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Abstract

The municipal solid waste (MSW) management system is consisted of planning, 

development, execution of capital works, and so on. Too many factors in the system 

make the decision making process plagued with uncertainties, vagueness and 

complication. Interval-parameter Linear Programming (ILP) is widely used to deal with 

uncertainties existed in the MSW system and to assist optimal decision making. However, 

the existing ILP solution algorithms, i.e., best-worst case algorithm and 2-step algorithm, 

are found to be ineffective through a validity checking process. Moreover, the results 

from ILP cannotreflect the linkage between decision risks and the system return. 

In this study, a fuzzy risk explicit interval-parameter linear programming (FREILP) 

model is developed and applied to the long-term planning of the MSW management 

system in Halifax Regional Municipality (HRM). This method is specifically designed to 

deal with extensive uncertainties existed in the MSW management system and to provide 

decision supports to HRM planners. In the model, ILP is used to reflect uncertainties 

existed in both objective function and constraints. Based on the basic ILP, a risk function 

is defined to assist in finding solutions with minimum system cost while minimizing the 

system risk, under certain aspiration levels. The aspiration level could be conservative, 

medium or aggressive, and can thus be presented as a fuzzy set to reflect the preference 

of decision makers. Three sets of solutions are obtained accordingly. Besides, the model 

was also solved under the aspiration level from 0 to 1, with a step of 0.1, for providing a 

comprehensive decision support. 

This approach can effectively reflect dynamic, interactive, uncertain characteristics, as 

well as the interactions between overall cost and risk level of the MSW management 

system, thus provide valuable information to support the decision-making process, such 

as waste allocation pattern, timing and expansion capacities of the municipal solid waste 

management activities. The result can directly reflect the tradeoff between decision risks 

and the system return.



xii

List of Abbreviations and Symbols Used 

BWC Best-worst case algorithm 

C&D Construction and demolition  

CCP Chance-constrained programming 

CDF Cumulative distribution Function 

DF Discount factor 

DP Dynamic programming  

FEP Front end processor 

FFP Fuzzy flexibility programming  

FLP Fuzzy linear programming  

FMP Fuzzy mathematical programming  

FPP Fuzzy possibility programming  

FREILP Fuzzy risk-explicit interval linear programming 

HHW Household hazardous waste 

HRM Halifax regional municipality 

ILP Interval-parameter linear programming 

IPMP Interval-parameter mathematical programming 

IMSW Integrated municipal solid waste  

LP Linear programming 

MILP Mix-integer linear programming 

MLP Multi-objective mathematical programming 

MSW Municipal solid waste 

NRL Normalized risk level 

PDF Probability distributions function 

RDF Residual disposal facility 

REILP Risk explicit interval-parameter linear programming 

SMP Stochastic mathematical programming  



xiii

A± A set of interval parameters of ILP constraints 

B± A set of right-hand side of parameters of ILP 

C± A set of interval parameters of ILP objective function 

CAik Capital cost (expansion cost) for facility i under expansion option k ($)

CPi

Current capacity of facility i

(tonnes/year when i=1 and 2; tonnes when i=3)

DFt Discount factor in period t

EPikt

The expanding capacity of option k

(tonnes/year when i=1 and 2; tonnes when i=3)

HWGt Wastes disposed by HRM  (tonnes/5 years) 

P Feasible decision space of ILP solved by 2-step algorithm 

Pl Smallest decision space of ILP solved by 2-step algorithm 

Pu Largest decision space of ILP solved by 2-step algorithm 

Q Decision space of ILP solved by BWC algorithm 

Ql Smallest decision space of ILP solved by BWC algorithm 

Qu Largest decision space of ILP solved by BWC algorithm 

RR Residue rate from both recycling and composting facilities 

T A particular time period  

TWGt Total wastes generated in HRM (tonnes/ 5 years) 

UCi The unit collection and transportation cost for facility i



xiv

UOi Unit operating cost for the facility i ($/tonne)

URi Unit revenue from facility i ($/tonne)

X± A set of decision variables of ILP 

X±
opt Optimum decision variable values 

X-
opt Lower bound of optimum decision variable values 

X+
opt Upper bound of optimum decision variable values 

Xit Waste flow allocated to the facility i in period t (tonnes/5 years) 

Yikt

Binary variable: 

Yikt = 1 when facility i (with capacity option k) needs to be developed in period t

Yikt = 0 when there is no expansion 

ai Interval parameters of ILP constraints 

bi Right-hand side of parameters of ILP 

cj Interval parameters of ILP objective function 

f± Value of objective function 

f±
jopt Optimum objective function interval 

f+
jopt Upper bound of optimum objective function 

f-
jopt Lower bound of optimum objective function 

f2-stepopt Optimum objective function solved by 2-step algorithm 

fBWCopt Optimum objective function solved by BWC algorithm 

k1 Number of positive cj parameters 



xv

0 Aspiration level 

ij Risk level variables 

Risk function 

I

Different waste processing facilities: 

i=1 for recycling facility 

i=2 for composting facility  

i=3 for landfill 

T The planning time period, t=1,2,…,6

xj Decision variables of ILP 

x±
jopt Optimum decision variable intervals of xj

x+
jopt Upper bound of optimum decision variable xj

x-
jopt Lower bound of optimum decision variable xj

-  “-” superscript represents the lower bound of an interval-parameter or variable 

+ “+” superscripts represents the upper bound of an interval-parameter or variable 



xvi

Acknowledgement 

It is a pleasure to thank those who have helped and inspired me to make this thesis possible. 

Firstly, I owe my deepest gratitude to my supervisor, Dr. Lei Liu, whose encouragement, 

guidance and support from the initial to the final level enabled me to develop an 

understanding of the subject. I appreciate his contributions of time, ideas, and funding to 

make my study experience productive. I could not have imagined having a better advisor 

and mentor for my study. 

Besides my advisor, I would like to thank my supervisory committee members, Dr. 

Graham Gagnon and Dr. Uday Venkatadri, for their great advice for my thesis.  

I would also like to express my appreciation to Kara Weatherbee, the administrative 

assistant from Solid Waste Resources department of HRM, who answered all my questions 

and provided valuable data to me.  

I am heartily thankful to my English tutor and friend, Elaine Dowling, for her great help on 

my writing skills. She helped me to edit the thesis, and her opinions are always 

encouraging and inspiring. 

My special thanks are due to my husband, Shuntian Wang, who stands by my side all the 

time supporting and encouraging me, mentally and financially. Thanks for the numerous 

dinners he prepared for me, so that I had the energy and time to work. The thesis would not 

be possible without his loving support. 

Last but not least, I would like to thank my parents Zhenguo Pei and Min Zhang, and my 

sister Linlin Pei, for their unflagging love and support throughout my life. Thank you. 



1

CHAPTER 1 

INTRODUCTION

1.1.   Statement of the Problem 

1.1.1.  Municipal Solid Waste (MSW) Management System 

Municipal solid waste (MSW) includes “garbage, refuse, sludge, rubbish, tailings, debris, 

litter and other discarded materials resulting from residential, commercial, institutional 

and industrial activities which are commonly accepted at a municipal solid waste 

management facility”. (Nova Scotia Environment and Labour, 2004) 

Generally, three major components exist in a MSW management system. They include 

waste generation districts, waste processing facilities, and landfill. Transfer stations are 

also included in the system in some big cities like New York City (USEPA, 2000). In 

1996, Environment Canada defined the Integrated Municipal Solid Waste (IMSW) 

system as a management system that contains programs which can “reduce or reuse the 

wastes produced, and/or divert wastes from traditional disposal facilities to recycling, 

composting, and/or incineration processes” (Environment Canada, 1996). Based on this 

definition, a MSW management system must be substantially modified to perform the far 

more complex tasks to ensure that wastes are initially reduced, certain products are 

reused, and wastes are separated at their sources from recyclables and compostables 

which can then be processed, stored, marketed and transported to buyers (Baetz et al., 

1989).

As a consequence, many factors must be considered in planning such an integrated 

management system. Examples include collection techniques to be adopted, how to 

allocate the trash, when to expand the existing facilities, where to develop a new facility, 

and how to control the total system cost (Wilson, 1985). Interactions among these factors 

make the management system more complicated. Besides, conflicts may exist among 

different decision-makers and interest groups, such as local government officials, facility 
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owners and operators, consultants, regulatory agency specialists, and residents. Multiple 

options may lead to different levels of satisfaction for each of the stakeholders (Barlishen, 

1996). This complexity makes it difficult to identify the optimal MSW management 

options among decision makers. Thus, optimization techniques that could consider and 

incorporate factors within a general framework, rather than examine them in isolation, 

would be desirable for providing a holistic analysis of the factors, and for a 

comprehensive evaluation of the related activities and policy responses (Baetz, 1990b; 

Huang et al., 2001). 

1.1.2.  Optimization Model Development for MSW Planning 

Optimization techniques for waste management were first proposed by Anderson in 1968. 

Since then, a number of waste-related planning models have been developed. They 

include the deterministic optimization models, such as linear, mixed-integer linear, 

dynamic, and multi-objective programming (Anderson, 1968; Jenkins, 1982; Baetz et al., 

1989; Baetz, 1990a&1990b; Thomas and Baetz, 1990). However, it has been recognized 

that deterministic optimization techniques are not sufficient to model such a complex 

problem, particular its uncertain features. To better reflect uncertainties in waste 

management systems, several optimization techniques were developed. They include 

fuzzy mathematical programming (FMP) (Zimmermann, 1985; Huang, 1994; Leimbach, 

1996; Chang, 1997; Lee and Wen, 1997; Chanas, 2000; Seongwon et al., 2003), 

stochastic mathematical programming (SMP) (Zare and Daneshmand, 1995; Schwarm, 

1999; Schultz, 2003), interval-parameter mathematical programming (IPMP) (Moore, 

1979; Zou et al., 1999; Rocha and Kreinovich, 2003) and some hybrid or integrated 

programming methods (Huang et al., 1993b; Huang et al., 1995; Infanger and Morton, 

1996; Xia et al., 1997; Huang et al., 2001; Huang et al., 2002; Li et al., 2009a; Sun et al., 

2009; Nie et al., 2009; Guo and Huang, 2009a&2009b; Li and Huang, 2010a;). Mixed 

outcomes have been obtained when different methods were used to reflect system 

uncertainties in hypothetical or real-world case studies. Compared to fuzzy and stochastic 

programming, in terms of data quality and requirements, IPMP does not need the 

information of membership functions or distribution of parameters which may be hard to 
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obtain in practical applications. Moreover, fuzzy and stochastic methods often lead to 

more complicated sub-models and may not be practical for many real life situations. 

Interval-parameter linear programming (ILP) is one of the IPMP which can effectively 

deal with uncertainties without leading to more complicated sub-models. Because of this 

characteristic, ILP has been widely used in many environmental and civil modeling fields 

(Ben-Israel and Robers, 1970; Rommelfanger et al., 1989; Huang and Moore, 1993; Tong, 

1994; Hansen and Walster, 2004; Maqsood et al., 2004; Li et al, 2008&2009b; Guo et al, 

2010; Wu et al., 2010; Dong et al., 2011), including MSW system planning and 

management issues. Three solution algorithms have developed to facilitate the use of ILP, 

including Monte-Carlo simulation, best-worst case analysis (BWC) and 2-step interactive 

algorithm.  

The Monte-Carlo simulation method randomly sets values for each parameter within their 

interval range to form a classic Linear Programming (LP) model. This method could be 

most reliable in simulating a real model situation if the modeler sets values for 

parameters and runs the model millions of times. However, it is not always realistic to 

run the models millions of times, especially when facing a real environmental systems 

planning problem with hundreds or thousands of decision variables and constraints. As 

more realistic solution methods, BWC analysis and 2-step algorithm were developed 

(Huang and Moore. 1993; Tong, 1994; Chinneck and Ramadan, 2000). Both approaches 

reformulate the original model using extreme constraints to represent the most 

conservative and the most aggressive conditions. The main difference between the two 

algorithms is that the 2-step algorithm differentiates the selection of extreme parameter 

values with different signs after the objective function is fixed, while the BWC treats all 

the parameters without discrimination. These two algorithms have been widely used in 

ILP applications. Both algorithms provide an interval solution space, and each point in 

the interval solution space becomes a potential solution to form a decision alternative for 

implementation. However, in practical decision making process, when the decision 

makers need to pick a point from the interval solution space for an implementation 

scheme, there will be problems of feasibility and optimality, which might be resulted 

from the flaws in the algorithm development. Therefore, validity checking seems to be 
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absolutely desired for the ILP algorithms in order to improve the applicability of the ILP 

modeling results.  

Moreover, the result of the ILP lacks of a linkage between decision risks and system 

return. Different decision makers may expect divergent system returns under various 

acceptable risk levels. Thus, a modeling framework which could not only be effectively 

and efficiently solved but also can reflect the linkage between system return and decision 

risks became desirable. This modeling framework was preliminarily examined by Zou et 

al. (2010) through developing a risk explicit interval-parameter linear programming 

model (REILP). However, several deficiencies still exist in the REILP, including the 

infeasibility problem, the risk function issue, and the difficulty of the aspiration level 

selection. These deficiencies will be addressed in this study as an evolution of the 

proposed REILP approach.  

1.1.3.  MSW Management System in HRM 

Nova Scotia is the first province in Canada that has achieved the target of a 50% solid 

waste diversion rate, according to the criteria established by the Canadian Council of 

Ministers of the Environment (Walker et al., 2004). The Halifax Regional Municipality 

(HRM), as the capital of Nova Scotia, provided an outstanding contribution to this high 

diversion rate achievement. HRM reported in January 2011 that the current diversion rate 

was right on target at 60% (CMC, 2010 Newsletter). Along with the diversion target, 

HRM developed several long-term goals for effectively managing the MSW management 

system of HRM, including maximizing the 3Rs (Reduction, Reuse and Recycling), 

maximizing environmental sustainability and minimizing costs, and fostering stewardship 

and values of a conserver society (FCM, 2000).  

To reach the diversion rate target and the long-term environmental goals, HRM has 

strived to establish a new MSW management system since 1999, along with many 

programs including source separation program, new landfill site construction, and 

materials recovery facility expansion program (Walker et al., 2004). During the 
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implementation of these programs and continuous improvement of the MSW diversion 

rate, cost is a key factor that must be considered by decision makers. This new MSW 

management system has a gross annual budget of 32 million Canadian dollars. Capital 

costs include $8.5 million for the carts, mini bins and tracking system; $24 million for the 

mixed waste processing system and the back-end stabilization plant; $20 million for the 

new landfill (which opened in January 1999) construction and access roads; and 

$500,000 for the upgrade to the Materials Recovery Facilities (MRF). The mixed waste 

processing and stabilization operation employed 85 people (Goldstein and Gray, 1999). 

This is a significant cost for a city like the size of HRM. Furthermore, if a higher 

diversion rate is desired, or if the facilities need to be expanded or relocated, addition 

investment would be needed.  

There is always a tradeoff between the system investment and environment effects. 

Economic growth is usually sacrificed for the good of the environment. The ideal and 

best solution for environmental protection is usually unaffordable. It is more realistic to 

find an optimal solution which is economically feasible and environmentally acceptable. 

In HRM, a problem that decision makers have to consider and find the answer is what the 

least-cost strategy for achieving the waste diversion rate target as well as the long-term 

environmental goals is. Previously, very few studies have reported a comprehensive 

MSW management system study for HRM. Ghadiri (2004) developed a fuzzy-stochastic 

mixed integer LP model for the long-term planning and management of the MSW system 

of HRM. This study focused on addressing system uncertainties associated with the 

MSW management processes and it has provided a very valuable decision support tool 

for local decision makers and been appreciated by them. However, the diversion rate 

target was not included in the study and the model was solved by the 2-step algorithm. 

No validity checking for the ILP method was conducted and the connections between 

decision risks and system benefits were not examined as well. All the relevant issues will 

be addressed in our study for providing better and more reliable decision support 

information for the HRM MSW managers.  
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1.2.  Objective 

As an extension of previous efforts on MSW management system modeling, this study 

will focus on the development of a fuzzy risk explicit interval linear programming model 

and its application to the HRM case study. This study entails the following objectives:  

Validity checking of two ILP solution algorithms, i.e., Best-Worse Case algorithm 

and the 2-step interactive algorithm. A numerical example will be formulated and 

solved by the Monte-Carlo simulation, BWC and 2-Step algorithm respectively 

for investigating the validities of BWC and 2-Step algorithm, and the focus will 

be on the feasibility and optimality of the interval solutions.  

Development of a Fuzzy Risk Explicit Interval Linear Programming (FREILP) 

model for reflecting complex connections between system return and decision risk. 

The proposed FREILP model is designed to minimize the decision risks while the 

total system cost is maintained at a minimum level and the aspiration level is 

preferably selected by the decision makers. In addition, problems of model 

infeasibility and risk function formulation will also be discussed. 

Application of the developed FREILP model to the long-term planning of the 

MSW management system in HRM. The modeling results could provide HRM 

managers scientific basis for generating practical MSW management 

implementation schemes. In this application, three options based on the different 

aspiration levels of decision makers will be provided, including aggressive 

schemes, medium schemes, and conservative schemes.  
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1.3.  Structure of the Thesis 

The structure of this thesis is organized as follows:  

Chapter 1 introduces the MSW system and the application of mathematical programming 

to the planning and management of the MSW system. Problems associated with the 

current modeling studies are discussed, leading to the need of a new approach that could 

provide decision support for effective and efficient MSW planning and management.  

Chapter 2 provides a comprehensive literature review with respect to previous efforts in 

using optimization techniques to solve MSW planning and management issues. The 

focuses have been placed on discussing uncertainty-handling optimization techniques and 

their applications to MSW management system. A summary has been provided for 

identifying a few knowledge gaps that need to be addressed in future studies. 

Chapter 3 uses a numerical example to conduct the validity checking of existing 

algorithms to ILP models with focuses on checking the feasibility and optimality of the 

model solutions.  

Chapter 4 discusses the details of FREILP model formulation and development. The 

solution process for solving the FREILP model is also provided. 

Chapter 5 presents a detailed description of the MSW management system of HRM and 

the FREILP-based model formulation.  

Chapter 6 provides the modeling results obtained from the REILP model and FREILP 

model. The implications of the modeling results to the planning and management of the 

HRM waste system is also discussed. 

Chapter 7 is a summary of this study along with some conclusions. Recommendation for 

further work is also provided in this chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1.  Conventional MSW Management and Planning Methods   

Since the 1960’s, much efforts have been devoted to develop mathematical programming 

models to support the decision makers of MSW management system and to evaluate the 

relevant operational and investment policies. Anderson firstly proposed an economic 

optimization method for the planning of MSW in 1968 (Anderson, 1968). After that, a 

number of waste-related deterministic optimization models have been developed. 

Chiampi et al.(1982) applied the linear programming (LP) techniques to investigate the 

relative costs of hazardous waste management schemes. Hsieh and Ho (1993) also used 

the LP to optimize the solid waste disposal and recycling system. Jenkins developed a 

mix-integer linear programming (MILP) method and applied it to the planning of the 

municipal waste reclamation system for Southeastern Ontario (Jenkins, 1982). Huang et 

al. applied the MILP in the MSW management system in China (Huang et al., 1997). 

Baetz et al. applied the dynamic programming (DP) model to determine the optimal 

sizing and timing of facility expansions for Mecklenburg County, North Carolina, US, 

the Long Island Community in New York, US, and the Regional Municipality of 

Hamilton, Ontario, Canada (Beatz et al., 1989); Chang and Wang (1995) applied a 

multi-objective linear programming model (MLP) to a MSW system. They considered 

both economic and environmental objectives while establishing and selecting the long 

term optimal management alternatives. Solano et al. (2002) used LP and developed an 

integrated solid waste-management model to assist in identifying desired solid waste 

management strategies that could meet cost, energy and environmental emission 

objectives.

As environmental policies have become more integrated and strict, it has been recognized 

that the above deterministic optimization techniques are not sufficient to model complex 
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MSW management problems. In MSW management system, many processes need to be 

considered by decision makers, including waste collection, allocation, transportation, 

treatment and disposal (Wilson, 1985). These processes contain many factors that interact 

with each other with multi-period, multi-layer, and multi-objective features (Thomas et 

al., 1990). The spatial and temporal variations of many system components may further 

multiply the uncertainties in the system (Thompson and Tanapat, 2005). Therefore, these 

factors are associated with uncertainties and hard to be evaluated in precise terms.  

Since the deterministic optimization techniques require deterministic data and crisp 

model constraints, optimization techniques that can reflect uncertainties became desirable. 

Various approaches that can deal with uncertainties have been developed and applied to 

MSW management study. When parameters in the model are fuzzy sets, the optimal 

problem becomes the fuzzy mathematical programming (FMP). Comparing to FMP 

problems, stochastic mathematical programming (SMP) models are similar in style but 

probability distributions are governing the data. When the parameters are known only 

within certain bounds, the approach to tackling such problems is called 

interval-parameter mathematical programming (IPMP) or robust optimization. 

2.2.  Optimization Approaches that Deal with Uncertainties 

2.2.1.  Fuzzy Mathematical Programming 

Fuzzy mathematical programming (FMP) is based on the fuzzy set theory formalized by 

Professor Lofti Zadeh in 1965. Comparing to the classical sets (membership can only be 

0 or 1), the member of fuzzy sets could be described with the aid of a membership 

function valued in the real unit interval [0, 1]. Parameters in both the objective function 

and the constraints could be fuzzy sets.  

FMP has been applied to many optimization problems, waste management included. Koo 

et al. (1991) accomplished the location planning of a regional hazardous waste treatment 
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center by using FMP. In the same year, Lee et al. (1991) applied FMP to a dredged 

material management problem, using the environmental risk and cost as fuzzy parameters. 

Chang and Wang (1997) applied a fuzzy goal programming approach for the optimal 

planning of solid waste management system in a metropolitan region in Taiwan. It 

demonstrated how fuzzy objectives of the decision maker can be quantified under various 

types of solid waste management alternatives. More recently, Fan et al. (2009) developed 

a fuzzy linear programming (FLP) model for the long term planning of MSW 

management system. It can deal with uncertainties expressed as fuzzy sets that exist in 

the constraint’s left-hand and right-hand sides and objective function. 

FMP can be categorized into two major streams: fuzzy flexibility programming (FFP) 

and fuzzy possibility programming (FPP) (Inuiguchi and Sakawa, 1994). In FFP, the 

flexibility in the constraints and fuzziness in the objective are represented by fuzzy sets 

and denoted as “fuzzy constraints” and “fuzzy goal” respectively, which can be expressed 

as membership grades. However, FFP could hardly tackle uncertainties expressed as 

ambiguous coefficients in the objective function and constraints (Inuiguchi and Tanino, 

2000; Inuiguchi and Ramik, 2000; Inuiguchi et al., 2003). In FPP, fuzzy parameters are 

introduced into the modeling framework, and these parameters are presented as fuzzy sets 

with possibility distributions. The limitation of FPP is that when many uncertain 

parameters are expressed as fuzzy sets in a model, interactions among these uncertainties 

may lead to serious complexities, particularly for large-scale practical problems (Huang 

et al., 1993a). Also, a key factor of FMP, which is also the central concept of fuzzy set 

theory, is the membership function of fuzzy sets, numerically representing the degree to 

which an element belongs to a set. But the membership functions of parameters are not so 

easy to define. An inaccurate membership function may lead to undesirable results. 

2.2.2.  Stochastic Mathematical Programming 

Stochastic mathematical programming (SMP) is derived from probability theory. In SMP, 

random elements are introduced to account for probabilistic uncertainty in the 

coefficients. Wilson and Baetz (2001) developed a derived probability model for curbside 
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waste collection activities that allowed for analyzing stochastic information in the MSW 

management. The inherent uncertainties in a model can be expressed as stochastic 

elements in the constraint matrix, the right-hand side stipulations, or the objective 

functions (Sengupta, 1972). However, if all parameters are expressed as random variables, 

the model would be extremely hard to solve and often leads to infeasibility problems. 

Chance-constrained programming (CCP) is one of the SMP methods that contain only the 

right-hand side parameters (bi) as random distributions. The CCP approaches do not 

require all the constraints to be satisfied. Instead, it allows a certain level of violation of 

constrains with random bi under some circumstance (Loucks et al., 1981). As described 

in the following equation pbxgP ii ])([ , the probability that the ith constraint is 

satisfied is p, where p is greater than 0 and less than 1. The random bi can be determined 

by its distribution and the possibility p.                                 

As many factors other than the right-hand side stipulations exist as uncertainties in the 

system, CCP is often combined with other uncertainty reflecting methods like FMP and 

IPMP. For example, Maqsood et al. (2004) developed an inexact two-stage stochastic 

mixed-integer linear programming model for waste management. Li and Huang (2006) 

applied the inexact two-stage stochastic mixed-integer linear programming to solid waste 

management in the City of Regina. Guo and Huang developed an inexact 

fuzzy-stochastic mixed-integer programming approach and applied the approach to the 

long term planning of MSW management system in the city of Regina, Canada (Guo and 

Huang, 2009a& 2009b). Li et al. (2009a) developed an inexact fuzzy-stochastic 

constraint-softened programming method for waste-management systems planning by 

introducing FFP into an inexact multistage stochastic programming framework, where a 

number of violation variables for the constraints are introduced, allowing in-depth 

analyses of tradeoffs among economic objective, satisfaction degree, and 

constraint-violation risk.  

The major strength of SMP method is that it does not simply reduce the complexity of the 

problems; it allows decision makers to have a complete view of the effects of 
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uncertainties and the relationships between uncertain inputs and resulting solutions 

(Huang, 1994). The major problem of SMP is that no sufficient data are available to 

obtain the probability distribution functions (PDF) for random parameters. In addition, 

even if these functions are available, it is extremely hard to solve a large scale stochastic 

management system planning problem with all uncertain data being expressed as PDFs 

(Birge and Louveaux, 1997; Luo et al., 2007).  

2.2.3.  Interval-Parameter Mathematical Programming 

The FMP and SMP can effectively reflect uncertainties in the model system. However, in 

many practical problems, the available data is often not enough to be presented as 

distribution functions or membership functions. Instead, the obtained data may often 

show a robust distribution or no distribution information at all. It is more difficult for 

planners or decision makers to specify distributions than to define a fluctuation interval 

for uncertainties (Huang, et al., 1992). For example, the daily waste generation rate often 

fluctuates within a certain interval, but it may be difficult to state a reliable probability 

distribution for this variation (Li and Huang, 2010b). Interval-parameter mathematical 

programming (IPMP) is an alternative for handling uncertainties in the model's 

constraints and objectives (Huang et al., 1992). Unlike FMP and SMP, IPMP does not 

need the membership functions or distributions of inexact parameters. It is based on the 

interval analysis, and needs only the lower and upper bounds of uncertain parameters. 

The interval analysis was proposed by Moore (1979) and then extended into IPMP. The 

IPMP method emphasizes the intrinsic vagueness of its informational characteristics 

during parameter estimation (Change et al., 1997).  

Due to the simplicity of IPMP, the last three decades have seen a wide application of it to 

deal with uncertainties in many fields (Ben-Israel and Robers, 1970; Rommelfanger et al., 

1989; Huang and Moore, 1993; Tong, 1994; Hansen and Walster, 2004; Maqsood et al., 

2004; Li et al, 2008&2009b; Guo et al, 2010; Wu et al., 2010; Dong et al., 2011). 

However, similar to FPP, when many uncertain parameters are expressed as intervals, 

interactions among these uncertainties may lead to serious complicated problems that are 
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hard to solve, particularly for large-scale practical problems (Huang et al., 1993). 

Interval-parameter linear programming (ILP) is a key member of the IPMP family and is 

a method that can deal with uncertainties expressed as intervals without any distributional 

information and without leading to more complicated problems. The ILP allows the 

interval information to be directly communicated into the optimization process and 

resulting solution. Early applications of ILP incorporated interval numbers into the 

objective function (Ishibuchi and Tanaka, 1990), constraint matrix (Huang and Moore, 

1993; Tong, 1994), right-hand sides of constraints, and all of the above (Huang, 1996; 

Huang et al., 1992& 1995). Case studies of ILP include hypothetical examples for solid 

waste management (Huang et al., 1992&1995; Maqsood and Huang, 2003; Maqsood et 

al., 2004; Li and Huang, 2006; Li et al., 2006a), water resources allocation (Huang and 

Loucks, 2000; Li et al., 2006b; Maqsood et al., 2005), and flood diversion planning (Li et 

al., 2007). Practical examples include water quality management in China (Huang, 1998), 

solid waste management for the city of Regina (Li and Huang, 2006), and water system 

planning in Amman, Jordan (Rosenberg and Lund, 2009). 

The reason that ILP has been widely used in the past decades is that it can effectively 

reflect the uncertainties in the modeling system, the information requirement is low, and 

the solution algorithms are easy to use. Three algorithms have been used to solve ILP 

models, including Monte Carlo simulation algorithm, two-step interactive algorithm, and 

best-worst case (BWC) algorithm. Monte Carlo simulation method relies on repeated 

random sampling to compute the results (Rubinstein, 1981). It has a very high 

computational requirement, so it is unrealistic to solve complicated models with a large 

number of uncertain parameters and variables. Two-step interactive algorithm and BWC 

algorithm were developed by Huang and Moor (1992) and Tong (1994) respectively. 

Both algorithms solve the model by generating two deterministic sub-models that 

correspond to the lower bound and the upper bound of the objective functions. With 

regards to the two algorithms, Rosenberg (2009) reviewed several ILP models and 

summarized that the two-step algorithm sometimes cannotprovide a good performance. 

No validity checking for the two algorithms has been conducted previously in term of the 

feasibility and optimality of the obtained solutions.  
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2.2.4.  Hybrid and Mixed Mathematical Programming 

Combining advantages of the above optimization methods, many hybrid and mixed 

programming approaches have been developed. Due to the flexibility of interval numbers, 

most approaches combine ILP with other optimization methods. For example, Huang et 

al. (1993b) proposed a grey fuzzy flexible programming method and applied it to MSW 

management systems to tackle uncertainties that presented as fuzzy sets and intervals. 

Chang et al. (1997) proposed a fuzzy interval multi-objective mixed integer programming 

model to evaluate solid waste management strategies. The study demonstrated how 

uncertain factors could be quantified by specific membership functions and interval 

numbers in a multi-objective model. Maqsood I. et al. (2004) developed a hybrid 

optimization approach, inexact two-stage mixed integer linear programming model for 

MSW management. The model improved upon the mixed integer, two-stage stochastic 

and ILP approaches by allowing uncertain parameters presented as random distributions 

and discrete intervals. Li and Huang (2010b) developed an interval-based possibilistic 

programming method for the planning of waste management, with minimized system cost 

and environmental impact. This model was a combination of FMP and SMP 

These hybrid and mixed approaches can combine the advantages and avoid the limitation 

of single methods, and flexibly use the availability of input data. However, all these 

interval-based methods need to be solved by ILP algorithms eventually. As a result, if the 

existing ILP algorithms prove to have fundamental flaws in its solution process, the 

validity of these previous ILP-based hybrid studies will be problematic. It is then in a 

pressing need of re-examining the existing ILP algorithms to overcome their limitations. 

This has been proven to be very difficult (Zhou et al., 2009). Otherwise, risks of the 

decisions generated by these flawed optimization processes need to be evaluated if they 

have to be implemented.  
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2.3.  Previous Studies on Solid Waste Management in HRM  

The Halifax Regional Municipality (HRM) was founded in 1996 with the combination of 

four communities: Halifax, Dartmouth, Bedford, and Halifax County (HRM, 2010a). It is 

the largest population center of the Canadian east coast and the capital of the province of 

Nova Scotia. HRM is also a municipality that committed to environmental sustainability.  

It was the first winner of FCM-CH2M HILL Sustainable Community Awards for the 

community-based waste resource management strategy (FCM, 2000). By implementing 

many environmental programs (Walker et al., 2004), HRM now has a very high waste 

diversion rate, which is 60% (HRM, 2010c).  

Ghadiri (2004) developed an interval-parameter fuzzy-stochastic mixed integer linear 

programming model for the long term planning of MSW management system in HRM. 

The modeling results can help to answer questions related to types, timing and sites of the 

MSW management activities, as well as reflect dynamic, interactive, and uncertain 

characteristics of the MSW system in HRM. However, the diversion rate target was not 

considered in the developed model and also the model was solved by the 2-step algorithm. 

Both facts lead to obvious limitations in Ghadiri’s study. The method proposed in this 

thesis attempts to address these issues in a desirable fashion.  
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CHAPTER 3  

VALIDITY CHECKING FOR ILP ALGORITHMS

3.1. Existing ILP Solution Algorithms 

Definition 3.1.1: An interval-parameter linear programming (ILP) model (for 

maximized problems) is defined as (Huang et al. 1992): 

Max XCf                                                    (3.1.1)

s.t. BXA (3.1.2)

0X (3.1.3)

where,

],...,,[ 21 ncccC

T
nxxxX ],...,,[ 21

T
mbbbB ],...,,[ 21

 }{ ijaA , i=1,…,m; j=1,2,…,n.

For minimize problems, the ILP model is as the following: 

Min XCf (3.1.4) 

s.t. BXA (3.1.5)

0X (3.1.6)

Where the “-” and “+” superscripts represent lower and upper bounds of an 

interval-parameter or variable respectively.  
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Since interval parameters exist in the objective function and constraints to reflect 

uncertainties in the model, the optimal solutions of the ILP model are also intervals: 

[ , ]opt opt optf f f               (3.1.7) 

1 2[ , ,..., ]opt opt opt noptX x x x                                           (3.1.8) 

[ , ]jopt jopt joptx x x , 1, 2,...,j n          (3.1.9) 

As intervals exist in ILP models, and no software can directly solve the model with 

intervals in it, the ILP models need to be converted into some formats that software can 

recognize and solve. Presently, three algorithms have been developed and used for solving 

ILP problems, including Monte Carlo simulation algorithm, 2-step algorithm, and 

best-worst case (BWC) algorithm.  

3.1.1.  Monte Carlo Simulation Algorithm 

Monte Carlo simulation method is a computational algorithm that relies on repeated 

random sampling to compute the results (Rubinstein, 1981). It is useful for modeling 

phenomena with significant uncertainty in inputs. To solve an ILP problem, it randomly 

sets values for parameters within their ranges to form a classic Linear Programming model 

(Sabelfeld, 1991). The process of Monte Carlo simulation algorithm (Robert and Casella, 

2004.) for ILP models is described in the following steps:  

[Step 1] Assign random feature to each interval parameter (i.e., aij, bi, and cj) in the ILP 

model with probability distribution functions (PDFs), and then convert each PDF into its 

cumulative distribution function (CDF). Figure 3.1 gives an example of the PDF of a 

normally distributed parameter and it could be converted into its CDF as shown in Figure 

3.2. Normal distribution is the most commonly used distribution of interval parameters, 

although other distributions like uniform distribution and exponential distribution could 

also describe the distributing characteristic of parameters.   
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[Step 2] Use random number generator (computed code available in most programming 

software) to generate a random number between 0 and 1, denoted as r.

[Step 3] Relate the generated random number r to the CDF curve for each parameter, and 

then get a set of deterministic values for parameters in aij, bi, cj. An example of how to 

randomly set a value for a parameter is shown in Figure 3.3, in which the parameter is 

found to be 5.5.  
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5.5

r

Figure 3.3 An example of randomly setting a value for a parameter 

[Step 4] Use the set of deterministic parameter values to replace the interval aij, bi, cj and 

thus form a classic deterministic linear programming model. Then solve the classic 

deterministic LP model and produce a set of deterministic solution. 

[Step5] Repeat Steps 2, 3 and 4 for a sufficient number of runs until a distribution of the 

solution for each specific decision variable is obtained.  
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Monte Carlo simulation method could be a very successful algorithm for ILP problems 

(Jahanshahloo et al, 2008) because it can generate the sound results through simulating the 

real-world situation. However, because of its reliance on large numbers of repeated 

computation of random or pseudo-random numbers, Monte Carlo simulation method has a 

very high computational requirement. Millions of times, or even billions of simulation 

need to be conducted in order to obtain a distribution for a specific solution. This makes the 

method unrealistic to solve complicated practical models with a large number of uncertain 

parameters and variables. In addition, in real-world problems, it is almost impossible to 

obtain sufficient data to formulate distributions for interval parameters (Nawrocki, 2001). 

Therefore, the best-worst case algorithm and the 2-step algorithm were developed as 

alternatives to solve the ILP models. 

3.1.2.  Two-Step Algorithm 

Two-step algorithm was introduced by Huang and Moore in 1993. It is a 2-step interactive 

method, which at first formulates a sub-model to solve for the upper bound of objective 

function when it is a maximization problem, and then solve the sub-model corresponding 

to the lower bound of objective function (Huang and Moore, 1993).  

For the n interval coefficients jc  (j = 1, 2, …, n) in the original objective function 

XCf  in the ILP model, if k1 of these coefficients are non-negative, and the rest are 

negative, let the n coefficients be rearranged such that 0jc  (j = 1, 2, …, k1) and 0jc

(j= k1 +1, k1+2, …, n). The sub-model corresponding to the upper bound of the objective 

function (when the objective is to be maximized) is formulated as: 

n

kj
jj

k

j
jj xcxcfMax

11 1

1
                 (3.1.10)

ibxaSignaxaSignats ijij

n

kj
ijjij

k

j
ij ,)()(..

11 1

1
(3.1.11)
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jx j ,0              (3.1.12) 

The sub-model (3.1.10)-(3.1.12) is a classic linear programming model, which can be 

solved with any existing algorithm such as the Simplex method. After solving the above 

sub-model corresponding to the upper bound of the objective function, we can then 

formulate the sub-model corresponding to the lower bound: 

n

kj
jj

k

j
jj xcxcfMax

11 1

1
(3.1.13)

ibxaSignaxaSignats ijij

n

kj
ijjij

k

j
ij ,)()(..

11 1

1
(3.1.14)

jx j ,0 (3.1.15)

1,...,2,1, kjxx joptj (3.1.16)

nkkjxx joptj ,...,2,1, 11 (3.1.17)

where joptx  (j = 1, 2, …, k1) and joptx  (j= k1 +1, k1+2, …, n) are the optimal solutions 

generated from sub-model (3.1.10)-(3.1.12). 

The sub-model (3.1.13)-(3.1.17) is also a classic linear programming model that can be 

easily solved to obtain the optimal solutions. Thus, after implementing the above two-step 

method, we can obtain optimal interval solutions of the ILP model as ],[ joptjoptjopt xxx

and ],[ optoptopt fff .

For minimization problems, the sequence of solving the sub-models is opposite. The first 

sub-model could be formulated as (3.1.18) to (3.1.20): 

n

kj
jj

k

j
jj xcxcfMin

11 1

1
(3.1.18)

ibxaSignaxaSignats ijij
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(3.1.19)
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jx j ,0 (3.1.20)

The second sub-model could then be formulated as equations (3.1.21) to (3.1.25).

n

kj
jj

k

j
jj xcxcfMin

11 1

1
                                             (3.1.21)

ibxaSignaxaSignats ijij

n
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ijjij
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j
ij ,)()(..

11 1

1
                  (3.1.22)

     1,...,2,1, kjxx joptj                                               (3.1.23)

     nkkjxx joptj ,...,2,1, 11                                       (3.1.24)

jx j ,0                                 (3.1.25)

Similar as maximization models, after solving the above two sub-models, we can obtain 

optimal interval solutions of the original ILP model. 

3.1.3.  Best-Worst Case Algorithm 

The best-worst case algorithm (BWC) (Tong, 1994; Chinneck and Ramadan, 2000) is 

similar as the 2-step algorithm in solving two sub-models. The major difference between 

them lies in that the 2-step algorithm differentiates the selection of extreme parameter 

values (i.e., lower or upper bounds of coefficients) for decision variables in the objective 

function based on their different signs (i.e., negative or positive coefficients in cj)., while 

the BWC treats all the parameters without discrimination. The solution process of the BWC 

algorithm is provided below for a maximization problem:  

The first step of the BWC algorithm is to formulate the Best-Case sub-model 

corresponding to the upper bound of the objective function as follows: 

jj xcfMax          (3.1.26) 

ibxats ijij ,..                            (3.1.27) 
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        jx j ,0                                                        (3.1.28)

The second step is to formulate and solve the sub-model corresponding to the worst-case 

situation: 

jj xcfMax                                                           (3.1.29)

ibxats ijij ,..                            (3.1.30) 

        jx j ,0                                                        (3.1.31)

For minimization problems, the BWC algorithm reformulates the original ILP model into 

following two sub-models corresponding to best- and worst-case, respectively.  

Best-Case Sub-model: 

jj xcfMin                                                           (3.1.32)

ibxats ijij ,..                                                    (3.1.33)

        jx j ,0                                                       (3.1.34)

Worst case Sub-model: 

jj xcfMin                                                        (3.1.35) 

ibxats ijij ,..                                                (3.1.36) 

jx j ,0                                                   (3.1.37) 

In the BWC algorithm, “best case” or “worst case” refers to a situation that both objective 

function and constraints of the best case or worst case sub-model represent the “best” or 

“worst” extremities, respectively, of the original ILP model. Specifically, for a 

maximization problem as indicated in the model (3.1.26-3.1.31), the objective function of 

the best-case sub-model represents the upper bound of the original ILP model (model 

3.1.26), and its constraints delimit a largest decision space for the optimal solution to be 

searched from it (model 3.1.27); while the objective function of the worst-case sub-model 
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gives the lower bound of the original ILP model (model 3.1.29) and its constraints bound a 

smallest decision space. However, for a minimization problem as indicated in the model 

(3.1.32-3.1.37), the objective function of the best case sub-model represents the lower 

bound of the original ILP model (model 3.1.32), and its constraints delimit a smallest 

decision space for the optimal solution to be searched from it (model 3.1.33); while the 

objective function of the worst-case sub-model gives the upper bound of the original ILP 

model (model 3.1.35) and its constraints bound a largest decision space. 

3.1.4.  Comparison of Two-Step and BWC Algorithms 

(1) Model Equivalence 

Theorem 3.1.1: The 2-step algorithm is equivalent to the BWC algorithm for an ILP 

problem if and only if jicSignaSign jij ,),()( :

n
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1
(3.1.38)

ibxaxats i
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ij ,..
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1
(3.1.39)

      jx j ,0                                                (3.1.40) 

.

Proof: Model (3.1.38-3.1.40) gives a general ILP model which is used as an illustrative 

example in the proof. Assume cj
± > 0 for j=1, 2,…,k1 and cj

± < 0 for j=k1+1, k1+2,…,n.

Also, let 1)( ijcSign  for j=1, 2,…,k1 and 1)( ijcSign  for j=k1+1, k1+2,…,n. Thus, 

according to the condition of Theorem 3.1.1, we have 1)()( ijij cSignaSign  for j=1, 

2,…,k1 and 1)()( ijij cSignaSign  for j=k1+1, k1+2,…,n. The proof of Theorem 3.1.1 

is provided as follows:  
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The first step we need to prove is that the objectives functions of two sub-models 

reformulated by the two algorithms are equivalent to each other. The 2-step algorithm  

reformulates the objective function of the original ILP model in a way that the decision 

variables are regrouped according to the signs of the corresponding coefficients (cj
±), as 

indicated in model (3.1.41 and 3.1.42). It is quite obvious that the upper-bound objective 

function (i.e., f+) reformulated by the 2-step algorithm is equivalent to the objective 

function of the best-case sub-model from the BWC algorithm, as indicated in model 

(3.1.41), and the lower-bound objective function (i.e., f -) from the 2-step algorithm is 

equivalent to that of the worst-case sub-model as seen in model (3.1.42). The only 

treatment is to ignore the upper- or lower-bound sign associated with the decision variables 

and the sign could be ignored mathematically without changing the model formulation. 

Sub-model #1(best-case sub-model objective function):  
n
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                                     (3.1.41) 
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Sub-model #2(worst-case sub-model objective function):  
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n

kj
jj

k

j
jj xcxc

11 1

1

n

j
jj xc

1

With equivalent objective functions being proved, we also need to prove that the 

corresponding decision spaces delimited by the their own constraints are also identical to 

each other under the condition of )()( jij cSignaSign .
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For 2-step algorithm, the feasible decision space for the sub-model #1 (f+) is defined as: 

iXXxxbxaSignaxaSignaX jjijij

n

kj
ijjij

k

j
ij

u ,0,,,)()(
11 1

1

(3.1.43)

For BWC algorithm, the feasible decision space for the best-case sub-model is defined as: 

iXXxxbxaxaXQ jjij

n
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u ,0,,,
11 1
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                (3.1.44) 

Since )()( jij cSignaSign , we have 1)( ijaSign  for j=1, 2,…,k1 and 1)( ijaSign  

for j=k1+1, k1+2,…,n. In addition, ijij aa   for j=1, 2,…,k1 because they are all 

positive coefficients, and ijij aa for j= k1, k1+1,…,n because they are all negative 

coefficients. Therefore, we have:
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Combine                      (3.1.45) and (3.1.46), we have: 

iXXxxbxaxaXP jjij

n
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u ,0,,,
11 1
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              (3.1.47) 

If we ignore the upper- or lower-bound sign associated with the decision variables, it is 

apparent that uP = uQ . It indicates that the feasible decision spaces delimited respectively 

by two algorithms for sub-model #1 and best-case sub-model are identical to each other. It 

can then be concluded that the 2-step algorithm is equivalent to the BWC algorithm if the 

condition )()( jij cSignaSign  exists. 
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Now we need to prove that, only if )()( jij cSignaSign , this theorem still holds. Let’s 

assume that there exists an ija  (where i=p, j = q), )()( jij cSignaSign .

If 1kp , it is obvious that 1)( pqaSign   and pqpq aa  . Following the same 

procedure as shown in equations (3.1. ) to (3.1. ), it is easy to see that uu QP ,

indicating that the 2-step algorithm is not equivalent to the BWC algorithm. Similarly, it is 

straightforward to see that this condition also holds for 1kp . Therefore, it has been 

proved that only when jicSignaSign jij ,),()( , the 2-step algorithm is equivalent 

to the BWC algorithm. 

Theorem 3.1.1 gives the conditions for 2-step algorithm to be equivalent to the BWC 

algorithm. If an ILP problem satisfies the condition of jicSignaSign jij ,),()( , the 

solutions obtained by these two algorithms will be same; otherwise the solutions will differ 

from each other. 

(2) Feasible Decision Space 

Theorem 3.1.2: Suppose an ILP problem has interval inequalities as  

iXXxbxaXQ jij

n

j
ij ,0,,

1
                                 (3.1.48) 

the largest and smallest feasible decision space corresponding to the upper bound and 

lower bound of the objective function solution can be presented as:  

iXXxbxaXQ jij

n

j
ij

u ,0,,
1

                               (3.1.49) 
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iXXxbxaXQ jij

n

j
ij

l ,0,,
1

                               (3.1.50) 

This theorem was firstly stated by Tong (1994) without providing a proof, and was then 

proved by Chinneck and Ramadan (2000) for the form of minimization problems.  

Theorem 3.1.2 gives the largest and smallest feasible decision space of an ILP model. A 

practical interpretation for an ILP model is that the interval parameters can potentially take 

any value between its prescribed lower and upper bound. When each parameter takes a 

value within its range, the ILP becomes a classic LP problem, and the feasible decision 

space of this classic LP is found to be located between the smallest and largest feasible 

decision space of the original ILP problem, and we define this classic LP as an event model 

of the ILP problem.  

Definition 3.1.2: An event model of an ILP is defined as a classic LP model where the 

interval parameters in A , B  and C  take a specific set of crisp values within their 

respective lower and upper bounds. 

Based on this definition, apparently, two sub-models reformulated by the 2-step algorithm 

and BWC algorithm are two specific event models representing two opposite extreme 

conditions of the original model, respectively. As the matter of fact, uQ  in model 3.1.40 

represents the constraints of the best-case sub-model by BWC and lQ  in model 3.1.41 

represents the constraints of the worst-case sub-model by BWC. In other words, the 

feasible decision spaces bounded by the BWC algorithm represent the largest and smallest 

feasible spaces of the original ILP model. From this definition, it becomes understandable 

that the feasible decision spaces provided by the 2-step algorithm only represent two 

general event model situations, and are enclosed by the BWC feasible spaces. It can then be 

concluded that the feasible decision space of an ILP delimited by BWC is larger than or 

equal to (when jicSignaSign jij ,),()( according to Theorem 3.1.1) the feasible space 

bounded by 2-step algorithm.  
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(3) Optimal Solution 

Theorem 3.1.3:  The optimal solutions obtained by the 2-step algorithm can be different 

from that obtained by the BWC algorithm in that: 

BWCoptstepopt ff2                                          (3.1.51) 

BWCoptstepopt ff2                                                          (3.1.52) 

Proof: In Theorem 3.1.1, it has been proved that when jicSignaSign jij ,),()( , two 

sub-models reformulated by the 2-step algorithm and BWC algorithm are equivalent, and 

thus the solutions obtained from two algorithms will be same. Therefore, we have 

BWCoptstepopt ff2  and BWCoptstepopt ff2 .

For a general situation when )()(,, jij cSignaSignji , this theorem also holds. Theorem 

3.1.2 tells that the feasible decision space for solving the upper bound objective function of 

BWC algorithm (i.e. best-case sub-model) is given as uQ  in model 3.1.49. According to 

Definition 3.1.2, the feasible decision space for solving the sub-model #1 from the 2-step 

algorithm is smaller than uQ  and is enclosed by uQ  when )()(,, jij cSignaSignji .

Based on the fundamental linear programming theory, the maximum objective function 

value obtained by the BWC algorithm (i.e., BWCoptf ) is equal to or greater than that obtained 

by the 2-step algorithm. Thus, we have BWCoptstepopt ff2 . Similarly, the minimum 

objective function value obtained by the BWC algorithm is equal to or less than that from 

the 2-step algorithm, i.e., BWCoptstepopt ff2 .

Remark 3.1.1: Both 2-step and BWC algorithms were proposed to account for system 

uncertainties in an ILP problem, according to Theorems 3.1.2 and 3.1.3, the 2-step 

algorithm searches for the optimal solutions in a smaller feasible decision space, and 

moreover, the decrease of feasible decision space is caused simply by the way the left-hand 
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sides of the sub-model constraints are formulated. Due to this space decrease, the 2-step 

algorithm arbitrarily ignores some system uncertainties to a certain degree and this 

ignorance was not theoretically or mathematically justified. In this sense, the BWC 

algorithm seems to be a better method in handling the uncertainties presented as intervals. 

Remark 3.1.2: In terms of the optimal solutions, both algorithms use the optimal solutions 

generated from each sub-model to form an interval optimal solution for each decision 

variable as well as an interval objective function value. For example, when the 2-step 

algorithm is used for solving a maximization ILP problem, its upper bound sub-model is 

solved first to obtain the upper bound solutions for decision variables joptx , where 

1,...,2,1 kj , and the lower bound solution for decision variables joptx , where 

nkkj ,...,21,11 . Then, its lower bound sub-model is solved to obtain the lower bound 

solutions for decision variables joptx , where 1,...,2,1 kj , and the upper bound solution 

for decision variables joptx , where nkkj ,...,21,11 . The obtained upper bound and 

lower bound solutions will then be combined to form the final interval optimal solution for 

the original ILP problem, i.e., .,...,2,1,],,[ njjxxx joptjoptjopt  The optimal value of the 

objective function of the original ILP model is also an interval: ],[ optoptopt fff , where 

optf  and optf  represent the upper- and lower- bound values of the original objective 

function, respectively, as given in model (3.1.44) and (3.1.45). 

),...,,,,...,,( )()2()1(21 111 optnoptkoptkoptkoptoptopt xxxxxxff                     (3.1.53) 

),...,,,,...,,( )()2()1(21 111 optnoptkoptkoptkoptoptopt xxxxxxff                    (3.1.54) 

In the practical decision-making process, the decision makers can choose any values within 

the interval ranges for each decision variable to develop a practical implementation 

scheme, depending on their preferences to different policies and their interpretation of 

system risk and economic return (Huang et al, 1993; Zou et al, 2000; Yeh and Tung, 2003).  
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3.2. Validity Checking for Two-Step and BWC Algorithms 

As ILP models are commonly formulated for decision problems in many fields (Ben-Israel 

and Robers, 1970; Rommelfanger et al. 1989; Huang and Moore 1993; Tong 1994; Hansen 

and Walster 2004), the 2-step and BWC algorithms are also widely employed to solve 

these models (Huang and Moore 1993; Oliveira and Antunes 2007; Qin et al. 2007). As 

explained in Remark 3.1.1, 2-step algorithm ignores some of the system uncertainties 

when reformulating the sub-model constraints and this treatment could be a potential flaw 

of this algorithm and could very possibly lead to feasibility and optimality concerns 

towards the generated interval optimal solutions. This concern has triggered off a desire to 

check the validity of both algorithms which has not been conducted previously.  In this 

study, a numerical example is designed to illustrate the validity checking process for both 

algorithms, and the focus of the validity checking is on the investigation of any infeasible 

solutions existed in the generated interval optimal solution and any optimal solutions 

missing from it. 

3.2.1.  A Numerical Example for Validity Checking 

In order to perform the validity checking for both algorithms, a minimized ILP model 

with two decision variables and two interval constraints was designed as follows and 

used as the numerical example:  

21]3,2[ xxfMin                                                        (3.2.1)

]4,3[]4.1,2.1[.. 21 xxts                                                   (3.2.2)

       ]6,5[]0.2,5.1[ 21 xx                                                   (3.2.3)

       0, 21 xx                                                               (3.2.4) 

Before solving this ILP model by 2-step and BWC algorithms, the first step is to generate a 

large number of event models using the Monte-Carlo Simulation method as described in 

Section 3.1.1. Each event model is a classic deterministic LP model which can be easily 

solved. By solving these event models, a large number of solution sets for decision 
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variables can be produced and the solution ranges of the objective function and decision 

variables can then be obtained. The larger the numbers of the event models are solved, the 

better the solution resolution and accuracy could be. In this study, 50 million event models 

were generated and solved by the Monte-Carlo simulation method, and the obtained 

interval solutions are: f = [8.18, 15.50], x1 = [3.76, 4.95], x2 = [0.30, 1.11].

(1) 2-Step Algorithm Solution 

Based on the 2-step interactive algorithm described in Section 3.1.2, two sub-models 

corresponding to f - and f + could be formulated as follows:  

Sub-model #1: 

212 xxfMin                                                     (3.2.5) 

34.1.. 21 xxts                                                        (3.2.6) 

52 21 xx                                                        (3.2.7) 

0, 21 xx                                                           (3.2.8) 

Sub-model #2: 

213 xxfMin                                                        (3.2.9) 

42.1.. 21 xxts                                                      (3.2.10) 

65.1 21 xx                                                     (3.2.11) 

        0, 21 xx                                                         (3.2.12) 

optxx 11                                          (3.2.13) 

optxx 22                                           (3.2.14) 

In Sub-model #2, optx1  in constraint (3.2.13) and optx2  in constraint (3.2.14) are the 

optimal solutions of decision variables from Sub-model #1. Both sub-models are classic 
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deterministic LP models and could be solved easily. The optimal interval solutions 

obtained by using 2-step algorithm are f = [8.24, 15.41], x1 = [3.82, 4.89], x2 = [0.59, 0.74]. 

(2) BWC Algorithm Solution 

According to the BWC algorithm explained in Section 3.1.3, two sub-models 

corresponding to the best-case and worst-case situations can be formulated as follows:  

Best-Case Sub-model: 

212 xxfMin                                                     (3.2.15) 

32.1.. 21 xxts                                                      (3.2.16) 

52 21 xx                                                       (3.2.17) 

0, 21 xx                                                         (3.2.18) 

Worst-Case Sub-model: 

213 xxfMin                                                    (3.2.19) 

44.1.. 21 xxts                                                     (3.2.20) 

65.1 21 xx                                                     (3.2.21) 

0, 21 xx                                                         (3.2.22) 

Both sub-models are classic deterministic LP models and could be solved easily. The 

optimal interval solutions obtained by the BWC algorithm are f = [8.13, 15.58], x1 = [3.75, 

4.97], x2 = [0.63, 0.69]. 
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3.2.2.  Result Interpretation and Validity Checking 

(1) Optimality Checking 

According to the principle of Monte Carlo simulation algorithm, although a large number 

of event model runs (50 million times) were implemented, the optimal solution space 

provided by the Monte-Carlo simulation should be narrower than the real solution space of 

the original example model, at most get very close to it. Before checking the validity of the 

optimal interval solutions obtained by 2-step and BWC algorithms, two facts should be 

noted: (1) every optimal solution generated by solving Monte-Carlo simulation even model 

represents a subset of true optimal solution sets of the original model, and solution 

infeasibility is not an issue; (2) the optimal solution spaces provided by both 2-step and 

BWC algorithm should completely include the optimal solution space from the 

Mont-Carlo simulation method. Mathematically, it yields: 

optopt xx 11 95.476.3 , optopt xx 22 11.130.0 , and optopt ff 50.16518.8

Based on these two facts, if the optimal solution space provided by 2-step or BWC 

algorithm does not cover the interval ranges of Monte-Carlo simulation results, i.e., the 

above relationship cannotbe satisfied, this could lead to two significant consequences: (1) 

some optimal solution pairs are missing from the 2-step algorithm or BWC algorithm; (2) 

the optimal solutions produced by both algorithms might include some pair points which 

are infeasible. 

The results obtained from three algorithms are summarized in Table 3.1 for solution 

comparison purpose. From Table 3.1, it can be seen that interval ranges of the optimal 

solutions provided by 2-step algorithm for both decision variable x1, x2 and objective 

function f are all smaller than that provided by the Monte-Carlo simulation. It is obvious 

that some optimal solution pairs (x1, x2) are missing from the 2-step algorithm, and this 

algorithm fails the validity checking in terms of optimality validity. This result is also in 

line with the previous observation that the sub-models reformulated by 2-step algorithm do 

not represent the actual extreme situations. 
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Comparing to the 2-step algorithm, BWC has a better performance on decision variable x1

which covers its full interval range produced by the Monte-Carlo simulation; however, its 

performance on decision variable x2 is worse with an even smaller interval range than 

2-step algorithm. It is obvious that, similar as the 2-step algorithm, some optimal solution 

pairs (x1, x2) are missing from the BWC algorithm as well, and this algorithm fails the 

checking in terms of optimality validity. According to the fundamental principles of BWC 

algorithm, reformulated best-case and worst-case sub-models represent two extreme 

situations of the original model, and the missing optimal solutions are not supposed to 

occur. This needs further investigation and is out of the scope of this study. As to the 

objective function, the BWC provides the largest ranges among three algorithms to cover 

the most optimistic and most pessimistic decision spaces, which allows the system to have 

a more flexible performance.  

Table 3.1 Results obtained from three ILP algorithms 

x1 x2 Objective function 
Algorithms 

x1
- x1

+ x2
-

2
+ f - f +

Monte Carlo simulation 3.76 4.95 0.30 1.11 8.18 15.50 

2-step algorithm 3.82 4.89 0.59 0.74 8.24 15.41 

BWC 3.75 4.97 0.63 0.69 8.13 15.58 

(2) Feasibility Checking 

Figure 3.4 gives the feasible decision space and optimal solution space for the numerical 

example provided by the 2-step algorithm. The lines BJIG and CKLF represent the 

boundaries of the feasible decision space delimited by two sub-models’ constraints (3.2.6)

and (3.2.10), respectively; while the dotted blue lines beside each of them represent two 

BWC sub-models’ constraints reformulated by the same original constraints. The lines 

AJKD and HILE represent the boundaries of the feasible decision space delimited by two 

sub-models’ constraints (3.2.7) and (3.2.11), respectively; these two lines are in 
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coincidence with BWC sub-models’ constraints (3.2.17) and (3.2.21) since all their 

coefficients are positive. Figure 3.4 gives the feasible decision space delimited by the 

2-step algorithm which is under the lines of BJIG and CKLF and above the lines of AJKD 

and HILE. We can basically divide the entire feasible decision space into several regions 

and categories: the triangle CDK represents the absolute feasible region which satisfies all 

the constraints; the big triangle above line BJIG, and the big triangle below line HILE 

represent infeasible region as they violate at least one original constraint; the space 

bounded by points in sequence B, J, I, E, D, K, C represents softly feasible region which 

means the solution pairs (x1, x2) are not guaranteed to satisfy all the constraints; 

Quadrangle IJKL is the feasible optimal solution space provided by 2-step algorithm. 

The rectangular grey area in Figure 3.4 is the optimal solution region for decision variable 

pair (x1, x2) obtained by the 2-step algorithm. This plot can help explain the infeasibility 

checking results. This figure show  that most of the 2-step optimal solutions are located in 

the softly feasible region. There is a small triangular area (MOP) right above the dotted 

blue line which is located in an infeasible region. Any optimal solution pairs obtained by 

the 2-step algorithm and located in this small triangular area are infeasible solutions for the 

original example model. For example, when x1=3.82 and x2=0.74, which is the left upper 

point of the solution rectangle (point M), the constraint (3.2.2) would be violated. It is 

obvious that infeasible solutions have been generated by the 2-step algorithm. In addition, 

the little triangular area (RNQ) under the blue dotted blue line is the non-optimal solution 

space. Solutions in this area are valid but not optimal. 
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Figure 3.5 presents the feasible decision space and optimal solution space provided by the 

BWC algorithm. Line B’J’I’G’ represents the constraint of (3.2.16); Line C’K’L’F’

represents the constraint of (3.2.20); Line A’J’K’D’ represents the constraint of (3.2.17); 

and Line H’I’L’E’ represents the constraint of (3.2.21). The two dotted blue lines represent 

the two corresponding constraints from the 2-step algorithm. The triangle C’D’K’ is an 

absolutely feasible region as it satisfies all the constraints; the big triangle above Line 

B’J’I’G’, and the big triangle below Line H’I’L’E’ are the infeasible regions as they violate 

at least one constraint; the space bounded by points in sequence B’, J’, I’, E’, D’, K’, C’

represents softly feasible region which means the solution pairs (x1, x2) are not guaranteed 

to satisfy all the constraints; the quadrangle I’J’K’L’ is the feasible optimal solution space. 

The rectangular grey area in Figure 3.5 represents the optimal interval solution obtained 

by the BWC algorithm. Once again, it shows that most of the BWC optimal solutions are 

located in the softly feasible region. The small triangular grey area located right above 

Line B’J’I’G’ includes all the infeasible solution pairs which are generated by the BWC 

algorithm.  

The observations from Figures 3.4 and 3.5 indicate that both 2-step and BWC algorithm 

fails the solution feasibility checking, and the optimal solutions provided by them are not 

always valid. From the decision-making standpoint, the generation of infeasible solutions 

might lead to a risky even failed decision.  

Figures 3.4 and 3.5 can also help explain the missing optimal solutions from both 2-step 

and BWC algorithms. For example, for the minimized problem (3.2.15), the optimization 

solution exists when both x1 and x2 take the values as small as the constraints permit. In 

Figure 3.5, a solution at point L’  is obviously a feasible solution and can provide a lower 

objective function than point K’, since both x1 and x2 take smaller values at point L’ than

point K’. However, point K’ is included in the optimal solution generated by the BWC 

algorithm while point L’ is missing from the solution.  
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In addition, the solution spaces from both algorithms are mostly located within the softly 

feasible regions. It indicates that the solution provided cannotbe guaranteed to be feasible 

in all situations. There exists the risk of violating some constraints in the softly feasible 

region. If we have to use the optimal solutions generated by two algorithms to develop 

practical implementation schemes, the risk level of violating the constraints needs to be 

considered. However, the existing ILP models cannotincorporate this risk into its 

decision-making process. 

The results from this numerical example can help get the following conclusions in terms of 

validity checking for both 2-step and BWC algorithms: (a) the optimal solutions are not 

always valid and part of the results might be infeasible; (b) some optimal solutions are 

missing and not included in the obtained interval solutions. Two possible solutions may be 

helpful for dealing with this dilemma: (1) improving or redeveloping both algorithms, and 

(2) incorporating the decision risks into the decision-making process for helping develop 

practical implementation policies.  
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CHAPTER 4 

FREILP MODEL DEVELOPMENT 

4.1. Risk Explicit Interval Linear Programming (REILP) 

4.1.1.  REILP Modeling Approach 

From the ILP validity checking conducted in Chapter 3, it has proved that the optimal 

solutions provided by both 2-step and BWC algorithms are not always valid. The ILP 

solutions are mostly located in the softly-feasible decision region, indicating that some 

solutions would have risks of violating some of the constraints. Moreover, both algorithms 

tend to generate infeasible or suboptimal implementation schemes. If the solutions are used 

for actual decision making, the decision makers need to acknowledge the potential risks 

associated with the generated decisions for making good use of them. However, the 

existing ILP solution algorithms are incapable of reflecting the linkage between decision 

risks and system performance. It is desired to develop new approaches. 

To overcome the limitations of ILP algorithms while maintaining the strengths of ILP, a 

Risk Explicit Interval Linear Programming (REILP) was recently proposed. The 

development of a risk explicit ILP (REILP) model is presented as following (Zou et al., 

2010).

Based on Definition 3.1.1, an event model of a general ILP model can be formulated as: 

n

j
jjjj xcccfMax

1
0 )]([                                            (4.1.1)

ibbbxaaats iiii

n

j
jijijijij ,0)]([)]([..

1
                  (4.1.2)

jx j ,0                                                     (4.1.3) 

10 0                                                     (4.1.4) 

jiij ,,10                                                (4.1.5) 
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ii ,10                                                  (4.1.6) 

Apparently, the model represented by equations (4.1.1) to (4.1.6) is a classic LP model, 

which corresponds to a specific set of crisp value of each coefficient given 0 , ij  and i .

By re-arranging terms in equations (4.1.1) to (4.1.6), the model becomes: 

])([ 0
1

jjj

n

j
jj xccxcfMax                                   (4.1.7) 
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                    (4.1.8) 

jx j ,0                                                    (4.1.9) 

10 0                                                   (4.1.10) 

jiij ,,10                                               (4.1.11) 

ii ,10                                                 (4.1.12) 

Let jjj xcc )(0 , and )()(
1

iiijijijij

n

j
i bbxaa , where mi ,...,2,1 ,

the model can be reformatted as: 

)(
1

n

j
jj xcfMax                                            (4.1.13) 

ibxats ii

n

j
jij ,..

1
          (4.1.14) 

jx j ,0                                                    (4.1.15) 

When and i  equal to 0, the model (4.1.13) to (4.1.15) becomes the worst-case 

sub-model of the BWC algorithm and the worst-case sub-model represents a most 

pessimistic situation. In an interval decision environment, the solution obtained for the 

most pessimistic sub-model would have no risk of violating the constraints since the 

formulation has guaranteed satisfying the tightest constraints (i.e., risk = 0 when and i
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equal to 0). In cases where i  takes values greater than 0, the constraints are relaxed by a 

level of i  to obtain optimal solutions for achieving higher system return; in the 

meantime, the solution itself would be subjected to certain level of risk of violating the 

constraints. Obviously, the larger the i , the higher the risk would be associated with the 

solutions until i  reaches its maximum values when both 1 ( , )ij i j  and 1 ( )i i ,

which represents the most optimistic situation. Therefore, i ( i ) is qualified to evaluate 

the risk level of a decision, representing the possibility of a decision violating the 

constraints.

Definition 4.1.1: Function )()(
1

iiijijijij

n

j
i bbxaa  is defined as the risk

function for constraint i in an ILP problem.  

From equations (4.1.13) to (4.1.15), we know that (a) when i  = 0, the decision based on 

the optimal solution has no risk of violating the corresponding constraint; and (b) when i

> 0, the decision based on the optimal solution will have a level of risk of violating the 

corresponding constraint in proportion to the value of i .

The original ILP model is to maximize the objective function (i.e., system return). Since the 

system return and decision risk represent two conflicting factors in practical decision 

making process, a sound and satisfactory decision can be obtained only through minimizing 

the risk function while maximizing the system return. This leads to a multi-objective 

optimization problem: 

n

j
jj uxcfMax

1
                                     (4.1.16) 

n

j
iiijijijiji bbxaaMin

1
)()(                             (4.1.17)  
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                                                (4.1.18)            

jx j ,0                                      (4.1.19)

Where  is a general arithmetic operator which can be a simple addition, a weighted 

addition, simple arithmetic mean, weighted arithmetic mean, or a max operator. The 

subscript for i , i, suggests that the operator be applied across constraints to obtain a 

unified risk function for the entire optimization problem. For each individual constraint, the 

constraint-wise risk function )()(
1

iiijijijij

n

j
bbxaa  can differ from that of 

another constraint by order of magnitude due to different categories of bi as well as the 

incorporation of interactions among ij , , , , ,ij ij j i ia a x b  and ib  in the function. Therefore, 

it is necessary to convert the constraint-wise risk function into comparable magnitude. A 

simple method through scaling each constraint-wise risk function by 
ib
1  can be a feasible 

choice, which essentially represents a fractional risk factor from the most pessimistic case. 

In application, more refined approaches can be developed to better reflect the decision 

environment for the specific case. 

To solve the multi-objective programming problem, the model (add the model numbering 

here) can be re-formulated as:             

n

j
iiijijijiji bbxaaMin

1
)()(                             (4.1.20)           

s.t.    )()( 0
1

optoptopt

n
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jj fffxc                                (4.1.21)  
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pre0                                                             (4.1.23) 

10 ij                                          (4.1.24) 

jx j ,0                                          (4.1.25) 

ii ,10                                                (4.1.26) 

Definition 4.1.2: The optimization model (model numbering) is derived from the original 

ILP model and includes a risk-minimization objective function. This model is defined as a 

Risk Explicit ILP (REILP) model.  

Here, 0  is pre-defined by the decision makers, representing the degree of aggressiveness, 

or alternatively, the aspiration level of decision makers given the uncertainties in the 

optimization model. When 0 = 0, the model is corresponding to the least aggressive case 

where the most conservative and safe solution is expected. On the other hand, when 0 = 1, 

the model is corresponding to the most aggressive case where the most optimistic solutions 

but risky solutions will be generated. Apparently, in most real-world situations, decision 

makers would prefer balanced solutions with 0 < 0 < 1 to the extreme solutions represented 

by 0 = 0 or 0 = 1 as the basis of practical decision making. Therefore, the task is to find 

the optimal solutions with least risk level for a desired degree of aggressiveness. 

The risk optimization model REILP (4.1.20) to (4.1.26) is a nonlinear model. The 

non-linearity is generated by the introduction of risk level variables (i.e., 0  and ij ) to 

represent the complex non-linear interactions of uncertainties between different variables 

and terms in a constraint. It is apparent that for a specific constraint, if a large ij  is 

associated with a small jx the large ij would have small contribution to the risk in the 

decision. On the other hand, if the ij  is associated with a large jx , it would result in 

significant contribution to the overall risk of decision making. 
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4.1.2.  Discussion of REILP 

(1) Aspiration Level 0

For responding to the issues associated with the ILP solution, the REILP approach was 

developed attempting to provide decision-makers more satisfactory and practical 

implementation schemes through minimizing the decision risks while maximizing the 

system return. The improvement over the existing 2-step and BWC solutions is that the 

risks associated with the possible optimal solutions and decisions derived from them could 

be explicitly incorporated into the decision-making process. However, one potential 

problem associated with the aspiration level 0 needs to be further discussed. 

In the formulation of a REILP model, its original objective was converted into a constraint 

with the following format (Zou et al., 2010): 

)()( 0
1

optoptopt

n

j
jj fffxc ,

where,

jjj xcc )(0 ,

So we get: 

)(]))([( 00
1

optoptoptjjj

n

j
j fffxccc                            (4.1.27) 

Where, 0  appears in both right-hand side and left-hand side of this constraint, 

representing the aspiration level that reflects the decision-maker’s preference and needs to 

be preset. A major assumption used behind this formulation is that the system return 

coefficient cj has the same changing rate (i.e., 0 ) from its lower bound as fopt . However, 

this is not always true in a real-world decision making problem, and cj and fopt might take 
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different rates changing with their own intervals. A better formulation for the inequality 

(4.1.27) should be: 

)(]))([( 0
1

optoptoptjjjj

n

j
j fffxccc                            (4.1.28) 

Where, j is the changing rate for cj, j = 1,…, n, and it is not necessarily equal to the 

aspiration level 0  in most cases. 

(2) Risk Function 

In the REILP formulation, the risk function was defined as (Zou et al., 2011): 

)()(
1

iiijijijij

n

j
i bbxaa

By this equation, the risk function can reflect the risk of violating the corresponding 

constraints aij and bj, but cannotreflect the risk of violating the constraints of cj, and it 

cannotdirectly reflect the relation between the risk function and the aspiration level. When 

the original objective function is converted into a constraint as (4.1.28), the risk of violating 

this secondary constraint should also be considered. This fits the common sense that a 

higher aspiration level, which means an aggressive decision and a higher system return, 

will affect the risk level of the whole system. The risk function without considering the risk 

level of parameters cj and aspiration level 0  is not sufficient. 

(3) Preset of Aspiration Level 

It might be simple for some decision makers to preset an aspiration level and then obtain a 

serious of results. However, in some situations, decision makers may not have clear 

understanding of the aspiration level and cannot select a sound aspiration level that 
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represents their professional judgment of the situation. Blindly selecting an aspiration level 

may lead to undesirable results. 

4.1.3.  An Illustrative Example of REILP 

(1) The Example and Results 

In the development of the REILP approach, an example was given to illustrate the 

applicability of the approach (Zou et al., 2010). The example was a land-use management 

problem for nutrient loading control and maximum profits gain. In this hypothetical case, 

there is 1,200 acre of lands in a watershed that is available for two types of crop production. 

It is known that crop 1 can reach unit productivity of 4,326-4,920 kg/acre, with a net profit 

of $0.26 to 0.3/kg, and the production of crop 2 can reach 3,480 – 4,120 kg/acre, which can 

realize a net profit of 0.22 to 0.29 dollar/kg. To produce crop 1, the unit area nitrogen and 

phosphorus loading discharged to a lake in the watershed is 4.3 to 5.2 kg/acre/yr and 0.42 

to 0.48 kg/acre/yr, respectively. For crop 2, the loading rates are 3.2 to 3.6 kg/acre/yr for 

nitrogen and 0.27 to 0.32 kg/acre/yr for phosphorus. It is known from a Total Maximum 

Daily Load (TMDL) study that the total loading of nitrogen and phosphorus discharged 

into the lake cannot be greater than 4,144 and 379 kg/yr, respectively, without considering 

an explicit margin of safety. However, when a 10% margin of safety is imposed, the 

maximum allowable loading for nitrogen and phosphorus are 3,730 and 341 kg/yr, 

respectively. The watershed authorities need a land-use planning scheme to optimally 

allocate lands to different crops in order to maximize the crop production profit while 

satisfying the environmental requirements in terms of nitrogen and phosphorus discharges. 

This land-use ILP model was firstly formulated as follows: 

21 *]4120,3480[*]29.0,22.0[*]4920,4326[*]3.0,26.0[ XXfMax      (4.1.29) 

21 *]8.1194,765[*]1476,1125[ XXfMax

1200.. 21 XXts
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]4144,3730[*]6.3,2.3[*]2.5,3.4[ 21 XX

]379,341[*]32.0,27.0[*]48.0,42.0[ 21 XX

0, 21 XX

Through the BWC algorithm, an interval maximized system benefit could be obtained: f = 

[803250, 1511470]. According to the REILP approach, this original land-use ILP model 

can be converted into a risk explicit ILP model: 

3730/)37304144(3730/)2.36.3(3730/)3.42.5( 52413 rXrXrMin

341/)341379(341/)27.032.0(341/)42.048.0( 82716 rXrXr     (4.1.30) 

s.t.
)8032501511470(803250))7658.1194(765())11251476(1125( 02010 rXrXr

120021 XX

   )37304144()2.36.3()3.42.5(37306.32.5 5241321 rXrXrXX

)341379()27.032.0()42.048.0(34132.048.0 8271621 rXrXrXX

0, 21 XX

1,,,,,,0 8765430 rrrrrrr

Where, r0 is the aspiration level that needs to be preset by decision makers. 

The solutions of the example problem are given in Table 4.1 (Zou et al., 2010). In the table, 

NRL refers to the Normalized Risk Level, which is calculated by multiplying the risk 

function value by a number to make the smallest NRL value close to 0 and the greatest 

close to 1. 
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Table 4.1 The optimal solutions of the example problem 

0r 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Profit (105$) 8.03 8.74 9.45 10.20 10.90 11.60 12.30 13.00 13.70 14.40 15.10 

X1 (acre) 531 0 0 0 0 0 2 66 132 202 276 

X2 (acre) 277 1082 1110 1136 1160 1181 1198 1134 1068 998 924 

NRL 0.00 0.10 0.20 0.28 0.36 0.43 0.50 0.60 0.70 0.81 0.93 

Source: Zou et al., 2010 

(2) Revisit of the Example Model and Results  

As discussed in the previous section, when the original objective function is transformed 

into a new constraint (4.1.27), )(]))([( 00
1

optoptoptjjj

n

j
j fffxccc , 0

appears in both right-hand side and left-hand side of this constraint. It is assumed that the 

system return coefficient cj has the same changing rate (i.e., 0 ) from its lower bound as 

fopt. However, in a real-world decision making problem, the changing rate for cj ( j ) is not 

necessarily same as the changing rate for fopt (i.e., 0 ). Using 0 in both hand sides may 

lead to infeasible problems. A better formulation for the inequality (4.1.27) should be: 

)(]))([( 0
1

optoptoptjjjj

n

j
j fffxccc

Under this circumstance, we use 1r  for X1, 2r  for X2, and still 0  for fopt. The example 

model (4.1.29) could then be reformulated as (4.1.31), which is different from the model 

(4.1.30):

3730/)37304144(3730/)2.36.3(3730/)3.42.5( 52413 rXrXrRISKMin

  341/)341379(342/)27.032.0(341/)42.048.0( 82716 rXrXr

(4.1.31)
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s.t.
)8032501511470(803250))7658.1194(765())11251476(1125( 02211 rXrXr

120021 XX

     )37304144()2.36.3()3.42.5(37306.32.5 5241321 rXrXrXX

     )341379()27.032.0()42.048.0(34132.048.0 8271621 rXrXrXX

0, 21 XX

     1,,,,,,,,,0 876543210 rrrrrrrrr

where 0r  is the aspiration level given the decision-makers. 

Table 4.2 The optimal solutions of the model (4.1.31)  

Aspiration 
level 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

r1 1 1 1 1 1 1 1 1 1 1 1 

r2 1 1 1 1 1 1 1 1 1 1 1 

r3 0 0 0 0 0 0 0 1 0.484 0.484 0.999 

r4 0.004 0.004 0.04 0 0 0 0 0.420 0.864 1 0.999 

r5 0 0 0 0 0 0 0 0.003 0.003 0.358 0.999 

r6 0 0 0 0 0 0 0 0.347 0.271 0.271 0.271 

r7 0 0 0 0 0 0 0 0.127 0.451 0.792 1 

r8 0 0 0 0 0 0 0 0 0 0 0.962 

X1 (acre) 543 592 639 686 590 323 39 0 0 24 276 

X2 (acre) 2 2 2 2 180 570 980 1087 1146 1176 924 

Profit (103$) 803 874 945 1016 1087 1157 1228 1299 1370 1441 1511 

Risk 
function 0 0 0 0 0 0 0 0.070 0.182 0.306 0.532 
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The model (4.1.31) was solved by LINGO, and the solutions was obtained and presented in 

Table 4.2. The results indicate that r1, r2, r3, r4, r5, r6, r7 and r8 all satisfy the range of [0, 1], 

and also a reasonable increasing trend between system benefit and aspiration level is 

observed. However, the values of risk function all take 0 for r from r1 to r6, indicating that 

there is no linkage between the decision risks (in terms of the aspiration levels) and system 

return.

As discussed in section 4.1.2, the risk function defined by Zou et al. (2010) can reflect the 

risk of violating the corresponding constraints aij and bj, but cannotreflect the risk of 

violating the constraints of cj, and it cannotdirectly reflect the relation between the risk 

function and the aspiration level. When the original objective function is converted into a 

constraint as (4.1.28), the risk of violating this secondary constraint should also be 

considered.

Thus, Based on the definition and formulation of the risk function:  
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And the secondary constraints that: 
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A comprehensive risk function could be formulated as: 

n
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(4.1.32)

By choosing the general operator i  and k  as 
ii bb

2  and 
optopt ff

2 , the risk 

function then becomes: 
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(4.1.33)

The equation (4.1.33) is the risk function that will be used in the model (4.1.31) to replace 

its objective function. Solving this new model and the obtained results are given in Table 

4.3. The results indicate that the risk function is directly related with the aspiration level, and the 

system benefit increases with the increasing risk function. 

Table 4.3 The optimal solutions when the risk function is (4.1.33) 

Aspiration 
level 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Risk 
function 0 0.176 0.353 0.529 0.705 0.886 1.068 1.269 1.501 1.739 2.029 

r1 0 0.122 0.140 0.520 0.900 1 1 1 1 1 1 

r2 0 0.416 1 1 1 1 1 1 1 1 1 

r3 0 0 0 0 0 0 0.114 1 1 1 1 

r4 0 0 0 0 0 0.160 0.182 0.265 0.358 0.411 1 

r5 0 0 0 0 0 0 0.003 0.166 0.563 1 0.999 

r6 0 0 0 0 0 0 0 0 0 0 1 

r7 0 0 0 0 0 0 0 0.127 0 0.152 0.707 

r8 0 0 0 0 0 0 0 0 0.681 1 1 

X1 (acre) 531 531 531 531 531 366 142 0 0 24 276 

X2 (acre) 269 269 269 269 269 516 852 1087 1146 1176 924 

Profit (103$) 803 874 945 1015 1087 1157 1228 1299 1370 1441 1511 
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4.2. FREILP Model Development 

In the REILP, the aspiration level, 0, represents the degree of aggressiveness and the 

aspiration level of decision makers under an uncertain decision-making environment. 

When 0 = 0, the model corresponds to the least aggressive case and the most conservative 

and safe solutions will be obtained; while when 0 = 1, the model corresponds to the most 

aggressive case and the most optimistic but risky solutions will be obtained. The aspiration 

level needs to be given and preset by the decision makers before running the model. 

However, when facing many practical decision-making problems, the decision makers 

may not be able to determine exactly their specific aspiration levels; and more importantly, 

different decision makers and stakeholders may have different opinions about their 

preferences to different decisions and policies in terms of their aggressiveness or 

conservativeness. In this sense, the aspiration levels exist in the human thinking, being 

fuzzy in nature. As an extension to previous efforts, this study attempts to develop a fuzzy 

based REILP approach to account for the fuzziness associated with the aspiration levels, 

and thus improve the applicability of the proposed method.  

4.2.1.  Fuzzy Set Theory 

Fuzzy Set Theory (Zadeh, 1965; Zadeh, 1968) was formalized as an extension of the 

classical notion of set. In classical set theory, the membership of elements in a set is 

assessed in binary terms according to a bivalent condition — an element either belongs or 

does not belong to the set. By contrast, fuzzy set theory permits the gradual assessment of 

the membership of elements in a set; this is described with the aid of a membership 

function valued in the real unit interval [0, 1]. Fuzzy sets generalize classical sets, since the 

indicator functions of classical sets are special cases of the membership functions of fuzzy 

sets, if the latter only take values 0 or 1. The fuzzy set theory can be used in a wide range of 

domains in which information is incomplete or imprecise. 

Definition 4.2.1: If X is a collection of objects denoted generically by x, then a fuzzy set Ã

in X is a set of ordered pairs: 
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XxxxA A~,~

xA~  is called the membership function or grade of membership of x in Ã, which maps X

to the membership space M. When M contains only the two points, 0 and 1, Ã is non-fuzzy. 

The range of the membership function is a subset of the nonnegative real numbers whose 

supremum is finite. Elements with a zero degree of membership are normally not listed. 

For example, a fuzzy set of “real numbers close to 10” (Zimmermann, 1991) could be 

expressed as the following expression and the corresponding curve is given in Figure 4.1: 

12
~~ 101,~ xxxxA AA

5 10 15

1

x

y=(1+(x-10)2)-1

y

Figure 4.1 An example of the membership function of the fuzzy set  

“real number close to 10” 

For any given number, x, the membership grade could be calculated by the above 

expression xA~ . For example, when x = 7, the membership grade of “number 7 close to 

10” is 1.010717
12

~A ; and when x = 10, the membership grade is 
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1101017
12

~A . The membership grade indicates the possibility or likelihood 

of a real number belonging to this fuzzy set. 

Definition 4.2.2: The crisp set of elements that belong to the fuzzy set Ã at least to the 

degree  is called the -level set (Zadeh, 1975; Zimmermann, 1991).  

xXxA A~

Given the -level, the -level set could be obtained simply by drawing a line of -level in 

the figure of the membership function. The elements above the line would be the -level 

set. So the degree  is also called -cut. 

For the fuzzy set “real numbers close to 10”, when -cut = 0.5, the line of -cut = 0.5 cuts 

the membership function into two parts (above and below the line_ and two intersection 

points were obtained with x = 9 and x = 11, respectively (see Figure 4.2). So when -cut = 

0.5, the elements of the -level set include all the real numbers between 9 and 11 with their 

membership grades all being greater than 0.5. The -cut concept has been widely used in 

the practical decision-making problems to deal with system fuzziness.  

5 9 10 11 150

0.5

1

x

y=(1+(x-10)2)-1

y

Figure 4.2 The membership function of “real numbers close to 10” under -cut = 0.5 
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Lofti Zadeh also developed a membership function for “young people” (Zadeh, 1972) as 

following:

10025])
5
50(1[

2501
)(~

12 xx
x

xA

This is based on the assumption that people’s ages are from 0 to 100. The plot of 

membership function of “young people” is shown in Figure 4.3. Under -cut of 0.7, the 

-cut subset of the fuzzy set “young people” would include all people aged from 0 to 28.   

Young person membership function
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Figure 4.3 The membership function of the fuzzy set “young people”  

and the subset of =0.7

28
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4.2.2.  Fuzzy Nature of the Aspiration Level ( 0)

As explained earlier, the aspiration level, 0, has fuzzy characteristics in nature. Different 

values of aspiration levels represent the degree of aggressiveness or conservativeness of 

decision makers. In this study, three levels of 0 are considered, including aggressive 

aspiration level, medium aspiration level, and conservative aspiration level. Their 

membership functions are developed based on the fuzzy set theory of Zadeh and his 

“young person” membership function. Figure 4.4 gives the membership function curve of 

the fuzzy conservative aspiration level. Its x-axis represents the aspiration level instead of 

age (Figure 4.3) and its ranges change from [0, 100] of age to [0, 1] of the aspiration level. 

The membership function of the aggressive aspiration level is the opposite of the 

conservative one, as shown in Figure 4.6. The membership function of the medium 

aspiration level is a combination of conservative and aspiration level functions, as given in 

Figure 4.5. The equations and figures of the membership functions for three situations are 

provided below.  



58

(1) Conservative aspiration level membership function: 
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Figure 4.4. The membership function of conservative aspiration level 
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 (2) Medium aspiration level membership function 
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Figure 4.5 The membership function of medium aspiration level 
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(3) Aggressive aspiration level membership function 
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Figure 4.6 The membership function of aggressive aspiration level 

4.2.3.  Fuzzy Risk Explicit Interval Linear Programming (FREILP) 

With the aspiration level being handled as the fuzzy numbers, a Fuzzy Risk Explicit 

Interval Linear Programming (FREILP) can then be formulated as follows. 

For a maximized ILP problem, we have: 

j

n

j
j xcfMax

1
                                                      (4.2.4) 
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The objective function of its FREILP formulation is to minimize the risk function: 
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(4.2.5)

Constraints include: 
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1,,0 ijij                                                           (4.2.8) 

jx j ,0                                                                   (4.2.9) 

In the above formulation from (4.2.5) to (4.2.6), the aspiration level 0  is treated as a 

fuzzy set. 

For a minimized ILP problem, we have: 
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The objective function of its FREILP is also to minimize the risk function, which is the 

same as the model (4.2.5). 

Constraints include 
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1,,0 ijij                                        (4.2.13) 

jx j ,0                                                                      (4.2.14) 

Similarly, the aspiration level 0  is also treated as the fuzzy set. 

4.2.4.  Solution Process for the FREILP Model 

For solving the models formulated in Section 4.2.3, the solution process includes the 

following steps: 

[Step 1] Use the BWC algorithm to covert the original ILP model into two sub-models and 

solve both sub-models to find the solutions of the lower bound and the upper bound of the 

objective function of the original ILP model. 

[Step 2] Use the solutions of objective function obtained in Step 1 to formulate a fuzzy 

REILP model as given in equations (4.2.4) to (4.2.14).  

[Step 3] According to the preference of the decision makers, define the aspiration level as 

conservative, medium, or aggressive, accordingly, and also choose an -cut level to cut the 

membership function curve. Two -cut crisp values obtained would be used as the 

aspiration level input for solving the formulated FREILP model.  
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[Step 4] Run the FREILP model by LINGO and find out the solutions. 
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CHAPTER 5 

FREILP MODEL APPLICATION TO MSW SYSTEM IN 
HRM

In this study, the developed approach is applied to the Municipal Solid Waste (MSW) 

management system in Halifax Regional Municipality (HRM), Canada, not only for testing 

its applicability to real-world problems, but also for providing the municipal waste 

managers with a more practical decision support tool. A FREILP model is developed for 

the long-term planning for the MSW management system in HRM. The planning horizon 

is 30 years starting from the year of 2011, and is divided into 6 planning periods with 5 

years in each period. The latest data recorded for modeling purposes include a period from 

April 2009 to March of 2010 which is used to represent the input data for the year of 2010. 

All the monetary values will be converted to the value of 2010 Canadian dollar considering 

the annual inflation factor in the coming years.  

5.1. Overview of MSW System in HRM 

The Halifax Regional Municipality (HRM) is the largest population center of Canadian 

East Coast and the capital city of the province of Nova Scotia. The municipality was 

founded in 1996 through combining four communities: Halifax, Dartmouth, Bedford, and 

Halifax County (HRM, 2010a). It is the economic and cultural centre of Canada’s East 

Coast, accounting for 40% of Nova Scotia’s population, and is one of Canada’s prime 

tourist locations (HRM, 2010b).  

The HRM is committed to environmental sustainability. It is one of the highest waste 

diversion rate municipalities in Canada (Walker, et al., 2004). By August 2009, the waste 

diversion rate in HRM has reached 59%, which is in the 4th place across Canada following 

the Regional District of NaNaimo, British Columbia (64%), the city of Victoriavill, 

Quebec (64%), and Charlottetown, Prince Edward Island (60%) (FCM, 2009). 
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In 1995, the HRM Waste Resource Management Strategy was developed to meet three 

long-term goals (CSC, 1995):  

To maximize the 3 Rs (reduction, reuse and recycling) of MSW. 

To maximize environmental sustainability and minimize costs. 

To foster stewardship and values of a conserver society. 

The research toward this strategy began in the early 1990’s, when the local raw waste 

landfill was reaching its designed capacity and began causing odour and other 

environmental problems (Goldstein and Gray, 1999; HRM 2007a). To achieve these goals, 

the HRM, along with public and private partners, has implemented many programs since 

then, as shown in Table 5.1 below. In 2000, HRM became the first winner of FCM-CH2M 

HILL Sustainable Community Awards for the community-based waste resource 

management strategy (FCM, 2000). 

Currently, the MSW system in HRM has 3 components (HRM, 2002): landfill, recycling, 

and composting. HRM operates one landfill without relying on incineration facilities. All 

the refuses are delivered to the Otter Lake Waste Processing and Disposal Facilities. The 

designed capacity is 150,000 tonnes per year for 25 years (from 1998 to 2023) (Goldstein 

and Gray, 1999). HRM also has one recycling facility in operation, located at 50 Chain 

Lake Drive, with the capacity of 28,000 tonnes per year (Goldstein and Gray, 1999). Two 

composting facilities are in use in HRM for compostable materials: New Era Farms 

facility, and Miller Composting facility. The nominal capacity of each facility is 25,000 

tonnes per year (Friesen, 1999; Friesen 2000). There is no solid waste transfer station being 

in use in HRM. Only one type of vehicle, large garbage truck, is being used in HRM. 
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Table 5.1 MSW management programs implemented by HRM  

Program name Description 

Source separation 

Waste of organics, recyclables and trash were separated at source, with 
biweekly collection of organics and trash, weekly collection of recyclables in 
most areas and biweekly recyclables collection in the rural areas of the 
county.

Collection zones creation Creation of eight collection zones (from 25 before amalgamation) with six 
haulers. 

Aerated carts Use of aerated carts for organics collection. 

New landfill site construction 

One site that includes a mixed waste processing facility designed to handle 
119,000 tonnes/year of MSW; a 13 channel agitated bed composting system 
to process the mixed waste after recyclables are removed; and a landfill for 
stabilized waste. HRM owns these facilities. However, the design, building 
and operation of these facilities are the responsibility of Mirror Nova Scotia. 

Composting facilities 
improvement 

Two separate composting facilities with total processing capacity of 50,000  
tonnes/year. Both facilities are privately owned and operated, each with put 
or pay guarantees by HRM of 20,000 tonnes/year. 

Materials recovery facility 
expansion Expansion of an existing materials recovery facility. 

Source: Goldstein and Gray, 1999 

5.1.1.  Waste Generation 

In 2008, Canadians produced over 1,031 kilograms of residential waste per person, 

virtually the same per capita production as in 2006 (Statistics Canada, 2008). In April 

2006, Natural Resources Canada and Environment Canada summarized the waste 

generation data for year 2002 and part of the data is shown in Table 5.2. Comparing to 

other provinces, Nova Scotia has the lowest waste generation rate across Canada. 
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Table 5.2 Waste generation in Canada, 2002 

Province/Territory Population Residential generation 
(tonnes) 

Generation rate 
(kg/capita) 

Newfoundland and Labrador 519,270 231,291 445 

Prince Edward Island 136,998  --  -- 

Nova Scotia 934,392 252,012 270 

New Brunswick 750,183 256,190 342 

Quebec 7,443,491 3,471,000 466 

Ontario 12,096,627 4,388,239 363 

Manitoba 1,155,492 494,535 428 

Saskatchewan 995,490 321,069 323 

Alberta 3,114,390 1,159,697 372 

British Columbia 4,114,981 1,354,177 329 

Yukon Territory, Northwest 
Territories and Nunavut 111,297  --  -- 

Canada Total 31,361,611 12,008,338 382 

Source: Natural Resources Canada and Environment Canada, 2006. 

As HRM is the largest and the most developed city in Nova Scotia, the municipal waste 

generation in HRM would be higher than the average rate in Nova Scotia. Here for HRM, 

the MSW includes both residential and commercial solid wastes. By the latest 

approachable statistic data provided by Solid Waste Resources of HRM, the solid waste 

generation and collection data are shown in Table 5.3. A total of 373,989 tonnes of solid 

waste were generated from April 1st 2009 to March 31st 2010, in which 34.7% were from 

residential sources and 65.3% were from commercial sources. Among all the wastes, 

refuse, organics, recycling and drop-off materials accounts for 59.9% of total wastes and 

were collected and disposed by HRM. All the other wastes including fibers private 

recycling, backyard composting, construction and demolition (C&D) waste, and household 

hazardous waste (HHW) were collected and disposed by in-person or private companies 

(HRM By-Law S600, 2007; HRM By-Law L200, 2002), and these wastes are not included 



68

in the  planning. As for the ratio of 59.9%, in this study, the ratio of total wastes being 

disposed by HRM is estimated to be a little lower with a range of [57%, 58.5%] due to the 

existence of waste residues which are not collected and disposed by HRM.  

Table 5.3 Yearly waste generation in HRM from April 2009 to March 2010 

Waste category 
Residential 

waste
(tonne) 

Commercial 
waste

(tonne) 

Total waste 
(tonne) 

Residential Ratio 
of the total 

Refuse 63,703 85,537 149,240 39.9% 

Organics 35,806 16,291 52,097 13.9% 

Recycling 17,420 5,312 22,732 6.1% 

Fibers private recycling (Est) N/A 43,000 43,000 11.5% 

Backyard composting (Est) 5,000 N/A 5,000 1.3% 

Drop-off materials (Est) 7,500 N/A 7,500 2.0% 

C&D N/A 93,920 93,920 25.1% 

HHW(Est) 500 N/A 500 0.1% 

Totals 129,929 244,060 373,989 100.0% 

Diversion rate 50.97% 64.95% 60% -- 

Source: HRM Solid Waste Resources, 2010c 

Total waste generation is directly related to the population of a city. In 2006, the population 

of HRM has reached 372,679 (2006 census, Statistics Canada) and spreads 2,224 square 

miles and ranges from high-density urban settings to rural communities (HRM, 2010a). 

Comparing to the population in 2001, which was 359,111, the population in HRM has 

increases 3.8% in 5 years. If HRM keeps this population growth rate, the population will be 

around 386,760 in 2010. According to the waste generation data (373,989 tonnes in 2010), 

the waste generation rate would be 0.967 tonne per capita per year. In this study, an interval 

waste generation rate with a range of [0.95, 0.98] tonne per capita per year was used to 

reflect its uncertain feature. Based on available information, the population and waste 
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generation data in HRM for the next 30 years can be estimated and are provided in Table 

5.4.
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Table 5.4 Estimate of population and waste generation in HRM for the planning horizon 

Waste generation(tonne/year) Waste generation(tonne/5years) 
Year Population 

lower level upper level lower level upper level 

2001 359111 341155 351929  --  -- 

2006 372679 354045 365225  --  -- 

2011 386760 367422 379024 

2012 389682 370198 381888 

2013 392626 372995 384774 

2014 395593 375813 387681 

2015 398582 378653 390611 

1865081 1923978 

2016 401594 381514 393562 

2017 404628 384397 396536 

2018 407686 387301 399532 

2019 410766 390228 402551 

2020 413870 393176 405593 

1936617 1997773 

2021 416997 396147 408657 

2022 420148 399141 411745 

2023 423323 402156 414856 

2024 426521 405195 417991 

2025 429744 408257 421149 

2010896 2074398 

2026 432991 411342 424331 

2027 436263 414450 427538 

2028 439559 417581 430768 

2029 442881 420737 434023 

2030 446227 423916 437302 

2088025 2153962 

2031 449599 427119 440607 

2032 452996 430346 443936 

2033 456419 433598 447290 

2034 459867 436874 450670 

2035 463342 440175 454075 

2168111 2236578 

2036 466843 443501 457506 

2037 470371 446852 460963 

2038 473925 450228 464446 

2039 477506 453630 467956 

2040 481114 457058 471491 

2251270 2322363 



71

5.1.2.  Recycling 

Recycling turns materials that would otherwise become waste into valuable resources. 

Many benefits (USEPA, 2008) can be expected from recycling: it saves energy; it reduces 

the need for landfilling and incineration; it prevents pollution caused by the manufacturing 

of products from virgin materials; it decreases emissions of greenhouse gases; it conserves 

natural resources such as timber, water, and minerals; it helps sustain the environment for 

future generations; it can also protects and expands employment opportunities. 

Many recycling programs (HRM, 2007b; HRM, 2011b) are being implemented in HRM. 

They include Blue Bag Program, Paper Recycling Program, Corrugated Cardboard 

Program, and some other provincial programs like Paint Recycling Program, Household 

Hazardous Waste (HHW) program, and Used Tire Management Program, Derelict Vehicle 

Program, and Safe Sharps Bring-Back Program. 

Blue Bag program requests residents to put recyclables into a clear blue bag for curbside 

collection. The recyclables in the blue bag include plastic bottles and containers, all plastic 

bags used for grocery, retail, bread, dry cleaning and frozen food, and bubble wrap, glass 

bottles and jars, steel and aluminum cans, clean aluminum foil and plates, paper milk 

cartons, mini sips and tetra juice packages. 

Paper recyclables include dry and clean paper, newspapers and flyers, glossy magazines 

and catalogues, envelopes, paper egg cartons, paperbacks and phone books. These paper 

recyclables should be placed in a grocery bag, retail carry-out bag or a clear bag, and be 

kept separately from Blue Bag recyclables.  

Corrugated cardboard program encourages people to fold boxes flat and tie them in 

bundles no more than 2 ft x 3 ft x 8 inches in size. Corrugated cardboard is “waffled” 

between the layers such as appliance boxes and pizza boxes. And the bundles should be 

placed beside the blue bag. 
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Nova Scotians purchase more than 3 million containers of paint every year, and up to 25 % 

of this paint is not used after the purchase (NS Environment and Labour, 2003). In the past, 

most of this paint was either burned in dumps or buried in landfills. The recent 

paint-recycling program recovers thousands of liters of paint and paint cans. It allows 

consumers to return surplus paint to any one of the province's 85 recycling depots at no 

charge. It applies to all latex, oil and solvent-based paints, including aerosol paint cans, but 

does not apply to specially formulate industrial, automotive or marine coatings. New 

recycled paints will be manufactured from the recovered waste paint. 

By February 2009, the provincial government has banned most common electronic 

equipment from landfills. The banned electronic equipments include televisions, 

computers, audio and video playback and recording systems, telephones (corded and 

cordless), fax and answering machines, computer scanners, cell Phones and other wireless 

devices. Since the ban, HRM has encouraged its residents to bring their old electronic 

equipment to their local Atlantic Canada Electronics Stewardship (ACES) recycling centre 

(HRM, 2010d). 

Currently, there is one recycling facility in operation in HRM, located at 50 Chain Lake 

Drive, with a capacity of 28,000 tonnes per year. The Materials Recycling Facility (MRF) 

of HRM processes all blue bag and fiber (paper and cardboard) collected in residential 

curbside program and the small amount of material deposited in the onsite public drop off 

bins (HRM, 2011a). Recyclable materials include newsprints, fiber, cardboard, glass and 

steel containers, aluminum etc (see Table 5.4). Besides that, 22 recycling centers are 

separately located around HRM opening 7 days a week to collect recyclables (RRFB, 

2011). Residents can send their used bottles or cans to the collection center and get the 

deposit.

As given in Table 5.2, 6.1% of generated wastes were recycled by the recycling facilities in 

HRM and 11.5% were recycled by private recycling companies. Two recycling streams 

contributed a 20% of recycle rate in HRM. According to the documented report of USEPA 

(USEPA, 2008), the availability of recyclables could be as high as 35% of the total solid 
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wastes generated. So in this study, the ratio of recyclables is bounded between 6% and 

35%.

5.1.3.  Composting 

Composting is the natural breakdown of organic materials by living organisms, including 

bacteria, fungi, worms and small insects. Any material from a living source, plant or 

animal, is called "organic". The end product is a dark, earthy, soil-like substance called 

compost. Compost has its market value because it can be used as a soil amendment or as a 

medium to grow plants. It serves as a marketable commodity and is a low-cost alternative 

to standard landfill cover and artificial soil amendments. Composting also extends 

municipal landfill life by diverting organic materials from landfills and provides a less 

costly alternative to conventional methods of remediating (cleaning) contaminated soil 

(USEPA, 1994). 

Presently, two composting facilities are serving HRM: the New Era Farm composting 

facility and the Miller composting facility, with a total capacity of 50,000 tonnes/year.  

The New Era Farms compost facility (Friesen, 1999; Friesen, 2000), located in 61 

Evergreen Place, Ragged Lake, has a capacity of 25,000 tonnes/year. It was sized to allow 

expansion by an additional 10,000 tonnes. It has three main areas: a receiving and 

preprocessing building, a composting pad and a curing structure. The Miller Composting 

(Friesen, 1999; Friesen, 2000) utilizes the Ebara technology to compost waste organics. 

Same as the New Era, the Miller site has a capacity of 25,000 tonnes/year. It is located at 80 

Gloria McClusky Avenue, Burnside, Nova Scotia’s largest business park. The building 

footprint is 55,000 sq. ft., set on a 20 acre lot. The property could accommodate a second 

plant directly beside the original one if needed in the future. The main building has three 

areas: receiving and preprocessing, composting and curing.  

From April 1st 2009 to March 31st 2010, 52,097 tonnes of organics were composted by the 

two composting facilities in HRM, in which, 35,806 tonnes were from residential sources 

and 16,291 tonnes were from commercial sources. It diverted 13.9% of total waste 
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generated from landfill. This percentage could be improved to about 26%. As documented 

in US Environmental Protection Agency (USEPA, 1994), yard trimmings and food 

residuals together constitute 26 percent of municipal solid waste stream. The composting 

wastes are bounded as 12% to 26% of total generated wastes in this study. 

Backyard composting (HRM, 2011) is also promoted in HRM. Backyard or onsite 

composting can be conducted by residents and other small-quantity generators of organic 

waste on their own property. By composting these materials onsite, select businesses can 

significantly reduce the amount of waste that needs to be disposed of and thereby save 

money from avoiding disposal costs, and home owners can generate natural fertilizer that 

can be applied to lawns and gardens to help condition the soil and replenish nutrients. The 

household practicing backyard composting diverts approximately 5,000 to 7,5000 tonnes 

per year of wastes from landfill and it contributed 12.25% of total organic material 

generated in HRM in 2010 (see Table 5.2).  

5.1.4.  Landfill 

Currently, the Otter Lake Landfill is the only landfill being operated in HRM. It opened for 

full operations in 1999 to replace the closed Sackville Landfill, with a nominal capacity of 

150,000 tonnes/year and a designed life time of 25 years from year1998 to 2023. The site is 

200 acres in size and employs over 100 workers. This facility includes three major 

components:  

(1) Front End Processor (FEP) – This is the first stage of Otter Lake Facility where garbage 

arrives and bags are opened and inspected. It consists of a system of conveyors, bag 

breaker, sorting platforms and mechanical screening operations. The FEP allows for 

identification and removal of material that should not be going to landfill. Clean recyclable 

paper, metals and containers are removed during the sorting process. Scrap metal (i.e., 

appliances) is separated for recycling. By FEP, the Otter Lake landfill makes some avenue 

from recyclable wastes. In the 2010 budget of solid waste resources in HRM, 

approximately $80,000 revenue was received from the FEP.  
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(2) Waste Stabilization Facility (WSF) - Mixed wastes containing organic material leftover 

from the FEP is brought by conveyor and undergoes processing in the waste stabilization 

facility. The process is much the same as composting, where after a period of 18 to 21 days, 

the materials leaving this process is a dry-like fluff which then goes to the landfill. This 

process could significantly reduce not only the volume of wastes entering the landfill cells 

(about 40%), but also the strength of the landfill leachate since a large amount of the 

organics have been degraded in this process.  

(3) Residual Disposal Facility (RDF) - This is the place to landfill or bury the residues from 

the WSF process. The landfill contains a liner system, a cover system, a leak detection 

system, a leachate and gas management system, surface drainage control and 

environmental monitoring controls. In the Otter Lake landfill, 9 cells were designed 4 of 

them have been filled before 2009. Table 5.5 presents the capacities of unfilled cells. Cell 5 

was started to use from January 2009. The original capacity is 546,000 tonnes and it is 

estimated that an approximate 167,500 tonnes of garbage has been placed in Cell 5 by 

March 31st, 2010. he total capacity of Otter Lake Landfill by March 31st 2010 is 2,421,500 

tonnes.

Table 5.5 Capacity of the Otter Lake Landfill by March 31, 2010. 

Cell # Capacity unfilled 

Cell 5 378,500 

Cell 6 503,000 

Cell 7 520,000 

Cell 8 520,000 

Cell 9 500,000 

Total 2,589,000 
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5.1.5.  Incinerator 

Incineration, as a type of thermal treatment, is recognized as an effective and 

environmentally sound disposal method for a wide range of wastes. In the early 1990s 

when the Sackville Landfill was constructed and still in operation was causing severe 

environmental damages to its nearby communities. The Municipality was then planning to 

build an incinerator close to the urban center of the region. However, the plan was 

eventually rejected due to various environmental and economic concerns by the Nova 

Scotia Ministry of Environment. There is no incinerator facility serving HRM. 

5.1.6.  Transfer Station 

Waste transfer stations are facilities where municipal solid wastes are unloaded from the 

collection vehicles and briefly held before they are reloaded onto larger long-distance 

transport vehicles for shipment to landfills or other treatment or disposal facilities 

(USEPA, 2002). The HRM used to own a solid waste transfer station in Lady Hammond 

Road for the past few decades. But it has been closed since May 2000 (HRM, 2000). 

According to HRM’s Integrated Solid Waste/Resource Management System, HRM no 

longer needs a solid waste transfer station. Waste materials could be collected for a direct 

shipment to the Otter Lake landfill and be separated, sorted and processed there as well 

(HRM, 1999). 

5.2. Model Input Data 

5.2.1. Discount Factor 

Since the planning problem under consideration includes long multiple planning periods, 

discount factors have to be considered for each planning period to obtain the total present 

value for the objective function. The discount factor (DF) is defined as the coefficient 

which a future dollar should multiply by to be converted to the present value. The discount 

factor could be calculated through the following equation: 
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Where r is a fixed discount rate and is determined by the interest rate and inflation rate. It is 

a fixed discount rate and is determined by the interest rate and inflation rate. t is the time 

factor. In this study, a discount rate of 3.18% was used for the discount factor calculation, 

based on the predictions of Canada’s inflation and interest rates in the coming years 

(IndexMundi, 2010; Scotia Bank, 2011).  

In this study, the 30-year long planning horizon is divided into 6 planning period, with 5 

years in each period. All the costs and revenues in the coming planning years are calculated 

as 2011 dollars. The discount factors for each year and period average are calculated using 

the above equation and are provided in Table 5.6. For the net present value of operation and 

transportation costs, an average discount factor is chosen for each time period. For the 

capital costs used for facility development and expansion, it is assumed that, if the MSW 

management system requires additional capacity at the beginning of a particular period, the 

development or expansion of that facility has to be completed by the end of the previous 

period. Thus, the discount factor for facility development and expansion would be the 

regular discount factor from the previous period. In addition, it is assumed that all garbage 

streams can be handled by the existing facilities in the first planning period, and no new 

facilities are needed. 
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Table 5.6 Discount factors  

Period Year Discount factor period average DF 
2011 0.969 
2012 0.939 
2013 0.910 
2014 0.882 

1

2015 0.855 

0.911 

2016 0.829 
2017 0.803 
2018 0.778 
2019 0.754 

2

2020 0.731 

0.779 

2021 0.709 
2022 0.687 
2023 0.666 
2024 0.645 

3

2025 0.625 

0.666 

2026 0.606 
2027 0.587 
2028 0.569 
2029 0.552 

4

2030 0.535 

0.570 

2031 0.518 
2032 0.502 
2033 0.487 
2034 0.472 

5

2035 0.457 

0.487 

2036 0.443 
2037 0.429 
2038 0.416 
2039 0.403 

6

2040 0.391 

0.417 

5.2.2.  Waste Collection and Transportation Cost 

HRM serves single family households, row houses, duplexes, semi-detached, small 

apartments (up to six units) with curbside collection, to collect the waste. MSW collection 
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in HRM is equipped to serve about 120,500 households, including 5,500 condominiums 

(HRM, 2002).  

According to HRM Solid Waste Resource Collection and Disposal By-law (By-law No. 

S600, 2007), residents in HRM are required to “source-separate all collectible waste 

generated from eligible premises at the point of generation so as to comply with the 

provincial disposal bans and to facilitate their recycling, composting or disposal in 

accordance with the Municipality’s waste resource management system” (HRM, 2007c). 

After the waste source separation, organics and trash are collected biweekly and 

recyclables are collected weekly (biweekly in the rural areas of the county). Aerated carts 

are used for organics collection. Eight collection zones were created for the purpose of 

waste collection (from 25 before amalgamation). The zones and approximate number of 

the served households are presented in Table 5.7. Figure 5.1 shows the spatial distribution 

of the 8 collection areas in HRM. 

Table 5.7 HRM waste collection areas and the number of the households served. 

No. of the served  
households Area No. Area 

(1998) (2002) 

1 Halifax 27,750 28,861 

2 Dartmouth 19,806 20,815 

3 Bedford, Hammond Plains, Pockwock & Area 7,355 9,230 

4 Beechville, Lakeside, Timberlea, Prospect & West 12,104 13,668 

5 Sackville, Shubenacadie Lakes & Area 17,712 19,387 

6 Cole Harbour, Westphal, Eastern assage & Area 11,361 12,637 

7 and East Preston, Lake Major, Lake Loon, 
Cherrybrook, Lawrencetown & Area 6,507 7,227 

8 Elderbank, Musquodoboit & all Eastern Shore 6,758 7,163 

Total 109,353 188,988 

Source: HRM solid waste resources, 2002 
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Figure 5.1 HRM waste collection areas 

Waste collection and transportation cost is usually estimated based on the vehicle type and 

the worker’s salary. Mul olland has calculated the cost in 1997 as shown in Table 5.8. In 

HRM, since most wastes are collected by automated truck with cart lifter and packer, the 

collection and transportation cost would be around [21, 37] dollar per tonne in 1997, which 

is around [32, 56] dollar per tonne currently. 

Table 5.8 Waste collection and transportation data 

Waste collection type Automated 

Salary per hour ($/h) 24.87 

Cost of vehicle per hour ($/h) 27 

Volumetric capacity (m3) 22 

length of working day (h) 8 

Daily loads (tonnes) [12 20] 

Total collection and transportation costs ($/tonne) [21 37] 
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Based on the 2010 Solid Waste Resources budget provided by HRM, the yearly collection 

and transportation cost was about 13 million dollars and the breakdown of the collection 

cost for garbage, organics and recyclables are provided in Table 5.9. The average 

collection cost for garbage, organics and recyclables could then be calculated, as presented 

in Table 5.9. Since the collection and transportation cost is an uncertain parameter affected 

by many factors, the intervals are assigned to them based on the calculated average for 

reflecting the uncertainties. In this study, the collection and transportation costs for 

garbage, organics, and recyclables are [32, 35], [85, 90], and [170, 180] ($ per tonne), 

respectively.  

Table 5.9 Waste collection and transportation costs for different types of wastes 

Cost breakdown Annual cost ($) Annual amount (tonnes) Average cost ($/tonne) 

Garbage 4981455.24 149240 33.38 

Organics 4498828.87 52097 86.35 

Recyclables 3977536.78 22732 174.98 

Source: 2010 HRM solid waste resources budget 

5.2.3.  Waste Facility Operating Cost 

In 2010, HRM had a total of operating cost of 31 million dollars for running MSW 

management facilities, in which 67.7% were allocated to for landfill, 24.3% for organic 

composting, and 8.1% for recycling facilities. The detailed breakdown operating costs for 

different facilities were provided in Table 5.10. As indicated in the table, the average 

operating cost for each facility could be calculated as $141.25, $145.08, and $110.98 per 

tonne for landfill, composting and recycling facilities, respectively. In this study, interval 

operating costs are used to account for their uncertainties, and they are [140, 144], [142, 

147], and [108, 113] ($/tonne) for landfill, composting and recycling facilities, 

respectively.   
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Table 5.10 Operating cost of different facilities in HRM 

Facility Annual total ($) Annual amount (tonnes) verage cost ($/tonne) 

Landfill 21,080,700 149240 141.25 

Composting 7,558,000 52097 145.08 

Recycling 2,522,700 22732 110.98 

Source: 2010 HRM solid waste resources budget 

5.2.4.  Revenues  

Generally speaking, recycling and composting collections can generate substantial 

revenues. Recyclables could be sold directly to some companies and compost has the 

market value because it could be used for gardening. In HRM, not only the recyclable and 

organics, but also the garbage being trucked to landfill, could generate revenues, simply 

because the Front End Processor (FEP) of the Otter Lake landfill sort out clean recyclable 

paper, metals and containers which can be sold to the market. In 2010, there were $8,000 

generated the landfill FEP recyclables, and over 1.2 million dollars generated by 

composting and recycling facilities (Table 5.11). As indicated in Table 5.11, the average 

revenues from different facility are 0.05 $/tonne, 23.09 $/tonne, and 54.80 $/tonne for 

landfill, composting and recycling facilities, respectively. In this study, the revenue 

coefficients were also assigned as intervals, with the ranges of [0, 0.1], [22, 25], and [52, 

57] $/tonne for landfill, composting and recycling facilities, respectively. Table 5.12 

presents the relevant cost and revenue coefficients used in the model. Table 5.13 presents 

the estimated costs and revenues for the 6 planning periods. Costs are getting less with 

periods since the discount factors are taken into account. 
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Table 5.11 Revenues estimation for waste management facilities 

Source: 2010 HRM solid waste resources budget 

Table 5.12 Costs and evenues estimation 

Cost($/tonne) Collection Operation Revenue 

Landfill [32,35] [140,144] [0.03,0.07] 

Composting [85,90] [142,147] [22,25] 

Recycling [170,180] [108,113] [52,57] 

Revenue breakdown Yearly revenue ($) Yearly tonnage (tonne) Average revenue ($/tonne) 

Garbage 8,000 149240 0.05 

Organics 1,203,000 52097 23.09 

Recyclables 1,245,769 22732 54.80 
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Table 5.13 Transportation ost, operation cost, and revenue for waste management facilities 

  Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Collection and transportation costs ($/tonne)        

Landfill [32, 35] [31, 33.9] [30.1, 32.9] [29.1, 31.8] [28.2, 30.9] [27.3, 29.9] 

Composting [85, 90] [82.4, 87.2] [79.8, 84.5] [77.3, 81.9] [74.9, 79.3] [72.6, 76.9] 

Recycling [170, 180] [164.7, 174.4] [159.6, 169.0] [154.7, 163.8] [149.9, 158.7] [145.2, 153.8] 

Operating costs ($/tonne)             

Landfill [140, 144] [135.7, 139.5] [131.5, 135.2] [127.4, 131.0] [123.4, 127.0] [119.6, 123.0] 

Composting [142. 147] [137.6, 142.4] [133.3, 138.0] [129.2, 133.7] [125.2, 129.6] [121.3, 125.6] 

Recycling [108. 113] [104.7, 109.5] [101.4, 106.1] [98.3, 102.8] [95.2, 99.6] [92.3, 96.5] 

Revenues ($/tonne)        

Landfill [0.03, 0.07] [0.03, 0.07] [0.03, 0.07] [0.03, 0.06] [0.03, 0.06] [0.03, 0.06] 

Composting [22, 25] [21.3, 24.2] [20.7, 23.5] [20.0, 22.7] [19.4, 22.0] [18.8, 21.4] 

Recycling [52, 57] [50.4, 55.2] [48.8, 53.5] [47.3, 51.9] [45.8, 50.3] [44.4, 48.7] 

84
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5.2.5.  Capital Costs for Facility Expansion and Development 

Along with the growth of population and economy in HRM, the waste generation will keep 

increasing in the coming years. Before the total amount of wastes generated reaches 

beyond the capacity of existing facilities, HRM needs the capital investment to expand the 

existing facilities or develop new facilities.  

The total capital cost for the Otter Lake landfill was 44 million Canadian dollars in 1998, 

which equals 66.1 million 2010 dollars. The landfill was designed with a nominal capacity 

of 150,000 tonnes/year till 2023 (that equals a total capacity of 3,750,000 tonnes). In this 

study, the landfill is allowed to expand only once for the entire 30-year planning horizon, 

with a same capital cost of 66.1 million dollars and a same capacity of 3,750,000 tonnes.  

A survey conducted by Chi and Huang (1998) lists the number of different capacity 

composting facilities in operation in each province of Canada, and the capital costs for 

building them were also estimated (see Table 5.14). A small capacity facility has a 

composting capacity less than 5000 tonne/year, and it costs from 595,000 dollars to 

980,000 dollars; a medium capacity facility has a composting capacity between 

5000-25000 tonne/year and costs from 1 to 6 million dollars; and a large capacity facility 

has its composting capacity larger than 25,000 tonne/year and costs over 15 million dollars. 

In this study, three capacity options were selected for possible composting expansion, 

including 10,000 tonnes/year, 15,000 tonnes/year, and 25,000 tonnes/year. The estimated 

costs for their expansions are presented in Table 5.15, and they are also converted into 

2010 dollars. 
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Table 5.14 The number of composting facilities in each province of Canada and estimated 

capital costs 

Number of facilities falling in the range of 
Province Total composting 

facilities 0-5,000 
tonne/yr 

5,001-25,000 
tonne/yr 

25,001+ 
tonne/yr 

Newfoundland 1 1   
PEI 2 2   

Nova Scotia 2 1 1  
New Brunswick 1 1   

Quebec 19 18 1  
Ontario 37 26  2 

Manitoba 6 6   
Saskatchewan 2 2   

Alberta 8 7 1  
British Columbia 7 4 3  

NWT - - - - 
Yukon 1 1   
Total 86 69 15 2 

Low estimated capital costs $595,000 $1,000,000 $15,800,000 
Medium estimated capital costs $787,500 $2,000,000 $18,850,000 

High estimated capital costs $980,000 $6,000,000 $21,900,000 

Source: Chi and Huang, 1998. 

Table 5.15 Composting facility expansion options and the estimated costs 

Cost in 1998 (M$) Cost in 2010(M$) 
Options Capacity 

(tonnes/yr) Lower bound Upper bound Lower bound Upper bound 

Recent 50000  -  - -  -  
Option1 10000 2 2.4 3.0 3.7 
Option2 15000 3.5 4 5.3 6.1 
Option3 25000 5 6 7.5 9.2 

Chi and Huang (1998) also gave the number of recycling facilities which were in operation 

in each province of Canada and their treatment capacities as well as an estimated capital 

cost for building them in terms of per tonne. These data are presented in Table 5.16. In this 

study, three possible options were considered for recycling facility expansion. They are 

10,000 tonnes/year, 20,000 tonnes/year, and 30,000 tonnes/year. The interval capital costs 

are [3.6, 4.4], [7.2, 8.8], [10.8, 13.1] million dollars, respectively.   
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Table 5.16 MRF facilities in each province of Canada and their annual capacities 

Amount of recyclables processed annually 
(tonne/year) Province Number of MRF facilities  

Residential  IC&I  C&D 

Newfoundland  2 2,872 25,655 330 

PEI  1 1,896 11,490 0 

Nova Scotia  11 9,074 48,829 0 

New Brunswick  7 3,876 30,913 0 

Quebec  15 227,806 1,350,194 0 

Ontario  51 478,890 1,366,441 705,791 

Manitoba  9 3,514 63,568 0 

Saskatchewan  3 21,400 79.034 0 

Alberta  5 17,597 150,630 56,190 

British Columbia 39 100,798 411,836 508,188 

NWT 1 51 2,211 991 

Yukon  1 213 1,311 485 

Total 145 867,987 3,542,112 1,271,975 

Low estimated capital costs($/tonne) $238.00  $238.00  $238.00  

Medium estimated capital costs($/tonne) $264  $264  $264  

High estimated capital costs($/tonne) $291  $291  $291  

Source: Chi and Huang, 1998. 

Table 5.17 Recycling facility expansion options and the estimated costs 

Capital cost estimated ($)  
Options Capacity (tonnes/yr) 

Lower Bound Upper Bound 

Recent 28000 -  -  

Option 1 10000 3584000 4382000 

Option 2 20000 7168000 8764000 

Option 3 30000 10752000 13146000 

Based on the collected data, Table 5.18 presents the details of waste management facility 

expansion options considered for HRM, their capacities, and changes of their cost ranges 
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with planning period. It is noted that the capital costs become gradually less with period 

since the discount factors are taken into consideration. 
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Table 5.18 Capital ost for waste management facilities 

Capital cost in different periods (106 $) 
Facility Option Capacity 

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Landfill Option 1 3,750,000 tonnes [66, 70] [64, 67.8] [62.0, 65.7] [60.0, 63.7] [58.2, 61.7] [56.4, 59.8] 

Option 1 10,000 tonnes/yr [3, 3.7] [2.9, 3.6] [2.8, 3.5] [2.7, 3.4] [2.6, 3.3] [2.6, 3.2] 

Option 2 15,000 tonnes/yr [5.3, 6.1] [5.1, 5.9] [5.0, 5.7] [4.8, 5.6] [4.7, 5.4] [4.5, 5.2] Composting 

Option 3 25,000 tonnes/yr [7.5, 9.2] [7.3, 8.9] [7.0, 8.6] [6.8, 8.4] [6.6, 8.1] [6.4, 7.9] 

Option 1 10,000 tonnes/yr [3.6, 4.4] [3.5, 4.3] [3.4, 4.1] [3.3, 4.0] [3.2, 3.9] 
[3.1, 3.8] 

Option 2 20,000 tonnes/yr [7.2, 8.8] [7.0, 8.5] [6.8, 8.3] [6.6, 8.0] [6.3, 7.8] [6.2, 7.5] Recycling

Option 3 30,000 tonnes/yr [10.8, 13.1] [10.5, 12.7] [10.1, 12.3] [9.8, 11.9] [9.5, 11.5] [9.2, 11.2] 

89
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5.2.6. Residue Rate 

In HRM, the approximate residue rates for the recycling and composting facilities are 

estimated to be 8% of the incoming tonnage of the wastes, and the residues from recycling 

and composting facilities need to be landfilled. 

5.3. Model Development for MSW System in HRM 

As discussed above, three components exist in the MSW management system in HRM. 

They are waste generation district, waste processing facilities, and landfill. The waste 

allocation flow chart is shown in Figure 5.2. Wastes are generated from each district, and 

collected and transported to waste processing facilities and landfill. Recyclable and organic 

wastes will be recovered or composed and sold to the market. Waste residues will be sent 

to landfill. The HRM-MSW model uses the waste allocation flows as the decision 

variables, with an objective of minimizing total system costs.  

 Figure 5.2 The waste allocation flow chart 

Market

Residuals

Waste generation district 

Processing plants 

Landfill site 

Recycling facilities 

Composting facilities 
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5.3.1.  Objective Function 

The original objective of this model is to minimize the total system cost. Total costs are 

determined by collection and transportation cost, waste facilities operating cost, capital 

cost and the revues. The residual market values of facilities are not considered in this study. 

The decision variables, denoted as Xit, represent the waste flow pattern from HRM to 

different facility i in different planning period t. The objective function is given as follows: 

Minimize Total Cost = (I) + (II) + (III) – (IV)                              (5.3.1) 

Where, (I) is the waste collection and transportation cost;  

        (II) is the facility operating cost; 

        (III) is the facility expansion cost; and 

        (IV) is the revenues from three waste disposal facilities. 

(I) Collection and Transportation Cost 

i
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Where, (5.3.2) is the total collection and transportation cost for wastes allocated to facility 

i in the entire planning horizon. (5.3.3) is the collection and transportation cost for the 

residues generated in recycling facility and composting facility to landfill. 

Xit is the waste flow allocated to the facility i in period t (tonnes/5 years). i represents 

different waste processing facilities: i=1 for recycling facility, i=2 for composting facility, 

and i=3 for landfill. t is the time period, t=1,2,…,6. DFt is the discount factor in period t.

UCi is the unit collection and transportation cost for facility i ($/tonne). RR is the residue 

generation rate from both recycling and composting facilities, which is estimated as 8% in 

this study.  
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(II) Operating Cost 
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Where, (5.3.4) is the total operating cost at all three facilities. Equation (5.3.5) is the 

operating cost at landfill for the residues from recycling and composting facilities. UOi is 

the unit operating cost for the facility i ($/tonne).  

(III) Capital Cost 
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If a facility needs to be expanded to satisfy the wastes disposal needs in period t, it is 

assumed that the expansion would be completed in the previous period, which is period t-1.

Thus the discount factor DFt-1 is used in (5.3.6). CAik is the capital cost (expansion cost) for 

facility i under expansion option k ($). Three options (k=1, 2, 3) are available for either 

recycling or composting facility, and only one option is considered for landfill expansion 

(CA32 = 0, CA33 = 0). Yikt is a binary variable;  Yikt = 1 when facility i (with capacity option 

k) needs to be developed in period t, and Yikt = 0 when there is no expansion. 

(IV) Revenue 
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Where, URi is the unit revenue from facility i ($/tonne).
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5.3.2.  Constraints 

(1) Mass Balance Constraints 

tHWGX t
i

it ,
3

1
                                                   (5.3.8) 

For any period t, the wastes allocated to all facilities should be equal to or greater than the 

wastes disposed by HRM (denoted as HWGt, tonnes/5 years).  

(2) Diversion Rate Constraints 
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For any period t, in order to ensure the waste diversion rate no less than 60%, the wastes 

allocated to landfill should be less than 40% of total wastes generated (TWGt, tonnes/5 

years).

(3) Capacity Limitation Constraints 
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Equation (5.3.10) is the capacity limitation constraints for recycling and composting 

facilities (i=1, 2). For a particular time period T (T=1, 2, …6), the wastes allocated to the 

recycling or composting facilities should be less than their respective capacity. CPi is the 

current capacity of facility i (tonnes/year when i=1 and 2; tonnes when i=3); EPikt is the 

expanding capacity of option k (tonnes/year when i=1 and 2; tonnes when i=3). Since no 
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expansion will occur for period 1, t is thus from 2 to T.  The value of 
3

1 2k

T

t
iktikt EPY  will 

be 0 if T=1.

Constraint (5.3.11) represents the capacity constraint for landfill. For a particular period T,

all the wastes being delivered to landfill, including the residues from other facilities, should 

be less than its available capacity. CP3 is the existing capacity of landfill. 
T

t
tikt EPY

2
31

represents the expanded capacity of landfill from period 2 to period T, and equals to 0 when 

T=1.
T

t
ttt XXXRR

1
)1(321 ])(*[  is the total wastes being delivered to landfill for final 

disposal from period 1 to period T.

 (4) Technical and Other Constraints 
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Equation (5.3.12) is the technical constraint. All the decision variables must be equal to or 

greater than 0. Equation (5.3.13) is the availability constraint for recyclables. (5.3.14) is the 

availability constraint for organic wastes. The last constraint (5.3.15) indicates that no 

more than one expansion will be allowed for one facility in one period.  
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CHAPTER 6 

RESULTS AND DISCUSSIONS 

Based on the modeling approach developed in Chapter 4, the HRM-WSM model was 

firstly solved by the REILP approach for 11 pre-assigned aspiration levels from 0 to 1 with 

a step of 0.1. The REILP solutions could provide valuable information for decision makers 

who understand the modeling approach and have specific aspiration levels for making their 

decisions. The model was then solved by the proposed FREILP approach. Aspiration 

levels representing the conservative, medium, and aggressive decision makers will be 

provided with three -cuts, and the solutions under these aspiration levels will be generated 

and discussed. With the solution of FREILP, decision makers do not need to set a specific 

aspiration level for the model. They can simply from one based on their either 

conservative, medium, or aggressive preference.  

6.1. REILP Results 

For the REILP model, a set of solutions can be obtained under a specific aspiration level.  

Table 6.1 gives the optimal solution for the objective function under the aspiration level 

from 0 to 1, with a step of 0.1. It includes the total system cost as well as its breakdown 

among collection/transportation, operating and capital costs. Table 6.2 presents, under 

different aspiration levels, the values of risk function, total wastes generated, and the total 

waste flow allocated to different facilities with the 30-year planning horizon. When the 

aspiration level = 0, the risk function is equal to 0 with a highest total system cost of 978.58 

million dollars. On the other end, when the aspiration level = 1, the risk function value is 

also the highest with a lowest total system cost of 873.02 million dollars. 
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Table 6.1 REILP solution for the objective function under different aspiration levels 

Aspiration 
level 

Total  
system cost 

(106$) 

Total 
collection cost 

(106$) 

Total 
operation cost 

(106$) 

Total 
capital cost 

(106$) 

Total 
revenue 
(106$) 

0 978.58 300.70 676.40 52.02 50.53 

0.1 968.03 285.88 661.27 70.77 49.89 

0.2 957.47 290.17 666.15 50.79 49.64 

0.3 946.91 287.43 660.96 49.44 50.90 

0.4 936.36 280.64 655.66 51.83 51.78 

0.5 925.80 276.43 652.63 48.40 51.65 

0.6 915.25 273.18 644.72 48.40 51.05 

0.7 904.69 270.49 636.76 48.12 50.68 

0.8 894.14 267.49 628.72 48.12 50.20 

0.9 883.58 265.67 621.36 46.69 50.14 

1 873.02 259.24 618.50 45.95 50.66 

Table 6.2 REILP wastes flow allocation and the values of risk function  
        under different aspiration levels 

Aspiration 
level 

Risk 
function 

Total  
waste generated 

(106tonne) 

To landfill 
(tonne) 

To recycling 
facility
(tonne) 

To
composting 

facilities
(tonne) 

0 0.00 12.70 4875997  791001  1767737  

0.1 0.06 12.70 4877258  771351  1771633  

0.2 0.06 12.70 4877294  770894  1771633  

0.3 0.07 12.70 4875997  791001  1767737  

0.4 0.10 12.70 4875997  791001  1767737  

0.5 0.14 12.70 4878411  766001  1762566  

0.6 0.21 12.70 4849761  766001  1724359  

0.7 0.29 12.70 4804006  767910  1689759  

0.8 0.38 12.70 4745086  762104  1656749  

0.9 0.48 12.68 4644856  760763  1653832  

1 0.63 12.32 4745878  740125  1536398  
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Based on the solutions provided in Table 6.1 and 6.2, the relationship between the 

aspiration level, risk function and total system cost can be plotted in Figure 6.1. With the 

increase of aspiration level, the risk function is on the rise, while the total system cost 

decreases. It indicates that a lower system cost comes along with a higher decision risk 

which might violate the system constraints, while a safer decision needs a higher cost for 

investing facilities and management. Figure 6.1 also shows that the system cost and the 

aspiration level have a linear correlation. This is because that in FREILP, the constraint 

converted from the original objective function (minimized system cost) is proportionally 

subject to the aspiration level, as given in the equation: )(0 optoptoptopt ffff . The 

risk function is not linearly correlated with the aspiration level, as given by the following 

equations:
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Table 6. 3 Distribution of total system cost from the REILP model 

    Expenditure or income 
(106$) 

Percentage 
(%)

Collection and transportation costs  

    Landfill  [98.72, 111.38] [9.6, 10.69] 

    Recycling  [78.77, 89.84] [7.66, 8.53] 

    Composting  [136.57,161.80] [7.95, 8.85] 
    

Operation costs   

    Landfill  [431.89, 458.26] [41.89, 46.76] 

    Recycling  [50.04, 56.40] [4.86, 5.42] 

    Composting  [136.57, 161.80] [13.27, 14.78] 
    

Capital costs    

    Landfill  [43.96, 46.62] [4.27, 4.76] 

    Recycling  [0, 0] [0, 0] 

    Composting  [2.00, 5.48] [0.19, 0.22] 
    

Gross system costs [923.69, 1028.84] [100, 100] 

    
Revenue    

    Landfill  [0.1, 0.2] [0.18, 0.41] 

    Recycling  [25.95, 26.41] [51.82, 51.96] 

    Composting  [24.04, 24.21] [47.64, 48.01] 
    

Gross system benefits [50.08, 50.83] [100, 100] 

Net system costs [873.02, 978.58]  

Table 6.3 shows the distribution of system costs among different facilities in intervals. 

They were formed based on the biggest and smallest values of each parameter obtained 

from all 11 event models under 11 aspiration levels. Among all the costs, the operating cost 

contributes the most percentage to the total system cost, and the operating cost of 

landfilling wastes accounts for over 40 percent of total system costs and is the highest one 

among all the costs. This is because the waste flow allocated to landfill is much more than 
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that allocated to the other facilities. Meanwhile, the revenues generated by the landfill are 

much lower than revenues of recycling and composting facilities The capital cost for the 

recycling facility is 0, indicating that the capacity of the existing recycling facility in HRM 

can satisfy all the recyclable needs, and the facility does not need to be expanded in the 

next 30 years.  

Wastes flow allocated to landfill in each period is shown in Figure 6.2. Apparently the 

waste flow increases in each period. This is because the municipal population is increasing

and the total waste generated will increase accordingly. As the landfill is the main facility 

to dispose of wastes, the waste flow allocated to the landfill will increase accordingly.  
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Figure 6.2 Waste flow allocated to the landfill (REILP) 

Figure 6.3 illustrates the waste flow allocated to the recycling facility in each period of the 

planning horizon. Although the waste flow increases gradually in each period, it is lower 

than the existing capacity (which is 28,000 tonnes per year) for the entire planning 

horizon. Therefore, there will be no need for the recycling facilities to be expanded in the 

coming 30 years.  
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Figure 6.3 Waste flow allocated to the recycling facilities (REILP) 

Waste flow allocated to the composting facilities is illustrated in Figure 6.4. In the Figure, 

the left bar represents the lower bound of waste flow, and the right bar is the upper bound 

of waste flow. It can be observed that the waste flow allocated to the composting facilities 

keeps increasing. Starting from period 2, the upper level of waste flow goes beyond the 

existing composting capacity of HRM (i.e., 50,000 tonnes per year). Starting from period 

5, the upper level of waste flow goes over 60,000 tonnes per year, but is less than 70,000 

tonnes per year. This indicates that the composting facility needs to be expanded for 10,000 

tonnes per year (Option 1 of composting facility expansion plan) by the end of period 1, 

and it needs to be expanded for 10,000 tonnes per year again by the end of period 4 to 

satisfy the needs of disposing compostable wastes.  
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Figure 6.4 Waste flow allocated to the composting facilities (REILP) 

6.2. FREILP Results under Different -cuts

Before running the FREILP model, the aspiration levels under conservative, medium, or 

aggressive decision cases need to be determined by selecting different -cut levels, as 

described in Chapter 4. Figure 6.5 gives an example of finding interval conservative 

aspiration levels under different -cut levels. For example, when -cut = 0.6, the interval 

aspiration level is [0, 0.29]. Table 6.7 gives the interval aspiration levels for all three 

decision cases under -cut levels of 0.5, 0.6, and 0.7.  
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Figure 6.5 Determination of the interval aspiration levels under -cut levels of 0.5, 0.6 and
0.7 for conservative scenarios 

6.2.1.  Scenario 1: -cut = 0.5 

Three groups of solutions, including conservative, medium and aggressive solutions, under 

the -cut of 0.5, are provided in Table 6.4. As the aspiration level increases, the risk 

function increases from [0, 0.07] for conservative case to [0.08, 0.24] for medium case and 

[0.29, 0.63] for aggressive case; while the total system cost decreases from [946.91, 

978.58] to [909.97, 941.64], and to [873.02, 904.69] million dollars for the entire planning 

horizon, respectively. The components included in the total system cost, i.e., waste 

transportation and collection cost, facility operating cost, and capital cost, also decreases. 

Table 6.4 also presents the optimal solutions for total waste generation and allocation to 

different facilities. As shown in Table 6.4, most solutions are obtained as intervals, 

representing the uncertainties in the system. However, waste generation and waste 

allocation solutions for the conservative decisions are crisp values, since the upper bounds 

and the lower bounds happen to be same with the aspiration level being 0 and 0.3.   

0.7

0.5
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Table 6.4 FREILP solution when -cut = 0.5 

0.5-cut Conservative Medium Aggressive 

Aspiration level [0.00, 0.30] [0.35, 0.65] [0.70, 1] 

Risk function [0.00, 0.07] [0.08, 0.24] [0.29, 0.63] 

Total cost (106$) [946.91, 978.58] [909.97, 941.64] [873.02, 904.69] 

Collection cost (106$) [287.43, 300.70] [271.54, 284.72] [259.23, 270.49] 

Operation cost (106$) [660.96, 676.40] [642.33, 659.67] [618.50, 636.76] 

Capital cost (106$) [49.44, 52.02] [48.69, 48.76] [45.95, 48.12] 

Revenue (106$) [50.90, 50.53] [50.59, 51.52] [50.66, 50.68] 

Waste generation (106 tonne) 12.70 [12.68, 12.70] [12.32, 12.70] 

Waste to landfill (106 tonne) 4.88 [4.87, 4.88] [4.75, 4.80] 

Waste to recycling (106 tonne) 0.79 [0.77, 0.79] [0.74, 0.77] 

Waste to composting (106 tonne) 1.77 [1.68, 1.77] [1.54, 1.69] 

6.2.2.  Scenario 2: -cut = 0.6 

The optimal solutions of FREILP model under the -cut of 0.6 are given in Table 6.5. 

Under the -cut of 0.6, the aspiration levels are equal to [0, 0.29], [0.36, 0.65], [0.71, 1] for 

conservative, medium, and aggressive decisions, respectively. As indicated in the Table, 

the optimal risk function for these decisions are [0, 0.07], [0.09, 0.24], and [0.29, 0.63], 

respectively. The total system cost and each cost component decrease with the increase of 

the aspiration levels.  
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Table 6.5 FREILP solution when -cut = 0.6 

0.6-cut Conservative Medium Aggressive 

Aspiration level [0.00, 0.29] [0.36, 0.65] [0.71, 1] 

Risk function [0.00, 0.07] [0.09, 0.24] [0.29, 0.63] 

Total cost (106$) [947.97, 978.58] [909.97, 940.58] [873.02, 903.64] 

Collection cost (106$) [289.32, 300.70] [271.54, 285.34] [259.23, 269.94] 

Operation cost (106$) [659.07, 676.40] [642.33, 655.80] [618.50, 637.40] 

Capital cost (106$) [50.11, 52.02] [48.69, 51.34] [45.95, 46.69] 

Revenue (106$) 50.53 [50.59, 51.91] [50.39, 50.66] 

Waste generation (106 tonne) 12.70 [12.68, 12.70] [12.32, 12.68] 

Waste to landfill (106 tonne) 4.88 [4.87, 4.88] [4.75, 4.84] 

Waste to recycling (106 tonne) 0.79 [0.77, 0.79] [0.74, 0.77] 

Waste to composting (106 tonne) 1.77 [1.68, 1.77] [1.54, 1.66] 

6.2.3.  Scenario 3: -cut = 0.7 

When -cut = 0.7, the interval aspiration level for conservative, medium, and aggressive 

decisions are [0, 0.28], [0.35, 0.64], and [0.72, 1], and the minimized risk function values 

are [0, 0.07], [0.08, 0.24], and [0.3, 0.63] respectively. Similar trends can be observed for 

the solutions of the total system cost, waste generation, and waste allocation to different 

facilities, as indicated in Table 6.6.  
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Table 6.6 FREILP solution when -cut = 0.7 

0.7-cut Conservative Medium Aggressive 

Aspiration level [0.00, 0.28] [0.35, 0.64] [0.72, 1] 

Risk function [0.00, 0.07] [0.08, 0.24] [0.30, 0.63] 

Total cost (106$) [949.03, 978.58] [911.02, 941.64] [873.02, 902.58] 

Collection cost (106$) [288.12, 300.70] [271.87, 284.72] [259.23, 269.55] 

Operation cost (106$) [663.55, 676.40] [641.81, 659.67] [618.50, 635.34] 

Capital cost (106$) [48.80, 52.02] [48.12, 48.76] [45.95, 48.12] 

Revenue (106$) [50.53, 51.45] [50.77, 51.52] [50.43, 50.66] 

Waste generation (106 tonne) 12.70 12.70 [12.32, 12.70] 

Waste to landfill (106 tonne) 4.88 [4.84, 4.88] [4.75, 4.80] 

Waste to recycling (106 tonne) 0.79 [0.77, 0.79] [0.74, 0.76] 

Waste to composting (106 tonne) 1.77 [1.70, 1.77] [1.54, 1.68] 

6.3. Discussion

The optimal solutions under the -cut of 0.6 are used for further result analysis and 

discussion. Table 6.7 gives the optimal waste flows allocated to each facility in different 

planning periods. Generally, the waste flows allocated to all the facilities are increasing 

over time in the planning horizon.  

The expansion plans for waste disposal facilities are shown in Table 6.8. It is indicated that 

the landfill capacity needs to be expanded before the period 4 across the conservative, 

medium, or aggressive decisions. In other words, the landfill must be expanded by the end 

of period 3 (year 2025) to meet the waste disposal needs. The current designed lifetime of 

the Otter Lake landfill is from 1999 to 2023. However, by implementing the optimal 

MSW allocation pattern obtained from this study, the lifetime of existing landfill would be 

extended for another two years. For recycling facilities, no expansion is needed, which 



106

means the existing recycling facilities have enough capacity to treat the recyclables in the 

coming 30 years, and no capital cost will be needed for expanding the recycling facilities. 

As for the composting facilities, it should be expanded for 10,000 tonnes per year by the 

end of the first and third period for conservative and medium planning. For the aggressive 

planning, they need to be expanded only once during the 30-year planning horizon. 
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Table 6.7 Waste allocation solutions 

0.6-cut Conservative Medium Aggressive 

Aspiration level [0, 0.29] [0.36, 0.65] [0.71, 1] 

Risk function [0, 0.07] [0.09, 0.24] [0.29, 0.63] 

Waste sent to landfill (tones) 

Period 1 [735467, 738640] [698096, 735467] [698096, 718462] 

Period 2 766971 [766971, 768674] [735087, 746019] 

Period 3 796388 [796388, 798156] [774632, 798156] 

Period 4 826934 [826934, 827513] [804344, 828770] 

Period 5 85865 [858652, 859431] [835194, 859431] 

Period 6 89158 [891586, 920582] [867228, 920582] 

Total [4875997,4879171] [4875997, 4872452] [4840122, 4745878] 

Waste sent to recycling (tonnes) 

Period 1 [136887, 140000] [115000, 140000] [111905, 115000] 

Period 2 119866 119866 [116197, 119866] 

Period 3 124464 124464 [121579, 124464] 

Period 4 133134 [129238, 133134] [125282, 129238] 

Period 5 134195 [134195, 140000] [130087, 140000] 

Period 6 139342 [138000, 139342] [135076, 138000] 

Total [787887, 791001] [766568, 791001] [740125, 766568] 

Waste sent to composting (tonnes) 

Period 1 250000 250000 [232729.5, 250000] 

Period 2 281860 [260579, 281860] [241656.5, 260579.1] 

Period 3 292671 [270574, 292671] [250000, 270573.7] 

Period 4 300000 [296656, 300000] [260548.9, 280951.6] 

Period 5 315552 [300000, 315552] [270543.3, 300000] 

Period 6 327655 [300000, 327655] [280919.5, 300000] 

Total 1767737 [1677809, 1767737] [1536398, 1662104] 
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Table 6.8 Facility expansion solutions 

0.6-cut Conservative Medium Aggressive 
Aspiration Level 0 0.29 0.36 0.65 0.71 1 

Landfill expansion 
Period 1 0 0 0 0 0 0 
Period 2 0 0 0 0 0 0 
Period 3 0 0 0 0 0 0 
Period 4 1 1 1 1 1 1 
Period 5 0 0 0 0 0 0 
Period 6 0 0 0 0 0 0 

      

Recycling expansion options  
Period 1 0 0 0 0 0 0 
Period 2 0 0 0 0 0 0 
Period 3 0 0 0 0 0 0 
Period 4 0 0 0 0 0 0 
Period 5 0 0 0 0 0 0 
Period 6 0 0 0 0 0 0 

      

Composting expansion option 1 
Period 1 0 0 0 0 0 0 
Period 2 1 1 1 1 1 0 
Period 3 0 0 0 0 0 0 
Period 4 0 0 0 0 0 1 
Period 5 1 1 1 0 0 0 
Period 6 0 0 0 0 0 0 

      

Composting expansion option 2 
Period 1 0 0 0 0 0 0 
Period 2 0 0 0 0 0 0 
Period 3 0 0 0 0 0 0 
Period 4 0 0 0 0 0 0 
Period 5 0 0 0 0 0 0 
Period 6 0 0 0 0 0 0 

      

Composting expansion option 3 
Period 1 0 0 0 0 0 0 
Period 2 0 0 0 0 0 0 
Period 3 0 0 0 0 0 0 
Period 4 0 0 0 0 0 0 
Period 5 0 0 0 0 0 0 
Period 6 0 0 0 0 0 0 
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6.3.1.  Conservative-Risk Decision Support 

If the decision makers choose conservative decisions, the waste allocation plans for 

recycling, composting, and landfill facilities are shown in Figures 6.6, 6.7, and 6.8. As 

illustrated in Figure 6.6, the wastes allocated to the recycling facilities are relatively more 

in the first period, and become much less in the second period. Starting from period 2, the 

wastes allocation for recycling facilities gradually increases over time. This is due to the 

expansion of composting facilities. In Figure 6.7, it is shown that the capacity of 

composting facilities would be 60,000 tonnes per year for period 2. Therefore, more wastes 

could be sent to composting facilities for a lower treatment cost. The increase of waste flow 

allocated to the recycling facilities after period 2 is due to the increase of total waste 

generation. All the waste allocation flows are under the above line in Figure 6.6, which 

indicates the current capacity (28,000 tonnes per year) is sufficient to meet the disposal 

needs for recyclable wastes, and no expansion is needed for recycling facilities in 30-year 

planning horizon.  
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Figure 6.6 Waste allocation and design capacity of recycling facilities under  
conservative-risk decisions 
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Figure 6.7 illustrates the waste allocation and the designed capacity of composting 

facilities under the conservative decisions. The capacity needs to be expanded to 60,000 

tonnes per year for period 2 and 70,000 tonnes per year for period 5. In other words, the 

option 1 for composting facility expansion will be used in periods 1 and 4 to ensure all the 

compostable wastes be treated in the entire planning horizon.  
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Figure 6.7 Waste allocation and designed capacity of composting facilities under 
conservative-risk decisions 

The waste flows allocated to the landfill are illustrated in Figure 6.8. The waste flow 

increases steadily over time. On the one hand, in order to achieve the diversion rate of over 

60%, the wastes allocated to the landfill have to be less than 40% of the total waste 

generated. On the other hand, the waste flow to landfill should be kept at a high level 

simply because the operating costs of landfilling wastes are much lower than that of 

recycling and composting facilities. This makes the optimal waste flows of landfill around 

40% of the total waste generated, and has a steady increase as the total waste generation 

increases over the years.   
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Figure 6.8 Waste allocation to landfill under conservative-risk decisions 

Unlike the capacity of recycling or composting facilities, the landfill is accumulating the 

wastes in its cell and thus its capacity is consumed up and reduced on a daily basis. In this 

study, the capacity of Otter lake landfill gradually reduces, as shown in Figure 6.9, and will 

be mostly used up in period 3. The remaining capacity would be [119500, 122674] tonnes 

by the end of period 3, which is not enough for the coming waste flow of 826934 tonnes in 

period 4 (see Table 6.7). Consequently, the landfill will need an expansion in period 3 to 

make sure the capacity will be enough for period 4 and thereafter. With the expansion, the 

available landfill capacity by the end of period 4 will become [3042566, 3045740] tonnes. 

The available capacity after the whole planning horizon would be [1292329, 1295503] 

tonnes.
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Figure 6.9 Available landfill capacity under conservative-risk decisions 

6.3.2.  Medium-Risk Decision Support 

If the decision makers choose medium decisionst, the waste allocation plans for recycling, 

composting, and landfill facilities are shown in Figures 6.10, 6.11, and 6.12. As shown in 

Figure 6.10, the recycling facility does not need to be expanded in the coming 30 years. 

The optimal waste flow for medium risk decisions would be [23000, 28000], 23973, 

24893, [25848, 26627], [26839, 28000], and [27600, 27868] tonnes per year in the coming 

6 periods. The capacity of the existing recycling facilities of 280,000 tonnes per year is 

capable of disposing all these recyclables in the entire planning horizon.  

The waste flows allocated to composting capacities are 50000, [52116, 56372], [54115, 

58534], [59331, 60000], [60000, 63110], and [60000, 65531] tonnes per year in the coming 

6 periods, as illustrated in Figure 6.11. To compost all these wastes, the composting 

facilities need to be expanded to 60000 tonnes per year by the end of period 1 and to 70000 

tonnes per year by the end of period 4.  
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Figure 6.10 Waste allocation and designed capacity of recycling facilities under 
medium-risk decisions 
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Figure 6.11 Waste allocation and designed capacity of composting facilities under 
medium-risk decisions 
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The optimal waste flows allocated to the landfill for the medium risk level decisions are 

[139619, 143692], [147018, 149204], [154926, 159631], [160869, 165754], [167039, 

171886], and [173446, 184116] tonnes per year, as illustrated in Figure 6.12. As the wastes 

accumulate in the landfill, the capacity would be reduced to [126734, 156574] by the end 

of period 3. However, the waste flow for the coming period 4 would be [826934, 827513] 

tonnes, which is much more than the remaining capacity, so the landfill needs to be 

expanded by the end of period 3, as illustrated in Figure 6.13. After the expansion, the total 

available capacity by the end of period 4 would be [3045740, 3079061] tonnes and will be 

consumed gradually as time passes. The final remaining capacity of the landfill by the end 

of the entire planning horizon would be [1295503, 1299048] tonnes. 
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Figure 6.12 Waste flow allocation to landfill under medium-risk decisions 
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Figure 6.13 Available capacity of landfill at the end of each period under 
medium-risk decisions 

6.3.3.  Aggressive-Risk Decision Support 

If the decision makers choose aggressive decisions, the waste flows allocated to different 

MSW facilities are provided in Figures 6.14, 6.15, and 6.16. As illustrated in Figure 6.14, 

even under the most aggressive situation, the capacity of the existing recycling facilities 

i.e., 280,000 tonnes per year, is sufficient for the treatment of all the recyclable wastes in 

the coming 30 years. The optimal allocation for recyclables are [22381, 23000], [23239, 

23973], [24316, 24893], [25056, 25848], [26017, 28000], and [27015, 27600] tonnes per 

year in each period.   

The composting facilities need to be expanded for only once, under the aggressive 

decisions, as shown in Figure 6.15. The option 1 expansion (i.e., 60,000 tonnes per year) by 

the end of period 1 will be able to handle the compostable wastes flows of [46546, 50000], 

[48331, 52115], [50000, 54114.74], [52110, 56190], [54109, 60000] and [56184, 60000] 

tonnes per year for the coming 6 periods. 
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The wastes allocated to the landfill are [139619, 143692], [147018, 149204], [154926, 

159631], [160869, 165754], [167039, 171886], and [173446, 184116] tonnes per year in 

the coming 6 periods, as shown in Figure 6.16. Due to waste accumulation and capacity 

consumption, the remaining landfill capacity by the end of each period would be [1703038, 

1723404], [957020, 988317], [182388, 190160], [3111391, 3128044], [2251960, 

2292850], and [1331378, 1425622] tonnes. It is apparent that the expansion of landfill 

needs to be conducted before period 4 (Figure 6.17). The remaining landfill capacity of the 

aggressive decisions is larger than that of the conservative decisions. 
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Figure 6.14 Waste allocation and designed capacity of recycling facilities 
under aggressive-risk decisions 
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Waste allocation and designed capacity of composting facility
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Figure 6.15 Waste allocation and designed capacity of composting facilities under 
aggressive-risk decisions 
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Figure 6.16 Waste flow allocation to the landfill under 
aggressive-risk decisions 
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Figure 6.17 Available landfill capacity at the end of each period under  
aggressive-risk decisions 

6.3.4.  Comparison of Three Decision Supports 

As most of the solutions are obtained as intervals, the mean values of the upper level and 

the lower level of each of the parameters and variables are calculated in this section for the 

purpose of a simple comparison. For example, the risk function values for conservative, 

medium and aggressive functions are [0, 0.07], [0.09, 0.24], and [0.29, 0.63], so the mean 

values of them, 0.035, 0.165 and 0.46 are used for comparison. 

Within the same time period, the waste flow sent to a facility would be higher for a 

conservative decision than for an aggressive decision. This is because the aggressive 

decision assumes the waste generation amount to be in a lower level, so that the lower 

system cost could be achieved. This assumption is certainly helpful for the economic 

benefit, but the risk of violating the constraints improves because it is not guaranteed that 

the waste generation amount is within the lower level. If the waste generation happens to 

be high, the solution for the aggressive decision will not satisfy the real need of waste 
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disposal. Therefore, the risk function for aggressive decision is relatively high. On the 

contrary, the risk function for conservative decision is low, but the expected total system 

cost is high, as illustrated in Figure 6.18.   

The waste generation values for conservative, medium and aggressive decision supports 

are shown in Figure 6.19. Since the total wastes generated are anticipated to be less for the 

aggressive solution, the wastes sent to different disposal facilities would also be less in the 

aggressive decision, and the wastes flows under the conservative decision are higher, as 

illustrated in Figure 6.20, Figure 6.21 and Figure 6.22.   

The tradeoff between the risk function and total system cost is illustrated in Figure 6.23. 

Generally, the aggressive decision support will result in a lower system cost and lower 

waste generation estimation, with a higher risk level of violating the constraints; the 

conservative decision support will result in a higher system cost and higher waste 

generation estimation, with a lower risk level of violating the constraints; and the medium 

decision support will lead to a result in between. No single decision is superior to others in 

every aspect, so no one option is strongly recommended. It would be planning makers’ 

responsibility to select one among the three options, based on their evaluation of MSW 

system in HRM and their preferences.  
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Figure 6.20 Landfill waste flows comparison 

Waste allocation to recycling facility
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Figure 6.21 Recycling waste flows comparison 
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Waste allocation to composting facility
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Figure 6.22 Composting waste flows comparison 
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Figure 6.23 Composting waste flows comparison 
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CHAPTER 7  

SUMMARY AND CONCLUSION 

7.1. Summary

In this study, a fuzzy risk explicit interval linear programming method is proposed and 

applied to the long-term planning of the MSW management system in HRM, Canada. The 

approach can provide a practical decision support through reflecting the tradeoff between 

system benefits and decision risks. From this study, some conclusions could be 

summarized as follows: 

(1) Three existing algorithms that are being used to solve ILP problems include Monte 

Carlo simulation method, 2-step algorithm, and BWC algorithm. Monte Carlo simulation 

method needs extensive computing efforts and is not applicable for complicated real-world 

problems. Validity checking for 2-step algorithm and BWC algorithm has been conducted 

through an illustrative numerical example, and the results indicate that both algorithms 

could produce pseudo-optimal solutions which contain infeasible optimal solutions as well 

as non-optimal solutions. More in-depth efforts should be placed on either algorithm itself 

or decision-support process.  

(2) Problems of the existing risk explicit ILP method are examined. REILP method can 

assist decision makers to make a crisp decision by offering the tradeoff between the 

decision risk and the system return. The risk function was defined to enable finding 

solutions with the minimum decision risk. The original ILP objective function, which is 

usually to maximize the system return or to minimize the system cost, was transformed into 

a constraint to keep the system return in a desired level. Due to the potential problems 

associated with the REILP, a fuzzy REILP method is proposed in this study to improve 

upon existing approach.  

(3) An optimization approach FREILP is proposed as the further development of REILP. 

By finding and correcting the root of the infeasibility problem, restructuring the risk 
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function formulation, and introducing fuzzy set theory in selecting aspiration levels, 

FREILP can provide more reliable and more practical supports to decision makers. The 

improvement of FREILP over the existing 2-step and BWC solutions is that the risks 

associated with the possible optimal solutions and decisions derived from them could be 

incorporated into the decision-making process.  

 (4) The developed FREILP model is applied to the long-term planning of the MSW 

management system in HRM, Canada. A traditional ILP model is firstly developed to 

minimize the total MSW management system cost over a 30 years period. This is achieved 

by selecting the waste flows allocated to different waste disposal facilities as decision 

variables, with the constraints of mass balance, diversion rate, and capacity limitations. 

Then, the ILP is transformed into a REILP model, having the risk function as the new 

minimized objective function. Aspiration level is the key factor of the transformed REILP 

model. To provide a comprehensive decision support, the model is firstly solved as REILP. 

Eleven groups of solutions are obtained with 11 preset aspiration levels from 0 to 1, with 

the step of 0.1. These solutions can provide specific decision support for those decision 

makers who are familiar with the modeling and have a crisp aspiration level in mind. For 

those decision makers who are not sure about the aspiration levels, FREILP is also solved 

and three groups of solutions are provided and compared, including aggressive schemes, 

medium schemes, and conservative schemes.  

(5) While minimizing the system risk and the total system costs, FREILP can provide the 

waste allocation flows and expansion plans for three decision levels: conservative, 

medium, and aggressive. For the conservative solution schemes, the total system cost of 

MSW management system in HRM is estimated as [947.97, 978.58] million dollars and the 

wastes generation is estimated as 12.7 million tonnes over the 30 year period. The landfill 

should be expanded by the end of period 3 and the composting capacity should be 

expanded to 60,000 tonnes per year in period 1 and to 70,000 tonnes per year in period 4. 

For the medium solution schemes, the total system cost is estimated as [909.97, 940.58] 

million dollars and the waste generation would be [12.68, 12.70] million tonnes. The 

facility expansion plan would be the same as conservative outcome. For the aggressive 
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solution schemes, the total system cost is evaluated as [873.02, 903.64] million dollars and 

the waste generation is [12.32, 12.68] million tonnes. Only one expansion (expanding to 

60,000 tonnes per year) is expected by the end of period 1 in the aggressive situation. All 

these solutions can ensure the waste diversion rate of 60% is achievable.  

(6) The model results show that the FREILP approach is able to efficiently explore the 

interval uncertainty space and generate optimal decision schemes that directly reflect the 

tradeoff between decision risks and system return, allowing decision makers to make 

effective and practical decisions, based on the risk-reward information generated by the 

FREILP modeling analysis. 

7.2. Research Achievements 

This study represents a new contribution to ILP and its solution algorithms. It checked the 

validity of ILP algorithms through a numerical example, which is not conducted by 

previous studies. The result of validity checking shows that both algorithms could 

produce infeasible optimal solution schemes as well as non-optimal solution schemes. 

This study is the first attempt at developing a FREILP, and more importantly, applying it to 

a real and advanced MSW planning and management problem. The knowledge gained in 

this study would provide valuable support for research and real life applications. The 

solutions for the case study can provide an effective decision support for MSW 

management system planning makers in HRM.  

7.3. Recommendation for Future Research 

The original objective function of the ILP model in this study is to minimize the total 

system cost while achieving the environmental goal, which is a waste diversion rate of 

60%. In the model construction, the total system cost consists of transportation and 

collection cost, operation cost, capital cost, and revenue. Besides these factors, the residual 
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market value of facilities by the end of the planning horizon should also be considered as a 

component of the total system cost. For example, the landfill with a capacity of 1,291,329 

tonnes and the one with a capacity of 1,425,622 tonnes by the end of the planning horizon 

will have different market values. This residual value will affect the ongoing planning of 

MSW management. However, due to no residual market value data was obtainable during 

the conduction of this study is conducted, the residual market value of waste disposal 

facilities in HRM is not considered in this study. More comprehensive and updated data 

will improve the accuracy of the model results, so that more helpful and efficient decision 

supports could be provided. 

After the validity check of ILP algorithms were conducted, this study focuses on 

developing an approach that can minimize system risk as well as minimize the system cost. 

The solutions provided by either REILP or FREILP are practical and effective. However, 

they cannot provide the entire solution space for the original ILP model. This means part of 

the feasible and optimal solutions could have been missed. Therefore, further study in 

developing a method that is effective, practical, and computationally affordable to solve 

ILP is recommended.  

From the standpoint of practical applications, the developed methodology framework, 

FREILP, could be further employed to other engineering decision-making problems, such 

as resource management problems, and the regional air or water pollution control planning 

problems.  
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