at 
60 DAP 

g plant-1 

Plant N at 
105 DAP 
g plant-1 

I0 0.20 0.85 
I1.5 0.29 1.30 
I3 0.34 1.33 
I4.5 0.29 1.24 
LSD (5%) 0.15 0.32 
N0 0.25 1.15 
N10 0.28 1.14 
N20 0.31 1.23 
N30 0.28 1.21 
LSD (5%) 0.15 0.32 
Variation F- test values 
I 0.4599 0.0515* 
N 0.4738 0.9066 
I× N 0.9166 0.7033 
Contrasts   
I0 vs I1.5,I3& I4.5 0.1631 0.0101* 
I1.5 vs I3& I4.5 0.7882 0.9258 
I3 vs I4.5 0.5737 0.5795 
N0 vs N10,N20& N30 0.1892 0.7432 
N10 vs N20&N30 0.6662 0.5158 
N20 vs N30 0.4567 0.9405 
*and ** significant at 5 and 1% probability level, respectively. 

The TBMN was significantly higher in inoculant treatments than in the un-

inoculated treatment. RBMN was significantly higher in IR4.5 (56.77 kg ha-1) and IR3 

(49.82 kg ha-1) than in the IR1.5 (39.89 kg ha-1). The starter N application did not affect 

the soybean seed N nor the TBMN content. However, TBMN and RBMN in fertilizer 

treatments were greater than IR1.5 treatment (Table 3.6). The RBMN content was 

significantly high in starter N rates of N10, N20 and N30 than in N0. The N Harvest 

Index (NHI) was significantly higher in IR3 and IR1.5 (82%) than IR4.5 and IR0, which 
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had 79% of NHI. The HI did not vary in N fertilized treatments, compared to the N0 

treatment. Although N treatments had greater levels of TBMN, the amount of N content 

in the seed did not increase. As a result, there was no significant difference in NHI in any 

of the N fertilized treatments.  

 
Table 3.6 Soybean seed N, residual biomass N (RBMN), total biomass N (TBMN) 
and N harvest index (NHI%) as affected by inoculation and starter N rates at 
harvest at Wellington. 
Means 
 
Source 

Seed N 
kg ha-1 

RBMN 
kg ha-1 

TBMN 
kg ha-1 

NHI% 

I0 119 30 149 79 
I1.5 167 40 207 82 
I3 182 50 232 82 
I4.5 196 57 252 79 
LSD (5%) 33 9 37 2 
N0 155 36 191 80 
N10 165 45 209 80 
N20 167 47 214 80 
N30 178 48 226 80 
LSD (5%) 33 9 37 2 
Variation    F- test values  
I 0.0255* 0.0039** 0.0085** 0.0431* 
N 0.470 0.0367* 0.1955 0.9999 
I× N  0.837 0.1854 0.6004 0.7221 
Contrasts     
I0 vs I1.5,I3& I4.5 0.0059** 0.0017** 0.0022** 0.0662 
I1.5 vs I3& I4.5 0.2285 0.0112** 0.0861 0.0925 
I3 vs I4.5 0.4981 0.1557 0.3414 0.0456* 
N0 vs N10,N20& N30 0.2098 0.0060** 0.0619 0.9874 
N10 vs N20&N30 0.5315 0.4096 0.4342 0.9613 
N20 vs N30 0.4683 0.6784 0.4445 0.9650 
*and ** significant at 5 and 1% probability level, respectively 
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Figure 3.5 Seed N content with response to rates of inoculant at harvest. Means with 
same letter are not significantly different (P < 0.05). 
 

3.4.4.2 Effects of Bradyrhizobium Inoculant and Starter N Rates on Soybean Leaf, 
Petioles, Stem, and Pod NO3-N and K Composition. 
 

The rate of inoculant and the rate of N did not show any significant relationship to 

the plant leaf, petiole, stem and pod sap NO3-N or K at 60 DAP (Table 3.7) and 105 DAP 

(Table 3.8). At 60 DAP, the leaf, petiole and stem sap NO3-N concentrations varied 

among the inoculant treatments in a similar pattern (Figure 3.6). Control plants showed 

an increasing trend in leaf, petiole, and stem sap NO3-N concentrations. Unlike the 

petioles, there was an increasing trend of sap NO3-N concentrations, with increased rates 

of inoculant for the leaves and stem (Figure 3.7). The rates of inoculant (Figure 3.8) and 

N treatments (Figure 3.9) demonstrated no remarkable variations on plant sap 

composition at 105 DAP. 
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Table 3.7 Effects of inoculation and starter N rate on plant leaf, petiole and stem sap 
NO3-N and K concentration at 60 DAP (F test value) 
Means 
Source 

Leaf Petiole Stem 
NO3

- K NO3
- K NO3

- K 
I 0.1364 0.7771 0.1534 0.5023 0.9315 0.5018 
N 0.7101 0.9433 0.7244 0.1193 0.2506 0.3857 
I× N  0.3690 0.4071 0.1234 0.2335 0.9559 0.4841 
Contrasts       
I0 vs I1.5,I3& I4.5 0.5465 0.3441 0.0635 0.9928 0.2352 0.8077 
I1.5 vs I3& I4.5 0.4987 0.8632 0.6082 0.1699 0.3177 0.1152 
I3 vs I4.5 0.6508 0.8755 0.1936 0.6632 0.4687 0.8362 
N0 vs N10,N20& N30 0.3043 0.9884 0.9719 0.1374 0.3556 0.5816 
N10 vs N20&N30 0.0947 0.7730 0.2606 0.8831 0.0738 0.6194 
N20 vs N30 0.6565 0.6158 0.9894 0.0544 0.2168 0.0271 
*and ** significant at 5 and 1% probability level, respectively 

Table 3.8 Effects of inoculation and starter N rates on plant leaf, petiole, stem and pod sap NO3-N 
and concentration at 105 DAP (F test value) 

Means 
Source 

Leaf Petiole Stem POD 
NO3

- K NO3
- K  NO3

- K  NO3
- K  

I 0.2113 0.0101* 0.1443 0.3130 0.0656 0.0656 0.5606 0.3299 
N 0.9357 0.2996 0.7906 0.9382 0.7429 0.7429 0.2768 0.3419 
I× N  0.9796 0.3237 0.5643 0.7589 0.3523 0.3523 0.6329 0.4335 
Contrasts  
I0 vs I1.5,I3& I4.5 0.9927 0.0274* 0.0873 0.5379 0.0355 0.0355 0.4045 0.7989 
I1.5 vs I3& I4.5 0.0509 0.0042** 0.2693 0.1227 0.3061 0.3061 0.8260 0.1132 
I3 vs I4.5 0.6954 0.4243 0.1837 0.3953 0.0965 0.0965 0.2821 0.4324 
N0 vs N10,N20& N30 0.9924 0.5923 0.6736 0.8075 0.5677 0.5677 0.1625 0.7624 
N10 vs N20&N30 0.5789 0.0715 0.3879 0.8604 0.8289 0.8289 0.3526 0.3647 
N20 vs N30 0.7540 0.8681 0.8039 0.5524 0.3614 0.3614 0.2993 0.1226 
*and ** significant at 5 and 1% probability level, respectively 
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Figure 3.6 Soybean leaf, petioles, and stem sap NO3-N concentration as affected by 
rates of inoculant at 60 DAP.  
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Figure 3.7 Soybean leaf, petioles, and stem sap NO3-N concentration as affected by 
rates of N at 60 DAP.  
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Figure 3.8 Soybean leaf, petioles, stem, and pod sap NO3-N concentration as affected 
by rates of inoculant at 105 DAP.  
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Figure 3.9 Soybean leaf, petioles, stem, and pod sap NO3-N concentration as affected 
by rates of N at 105 DAP.  
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3.4.5 Effects of Bradyrhizobium Inoculant and Starter N Rates on Soybean 
Symbiotic N Fixation 
 

The relative ureide percentage (RU%) was calculated by using the values 

obtained for stem ureide and NO3-N analysis. The RU% was not significant at 60 DAP 

for either rates of inoculant and the starter N fertilizer. There was a significant increase in 

RU% (P < 0.03) for IR4.5 and IR3 at the seed filling stage (105 DAP) (Figure 3.10).  
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Figure 3.10 The relative ureide percentage at 60 and 105 DAP (LSD = 14 and LSD = 
16 respectively; α =0.05) Means with same letters along a line are not significantly 
different (P < 0.05). 
 

The daily N fixation rates were calculated based on the RU% and the plant total N 

concentrations, obtained at different growth stages. At 60 DAP, there was no significant 

difference in the daily N fixation rate (Table 3.9) or in the cumulative N fixation from 

emergence to 60 DAP. Accordingly, the daily N fixation rate increased rapidly from 60 to 

105 DAP. The daily N fixing activity increased in treatments IR4.5 and IR3, leading to 

higher cumulative N fixation from the early pod filling stage to the grain filling stage. 
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Table 3.9 Daily N fixation rate at 60 and 105 DAP and cumulative N fixation from 
emerging to 60 DAP and 60 DAP to 105 DAP as affected by inoculation and starter 
N rates at Wellington dykeland. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*and ** significant at 5 and 1% probability level, respectively 

 

3.4.6 Variation in Soil Available N, pH, and EC with Respect to Rates of Inoculant 
and N Input 
 

The soil available mineral NH4
+ and NO3

- were not significantly affected by N 

fertilizer application (Table 3.10). However, at 60 DAP, there was a limited increase in 

the soil NO3
- levels with varying fertilizer N application rates (Figure 3.11). The soil pH 

and EC were stable over the research plot area at 60 DAP.  

Means Daily N 
fixation 
rate at 60 
DAP 
kg ha-1 

 

Cumulative 
N fixation 
from 
emergence to 
60 DAP 
kg ha-1 

Daily N 
fixation 
rate at 
105 DAP 
kg ha-1 

Cumulative 
N fixation 
from 60 
DAP to 
105 DAP 
kg ha-1 

I0   0.15    8.93 1.77 64.00 
I1.5   0.34 20.61 3.07 110.67 
I3   0.38 22.78 3.64 131.36 
I4.5   0.32 19.34 3.90 140.73 
LSD (5%)   0.29 17.57 1.79 64.52 
N0   0.30 17.94 3.30 119.01 
N10   0.25 15.19 2.86 103.30 
N20   0.31 18.62 2.97 107.16 
N30   0.31 18.46 3.04 109.47 
LSD (5%)   0.29 17.57 1.79   64.52 
Variation  F- test values  
I 0.7775 0.7771 0.0463* 0.0463* 
N 0.9441 0.9433 0.9771 0.9771 
I× N  0.4080 0.4071 0.8309 0.8309 
Contrasts     
I0 vs I1.5,I3& I4.5 0.3444 0.3441 0.0152* 0.0152* 
I1.5 vs I3& I4.5 0.8637 0.8632 0.3779 0.3779 
I3 vs I4.5 0.8757 0.8755 0.7979 0.7979 
N0 vs N10,N20& N30 0.9855 0.9884 0.9827 0.9827 
N10 vs N20&N30 0.7724 0.7730 0.8652 0.8652 
N20 vs N30 0.6190 0.6158 0.6797 0.6797 
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Table 3.10 Variation of the soil mineral N, EC, and pH with rates of inoculant and N 
fertilizer at 60 DAP 

*and ** significant at 5 and 1% probability level, respectively 
 

3.4.7 Relationship between Soybean Nodule Number and Nodule Weight with the 
Rates of Inoculant and N Fertilizer 
 

The rate of inoculant had a significant (P < 0.0001) linear effect on nodule 

weight; 36% variation was explained through the model (Figure 3.11). Similarly, there 

was a significant (P < 0.01) quadratic relationship between the rates of inoculant and the 

nodule number, accounting for 38% of the variation (Figure 3.12). 

Means 
Source 

Soil NH4
+ 

(mg kg-1) 
Soil NO3

- 
( mg kg-1) 

EC ds m-1

(1: 1) 
pH 
(1: 2.5) 

Soil moisture% 

I0 2.78 5.09 2.69 5.7 23 
I1.5 3.03 5.19 2.74 5.4 25 
I3 2.93 4.52 2.87 5.4 21 
I4.5 2.59 4.99 3.03 5.4 24 
N0 2.94 4.85 2.80 5.5 24 
N10 3.06 4.71 2.83 5.5 24 
N20 2.84 4.96 2.82 5.6 22 
N30 2.49 5.27 2.87 5.5 22 
Variation  F- test values   
I 0.5190 0.4858 0.3293 0.3886 0.5060 
N 0.2679 0.6139 0.6896 0.1807 0.3508 
I× N  0.1216 0.4820 0.6076 0.5324 0.3283 
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Figure 3.11 Relationship between applied rates of inoculant and soybean  
nodule weight at 60 DAP. 
 
 
 

4.53.01.50.0

60

50

40

30

20

10

0

Rates of Inoculants (g/kg seeds)

N
od

u
le

 n
u

m
be

r 
pe

r 
pl

an
t

S 10.0328
R-Sq 37.7%
R-Sq(adj) 34.9%

Nodule number =  17.33 + 14.80 Inoculant - 2.691 Inoculant**2

 
Figure 3.12 Relationship between applied rates of inoculant and soybean  
nodule number at 60 DAP. 
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3.4.8 Relationships between Soybean Yield, Total Biomass, Plant N with Rates of 
Inoculant and N Input 

 
The rate of inoculant significantly influenced the soybean yield, seed N content, 

nodule numbers, and nodule weights. Regression analysis was carried out to establish the 

relationship between the different rates of inoculant and the soybean grain yield, TBM 

and seed N. 
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Figure 3.13 Relationship between applied rates of inoculant and soybean grain yield 
at harvest. 
 

The grain yield showed a significant positive quadratic relationship with the rate 

of inoculant (P < 0.0001) that accounted for 32% variation (Figure 3.13). The linear 

model was only able to explain 29% of the variability that was accounted for by the rates 

of inoculant. 

The rates of inoculant showed a quadratic effect on the soybean TBM at harvest 

(P < 0.0001) and the model explained 47% of the variation (Figure 3.14). The highest 
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TBM was achieved at IR3. The linear model was tested and 39.5% of total variation was 

explained by the model.  
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Figure 3.14 Relationship between applied rates of inoculant and soybean total 
biomass at harvest. 
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Figure 3.15 Relationship between total N uptake and the soybean grain yield at 
harvest.  
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There was a linear relationship between the total plant N uptake and the soybean 

yield. The effect was significant (P < 0.0001) and 91% variation was explained (Figure 

3.15). The rate of the inoculant showed a significant (P < 0.017) quadratic effect on the 

soybean seed N content and 29% of the variation was accounted for through the model 

(Figure 3.16). 
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Figure 3.16 Relationship between total N uptake and the seed N content.  
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3.5 DISCUSSION 

3.5.1 Soybean Nodulation 
 

In this study, the nodule numbers and the nodule dry weights were significantly 

increased in all inoculated plants compared to un-inoculated plants. These signify that 

introduced Rhizobia and soybean performed better than un-inoculated plants on the 

dykelands. These results agree with the findings of Papakosta (1992) and Albareda et al 

(2009). The response to the inoculant can vary, depending on the Rhizobial population 

and the soil conditions. The number of nodules on the inoculated plants increased when 

there was less than 1× 102 per gram of Rhizobia present in the soil (Singleton and 

Tavares, 1986). In our study, the nodule number increased significantly with the rate of 

inoculant over non-inoculated plants probably due to the poor existing Rhizobial 

population in the dykeland soil.  

According to the Zengeni and Mpepereki (2003), the Rhizobial population size 

decreased with the increasing number of years since the last inoculation and survival rate 

varies with the soil type and conditions. This may be the reason that in our study, the un-

inoculated plants were observed to produce significantly fewer nodules than inoculated 

plants. Since the field was subjected to crop rotation (corn-grass- soybean), the soybean 

had not been grown on the field for 2 years. The low survival rate of previously 

introduced Rhizobia and the lack of indigenous Rhizobial strains in our experimental field 

could be the reason that significantly higher numbers of nodules and higher nodule 

weight was observed in inoculated plants compared to un-inoculated plants. Albareda et 

al (2009) supported the necessity of soybean inoculation 3 years after last cultivation, and 

observed that the Rhizobial survival rate is highly dependent on the soil type and the 
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bacterial strain whereas moderate acidic pH soil with sandy loam texture had lower 

survival capacity over the alkaline pH soil. Brockwell et al (1987) reported that there was 

a substantial reduction in the Rhizobial population of inoculum immediately after sowing 

until seed germination and the Rhizobial survival pattern was different, depending on the 

strain and the soil type (Brockwell et al., 1987). Accordingly, no difference in the nodule 

number among the rates of inoculant was observed in this present study. Although 

herbicides were used in the field, Moorman (1986) has reported that application of 

herbicides at a standard rate is not sufficient to reduce the Rhizobial population and 

soybean nodulation.  

The low rates of inoculant IR1.5 and IR3 produced the maximum response for 

nodulation at N20 while high nodule formation was observed for higher inoculation rate 

(IR4.5) at N10. However, N fertilizer response on nodule number was not remarkable 

when compared to the individual inoculant levels without N fertilizer.  

In agreement with Hungria et al (2006), a slight decrease in soybean nodule 

number was observed in this present study for the inoculation rates of IR1.5 and IR3 with 

N30. Starter fertilizer N application increases the soil available N and plants tend to 

uptake N from the soil to fulfill their N requirements at the vegetative stage. The soil 

available N may be sufficient to replenish plant N requirement, which inhibits the nodule 

formation. Tahir et al (2009) also reported a similar observation. Not only supplemented 

by N fertilizer, but also the higher available soil N and the mineralization rates in the 

field may be sufficient for plant growth at the vegetative stage. Therefore, the nodule 

formation by the existing Rhizobia can be suppressed due to the greater amount of soil 

mineral N. The soybean N demand is determined by the ability of the indigenous 
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Rhizobial population to compensate for the crop N requirement. However, our results 

indicated an inadequate and ineffective Rhizobial population in the dykeland soil.  

3.5.2 Soybean Plant Growth and Yield 
 

In the study, soybean seed yield obtained with the standard inoculant rate (3.4 kg 

t-1) is in agreement with Bootsma et al (2005). According to the Maritime variety trials of 

Nova Scotia Crop Development Institute in 2010, the soybean cultivar ‘Lynx’ produced 

average of 3615 kg ha-1 of grain yield.  

In the current, study PDW did not significantly increase with either the rate of 

inoculant or the nodule number at 60 DAP. In a previous study, Papakosta (1992) 

reported that the dry weight per plant is not influenced by nodulation in the early stages 

(32 and 68 DAP) of development. A significant increase of the PFW, PDW, PN, POFW, 

and PODW were observed in the inoculated plants over the control plants only at 105 

DAP. At early vegetative stage, the soybean plant N requirement is less than at the 

reproductive stage. Therefore, available soil mineral N alone can be sufficient to fulfill 

plant N demand. As a result, plants did not show any variation at the early growth stage 

compared to the grain filling stage (105 DAP). Herridge (1982) suggested that soybean 

plants depend upon the mineral N for early growth stage and completely depends on the 

fixed N during the late reproductive growth. At the reproductive stage, the soybean plant 

N assimilation rate was high and soil mineral N alone was not adequate for the plant. 

Greater numbers of nodules on the inoculated plants facilitated atmospheric N fixation 

and ultimately increased the plant growth and yield. In the present study, at 105 DAP (R5 

stage), the amount of total N derived from N fixation was greater than at 60 DAP (R2 

stage) in the inoculated plants. 
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In the current study, grain yield and the RBM were significantly higher in 

inoculated plants than in the un-inoculated plants. An increasing trend in grain yield was 

observed from standard inoculant rate (3 g kg-1 seeds) to 150% of standard inoculant rate 

(4.5 g kg-1 seeds). The maximum RBM was observed in IR3 and IR4.5. Adequate N 

supply to the plant through N fixation and soil mineral N uptake could increase the plant 

biomass, resulting in higher grain yield and residual biomass. Several findings reported 

that inoculation with Rhizobial strains promotes higher soybean grain yield than in the 

un-inoculated plants (Egamberdiyeva et al., 2004; Diaz et al., 2009; Albareda et al., 

2009). The increase in the grain yield was proportional to the increasing rate of applied 

Rhizobia (Papakosta, 1992). Greater nodule weight and the daily N fixing rate in 

inoculated plants increased N assimilation and led to higher grain yield and the residual 

biomass compared to the un-inoculated plants.  

There was no significant effect of the applied starter N fertilizer on PFW, PDW, 

PN, PDW, grain yield and RBM. However, the N treatments produced a grain yield and 

total biomass similar to the lower rate (IR1.5) of inoculant. This lack of significant 

response to the fertilizer N application in this study agrees with the findings of several 

other researchers. Either application of a small amount of N fertilizer (Seneviratne et al., 

2000; Hungria et al., 2006) or larger amounts of N fertilizer (200 kg ha-1, 280 kg ha-1) 

(Welch et al., 1973; Hungria et al., 2006; Diaz et al., 2009; Albareda et al., 2009) did not 

improve soybean yield. The residual biomass N was significantly high in fertilized plants 

compared to the non-fertilized plants and total biomass of N fertilized plants were not 

significantly different from the non-fertilized plants. However, total biomass N showed 

an increasing trend with the increasing N fertilizer rates. Diaz et al (2009) also reported 
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an increase of plant dry matter with N fertilizer application. These results agree with the 

findings of Starlin et al (1998). 

The different response, compared to previous studies, may be due to the soil and 

climatic factors. The amount of N fertilizer needed to achieve maximum seed yield 

response is larger for surface applied N than deep placement of controlled release N 

(Salvagiotti et al., 2009). This could be a reason that no significant positive response of 

starter fertilizer N application on the plant biomass was observed. Also, the field was 

supplemented with solid dairy manure every year prior to the planting and the crop 

residues from the previous year crop (corn) were tilled and introduced to the soil. A 

considerable mineralization occurred in the soil, possibly reducing the response to 

applied fertilizer N rates.  

3.5.3 Soybean N Use Efficiency 

  
As the field was subjected to the solid dairy manure application along with 

previous crop residues, the soil N mineralization could be high. Because of that, even 

with fertilizer N supply, the tissue N did not vary among the treatments at 60 DAP. 

Sinclair et al (2003) reported that at vegetative stage, plant N demand is preferentially 

accomplished by the soil mineral N and N fixation is initiated when the soil available N 

level is unable to meet the plant N requirement. At flowering stage (105 DAP), plant N 

demand usually is usually not accomplished through only the soil mineral N and fixed N 

then plays a key role in fulfilling soybean N requirement (Harper, 1974).  

Corresponding to the rates of inoculant, the daily N fixation rate rose. This could 

be the reason for the increased tissue N concentration of inoculated plants at 105 DAP. 

Soybean N demand is relatively high in the later growth stages (Sinclair and DeWitt, 
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1976). However, the sap NO3-N concentration showed an increasing trend with the rates 

of inoculant and the starter N fertilizer level at 60 DAP. However, there was no 

difference in sap NO3-N at 105 DAP. Waterer (1997) reported that potato petiole sap 

NO3-N levels reflected the rate and the time of fertilizer N application by changing with 

the increasing N fertilizer rates and time after planting. 

The only factor that governed the seed N concentration was inoculation whereas, 

the 150% of standard inoculant rate did not influence an increasing in seed N content. 

Greater harvested plant total biomass N and seed N was found in inoculated treatments. 

The N fertilizer treatments showed similar seed N, TBMN and RBMN levels with the 

lowest inoculation rate (IR1.5). The adequate N supply during plant growth through N 

fixation and N uptake enhanced the plant biomass, resulting in an increase in the total N 

ha-1 in this field experiment. Also, many researchers have found that the inoculation can 

increase the plant N accumulation and grain N but the fertilizer N application cannot 

improve the N acquisition of soybean plant (Egamberadiyeva et al., 2004; Diaz et al., 

2009; Albareda et al., 2009).  

3.5.4 Soybean N Fixation 
 

The relative ureide values obtained were according to the values observed by 

Osborne and Riedell (2006). However, the relative values reported by Osborne and 

Riedell (2011) were greater than values of the current experiment. This may be due to the 

reduction in symbiotic N fixation with high available soil N levels in the field. Relative 

ureide percentage did not vary in all treatments at 60 DAP. This may be due to the 

assimilation of NH4
+-N in the soil. Herridge (1982) described the high ureide 

concentration in the shoot axis and the root through assimilation of NH4
+-N by the plant 
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at the early growth stage. Symbiotic N fixation performance was greater with higher 

inoculant levels (IR3 and IR4.5) at 105 DAP. The soybean plant completely relies on 

fixed N at the late reproductive growth stage (Herridge, 1982). The response of the 

symbiotic N fixation is inconsistent with the rates of N fertilizer used for this study. 

Surface application of fertilizer N can suppress the BNF as fertilizer N can support the 

plant N requirement (Salvagiotti et al., 2009). The inoculant rates IR3 and IR4.5, without 

N fertilizer, may be sufficient to fulfill total N demand. With higher levels of inoculant, 

the plant nodulation increased and as a result, the daily N fixation rates increased. In this 

study, inoculant rate IR3 and IR4.5 had the greater number of nodules, leading to higher 

N fixation rates. 

 

3.6 CONCLUSION 
 

The results described here indicate that inoculation of soybean can facilitate the 

plant growth and the grain yield in the dykelands. It is necessary to inoculate the soybean 

if the field is subjected to three-year crop rotation in moderately acidic pH soils with a 

loamy texture. There were no significant differences in the grain yield of 50%, 100% and 

150% of standard inoculant rate. However, application of 4.5 g kg-1 seeds of inoculant 

showed an increasing trend in soybean symbiotic N fixation in the acidic dykeland soil 

conditions, with a yield increasing trend. The application of N fertilizer at N30 

suppressed soybean nodulation. At the vegetative stage, the N nutrient requirement of the 

soybean plant can be fulfilled by acquisition of soil mineral N, if the soil is rich in 

mineral N. Thus, application of solid dairy manure and incorporation of previous year 

crop residues to the soil increased the soil available mineral N pool through 
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mineralization. Application of starter fertilizer at low rates (10, 20, and 30 kg ha-1) could 

not increase the soybean grain yield. However, starter N showed a rising trend in the 

plant total biomass at harvest. At the early stage of the soybean plant growth, the N 

requirement is comparatively low. If the soil mineral N levels and symbiotic N fixation 

together can fulfill the soybean N demand at the early vegetative stage, there is no benefit 

in applying starter N fertilizer on the dykelands.  
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CHAPTER 4   EFFECTS OF USE OF BRADYRHIZOBIUM INOCULANT 
WITH STARTER N FERTILIZER ON SOYBEAN SYMBIOTIC N2 

FIXATION AND PLANT GROWTH IN SALINE DYKELAND SOIL 
CONDITIONS 

4.1. INTRODUCTION 
 

High yielding soybean plants have a greater N nutrient demand, which is fulfilled 

by mineral N uptake and symbiotic N fixation (Harper, 1974). The efficiency of 

symbiotic N fixation is governed by soil available N, compatibility of symbiotic partners 

and yield limiting factors (Keyser and Li, 1992). In some studies, there is a good 

correlation between the rates of inoculant and the soybean seed yield (Papakosta, 1992; 

Albareda et al., 2009).  

Several reserches have focused on the effect of N fertilizer on soybean-rhizobium 

symbiosis and N fixation where N fertilizer is applied to soybean at the early growth 

stage or at the reproductive stage. Application of N fertilizer significantly increased the 

soybean grain yield and plant growth, when the symbiotic N fixation alone could not 

achieve the plant N demand (Thies et al., 1995). Sometimes, soybean responses to N 

fertilizer is inconsistent (Barker and Sawyer, 2005; Gan et al., 2003). Several factors can 

limit the soybean symbiotic N fixation under field conditions. Increasing soil salinity 

reduced the symbiotic N fixation by affecting the initial steps of the nodule formation 

(Zahran, 1999). Moisture stress at the early vegetative stage has been found to reduce 

soybean nodulation and symbiotic N fixation (Pena-Cabriales and Castellanos, 1993).  

Dykeland soils are formed by tidal action. These soils are subjected to rapid 

moisture fluctuations, together with high salinity (Beke, 1990). 
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4.2 OBJECTIVES 
 

The objective of this study was to investigate soybean symbiotic N fixation 

responses with respect to Bradyrhizobium japonicum inoculation and starter N fertilizer 

on a saline dykeland site. 

4.3 MATERIAL AND METHODS 

4.3.1 Site Description 
 

The experiment was conducted during the summer of 2010 in the Habitant 

dykeland located in the Annapolis Valley in Nova Scotia (NS). The soil type is an Acadia 

marine loam (silty clay loam in texture). According to the previous year (fall 2009) soil 

analysis, the soil (depth of 0-15 cm) chemical properties were 8.4 mg NH4
+, 19.4 mg 

NO3
-, 80 mg P, and 200 mg K per kilogram of soil nutrients with pH of 6 and 5.2 ds m-1 

of EC. The field was subjected to 3-year crop rotation. In the first year was soybean 

followed by corn in the second year, followed by grass in the third year (corn-grass-

soybean). The field was cultivated with corn the previous year. 

4.3.2 Field Experimental Setup 

 
The treatments were arranged in a split plot design with three replications where 

main plots were arranged in a RCBD. The treatments consisted of four rates of inoculant 

as well as starter N fertilizer. The inoculant rates were 0 (IR0), 1.5 (IR1.5), 3 (IR3- 

recommended rate of ‘Nitragin’ commercial inoculant) and 4.5 (IR4.5) g kg-1 seeds and 

the starter N fertilizer rates were 0 (N0), 10 (N10), 20 (N20) and 30 (N30) kg N ha-1. The 

seeding was carried out on June 10, 2010 using soybean cultivar “Lynx RR”. The rates of 

inoculant were used as the main plot treatments while the starter N rates as the sub plot 
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treatment. The reason to select the rates of inoculant as the main plot factor was to 

minimize the cross contamination. Different rates of inoculant were randomly assigned to 

the four main plots in each block and the N fertilizer treatments were randomly assigned 

to the subplots within each main plot (Figure 4.1). The plot size was 2 m in width and 4 

m in length (area of 8 m2). Inter and intra row spacing was 17.5 cm and 9.5 cm, 

respectively. There was a 0.5 m buffer zone in between 2 sub-plots and 48 subplots 

randomly arranged within three blocks.  

Block/Rep 1 
IR0 IR4.5 IR3 IR1.5 

N0 N20 N10 N30 N30 N20 N10 N0 N0 N20 N30 N10 N20 N10 N30 N0 

Block/Rep 2 
IR1.5 IR3 IR4.5 IR0 

N0 N30 N10 N20 N30 N10 N20 N0 N10 N0 N20 N30 N10 N20 N0 N30 

Block/Rep 3 
IR0 IR3 IR1.5 IR4.5 

N10 N0 N20 N30 N0 N20 N30 N10 N30 N20 N10 N0 N0 N10 N20 N30 

Figure 4.1 Field experiment layout in Habitant dykeland 
 

The commercial inoculant “Nitragin” (peat mixture) was used to inoculate 

soybean seeds. For the inoculation, the seed sowing, fertilizer applications, and weeding, 

the methods described in the Chapter III section 3.2.2 were followed.  

4.3.3 Soybean Field Plant Sampling 

 
The plant samples were obtained as described in Chapter III section 3.2.3. The 

sampling stages were R2 (Full flower/60 DAP) and R5 (begin seed/90 DAP). The harvest 

samples could not obtain at R7 (physiological harvest maturity/132 DAP) due to an 

unavoidable circumstance. Uneven distribution of plant stands were observed because of 
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poor seed germination. Therefore, from each plot, 10 plants were randomly selected at R2 

and R5 stages. Plants above ground biomass were divided into leaves, petioles, stem, 

pods, and nodulated root for the analysis of ureide-N and NO3-N. The dried stem parts 

were ground using the Wiley mill and passed through the 60 mesh size (1 mm). 

The plant height, root length, nodule numbers, nodule weights, PON, POFW and 

PFW were determined. The samples were oven dried at 60 oC to a constant weight to 

quantify the total N content. The total plant dry weights (PDW) and pod dry weights of 

oven dried samples were measured. Dried plant parts were ground and passed through the 

60 mesh size (1 mm) screen. 

The collection of soybean plant leaf, petiole, stem, and pod (R2 and R5) saps and 

determination of the sap NO3-N and K were conducted according to the methods 

described in Chapter III section 3.2.3. 

4.3.4 Soil Sampling 
 

The soil samples were obtained at 60 DAP to measure the effects of the applied N 

fertilizer on soil mineral N level as described in Chapter III section 3.2.4. The sub 

samples from each plot pooled together and representative soil samples were obtained. 

The samples were air dried and the debris was removed. Later the dried samples were 

sieved through 2 mm mesh size. Processed samples were stored for chemical analysis. 
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4.3.5 Soybean Plant Chemical Analysis 
 

The plant chemical components measured were plant total N and stem ureide to 

quantify the N uptake and the symbiotic N fixation respectively as described in the 

Chapter III section 3.2.5. 

4.3.5.1 Plant Total N 
 

The plant total N was determined according the method described in Chapter III 

section 3.2.5.1 (Bremner and Mulvaney, 1982). The total plant N was calculated for g 

plant-1. 

4.3.5.2 Quantification of Stem Ureide Compounds 
 

The ground stem tissue samples were used to extract the ureide compounds 

(Herridge, 1982), and 0.5 g of sample was taken into a boiling tube and boiled with 25 ml 

of distilled water for 1-2 minutes in a boiling water bath. The filtration was done through 

a Whatman No: 40 filter paper into a 50 ml volumetric flask. The residues were washed 

into the filter and rinsed with the distilled water. When the content was cooled, the filtrate 

was volumerized up to 50 ml with distilled water. The concentration of ureide N was 

measured by the Young and Conway method (1942) and NO3-N by the Cataldo method 

(Cataldo et al., 1974) as described in Chapter III (section 3.2.5.2). 

Calculation of daily N fixing activity and daily N absorption rate 

The following equation was used to calculate the relative abundance of ureide 

similar to the Chapter III section 3.2.5.2, 

% of N derived from atmospheric N2    (RU%)   =                4× Ureide- N               ×100 

[4×Ureide- N + Nitrate- N ] 
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N fixation and absorption rates were estimated according to the method described 

by the Tewari et al., (2004). Daily N fixing activity and the daily N absorption rates were 

calculated as mentioned in Chapter III section 3.2.5.2.  

4.3.6 Soil Chemical Analysis 
 

Soil available N, soil pH (1: 2.5, water), and EC (1: 1) were measured using the 

methods described in Chapter III section 3.2.6. 

4.3.7 Statistical Analysis 
 

Before running the ANOVA, the normality and constant variance were checked 

by using Minitab 15 statistical software. The independence was assumed to be through 

randomization. The PROC MIXED procedure was used in SAS 9.2 statistical software 

for the data analysis. The block and the interaction between the block and inoculant were 

considered as the random effects. The rate of inoculant and the rate of starter N were 

considered as fixed effects. The statistical significant criteria was a Type III error rate of 

P = 0.05 with 95% confidence interval. When the interaction effects were significant, as 

the multiple mean comparison method LS means (Least Square Means) was used. If the 

main treatment effects (rate of inoculant and rate of starter N) were significant, LSD 

(Least Square Difference) analysis was computed to evaluate the difference in means. 

Orthogonal contrasts were constructed for the inoculant and N fertilizer comparison. For, 

all the measured variables the contrasts were performed by comparing the different levels 

of inoculants and starter N rates.  
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4.4 RESULTS 

4.4.1 Effects of Bradyrhizobium Inoculant and Starter N Rates on Soybean Plant at 
Vegetative Stage 
 

The emergence of seedlings was observed at 15 DAP. Even though planting was 

carried out prior to the rain, the Habitant site did not get adequate moisture required for 

seed germination. After sowing, there was one week of drought period, resulting in poor 

seed germination (65%) throughout the field. The plants flowered around 50 DAP and 

fertilized plants produced flowers earlier than the inoculated plants. The pod elongation 

started around 60 DAP. Moisture level in the field changed rapidly throughout the 

experiment. For example, on certain days, the field was water logged, while on other days 

the soil was totally dried and cracked. 

PFW, PDW and plant heights did not show statistically significant responses, 

either for interaction or main effects by rate of inoculant and rate of fertilizer at 60 DAP 

(Table 4.1). There were no significant differences among the N treatments in terms of 

PFW, PDW and plant height. 

The increasing rate of inoculant significantly reduced the root length. Therefore, 

the highest root length was observed in IR0 plants and the lowest root length was found 

in IR4.5. Although there was no significant difference in the root length of N fertilized 

plants, the root length of all N rates were larger than the higher rate of inoculant (IR4.5) 

(Table 4.1).  
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Table 4.1 Plant fresh weight (PFW), dry weight (PDW), plant height, root length, 
nodule number and nodule weight as affected by inoculation and starter N rates at 
the Habitant dykeland at 60 DAP 
Means 
 
Source 

PFW(g) PDW(g) Plant 
height 
(cm) 

Root 
length 
(cm) 

Nodule 
number 

Nodule 
fresh 
weight 
(g) 

I0 15 3.99 25 12   6 0.09 
I1.5 14 3.94 24 12 11 0.60 
I3 15 4.12 25 11 14 0.54 
I4.5 14 3.70 25 10 19 0.88 
LSD (5%)    2  1.08    6 1.29 8 0.29 
N0 14 3.63 25 11 12 0.50 
N10 16 3.94 25 11   8 0.48 
N20 14 4.24 25 11 13 0.50 
N30 14 3.93 24 12 17 0.62 
LSD (5%)    2  1.08    6 1.29   8 0.29 
Variation   F- test values   
I 0.9672 0.8045 0.8686 0.0251* 0.0219* 0.0076** 
N 0.1255 0.5572 0.7023 0.8550 0.1983 0.7400 
I× N 0.2616 0.3050 0.6893 0.3820 0.1066 0.2644 
Contrasts       
I0 vs I1.5,I3 & I4.5 0.6935 0.8577 0.7507 0.0196* 0.0133* 0.0022** 
I1.5 vs I3 & I4.5 0.8973 0.9403 0.5779 0.1056 0.0989 0.4019 
I3 vs I4.5 0.8177 0.3677 0.6348 0.1832 0.2639 0.0497* 
N0 vs N10,N20 & N30 0.2282 0.2436 0.4983 0.9237 0.7830 0.7915 
N10 vs N20&N30 0.0384 0.6972 0.3405 0.5581 0.0568 0.5031 
N20 vs N30 0.9975 0.4707 0.9301 0.5242 0.3355 0.4021 
*and ** significant at 5 and 1% probability level, respectively. 

 

The interaction between the rates of inoculant and the rates of N fertilizer 

application did not significantly affect the nodule numbers. The nodule numbers and the 

nodule weights of the inoculated plants significantly increased, compared to the un-

inoculated plants. The higher inoculant rate (IR4.5) produced a higher nodule weight 

compared to other treatments (Table 4.1). 
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4.4.2 Effects of Bradyrhizobium Inoculant and Starter N on Soybean Plant at Seed 
Filling Stage 
 

The plants were at the seed filling stage at 105 DAP. The PFW, PDW, PN, POFW 

and PODW were not significantly affected by the interaction effect of the rates of the 

inoculant and the rates of N fertilizer, nor did the other factors influence the response to 

the treatments. The rate of N did not increase the PFW, PDW, PN, POFW, and PODW 

(Table 4.2).  

 

Table 4.2 Soybean plant fresh weight, dry weight, pod number, pod fresh weight, 
and pod dry weight as affected by inoculation and starter N rates at the Habitant 
dykeland at 105 DAP 
Means 
 
Source 

Plant 
Fresh 
weight(g) 

Plant Dry 
weight 
(g) 

Pod 
Number 

Pod Fresh 
weight (g) 

Pod Dry 
weight 
(g) 

I0   87 10 35 45 14 
I1.5 101 13 43 59 15 
I3   93 11 41 55 15 
I4.5   93 11 36 51 14 
LSD (5%)   22 12 10 15   4 
N0   85 11 37 48 12 
N10   97 11 39 54 16 
N20   99 12 42 55 16 
N30   94 11 40 53 14 
LSD (5%)   22 12 10 15   4 
Variation              F- test values   

I 0.6211 0.7353 0.4559 0.3311 0.8589 
N 0.5346 0.6867 0.8257 0.7765 0.2176 
I× N  0.9150 0.7180 0.8612 0.9895 0.9479 
Contrasts      
I0 vs I1.5,I3& I4.5 0.3423 0.6154 0.1880 0.1355 0.4832 
I1.5 vs I3& I4.5 0.3972 0.3552 0.5171 0.3595 0.8790 
I3 vs I4.5 0.9791 0.9024 0.5978 0.6379 0.6983 
N0 vs N10,N20& N30 0.1671 0.7428 0.4518 0.3189 0.0635 
N10 vs N20&N30 0.9972 0.6046 0.6916 0.9404 0.6937 
N20 vs N30 0.6494 0.3149 0.7008 0.8038 0.3714 
*and ** significant at 5 and 1% probability level, respectively. 
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4.4.3 N Uptake of Soybean Plant at Different Growth Stages 

4.4.3.1 Effects of Rates of Inoculant and Starter N Soybean Plant Total N 
 

The plant tissue N content did not significantly increase with the rates of the 

inoculant and the rates of N at 60 and 105 DAP (Table 4.3). Although, the plant total N 

content increased in IR1.5 treatment compared to IR0, IR3 and IR4.5 at 105 DAP, the 

effect was not significant.  

Table 4.3 Soybean total plant N as affected by inoculation and starter N rates at 60 
and 105 DAP at the Habitant dykeland.  
Means 
 
Source 

Plant N at 
60 DAP 
g plant-1 

Plant N at 
105 DAP 
g plant-1 

I0 0.090 0.254 
I1.5 0.098 0.332 
I3 0.096 0.250 
I4.5 0.100 0.261 
LSD (5%) 0.029 0.095 
N0 0.085 0.270 
N10 0.093 0.266 
N20 0.102 0.302 
N30 0.104 0.260 
LSD (5%) 0.029 0.095 
Variation F- test values 
I 0.7751 0.2688 
N 0.4181 0.8089 
I× N 0.2481 0.8474 
*and ** significant at 5 and 1% probability level, respectively. 

4.4.3.2 Effects of Inoculant and Starter N Rates on Soybean Leaf, Petioles, Stem and 
Pod sap NO3-N and K Composition. 

 
The plant leaf and stem sap NO3-N and K compositions were not significantly 

elevated by the rates of the inoculant and the rates of N fertilizer at 60 DAP (Table 4.5). 

Among the different treatments, the variability of the NO3-N and K was inconsistent. 

However, there was a significant interaction between the rates of inoculant and N rates 
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for sap NO3-N at 105 DAP. Also, the interaction effect of the rates of inoculant and N 

fertilizer rates was significant on leaf and pod sap K concentrations (Table 4.6). The 

higher levels of leaf (Figure 4.2) and pod (Figure 4.5) sap NO3-N were observed for the 

IR1.5-N20 treatment combination. The following treatment combinations also had 

comparatively higher levels of leaf sap NO3-N: IR0-N30, IR4.5-N20, IR1.5-N30 and 

IR3-N0. The NO3-N contents of stem (Figure 4.4) and petiole saps (Figure 4.3) were 

significantly high in the IR3-N0 treatment. Similar to the leaf sap, higher pod sap NO3-N 

was found in IR0-N30, IR4.5-N20, and IR1.5-N20 treatment combinations. The 

interaction effect of the rates of inoculant and the fertilizer N were inconsistent for both 

leaf and pod K concentrations.  
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Table 4.4 Effects of inoculation and starter N rate on plant leaf, petiole, and stem sap NO3-N and  
K concentration at 60 DAP (F test value) 

 

 

 

 

 

 

 

 

 

Means Leaf Petiole Stem 
NO3

- K NO3
- K NO3

- K 
I 0.1651 0.1362 0.1534 0.5023 0.6413 0.1860 
N 0.5007 0.0911 0.7244 0.1193 0.5290 0.9221 
I× N  0.5025 0.2543 0.1234 0.2335 0.4343 0.1500 
Contrasts       
I0 vs I1.5,I3& I4.5 0.6177 0.5600 0.0635 0.9928 0.7536 0.2204 
I1.5 vs I3& I4.5 0.0930 0.0360* 0.6082 0.1699 0.3791 0.0744 
I3 vs I4.5 0.1299 0.4975 0.1936 0.6632 0.4081 0.9611 
N0 vs N10,N20& N30 0.8349 0.2020 0.9719 0.1374 0.6137 0.8933 
N10 vs N20&N30 0.1583 0.2189 0.2606 0.8831 0.1711 0.5097 
N20 vs N30 0.5903 0.0403 0.9894 0.0544 0.9279 0.9474 
*and ** significant at 5 and 1% probability level, respectively. 

Means Leaf Petiole Stem POD 
NO3

- K NO3
- K NO3

- K NO3
- K 

I 0.7115 0.3080 0.0301* 0.7242 0.0086** 0.6177 0.0196* 0.3683 
N 0.0204* 0.9968 0.0037** 0.8127 0.0008** 0.2497 0.0080** 0.3155 
I× N  0.0028** 0.0276* 0.0001** 0.5665 <0.0001** 0.1989 0.0009** 0.0213* 

*and ** significant at 5 and 1% probability level, respectively. 

Table 4.5 Effects of inoculation and starter N rates on plant leaf, petiole, stem, and pod  
sap NO3-N and K concentration at 105 DAP (F test value)

9
3
 



94 
 

3020100

4000

3500

3000

2500

2000

1500

1000

500

0

N rates (kg/ha)

L
ea

f 
S

ap
 N

O
3-

N
 (

pp
m

)

0.0
1.5
3.0
4.5

Inoculants

b

ab

b

b
b

b

b

ab ab

a

b

b

ab

b
bb

 
Figure 4.2 Soybean leaf sap NO3-N concentrations as affected interaction effect of 
inoculation and N rates at 105 DAP. Means with same letters are not significantly 
different (P < 0.05). 
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Figure 4.3 Soybean petiole sap NO3-N concentrations as affected by interaction 
effect of inoculation and N rates at 105 DAP. Means with same letters are not 
significantly different (P < 0.05). 
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Figure 4.4 Soybean stem sap NO3-N concentrations as affected by interaction effect 
of inoculation and N rates at 105 DAP. Means with same letters are not significantly 
different (P < 0.05). 
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Figure 4.5 Soybean pod sap NO3-N concentrations as affected by interaction effect 
of inoculation and N rates at 105 DAP. Means with same letters are not significantly 
different (P < 0.05). 
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4.4.4 Effects of Rates of Inoculant and Starter N on Soybean Symbiotic N Fixation. 
 

The RU% was calculated, based on the stem ureide and NO3
--N concentrations. 

Ther of inoculant had no significant effect on RU%. Surprisingly, the stem RU% showed 

a declining trend with increasing rates of inoculant. Maximum RU% was observed with 

un-inoculated plants at 60 and 105 DAP (Figure 4.6). There was a decreasing trend in 

RU%, with an increasing inoculant rate. The daily N fixation rates and the daily N 

absorption rates were determined, based on the plant total N content. The daily N fixation 

rates were not significantly affected by either rates of inoculant nor rates of starter 

fertilizer at 60 or 105 DAP (Table 4.7). 
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Figure 4.6 The relative ureide percentage at 60 and 105 DAP. Means with same 
letters along a line are not significantly different (P < 0.05). 
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Table 4.6 Daily N fixation rates and daily N absorption rates as affected by 
inoculation and starter N rates at 60 and 105 DAP at Habitant. 

 

 

 

 

 

 

 

 

 

 

 

 

At the early growth stage (60 DAP), the daily N absorption rates were increased 

in both inoculated and N fertilized plants without any significant effects and they were 

higher than daily N fixation rates. However, the daily N absorption rate increased rapidly 

at 105 DAP and did not vary with either the rates of inoculant or rates of N (Table 4.7).  

4.4.5 Relations between Soybean Nodulation with Rates of Inoculant and N at 60 
DAP. 
 

 The nodule numbers and the nodule weights were significantly affected by the 

rates of inoculant, as mentioned above. Regression analysis was conducted in order to 

evaluate the relationship between applied rates of inoculant on soybean nodulation. 

Inoculant rates had a significant positive linear effect on soybean nodule numbers (P < 

0.014) that accounted for 17.2% of variation (Figure 4.7).  

Means 
 
 
 
Source 

Daily N 
fixation 
rate at 60 
DAP 
kg ha-1D-1 

Daily N 
fixation 
rate at 105 
DAP 
kg ha-1D-1 

Daily N 
absorption 
rate at 60 
DAP 
kg ha-1D-1 

Daily N   
absorption 
rate at 105 
DAP 
kg ha-1D-1 

I0 0.26 0.96 0.36 0.97 
I1.5 0.29 0.86 0.43 0.88 
I3 0.26 0.94 0.50 0.94 
I4.5 0.26 0.98 0.61 0.99 
N0 0.25 1.00 0.36 1.10 
N10 0.25 1.03 0.58 1.09 
N20 0.30 0.80 0.42 0.67 
N30 0.25 0.90 0.54 0.91 
Variation  F- test values  
I 0.9529 0.7997 0.1987 0.9713 
N 0.8952 0.3503 0.1300 0.2684 
I× N  0.2618 0.8554 0.8186 0.9329 

*and ** significant at 5 and 1% probability level, respectively. 
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 Interestingly, there was a significant linear positive relationship between the 

soybean nodule weights (P < 0.0001) and the rates of inoculant that accounted for 33% 

of variation (Figure 4.8). The quadratic model also illustrated how the effect of applied 

rates of inoculant on nodule weights accounted for 34% of total variation. 
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Figure 4.7 Relationship between applied rates of inoculant and nodule number at 60 
DAP. 
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Figure 4.8 Relationship between applied rates of inoculant and nodule weight at 60 
DAP. 
 

4.4.6 Relationship between Soybean Plant Biomass and Plant N Uptake 
 

The regression analysis revealed that there was a significant linear relationship 

between the plant dry matter content and total N uptake at both sampling stages (P < 

0.0001). The N uptake accounted for 79% (Figure 4.9) and 87% (Figure 4.10) of the 

variability at 60 and 105 DAP, respectively. Moreover, the PN showed a significant 

linear relationship with plant N uptake (Figure 4.11). Analysis did not revealed any better 

relationship (linear, quadratic or cubic) between applied rates of inoculant with PFW, PN, 

and plant total N. 
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Figure 4.9 Relationship between total N uptake and the plant dry weight at 60 DAP.  
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Figure 4.10 Relationship between total N uptake and the plant dry weight at 105 
DAP.  
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Figure 4.11 Relationship between total N uptake and the pod number at 105 DAP.  
 

4.4.7 Variation in Soil Available N, pH and EC with Respect to Rates of Inoculant 
and N Input 
 

There was no significant variation in soil pH, EC and available mineral N in the 

experimental site (Table 4.7). Soil available mineral NH4
+ and NO3

- did not effect by the 

rates of N fertilizer. The soil EC levels were greater than 4 ds m-1, indicating soil salinity 

in the field. The soil pH was stable over the research plot area. The higher soil pH values 

were due to the presence of Na+ and Ca2+ ions. 

The soil N did not correlate with following parameters: plant total N and PFW 

(Table 4.8). However, the plant total N showed a significantly (P < 0.016) negative 

correlation with soil EC. The nodule numbers and the nodule weights were negatively 

correlated with soil NO3
-. Also, the nodule numbers were negatively correlated with soil 

EC. There was a significant quadratic (P < 0.021) relationship between soil EC and plant 

total N content at 60 DAP (Figure 4.12). The model accounted for 18% of the variation. 
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Table 4.7 Variation of the soil mineral N, EC and pH at 60 DAP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 4.8 Pearson Correlation values for soil mineral N concentration, plant total N 
and biomass at 60 DAP 

 
 

Means 
Source 

Soil NH4
+ 

(mg/ kg) 
Soil NO3

- 
(mg/ kg) 

EC ds m-1

(1:1) 
pH 
(1:2.5) 

I0 2.33 3.73 4.7 6.8 
I1.5 2.10 3.78 5.6 7.0 
I3 2.14 3.11 4.5 6.9 
I4.5 2.20 3.48 5.0 6.9 
N0 2.21 3.61 4.5 6.9 
N10 1.99 3.81 5.9 6.9 
N20 2.35 3.32 4.7 6.9 
N30 2.21 3.36 4.8 7.0 
Variation  F- test values  
I 0.8039 0.5922 0.3993 0.3886 
N 0.5972 0.6050 0.1152 0.1807 
I× N  0.5262 0.6179 0.1762 0.5324 

Parameter Rate of 
inoculant 

N rate Plant N Plant 
biomass 

Nodule 
number 

Nodule 
weight 

Soil NO3-N -0.199 -0.152 -0.005 -0.067 -0.188 -0.198 
Soil NH4-N -0.041 0.059 -0.102 -0.029 0.012 -0.245 
EC 0.029 -0.047 -0.382* -0.266 0.025 -0.123 

*and ** significant at 5 and 1% probability level, respectively.
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Figure 4.12 Relationship between total N uptake and the EC at 105 DAP.  
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4.5 DISCUSSION 

4.5.1 Soybean Nodulation 
 

The inoculation of soybean in the Habitant field significantly increased the nodule 

numbers and the nodule weights. According to the results, the nodule weights were not 

proportionate to the nodule numbers. The IR1.5 had significantly fewer nodules but the 

nodule weight was similar to that of IR4.5. In the Wellington field, the nodule numbers 

were comparatively higher than those in the Habitant field. This may be due to the 

combined effects of drought and saline soil conditions at sowing. These two factors 

reduced the survival rate of the introduced Rhizobia, subsequent infection, and the nodule 

formation. Current study demonstrated that the desiccation was one of the major factors, 

which governed the survival of inoculated Rhizobia on the seeds, and it is in agreement 

with the studies of Vincent et al., (1962), Griffith et al., (1992), and Zahran, (1999). 

Zahran (1999) explained that under the presence of moisture stress, Rhizobia tends to 

change their cell morphology and this eventually reduces root infection and nodulation of 

legumes.  

In the experimental field, the soil EC levels ranged from 4.7 to 5.8 ds m-1, 

resulting in drastic reductions in the nodule numbers and the nodule weights; this agrees 

with the research findings of Elsheikh and Wood, (1995) and Rao et al., (2002). The 

reduction of soybean nodulation due to high EC levels resulted from the distraction of 

signal molecule exchange (Singleton and Bohlool, 1984; Velagaleti and Marsh, 1989; 

Jayasundara et al., 1998), Rhizobial attachment (Howieson et al., 1993), root hair curling, 

and initiation of infection thread (Evans et al., 1980). In agreement with Serraj and 
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Sinclair (1996), this study also observed a few larger nodules with more smaller nodules 

because of soil salinity. 

In the present study, the nodule numbers showed an increasing trend, with high N 

levels in the un-inoculated plants. The existing Rhizobia in the soil might have infected 

the root nodules of N20 and N30 treatments in response to high soil NH4
+ levels. Current 

observations tally with previous research data of Gan et al., (2008), and Van Heerden et 

al., (2008). According to the findings of Sprent and Thomas (1984), the low and 

moderate levels of starter N fertilizer stimulated the formation and development of 

nodules when the seedlings consumed the N from the cotyledons and active N fixation 

was delayed. When soil Rhizobia was present in the field application of fertilizer N 

increased the soil NH4
+ levels and promoted the soybean nodulation. Under saline 

conditions, the survival rate of the introduced Rhizobial strain could be low and thus 

delayed root infection and nodule formation.  

4.5.2 Soybean Plant Growth 
 

Due to the saline soil conditions, only 65% of seed germination was observed. 

Essa (2003) also, reported poor seed germination due to soil salinity. Several studies have 

shown that application of starter N fertilizer increased the soybean plant growth and the 

seed yield (Barker and Sawyer, 2005; Taylor et al., 2005; Gan et al., 2002; Osborne and 

Ridell, 2006) while, some studies reported contradictory findings (Welch et al., 1973; 

Duong et al., 1984). In the present study, significant positive responses were not 

observed, either with the rates of inoculant or the rates of N fertilizer on soybean plant 

biomass at both vegetative (60 DAP) and seed filling (105 DAP) stages. However, the 
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fertilized treatments without inoculant were able to produce the same amount of plant 

biomass as inoculated plants. This agrees with the findings of Baker and Sawyer (2005). 

Kubota et al (2008) reported that N fertilizers could offer short-term benefits in 

unfavourable years without negative effects in favourable years.  

Studies have reported significant reductions of shoot and root dry weights due to 

soil salinity (Velagaleti and Marsh, 1989; Munns 1993; Cordovilla et al., 1995; Miransari 

and Smith, 2007; Miransari and Smith, 2009). Similarly, the Habitant field with saline 

soil conditions, showed a reduction in the plant biomass compared to non-saline 

Wellington (2.8 ds m-1) field. Legume plants are more sensitive to salinity than plants 

totally depend on mineral N (Zurayk et al., 1998). In this study, the plant growth 

retardation could be due to the poor nutrient uptake by the plants because of excessive 

levels of NaCl and the toxic ions in the soil.  

Root length decreased with the increasing rates of inoculant and rose with the 

higher rates of N. Surprisingly, plants with larger numbers of root nodules and the highest 

root length (IR4.5, IR1.5, IR3, and N30) exhibited greater levels of plant total N at 60 

DAP. It has been reported that application of N fertilizer mitigates the negative effects of 

water stress by enhancing root growth for better soil exploration, where plants are able to 

get adequate water for growth and transportation of fixed N (Gan et al., 2008). Since the 

current field site was highly subjected to moisture stress at the early growth stage this 

could be the reason that N fertilized plants had elevated levels of tissue N without any 

significant effects. In the present study, the lack of response for applied fertilizer N 

agreed with the studies of Welch et al., (1973), Hungria et al., (2006), Diaz et al., (2009), 

and Albareda et al., (2009).  
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Although sap NO3-N composition was significantly affected by the interaction of 

rates of inoculant and the rates of N fertilizer at 105 DAP, the plant total N content did 

not demonstrate evidence of interaction effect. Especially in saline conditions, it is 

disadvantageous to depend upon the soil mineral N content because of the superior 

competition for plant nutrient uptake. Moreover, the introduced Rhizobial strain was 

unable to fix N effectively under the saline soil conditions. 

4.5.3 Symbiotic N Fixation 
 

The soybean symbiotic N fixation is more sensitive to salinity than the plant’s 

growth (Elsheikh and Wood, 1995). The research implied that there was no difference 

between the applied rates of inoculant and the un-inoculated plants for RU%, and daily N 

fixing rates. This may be due to the adverse influence of soil salinity on N fixation. It has 

been reported that chickpea formed nodules at a salinity level of 6 ds m-1, where the N 

fixation was completely inhibited (Zurayk et al., 1998). The current study is consistent 

with the above observation, since the inoculated plants did not show any difference in 

daily N fixation rates compared to the un-inoculated plants in the presence of high 

number of nodules.  

The effect of NaCl on nodule nitrogenase could be due to the reduction of the 

phloem sap supply to the nodules (Serraj et al., 1998). For instance, Serraj et al (1996b) 

reported that ureide could be accumulated in the nodule as a result of drought stress. 

Factors that decrease the phloem flow reduce the export of fixed N from the nodule that 

leads to accumulation of fixed N products in the nodules (Serraj et al., 1999a). The 

accumulation of ureide compounds can trigger the accumulation of intermediate 
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compounds in the plant (Serraj et al 1996b). In agreement with the above findings, the 

greater nodule numbers did not enhance the daily N fixation rate in the present study. 

4.6 CONCLUSION 
 

In conclusion, we reported that application of inoculant at a rate of 4.5 g kg-1 seed 

promoted the soybean nodule weight, compared to the standard rate of 3 g kg-1 seed on 

saline dykeland soil conditions. Moreover, the formation of the greater number of 

nodules did not enhance N fixation, where it was suppressed by soil salinity. N fixation 

was not evident on the dykelands, even with plants having large numbers of nodules. 

However, a salinity level of 4.5 ds m-1 in this dykeland soil suppressed soybean symbiotic 

N fixation. Not only N fixation, but also soybean plant growth was severely suppressed 

by the soil salinity. It is advantageous to use saline tolerant Rhizobial strains for soybean 

inoculation to mitigate deleterious effects of soil salinity. 
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CHAPTER 5   SOYBEAN SYMBIOTIC NITROGEN FIXATION 
RESPONSES AND GRAIN YIELD IN RELATION TO BRADYRHIZOBIUM 
INOCULATION AND STARTER NITROGEN USE UNDER CONTROLLED 

ENVIRONMENT CONDITIONS 

5.1. INTRODUCTION 
 

Soybean plant requires a large quantity of N for its growth. At the seed filling 

stage, the soybean plant N demand is high and a large portion of N in the vegetative 

tissues are translocated to the developing seeds, causing a rapid decline in the leaf N 

content that reduces the photosynthetic capacity (Sinclair and DeWitt, 1975). There is a 

greater dependency on photosynthesis by legume plants compared to the plants reliant on 

soil N and fertilizer N (Kaschuk et al., 2009). The cost of N assimilation is up to 2.5 g C 

g-1 N uptake, while the N fixation cost ranges between 5.2-18.8 g C g-1 N (Minchin and 

Witty, 2005). N fixation may be limited by photosynthesis rate and the availability of 

photosynthate (Imsande, 1988).  

Increasing inoculant rate increased the soybean grain yield, plant total N and grain 

N (Papakosta, 1992). There are studies, which emphasized the benefits of fertilizer N 

application on soybean grain yield and protein content in the field. Also, it has been 

reported that the use of low rates (26.6 kg ha-1) of starter N enhanced soybean grain yield 

(Morshed et al., 2008). The observations from the two field trials (chapter 3 and 4) were 

influenced by climatic and soil factors, such as moisture stress and soil salinity. 

5.2 OBJECTIVES 
 

In this study, the impact of different application rates of Bradyrhizobium 

inoculant and starter N fertilizer on soybean grain yield, nodulation, leaf chlorophyll 
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content, photosynthesis rates, and N fixation were investigated under controlled 

environment conditions. 

5.3 MATERIALS AND METHODS 
 

The growth chamber study was carried out similar treatments as the field 

experiments because there were some drawbacks in the field experiments in observing 

the soybean plant nodulation. There were four rates of inoculant, 0 (IR0), 1.5 (IR1.5), 3 

(IR3- recommended rate) and 4.5 (IR4.5) g kg-1 seeds. “Nitragin” was used as the 

Bradyrhizobium inoculant. Based on results from the field experiments, N level 

applications for the growth chamber plants were calculated. In the field experiment, there 

were four rates of N 0, 10, 20 and 30 kg ha-1. Based on field planting density, the amount 

of fertilizer N available to a soybean plant was calculated for different N rates. The starter 

N supply was determined to be 0, 20, 40, and 60 mg of N plant-1 (Table 5.1). Potassium 

nitrate (KNO3) was used as the N source. To ensure adequate N supply, the soybean 

plants were fertilized with modified Hoagland solution and the control plants were 

supplied with modified N free Hoagland solution. The treatments were arranged in a 

completely randomized design (CRD) with six replicates in the growth chamber. 

Table 5.1 Growth chamber N treatments  
N rates 0 kg ha-1 10 kg ha-1 20 kg ha-1 30 kg ha-1 
N fertilizer g plant-1 0 0.020 0.040 0.061 
mg plant-1 0 20.24 40.48 60.72 
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5.3.1 Plant Materials and Inoculation 
 

The growth chamber experiment started on January 26, 2011 in the Department of 

Plant and Animal Sciences at the Nova Scotia Agricultural College. Prior to the 

experiment, the growth chamber was cleaned using a bleaching solution to minimize the 

contamination. The 2 L pots were filled with 750-800 g of Pro-mix BX (Premier 

Horticulture, Canada) wetted with water. Slurry was prepared by mixing the inoculant 

with distilled water. Four hours prior to sowing, the seeds were mixed with the slurries. 

As the control treatment, the same volume of distilled water used for inoculated 

treatments was added to the seeds. The seed sowing began with the un-inoculated seeds 

and continued with the higher rates of inoculant. Also, from one treatment to the other 

treatment, hands were washed with 75% ethanol (C2H5OH). The experiment was carried 

out in the growth chamber under the conditions of day and night temperatures of 26/20 

oC, relative humidity of 80% and day light intensity of 300-400 µmol m-2 s-1. One week 

after seedling emergence, the plants were thinned by keeping one healthy plant per pot. 

The evapo-transpiration rate was measured in each pot by measuring the weight reduction 

24 hours after watering. 

5.3.2 N Treatment Application Method 
 

The N treatment application started 15 DAP (once the roots had developed) to 

make sure that the soybean plant took up the entire applied N. The different rates of N 

were divided into three portions and 33% of the treatment was applied to plants every 

second day. This ensured efficient N uptake by the plant. Prior to application, the 

required quantities of KNO3 were mixed with 25 ml of N free Hoagland solution and kept 
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for half an hour to dissolve the particles. For the control treatment, 25 ml of N free 

Hoagland solution was applied. The N free Hoagland solution (Hoagland and Arnon, 

1950) consists of, 5 mM KH2PO4, 2 mM MgSO4, 2.5 mM CaSO4 and micronutrients of 

46 µM H3BO3, 0.3 µM CuSO4, 0.8 µM ZnSO4, 9 µM MnCl2.4H2O, 0.1 µM 

H2MoO4.H2O, and 89 µM Fe-EDTA (pH 5.5-5.8). Each plant was supplemented with 25 

ml of Hoagland solution once every 2 days.  

5.3.3 Plant Sampling and Measurements 
 

The leaf photosynthesis rates and the chlorophyll contents were measured at 2-3 

week intervals to observe the effects of applied treatments on photosynthesis and 

chlorophyll content. The photosynthesis rates of the fully expanded youngest mature leaf 

were measured by using the LCi portable photosynthesis system (ADC BioScientific 

Ltd.). The measurements included transpiration (E), stomatal conductance (Gs), 

intercellular CO2 concentration (Ci) and instantaneous carboxylation efficiency (A/Ci). 

Similarly, the chlorophyll content was measured in youngest mature leaf of each soybean 

plant by using a hand held chlorophyll content meter 200 (CCM200, Opti-sciences, INC, 

NH, USA)  

Plant samples were obtained at mid pod filling stage (75 DAP) and at harvest 

maturity stage. Three plants (replicates) were uprooted at each sampling. As the peak N 

fixation of the soybean plant is at the mid pod filling stage, the sampling was carried out 

at this stage to observe the treatment effects on nodulation. The PFW, PDW, nodule 

numbers, nodule weights, root fresh weights (RFW), root dry weights (RDW) and the 
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pod numbers were measured at 75 DAP. The uprooted plants were divided into leaves, 

roots, and pods and they were oven dried at 60 oC to a constant weight.  

5.3.4 Extraction of Stem Ureide Compounds 
 

The extraction of stem ureide N compound was carried out as described in the 

Chapter III section 3.2.5.2. The ureide-N concentrations were measured by the Young 

and Conway method (1942), and NO3-N by the Cataldo method (Cataldo et al., 1974) as 

described in the Chapter III section 3.2.5.2.  

5.3.5 Statistical Analysis 
 

The experimental design was a two-factor factorial arranged in a completely 

randomized design with two factors. Before running the ANOVA, the normality and 

constant variance were checked by using Minitab 15 statistical software. The 

independence was assumed through randomization. The PROC MIXED procedure was 

used in SAS 9.2 statistical software for analysis. The statistical significance criteria was a 

Type III error rate of P = 0.05 with 95% confidence interval. LS means (Least Square 

Means) were used as the multiple mean comparison method when the effects were 

significant. 
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5.4 RESULTS 

5.4.1 Effects of Rates of Inoculant and Starter N on Soybean Plant at Mid Pod 
Filling Stage under Controlled Environment Conditions 
 

The results of the ANOVA Table 5.2 show the effects of rates of inoculant and 

the rates of N fertilizer on PFW, PDW, RFW, RDW and PN at 75 DAP. According to the 

table, PFW was significantly increased with N rates compared to the non-fertilized plants 

(Figure 5.1). However, increasing N supply from 40 mg of N plant-1 to 60 mg of N plant-1 

did not increase the PFW. The interaction effect of rates of inoculant and the rates of N 

was significant on PDW and PN. However, RFW did not vary among the treatment while 

the RDW was significantly influenced by the rates of inoculant.  

Table 5.2 ANOVA table for inoculant and N treatments on plant fresh weight, plant 
dry weight, root fresh weight and pod number at 75 DAP 
Variation  Plant 

fresh 
weight 
(g) 

Plant dry 
weight 
(g) 

Root 
fresh 
weight 
(g) 

Root dry 
weight 
(g) 

Pod 
number 

I 0.2643 0.0367* 0.4259 0.0371* 0.0001** 
N 0.0395* 0.0057** 0.8578 0.8945 0.0103* 
I× N  0.2416 0.0183* 0.3512 0.1398 0.0038** 
I0 vs I1.5,I3& I4.5 0.1622 0.0398* 0.2207 0.0197* 0.0009** 
I1.5 vs I3& I4.5 0.1621 0.0297* 0.5985 0.2099 0.0002** 
I3 vs I4.5 0.7962 0.7449 0.3244 0.1443 0.6511 
N0 vs N20,N40& N60 0.0106* 0.0009** 0.4533 0.7113 0.0060** 
N20 vs N40&N60 0.1762 0.5334 0.7597 0.8610 0.0688 
N40 vs N60 0.6883 0.2292 0.7914 0.5223 0.1858 

*and ** significant at 5 and 1% probability level, respectively. 
 

Un-inoculated plants and the inoculant rate IR1.5 increased the PDW linearly 

with the N rate (Figure 5.2). The highest PDW was observed in treatment combinations 

of IR3-N20 and IR.5-N40. The PDW declined in inoculant rates of IR3 and IR4.5 beyond 
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Figure 5.2 Plant fresh weights as affected by interaction effects of inoculation and N 
rates at the mid pod filling stage. Observations with the same letter are not significantly 
different. 
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Figure 5.3 Root dry weights as affected by interaction effects of inoculation and N 
rates at the mid pod filling stage. Observations with the same letter are not significantly 
different. 
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Figure 5.4 Pod number as affected by interaction effects of inoculation and N rates 
at the mid pod filling stage. Observations with the same letter are not significantly 
different. 
 

The inoculant rate of IR4.5 showed significantly higher number of pods with N0, 

N20 and N40 (Figure 5.4). Significantly, a lesser number of pods was produced by the 

IR4.5 with N60. For IR3, a significantly higher number of pods was observed with N60, 

N40, and N20. However, IR3 without N supply produced significantly fewer pods 

compared to the IR3 treatment, combined with N. The pod numbers of IR1.5 and IR0 

were linearly elevated with increasing N supply. 

5.4.2 Effect of Rates of Inoculant and Starter N Application on Soybean Nodulation 
under Controlled Environment Conditions 
 

ANOVA results in Table 5.3 indicate the effects of rates of inoculant on nodule 

numbers and nodule weights. There were no interaction effects of rates of inoculant and 
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N on nodule number and the nodule fresh weight. However, the rates of inoculant 

significantly affected the nodule number and fresh weights.  

Table 5.3 ANOVA table for rates of inoculant on plant nodule number and nodule 
weight  
Variation  Nodule 

number 
Nodule 
fresh 
weight  

I <0.0001** 0.0125** 
N   0.8954 0.4218 
I× N    0.9318 0.6853 
I0 vs I1.5,I3& I4.5 <0.0001** 0.0020** 
I1.5 vs I3& I4.5   0.1205 0.5571 
I3 vs I4.5   0.6194 0.3210 

*and ** significant at 5 and 1% probability level, respectively. 
 

Although the inoculated treatments produced a significantly greater number of 

nodules compared to the control plants (Figure 5.5), nodule number of IR1.5, IR3, and 

IR4.5 treatments did not significantly vary.  

The fresh nodule weight was inversely related to the nodule number and greater 

fresh nodule weight was observed for IR1.5 and IR3 than IR4.5 without any significant 

difference (Figure 5.6). At higher rates of inoculant, the plants tended to produce greater 

number of nodules that were less than 2 mm in diameter (Figure 5.7). However, the 

response of nodule diameters to the applied rates of N was inconsistent. 
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was a significant reduction in the seed weight of IR3 treatment at N40. The seed weight 

of lower inoculant rate (IR1.5) plants increased with N40 and N60. The N application did 

not significantly enhance the seed weight of the un-inoculated plants.  

Table 5.4 Soybean plant weight, and seed weight at harvest  
Means Plant 

weight (g) 
Empty 

pod 
weight (g) 

seed weight 
(g) 

IR0N0   15.67 bc 1.72 c 2.45b 
IR0N20 16.00 b 2.11 c 2.64b 
IR0N40   21.67 ab   3.02 bc 3.46b 
IR0N60  13.67 bc 2.28 c 3.24b 
IR1.5N0 7.77c     1.1 c 3.01b 
IR1.5N20  6.67 c     2.07 c   3.016b 
IR1.5N40 24.33 a    3.54 bc  5.22ab 
IR1.5N60   20.67 ab  7.40 a  6.40ab 
IR3N0  14.00 bc    5.50 ab      7.57ab 
IR3N20  19.33 ab 4.85 b      7.55ab 
IR3N40 7.67 c   2.58 bc      3.03b 
IR3N60   22.67 ab   4.62 bc      7.33ab 
IR4.5N0  14.00 bc  2.45 bc      4.87b 
IR4.5N20  13.67 bc  4.65 bc      7.34ab 
IR4.5N40 16.67 b  4.21 bc      7.96a 
IR4.5N60 14.67 b 3.96 bc 7.70ab 
Variation 
I    0.6451   0.0134*   <0.0001** 
N    0.0145*   0.0363*     0.1417 
I× N <0.0001**   0.0038**     0.0258* 
Observations with the same letter are not significantly different. 

 

5.4.4 Effect of Rates of Inoculant and Starter N Application on Soybean Leaf 
Chlorophyll and Photosynthesis Rate under Controlled Environment Conditions 
 

At the beginning of fertilizer N application, the leaf chlorophyll content at 30 

DAP (Figure 5.8) was significantly affected by the rates of inoculant and the rates of N 

fertilizer (Table 5.5). However, at 45 DAP, the leaf chlorophyll content was marginally 

significant with the rates of inoculant while at late pod filling stage (90 DAP), the leaf 
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chlorophyll content was significantly increased in the inoculated plants (Figure 5.9). The 

un-inoculated plants started to shed their leaves earlier than the inoculated plants.  

Table 5.5 ANOVA table for rates of inoculant and starter N on leaf chlorophyll 
content 
Variation  Chlorophyll 

content 30 
DAP 

Chlorophyll 
content 45 
DAP 

Chlorophyll 
content 90 
DAP 

I <0.0001** 0.0541* 0.0029** 
N   0.0414* 0.1170 0.3014 
I× N    0.0047** 0.7043 0.3774 

*and ** significant at 5 and 1% probability level, respectively. 
 

Even though the interaction effect was significant, the leaf chlorophyll content of 

IR3 and IR4.5 treatments were significantly greater without any N fertilizer at 30 DAP. 

The leaf chlorophyll content of IR1.5 was significantly higher with N40 than N0 level at 

30 DAP. Greater levels of chlorophyll content were observed in IR1.5, IR3 and IR4.5 

without N application (Figure 5.9) at 90 DAP. 
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Figure 5.8 Leaf chlorophyll contents as affected by interaction effects of inoculation 
and N rates at 30 DAP. Observations with the same letter are not significantly different. 
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Similarly, intracellular CO2 (Ci) was greater in the un-inoculated plants compared 

to the inoculated plants with respect to the N supply (Figure 5.11). The significant Ci 

concentration was observed in IR0 with the higher N level (N60). The leaf transpiration 

rates (E) were high in both IR4.5 and IR0 with N0 treatment (Figure 5.12). However, E 

increased linearly in IR1.5 and IR0 treatments with N supply. The E value of the IR0-

N60 treatment combination was significantly high. The effects of photosynthesis 

variables Ci did not alter with the treatments (Table 5.7) at mid pod filling stage (75 

DAP). Rates of inoculant significantly increased (Figure 5.13) A and E (Figure 5.14) in 

inoculated plants compared to the un-inoculated plants. Also, there was a marginally 

significant effect of inoculant on photosynthesis rate. 

 

Table 5.7 ANOVA table for rates of inoculant and N on photosynthesis 
measurement at the mid pod filling stage (75 DAP) 
Variation  A Ci gs E 

I 0.0489* 0.4147 0.2476 0.0199* 
N 0.4777 0.9924 0.3899 0.9633 
I× N  0.9246 0.3596 0.8532 0.2228 
*and ** significant at 5 and 1% probability level, respectively. 
Photosynthesis rates (A), intercellular CO2 (Ci), transpiration rate (E) and stomatal 
conductance (Gs). 
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Figure 5.10 Leaf photosynthesis rates (A) (μmol m-2 s-1) as affected by interaction 
effects of inoculation and N rates at 30 DAP. Observations with the same letter are not 
significantly different. 
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Figure 5.11 Leaf intracellular CO2 (Ci) (vpm) as affected by interaction effects of 
inoculation and N rates at 30 DAP. Observations with the same letter are not 
significantly different. 
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Figure 5.12 Leaf transpiration rates (E) (μmol m-2 s-1) as affected by interaction 
effects of inoculation and N rates at 30 DAP. Observations with the same letter are not 
significantly different. 
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Figure 5.13 Effect of rates of inoculant on leaf photosynthesis rates (A) (μmol m-2 s-1) 
at 75 DAP. Observations with the same letter are not significantly different. 
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Figure 5.14 Effect of rates of inoculant on leaf transpiration rates (E) (μmol m-2 s-1) 
at 75 DAP. Observations with the same letter are not significantly different. 
 

5.4.5 Effect of Rates of Inoculant and the Starter N Application on Soybean N 
Fixation under Controlled Environment Conditions 
 

The stem NO3-N and the ureide-N were determined in order to evaluate symbiotic 

N fixation responses. The stem NO3-N was not affected by the N supply (Table 5.8). 

However, the ureide-N content and the RU% were significantly influenced by the 

interaction effect of inoculation and the N supply. The amino-N levels were significantly 

affected by inoculation and N supply. 

The stem ureide-N content was significantly lower in the un-inoculated plants 

compared to all inoculant levels (Figure 5.15). The treatment combinations IR1.5-N0 and 

IR3-N60 had the higher ureide-N concentrations. Application of N fertilizer did not affect 

stem ureide-N concentrations of IR4.5.  
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Table 5.8 ANOVA table for rates of inoculants and N on photosynthesis 
measurement at mid pod filling stage 
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Figure 5.15 Interaction effects of rates of inoculant and N supply on stem ureide 
concentrations at 75 DAP. Observations with the same letter are not significantly 
different. 
 

The RU% of IR1.5 was highest with N0 (Figure 5.16) and there was a significant 

reduction in RU% from N20 to N60. In the IR3 and IR4.5 treatments, there was no 

difference in RU% with N fertilizer application. The RU% of the un-inoculated plants 

with N60 was higher than those of N0 to N40. 

 

Variation NO3-N Ureide-N Amino-N RU% 
I 0.1060 <.0001** 0.0009** <.0001** 
N 0.3244 <.0001** 0.0082**   0.0077** 
I× N 0.0828 <.0001** 0.1406   0.0074** 
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Figure 5.16 Interaction effect of rates of inoculant and N supply on RU% at 75 
DAP. Observations with the same letter are not significantly different. 
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5.5 DISCUSSION 

5.5.1 Soybean Nodulation 
 

 Soybean nodulation was significantly elevated in inoculated plants, compared to 

the control plants. There was an increasing trend in nodule number with increasing 

Bradyrhizobium cell numbers per seed in this study. The same trend was also reported in 

previous researches (Buwaneswari et al., 1988; Brockwell et al., 1989; Papakosta, 1992). 

In the present experiment, nodule numbers were proportionate to applied rates of 

inoculant, but the weight of nodules was inversely related. Buwaneswari et al. (1988) also 

reported that nodule formation increased with inoculant dosage. Higher rates of inoculant 

increased the number of bacterial cells in the rhizosphere and their multiplication, which 

increased nodule formation, result in larger numbers of nodules per plant. The present 

study has found that greater numbers of nodules require larger amounts of energy and 

space to develop. These two factors may be the reason that a large number of smaller 

nodules was observed in the current study. Papakosta (1989) stated that an increase in 

nodule number per soybean plant reduced the nodule size. Accordingly, a similar pattern 

was observed in the current growth chamber study.  

 In agreement with Diep et al. (2002), the present study also observed no effect of 

N fertilizer application on soybean nodulation. Under field conditions, they reported that 

the application of a small amount (25 kg ha-1) of fertilizer N did not suppress soybean 

nodulation. The rates of N fertilizer used in the growth chamber study were 0, 20, 40 and 

60 mg plant-1, which correspond to 0, 10, 20 and 30 kg ha-1 , respectively, in the field 

study. This is the only N source used in the growth chamber except 70-130 mg l-1 N 

present in the Pro-mix (www.growercentral.com). Unlike the soil, there was no rapid 
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mineralization in Pro-mix medium and nutrients became more and more limited with 

time. These observations implied that the application of N fertilizer could not suppress 

soybean nodulation with low amounts of available growing medium N.  

5.5.2 Soybean Plant Growth and Yield 
 

 In the current study, the soybean plant growth and seed yield were significantly 

affected by the interaction between the rates of inoculant and the rates of starter N 

fertilizer. Taylor et al (2005) found that the application of fertilizer N promoted soybean 

plant growth and seed yield up to 60-70 kg ha-1. In the growth chamber study, the highest 

seed weights for IR4.5 and IR1.5 were observed in N applied plants while IR3-N0 

produced the same amount of yield as the above treatments. There are many previous 

researches, which concluded that the application of N fertilizer can boost soybean plant 

yield (Taylor et al., 2005; Morshed et al., 2008). 

 Restricted root growth was observed in the inoculated plants and IR4.5 had the 

lowest RDW. Some studies have reported that super nodulating soybean lines have 

restricted root growth that limited nutrient absorption (Ohayama et al., 1993; Matsunami 

et al., 2004). Also, restricted root growth in the plants relying on N fixation was (Pate et 

al., 1979) suggested due to higher demand of photosynthate (Russell and Johnson, 1975). 

This could be the reason for the suppression of root growth at higher inoculant rates.  
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5.5.3 Effects on Chlorophyll Content and Photosynthesis 
 

 Leaf chlorophyll content was increased following inoculation and fertilizer N 

application at the early vegetative growth stage (30 DAP). The leaf chlorophyll content of 

the un-inoculated plants and the lowest rate of inoculant (IR1.5) increased with the N 

fertilizer application at 30 DAP. At the late pod filling stage (90 DAP), inoculation alone 

had a significant effect on the leaf chlorophyll content. N fertilizer application and 

soybean inoculation increased the leaf chlorophyll content and plant biomass. Kaschuk et 

al (2009) reported that the leaf chlorophyll content of nodulated plants remained at high 

levels until the pod filling stage, while the chlorophyll content of N fertilized plants 

started to diminish at the flowering stage. The same phenomenon was observed in the 

present study. N is a major component of the leaf chlorophyll. However, inoculated 

plants alone provided sufficient levels of N to enhance the chlorophyll content at 90 

DAP.  

 The photosynthetic rates did not show consistent response to rates of N fertilizer 

in all inoculated plants at the vegetative stage. However, at 30 DAP the photosynthetic 

rate rapidly increased in the un-inoculated plants up to N 40 level and these findings 

agreed with those of Zhou et al., (2006). At the pod filling stage, the leaf photosynthetic 

rates and the chlorophyll content was significantly higher in the inoculated plants 

compared to the un-inoculated plants. Kaschuk et al (2009) demonstrated that soybean 

plants with effective N fixing nodules have greater levels of photosynthesis compared to 

N fertilized plants. Studies have revealed that N fixation enhances the photosynthetic 

capability of legume plants (De Veau et al., 1990: Zhou et al., 2006). The carbon cost of 

N fixation is higher than the cost of NO3
- uptake. In symbiosis, Rhizobia utilize 4-16% of 
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recently fixed photosynthesis C to maintain their activity. Due to the C sink strength of 

symbioses, photosynthesis may be increased (Kaschuk et al., 2009). In the current 

experiment, the photosynthetic rates of the un-inoculated plants were less than the 

inoculated plants at 75 DAP and this emphasizes that nodulated plants have a higher 

demand for photosynthesis. The un-inoculated plants started to demonstrate senescence 

earlier than the inoculated plants and this trend was also observed by Kaschuk et al 

(2009). The delay of leaf senescence in nodulated plants could be associated with the 

higher photosynthesis rates.  

5.5.4 Soybean Symbiotic N Fixation 
 

 The RU%, calculated was based on the stem ureide-N and NO3-N concentrations. 

The RU% values obtained in this study were in the range of Herridge and People, (1990). 

A two-way interaction was observed for the stem ureide-N concentration and RU%. 

There was no consistent effect on stem ureide-N levels with the rates of inoculant and the 

rates of N fertilizer. Since the study was conducted in a growth chamber, there was a 

minimum number of factors which influenced plant N uptake. The current study reveals 

that application of N fertilizer to a growing medium with inadequate amounts of N cannot 

suppress symbiotic N fixation as the RU% did not vary in the inoculant rates 3 and 4.5 g 

kg-1 seed with respect to N application. However, fertilizer N reduced the efficiency of 

symbiotic N fixation with lower rates of inoculant. According to Salvagiotti (2009), the 

results in the current study could be due to the early surface applications of fertilizer N. 

This can suppress the symbiotic N fixation during the entire crop cycle. 
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5.6 CONCLUSION 
 

Early application of starter N fertilizer increased the plant biomass with the 

inoculant rate of 1.5 g kg-1 seeds or without inoculant. Significantly greater seed yield 

was obtained with an inoculant rate of 1.5 and 4.5 g kg-1 seed with N applied plants while 

inoculant rate 3 g kg-1 seed rate without N fertilizer also produced the similar amount of 

seed yield under controlled environmental conditions. Application of low levels of starter 

fertilizer N to a growing medium with inadequate amounts of available N did not 

suppress the soybean plant’s symbiotic N fixation. The inoculated plants alone increased 

the leaf chlorophyll content and the photosynthetic rates in soybean at the pod filling 

stage. 
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CHAPTER 6  CONCLUSIONS 

The research was conducted to achieve the main goal of improving soybean 

symbiotic N fixation and grain yield in the dykeland soils. In order to fulfill the above 

research objective, several secondary objectives were set. At the very beginning, the 

focused was on isolating Rhizobia from the dykeland soils. Then, a two-site study was 

conducted to evaluate the soybean symbiotic N fixation and yield responses in relation to 

the rates of inoculant and the starter N fertilizer in dykelands. In addition to this field 

study, a growth chamber study was set up to observe the effects of rates of inoculant and 

starter N on soybean N fixation, leaf chlorophyll, photosynthesis rate and grain yield. 

6.1. ISOLATION OF RHIZOBIUM FROM DYKELAND SOILS 
 

Depending on soil conditions, there was a great variability in dykeland Rhizobial 

population. The isolate W0 had enormous capability for soybean nodulation in the 

authentication study. Variation among isolates arose as a result of soil conditions (e.g. 

soil salinity) and the soil management practices (e.g. manure application).  

Accurate strain identification is necessary to confirm the identity of isolates. 

Further studies on symbiotic N fixation are necessary in order to recommend the isolates 

for field use. For this, a comparison of N fixation between isolates and commercial 

inoculant is necessary. 

 

 



136 
 

6.2 N FIXATION AND GRAIN YIELD RESPONSES OF SOYBEAN IN RELATION TO RATES OF 

INOCULANT AND STARTER FERTILIZER N APPLICATION IN DYKELANDS 
 

It was concluded that application of commercial inoculant promotes soybean plant 

growth and seed yield under favourable dykeland soil conditions. The inoculated plants 

produced significantly greater grain yield compared to the un-inoculated plants. Soil 

salinity is one of the deleterious factors affecting soybean symbiotic N fixation on 

dykelands. Since these fields are susceptible to changes in soil conditions, dual 

inoculation of soybean with two Rhizobial strains can be more effective in terms of 

promoting symbiotic N fixation. Starter fertilizer N rates of 10, 20, and 30 kg ha-1 did not 

affect either soybean N fixation or grain yield significantly. However, at 30 kg N ha-1, 

there was a substantial reduction in the nodule number in all inoculant treatments under 

acidic soil conditions. Application of starter N fertilizer at low levels (10, 20, and 30 kg 

ha-1) may not be necessary for soybean cultivation. 

The soybean plant N demand is greatest at the pod filling stage as the developing 

seeds act as a strong sinks. At this time, the vegetative plant parts also translocate N to 

developing seeds. N fertilizer application during the reproductive stage perhaps could 

have a positive effects on soybean yield. For instance, Gan et al (2003) reported that the 

most suitable timing for fertilizer N top dressing is during reproduction at the flowering 

stage. In future, it is recommended that the effects of N fertilizer top dressing at the 

reproductive stage in the dykelands be investigate. It has been shown that the amount of 

fertilizer N required to achieve better response is greater for surface application than deep 

placement of slow release N. Application of slow release fertilizer below the root 

nodulating zone before planting did not reduce the BNF (Salvagiotti, 2009; Tewari et al., 
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2004). Therefore, evaluation of surface application versus deep placement of slow release 

N fertilizer with different rates will be useful in future studies. Conducting this kind of 

study in a wide range of dykeland soil and under various management conditions would 

be beneficial for developing N fertilizer strategy and recommendations. 

6.3 N FIXATION AND GRAIN YIELD RESPONSES OF SOYBEAN IN RELATION TO RATES OF 

INOCULANT AND STARTER FERTILIZER N APPLICATION UNDER CONTROLLED 

ENVIRONMENT CONDITIONS. 
 

Under controlled environmental conditions, fertilizer N promotes plant growth. 

However, 3 g kg-1 seed without N fertilizer also produced the same amount of grain yield 

as the inoculant rate 1.5 and 4.5 g kg-1 seed with N fertilizer. According to the stem 

RU%, starter N application to an agriculture system with low available N could not 

impart an adverse effect on soybean N fixation was indicated by stem.  

Instead of using Pro-mix, use of dykeland soils as the growing medium could be 

beneficial to correlate the observation with dykeland soils. It also may helpful to 

recognize the soil chemical and biological factors that affect N fixation and grain yield in 

addition to soil conditions. 

The overall conclusion of the research is that the inoculated plant produced 

greater grain yield compared to the un-inoculated plants. The inoculation of soybean with 

150% of standard rate showed an increasing trend of grain yield in acidic dykeland soil 

conditions. However, the soil salinity appears to suppress N fixation under dykeland 

conditions in response to the commercial Bradyrhizobium inoculant. Starter fertilizer N 

was not effective in increasing soybean grain yield in dykelands.  
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APPENDIX A: SOIL CLASSIFICATION FOR ACADIA SOILS (ACS) 
Soil material : Fine loamy marine 
Slope  : 0.5% to 3% 
Drainage : Imperfect to poor 
Stoniness : Non stony 
Rockiness : Non rocky 
 
A horizon 
Thickness : 10-51 cm 
Particle size 
Sand%  : 4-19 
Dominant sand size : Very fine 
Silt%  : 51-60 
Clay%  : 26-36 
Hydraulic Conductivity (cm/h) : 0.1-10.8 
Bulk density (g/cm3) : 1.2-1.5 
Organic carbon % : 0.6-2.2 
pH (water) : 5.3-6.4 
Consistence : friable to firm 
 
C horizon 
Particle size 
Sand%  : 4-27 
Dominant sand size : Very fine 
Silt%  : 45-69 
Clay%  : 13-50 
Hydraulic Conductivity (cm/h) : 0-29.3 
Bulk density (g/cm3) : 0.8-1.5 
Organic carbon % : 0.7-2.8 
pH (water) : 4.4-6.2 
Consistence : friable to firm 
      
 
Source: Holmstrom, D. A. 1989. Soils of the Annapolis Valley area of Nova Scotia. 
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