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The problem of deterniming the amount of a given substance that
has diffused into one life form given that a known amount has diffused
into a2 second similar life form under the same conditions is studied
under the assumption that: free molecular diffusion is the only process
involved, the mass diffusion coefficients are known constants and the
external concentration of the diffusing substance remains constant.
The solution of this comparative diffusion problem is obtained in terms
of the external concentration value and the physical properties of each
life form for the special case of a cylinder-cylinder configuration of the
pair. The properties of this solution are then determined for all
reasonably small and sufficiently large values of the external concentra-
tion value. This study represents a first attempt to resolve what appears
to be a new class of diffusion problems.

Introduction

The biologist is often confronted with the task of maintaining an important
plant free from intruding parasites and epiphytes. He may find manual separa-
tion awkward, time consuming, or even damaging to his object of study. In this
case, the possibility of having the host-intruder system immersed for a brief
time in a solution containing chemicals so as to reach lethal concentration in in-
truder while inflicting as little damage as possible to the host is certain to be
worth his consideration, especially if the damage done is insignificant.
However, to be able to use such a method efficiently certain questions, arising
quite naturally in this context, have to be answered. Assuming that the lethal
concentration T necessary to neutralize the intruder is known, one has to know
the duration of exposure of the host-intruder system to the chemical in use when
the concentration ¢ > T is given. More importantly, since only the smallest possi-
ble concentration of the same substance should be permitted to enter the host,
one has to know whether long exposures with smaller concentrations or short
exposures with correspondingly larger concentrations are preferable. In the pre-
sent paper we discuss these questions in the case of a cylinder-cylinder configua-
tion of the host-irtruder system in which the following hypotheses hold:

1. The process by which the toxic chemical is taken in by both life forms is

free molecular diffusion.

2. The diffusion coefficient is a constant for each life form (and is known a

priori or can be determined experimentally).

3. The concentration ¢ of the toxic chemical remains unchanged durmg the

exposure of host-intruder to it.

Similar analyses, under less stringent assumptions, eg when diffusion and
reaction occur simultaneously or the process is membrane dependent etc, are
certainly possible. However, for this initial simplified model assumptions 1 - 3
are maintained throughout.
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The cylinder-cylinder configuration

In this configuration the valuable and unwanted life forms are represented by
two cylinders A and B of radius r, and ry respectively. The cylinders are con-
sidered to be infinite in length or, if of finite extent, have ends which do not per-
mit diffusion.

For a given cylinder of base radius r_, let C(r,t) denote the molar concentra-
tion (g - moles/cm?) of diffused chemical at time t (sec) at each point a distance
r (cm) from the center of the cylinder after it has been immersed in a solution
containing a molar concentration c of the toxic chemical. Then according to
assumptions 1 and 3, C(r,t) is a solution of the initial-boundary value problem
for the diffusion equation*

C,=k(C,+ C/r) O<r<r,,t>0
1) Clr,t) = ¢, t >0
Cr,0) =0, O<re<r,

where k is the m iffusion coefficient (cm?/sec) for the given cylinder and

= &r,-t = 5. If one also wanted to take into account a reaction process

which produced or eliminated the diffusing chemical, then the diffusion equa-
tion would be

Ct =k(Cy + C/1) + R

where R(r) would be the molar rate (g - moles em3 sec'l) of production or
elimination of ¢ at r. Problem (1) can be solved by the technique of separation of
variables.

* The differential equation in (1) is called Fick’s second law of diffusion or the diffusion equation
(Bird et a/ 1960,) and is the equation (in polar coordinates) often used for the analysis of diffusion in
solids or stationary liquids; k 1s a measure of the molar diffusion flux, which is the number of moles
of the chemical that pass through a unit area of the material in unit time and depends on
temperature, pressure, and composition of the material.
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Substitution of C(r,t) = ¢ + R(r)T(t) into the differential equation and boun-
dary condition in (1) gives

T _ 1,00 L R\_ 32
2) & =R )= 0<r<r ,t>0
Rr)T() =0, > 0

where A is the separation constant and R' = %{- LT = %

It follows that foreachj = 1,2,...
R(OT,(0) = JAo) exp (-Aj%ct)

satisfies (2) with A = )‘j where the eigenfunctions

J O(Ajr) = ; [(-l)n()t-l'/ 2)2'1 (n!)'z]are the Bessel functions of order zero
n=0 ]

and the corresponding eigenvalues Aj satisfy J 0()tjr o) = 0. The unique solution

of (1) is then expressed in terms of that linear combination of the

Rj(r)Tj(t)’s for which C(r,0) = 0,0 < r < £, .Thus

o0
Ctt) =c+ I a J (Ar)exp (Akt)
j=1 } 0] J

where for eachj = 1,2,...,
= QAT e )) D) e (O () ¢ (o)
aj - 1'01 jro foro jl' -Cir
= 2¢/ ey ) )

the integration following from the special property of Bessel functions:

_c?x- (x 1, (x) =% L (x) , v real. The above series and its derivatives
converge absolutely and uniformly with respecttorand t(t 2 t ~ t 0 > 0), and
its sum C(r,t) is a continuous functionof rand tfor0 < r < r 0 t > 0. One

consequence of this is that the series can be integrated termwise without affec-
ting its convergence. Integration of C(r,t) over a representative segment of unit

length of the given cylinder and subsequnet division by the volume of that seg-

ment (ar g) gives the mean concentration M of the toxic chemical in the sement
at time t
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r

0
3) M(tr,c) = Q2nf C(r,t) dr) /n rf)
O
_ g 4 2
=c(l- % 12xt)).
R 2

0]
and M(t,r_,c) satisfies: 0 < M(t,r,,¢) < cforeverycandt > 0, M(O,r_,c) =0

and M(t,r ,c) is a continuous, strictly increasing function of t > 0 for fixed ¢
with lim M(t, r, ,C)==c.

t=> o0

Applied to cylinders A and B, (3) gives

o0
4
Mitrg,c)=cll- 3 575 exp(-a kgt) )
]—ll'Ba.
)
and
© 4 B )zk )
@ Mtro=dl-E ——— (B apTky
J ri(r—a]) A
o 2
=c(1- T _4_ exp(-atkppt))
j=1 r]_,?az P ] BP
J

where p = B A and M(t, r A’ ¢) and M(t,rB,c) are the mean concentrations of

AB

the toxic chemical in the representative segments of A and B after their immer-
sion in the solution at timet =0, k A’ and kB are the diffusion constants for A

and B, and aj are the eigenvalues, Jo (ajrB) =0,j=12,..,.Lett = T(c)
denote the time required for M(t,rB,c) to attain the value 1 for a given value of
¢ >t (clearly ¢ must be chosen such that ¢ > T since M(t,rB,c) <cforallt).
Then

5) Mp (¢) = M(T(c), rg,c)
_ - 2 - 5
__c(l-ji1 ;2% exp(ajkBT(c))) T,C>T
B%j
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and M &k {¢c) = M(T(c), r A ¢) is the mean concentration of toxic chemical in
the valuable component at time t = T(c) . This function T(c) is a continuous,

strictly decreasing function of ¢ > 1 . Indeed, if we set G(T,c) = MB (T,ry,c)
-t,¢ > 71,then

oo
— aG
G(Te)=0,——=1- X exp(a k T)>O
ac i=1 rz 2
o 4k
, 86 —¢ 5 SBexp(e? *kgT) > 0
R

and by the Implicit Function Theorem (Courant 1947), T' (c) exists and

T (c)=-(g_G./%%) <0,c> 7.
C

From (5) it also follows thatclincl’o T(¢) = 0 and clnr_; +T(c) = o The really impor-

tant question, of course, is how does M A (c) vary as a function of that c (and
corresponding T(c) ) for which MB (¢) = t, since this will determine the pro-

cedure to be used in the operation of the process. A partial answer to this ques-
tion is given by the following theorem and is illustrated in Figure 1. Un-
fortunately, the strictly decreasing (¢ < 1) and strictly increasing (¢ > 1)
behavior of M A (¢) could not be established for all values of ¢ > T, but only for

all reasonably small and sufficiently large values of the external concentration c.
However, all the numerical and theoretical evidence to date suggests that this is
actually the case.

Theorem 1 M A (c) is a differentiable function of ¢ > 7 which is strictly
decreasmg forg < 1, Tr<c< c0 and strictly increasing forg > 1,1 < ¢ < o
where o is given by T(co) =1/ (a kB) with T(c) given implicitly by (5).

In addition, M A (c) satisfies
() éif'.lr-i-MA (o=
i) LmM,y@=1ve
wherep = r]23k A/rzAkB .
Proof. It follows from the differentiability of T(c) that M A (c) is a differen-
tiable and continuous functionof ¢ > 7. By (4),
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My(c)
rfp_ a ® & & & & 8
: it p>1
|
N | it p=1
|
| if p<1
TJP_—————————l.....‘. —
' ' <
T co
© My@=ctt- =z r2—“—2exp(-arjszQT(c))),c s
i=1 15 o

B ]
where the explicit dependence on ¢ can be removed using (5), that is, by replac-
ing ¢ by
T _4 2
e=t/(1- X 5 3exp (-a kp T(c) ) ).

= o

=1 1‘% a;
Then (6) becomes

> 4 2
1- =z =5 3¢XP (-aj kBQ T(c) })
=1 IR 9

N Mp©=FT())=1

4 2
- E F—5¢Xp (-aj kg T(c) ) )
=1 tg o
The remaining properties of M A (c) are determined from F(T) . F(T) can be
written in the form

1
—_ 2
a.2 (1-exp (-aj kBQ )

J

L 2
2 (1-exp (-aj kgT) )

J
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If we differentiate F(T) w.r.t. T > 0, then F(T) 2 0 leads to the corresponding
inequality
o0
eT X exp (—arj2 kBQT) T z

i1 ) exp (-a jszT)

> =1
2 2< 2
z (1- cakapoT £ - -a”.
j 1( exp(ar.l B ))/a] jzl (1 exp(aJkBT) ) /a

or, denoting the R.H.S. by ¢ (T) to
$(eT) 2 ¢(T).

Now computing

2'
j

[+ 2]

3 e kpDexp (a figD
¢ M= =
T (l-exp(-aD)) /a®
i=1 ] ]

o0
T exp (-a .21‘)
=1 :

( T (exp(alD)/jH?
=1 !

it follows easily that
2
T21/(a lkB)
=>4 (T) < 0
=>¢ (@T)Z ¢$(T) forg s 1

=>F(T) 20 forgs1

d ] ]
=>-aEMA(c) =F(T) T'(¢c) s Oforg s1
(recall, T' (¢) < Oforallc > 1).

Therefore

d -1forg < 1, T< ¢ <
(8) sgn [gj MA(c)] ={
: +1forg > 1,1 < ¢ < ¢
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since T(c) = T(cp) for all T < ¢ < ¢y (see Fig. 1, T < ¢ < ¢q) , where ¢g is

given by T(cg) = 1/ (a%kB) and T(cp) is given implicitly by (5).
Unfortunately, no straightforward procedure has yet been found to prove that
(8)istrueforalic > t.
The first of the required limits is a consequence of (7) and the fact that
m T(c) = o . Thus
CaT
lim M, (c)=Ilim F(T)=r.
¢ T+ G w3 T+ oo o=

For the second limit we use L’Hospital’s rule. Thus,
im M A (c) = lim F(T)

ca oo T-07
i 2
2 exp (-aj kBgT)
=lim 1o =
T-0T1 ( )

and the required limit follows from the well known result (Watson 1952) that
for large N

@ rge (€ ¢] -';'li'),(n G+ %) ) forallj 2 N and from the result

o 2
fe* dx =vVn/2
0

This proves the theorem.

The following example is intended to give a more precise picture of the
behavior of M (c) (¢f Fig 1) for a particular set of values for k o g,
and 7 and suggests one area in which the results obtained here mlght%e ap-
plied. Since little is known regarding the prediction of values for the mass diffu-
sion coefficients for particular substances and the corresponding toxic
chemicals, a more specific example would require some experimentation to
determine values for these diffusion coefficients and v . Here values for these
constants have been assigned(International Critical Tables) on the basis of what
one might reasonably expect from the types of substances involved. However, it
should be pointed out that an approximation to the value k for a particular
substance and corresponding toxic chemical can be obtained directly using for-
mula (3). Thus, if the given substance (which is assumed to be cylindrical in
shape with radius rq) is immersed for a fixed time t( in a solution containing a
known molar concentration c of the toxic chemical and if after time t( , the total
amount (number of moles) cg of the chemical which has diffused into a
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representative segment of unit length can be determined, then (3) gives

2 T 4 2
en = nr Mty tn,0) =mac(l- = 3 exp(-A2kty))
0 = "o Mlte.rg o= B, ‘(2)"12 p (-Aktp)

which can be solved for k.

An example, some recent studies off the coast of Nova Scotia, have involved
the cultivation of a commercially valuable seaweed (Gracilaria sp) which is
densely intertwined by an epiphyte (Enteromorpha intestinalis). One process
which might be used to eliminate the effect of the epiphyte without actual
physical separation is the immersion of the entangled mass in a solution con-
taining a chemical which is toxic to the epiphyte and possibly also toxic to the
valuable component. A choice of the toxic chemical might by CuSO, . Approx-
imating the seaweed and epiphyte by cylinders A and B of radius r A= 0.4 cm.
and rg=0.025 cm. respectively and setting

S cm.z/sec.

ky =kpg= 35x10
v = .00005 gm. moles./cm.3

gives from (5) and (6),

50
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If the sensitivity of the valuable life form O (the minimum mean molar con-
centration of the toxic chemical which produces permanent damage) is known
and satisfies O = t, then there is considerable freedom in the choice of ¢ and
one would choose it 5o as to attain a small concentration of the toxic material in
the host. If, however, O satisfies, /@7 < O < 7, then thereisac = cg such
that M, (¢c) < O forall ¢ > ¢y and for such c the host will absorb a sublethal
amoun#of toxicity.

Discussion

The main result of our analysis - the general description of M , (c) as a func-
tion of ¢ - suggests that the best strategy in the application otAtoxicity to the
removal of unwanted life forms depends on whether ¢ < 1org > 1. In the first
case a brief exposure to a high concentration is indicated. Of course an upper
limit on that concentration will usually be imposed by technical and other con-
siderations, the obvious one resulting from the difficulty of controlling extreme-
ly brief exposures. More importantly, since M , (c) represents an average con-
centration it is possible that parts of the host %lant may temporarily receive a
lethal dose of the chemical. Since upon removal from immersion the averaging
of concentration occurs rather rapidly, it seems safe to assume that in most
cases little damage will be inflicted on the host. When this is not so then an ad-
ditional, empirically determinable, upper limit for ¢ would have to be imposed.

In the second case, ie @ > 1, a concentration close to but not substantially
greater than T would be indicated. Here again it might be necessary to avoid in-
ordinately long exposures as impractical.

Finally, it must be remembered that ours is an idealized model in which the
hypothese of the geometric shape and the type of diffusion (absence of reaction
between the chemical and the plants etc) are essential. This notwithstanding it
may still be feasible to make use of it in situations where there is reason to
believe that these hypotheses are not entirely invalid. Insuch cases it would be
necessary to run a series of preliminary experiments in which the constants of
the model would be approximately determined. These in turn could be used to
fit a graph of M, (c) as a function of ¢ so as to enable the experimenter to deter-
mine the procedure he would like to adopt.
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