
COMPUTATIONAL METHODS FOR SPATIAL OLAP

by

Oliver Baltzer

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

April 2011

c© Copyright by Oliver Baltzer, 2011



DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the

Faculty of Graduate Studies for acceptance a thesis entitled “COMPUTATIONAL

METHODS FOR SPATIAL OLAP” by Oliver Baltzer in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Dated: April 12, 2011

External Examiner:

Research Supervisors:

Examining Committee:

Departmental Representative:

ii



DALHOUSIE UNIVERSITY

DATE: April 12, 2011

AUTHOR: Oliver Baltzer

TITLE: COMPUTATIONAL METHODS FOR SPATIAL OLAP

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: Ph.D. CONVOCATION: October YEAR: 2011

Permission is herewith granted to Dalhousie University to circulate and to
have copied for non-commercial purposes, at its discretion, the above title upon the
request of individuals or institutions. I understand that my thesis will be electronically
available to the public.

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the
author’s written permission.

The author attests that permission has been obtained for the use of any
copyrighted material appearing in the thesis (other than brief excerpts requiring
only proper acknowledgement in scholarly writing), and that all such use is clearly
acknowledged.

Signature of Author

iii



Contents

List of Figures ix

Abstract xiv

List of Abbreviations Used xv

Acknowledgements xvi

Chapter 1 Introduction 1

1.1 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Background 8

2.1 Data Warehousing and OLAP . . . . . . . . . . . . . . . . . . . . . . 8

2.2 SOLAP Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 SOLAP System Architecture . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 SOLAP Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 The SOLAP Data Model . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Spatial Measures . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Spatial Feature Dimensions . . . . . . . . . . . . . . . . . . . 17

2.5.3 SOLAP Operations . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.4 SOLAP View Indexing . . . . . . . . . . . . . . . . . . . . . . 20

2.5.5 SOLAP Query Languages . . . . . . . . . . . . . . . . . . . . 21

2.6 Summary and Open Questions . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 3 Spatial Dimension Hierarchies 23

3.1 Approaches to the Definition of Spatial Dimension Hierarchies . . . . 23

3.2 Our Application Example . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Modeling the Spatial Dimension Hierarchy . . . . . . . . . . . . . . . 26

3.4 The Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 ROLLUP and CUBE Queries in the Forester Example . . . . . . . . . . . 29

iv



3.5.1 Querying Asymmetric Hierarchies . . . . . . . . . . . . . . . . 29

3.5.2 Querying Multiple Alternative Hierarchies . . . . . . . . . . . 30

3.5.3 Querying Generalized Hierarchies . . . . . . . . . . . . . . . . 31

3.5.4 Querying Non-Strict Hierarchies . . . . . . . . . . . . . . . . . 32

3.5.5 Complex Queries and Spatial Measures . . . . . . . . . . . . . 34

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 4 A Model for the Pipelined Evaluation of Spatial OLAP

Queries 35

4.1 The Pipeline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Mini-Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Data Accessor . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.3 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.4 Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.5 Aggregate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.6 Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.7 Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.8 Result Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Applications and Example Queries . . . . . . . . . . . . . . . . . . . 49

4.4.1 Query 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.2 Query 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 Query 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.4 Query 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.5 Query 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 5 LISA – A Pipeline-Based Query Evaluation System for

Spatial OLAP 73

5.1 Design & Implementation . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1 Mini-Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

v



5.1.2 Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.3 Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.4 Data Accessors . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.5 Geometric Functions and Operators . . . . . . . . . . . . . . . 79

5.1.6 Query Strategy Definition . . . . . . . . . . . . . . . . . . . . 80

5.2 Evaluation of LISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Evaluation of LISA with Respect to Traditional OLAP . . . . 88

5.2.2 Evaluation of LISA with Respect to Spatial OLAP . . . . . . 94

5.2.3 Comparison of LISA with other Systems . . . . . . . . . . . . 102

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Chapter 6 The geoCUBE Index 107

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Dynamic Resolution of Hilbert Curves . . . . . . . . . . . . . . . . . 114

6.4 Exploiting Hilbert Order for I/O-Efficient Indexing . . . . . . . . . . 117

6.4.1 Answering Range Aggregate Queries . . . . . . . . . . . . . . 117

6.4.2 Updating OLAP Views . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Implementation and Experiments . . . . . . . . . . . . . . . . . . . . 120

6.5.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 122

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Chapter 7 OLAP for Moving Object Data 132

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2.1 Identifying Group of Moving Objects . . . . . . . . . . . . . . 138

7.2.2 Extending OLAP Query Languages . . . . . . . . . . . . . . . 145

7.3 OLAP for Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.3.1 General Framework and Preprocessing . . . . . . . . . . . . . 146

7.3.2 Group by Overlap . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.3.3 Group by Intersection . . . . . . . . . . . . . . . . . . . . . . 148

7.4 Interactive OLAP for Trajectories . . . . . . . . . . . . . . . . . . . . 152

vi



7.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5.1 Detailed Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5.2 Robustness Against Noise . . . . . . . . . . . . . . . . . . . . 158

7.5.3 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.5.4 Real World Data . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Chapter 8 Conclusion 168

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Appendix A Optimization Opportunities for LISA 172

A.1 Query Planner and Query Optimization . . . . . . . . . . . . . . . . 172

A.2 Implementation Language and Process Model . . . . . . . . . . . . . 173

A.3 I/O Latency and Bandwidth . . . . . . . . . . . . . . . . . . . . . . . 174

A.4 Storage Models, Access Methods, and Indexing . . . . . . . . . . . . 176

A.5 Integration with Existing Data Sources . . . . . . . . . . . . . . . . . 177

Appendix B Implementation of Example Queries in LISA 178

B.1 Query 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.2 Query 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.3 Query 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.4 Query 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.5 Query 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.6 Query 2 in optimized PostgreSQL PL/pgSQL . . . . . . . . . . . . . 208

B.7 Query 5 in optimized PostgreSQL PL/pgSQL . . . . . . . . . . . . . 209

B.8 Query 5 in PostgreSQL standard SQL . . . . . . . . . . . . . . . . . 210

Appendix C OLAP for Moving Object Data: Research Opportunities212

C.1 Alternative Grouping Operators . . . . . . . . . . . . . . . . . . . . . 212

C.2 Alternative Movement Patterns . . . . . . . . . . . . . . . . . . . . . 213

C.3 Aggregation of Trajectories . . . . . . . . . . . . . . . . . . . . . . . . 213

vii



Bibliography 216

viii



List of Figures

Figure 1.1 Hierarchy and interrelation of DBMS, GIS, OLAP and SOLAP. 2

Figure 2.1 A multi-dimensional view of data typical for OLAP. . . . . . . 9

Figure 2.2 Example of a roll-up query. . . . . . . . . . . . . . . . . . . . . 10

Figure 2.3 Star schema of a typical data warehouse. . . . . . . . . . . . . 11

Figure 2.4 Data cube lattice with dimension hierarchies. . . . . . . . . . . 12

Figure 2.5 High-level architecture of a SOLAP system. . . . . . . . . . . 14

Figure 2.6 Geometry class hierarchy for SQL. . . . . . . . . . . . . . . . . 16

Figure 3.1 The forester application example. . . . . . . . . . . . . . . . . 26

Figure 3.2 Fact constellation schema of the application example. . . . . . 27

Figure 4.1 Example query decomposed into an assembly of mini-engines. 39

Figure 4.2 Example source and result tables for the query described in
Section 4.4.1. They gray shading represents the records that
satisfy the constraint specified by the WHERE clause. . . . . . . 52

Figure 4.3 Data flow graph of the strategy used to evaluate the query de-
scribed in Section 4.4.1. . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.4 Example result tables for the query described in Section 4.4.2.
Attribute values of ⋆ denote NULL or undefined values, which are
commonly used to represent an aggregated attribute dimension. 56

Figure 4.5 Data flow graph of the query evaluation strategy described in
Section 4.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.6 Illustration of Query 3. Counties are represented as polygons,
and individually sampled plants of different types of vegetation
are represented as N, �, and • respectively. The rectangular
query region intersects multiple counties and contains a number
of individual plant records. . . . . . . . . . . . . . . . . . . . . 59

Figure 4.7 Data flow graph of an evaluation strategy for Query 3. . . . . 60

Figure 4.8 Illustration of the trimming of spatial attributes to the extent
of the query region. Here the county records from Query 3 are
constrained to their spatial intersection with the query region. 61

ix



Figure 4.9 Illustration of Query 4. At each level of aggregation, compute
the maximum vegetation height for all member of that level that
intersect with the query region. The measures are records of
individually sampled plants of various species, here represented
as N, �, and •. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4.10 Graphical representation of the results of Query 4 for each ag-
gregation level. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 4.11 Data flow graph of an evaluation strategy for Query 4. . . . . 65

Figure 4.12 Example of a measure that is partially associated with multiple
features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.13 Illustration of Query 5. . . . . . . . . . . . . . . . . . . . . . . 69

Figure 4.14 Spatially extended SQL statement for Query 5, a non-strict
hierarchy roll-up query. . . . . . . . . . . . . . . . . . . . . . . 70

Figure 4.15 Data flow graph of an evaluation strategy for Query 5. . . . . 71

Figure 5.1 Conceptual use of the MUX and DEMUX components in a data-
flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 5.2 Data flow graph of an evaluation strategy for Query 3. This
dataflow graph is identical to that shown in Figure 4.7 of Chap-
ter 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 5.3 Query runtime by number of processors. . . . . . . . . . . . . 91

Figure 5.4 Query speed-up factor and efficiency for multiple processors
with respect to single processor runs. . . . . . . . . . . . . . . 92

Figure 5.5 Impact of track configuration on query evaluation time. . . . . 93

Figure 5.6 Impact of dataset size on query evaluation time. . . . . . . . . 94

Figure 5.7 SQL representation of the spatial OLAP query. . . . . . . . . 97

Figure 5.8 Representation of the query region used in the spatial OLAP
query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 5.9 Query running time by number of processors. . . . . . . . . . 99

Figure 5.10 Query speed-up factor and efficiency for multiple processors
with respect to single processor runs. . . . . . . . . . . . . . . 100

Figure 5.11 Impact of track configuration on query evaluation time. . . . . 101

Figure 5.12 Impact of dataset size on query evaluation time. . . . . . . . . 102

Figure 5.13 Distribution of complexity (i.e. number of vertices) among lulc
layer objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

x



Figure 5.14 Comparison of LISA’s and PostgreSQL’s performance on tradi-
tional OLAP queries for various dataset sizes. . . . . . . . . . 104

Figure 5.15 Comparison of LISA’s and PostgreSQL’s performance on spatial
OLAP queries. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 6.1 Star schema of a typical data warehouse with facts table, three
feature dimensions and two measures. The feature dimensions
have been normalized within the facts table in that they are
represented as keys into dimension tables. . . . . . . . . . . . 108

Figure 6.2 Hilbert curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 6.3 Increasing the resolution of the Hilbert curve preserves the order
of records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 6.4 Records in Hilbert order are stored in consecutive blocks on
disk and form multi-dimensional regions in the original space.
The evaluation of a range query in breadth-first fashion only
traverses part of the tree and results in a combination of se-
quential read and forward-seek operations at the leaf level. . . 118

Figure 6.5 Annotation of non-leaf nodes with aggregate information and
references to records at the leaf level. . . . . . . . . . . . . . . 119

Figure 6.6 Merging the target view with the update view may result in a
dynamic adaptation of the Hilbert curve resolution. . . . . . . 120

Figure 6.7 Overhead of pre-discretization compared to dynamic resolution
adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 6.8 Recomputing each record’s Hilbert rank for each comparison
versus storing the last computed Hilbert rank of each record. . 124

Figure 6.9 Iterative versus constant-time resolution determination. . . . . 126

Figure 6.10 Batch update time for different update sizes. . . . . . . . . . . 128

Figure 6.11 Time to construct the index including sorting of the dataset for
the geoCUBE index. . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 6.12 Query performance of geoCUBE vs. R-tree for real world data. 130

Figure 7.1 OLAP For Trajectories Example. (a) Input data. (b) Groups
with support above the required minimum support. (c) Aggre-
gate results reported (aggregate trajectories and counts). . . . 133

Figure 7.2 Illustration of two different version of operator GROUP TRAJEC-

TORIES (a) Group by Intersection, (b) Group by Overlap. . . . 136

Figure 7.3 Illustration of (a) Overlap Ratio and (b) Intersection Ratio. . 148

xi



Figure 7.4 Screenshot of the interactive environment for OLAP For Tra-

jectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Figure 7.5 Two datasets each containing three closed frequent itemsets but
with different associated overlap. . . . . . . . . . . . . . . . . 154

Figure 7.6 Grouping results for dataset A1 with ORT and IRT set to 0.25
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Figure 7.7 Grouping results for dataset A2 with ORT and IRT set to 0.25
respectively. Note, the change in overlap results in a different
grouping for Group by Overlap when compared to dataset A1. 155

Figure 7.8 Changing the Intersection Ratio by changing the number of
parallel trajectories. . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 7.9 Grouping results for dataset B1 with ORT and IRT set to 0.2,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 7.10 Grouping results for dataset B2 with ORT and IRT set to 0.2,
respectively. Note, the increase of intersection size results in a
different grouping for Group by Intersection when compared to
dataset B1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Figure 7.11 Groups identified by each of our algorithms from a dataset with
varying levels of noise. The input parameters were set to a
space resolution of 5, a minimum support of 4 and a minimum
frequent itemset length of 4. . . . . . . . . . . . . . . . . . . . 159

Figure 7.12 Synthetic dataset with 24 groups each consisting of 10 trajec-
tories and a partial overlap of approximately 25%. . . . . . . . 161

Figure 7.13 Groups identified by each of our algorithms at levels of reso-
lution between 2 and 8 (left to right). Fixed parameters are
min support = 4, min length = 4, ORT = 0.2, IRT = 0.2. . . 162

Figure 7.14 Number of groups each algorithm identifies for the given input
dataset depending on the resolution. Note, Group by Overlap

tends to identify fewer but larger groups, Group by Intersection,
on the other hand, identifies more but smaller groups. . . . . . 163

Figure 7.15 Groups (identified by color) computed by both of our methods
forORT = IRT = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 (min support =
4, min length = 4). . . . . . . . . . . . . . . . . . . . . . . . . 164

Figure 7.16 Relationship between the number of identified groups and val-
ues for Overlap Ratio Threshold ORT and Intersection Ratio

Threshold IRT . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Figure 7.17 Results obtained for the School Buses Dataset. . . . . . . . . . 166

xii



Figure C.1 Examples of different movement patterns. . . . . . . . . . . . 213

Figure C.2 A visual generalization function for groups of trajectories. . . . 215

xiii



Abstract

Data warehousing and On-line Analytical Processing (OLAP) are powerful tools for

processing and analyzing business and analytical data. It is estimated that 80% of the

data stored in data warehouses have some spatial components. It is our belief that

there is a need for powerful OLAP tools that are capable of processing and analyzing

spatial data. This thesis explores the design and implementation of Spatial OLAP

(SOLAP) systems and describes approaches to support the characteristic features of

OLAP while seamlessly integrating spatial data into the analysis process. In par-

ticular, we analyze the evaluation of OLAP queries in the presence of asymmetric,

multiple-alternative, generalized, and non-strict spatial dimension hierarchies. We

introduce a new pipeline-based query evaluation model that is comprehensive and

powerful in that it provides a uniform approach to the expression of spatial OLAP

queries that address all major dimension hierarchy types while permitting a uniform

treatment of both spatial and non-spatial data. A reference implementation called

“LISA” validates the objectives of our model and demonstrates favorable scalability

and performance on modern multi-processor and multi-core hardware platforms. We

also describe a new “geoCUBE” index, to address the fundamental problem of how to

represent, index and efficiently query data that is defined by a mix of spatial and cat-

egorical attribute values. The geoCUBE index extends existing methods for indexing

OLAP data to spatial data types. The effectiveness of the geoCUBE data structure

is confirmed through evaluation. Lastly, we propose algorithms that facilitate OLAP-

like analysis of moving object data. We introduce a new class of GROUP BY operators

specifically targeted to the OLAP analysis of trajectories and to answering aggregate

queries with respect to the spatio-temporal movement of a set of objects. Through

an experimental evaluation we show our operators can be used to reliably identify

groups of related trajectories when applied to synthetic and real world moving object

data.

xiv



List of Abbreviations Used

DBMS Database Management System

DW Data Warehousing

ETL Extraction, Transformation, Loading

GIS Geographic Information System

GPS Global Positioning System

I/O Input/Output

IR Intersection Ratio

IRT Intersection Ratio Threshold

OLAP Online Analytical Processing

OR Overlap Ratio

ORT Overlap Ratio Threshold

P2P Peer-to-Peer

SOLAP Spatial Online Analytical Processing

SQL Structured Query Language

WKB Well-known Binary

WKT Well-known Text

XML Extensible Markup Language

xv



Acknowledgements

First and foremost, I would like to thank my supervisors Andrew Rau-Chaplin and

Norbert Zeh. It was their continuous guidance, inspiration, and encouragement, that

allowed me to complete this long journey.

I extend thanks to the members of my examination committee Bradford Nickerson,

Michael Shepherd, and Qigang Gao, for taking the time to work through this thesis

and providing valuable feedback.

I thank Dalhousie University for their financial support without which this thesis

would not have been possible.

I especially thank my friends and colleagues who supported and motivated me

throughout my academic endeavours.

I owe my deepest gratitude to my parents Sybille and Hans-Ulrich, and my sister

Kathleen, whose unconditional love and endless encouragement guided me through

much more than this thesis.

xvi



Chapter 1

Introduction

The recent advent of larger storage solutions and the rise of disciplines such as decision

support, data mining and business intelligence have led to increasing amounts of data

that have to be managed and analyzed. Data Warehousing (DW) and Online Analyt-

ical Processing (OLAP) are popular technologies used by enterprises, research insti-

tutions and public organizations to store, manage and analyze high volumes of data.

The data, often collected on a daily basis, is consolidated in data warehouses [81].

It is estimated that 80% of the data stored in data warehouses have some spatial

component [58] and in many applications the data is or can be referenced with geo-

spatial information. Most current data warehouse or OLAP systems, however, do

not support the analysis of spatial components and potentially valuable information

embedded in the data is not incorporated in the analysis process. There is an op-

portunity to enhance the analysis and decision making process by combining features

of OLAP with those of Geographic Information Systems into a single tool. In 1997

Bedard, et al. proposed an online analytical processing system that incorporates spa-

tial data into the analysis process and coined the term Spatial OLAP (SOLAP; also

Spatio-Temporal OLAP). Since then SOLAP systems have been implemented for a

number of specific application [20,38,118,120], but only a few general purpose systems

that unify the most common features exist today [11,24,49,66,95,100,157,160,162].

A general purpose Spatial OLAP system is a system that was not designed for a spe-

cific application scenario and instead can accommodate a wide variety of applications

without modification. Many of the existing solutions are based on commodity off-

the-shelf components and consequently suffer from significant and growing scalability

issues due to growing data volumes.

It is our belief that new systems, designed from the ground up for SOLAP, com-

bining efficient data structures and the capacity for parallel processing, are required

to deal with the challenges introduced by ever growing data volumes. From a user’s

1



2

not aggregated
aggregated

non−spatial

spatial SOLAP

OLAPDBMS

GIS

Figure 1.1: Hierarchy and interrelation of DBMS, GIS, OLAP and SOLAP.

perspective a SOLAP system appears as an intersection of GIS and OLAP tools

(Figure 1.1) [153]. Its graphical user interface allows for an interactive exploration

of spatially referenced data and visualizes non-spatial information in a spatial con-

text. In addition to typical map navigation functions like pan and zoom, it provides

OLAP-type operations such as roll-up, drill-down, slice and dice to aid user naviga-

tion through the data. To support such OLAP operations a representation of spatial

data that is compatible with the standard OLAP data schema has to be defined.

This thesis explores the design and implementation of high performance Spatial

OLAP systems, that scale well with both increasing query load and increasing data

volume. The focus is on:

1. how to best integrate OLAP with spatial and GIS concepts;

2. efficiency and scalability in both sequential and parallel settings;

3. SOLAP’s potential for new applications that neither OLAP, GIS, nor spatial

database extensions can support alone.

At the heart of OLAP is the SQL “Cube” query:

SELECT D1, D2, . . ., Dd, F1(M1), F2(M2), . . ., Fk(Mk)

FROM facts table

GROUP BY CUBE(G1, G2, . . ., Gg)



3

where D1, . . . , Dd are categorical feature dimensions, M1, . . . ,Mk are numerical mea-

sures, F1, . . . , Fk are numerical aggregation functions and G1, . . . , Gg are categorical

dimension hierarchies. It is our believe that a Spatial OLAP system must be capable

of answering such queries where D1, . . . , Dd are a mix of categorical and spatial fea-

ture dimensions, M1, . . . ,Mk are a mix of numerical and spatial measures, F1, . . . , Fk

are a mix of numerical and spatial aggregation functions and G1, . . . , Gg are a mix of

categorical and spatial dimension hierarchies. The challenge is how to realize these

spatial extensions to OLAP concepts in a seamless and efficient manner.

To date many partial solutions to the SOLAP problem have been proposed. How-

ever, we believe that a comprehensive solution must address the integration of key

aspects such as data representation, materialization, indexing, querying and user in-

terfaces into a coherent and uniform system with well-defined interfaces. So far,

approaches have either targeted only specific and very isolated problems of spatial

data warehousing [23, 136, 170], without the integration of other parts into a func-

tional system, or the system implementation was driven by a specific application, not

paying much attention to a uniform data representation, general applicability and

efficient algorithms [8, 20, 153, 162]. In detail we address the following problems in

order to design an integrated spatial OLAP solution:

• uniform treatment of spatial and non-spatial data throughout all components

of the data warehouse and its functionality;

• efficient representation of materialized spatial measures on disk;

• representation of query results in the same manner as views;

• standardized query interface;

• efficient methods for on-the-fly spatial aggregate computation;

• efficient update mechanisms for materialized spatial views;

• scalable and cost-effective computing platform as the performance of CPUs

and sizes of internal memory grow slower than external storage space and data

volumes.



4

On the basis of a simple application example encompassing four different types of

spatial dimension hierarchies, namely asymmetric, multiple-alternative, generalized,

and non-strict [114], we explore in Chapter 3 for each hierarchy type how it influences

the evaluation of roll-up and cube queries and how the query results can be represented

in a tabular form that is consistent with standard OLAP data representation of

views. Asymmetric and multiple-alternative dimension hierarchies are not exclusive

to spatial data and conceptually supported in traditional OLAP systems. Generalized

and non-strict dimension hierarchies are very common in spatial data and not readily

supported by traditional OLAP systems. These will be our focus.

In Chapter 4 we introduce a computational model for the pipeline-based evalu-

ation of spatial and non-spatial OLAP queries. We analyze a representative set of

typical spatial and non-spatial OLAP queries and propose for each query type a set

of components and an evaluation strategy using our pipeline model. Our model is

comprehensive and powerful in that it provides a uniform approach to the expression

of spatial OLAP queries that addresses all of the major spatial hierarchy types, while

permitting a uniform treatment of both spatial and non-spatial data. Although our

model was evaluated against a representative set of spatial and non-spatial OLAP

queries it provides the fundamental features of a general purpose spatial OLAP sys-

tem. It is not limited to a specific set of queries or application scenarios and can be

directly applied to a wide range of applications.

From a systems perspective, the design of our model primarily focusses on what

we believe are critical requirements for a spatial OLAP system:

1. Performance – A modular architecture and intelligent implementations facili-

tate the use of efficient algorithms to achieve high performance in data process-

ing and query evaluation.

2. Flexibility – The architecture enables the recombination of existing compo-

nents to obtain results using different strategies and allowing for an optimal

cost balance.

3. Extensibility – The ability to extend at a component level allows for an easy

addition of new functionality and improved performance.



5

The proposed pipeline-based query evaluation model is both ambitious and very com-

plex in that it attempts to present a single unified approach to the expression of spatial

OLAP queries over multiple hierarchy types, while permitting a uniform treatment of

both spatial and non-spatial data. Given this complexity it was important to create

a reference implementation in order to address the following questions: 1) Could the

model be realized in a functioning and complete system, and 2) Could that system be

made fast and scalable by exploiting modern multi-core parallelism? In Chapter 5,

we describe the design, implementation, and evaluation of “LISA”, a reference im-

plementation of our pipeline-based query evaluation model. LISA is a full reference

implementation of our model that supports both complex spatial and non-spatial

OLAP queries. It was designed to exploit Python’s [184] dynamic type system, sup-

port for co-operative concurrent processes, and ability to integrate existing spatial

libraries. LISA’s sophisticated object-oriented design and high level of abstraction

provides an extensible framework which supports a wide range of data types and

storage backends. It realizes the query pipeline as a highly concurrent program flow

typically involving hundreds of co-operative processes. LISA is a largely unoptimized

reference implementation. However, in extensive performance evaluations it demon-

strates a high degree of scalability. For complex spatial queries, even in its prototype

state, it outperforms PostgreSQL [146], the most widely available optimized database

system that supports spatial extensions.

As with traditional OLAP, data stored in spatial OLAP views is typically multi-

dimensional and represented by a number of attributes. Spatial data attributes are

generally represented in continuous space rather than categorical space as is commonly

the case in traditional OLAP [69, 183]. This presents a challenge for the efficient

storage, indexing and updating of spatial OLAP views as traditional methods for

indexing categorical data do not capture all the properties of data in continuous space.

In Chapter 6, we propose a new indexing structure called “geoCUBE,” which exploits

the recursive nature of the Hilbert space filling curve to index multi-dimensional data

that is represented by categorical and continuous attribute values. Our approach

preserves the relative locality of attribute values and records, supports an arbitrary

number of categorical and continuous attribute dimensions, and provides a high query

performance. In addition, our “geoCUBE” index permits efficient batch updates of



6

existing views, requiring only sorting complexity of the update dataset and a single

sequential scan over the updated view dataset. We demonstrate the effectiveness of

our “geoCUBE” index with an experimental evaluation and show its superiority in

performance when compared to alternative approaches and data structures.

The analysis of moving object databases is a field of research that has received

significant attention in recent years [18,61,62,67,75,103,107,169,192]. Typical applica-

tions of this discipline are location-based services [155], traffic control [136], transport

logistics [48], wild life tracking [104] and epidemiology [20,168]. With the large adop-

tion of Global Positioning Systems (GPS), Radio Frequency Identification (RFID)

and mobile devices in everyday life, an increasing amount of data is being collected

by such applications, and there is a growing need for the analysis of aggregated in-

formation about moving objects. In Chapter 7, we propose algorithms that facilitate

OLAP-like analysis of moving object data. Our algorithms focus on the identification

of aggregate groups among trajectories at varying levels of resolution. The underlying

conceptional ideas may be applicable to other analysis scenarios as well.

We propose a new class of GROUP BY operators specifically targeted to the OLAP

analysis of trajectories and to answering aggregate queries with respect to the spatio-

temporal movement of a set of objects. The main problem studied is how to identify

aggregation groups with respect to a feature dimension representing trajectories. It

is very unlikely that any two trajectories are exactly the same. Hence, standard

aggregation of records based on groups with equivalent trajectory values is not very

useful in most cases. Instead, we propose to partition the given trajectories into

groups of trajectories using a new GROUP BY operator, which we term GROUP TRAJEC-

TORIES. This operator returns a group identifier for each trajectory, and then OLAP

can proceed with standard aggregation according to the group identifiers instead of

the trajectories themselves.

The solution proposed is a novel extension of the frequent pattern mining methods

that are already available in today’s data warehousing solutions with new algorithms

that are more appropriate for identifying groups of moving objects. It is specifically

designed to capture relationships between movement patterns and thus allows the

identification of groups of objects that exhibit a complex behavior. At the same time it

integrates well with existing OLAP models by using established data representations



7

and query languages, as well as allowing the user to interactively browse the results at

varying levels of resolution and aggregated information. The challenge here was how

to define effectiveness of a novel operator like GROUP TRAJECTORIES when there is no

obvious benchmark. Our approach was to take data with known group movements,

obscure them with noise, and then evaluate the algorithms’ capacity to extract the

original group movements. Using various generated and real-world moving object

data sets we tested how well the GROUP TRAJECTORIES operator worked for the OLAP

analysis of trajectories in the context of different application scenarios.

1.1 Outline of Thesis

The remainder of this thesis is organized as follows. Chapter 2 reviews fundamen-

tal concepts of OLAP and how they translate into the context of Spatial OLAP. It

individually addresses the components of characteristic OLAP queries, reviews how

they can be applied to spatial data and identifies issues surrounding their implemen-

tation. In Chapter 3 we investigate the impact of spatial dimension hierarchies on

OLAP specific roll-up and cube queries. In Chapter 4 we introduce a pipeline-based

query evaluation model for OLAP in the presence of spatial and non-spatial dimen-

sion hierarchies and measures, followed by an in-depth discussion and evaluation of its

implementation “LISA” in Chapter 5. Chapter 6 focusses on the efficient storage and

retrieval of data for query evaluation and introduces a novel approach for indexing

data in a SOLAP system. A new application, combining SOLAP and data mining is

introduced in Chapter 7. It suggests a new class of GROUP BY operators and addresses

the mining of group movements from moving object data. This thesis is concluded in

Chapter 8 with a summary of its contributions and directions for future research.



Chapter 2

Background

In this chapter we provide an overview of the concepts underlying OLAP and how

they translate into the context of Spatial OLAP. We begin with describing a typical

OLAP architecture and define terms common to OLAP. We review related work and

explore the interplay between general OLAP concepts and the specific demands of

spatial application. The chapter concludes with an identification of implementation-

specific issues and lays the groundwork for the proposed research.

2.1 Data Warehousing and OLAP

Data warehousing is the consolidation of historical data from various sources into a

single large data repository under a unified schema [31]. It provides online analytical

processing to aid in subject-driven decision making, strategic planning and data min-

ing [37]. Hence, a data warehouse can be described as a subject-oriented, integrated,

time-variant and nonvolatile collection of data [81] that is distinct from transactional

data used for operational application-oriented processing.

Commonly a data warehouse is constructed by integrating data from a number

of sources, such as relational databases, flat files, spreadsheets and legacy systems.

During this integration relevant information is extracted, noise and invalid records are

removed and the consistency of the data within the schema is ensured. This process

of populating a data warehouse is referred to as the extraction, transformation and

load (ETL) stage and is paramount to the quality of the data warehouse [149,186].

Online Analytical Processing (OLAP) was first proposed in 1993 by E.F. Codd

[37] and has since been very successful in business intelligence [142]. OLAP is the

subject-oriented analysis of multi-dimensional measures (subjects) in relationship to

a number of feature dimensions (attributes) at different levels of granularity. It is

an important tool used in decision support and data mining and allows business

executives and knowledge workers to extract knowledge hidden within the data of a

8



9

Time (Quarter)

Customer

Q1

Q2

Q3

Q4 Dairy

Bakery

Household

Mary

James

Robert

Linda

Patricia

Sales Measure

Product (Category)

Figure 2.1: A multi-dimensional view of data typical for OLAP.

data warehouse [37,81]. OLAP functionality is typically provided by data warehouses,

which may be augmented with specialized OLAP engines or OLAP servers to enhance

performance.

Figure 2.1 illustrates a typical multi-dimensional view on data based on a selected

set of feature dimensions at a specific granularity. The subject of this view is the

measure Sales and each cell in the represented view contains an aggregated Sales

value. The feature dimensions are Customer, Product and Time, while the levels of

granularity are set to Category for the Product dimension and Quarter for the Time

dimension.

Feature dimensions in a data warehouse provide individual concept hierarchies that

allow the analysis at different levels of granularity. A Time dimension, for example,

might have the concept hierarchy Day→ Month→ Year, with level Month providing

a more general view of the measure than level Day and similarly Year a more general

view than Month. Every feature dimension has at least two implicit hierarchy levels:

the finest level of granularity, that is the base data, and the any level, which is the

most general level of granularity of a dimension. In fact, the any level of a dimension

hierarchy is implicitly used when its attribute values do not affect the analysis and

the dimension can be ignored [170].

Based on this multi-dimensional data model, OLAP provides a number of oper-

ations to manipulate the view of the data. The roll-up operation is used to increase



10

Time (Day) Sales
06-01-14 3500
06-01-25 1240
06-01-30 300
06-02-04 1000
06-02-20 1470
06-03-07 830
06-03-14 3000

ROLLUP (Month, Day)

Time (Month) Sales
06-01 5040
06-02 2470
06-03 3830

Figure 2.2: Example of a roll-up query.

the granularity of a view for a specific set of feature dimensions. It causes records to

be combined and their measures aggregated. Typical aggregation functions used are

sum, average, min, max and count, while there are a variety of others depending on

the application. For example, as illustrated in Figure 2.2, when analyzing a measure

Sales with respect to the Time dimension at the Day level, all Sales from the same

day might be summed together. Similarly, when rolling-up the Time dimension to

the Month level all Sales of the same month will be summarized, leading to a more

general view of the data.

As the converse of the roll-up operation, there exists a drill-down operation, which

increases the granularity of a dimension and thus specializes the analysis of a measure.

Other common OLAP operations are slice and dice, which select records based on

specific values at one or more feature dimensions [185], as well as various range and

range-aggregate queries [5].

To conceptually model multi-dimensional data in a data warehouse a star or

snowflake schema is used [31]. These schemas are called “subject-oriented” as they

facilitate the subject-driven analysis of data, where the measures are the subjects

and the attribute dimensions are the parameters of the analysis. Traditional entity-

relationship models, on the other hand, are called “application-oriented” as they

capture the relationships between entities as they are modeled by the application

accessing the data [81]. Star and snowflake schemas are composed of a central fact

table and a number of dimension tables. The fact table is a large table representing

the central subjects in the data warehouse. Each record in the fact table consists of

one or more measures and a foreign key into each dimension table. Dimension tables



11

ID

Name

Category
Product ID

Customer ID

Time ID

Sales

ID

Name

ID

Day

Month

Year

Customer

Time

Facts Table

Product

Quarter

Figure 2.3: Star schema of a typical data warehouse.

are small and contain the attribute values of the feature dimensions. Figure 2.3 shows

an example star schema.

OLAP systems are typically used interactively. During interactive online analy-

sis the aggregated measures of a roll-up operation are required to be computed in a

timely fashion for the user to maintain his chain of thoughts [130]. Also data mining

algorithms may access particular views multiple times and require the data ware-

house to respond quickly to such queries. OLAP queries, however, typically involve

the aggregation of thousands or millions of records, which may render the fully online

computation of views impractical. Preprocessing in the form of offline materializa-

tion addresses this problem and has become a common approach to minimize query

time. During materialization, views of various combinations of dimensions and their

hierarchy levels are precomputed using GROUP BY queries and stored to support faster

access at a later time. For example, the GROUP BY query to compute the view shown

in Figure 2.1 from the star schema presented in Figure 2.3 would be expressed in

SQL [1] as follows:



12

ALL

CUSTOMER CATEGORY

ALL

TIME

CATEGORY, TIME

CATEGORY, CUSTOMER, TIME

PRODUCT, CUSTOMER, TIME

PRODUCT, CUSTOMER
PRODUCT, TIME

CUSTOMER, TIME

CATEGORY, CUSTOMER

PRODUCT

ALL ALL

PRODUCT

CATEGORY CUSTOMER TIME

Dimension Hierarchies

Figure 2.4: Data cube lattice with dimension hierarchies.

SELECT

Customer.Name AS Customer,

Time.Quarter AS Time,

Product.Catergory AS Product,

SUM(FactsTable.Sales) AS Sales

FROM

FactsTable

LEFT JOIN Customer ON CustomerID = Customer.ID

LEFT JOIN Time ON TimeID = Time.ID

LEFT JOIN Product ON ProductID = Product.ID

GROUP BY Customer.Name, Time.Quarter, Product.Category

The saving in query time when utilizing precomputed views, however, comes at

the cost of additional storage requirements. The entire set of views that can be

constructed from the data in the data warehouse is commonly referred to as a data

cube and can be represented by a lattice as illustrated in Figure 2.4 [71]. As the

number of views increases exponentially with the number of dimensions and hierarchy

levels in the data warehouse, it is evident that materializing all views in the data

cube is infeasible due to storage space constraints. Specifically, if a data warehouse

has d dimensions and the number of hierarchy levels in dimension i is Hi, then the

total number of possible views is
∏d

i=1 Hi. Also, some of the views in the data cube

may not be significant or do not represent an interesting analysis subject. Hence,



13

the general approach is to materialize a partial data cube which contains a selected

subset of views from the full data cube [5, 31, 44]. The process of selecting views

for materialization is referred to as view selection and algorithms typically use cost

models based on view size, access frequency and benefit for other materializations. A

further reduction of storage requirements for the materialization of data cubes can be

achieved by computing Iceberg cubes [21, 34], which contain only those data values

that satisfy a given constraint, such as minimum value.

2.2 SOLAP Applications

Recently there has been a growing interest in spatial OLAP [24,68,136,150,153,161,

201]. Spatial OLAP (SOLAP) builds on the concepts introduced in OLAP systems

but adds the ability to define and query over spatial dimensions and measures. Land

management and urban planning in coastal regions, for example, may use aggregated

historical data to obtain information about probable flooding areas based on spa-

tial aggregation of coverages [190]. Transportation and logistic businesses can use

pre-computed line aggregates to obtain instant routing information [30, 135] or opti-

mize their allocation of resources in specific regions based on historical data analysis.

Emergency services can be equipped with mobile low-power computing devices to

access areal information about the emergency site for decision support [2]. Environ-

mental modeling approaches can benefit from pre-computed spatial information that

can be quickly accessed during simulation [9], such as sets of nearest neighbors. A

chain of department stores can perform an interactive analysis of demographic data to

determine a potentially profitable site to build a new store [111]. In health care, envi-

ronmental epidemiology analyzes data aggregated in field studies and relates them to

potential contaminant occurrences in the environment using areal information [131].

A similar method can be used in health surveillance to track contagious diseases, even

on a global scale.

2.3 SOLAP System Architecture

Based on a typical high-level view of an OLAP architecture [81], Figure 2.5 illustrates

the SOLAP analog. The system provides a graphical user interface to visualize and



14

Other Sources
(flat files, raster images, vector data)

Integration
Data Cleaning and

Data Storage

OLAP Engines

Frontend Tools

Load

Transformation

Extraction

Thematic Maps Charts Cross−Tables

Operation Databases

Spatial Data Warehouse

Spatial OLAP Server

Figure 2.5: High-level architecture of a SOLAP system.

interactively explore spatial information and to perform OLAP operations on spatial

and non-spatial data in a timely fashion. To do so, it is connected to a spatially

enabled OLAP server – the SOLAP server. This server provides the technology for

the user to execute SOLAP queries, processes the data accordingly and if necessary

performs appropriate materialization of views. The data itself is stored in a spatial

data warehouse which is accessed by the SOLAP server. The data warehouse is

populated with data from transactional databases and/or other sources of spatial

and non-spatial information. When entered into the data warehouse, the data passes

through an extraction, transformation and loading (ETL) process, where noise and

invalid records are removed from the dataset and its consistency is ensured. Based on

this architecture a conceptual model for SOLAP is described in the following section.

2.4 SOLAP Solutions

There exists a number of Spatial OLAP solutions [24,49,95,100,157,161] that integrate

the analysis of spatial data with OLAP functionality. Many of these systems provide

extensive tool sets for integration with existing ETL processes, business intelligence

and database solutions. However, this integration is typically provided at a very high

level. JMap [100], SOVAT [161], SAS Web OLAP Viewer [157] and Map4Decision [95]



15

provide Spatial OLAP functionality by combining existing OLAP solutions such as

Microsoft SQL Server Analysis Services [121], Mondrian [92] or SAS Enterprise BI

Server [157] with GIS solutions such as ESRI ArcGIS [54] or spatial database systems

like Oracle Spatial [134]. The complexity of this integration is hidden from the user

through a unified user interface. However, this high level of integration relies on

a single component to ensure the integration of two separate subsystems that do

not communicate directly. In addition, spatial and non-spatial data are stored by

different subsystems and the architecture does not provide a uniform representation

of spatial and non-spatial data at the storage level. This architecture is limited by

the interfaces each subsystem provides and does not scale well with increasing data

volume, query load and changing application requirements. Other solutions, such

as GeoMondrian and GeWOlap provide integration of spatial and non-spatial data

types at a lower level. They directly interface with the Mondrian OLAP server [92]

and extend the capabilities of the OLAP server to handle spatial data. The OLAP

server, in turn, uses a spatially enable database system, e.g., PostGIS [151] or Oracle

Spatial [134], as storage for data and to execute data queries. In this architecture

spatial and non-spatial data is represented in a uniform manner at the database level

and queries involving spatial operators or functions are evaluated by the database

engine. The OLAP server’s responsibility is to translate Spatial OLAP queries issued

by the user into sequences of SQL queries that are being evaluated by the underlying

database engine. In addition, the OLAP server can build pre-materialized views of

the data cube that are stored in the database system for faster access. Mondrian is a

powerful OLAP server originally developed for traditional OLAP applications. The

extensions that GeoMondrian and GeWOlap provide only enable support for spatial

data types but do not change the strategies used by Mondrian to evaluate OLAP

queries. This prevents these systems from efficiently answering queries on complex

spatial dimension hierarchies, such as non-strict dimension hierarchies.

2.5 The SOLAP Data Model

In order to put SOLAP on a firm foundation it is important to define the spatial

extensions to the OLAP data model. While there have been many partial proposals,

there is no single widely agreed-on Spatial OLAP data model. Such a model would



16

Figure 2.6: Geometry class hierarchy for SQL.

have to address spatial data types, measures, feature dimensions and operations.

In 1997 Stefanović described in his thesis [170] a basic model for a spatial OLAP

system which allows feature dimensions and measures to contain spatial components.

Stefanović did not provide formal definitions of the spatial components that can be

handled by such a system. His thesis focussed on the treatment of arbitrary spatial

regions represented as 2-dimensional polygons. Two years later in 1999 the Open

GIS Consortium proposed the OpenGIS Simple Feature Specification for SQL [132],

an extension to SQL for the handling of spatial data in a relational database system.

This specification provides formal definitions for spatial data types commonly used

in spatial databases [73, 114,152]. These basic data types are:

• point

• line

• polygon

• any collection of the above.

The complete geometry class hierarchy proposed by the Open GIS Consortium in [132]

is shown in Figure 2.6.



17

2.5.1 Spatial Measures

With measures now being spatial objects, aggregation functions for spatial data types

are required to compute spatial aggregate measures. In [170] only union was consid-

ered as a spatial aggregation function, while [73] and [132] also considered intersection.

Additionally, Güting described the aggregation functions mindist and maxdist [73].

However, it is not clear whether these functions return spatial objects as a result,

i.e. the two closest respectively farthest objects in the input, or a scalar measure,

i.e. the distances between the two closest or farthest objects. Furthermore, similar to

the average function in conventional databases, Güting proposes a number of spatial

algebraic aggregation functions that are combinations of other functions: convex-hull,

area, perimeter and centre.

2.5.2 Spatial Feature Dimensions

A spatial data warehouse may, similarly to spatial measures, also contain spatial

feature dimensions, i.e. the dimension values may be spatial objects. An example for

such a spatial feature dimension could be a set of small land coverages each associated

with the amount of vegetation in its area. In combination with concept hierarchies of

feature dimensions it has been suggested in [114] and [17] that spatial data warehouses

must support the following types of dimension hierarchies:

• non-spatial dimension hierarchy – concept hierarchy as defined in conven-

tional data warehousing;

• spatial to non-spatial hierarchy – concept hierarchy that has some number

of lower levels that are spatial and remaining higher levels that are categorical

as in conventional data warehousing;

• spatial to spatial hierarchy – concept hierarchy where all levels are spatial.

While concept hierarchies in conventional data warehouses are generally represented

by a surjective mapping between hierarchy levels, this is not always possible in spa-

tial dimensions. Due to the extent of spatial objects, such as lines and polygons,

relationships between two hierarchy levels may be described by a mapping where the

value of a lower hierarchy level maps to one or more values of a higher hierarchy



18

level. The mappings between levels of explicit dimension hierarchies can be arbitrary

and are pre-determined by the user. The hierarchy City → County → Province,

for example is explicit, since the knowledge of which cities belong to which county

and which counties belong to which province is pre-determined. Although it is not

a requirement, in most cases of explicit spatial dimension hierarchies a topological

relationship between the hierarchy levels also exists. The Dimensionally Extended 9

Intersection Model (DE-9IM) [36], introduced by Clementini and Di Felice, defines

a set of standard topological relationships between different types of spatial objects.

When providing predicates to determine such relationships, one can use these predi-

cates to automatically generate topological hierarchies [117].

In some applications it may not always be possible to define an explicit concept

hierarchy for a given spatial dimension. However, to still allow the analysis of data

at different levels of granularity, implicit hierarchies can be generated by using, for

example, clustering methods, data structures or topological operators [136,173]. Im-

plicit hierarchies are not pre-determined by the user and their structure depends on

the algorithms used to generate them. An example for the use of an implicit hierarchy

can be found in land management. When analyzing different types of land coverages

their arrangement does not follow a particular pattern or a known hierarchical struc-

ture, such that generating an implicit hierarchy is necessary to support analysis at

different levels of resolution.

2.5.3 SOLAP Operations

A spatial OLAP system must be capable of performing analogs of standard OLAP

operations such as:

• roll-up

• drill-down

• slice & dice

on all types of dimension hierarchies as described above [153, 170]. The selection of

records by a roll-up or drill-down query is determined by the concept hierarchies of

the involved dimensions. The selection of records for a slice or dice query, on the



19

other hand, is selected by predicates, implying that a spatial data warehouse must

provide appropriate predicates that can be applied to spatial objects. A set of typical

topological predicates is described in [36] and [132].

The conceptual schema-based modeling of spatial data warehouses was addressed

in detail by Malinowski and Zimányi [114]. They proposed an ER-based (entity rela-

tionship) approach to modeling spatial dimensions and spatial dimension hierarchies

and provided a notation to express relationships among those. This approach permits

us to describe a spatial data warehouse with a star or snowflake schema and apply

conventional data warehousing and OLAP methodologies to it.

One important feature of their methodology is pre-materialization of the data

cube and the schema representation of the data warehouse allows for an easy con-

struction of the data cube lattice. The materialization and aggregation of measures,

independently of their types, is generally constrained by the summarizability of the

data and the space requirements of the aggregates. Pedersen and Tryfona studied

the summarizability problem for spatial data types and provided the results of their

analysis in [139]. The problem of space constraints for the aggregation of spatial data

is addressed similarly as in conventional data warehouses, by using view selection.

The additional types of measures available in spatial data warehouses, however, are

much more complex than scalar measures in conventional data warehouses, such that

partial cube materialization may not lead to a sufficient reduction of the required

space. To overcome this dilemma, Stefanović [170] and later Han, et al. [83] propose

selective materialization to materialize only selected records of a view. Another ap-

proach for the reduction of space requirements is the storage of approximate spatial

aggregates using multi-resolution amalgamation as proposed in [201] and [147], and

to compute exact aggregates on demand.

To optimize the computation of aggregate values in a spatial data warehouse sev-

eral algorithms and data structures have been proposed. López et al. survey a number

of them and provided formal definitions for various classes of aggregation functions,

including spatial aggregation [112]. Many of the discussed approaches for optimizing

the aggregation process are based on underlying indexing data structures and allow

the efficient retrieval of aggregate values based on range queries. The indexing struc-

tures used are commonly tree-based and as such generate an implicit hierarchy on



20

the spatial dimension. Papadias et al. have proposed one such data structure, called

the aggregation R-tree (aR-tree) [136]. The aR-tree annotates intermediate nodes

of an R-tree with the aggregate value of the measures that are enclosed in a node’s

minimum bounding rectangle (MBR). For range aggregate queries this data structure

can be very efficient in practice as it does not always require one to traverse the entire

tree down to the leaf level in order to answer a query. Other, similar data structures,

focussing on different aggregation functions were proposed in [199] and [173]. While

all these approaches support efficient range aggregate queries, they fail to address

explicit concept hierarchies or the indexing of categorical data. Hence, they are not

directly applicable to query evaluation in a spatial data warehouse that combines

categorical with spatial data and defines spatial concept hierarchies. However, during

the pre-materialization of views, similar algorithms and data structure may be used

to speed up the materialization process. Furthermore, as López et al. pointed out,

these discussed approaches do not represent the query result in the same context as

the original data making sequenced queries impractical. The representation of query

results as a new relation is, however, essential to online analysis as one query may

build on the result of a previous query.

2.5.4 SOLAP View Indexing

Pre-materialization by itself is not sufficient to speed up query evaluation. Only in

combination with effective indexing techniques it is possible to query pre-materialized

views efficiently. Conventional database systems commonly use B-tree based data

structures [15] for indexing views, while in spatial databases R-tree based approaches

are very common [16, 76, 152, 164]. One advantage of R-trees is that they can also

be used to index non-spatial (categorical) data [25]. Specifically for relational OLAP,

where each materialized view of a data cube is stored as a multidimensional table,

Dehne et al. proposed the RCUBE index, an indexing structure combining the benefits

of space-filling curves, B-tree indices and parallel processing [45]. None of these

data structures, however, support efficient on-the-fly evaluation of OLAP operations

such as roll-up. This becomes necessary in the case of partial cube materialization

when non-materialized views have to be computed from already existing views on-

the-fly at query time. Additional requirements for indexing structures in spatial



21

data warehouses include the ability to uniformly deal with continuous data as well as

discrete data and to provide efficient index construction, update and query techniques.

2.5.5 SOLAP Query Languages

With respect to interfacing with external applications such as user interfaces or report

generators, many conventional OLAP systems have been adopting query languages

similar to SQL [71] or XML for Analysis [125]. However, none of these query languages

provide sufficient support for the analysis of spatial data and need to be extended

to be used in spatial data warehouses. The OpenGIS Simple Feature Specification

for SQL [132] could provide the directions for such extension as it extends SQL with

spatial analysis features. In addition to a query language, a Spatial OLAP system may

also provide a language for the description of how query results should be represented.

The Graphical Presentation Language proposed in [51] provides one approach that

combines both, a spatial query language and a presentation language.

2.6 Summary and Open Questions

In summary, a number of issues related to the design and implementation of a spatial

data warehousing and OLAP system can be identified. The most dominant issue is

the integration of different components such as data representation, materialization,

indexing, querying and user interfaces into a coherent and uniform system with well

defined interfaces. So far, approaches have either targeted only specific and very

isolated problems of spatial data warehousing [136, 170], without the integration of

other parts into a functional system, or the system implementation was driven by

a specific application, not paying much attention to a uniform data representation,

general applicability and efficient algorithms [153, 160]. Other open problems that

must be addressed in order to design an integrated spatial OLAP system are:

• uniform treatment of spatial and non-spatial data throughout all components

of the data warehouse and its functionality;

• efficient representation of materialized spatial measures on disk;

• representation of query results in the same manner as views;



22

• standardized query interface;

• efficient algorithms for on-the-fly spatial aggregate computation;

• efficient update mechanisms for materialized spatial views;

• scalable and cost-effective computing platform as the performance of CPUs

and sizes of internal memory grow slower than external storage space and data

volumes.

In the remainder of this thesis we address these issues. Chapter 3 discusses the

evaluation of OLAP queries in the presence of spatial dimension hierarchies. In

Chapter 4 we introduce a computational model that facilitates the evaluation of non-

spatial and spatial OLAP queries in an efficient scalable manner that uses a consistent

data model. Chapter 6 then discusses a new multidimensional indexing mechanism

that allows a uniform representation of spatial and non-spatial data. Finally, in

Chapter 7 we propose an application of spatial OLAP in combination with spatial

data mining and define a new class of GROUP BY operators for the use in spatial OLAP

systems.



Chapter 3

Spatial Dimension Hierarchies

Key to the definition of a coherent and uniform spatial OLAP system is a coherent

and uniform approach to the definition and querying of spatial dimension hierarchies.

This chapter contains no algorithms, implementations or experiments, rather it pro-

vides a detailed analysis of different types of dimension hierarchies in spatial OLAP

systems and their impact on the evaluation of spatial ROLLUP and CUBE queries. Based

on a specific example, it explores different types of spatial dimension hierarchies and

determines how typical OLAP queries can be evaluated in their presence. The pro-

posed representation of hierarchies is expressive, in that it supports a wide range of

common SOLAP applications, and as will be demonstrated in the remainder of this

thesis, it admits an efficient implementation.

In the following section we describe existing approaches to the definition of spatial

dimension hierarchies. In Section 3.2 we introduce our application example which

serves as a basis for our analysis. We describe the modeling of spatial dimension

hierarchies in Section 3.3 and their representation in a data model in Section 3.4.

Section 3.5 then analyzes ROLLUP and CUBE queries for each spatial dimension hier-

archy in our example and Section 3.6 concludes the chapter with a summary of our

findings.

3.1 Approaches to the Definition of Spatial Dimension Hierarchies

There exists a significant amount of work addressing dimension hierarchies in the

context of Spatial OLAP. Most of this work focussed on how to construct spatial

dimension hierarchies. The approaches can be loosely categorized into those based

on ad-hoc hierarchies and those based on well defined topological relationships.

Ad-hoc hierarchies are commonly derived from spatial indexing data structures

and most prominently use R-trees [137, 150]. They are primarily used when spatial

objects have to be analyzed at various levels of granularity, but there does not exist

23



24

an underlying concept structure within the data. Hence, their structure is driven by

the data and changes along with the data. Ad-hoc hierarchies are not structured by

fixed concepts known to the user.

The second approach is the construction of hierarchies based on topological re-

lationships. This approach assumes there exists some concept structure within the

data that can be described by topological relationships [117, 139]. Most explicit hi-

erarchies that are predefined by the user are based on topological relationships, e.g.

Municipality ⊂ County ⊂ Province, and could, if necessary, be generated implicitly.

Also, there exist spatial dimension hierarchies that can only be explicitly defined

and cannot be constructed as an ad-hoc or topological hierarchy. An example of such a

hierarchy is Postal Code→ County, as there may exist an arbitrary mapping between

a postal code and a county, depending on the location of the postal distribution

centre.

Malinowski and Zimányi provided a first model for the representation of spatial

hierarchies independent of their implementation [114]. This model is derived from

the Entity-Relationship Model [33] and seamlessly integrates with the traditional

modeling of concept hierarchies. The authors introduced a symbolic notation for the

description of spatial dimension hierarchies. They failed to provide a formal definition

of this notation. By considering a number of examples, the authors furthermore

suggested a classification of spatial dimension hierarchies and distinguished between

the following significant types:

• asymmetric

• generalized

• non-strict

• multiple-alternative.

Malinowski and Zimányi addressed more types of spatial hierarchies in [114]. How-

ever, these hierarchies are constructed from the above types.



25

3.2 Our Application Example

To explore the evaluation of OLAP queries in the presence of spatial dimension hi-

erarchies we will use an example. By carefully looking at some typical SOLAP ap-

plications and trying to extract common requirements, we constructed a small and

simple example application that captures these requirements. We largely adopt the

core concepts of Malinowski and Zimányi [114] but operationalize these concepts in

specific example queries.

In our example, a forester is doing a survey of vegetation cover. He collects

observations at random points that include the vegetation type and the approximate

vegetation density. He also has access to a satellite image providing a raster of

elevation data at a 1 km resolution. Based on this data, the forester wishes to answer

queries such as:

• What is the most common plant species grouped by province?

• What is the average plant density relative to the elevation?

• What type of vegetation can be found in a specific municipality?

The forester example relates to a common scenario in land cover analysis or

forestry and involves two measures. The first measure is a satellite raster image

covering the entire area of interest. Each cell (pixel) of the raster is associated with

a value corresponding to the average elevation in this cell. Hence, the raster image

can be seen as an elevation map. The second measure is a set of sample locations

distributed throughout the area of interest, each recording the primary type of veg-

etation and the approximate vegetation density at the location. Figure 3.1a shows a

section of a map representing both measures at their finest level of granularity. The

measures have very different spatial characteristics. The elevation measure uses a

partitioning of the space and associates each partition with a measure value. Each

vegetation density measure, on the other hand, is associated with a single point loca-

tion and the locations are randomly distributed. Now the question is how to model

the spatial dimension hierarchies implemented in the forester example.



26

(a) Example dataset including eleva-
tion map and sample locations.

(b) Spatial dimension hierarchies.

Figure 3.1: The forester application example.

3.3 Modeling the Spatial Dimension Hierarchy

Since the point locations of the vegetation density measure are lower-dimensional

objects than the partitions of the raster, a hierarchy relationship between the raster

and the sample locations can be defined. Additionally other hierarchy levels, such as

Province and Municipality, can be defined on the spatial dimension to allow OLAP

analysis of the data in different contexts. The complete hierarchy of the spatial di-

mension in our example is shown in Figure 3.1b. For this hierarchy, the membership

between its levels can be determined using topological relationships. For most rela-

tionships full containment is a logical choice, as elements of one level of the hierarchy

are each well contained in one element of a higher hierarchy level. This is the case,

for example, for the relationship between municipalities and provinces. On the other

hand, for the relationships between raster cells and municipalities or provinces, full

containment is not applicable. This is due to the fact that the space partitioning of

the raster does not “align” with that of the Municipality or Province hierarchy levels.

This means that a single raster cell may not be well contained within a municipality

or province and instead only partially overlap with them. In cases of partial overlap a

membership function has to be defined to determine the membership of a lower level

element in a higher level element. In the simplest case this function is a surjection,



27

id

geom

location_id

vegetation_id

location

density

co
n
ta
in
s

co
n
ta
in
s

municipality

geom

name

province

name

geom

density

elevation_map

raster_cell_id

elevation

geom

1km_raster

id

in
te
rs
ec
ts

co
n
ta
in
s

in
te
rs
ec
ts

vegetation

id

type

Figure 3.2: Fact constellation schema of the application example.

which matches each element of the lower level to only one element of the higher level.

A typical example of such a function is max-overlap, which associates the lower-level

element with the most overlapping higher level element. Such a function, however,

may not always be desirable, as it affects the correctness of the result by not consid-

ering other existing relationships. Alternatively, a partial membership function can

be defined to associate a lower-level element with all higher-level elements it inter-

sects with. This approach, however, requires special care when evaluating GROUP BY

aggregate queries, as shown in Section 3.5.4.

3.4 The Data Model

Spatial dimension hierarchies can, similarly to conventional concept hierarchies, be

modeled using snowflake or constellation schemas. The constellation schema for our

example is shown in Figure 3.2 and is used as the basis for answering queries in

the following. For simplicity, however, all dimensions in the example have been de-

normalized for each measure, such that complex JOIN clauses can be avoided when

formulating the queries. To denormalize dimensions with respect to the vegetation

density measure, the following SQL query, extended by the OpenGIS Simple Feature

for SQL [132], can be used on the above constellation schema:



28

CREATE VIEW vegetation_density AS

SELECT

province.name AS province,

municipality.name AS municipality,

location.id AS location_id,

vegetation.type AS vegetation_type,

1km_raster.id AS raster_cell_id,

density.density AS density

FROM density

LEFT JOIN location ON density.location_id = location.id

LEFT JOIN vegetation ON density.vegetation_id = vegetation.id

LEFT JOIN 1km_raster ON CONTAINS(1km_raster.geom, location.geom)

LEFT JOIN municipality ON CONTAINS(municipality.geom, location.geom)

LEFT JOIN province ON CONTAINS(province.geom, location.geom)

This query computes a constrained Cartesian product across all entities, where records

are only combined if they satisfy the constraints provided in each of the ON clauses. For

example, a density record is only combined with a location record, if the density

record’s location id attribute is equal to the location record’s id attribute.

The spatial dimension hierarchies chosen in the example can be classified into the

following types as identified by Malinowski and Zimányi [114]:

• asymmetric

1km RasterLocation All

• multiple-alternative

1km Raster

Province

AllLocation

• generalized
Municipality

Province AllLocation

• non-strict

Province1km Raster All

We will now focus on each of these spatial hierarchies and examine the evaluation of

ROLLUP and CUBE queries.



29

3.5 ROLLUP and CUBE Queries in the Forester Example

In the following we discuss the formulation and expected results for ROLLUP and CUBE

queries for each of the hierarchy types in our example.

3.5.1 Querying Asymmetric Hierarchies

In the forester example every location (i.e., observation of vegetation type and density)

is within a 1 km raster cell defined by the elevation map. Not every raster cell contains

a location.

1km RasterLocation All

This type of relationship is what characterizes an asymmetric hierarchy.

A ROLLUP query on this hierarchy can be formulated as:

SELECT raster_cell_id, location_id, count(*) AS count

FROM vegetation_density

GROUP BY raster_cell, location WITH ROLLUP

Since the lowest level in this ROLLUP query is Location, only records that have in fact

a location and an associated measure will be considered. The reason for this is that

any other record that is not associated with a location does not contribute a measure

value to the query result. The result of this query is

raster cell id location id count

3 7 1

5 5 1

8 3 1

8 4 1

11 6 1

11 2 1

11 8 1

15 1 1

3 * 1

5 * 1

8 * 2

11 * 3

15 * 1

* * 8

and only contains those records for which location id is defined (not NULL). The

symbol * denotes NULL or undefined values and indicates in this representation an

aggregated attribute dimension.

Similarly, a CUBE query is formulated as:



30

SELECT raster_cell_id, location_id, count(*)

FROM vegetation_density

GROUP BY raster_cell, location WITH CUBE

and has the result

raster cell id location id count

3 7 1

5 5 1

8 3 1

8 4 1

11 6 1

11 2 1

11 8 1

15 1 1

3 * 1

5 * 1

8 * 2

11 * 3

15 * 1

* 1 1

* 2 1

* 3 1

* 4 1

* 5 1

* 6 1

* 7 1

* 8 1

* * 8

We observe that ignoring all records that do not associate with a valid location is

equivalent to using a WHERE clause that explicitly selects those records for which

location id is not NULL.

3.5.2 Querying Multiple Alternative Hierarchies

Multiple alternative hierarchies are combinations of other types of hierarchies where

the user selects which hierarchy path is considered in the analysis at runtime. In the

forester example a multiple alternative hierarchy is

1km Raster

Province

AllLocation

and for any query the user has to choose either Location→ Province→ All or Location

→ 1km Raster → All. Choosing either path leads to an asymmetric hierarchy that

can be evaluated as in Section 3.5.1.



31

3.5.3 Querying Generalized Hierarchies

In generalized hierarchies an element of a child level may be associated with either

a parent at a directly adjacent level or a parent at some other higher level of the

hierarchy. That is, the immediate parent element of some child element may be the

grandparent element of some other child. For example, a location in downtown Halifax

is in the Halifax Regional Municipality while a location in Kejimkujik National Park

is in Nova Scotia, but not within any municipality.

Municipality
Province AllLocation

For the evaluation of ROLLUP and CUBE queries on generalized hierarchies, place holders

have to the introduced to act as virtual parents for child level elements. That is, in

our example we need to introduce virtual municipalities for all those locations that

are directly associated with provinces. Introducing such virtual parents allows for the

evaluation of queries similar to:

SELECT province, municipality, location_id, count(density) as count

FROM vegetation_density

GROUP BY province, municipality, location WITH ROLLUP

resulting in

province municipality location id count

Nova Scotia virtual 7 1

Nova Scotia virtual 8 1

Nova Scotia Halifax 3 1

Nova Scotia Halifax 2 1

New Brunswick virtual 4 1

New Brunswick Fredericton 6 1

New Brunswick Saint John 1 1

Newfoundland virtual 5 1

Nova Scotia virtual * 2

Nova Scotia Halifax * 2

New Brunswick virtual * 1

New Brunswick Fredericton * 1

New Brunswick Saint John * 1

Newfoundland virtual * 1

Nova Scotia * * 4

New Brunswick * * 3

Newfoundland * * 1

* * 8

In this result, the municipality “virtual” has been introduced to provide an interme-

diate association for locations that are not directly associated with “real” municipali-

ties. This allows for intuitive query results, since all locations that provide a measure



32

value can still be considered at a hierarchy level with which they may not be directly

associated.

3.5.4 Querying Non-Strict Hierarchies

Non-strict hierarchies are hierarchies in which a child level element may not be

mapped to only one parent level element but to multiple. This is commonly the

case when the child level element intersects with multiple elements at the parent level

and a partial membership function is used. It arises frequently in practice when deal-

ing with spatial subdivisions that have been independently defined. For example, a

single postal code may intersect two counties and the borders of a physical element,

such as a forest, may not follow municipal boundaries.

Province1km Raster All

In these cases the challenge is how to handle partial membership with respect to

GROUP BY queries. For example, if a 1km raster cell falls in two provinces, how should

a location count associated with the raster cell contribute to each province’s aggregate

count? There are two obvious approaches: 1) Allocate the raster’s count measure to

both provinces, or 2) attempt some kind of proportional distribution based on the

degree of overlap. The problem with the first method is double counting. The sum

of the aggregate location counts across all provinces is greater than the sum of all

locations. The problem with the second method is the introduction of approximation

in that just because the raster overlaps one province by 75% does not necessarily mean

that 75% of the locations are in that province. In many applications approximation

is an appropriate solution.

A ROLLUP query assuming absolute membership between a raster cell and the

provinces it intersects may produce the following result:

SELECT province, raster_cell_id, COUNT(*) as count

FROM height_map

GROUP BY province, raster_cell WITH ROLLUP



33

province raster cell id count

Nova Scotia 2 1

Nova Scotia 3 1

Nova Scotia 5 1

Nova Scotia 1 1

New Brunswick 4 1

New Brunswick 5 1

Newfoundland 2 1

Nova Scotia * 4

New Brunswick * 2

Newfoundland * 1

* * 7

It can be easily seen that some raster cells are accounted for multiple times, once

for each province they intersect. In the example there exist only 5 distinct raster

cells matching the query, but the count evaluated by the query is 7. To prevent this

problem of double counting raster cells that partially overlap with multiple provinces,

we can annotate the aggregation function, i.e. COUNT, to incorporate the amount of

partial membership into the computation of the aggregate. An aggregation function

PARTIAL COUNT(R, Moverlap) can be introduced, for raster cells R, given a member-

ship function Moverlap, which only considers the partial contribution of a record to an

aggregation as follows:

PARTIAL COUNT(R, Moverlap) = COUNT(R) · Moverlap(R).

In the given example we can define the membership function Moverlap as:

Moverlap(R) =
AREA(INTERSECTION(parent(R), R))

AREA(R)
.

Modifying the previous query to use PARTIAL COUNT will then produce the correct

result for the ROLLUP query:

SELECT province, raster_cell, PARTIAL_COUNT(*, M)

FROM height_map

GROUP BY province, raster_cell WITH ROLLUP

province raster cell id count

Nova Scotia 2 0.60

Nova Scotia 3 1.00

Nova Scotia 5 0.25

Nova Scotia 1 1,00

New Brunswick 4 1.00

New Brunswick 5 0.75

Newfoundland 2 0.40

Nova Scotia * 2.85

New Brunswick * 1.75

Newfoundland * 0.40

* * 5.00



34

3.5.5 Complex Queries and Spatial Measures

All types of queries shown above can be combined and additional predicates such

as WHERE and HAVING clauses can be specified. Conceptionally, however, these can

be treated independently of the GROUP BY clause, as the WHERE clause selects the

candidate records before the GROUP BY is evaluated and the HAVING clause is applied

independently to each group that is found.

When spatial measures are present, they are treated similarly to scalar measures.

In the case of non-strict hierarchies, however, the membership function provided to the

extended aggregation function must return the partial spatial measure’s component

that corresponds to the partial membership, e.g., the intersection of the child with

the parent object.

3.6 Summary

In this chapter we have presented a simple example which nevertheless gives rise to

four different types of spatial dimension hierarchies, namely asymmetric, multiple-

alternative, generalized, and non-strict. We have explored how each hierarchy type

influences the evaluation of ROLLUP and CUBE queries, and how the query results can

be expressed in a tabular form that is consistent with standard OLAP representation.

In Chapter 4 we introduce a computational model that allows for the evaluation of

both spatial and non-spatial OLAP queries and includes support for the evaluation

of such queries on non-strict hierarchies.



Chapter 4

A Model for the Pipelined Evaluation of Spatial OLAP

Queries

Much of the existing and current research on the design and implementation of spatial

OLAP systems focussed on the integration of already existing OLAP and GIS compo-

nents into a single application using specialized middleware software [115,154]. This

approach is often cost-effective, quick to implement and allows the user to perform

spatial OLAP operations, while hiding the complexity of the interactions between the

components. However, with the continuous growth of spatial and non-spatial data

stored in data warehouses and used for analysis, the middleware approach quickly

reaches its limitations with respect to efficiency and scalability. existing middleware

solutions are not designed to utilize current and future computer hardware well, which

is evolving toward multi-core architectures that facilitate concurrent processing with

limited main memory resources. This creates a demand for spatial OLAP systems

that are scalable and efficient.

In the database community these issues of efficiency, scalability and concurrent

processing are often addressed by evaluating database queries in a pipelined man-

ner. The fundamental idea of this concept is to split the work associated with the

evaluation of a database query into multiple tasks (e.g., retrieval, join, aggregation).

Each task is performed by a specialized component, and data between the compo-

nents is transferred using data streams. Additionally, the pipeline approach allows

different components to process independent intermediate results concurrently, thus

interleaving the processing of individual tasks and improving the utilization of modern

multiprocessor and multicore hardware architectures.

In this chapter we adopt the pipeline approach for the evaluation of spatial OLAP

queries. We analyze a set of typical spatial OLAP queries and propose for each query

a set of components and an evaluation strategy using the pipeline model.

These typical queries include queries against asymmetric and non-strict hierarchies

35



36

as discussed in the previous chapter. Queries against multiple-alternative hierarchies

reduce to the other hierarchy types as soon as the user selects the branch to be taken.

As described in Chapter 3, the queries against generalized hierarchies can typically

be handled by the introduction of “virtual” values and are not addressed as a special

case here.

During our investigation we focus primarily on what we believe are critical re-

quirements for a spatial OLAP system:

1. Performance – The use of a modular architecture and intelligent implemen-

tations facilitate the use of efficient algorithms to achieve high performance in

data processing and query evaluation.

2. Flexibility – The architecture enables the recombination of existing compo-

nents to obtain results using different strategies and allowing for an optimal

cost balance.

3. Extensibility – The ability to extend at a component level allows for an easy

addition of new functionality and improved performance.

In the following sections we provide an in-depth discussion of how the pipeline

model can be applied to spatial OLAP queries. Specifically, Section 4.1 provides an

overview of the pipeline model and describes the concepts it relies on. In Section 4.2

we describe the underlying data model that enables the exchange of data between

the different components involved in a pipelined spatial OLAP query. Section 4.3

provides details about different types of components that are required to implement

the pipeline model for spatial OLAP queries. Section 4.4 provides an in-depth dis-

cussion of representative OLAP and spatial OLAP queries and their realization in

the pipeline model. The chapter concludes with a summary of our findings in Sec-

tion 4.5. In Chapter 5 we describe a proof-of-concept implementation of the pipeline

model for spatial OLAP, provide a performance analysis of our implementation and

a comparison with other approaches.

4.1 The Pipeline Model

The pipeline approach for the evaluation of database queries was initially proposed

by Boral and DeWitt in 1980 [26]. Since then, the model has been adopted by a



37

number of database engines, commercial and academic ones. Many of the available

traditional OLAP systems have also grown out of database management systems that

employ a pipelining approach to query evaluation.

The fundamental idea of the pipelining model is to divide the evaluation of a

complex query into a number of smaller and simpler tasks, each an independent com-

ponent consuming a set of input data and producing some set of output data. Between

these components data is transferred using data streams, and each component can

pass its results on to the next component as soon as they become available. This

stream-oriented approach to data transfers allows an interleaving of the execution of

the individual components as well as a concurrent execution on multiple processors

or processing cores if those are available. Both cases are beneficial for the utilization

of available processing resources, as some components can be executed while others

are, for example, waiting on disk I/O or other slow resources.

The interaction between the individual components of a pipeline model is typi-

cally illustrated using a data flow graph, where the nodes of the graph represent the

components that execute tasks and the edges represent the data streams. In database

terminology such a data flow graph may also be referred to as a query plan or strategy

and is subject to query optimization.

In the following we will refer to the components that are responsible for the execu-

tion of tasks as mini-engines. We choose this term as it is less ambiguous and captures

the nature of the components, which is to autonomously act as part of a larger query

evaluation engine. For mini-engines to be interoperable with each other, the inter-

faces between them have to be well-defined. To define these interfaces, mini-engines

that have a similar purpose (e.g., indexed storage) but varying implementations (e.g.,

B-tree or hash table) are grouped into a class for which the interfaces to other classes

of mini-engines are defined. The interface definitions for each class of mini-engines

can be considered the rules by which a data flow graph can be constructed.

The abstraction of query evaluation tasks into mini-engines allows for the encapsu-

lation of their implementation. A single mini-engine can be developed independently

from other mini-engines and optimized with respect to specific requirements such as

performance, cost, or accuracy. A set of mini-engines that together can be used to

answer a specific query may form a unit that itself can be considered a mini-engine.



38

Thus, it is possible to describe query evaluation strategies as recursive constructions

of mini-engines. Mini-engines that cannot be constructed by combining other mini-

engines are called elemental mini-engines. In Section 4.3 we provide details of the

elemental classes of mini-engines that are required to evaluate typical spatial OLAP

queries.

The concept of mini-engines provides an unparalleled flexibility for query optimiza-

tion by allowing the system to choose and combine mini-engines in such a way that

query costs are minimized for any kind of query. Leaning on object-oriented design

concepts, the mini-engines additionally allow for the extension of an existing system at

a mini-engine component level. It restricts the implementation of extensions to small

components with well-defined interfaces and avoids complex relationships and depen-

dencies with other components which can often be observed in monolithic designs.

This reduces the overhead and costs associated with adding new functionality to the

system and makes the design attractive for systems that are required to be available

over extended periods of time and continuously adapt to changing environments, such

as new data types, different storage subsystems, or access patterns.

To illustrate the mini-engine concept, consider the following OLAP query as an

example:

SELECT a1, a2, a3, AGGREGATE(f)

FROM View

GROUP BY ROLLUP(a1, a2, a3)

It retrieves all records from view View and performs aggregation on the facts attribute

f for each group of records with respect to the attribute sets provided in the GROUP BY

clause. In this example the ROLLUP function generates the attribute sets {a1,a2,a3},

{a1,a2}, {a1}, and {}, each representing a separate group-by aggregation. The results

from each group-by aggregation are then merged into a combined result view. In the

context of the pipelining model, the strategy for evaluating the above query can be

represented as a data flow graph as shown in Figure 4.1. The data flow graph is a

decomposition of the evaluation steps into distinct tasks that are mapped to mini-

engines. The query Q is used to filter the records in the view. In this example it selects

all records available in the input view, that is, the DATA ACCESSOR mini-engine

must retrieve all records from the view. Generally, the DATA ACCESSOR mini-engine



39

Figure 4.1: Example query decomposed into an assembly of mini-engines.

provides an abstraction of one or more data structures that provide access to data

stored in the view. These data structures are typically indexing data structures that

allow efficient access to data given selection criteria. In this example, however, this

can be any data structure, even the simplest one, as records are not required to be

filtered by any given predicate or expected to be processed in any particular order.

These implementation details, however, are intentionally hidden in the context of the

data flow graph, as it represents a conceptual query strategy. The records retrieved

by the DATA ACCESSOR mini-engine are passed to the next mini-engine in the data

flow graph. Depending on the sort order of the incoming record stream, the SORT

mini-engine rearranges the input records according to the grouping set specified in the

GROUP BY clause. The sort order information of each data input stream is provided as

part of the metadata associated with the stream. In the next step the SELECT mini-

engine selects from the incoming record stream only those record attributes that are

relevant for the further processing of the query. In the first instance of the SELECT

mini-engine for this example query, the attributes a1, a2, a3, and f are selected, and a

new record stream containing only these attributes is emitted. A GROUP mini-engine

is then used to obtain a grouping of the records in the data stream, which corresponds

to the first most detailed level of aggregation groups. The grouped records are then

passed to an AGGREGATE mini-engine which performs the actual aggregation of facts

for each group. Note that the ROLLUP statement generates a number of grouping sets,

each representing a different level of aggregation such that multiple sets of SELECT,

GROUP, and AGGREGATE mini-engines are required to evaluate the query, one set for



40

each aggregation level. Since the ROLLUP function constructs grouping sets in such a

way that each consecutive grouping set is a subset of the previous grouping set, while

the attributes remain in the same order, it is possible to use the aggregated results

from the previous grouping set as an input for the next grouping set. This property

is being utilized in the shown strategy by splitting the result stream of one level of

aggregation into a stream that is considered a result output stream and a stream

which is used as input to the next level of aggregation. This process is repeated

for each grouping set generated by the ROLLUP function. The result output by each

aggregation is accumulated in a result stack that combines the results into a single

result representation.

The property of the ROLLUP function to construct grouping sets such that a sub-

sequent grouping set is a subset of the previous grouping set is often exploited during

the pre-materialization of OLAP views. The materialization of views, that contain

a prefix subset of the dimension attributes in an already materialized view, is typi-

cally much more efficient as it does not require the resorting of records. Our model

uses a similar approach, by reusing aggregate values computed for a higher dimen-

sional view to calculate aggregate values for appropriate subviews without resorting

the records. Thus, the model also lends itself to be used during pre-materialization

of views and cost models employed by view selection methodologies can take into

account the strategies our model can support to facilitate efficient construction of

subviews.

Due to the non-transactional nature of OLAP and the amount of data that is

processed, OLAP systems typically operate in either a loading mode for efficient

insertion of large amounts of data or a query mode for efficient query evaluation. The

remainder of this chapter focuses on the query evaluation in OLAP systems and thus

considers only read-only queries.

4.2 Data Model

The data model describes the format and properties of the data that can be passed be-

tween mini-engines and forms the basis of the data-flow-oriented approach to query

evaluation. A data flow graph, which defines a particular query evaluation strat-

egy, is composed of two types of distinct building blocks: streams and mini-engines.



41

Formally a stream s = (S,R,O) is defined by three properties: its schema S, a se-

quence of records R, and an order O. The schema S of a stream defines the format

of the data records the stream transports and is described by a tuple of attributes

S = (A1, A2, . . . , Ak) each of which is associated with a data type Ai. The sequence

of records R that is transported by a stream can contain two types of records: proper

records and stop words. A proper record r is a data record that is composed of a

set of attribute values r = (a1, a2, . . . , am) corresponding to schema S of the stream

with r ∈ A1 × A2 × · · · × Am. Thus, each attribute value ai of r is of type Ai. A

stop word record is a special control record used only internally to the query eval-

uation to differentiate partitions of the data stream into continuous substreams. A

stop word record indicates that the records preceding the stop word have, based on

some criteria, certain properties in common, whereas the records following the stop

word have different properties in common, based on the same criteria. For example,

stop word records are used when grouping records together. Each group of records is

separated from another group in the stream using a stop word record. A stop word

record does not possess a schema and we denote such a record with the symbol �.

Thus R = 〈r1, r2, . . . , rn〉 with ri ∈ A1 ×A2 × · · · × Am ∪ {�}.

The order O of a stream s with schema S is a potentially empty ordered list of

attributes that specifies the order of records in the stream. The attributes in O must

be a subset of the attributes in S. For a non-empty order O = (A′
1, A

′
2, . . . , A

′
p) the

records transported by s can be assumed to be sorted in such a way that without loss

of generality the predicate leqk(O, ri, rj) defined recursively as follows is true for any

pair of records ri, rj with ri, rj ∈ R, and i ≤ j:

leqk(O, ri, rj) =























true, if k > |O| or a′k,i < a′k,j;

false, if a′k,i > a′k,j;

leq(k+1)(O, ri, rj), if a′k,i = a′k,j,

where a′k,i is ri’s value of attribute A′
k, the k-th element in O, and a′k,j is rj’s value

of attribute A′
k. If the order of a stream is empty (O = ∅), R is still an ordered list,

but it may not be sorted in any particular order. In this case no assumptions about

the order of records in R should be made.



42

The mini-engines of a data flow graph can generally be differentiated into unary

and binary mini-engines. Unary mini-engines can be considered functions that take

one input stream and produce one output stream. The input and the output streams

are not required to have any properties in common, can both have different schemas

and transport a different number of records. Formally a unary mini-engine MEu can

be defined as:

sout = MEu(sin).

Similarly, binary mini-engines can be considered functions that take two input streams

and produce one output stream. In the general case, there are no interdependencies

between the input and output streams; however, as discussed in Section 4.3, specific

mini-engines have concrete requirements with respect to input streams. Formally a

binary mini-engine MEb is defined as:

sout = MEb(sin1
, sin2

)

A special type of mini-engine is the RESULT STACK. It is an n-ary mini-engine

that can have an arbitrary number of input streams, but itself does not produce any

output streams. It is used exclusively to terminate record streams. The RESULT

STACK mini-engine is discussed in detail in Section 4.3.8.

In addition to input stream arguments, mini-engines may be parameterized de-

pending on their function and implementation. A FILTER mini-engine (see Sec-

tion 4.3.2), for example, may be parameterized with a predicate function defined

on the records of the input stream to determine for each record whether it is to be in-

cluded in the output stream. Other types of parameters may be constant constraints

or modifiers that are known prior to the query evaluation.

The process for the evaluation of a query is described as an evaluation strategy

or a query plan and can be represented as a data flow graph. An evaluation strategy

for a query is typically determined by a query optimizer, which uses a cost model

to identify the most suitable evaluation strategy given a set of cost constraints. A

query evaluation strategy that was determined by a query optimizer already contains

information on what mini-engines are involved in the evaluation process and what

types of streams connect the mini-engines. The only information that is not known



43

after compiling the evaluation strategy are the actual records that are processed by

this query.

The following section describes in detail a set of mini-engines that can be used

to design query strategies for common traditional OLAP and spatial OLAP queries.

The design of such query strategies is discussed in detail in Section 4.4.

4.3 Mini-Engines

Mini-engines are self-contained computational units that communicate with their en-

vironment through well defined interfaces. This section introduces a number of dif-

ferent conceptual types of mini-engines, each specialized to perform a specific type

of task. The types of mini-engines that are being addressed in this section are those

required for the evaluation of most spatial OLAP queries. This section describes in

detail the following mini-engines:

• DATA ACCESSOR

• SELECT

• FILTER

• GROUP

• AGGREGATE

• JOIN

• SORT

• RESULT STACK

Note, the mini-engines described in this section are abstract and no concrete as-

sumptions about their implementation beyond the scope of the data model described

in Section 4.2 are made. An implementation of the pipelined query evaluation model

for spatial OLAP is discussed in Chapter 5.



44

4.3.1 Data Accessor

The DATA ACCESSOR mini-engine is a unary mini-engine used to retrieve records

from a data store. As input the mini-engine accepts a stream of query records. For

each of these query records, the mini-engine retrieves those records from the data store

that satisfy a predefined predicate with respect to the query record. The retrieved

records are reported via an output stream sout, and each query record from the input

stream yields a partition of records in the output stream separated from the next

partition by a stop word record. Depending on the implementation of the DATA

ACCESSOR mini-engine, the retrieval of records from a data store may be supported

by a particular access method or data structure (e.g., B-tree or R-tree). If the access

method to retrieve the records can guarantee a particular order of these records, then

the mini-engine can use this information, as well as information about the order of

the query input stream, to derive the order of the output stream.

Typical implementations of the DATA ACCESSOR mini-engine would use a disk

storage system and utilize data structures such as B-trees or R-trees to efficiently

retrieve records. As an example, a DATA ACCESSOR mini-engine that can retrieve

points contained in a polygonal region, may use an R-tree over the spatial properties

of the points to efficiently answer containment queries.

4.3.2 Filter

A FILTER is a unary mini-engine used to remove records from an input stream that

do not satisfy a given predicate, while adding those records that satisfy the predicate

to the output stream. Stop word records satisfy any predicate and are always passed

through to the output stream.

The FILTER mini-engine does not modify the schema of the records it processes

and does not change their relative order, it may only reduce the number of records

in the output stream compared to the number of records in the input stream.

4.3.3 Select

The SELECT mini-engine is a unary mini-engine used to transform input records with

a given input schema into output records with a potentially different schema. To do



45

so, the SELECT mini-engine is parameterized with a function

f : Sin ×Oin → Sout ×Oout

which maps a record from the input stream with schema Sin = {A1, A2, . . . , Ap}

to an output record with a schema Sout = {B1, B2, . . . , Bq}. The output record is

then inserted into the output stream. The SELECT mini-engine does not remove or

create records, and each proper output record is a transformation of an input record.

Stop word records are exempt from transformation and are passed unmodified to the

output stream. Thus, the total number of output records is equal to the total number

of input records. Due to the potential change in schema between the input and the

output stream, the sort order of the output stream may not correspond to the sort

order of the input stream. The sort order of the output stream Oout contains at

least those attributes from the input sort order that are also included in the output

schema. If possible, the function f above may derive a more precise specification of

the output sort order by taking into account the nature of the transformations from

input attributes to output attributes.

4.3.4 Group

The GROUP mini-engine is a unary mini-engine that is parameterized on a set of

grouping attributes G = {A1, A2, . . . , Ap}. It is used to partition the records received

from an input stream so that all records within one partition share the same values

with respect to the grouping attributes G. The group mini-engine receives records

from an input stream and compares each pair of consecutive records with respect to

the grouping attributes. If both records share the same values, they are considered to

be within the same partition and are written consecutively to the output stream. If

the grouping attribute values of the two records differ, the records are written to the

output stream separated by a stop word record to indicate that the records belong to

different partitions. Thus, to obtain a partitioned output stream that guarantees that

each partition corresponds to a distinct equivalence class with respect to the grouping

attributes, the input stream must be sorted with respect to the grouping attributes

so that the attributes in G form a prefix of the input stream’s sort order O.



46

When the GROUP mini-engine receives a stop word record from the input stream

its default action is to immediately discard this record and not to process it further.

This allows the mini-engine to remove any prior partitioning from the stream. How-

ever, this functionality can optionally be disabled and any input stop word record is

passed through as is. This permits the GROUP mini-engine to add a refined parti-

tioning on top of an already partitioned stream.

The output of the GROUP mini-engine is a stream with the same properties as

the input stream and containing the same number of proper records. Depending

on its configuration, the GROUP mini-engine may discard all stop word records it

receives from the input stream and potentially injects a new set of stop word records

to separate the partitions of records it has identified.

4.3.5 Aggregate

The AGGREGATE mini-engine is a unary mini-engine to compute one or more aggre-

gate values for each partition of records in the input stream. The parameter to the

mini-engine is a set of aggregate functions Φ = {φ1, . . . , φk} with φi : Ai ×Ai → Ai,

where Ai is the type of the ith attribute of the input stream schema Sin. The mini-

engine produces an output stream sout with the same schema Sin as the input stream,

with each partition of the input stream represented by only one proper record in the

output stream. Each output record’s attribute values are the aggregation values com-

puted for the corresponding partition of input records. For each attribute Ai ∈ Sin, its

corresponding value ai,k in record rk and each partition of n input records (r1, . . . , rn),

the aggregation value φ∗
i (r1, . . . , rn) is defined as

φ∗
i (r1, . . . , rn) =







ai,1, if k = 1;

φi(φ
∗
i (r1, . . . , rk−1), ai,k), if k > 1.

The stop word records that separate partitions in the input stream are retrieved by

the mini-engine and passed on to the output stream unmodified. This ensures that the

partitioning information of the input stream is retained in the output stream, as this

information may be required for subsequent operations such as the JOIN operation.

This is discussed in Section 4.3.6.



47

The order of the output stream depends on the order of the input stream and

the aggregation functions defined for each attribute. The relative order of the output

records is the same as the relative order of the partitions of the input stream. The

output records may not be sorted in any particular order with respect to their at-

tribute values depending on the aggregation functions that were used. In some cases

the aggregation functions applied to the attributes in Oin may yield aggregation val-

ues that are in the same sorted order as the corresponding attribute values of the

input records. For these cases the AGGREGATE mini-engine can derive the sort order

of the output stream from the sort order of the input stream under consideration of

the aggregation functions applied to the sorting attributes in Oin. For example, if the

aggregation functions used on the attributes in Oin of the input stream each emit the

first occurring attribute value, the sort order of the output stream is equivalent to

that of the input stream and can be characterized by the same attributes. If, on the

other hand, the aggregation function is, for example, a sum, the aggregation values

for each of the ordering attributes may no longer be sorted as their final values depend

on the values of the attributes of each input record as well as the number of records

in each partition.

An AGGREGATE mini-engine typically occurs in some combination with a GROUP

mini-engine; the GROUPmini-engine identifies and marks the aggregation groups, and

the AGGREGATE mini-engine performs the actual aggregation.

4.3.6 Join

The JOIN mini-engine is a binary mini-engine used to combine one stream of records

with another stream of records. In particular, it creates the Cartesian products

of record partitions received from the first input stream with corresponding record

partitions received from the second input stream. Thus, it processes each input

stream one partition after another and expects both input streams to have the same

number of partitions. The stop word records that separate individual partitions in

the input streams are merged into a single stop word record that is emitted as an

output after the Cartesian product of the corresponding partitions has been output.

The Cartesian product between two partitions P1 and P2, with P1 containing m

records and P2 containing n records, is an output partition Pout with m× n records.



48

Each record in Pout is constructed by concatenating the attribute values from the

corresponding records in P1 and P2. The schema of the output stream to which the

result records are written is Sout = Sin1
◦Sin2

, where ◦ is the concatenation operator.

After writing all records of an output partition Pout to the output stream, the JOIN

mini-engine merges the stop word records that conclude the input partitions into a

single stop word record that is output to separate the partitions in the output stream.

Thus, the mini-engine emits stop word records after each Cartesian product of the

input partitions it computes.

The sort order of the output stream of the JOIN mini-engine is at least that of the

first input stream, as its records are processed by the outer loop of the join process.

If all of the first input stream’s attributes were also ordering attributes of the first

input stream, then the order of output stream additionally inherits the order of the

second input stream as a secondary order in addition to the primary order provided

by the first input stream.

4.3.7 Sort

The SORT mini-engine is used to reorganize the records within a stream so that they

satisfy a given sort order constraint. This sort order is provided to the mini-engine

as a parameter in the form of a list of ordering attributes O = (A1, . . . , Ak), where

{A1, . . . , Ak} ⊆ Sin. The sorting of the records removes any partition of the input

stream that may be present by discarding all stop word records that may be present

in the input stream. To sort the proper records received from the input stream, the

mini-engine may utilize temporary external storage and may need to consume the

entire input stream before producing an output. The SORT mini-engine’s output

stream has the same schema as the input stream and the number of output records

matches the number of proper input records. In comparison to the input stream, the

sort order of the output stream is characterized by the sort order attributes given to

the mini-engine as a parameter and may not be the same as the input stream’s sort

order.



49

4.3.8 Result Stack

The RESULT STACK mini-engine is a special kind of mini-engine in that it may have

multiple input streams but does not have an output stream. The purpose of the

RESULT STACK mini-engine is to act as a container for query results that are passed

to it in form of record streams. As such, the RESULT STACK mini-engine terminates

record streams and prepares the collected records for presentation to the application.

Such representation may be a table, a view or some kind of data visualization. The

presentation of query results to the application is not in the scope of this thesis, and

for the remainder of this chapter we consider the result stack as a termination of one

or more record streams.

4.4 Applications and Example Queries

In this section we demonstrate the applicability, flexibility and strength of the pipeline

model for spatial OLAP. For this purpose we describe an application scenario and

various example queries. We begin with example queries for traditional OLAP to

demonstrate the applicability of the pipeline approach not only to spatial OLAP

but also to traditional OLAP. Then, the remainder of this chapter focuses on the

evaluation of spatial OLAP queries. For the illustration of each of the example queries,

we first provide a representation of the query in SQL and then describe a translation

of the query into an interacting set of mini-engines.

As an application scenario, consider a modern national forestry department con-

ducting a comprehensive survey of the country’s vegetation coverage and storing all

of the collected data in a large data warehouse. The data the department collects

during the survey may be

• For a large number of individually sampled plants, recordings of each plant’s

longitude and latitude coordinates, family, genus, and species, estimated age

and height.

• Areas of vegetation types derived from high-resolution satellite imagery.

• Additional auxiliary information from 3rd party providers, such as political re-

gions, emergency services district regions, postal code regions, as well as historic



50

meteorological data.

To analyze the data in the data warehouse, an analyst may execute the following

traditional and spatial OLAP queries:

Query 1: What is the maximum height of all plants between 10 and 50 years of estimated

age, for each species?

Without processing any spatial data, this query represents a typical GROUP BY

aggregation query often used in traditional OLAP.

Query 2: What is the maximum height of all plants between 10 and 50 years of estimated

age, for each species, genus, and family?

This query is an extension of the first query and introduces a traditional OLAP

roll-up hierarchy to obtain aggregate results at different levels of hierarchical

groupings.

Query 3: What is the average vegetation height in the region between 42.975N 69.351W

and 48.228N 59.480W, grouped by county?

This query can be considered the spatial equivalent of the first query. It queries

for a set of plant records whose spatial location attribute is contained within

the given spatial query region, just as Query 1 queries for a set of plant records

whose non-spatial age attribute is within a numeric range. The plant records

are then grouped by the county that contains their location, and their height

measure values are aggregated for each such group.

Query 4: What is the maximum vegetation height in the region between 42.975N

69.351W and 48.228N 59.480W, for each county, province, and country?

This query is the spatial equivalent of Query 2 and extends Query 3 with a

spatial roll-up hierarchy to obtain results at different levels of spatial resolution.

Query 5: Report the total area covered by forest for each postal code, fire district, and

county?

This query is an example of a spatial OLAP query that uses a non-strict roll-

up hierarchy, i.e. a hierarchy for which the members of one level are not well

contained within the members of the levels above.



51

Queries 1 and 2 are typical categorical OLAP queries and can be evaluated using

existing traditional OLAP systems. Queries 3, 4, and 5, on the other hand, involve

spatial dimension attributes and require a spatial OLAP system to be evaluated

efficiently.

4.4.1 Query 1

What is the maximum height of plants between 10 and 50 years of estimated age, for

each species?

This query is a typical group-by query, a fundamental concept of traditional OLAP

and often used when querying a database for aggregate information. For this query,

we assume no spatial components are involved in the evaluation of the query, and

the species entity is represented as a categorical attribute, e.g., a name. Hence, the

query deals with data types that are readily available in standard SQL compatible

database management systems.

In SQL, the query can be formulated as

SELECT species.name, MAX(plant.height)

FROM species

LEFT JOIN plant ON plant.species_id = species.id

WHERE plant.age >= 10 AND plant.age <= 50

GROUP BY species.name

The result of this query is a view (or table) that lists, for each species that has

recorded plants within the given age range, the maximum height among these plants.

The query considers only plants with an estimated age between 10 and 50 years; thus,

the plant records are filtered to include only those that satisfy this condition. The

association between a species entity and a plant entity is established through a

LEFT JOIN statement, which determines the Cartesian product between the species

table and the plant table and filters the result to include only records that satisfy the

join predicate species.id = plant.species id. These records are then grouped by

the name attribute of each species entity. Finally, the aggregated fact of each group

is computed by the MAX function, which, in this example, determines the maximum

value of the height attribute for each plant record in the group. Figure 4.2 shows an

example result for this query. Note, the LEFT JOIN statement combines the species



52

Figure 4.2: Example source and result tables for the query described in Section 4.4.1.
They gray shading represents the records that satisfy the constraint specified by the
WHERE clause.

table and the plant table based on the unique identifier of each species to which one

or more plants belong.

In the context of the pipeline model, the evaluation strategy for this query is

represented as a data flow in Figure 4.3. The structure of the graph can be divided

into the following steps:

Step 1: Determine all species of plants. This task is performed using a DATA AC-

CESSOR mini-engine that retrieves all records from the species table. We

assume that each species is unique and that the DATA ACCESSOR mini-engine

returns only one record per species. This property can be enforced during the

creation of the species table using a unique key constraint. The output of the

DATA ACCESSOR mini-engine is a stream of species records with the schema

Sout = {Aname, Aid}.

Step 2: Generate query records. Given the species records, the following steps

will identify the plant records that are associated with each species. This

association is done based on the primary key of the species records, which is

species.id. All remaining attributes of the species records are not important

for this part of the query and are removed from the records. The resulting

stream of species.id records is used as a query stream in Step 3.



53

Figure 4.3: Data flow graph of the strategy used to evaluate the query described in
Section 4.4.1.

Step 3: Retrieve all plant records for each species. Using the unique ID associated

with each species, the DATA ACCESSOR mini-engine can query the plant data

store for records that are associated with each species. To perform this query

efficiently, the DATA ACCESSOR mini-engine may use an index (e.g., B-tree)

on the plant.species id attribute of the plant records. For each species.id

received as an input to the mini-engine, the DATA ACCESSOR returns a parti-

tion of plant records that are associated with that corresponding species. If no

such plant record exists, the partition returned by the mini-engine is empty.

Step 4: Filter plant records by age. Since the subject of the analysis are plants with

an estimated age between 10 and 50 years, this constraint is being enforced by

filtering the retrieved plant records and discarding all records for which the

constraint is not satisfied.

Step 5: Select attributes relevant for aggregation. Since the aggregation only re-

quires information about each plant’s height, the height attribute is the only

attribute that is retained in the SELECT mini-engine’s output stream.

Step 6: Compute the maximum vegetation height for each partition. After Step 3,

each partition of the plant record stream corresponds to a particular species in

the species record stream produced in Step 1. Hence, the maximum vegetation



54

height of plants with an estimated age of between 10 and 50 years for each

species can be determined by aggregating each partition of plant records. The

aggregation only needs to be performed on the plant.height attribute, which

will be appropriately annotated with the corresponding species’ name in Step 8.

The output of the AGGREGATE mini-engine is a partitioned stream of records

where each partition has either no records, (i.e., the partition was empty before

the aggregation) or one record representing the aggregate value.

Step 7: Generate a partition for each unique species. Since the query compiler is

aware that species are unique and that the stream from Step 1 contains only

one record per species, it is not required to sort the record stream before parti-

tioning it. The GROUP mini-engine simply inserts stop word records between

the individual species records to mark the partitions.

Step 8: Annotate aggregated records with species name. After the aggregation,

each partition of the aggregated record stream is joined with its correspond-

ing counterpart partition of the species record stream. The partitions of the

species record stream each contain only one record per species and partitions

of the aggregation record stream may contain either no or one record spec-

ifying the maximum vegetation height determined for that partition. Thus,

the JOIN mini-engine produces one output record for each pair of species

record partition and aggregation record partition if an aggregate record ex-

ists. The output stream of the JOIN mini-engine is a stream of records with

schema Sout = {Aname, Aid, Aheight}, where the Aname attribute is the name of

the species, Aid its unique identifier, and the Aheight attribute the maximum

height of plants of the given species between 10 and 50 years of estimated age.

Step 9: Remove irrelevant attributes. The result of the query only needs to contain

the name of each species and the maximum height that was determined. The

SELECT mini-engine removes all other attributes before the results are passed

to the RESULT STACK in Step 10.

The evaluation strategy described above is not the only strategy that can be used

to evaluate the given query. There exist alternative strategies which may, depending



55

on the properties of the data, evaluate the same query less or more efficiently. Given

additional information about the nature of the underlying data, the strategy above

may need to be modified to evaluate the query differently and more efficiently.

For a system to choose the most suitable of several candidate evaluation strategies,

a query optimizer should be employed. A query optimizer analyzes, for each query,

the strategies that can potentially evaluate the query and assigns an estimated cost

to each mini-engine in a strategy’s data flow. This cost depends on the type of mini-

engine and is based on the amount of data it has to process, what data structures are

used and what operations are performed on the data. The total estimated costs of

all strategies are then compared, and the strategy with the lowest cost is chosen to

evaluate the query. The design and implementation of an appropriate cost model and

a corresponding query optimizer are not in the scope of this thesis, and the reader is

referred to [97,163] for in-depths discussions of query optimization.

4.4.2 Query 2

What is the maximum height of a plant between 10 and 50 years of estimated age, for

each species, genus, and family?

This example query is a typical OLAP roll-up query. It computes results at

multiple levels of aggregation. In this example, the different levels of aggregation

from the most detailed to the most aggregated level are the species, genus, and family

of a plant’s ontological classification. In SQL, this query may be formulated as

SELECT family.name, genus.name, species.name, MAX(plant.height)

FROM family

LEFT JOIN genus ON genus.family_id = family.id

LEFT JOIN species ON species.genus_id = genus.id

LEFT JOIN plant ON plant.species_id = species.id

WHERE plant.age >= 10 AND plant.age <= 50

GROUP BY ROLLUP(family.name, genus.name, species.name)

and Figure 4.4 shows an example of the query result. This query is structurally similar

to Query 1; however, note the keyword ROLLUP. The ROLLUP keyword indicates that,

for the attributes listed as parameters, multiple group-bys are computed such that

each group-by has the last element of the previous group-by removed. In this example

the following group-by sets are generated: (family.name, genus.name, plant.name),



56

Figure 4.4: Example result tables for the query described in Section 4.4.2. Attribute
values of ⋆ denote NULL or undefined values, which are commonly used to represent
an aggregated attribute dimension.

(family.name, genus.name), (family.name) and ∅. The query evaluation needs to

compute the aggregation for each of these group-bys. As they are each a prefix of the

previous group-by, it is possible to use the aggregation results of a preceding group-

by as input for the next aggregation. This allows OLAP systems to use intelligent

algorithms for the efficient evaluation of ROLLUP queries.

Figure 4.5 shows a data flow graph based on the pipeline evaluation model that

can be used to evaluate the ROLLUP query described above. One can see that the

structure of parts of the data flow graph is very similar to that of Query 1, but

the multiple levels of joins and aggregation can be easily identified. The underlying

concept of this strategy is that records from a more detailed level of aggregation are

associated with records from a less detailed level of aggregation, and this relationship

is transitive across all levels of aggregation. Hence, the evaluation of the query first

identifies records at the least detailed level of aggregation (Step 3) and then uses

those to query associated records at the next more detailed level of aggregation (Step

7). This process continues with each level of aggregation until the level of measure

records (plant) has been reached. Following Step 11, the result is a stream of plant

records, partitioned in such a way that each partition contains plant records that

are associated with a particular species. Since the query is not required to report



57

Figure 4.5: Data flow graph of the query evaluation strategy described in Section 4.4.2.



58

any results at the resolution of the plant records and the aggregation function MAX is

associative, the strategy immediately aggregates the partitions of the plant records

to obtain aggregation values at the species level (Step 14). Step 16 then joins

the aggregate values with the corresponding records representing the lowest level

of the ROLLUP hierarchy to produce the results for the (family.name, genus.name,

species.name) aggregation level. The results for the remaining aggregation levels

are then derived from the (family.name, genus.name, species.name) results by

removing unwanted attributes and aggregating the records based on the desired group

attributes (family.name, genus.name) in Step 21, (family.name) in Step 25, and ()

in Step 29. The results of each aggregation are forwarded to the RESULT STACK

mini-engine, where they are prepared for consumption by the application.

Note that due to the order in which records are retrieved from the data stores, the

strategy can evaluate the ROLLUP query without sorting any data. This may allow

for a very efficient evaluation of the query but depends strongly on properties of the

data that is underlying the query and the design and layout of the data warehouse.

There may exist other strategies that may or may not evaluate the same query more

efficiently depending on these factors.

4.4.3 Query 3

What is the average vegetation height in the region between 42.975N 69.351W and

48.228N 59.480W, grouped by county?

Query 3 determines the average height of vegetation within the given rectangular

query region for each county in this region. The query region is specified in the form

of two points: 42.975 degrees north / 69.351 degrees west and 48.228 degrees north /

59.480 degrees west. This query is our first example of a spatial query, as it involves

the processing of spatial properties such as the query region and the location and

region attributes of the queried records. The structure of the query is very similar to

the structure of Query 1 and, in fact, Query 3 can be considered the spatial equivalent

of Query 1. In contrast to Query 1, some components involved in the evaluation of

this query exclusively process spatial attributes. Figure 4.6 illustrates this query.

Using a spatial extension to SQL [132], the query can be expressed in SQL as



59

Figure 4.6: Illustration of Query 3. Counties are represented as polygons, and indi-
vidually sampled plants of different types of vegetation are represented as N, �, and
• respectively. The rectangular query region intersects multiple counties and contains
a number of individual plant records.

SELECT county.name, AVERAGE(plant.height)

FROM county

LEFT JOIN plant ON CONTAINS(county.region, plant.location)

WHERE CONTAINS(

MakeBox2D(

MakePoint(42.975, -69.351),

MakePoint(48.228, -59.480)

),

plant.location

)

GROUP BY county.name

To evaluate the query, the system needs to identify which locations are contained

within the given query region. Furthermore, it needs to associate each location with

the county that contains it and group the annotated locations by the counties they

belong to. Finally it applies the aggregation function AVERAGE to all records within

a group to compute the average height of the plant records within that group.

Figure 4.7 shows the data flow graph of a strategy to evaluate the query. One

can see that the structure of the strategy is similar to the structure of the strategy

discussed for Query 1, and both strategies have the same number of steps, often with



60

Figure 4.7: Data flow graph of an evaluation strategy for Query 3.

similar functions:

Step 1: Determine affected counties. Since, for this query, we are only interested

in locations that are contained within the query region, and each location is

associated with only one county, we are also only interested in counties that

intersect with the query region. To retrieve those counties, Step 1 uses a DATA

ACCESSOR mini-engine that retrieves records from a data store depending on

whether their spatial properties intersect with a given spatial object, in this

case the query region. To perform this task efficiently, the DATA ACCESSOR

mini-engine may for example utilize a spatial index, such as an R-tree, over the

spatial attributes of the county records.

Step 2: Constrain county extents to query region. To identify which plant records

are associated with a county, the strategy uses the region of each county that

intersects with the query region as a query region for a subsequent query across

the plant records. Thus, the retrieved county records’ extents are trimmed to

the query region by computing the spatial intersection between each county’s

total region and the query region, and all other attributes that are irrelevant to

the query are removed. The county records are transformed in that way to ob-

tain query regions that constrain subsequent query results to the corresponding



61

Figure 4.8: Illustration of the trimming of spatial attributes to the extent of the
query region. Here the county records from Query 3 are constrained to their spatial
intersection with the query region.

county as well as the original query region at the same time. The trimming is

illustrated in Figure 4.8.

Step 3: Transform county records into query records. For the trimmed county

record extents to be used as queries over the plant records, they need to be

extracted as isolated query records. Thus, the output of Step 2 is subsequently

transformed into a stream of query records using a SELECT mini-engine. Each

query record corresponds to a county record that was retrieved in Step 1 and

transformed into a record with a single spatial attribute representing the spatial

intersection of the county’s region with the query region.

Step 4: Retrieve plants within the query region for each county. By utilizing the

query records created in Step 3, a DATA ACCESSOR mini-engine for polygonal

range queries can now be used to retrieve the plant records that are enclosed

by each county’s individual query region. In practice, this may be implemented

using an R-tree index, which can facilitate the efficient retrieval of these records.

For each county that intersects the query region, the DATA ACCESSOR mini-

engine then produces a partition of its output stream containing plant records

with location attributes that are both enclosed by the county’s region and the

query region.

Step 5: Select aggregation attributes. The result of the query is expected to be the



62

average height of plants. Since the average function is a non-distributive func-

tion, the aggregation function is decomposed into a set of distributive operations

(accumulation) and a final non-distributive operation (division). However, this

approach requires not only the accumulation of each plant’s height measure but

also the determination of the number of records in each partition. For this pur-

pose, the SELECT mini-engine injects an additional temporary attribute with

value 1 to be accumulated as the number of records. This allows the strategy

to later compute the final average hight of plants for each partition of records.

Step 6: Compute the sum of the plants’ heights and the number of records for each

partition. Only the height attribute of the plant records and the temporary

attribute are subject to the aggregation; all other attributes of the plant records

are discarded.

Step 7: Generate partitions of the county records.

Step 8: Annotate aggregate records with county record attributes. Each of the

partitions aggregated in Step 6 correspond to a county record that was retrieved

in Step 1. In this step the aggregate record of each partition is annotated

with the attributes of the corresponding county record. This establishes the

association between a county and its corresponding aggregate values for the

given query region.

Step 9: Compute final aggregation results. The records generated by the JOIN mini-

engine in Step 8 combine all the information required to derive the final result

records. The SELECT mini-engine constructs these final records by selecting

the county.name attribute and computing the associated average vegetation

height from the sum of heights (attribute A) and the number of plants in the

corresponding region (attribute B).

As was the case for Query 1, the evaluation strategy discussed above is not the

only strategy that can be chosen. Depending on the nature of the dataset, a dif-

ferent strategy may be required to evaluate the same query and to obtain results

more efficiently. In particular, the evaluation of spatial OLAP queries allows for a

broad variety of different evaluation strategies, as there exist a large number of data



63

access methods for spatial data and a variety of algorithms to process spatial data

efficiently [43,156]. Similar to traditional OLAP queries, the best strategy to evaluate

a query may be chosen by a query optimizer, which uses a cost model to rate each

strategy and determine the most suitable one.

This example query demonstrates that the pipeline model is suitable to model and

express evaluation strategies for simple spatial OLAP queries. In the next section we

demonstrate that it is also suitable for more complex spatial OLAP queries.

4.4.4 Query 4

What is the maximum vegetation height in the region between 42.975N 69.351W and

48.228N 59.480W, for each county, province, and country?

Query 4 is a spatial roll-up query to determine the maximum vegetation height

within a predefined query region, for each county, province and country. The query

Figure 4.9: Illustration of Query 4. At each level of aggregation, compute the max-
imum vegetation height for all member of that level that intersect with the query
region. The measures are records of individually sampled plants of various species,
here represented as N, �, and •.

is illustrated in Figure 4.9, and the corresponding query result is show in Figure 4.10.

Figure 4.10 is a pictorial representation of the query results, where the colour intensity

of each polygon is proportional to the average height value for the corresponding



64

(a) County (b) Province (c) Country

Figure 4.10: Graphical representation of the results of Query 4 for each aggregation
level.

region within the query region. There may be a number of other representation

methods (e.g., tabular or overlays) that are suitable for presenting the same query

results; however, the choice of the method depends on the application.

Using SQL with a spatial extension, the query may be expressed as follows:

SELECT country.name, province.name, county.name, MAX(plant.height)

FROM country

LEFT JOIN province ON CONTAINS(country.region, province.region)

LEFT JOIN county ON CONTAINS(province.region, county.region)

LEFT JOIN plant ON CONTAINS(county.region, plant.location)

WHERE CONTAINS(

MakeBox2D(

MakePoint(42.975, -69.351),

MakePoint(48.228, -59.480)

),

plant.location

)

GROUP BY ROLLUP(country.name, province.name, county.name)

Note the structural similarity of this query with Query 2, which also is a roll-up

query with three aggregation levels. The evaluation of Query 4 involves the pro-

cessing of spatial attributes and the relationships between the members of different

aggregation levels are determined based on the spatial properties of these members.

One strategy for the evaluation of this query is depicted as a data flow graph

in Figure 4.11. At a conceptual level, the steps in this data flow graph correspond

to those used in the strategy for Query 2, yet they are fundamentally different with



65

Figure 4.11: Data flow graph of an evaluation strategy for Query 4.



66

respect to the data types that are processed and the functions that are executed due

to the spatial nature of this query.

Steps 1, 4, 9, and 14: The DATA ACCESSOR mini-engines that are used to fetch

records from the corresponding datasets are retrieving these records based on

their spatial properties. To perform this task efficiently, these DATA ACCESSOR

mini-engines may utilize spatial data access methods or indexing structures that

are defined and available for each of the given datasets. One such indexing

structure is an R-tree, which is a suitable indexing structure in all four cases of

this example query. Other strategies for this query or other queries may employ

different access patterns on the data and may thus require different indexing

structures. Depending on the number of supported data access method there

may be a number of different DATA ACCESSOR mini-engines, each supporting

a different access method.

Steps 2, 7, and 12: In these steps, the spatial attributes of records that represent

members of an aggregation level are spatially constrained. The spatial con-

straint is defined by the matching member of the previous aggregation level as

well as the query region, as the query is only concerned about aggregation val-

ues within that region. The transformation of the records maintains only those

attributes of the records that are further relevant to the query; all other at-

tributes are discarded. After each transformation step, the constrained spatial

attributes are converted into query records in Steps 3, 8, and 13, respectively,

to determine the members of the next level of aggregation or the measure values

that are to be aggregated.

Steps 6, 11, and 18: These “join” steps combine records from one level of aggre-

gation with their respectively associated records of the aggregation level below.

Both input streams to the JOIN mini-engine are appropriately partitioned. The

“parent” record stream is partitioned using one of the GROUP mini-engines in

Steps 5, 10, or 17 and the “child” record stream is partitioned by the corre-

sponding DATA ACCESSOR mini-engine that was used to retrieve the “child”

records. The output of each of the JOIN mini-engines is a stream of records con-

taining one record for each “child” record that was identified, combined with



67

the attributes of its corresponding “parent” record.

Steps 15, 16, 19 – 32: As input to the JOIN operation in Step 18 the records from

the lowest aggregation level are aggregated for each partition generated in

Step 14. This can be done because the query is only required to determine

aggregate values at the lowest level of aggregation and thus can aggregate the

detailed records immediately after retrieving them in Step 14.

After Step 18, all aggregate values from the lowest level of aggregation have

been associated with attributes of records from all aggregation levels above.

This record stream represents the most detailed level of aggregation and, af-

ter removing unwanted attributes in Step 19, is passed to the RESULT STACK

mini-engine in Step 20 as part of the query result. The same results are also

regrouped in Step 22 to obtain partitions of records such that the records in

each partition share the same country and province attributes. These parti-

tions are then regarded as aggregation groups in Step 23, which produces the

query results for the second level of aggregation that is requested by the query

(Step 24). Using the results of the second level of aggregation, the regrouping

in Step 26 and subsequent aggregation in Step 27, as well as Steps 30 and 31,

are analogously performed to obtain the results for the two coarsest levels of

aggregation requested.

Observe that the structure of the evaluation strategy for Query 4 is very similar

to the structure of the strategy for Query 2. Individual mini-engines in the strategy

have been replaced to provide capabilities necessary to process spatial data. This fact

emphasizes the flexibility of the pipeline model in that the type of query and thus

the high-level evaluation strategy are independent of the data types that are being

processed. Thus, to apply an existing strategy to a different set of data types, it often

suffices to replace the mini-engines responsible for processing the data with ones that

implement the same operations for the new data types.

Simply replacing the mini-engines of an existing evaluation strategy to support

different data types may not always result in an efficient strategy. The specific charac-

teristics of certain data types may require different access methods to retrieve records

of these types efficiently. Thus, a query optimizer should be used to assess multiple



68

Figure 4.12: Example of a measure that is partially associated with multiple features.

candidate strategies and, using a cost model, determine which of the candidate strate-

gies may be the most cost-effective. Here, cost may be measured in a number of ways:

for example, the time it takes to answer the query, the number of disk operations re-

quired to evaluate the query, the electrical power used, etc. or any combination of

those.

4.4.5 Query 5

Report the total area covered by forest, for each postal code, fire district, and county?

Query 5, described in this section, is one of the most general spatial roll-up aggre-

gation query, as it does not make any assumptions about the relationships between

the aggregation levels, except that members of two aggregation levels relate to each

other if their spatial properties intersect. This type of query can be used with non-

strict roll-up hierarchies, for which the members of a child aggregation level do not

map to unique members of the parent aggregation level. In the example query, this

may be the case for the aggregation of “fire districts” and “postal codes”, where fire

district regions may not necessarily line up with postal code regions. Since there may

be a legitimate reason for relating these otherwise disjoint layers in a roll-up query,

e.g., for taxation or reporting purposes, a spatial OLAP system must be capable to

evaluate such queries efficiently.

When evaluating non-strict hierarchy queries, measure values may not be asso-

ciated with unique “parent” records and instead partially overlap more than one

“parent” record. These types of measures are called partial measures, as they par-

tially contribute a value to each “parent” they are associated with (see Figure 4.12).

Their values are typically subject to scaling, which is derived from the amount of

their partial contribution to a given “parent” record.



69

(a) Land cover layer in relation to the county
layer.

(b) Forest land cover in relation with postal
code regions (dashed black), fire district re-
gions (solid red), and county regions (solid
black).

Figure 4.13: Illustration of Query 5.

Figure 4.13 shows an illustration of Query 5 and how the different aggregation

levels of this query relate to each other. Note that the query restricts the land cover

layer to only forest cover and that the regions represented in one layer do not align

with the region objects stored in another layer. Thus, the measure records retrieved

from the land cover layer are partial measures. Using a spatially extended SQL

syntax, the query can be formulated as shown in Figure 4.14.

Figure 4.15 shows a query evaluation strategy that may be used for the evalua-

tion of Query 5. Note, the structure of the data flow graph is very similar to that

of Query 4. Only a FILTER mini-engine was added to the conceptual structure to

constrain the measure records to those that represent forest areas (Step 15) and the

aggregation of the measures was moved after the last JOIN mini-engine (Step 19).

The aggregation can only be performed after the JOIN operation because measures

can only be aggregated once their partial contribution to the final aggregate value has

been determined. To determine that partial contribution, both measure and “par-

ent” information must be available. In the case of Query 5, the area of the forest

land cover only contributes partially to the final aggregate value, proportional to the

amount of overlap between the forest land cover and the “parent” record of the level

above. In fact, the spatial region of the “parent” record is likely also only a part of



70

SELECT

county.name,

fire_district.id,

postal_code.code,

Area(

Intersection(

Intersection(

Intersection(

county.region,

fire_district.region

),

postal_code.region

),

land_cover.region

)

)

FROM county

LEFT JOIN fire_district

ON INTERSECTS(county.region, fire_district.region)

LEFT JOIN postal_code

ON INTERSECTS(

Intersection(

county.region,

fire_district.region

),

postal_code.region

)

LEFT JOIN land_cover

ON INTERSECTS(

Intersection(

Intersection(

county.region,

fire_district.region

),

postal_code.region

),

land_cover.region

)

WHERE

land_cover.type = ’forest’

GROUP BY ROLLUP(county.name, fire_district.id, postal_code.code);

Figure 4.14: Spatially extended SQL statement for Query 5, a non-strict hierarchy
roll-up query.



71

Figure 4.15: Data flow graph of an evaluation strategy for Query 5.



72

the full region of the corresponding postal code. Specifically, it is the intersection

region between the corresponding fire district, postal code and county respectively.

The partial contribution of the measure in this query is determined by computing

the spatial intersection of the forest land cover region with the corresponding spatial

extent of the “parent” record and then computing the area of this intersection. Since

this computation requires access to the “parent” record of a measure, the computation

of the partial contribution can only be performed after the JOIN operation.

4.5 Summary

In this chapter we investigated the applicability of pipeline-based query evaluation

of spatial and non-spatial OLAP queries. We introduced the concept of mini-engines

and described the interactions between different mini-engines as a data flow graph.

The analysis of representative example queries shows that this model is expressive

enough to represent the widest range of spatial OLAP applications and provides a

conceptual framework which allows for a modular architecture of such systems to

easily adapt to changing requirements. In the next chapter we will discuss a complete

implementation of the pipeline-based query evaluation model for spatial OLAP and

highlight both its flexibility and its ability to effectively utilize multi-core processors.



Chapter 5

LISA – A Pipeline-Based Query Evaluation System for

Spatial OLAP

In this chapter we describe the design, implementation, and evaluation of the pipeline-

based approach to the evaluation of spatial OLAP queries discussed in the previous

chapter. We introduce the Location Intelligence and Spatial Analysis (LISA) system

and describe how to translate the model from Chapter 4 into an effective system

design. The discussion of LISA is divided into two parts:

1. Design and implementation of LISA as a pipeline-based query evalu-

ation system. This part describes the design decisions that were made dur-

ing the implementation of LISA in depth and focusses on the implementation-

specific technical details of the LISA framework.

2. Evaluation of LISA for its applicability and performance in the con-

text of traditional and spatial OLAP. This second part of the chapter

focusses on the experimental evaluation of LISA and investigates how its im-

plementation performs with respect to various use cases that are typical in tra-

ditional and spatial OLAP. Additionally, LISA’s performance will be compared

to that of other systems which use different approaches to query evaluation but

provide similar functionality.

The model described in the previous chapter is ambitious in that it attempts

to present a single unified approach to the expression of spatial OLAP queries that

address all major spatial hierarchy types, while permitting a uniform treatment of

both spatial and non-spatial data. The open questions addressed in this chapter

include: 1) Can the model be realized in a functioning and complete system, and 2)

Can that system be made fast and scalable by exploiting multi-core parallelism?

Section 5.1 describes the design and implementation of LISA and provides insight

into how the individual components of the pipeline-based model are translated into

73



74

software components. It further explains how pipeline-based query evaluation strate-

gies are converted into programs within the framework. Section 5.2 then focusses

on the experimental evaluation of LISA with respect to performance and scalability,

and provides a comparison of LISA with a spatially enabled database system. The

chapter is concluded in Section 5.3 with a summary of our findings.

5.1 Design & Implementation

The basis for the design and implementation of the LISA system is formed by the

pipeline-based query evaluation model discussed in Chapter 4. As such, LISA can

be considered a reference implementation which captures every concept described

by the model and provides concrete implementations for each of its building blocks.

The main objective of this initial implementation was to focus on completeness and

flexibility to underline the suitability of our model in practice. The implementation

supports traditional OLAP queries as well as spatial OLAP queries, and it can be used

for the evaluation of all the example queries discussed in Chapter 4. The absolute

performance of this implementation was not our primary concern. As we will see in

Section 5.2, however, the implementation still provides good results for scalability and

performance when compared with other systems. The main programming language of

our reference implementation is Python [184], with some components using external

libraries implemented in C and C++. In the following sections we describe how the

different concepts and components of our model are represented within LISA and

provide some insight into the way system issues are addressed.

5.1.1 Mini-Engines

LISA implements mini-engines as independent processes using Python’s multiproc-

essing library. This library interacts with the operating system (OS) and delegates

the management and scheduling of processes to the operating system’s scheduler. This

approach significantly reduces the development effort, as the application does not need

to provide scheduling mechanisms and can instead leverage the mechanisms provided

by the operating system. At the same time the application can make use of all the

resources available to the operating system, and the operating system synchronizes

access to them. Additionally, with the application being both input/output and



75

computationally intensive, it is expected for our multi-processing implementation to

gain a better utilization than a single-process implementation, as the operating system

can adjust the process schedule according to I/O requirements and performance.

Mini-engines in LISA provide a common application programming interface (API),

which allows them to interact with each other and other components of the data

flow graph. Different types of mini-engines generally only differ in the way they are

constructed to account for different parameters that are required by their specific im-

plementations. Once a mini-engine is constructed, it has a well defined interface for

reading input data as well as providing output. The construction of mini-engines and

their arrangement into a data flow in an automatic manner is typically the responsi-

bility of a query optimizer. The design and implementation of a query optimizer is

not in the scope of this chapter, and the data flows for queries used in later sections

of this chapter were manually constructed.

5.1.2 Streams

As defined by the model, records are transported between mini-engines using streams.

In LISA, these streams are represented by queue data structures. In fact, each stream

is represented by an array of queues, one for each endpoint of the stream. When a

record is inserted into a stream, the stream implementation automatically appends

the record to each endpoint’s queue. The endpoints, typically other mini-engines,

can then asynchronously retrieve their next record from the stream. Note that mini-

engines connected to the same stream will likely operate at different speeds and, thus,

a single record may be consumed by each mini-engine at a different time. The queues

additionally act as buffers for records, which allow mini-engines to access record

streams in an asynchronous fashion and thus reduce the risk of a slower mini-engine

blocking the progress of faster mini-engines. To control the overall memory allocation

for stream buffers, the size of each queue is limited and, when a queue is full, the

sender is blocked until the receiver removes records from the beginning of the queue.

5.1.3 Tracks

The concept of tracks is not part of the description of the model in Chapter 4.

Instead it is introduced by LISA to achieve a better utilization of multi-processor and



76

multi-core hardware. The interleaving of the processing of different independent mini-

engines in a data flow can greatly benefit from the availability of multiple processors.

As mini-engines vary in complexity, less complex and faster mini-engines may be

slowed down by more complex mini-engines that require more computation time to

process. In these cases it may be beneficial to create multiple instances of the more

complex mini-engines and distribute the independent tasks among them evenly. On

multiple processors this allows the complex mini-engines to run in parallel and perform

the same amount of work in less time, thus reducing the wait-time for faster mini-

engines. In LISA these parallel processing paths are called tracks and are not limited

to individual mini-engines but allow the parallelization of entire sections of the data

flow. To accomplish this, LISA implements two additional components that can be

part of a data flow: a multiplexer and a demultiplexer.

The multiplexer or MUX component is an adaptor for an ordinary record stream

that acts like an endpoint with respect to the input stream. It also provides the same

interfaces as a stream, and mini-engines can register with it as endpoints. When

transferring a record from the input stream to an endpoint, the record is not being

sent to all endpoints but only to a single endpoint. Thus, each endpoint receives

a different subset of the records in the input stream, and mini-engines attached to

these endpoints process disjoint subsets of the records. Consequently the records of

the original input stream are distributed among all endpoints, with each such endpoint

being the first mini-engine of an independent parallel track (see Figure 5.1).

The demultiplexer or DEMUX component is a mini-engine which reverses the

effects of the MUX component and combines multiple independent record streams

into a single record stream. All of the input streams are required to have the same

record schema. The DEMUX mini-engine is typically used to combine the output of

streams of multiple parallel tracks into a single output stream, which can then be

processed further. It does not, however, provide any guarantees about the order in

which these records are combined.

The combination of the MUX stream adaptor and the DEMUX mini-engine is used

by LISA to realize multi-track processing, which improves the utilization of multi-

processor and multi-core systems. Figure 5.1 shows a schematic representation of the

use of the MUX and DEMUX components.



77

Figure 5.1: Conceptual use of the MUX and DEMUX components in a data-flow.

5.1.4 Data Accessors

Data Accessors in LISA are defined in a generic manner to provide access to data

without exposing a particular implementation. The specific implementations of data

structures and access methods are encapsulated in classes of data sources and access

methods, respectively. Thus, each instance of a Data Accessor is passed a reference

to a data source instance and an access method instance.

LISA currently provides a number of data source implementations:

1. Comma-separated values (CSV) flat file: the simplest type of data source avail-

able in LISA. It is represented by a plain text file where each line corresponds

to a record and the attribute values of each record are delimited by commas.

The CSV file data source does not provide any indexing, nor does it guaran-

tee the records are sorted in any particular manner. Thus, the access method

implementations that are using this data source are required to scan over the

records until the result of a query can be identified.

2. SQLite database table: SQLite [90] is a popular embedded relational database

system which allows to store structured data in tables and provides a rich SQL-

based query language. Additionally it can provide B-tree indices on sortable

table attributes and thus significantly speed up the retrieval of records. SQLite

databases are single files and the SQLite engine to access these database files is

directly linked into the client application. LISA provides a data source interface

to individual tables stored within a SQLite database through Python’s native

SQLite bindings [85]. Access methods using such a data source can utilize any

indices defined on the table and, thus, can retrieve records efficiently without



78

scanning the entire record set.

3. R-tree: The R-tree data source in LISA provides efficient access to spatial

data. The data source can be divided into two parts: the dataset and the in-

dex. The dataset is represented as an unordered sequence of geometric objects

represented in the “well-known binary” (WKB) format [132], a binary repre-

sentation of spatial objects regulated by the Open Geospatial Consortium. The

dataset provides random access to any location within the sequence, and the

entire dataset file is mapped into virtual memory for convenient access and im-

proved performance. The index part of the data source is implemented as an

R-tree using the Spatial Index Library [77] and its associated R-tree Python

bindings [63]. The index is created during the construction of the dataset, and

for each geometry in the dataset, it uses its rectilinear bounding box as a key.

The value associated with a key is the position of the geometry’s binary repre-

sentation within the dataset. The index can then be used to locate geometry

records within the dataset based on the intersection of their bounding boxes

with the query region. The geometries can be retrieved from the dataset based

on the location reference returned by the R-tree query. Geometric objects are

stored in WKB format on disk and converted into an internal representation

when retrieved. The internal representation of geometric objects in LISA is

provided by the GEOS library [41], an open source geometry engine, and its

corresponding Python bindings called Shapely [64].

The implementation of the R-tree data source intentionally separates the data

from the index, as the geometries stored in the dataset have variable complexity

and their binary representations vary in size. These variable size binary objects

cannot efficiently be stored as values in the R-tree. One level of indirection

through the position within the dataset sequence solves this problem.

The R-tree index returns all geometries whose bounding boxes are contained

within or intersect with the query region’s bounding box. This may include

geometries whose actual boundaries are not within or do not intersect with the

query’s actual boundary. To address this, the R-tree data source provides the

additional functionality to filter all retrieved records based on their geometries’



79

relationships to the query region. This approach is not optimal, and in un-

favorable cases, a query may retrieve many more records than are ultimately

reported. In the general case, spatial objects are often arranged in such a way

that the overhead is proportional to the size of the query region and, thus,

approximately constant with respect to the number of result records.

In addition to these data source implementations, LISA provides two access method

implementations: an identity query and a range query. Given an attribute name and

a query value, the identity query returns the first record it can identify in the cor-

responding data source for which the specified attribute has the same value as the

query value. This identity query is typically used to query records by their primary

key. The range query access method, on the other hand, is used to find records whose

values for a given attribute fall “within” the query range. The query range must

resemble some sort of extent. For numeric attributes, the query range is represented

by a range data type holding an upper limit and a lower limit. Polygonal geometry

attributes do not require a special range data type, as they already represent extents.

The identity and range query access methods are the main access methods used dur-

ing the evaluation of LISA. However, based on application requirements, other access

methods can be easily implemented.

5.1.5 Geometric Functions and Operators

LISA uses the Geometry Engine Open Source (GEOS) library [41] for its internal

representation of geometric objects. GEOS is a C++ port of the Java Topology

Suite [42] and is used by a number of commercial and open-source software packages.

It provides an object-oriented representation of all geometry types defined by the

Open Geospatial Consortium [132] and implements various functions and operators

that can be used with these geometries. Examples of such functions and operators

that are frequently used in typical LISA queries are “contains”, “intersects” and

“intersection”. To use GEOS’s C++ API from within Python, our implementation

uses the Shapely library, which implements a Python wrapper on top of the GEOS

C++ library.



80

5.1.6 Query Strategy Definition

This section describes the definition of query strategies using the LISA framework.

It allows the evaluation of a wide range of queries with varying complexity. This

includes traditional database and OLAP queries as well as spatial OLAP queries. At

this point, the LISA framework does not provide an automatic query compiler or query

optimizer, and query evaluation strategies that follow the pipeline model described in

Chapter 4 are manually defined using the Python programming language and LISA’s

query evaluation framework.

To illustrate an example of the definition of such a query evaluation strategy,

consider Query 3 discussed in Chapter 4:

SELECT county.id, AVERAGE(plant.height)

FROM county

LEFT JOIN plant ON CONTAINS(county.boundary, plant.location)

WHERE CONTAINS(

MakeBox2D(

MakePoint(42.975, -69.351),

MakePoint(48.228, -59.480)

),

plant.location

)

GROUP BY county.id

Chapter 4 describes in detail how this query can be translated into the query

evaluation strategy data flow graph shown in Figure 5.2. Based on this dataflow,

the strategy can be defined in Python using the LISA framework as described in the

following:

1. Definition of data sources: The first step is the definition of data sources.

This includes the definition of a mini-engine that generates the stream of queries

as well as the data sources to retrieve records from. Both spatial object layers

are defined as R-tree data sources.

1 ####### Definition of Data Sources #######

2 # Definition of the query schema. The target attribute for

3 # the query is the location attribute of the plants dataset.

4 query_schema = Schema()

5 query_schema.append(Attribute(’plants.location’, Geometry))



81

Figure 5.2: Data flow graph of an evaluation strategy for Query 3. This dataflow
graph is identical to that shown in Figure 4.7 of Chapter 4.

6

7 # Define the query region.

8 query = Geometry(Polygon((

9 (-69.351, 48.228),

10 (-59.480, 48.228),

11 (-59.480, 42.975),

12 (-69.351, 42.975)

13 )))

14

15 # ArrayStreamer is a mini-engine that provides a record

16 # stream filled with records provided as arguments.

17 query_streamer = ArrayStreamer(query_schema, [

18 # A single record containing the query region.

19 (query,),

20 ])

21 engines.append(query_streamer)

22

23 # Specify the file datasets

24

25 counties_file = ’data/spatial/counties’

26 counties_source = Rtree(counties_file, ’county.boundary’)

27

28 plants_file = ’data/spatial/plants’

29 plants_source = Rtree(plants_file, ’plant.location’)

2. Query records from the county layer: The second step is the creation



82

of a DataAccessor for the counties’ data source. The queries used by the

DataAccessor are retrieved from the output stream of the query streamer

mini-engine created in the previous step. As we are interested in all counties

intersecting with the query region, we are using a range query (FindRange)

access method in conjunction with the counties’ R-tree data source. The final

engines.append(counties accessor) appends the mini-engine to the list of

mini-engines that are to be started when the query evaluation begins. For

each mini-engine in this list an individual process will be created once the

construction of all mini-engines is completed. The processes are then executed

concurrently to perform the query evaluation.

1 ####### Query records from county layer #######

2 # the FindRange access method. The range queries are the output

3 # of the query stream.

4 counties_accessor = DataAccessor(

5 query_streamer.output(),

6 counties_source,

7 FindRange,

8 )

9 engines.append(counties_accessor)

3. Demultiplexing of the counties record stream: To allow for a better

utilization of processors in the system, the record stream of counties is demul-

tiplexed for multiple records to be processed asynchronously in parallel. Each

processing track attaches to an output channel of the Demux component. The

Demux component is a LISA specific extension of the model described in Chap-

ter 4 and not shown in the dataflow graph illustrated in Figure 5.2. For this

query strategy the Demux component is inserted between steps 1 and 2 shown

in the dataflow graph and allows the execution of steps 2 through 8 by multiple

parallel tracks. The output of these tracks, following the Join mini-engine in

step 8, is then multiplexed into a single record stream.

1 ####### Demultiplexing county record stream #######

2 # Setup a demultiplexer for the county record stream

3 # across a number of independent computation tracks.

4

5 demux = Demux(counties_accessor.output())



83

6

7 for i in range(tracks):

8 # Obtain the current track’s demultiplexed county

9 # record stream.

10 channel = demux.channel()

4. Prepare query ranges for plants layer: The queries executed on the plants

layer are derived from the intersections of the original query region and the

counties that intersect with it. Using this approach, each query at the plants

layer will only return records that are within the corresponding county and

within the query region. The stream of county records is provided by the

channel object, which is an output channel of the previously created Demux

component. The Select mini-engine then applies a transformation to each

record, which computes the intersection between the retrieved county record’s

geometry and the original query’s geometry. Note, although the resulting spatial

attribute is a geometry with extent, it is being renamed to plant.location,

as our LISA implementation requires the attribute name of the query record to

match the name of the attribute that is being queried.

1 ####### Prepare queries for plants layer #######

2 # Calculate the query range over locations at the plant

3 # layer. Trim the retrieved counties to the boundary of

4 # the original query.

5 counties_select = Select(

6 channel,

7 UniversalSelect(

8 channel.schema(),

9 {

10 # Rename resulting attribute to match the

11 # attribute that is being queried.

12 ’plant.location’: {

13 ’type’: Geometry,

14 ’args’: [’counties.boundary’],

15 ’function’: lambda v: intersection(v, query),

16 }

17 }

18 )

19 )

20 engines.append(counties_select)

5. Query records from the plants layer: Using the query ranges computed by



84

the Select mini-engine from the previous step, the plant layer’s DataAccessor

is being used to query plant records that are contained within each query. The

output of the DataAccessor mini-engine is a stream of plant records partitioned

based on the result sets obtained from each input query. Thus, plant records

within one partition are all contained within the same county.

1 ####### Query records from plants layer #######

2 plants_accessor = DataAccessor(

3 counties_select.output(),

4 plants_source,

5 FindRange

6 )

7 engines.append(plants_accessor)

6. Select and aggregate measures: The objective of the query is to report,

for each county, the average height of plants that intersect with the query re-

gion. Thus, the query must compute the average height of all plant records

that are within the same partition of the previous DataAccessor mini-engine’s

output stream. The computation of the average is a typical aggregate function,

and we are using the Aggregate mini-engine to implement this aggregation.

However, as a preprocessing step, we remove all attributes except the height

attribute from the plant records. To do this, we employ a Select mini-engine

which transforms all plant records retrieved in the previous step into records

with only one height attribute. During this process, the Select mini-engine

passes through any stop words included in the input stream, so that the parti-

tioning of the transformed plant records is preserved. The output of the Select

mini-engine is then passed to the Aggregate mini-engine, which executes the

AveragreAggregator function with the records in each partition of the input

stream. The output of the Aggregate mini-engine in turn is a record stream

partitioned in the same manner as the input stream. Each output partition

contains only one record with the average height associated with its height

attribute.

1 ####### Select and aggregate measures #######

2 plants_select = Select(

3 plants_accessor.output(),



85

4 UniversalSelect(

5 plants_accessor.output().schema(),

6 {

7 ’height’: {

8 ’type’: float,

9 ’args’: [’plants.height’],

10 ’function’: lambda v: v

11 }

12 }

13 )

14 )

15 engines.append(plants_select)

16

17 plants_aggregate = Aggregate(

18 plants_select.output(),

19 AverageAggregator(plants_select.output().schema(), ’height’)

20 )

21 engines.append(plants_aggregate)

7. Select county ID and prepare for JOIN: For the final report produced by

the query, each computed average plant height for a county is to be associ-

ated with that county’s ID. Thus, each record produced by the previous step’s

Aggregate mini-engine must be associated with the ID of the county which

generated the corresponding query for the plants layer. As the order of parti-

tions in the Aggregate mini-engine’s output stream is the same as the order

of the track’s county record stream, it is possible to use a Join mini-engine to

combine the records of both streams into a stream of combined records. For the

Join mini-engine to work correctly, both input streams must be partitioned.

This step transforms each county record processed by the track into a record

that only contains the county’s ID, using a Select mini-engine. Subsequently,

the stream of transformed county records is partitioned using the Group mini-

engine. As each county has a unique ID, the Group mini-engine uses the id

attribute of each input record as the criterion for each equivalence class that

forms an output stream partition. Consequently, the output of the Group mini-

engine is a stream of records partitioned by the id attribute containing one

record per partition.

1 ####### Select county ID and prepare for JOIN #######

2 select = Select(



86

3 channel,

4 UniversalSelect(

5 channel.schema(),

6 {

7 ’id’: {

8 ’type’: int,

9 ’args’: [’id’],

10 ’function’: lambda v: v

11 },

12 }

13 )

14 )

15 engines.append(select)

16 counties_grouper = Group(

17 select.output(),

18 {’id’: lambda a, b: a == b}

19 )

20 engines.append(counties_grouper)

8. Join county IDs with aggregate values: To prepare the final result output,

the Join mini-engine combines the partitioned stream of county ID records

with that of average plant height records. The partitions of both streams each

contain only a single record, so that the resulting output stream contains as

many records as there were counties selected in Step 2. Each output record

has two attributes: id from the stream of county ID records and height, the

average plant height, from the Aggregate mini-engine’s output stream. The

Join mini-engine’s output stream is then appended to a list of output streams

that need to be multiplexed to combine the results from independent processing

tracks into a single output stream.

1 ####### Join county IDs with aggregate values #######

2 joiner = Join(

3 counties_grouper.output(),

4 plants_aggregate.output()

5 )

6 engines.append(joiner)

7

8 mux_streams.append(joiner.output())

9. Combine tracks and report results: The final step in the query evaluation

strategy is the multiplexing of all tracks’ output streams and the reporting



87

of the results. The Mux mini-engine is used to combine the output stream of

each track’s Join mini-engine into a single record stream. The mux streams

parameter to the Mux mini-engine is an array of record streams that are to be

combined. Each track inserts its corresponding output stream into this array.

As with the Demux mini-engine, the Mux mini-engine is a LISA specific extension

to the model described in Chapter 4 and not show in the dataflow graph in

Figure 5.2. Conceptionally, the Mux mini-engine is inserted into the dataflow

graph between steps 8 and 9. Finally, the ResultFile mini-engine is used to

write the records from the Mux mini-engine’s output stream to a text file using

comma-separated values for reporting.

1 ####### Combine tracks and report results #######

2 mux = Mux(*mux_streams)

3 engines.append(mux)

4

5 result_stack = ResultFile(

6 ’results.txt’,

7 mux.output(),

8 )

9 engines.append(result_stack)

After the definition of the query evaluation strategy and the construction of the

mini-engines, a managing task executes the query by starting the individual processes

associated with the mini-engines. While results of the query are being emitted as they

are available, the evaluation of the query is completed once all mini-engine processes

terminate.

Query 3 presented here only utilizes a subset of LISA’s capabilities and more

complex query evaluation strategies can be implemented analogous to the strategy

implemented for Query 3. The experiments discussed in the following sections, for ex-

ample, require more sophisticated query evaluation strategies whose implementations

within the LISA framework can be found in Appendix B.

5.2 Evaluation of LISA

This section presents a comprehensive evaluation of our LISA system and analyzes

the performance, runtime behaviour and applicability to real-world applications of



88

our LISA implementation. As our LISA reference implementation provides support

for different types of application scenarios, we evaluate each scenario independently.

In conclusion we then compare our observations with those for other software systems

that provide similar functionality.

The evaluation of LISA can be divided into the following experiments:

1. Evaluation of LISA with respect to traditional OLAP

2. Evaluation of LISA with respect to spatial OLAP

3. Comparison of LISA with other systems

For each of these experiments we investigate the performance of our LISA im-

plementation with respect to its main feature, the parallel execution of individual

queries, as well as the size of the data being queried.

All of the experiments were conducted within the same experimental environment.

It consisted of a cluster of compute nodes, each equipped with two Quad-Core Intel R©

Xeon R© E5430 2.66 GHz processors (Hyperthreading turned off), 8 GB of RAM, and

two 147 GB SAS hard drives in RAID 0 configuration. The operating system used

on the compute nodes was CentOS 5.3 Linux. Access to the compute nodes was ded-

icated, so that no other applications other than operating system services interfered

with the experimental evaluation.

5.2.1 Evaluation of LISA with Respect to Traditional OLAP

This experiment evaluates our LISA reference implementation with respect to tradi-

tional OLAP queries. As an example for a traditional OLAP query we have chosen a

hierarchical roll-up query. Unlike a CUBE query, the roll-up query does not incur any

additional complexity for cube selection or efficient cube generation. Nevertheless, it

is a critical sub-task of the cube generation process. Thus, the roll-up query is a good

representative choice for a traditional OLAP query. Specifically, we have chosen a

query similar to Query 2 discussed in Section 4.4.2 of Chapter 4.

The dataset for the evaluation of LISA with respect to traditional OLAP roll-up

queries is a synthetic dataset which represents a data warehouse of customer-order



89

relationships and is derived from the well known TPC-H data warehouse bench-

mark [176]. The entities of the TPC-H dataset that are of interest for our experiments

are:

• nation,

• customer,

• orders, and

• lineitem.

Within the TPC-H dataset, these entities form a hierarchical relationship of the

following form: nation → customer → orders → lineitem. This hierarchy will be

used as the roll-up hierarchy by our experimental evaluation.

The datasets used in this evaluation were generated using the dataset generator

“DBGEN” provided by the Transaction Processing Performance Council (TPC). The

size of a dataset is measured by a scaling factor SF , and the following table shows

the number of records for each entity for different scaling factors:

Entity SF = 1 SF = 0.5 SF = 0.1

nation 25 25 25

customer 150000 75000 15000

orders 1500000 750000 150000

lineitem 6001215 2999671 600572

For our experiments, we prepared datasets with sizes between SF = 0.1 and

SF = 1. Each dataset was stored in a dedicated SQLite database file and organized

in tables representing a normalized star schema [81]. The lineitem entity stores,

in addition to the primary and foreign keys, also a quantity attribute and a price

attribute, which were used in our test query.

The query used in the following experiments was similar to that described as

Query 2 in Chapter 4 and can be formulated using SQL as:



90

SELECT nation.id, customer.id, orders.id, MAX(lineitem.price)

FROM nation

LEFT JOIN customer ON customer.nation_id = nation.id

LEFT JOIN orders ON orders.customer_id = customer.id

LEFT JOIN lineitem ON lineitem.order_id = orders.id

WHERE lineitem.quantity >= 10 AND lineitem.quantity <= 15

GROUP BY ROLLUP(nation.id, customer.id, orders.id)

The structure of this query is identical to that of Query 2 discussed in Chap-

ter 4. For this experiment we used the evaluation strategy that was described in

the context of Query 2 (see Figure 4.5) and adapted it to the entity and attribute

names used in the experiment’s dataset. The translation of the evaluation strategy

for this experiment’s query into Python code using the LISA framework can be found

in Appendix B.2.

Parallel Speed-Up

The first metric we wanted to evaluate is how the parallel execution of mini-engines

influences the running time of the query. For this purpose, the dataset was fixed in

size at a scaling factor of SF = 0.5, and the query was executed for different processor

configurations. Each test platform provided a maximum of 8 processing cores, and for

different processor configurations individual processing cores were disabled or enabled

using interfaces provided by the operating system. For each processor configuration,

the query was also executed with different configurations of the number of parallel

tracks within the query’s data flow. Parallel tracks, as described in Section 5.1.3, are

copies of a section of the dataflow that are executed in parallel on independent sets of

records. The metrics measured during the execution of the run were “wall time”, i.e.,

the total amount of time required to complete the query, “user time”, i.e., the amount

of CPU time spent by the query performing internal calculations and executing the

program flow; and “system time”, i.e., the amount of CPU time spent by the query

waiting for operating system calls, such as disk I/O. For our evaluations, however, we

focus only on “wall time” as a practical measure. Each measure was averaged over a

minimum of 3 runs to compensate for variance in measuring the metrics.

The graph in Figure 5.3 shows the running time of the query with respect to

the number of processing cores enabled in the system. For each individual processor

configuration, we also chose the best configuration of parallel tracks, i.e., the number



91

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  1  2  3  4  5  6  7  8  9

T
im

e
 (

t)
 i
n
 s

Number of processors (P)

Categorical ROLLUP Query (TPC-H)

Runtime (best track per P)
Runtime (best overall track)

Figure 5.3: Query runtime by number of processors.

of parallel tracks that resulted in the best performance. We can observe that an in-

creasing number of available processing cores allows for more parallelism during query

evaluation, and that the query running time is notably reduced when more processors

are available. The graph also suggests that a duplication of computational resources

does not reduce the query running time by an equivalent factor. This can also be

observed in Figure 5.4, which shows the factor of speed-up and the efficiency of con-

figurations using multiple processing cores compared to runs on a single processor. It

indicates that the speed-up obtained by increasing the number of processors is nearly

linear. However, each additional processor appears to contribute only about 50% of

its capacity. This observation is further supported by the graph showing the overall

efficiency based on the number of processors, which shows the efficiency converging

to approximately 50% for 8 processors. This is a rather unexpected behaviour. Typ-

ical reasons for a degradation of processor performance are bandwidth limitations

or synchronization overhead. Often in these situations the overhead would increase

as more processors are added and more processors compete for the same resources.

The experiments, however, do not indicate a further degradation of the processor



92

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  1  2  3  4  5  6  7  8  9
 0

 20

 40

 60

 80

 100

P
a
ra

lle
l 
S

p
e
e
d
-U

p
 F

a
c
to

r

E
ff
ic

ie
n
c
y
 (

%
)

Number of processors (P)

Categorical ROLLUP Query (TPC-H)

Parallel Speed-Up
Efficiency

Figure 5.4: Query speed-up factor and efficiency for multiple processors with respect
to single processor runs.

performance and suggest that any additional processors would contribute a constant

amount of approximate 50% of their capacity. This behaviour can be explained with

a deeper analysis of the query evaluation strategy: The evaluation strategy used for

this query was implemented so that it distributes the queries on the lineitem layer

over multiple parallel tracks. Each of these queries incurs a fixed overhead of disk

I/O, which the operating system can mask by allocating processor resources to other

mini-engines while the lineitem query waits for the disk subsystem to provide data.

In this experiment, this is most effectively done in the case of a single processor. For

more than one processor, the amount of computation that is available to be processed

while waiting for disk I/O to complete becomes proportionally smaller as the number

of processors increases. This causes additional processors to become less utilized and

thus spending approximately 50% of their capacity in an idle state waiting for disk

I/O to complete. This behaviour does not indicate a disk I/O bottleneck, as the time

spent waiting for disk I/O does not increase with an increasing number of proces-

sors; it merely shows a high fixed cost or latency for disk accesses. If the number



93

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  5  10  15  20  25  30

T
im

e
 (

t)
 i
n
 s

Number of Tracks (T)

Categorical ROLLUP Query (TPC-H)

Runtime (P=8)

Figure 5.5: Impact of track configuration on query evaluation time.

of processors was to increase even further, a typical I/O bottleneck behaviour would

eventually present itself as processes start to compete for the limited I/O bandwidth

of the disk subsystem.

The impact of the number of parallel tracks chosen for the evaluation of the query

is presented in Figure 5.5. It shows that a choice of two parallel tracks notably im-

proves the running time of the query. A larger number of tracks increases the overhead

incurred by managing the additional number of mini-engine processes for each track.

In fact, for 17 (a total of 143 processes) or more tracks, the overhead of process man-

agement starts to dominate the computation required for query evaluation, and the

execution of the query begins to slow down compared to a single track configuration.

Data Size

The impact of the dataset size on the running time of the query was evaluated by using

a fixed processor configuration and varying the scaling factor of the input dataset

between SF = 0.1 and SF = 1.0. The metrics measured in this experiment were the

same as for the evaluation of the parallel speed-up, and running time values presented



94

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  0.2  0.4  0.6  0.8  1

T
im

e
 (

t)
 i
n
 s

Dataset Size Scale Factor (SF)

Categorical ROLLUP Query (TPC-H)

Runtime (P=8)
Runtime (P=1)

Figure 5.6: Impact of dataset size on query evaluation time.

here refer to “wall time”.

The graph in Figure 5.6 shows the influence of the dataset size on the query time

for two different processor configurations: P = 1 and P = 8. We can observe that the

dataset size has a linear influence on the running time of the query, which causes the

query evaluation time to increase proportional to the increase in the dataset’s size.

This behaviour is expected, as the roll-up hierarchy in the TPC-H dataset is a strict

hierarchy, which implies there exists only one path from a record at the lineitem

level to the nation level of the hierarchy. An increase of the scaling factor increases

the size of all hierarchy levels proportionally and with it the number of roll-up paths.

Our query evaluation traverses these roll-up paths and, consequently, its running

time increases proportionally to the number of paths. The graph also shows that this

observation is true for both, runs with a single processor and with multiple processors.

5.2.2 Evaluation of LISA with Respect to Spatial OLAP

For the evaluation of the LISA reference implementation with respect to spatial

OLAP, we chose a roll-up query over a non-strict hierarchy of spatial layers. We



95

believe this type of query is representative of typical spatial OLAP queries, as it in-

volves a combination of traditional OLAP concepts, such as roll-up aggregation of

measures, as well as processing of spatial data. Furthermore, the query addresses

challenges associated with processing spatial hierarchies, such as non-strict associa-

tions between hierarchy levels and partial measures. Specifically, we chose a query

similar to Query 5 discussed in Section 4.4.5.

The dataset used for the evaluation of spatial OLAP queries with LISA was a

real-world dataset derived from data retrieved from the United States Geological

Survey (USGS) and the United States Census Bureau (USCB). It was composed of

the following layers:

Layer Name Description Number of Objects Source

states Boundaries of U.S. federal states 51 [180]

counties Boundaries of U.S. counties 3140 [179]

zip5 Boundaries of U.S. 5-digit ZIP codes 50065 [178]

lulc Land Use and Land Cover 361202 [181]

The query used in this experiment used the following non-strict hierarchical rela-

tionship between these layers: counties → states → zip5 → lulc1.

In addition to the full-size dataset described above, parts of this experiment were

conducted with smaller subsets of the same dataset. Similar to the dataset size

notation we used in the evaluation of LISA with respect to traditional OLAP, we

use a scaling factor SF to denote different sizes of datasets in this evaluation, where

SF = 1.0 specifies the full-size dataset. The construction of smaller subsets of the

original dataset was done by selecting a random subset of spatial objects from the

lowest layer of the hierarchy, i.e., lulc. The number of objects selected from that

layer was equal to the total number of objects in the layer times the scaling factor.

We chose to apply the dataset scaling only to the lowest layer of the hierarchy as

1The counties layer was chosen above the states layer. Although counties are administratively
well contained within federal states, the resolution of the underlying data caused some counties

object boundaries to cross states object boundaries, generating a non-strict relationship. Placing
the counties layer above the states layer resulted in a larger fan-out of the roll-up hierarchy tree
at the top level of the hierarchy. For the evaluation of our query, this had no significant impact
on the query performance, as both layers were relatively small compared to the other layers in the
hierarchy. Also, the way the query evaluation strategy was defined, the order of the upper layers
had no impact on the queries executed at the lower levels of the hierarchy.



96

the higher levels only have small numbers of objects. Their reduction in combination

with the query’s regional constraint may result in a significantly skewed query load.

For our experiments, we prepared datasets with sizes between SF = 0.1 and

SF = 1. For the use by our LISA reference implementation, each layer of each

dataset was stored in LISA’s own data format and indexed using an R-tree index as

described in Section 5.1.4 earlier in this Chapter.

The query used in the following experiments was similar to that described as

Query 5 in Chapter 4 and can be formulated using SQL as shown in Figure 5.7.

A visual representation of the query region and the top two layers of the roll-up

hierarchy, states and counties, is shown in Figure 5.8.

The structure of this query was identical to that of Query 5 discussed in Chapter 4

and we used the evaluation strategy shown in Figure 4.15 for its evaluation. The

translation of the evaluation strategy into Python code using the LISA framework

can be found in Appendix B.5.

In this experiment, we evaluated the same aspects of the query evaluation as we

did for LISA with respect to traditional OLAP queries.

Parallel Speed-Up

As for LISA with respect to traditional OLAP, the first metric we evaluates was how

the parallel execution of mini-engines influences the running time of the query. For

that we used the full-size dataset with a scaling factor of SF = 1.0. The query

was executed for different processor configurations, and we measured the “wall time”

running time of each query execution. The measured values were averaged over a

minimum of 3 runs.

The graph in Figure 5.9 shows the running time of the query with respect to the

number of processing cores enabled in the system. For each processor configuration,

we chose the best configuration of parallel tracks. We observe that with an increasing

number of processing cores, the running time of the query execution was reduced.

In addition, in the graph in Figure 5.10, we can see that the parallel speed-up from

additional processors was nearly linear with a significantly higher efficiency when

compared to results we have obtained from the evaluation against traditional OLAP

queries. This can be attributed to the larger amount of processor-bound computation



97

query := CAST(MakeBox2d(

MakePoint(-93.88, 24.22),

MakePoint(-65.39, 49.81)

) AS geometry);

SELECT

states.id,

counties.id,

zip5.id,

SUM(

Area(

Intersection(

Intersection(

Intersection(

Intersection(

states.geom,

query

),

counties.geom

),

zip5.geom

),

lulc.geom

)

) / Area(lulc.geom)

)

FROM states

INNER JOIN counties

ON INTERSECTS(

Intersection(

states.geom,

query

),

counties.geom

)

INNER JOIN zip5

ON INTERSECTS(

Intersection(

Intersection(

states.geom,

query

),

counties.geom

),

zip5.geom

)

INNER JOIN lulc

ON INTERSECTS(

Intersection(

Intersection(

Intersection(

states.geom,

query

),

counties.geom

),

zip5.geom

),

lulc.geom

)

WHERE

INTERSECTS(states.geom, query)

GROUP BY ROLLUP(states.id, counties.id, zip5.id);

Figure 5.7: SQL representation of the spatial OLAP query.



98

Figure 5.8: Representation of the query region used in the spatial OLAP query.

that is involved in the evaluation of spatial queries. Operations on spatial objects,

such as INTERSECTION and INTERSECTS, require a significant amount of computation,

which in turn results in a better utilization of processors. However, we can also

observe that the processor efficiency slightly decreases as the number of processors

increases. Although, the query is bound by computation for a smaller number of

processors, but for a larger number of processors, limitations in memory and/or disk

bandwidth start to manifest themselves. This is not surprising, as the increase of the

number of processors also increases the overall throughput of computations and, thus,

the amount of data that flows through the calculations. This data flow is limited by

the bandwidths of the memory and disk subsystems. As the number of processors

increases even further, multiple concurrent processes share access to the memory

and disk subsystems, which can execute some operations only sequentially. This

causes processors to enter idle states while they wait for memory or disk operations

to be completed. We can see that the processor efficiency steadily decreased to

approximately 85% for 8 processors. One method to address this degradation of

processor efficiency is to employ different subsystems for memory and disk I/O. Unless



99

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  1  2  3  4  5  6  7  8  9

T
im

e
 (

t)
 i
n
 s

Number of processors (P)

Spatial ROLLUP Query (USGS)

Runtime (best tracks per P)
Runtime (best overall tracks)

Figure 5.9: Query running time by number of processors.

the bandwidth of these systems can scale proportionally to the number of processors,

we expect the efficiency to always degrade for an increasing number of processors.

Figure 5.11 shows how the number of parallel tracks affected the query evaluation

time when 8 processing cores were available. This graph shows that the evaluation

time was significantly reduced by using more than one track, and the shortest eval-

uation time was achieved with 11 or more tracks. Unlike the graph for traditional

OLAP queries, the evaluation time did not appear to deteriorate for a larger number

of tracks and remained relatively constant up to 30 tracks. This can be explained

with the higher computational requirements of this query compared to that for tra-

ditional OLAP; the overhead for managing the additional processes is not as high

relative to the actual computation done by the query. With a further increase of the

number of tracks, we expect the management overhead of a large number of processes

to eventually dominate the time spent on actual computation and, thus, increase the

query evaluation time.



100

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7  8  9
 0

 20

 40

 60

 80

 100

P
a
ra

lle
l 
S

p
e
e
d
-U

p
 F

a
c
to

r

E
ff
ic

ie
n
c
y
 (

%
)

Number of processors (P)

Spatial ROLLUP Query (USGS)

Parallel Speed-Up
Efficiency

Figure 5.10: Query speed-up factor and efficiency for multiple processors with respect
to single processor runs.

Data Size

For the evaluation of the influence the dataset size has on the running time of a

spatial OLAP query, a fixed processor configuration was chosen and the dataset size

was varied using the scaling factor described earlier. For the evaluation, we chose

input datasets with scaling factors between SF = 0.1 and SF = 1.0. As the metric

to measure the runtime of the query we chose the “wall time.”

The graph in Figure 5.12 shows the influence of the dataset size on the query

time for two different processor configurations: P = 1 and P = 8. As expected, we

can observe that the query time increased as the input data grew in size. However,

the progression of the graph is not consistent, and the increase in running time from

one dataset size to the next appears to be arbitrary. This behaviour is due to the

nature of the spatial objects at the lulc layer. The spatial objects at this layer

represent the land cover or land usage over a specific region, and the objects vary

greatly in geographic size and complexity. Especially the complexity, i.e., the number

of vertices and edges describing the polygons, of the spatial objects has a significant



101

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  5  10  15  20  25  30

T
im

e
 (

t)
 i
n
 s

Number of Tracks (T)

Spatial ROLLUP Query (USGS)

Runtime (P=8)

Figure 5.11: Impact of track configuration on query evaluation time.

impact on the running time of individual spatial operations, such as computing the

intersection. The random selection of objects to generate smaller datasets only takes

into account the number of objects selected but not their size or complexity. The

graph in Figure 5.13 shows the distribution of lulc objects over the spectrum of

complexity in terms of vertices. We can see that the majority of objects at this

layer have well below 100 vertices with a median of µ1/2 = 25. However, there are

a number of objects that have more than 10,000 vertices with up to 93,592 vertices.

This skew in the distribution of complexity among the spatial objects can cause a

few very complex objects to be selected during the dataset scaling process, and those

few objects may have a significant influence on the amount of computation that is

required during query evaluation. Thus, for some subsets of the data, although they

contain a smaller number of objects, the query running time might be much higher

than for other similarly sized or even larger subsets.



102

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  0.2  0.4  0.6  0.8  1

T
im

e
 (

t)
 i
n
 s

Dataset Size Scale Factor (SF)

Spatial ROLLUP Query (USGS)

Runtime (P=8)
Runtime (P=1)

Figure 5.12: Impact of dataset size on query evaluation time.

5.2.3 Comparison of LISA with other Systems

For the comparison of LISA with other existing systems, we chose the PostgreSQL re-

lational database system [146]. PostgreSQL is a free open-source relational database

system with a large feature set that is comparable to that of established commercial

products such as Oracle, Microsoft SQL Server, or IBM’s DB2. PostgreSQL also pro-

vides extensive support for storing, processing and querying of spatial data through

its PostGIS extension [151]. Hence, it often is also chosen as a platform for other

spatial data warehouse or spatial OLAP systems [49,53]. The PostGIS extension for

PostgreSQL uses, just like LISA, the GEOS library for geometry calculations and the

internal representation of spatial objects. There exist other freely available database

or OLAP systems with some support for spatial data, such as MySQL or MonetDB.

Although they support the storage of spatial data, their support for functions and

operators on this data is very limited, and we were not able to successfully execute our

example queries using these systems. PostgreSQL has no native support for typical

OLAP operations and does not provide a specific storage model that facilitates the

execution of those. Using PostgreSQL’s internal procedural language PL/pgSQL, we



103

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

10
0

10
1

10
2

10
3

10
4

10
5

N
u
m

b
e
r 

o
f 
O

b
je

c
ts

Number of Vertices

Land Cover/Land Use Spatial Object Complexity

µ = 84.5 σ = 911.0µ1/2 = 25 max = 93592min = 4

Figure 5.13: Distribution of complexity (i.e. number of vertices) among lulc layer
objects.

were able to emulate the functionality of roll-up queries. These PL/pgSQL implemen-

tations, shown in Appendix B.6 and B.7, are hand-optimized and significantly more

efficient than their standard SQL counterparts. The processing of a single query

within PostgreSQL is inherently not parallel. However, PostgreSQL makes use of

separate I/O processes and extensive caching.

The datasets used to execute our example queries with PostgreSQL were identical

to those used for the evaluation of LISA. In addition, we created appropriate indices

on the corresponding tables in PostgreSQL to facilitate the execution of queries, and

used suitable configuration values for PostgreSQL’s system and cache configuration.

The hardware platform of the PostgreSQL server was identical to that of the compute

nodes used for the evaluation of LISA.

The performance of PostgreSQL’s query evaluation was measured in “wall time”,

including the time for any network transfers between the PostgreSQL client and the

server. The amount of data exchanged between client and server over the local 1Gbit/s

Ethernet network was minimal and had no significant impact on the overall query



104

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  0.2  0.4  0.6  0.8  1

T
im

e
 (

t)
 i
n
 s

Dataset Size Scale Factor (SF)

Categorical ROLLUP LISA vs. PostgreSQL

LISA
PostgreSQL

Figure 5.14: Comparison of LISA’s and PostgreSQL’s performance on traditional
OLAP queries for various dataset sizes.

running time.

Traditional OLAP queries

The traditional OLAP query evaluated for LISA in Section 5.2.1 was translated into

a PostgreSQL PL/pgSQL function as shown in Appendix B.6.

The graph in Figure 5.14 compares the query running time of LISA and Post-

greSQL for various data sizes. We can observe that PostgreSQL outperformed LISA

by a factor of 22 for the full-sized dataset. This observation is not surprising, as

PostgreSQL is highly optimized to deal with categorical data types and the opera-

tions involved in this query. In addition, we discussed in Section 5.2.1 that LISA’s

performance on this query was limited by a high fixed cost for disk I/O, which can

be attributed to the storage models and access methods that LISA uses to retrieve

the data. PostgreSQL, on the other hand, employs a number of mechanisms, such as

separate disk I/O processes, shared page caches, and pre-fetching, which allow it to

handle this type of data and the operations executed on very efficiently. For LISA to



105

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

LISA
ROLLUP

PostgreSQL
ROLLUP

Hand-Optimized
PL/pgSQL

PostgreSQL
Lowest Level
Standard SQL

T
im

e
 (

t)
 i
n
 s

Spatial ROLLUP LISA vs. PostgreSQL

Figure 5.15: Comparison of LISA’s and PostgreSQL’s performance on spatial OLAP
queries.

achieve a similar performance, a reengineering of its storage model and access meth-

ods for categorical data would be required. Also, much of LISA’s implementation was

in Python, which does not perform as efficiently as PostgreSQL’s C implementation.

Spatial OLAP queries

For the comparison of LISA and PostgreSQL with respect to spatial OLAP queries,

we implemented the query used in Section 5.2.2 in PostgreSQL/PostGIS. Similar

to the query used in the previous section, we employed hand-optimized PL/pgSQL

to implement the query in PostgreSQL. The PL/pgSQL function implementing the

query is shown in Appendix B.7. To illustrate the impact of the hand-optimized

PL/pgSQL code, we also implemented the query that calculates the values for the

lowest roll-up level (bottom level) in standard SQL without the help of PL/pgSQL

(see Appendix B.8).

The graph in Figure 5.15 shows the running time of the spatial roll-up query



106

against the full-size dataset for LISA and PostgreSQL. In addition, it shows the run-

ning time of the standard SQL query that can be used to compute to lowest roll-up

level. We can observe that the increased requirement in computation involved in this

query can greatly benefit from LISA’s architecture and utilize processor resources

more effectively. This results in a factor of 3.1 speed-up for LISA compared to Post-

greSQL’s hand-optimized PL/pgSQL implementation.

5.3 Summary

In this chapter we introduced LISA, which realizes the pipeline-based query evaluation

model for spatial OLAP queries discussed in Chapter 4. We showed that LISA is rich

in features and allows the representation and execution of both OLAP and spatial

OLAP queries on a full range of data and hierarchy types. Through our experimental

evaluation, we also validated the main objective of the pipeline-based evaluation

model: the better utilization of modern multi-processor and multi-core hardware

platforms. LISA outperformed PostgreSQL on complex spatial queries, even though

LISA is a largely unoptimized prototype rather than a production-quality database

system. Many optimization techniques could be applied within the LISA framework.

These are described in some detail in Appendix A.



Chapter 6

The geoCUBE Index1

A fundamental difference between a traditional OLAP system and a SOLAP system

is that in OLAP all feature dimensions are categorical, i.e., have fixed cardinalities,

such as Color ∈ {red, blue, green}, while in SOLAP feature dimensions may be either

categorical or spatial. Spatial dimensions are typically geometric objects represented

by either single points or ordered sets of points in continuous space, for example

latitude = 44.854444◦, longitude = -63.19916713◦. The categorical nature of fea-

ture dimensions in OLAP is typically exploited in several important ways. Firstly,

categorical data stored in a star schema (see Figure 6.1) can be normalized in each

dimension, which leads to the imposition of a fixed-cardinality grid on the categorical

dimensions. Secondly, dimension hierarchies can easily be defined as ranges of val-

ues within these grids to support roll-up and drill-down operations. For continuous

dimensions, a different approach is necessary.

In adding non-categorical dimensions to OLAP, two key challenges must be ad-

dressed: (1) how to define and perform aggregation on spatial/continuous values, and

(2) how to represent, index, update, and efficiently query mixed categorical and con-

tinuous data. In this chapter we focus on these challenges for spatial objects without

extent. Techniques for the aggregation of continuous spatial and temporal values have

been well studied. For a broad survey of these results, see [112]. The representation,

indexing, and querying of spatial data has also been well studied [73, 152]. Data in

a spatial data warehouse is not exclusively spatial: it is a mix of spatial and cate-

gorical attributes. The representation and indexing of such mixed categorical and

continuous data in an OLAP setting has received less attention (see Section 6.1 for a

discussion of related work). While efficient multi-dimensional indexing mechanisms

for continuous data exist [76], they are not specifically designed and optimized to

meet the requirements of typical OLAP applications, such as aggregate queries and

1A preliminary version of this work appeared in JDIM 2007 [13].

107



108

time_id

day

month

quarter

year

Time

time_id branch_id dollars_sold units_sold

1

1

3

2

3 5

3

1

3

2 6

6

4

1

2

120.00

200.00

300.00

50.00

75.00 3

1

2

4

2

product_id

normalized facts table

branch_id

name

address

product_id

name

category

brand

Branch

Product

Figure 6.1: Star schema of a typical data warehouse with facts table, three feature
dimensions and two measures. The feature dimensions have been normalized within
the facts table in that they are represented as keys into dimension tables.

hierarchy operations.

An obvious approach to the representation and indexing of mixed categorical and

continuous data is to treat the continuous values as if they were values of a cate-

gorical space by simply enumerating them. This discretizes the original continuous

dimension, allowing the use of established mechanisms for view indexing and query

evaluation. It also skews the original continuous dimension in a data-dependent man-

ner, and once continuous dimensions have been transformed in this way, view updates

that preserve the relative order of records with respect to their original space are not

possible without recomputation of the complete view.

In this chapter we address the representation and indexing of mixed categorical

and continuous data in a Relational OLAP (ROLAP) setting. We first describe a

general approach that has been shown to be effective for representing and indexing

relational tables in a variety of settings (e.g., sequential [96, 127], parallel [45], and

P2P [158]) and then show how this method, based on the use of space-filling curves,

can be extended to the mixed categorical/continuous setting. Our proposed method

is specifically intended for the indexing of views in a ROLAP setting as the resulting

data structures only represent those sections of the multidimensional view that have

data records associated with them.

We implemented the proposed storage and indexing methods and evaluated their

build, update, and query times using both synthetic and real datasets. Our experi-

ments show that the proposed methods based on Hilbert curves of dynamic resolution



109

offers significant performance advantages. In the build phase we observed a speed im-

provement by a factor of approximately 20-25% over the standard pre-discretization

approach. For updates, which can be performed without reordering the entire dataset

when using the dynamic-resolution approach, we observed performance improvements

of between a factor of 23 for an update batch whose size is 2% of the current view

and a factor of 6 for an update batch whose size is 20% of the current view. As

updates to data warehouses are commonly very small (less than 1 or 2%), the perfor-

mance benefits of our dynamic adaptation approach over pre-discretization is quite

significant.

We also compared the query performance of our Hilbert-curve-based index with a

standard R-tree from the Spatial Index Library [77]. Again we observed a significant

speed improvement. While the query time on the Hilbert-curve-based index increased

only marginally with an increasing number of records and query results were reported

in less than 0.2 seconds even for 3M records, the query time of the R-tree index

quickly deteriorated for larger numbers of records. Note that some caution is required

when interpreting this result. Since we are comparing two independent codebases,

it is harder to determine how much of this improvement should be attributed to the

improved I/O and cache efficiency of our algorithms and how much is simply due to

better coding practices.

The remainder of this chapter is organized as follows. Section 6.1 gives an overview

of work related to this chapter. Section 6.2 introduces our basic approach, while Sec-

tion 6.3 describes our method for dynamically adapting the resolution of the Hilbert

curve and proposes new algorithms for indexing views with both categorical and con-

tinuous space dimensions. The construction of the index and its representation in

memory is described in Section 6.4. In Section 6.4.2 we discuss updates to such views

and introduce a merge algorithm that is flexible with respect to dimension cardinal-

ity. In Section 6.5 we describe an initial implementation of our algorithms, whose

performance we analyze in Section 6.5.1. The chapter is concluded in Section 6.6

with a summary of our findings.



110

6.1 Related Work

The problem of indexing multi-dimensional points is not new. A common and of-

ten effective approach to this problem is to employ a multi-dimensional R-tree or

one of its many variants. The R-tree [76] is a spatial indexing structure that al-

lows the indexing and efficient querying of points and polygonal shapes. The queries

that are supported by the R-tree are rectilinear range queries. Its original design

was motivated by the B-tree, and it can be efficiently used as an external-memory

data structure. For the application in spatial and spatio-temporal OLAP, a number of

extensions [136,137,172] of the R-tree have been proposed to facilitate efficient evalua-

tion of queries typical for these domains. Most approaches based on R-trees, however,

focus only on continuous space dimensions and do not specifically address the prop-

erties of categorical dimensions. To support categorical dimensions, these dimensions

are typically transformed into an equivalent representation in continuous space, but

this creates problems: The efficient aggregation in OLAP queries over categorical

dimensions often crucially relies on these dimensions being integer-valued, and the

use of space-filling curves as a locality-preserving mapping from higher-dimensional

space into one dimension, discussed next, relies on the existence of at least an implicit

integer grid.

Space-filling curves have been used to support the indexing of purely categorical

OLAP data [45]. This approach organizes multi-dimensional categorical OLAP views

by using the Hilbert space-filling curve to generate a linear ordering of the records in

multi-dimensional space and then indexing this linear ordering with a data structure

similar to a B-tree. This method exploits that the Hilbert curve strongly preserves

spatial locality [127].

Previously, Hilbert curves were used by Kamel and Faloutsos [98] as a mechanism

to enhance the performance of R-trees when used for indexing multi-dimensional data.

They used the Hilbert curve to obtain an ordering of the records within each node of

the R-tree. This allows the exercise of new strategies for the distribution of records

when nodes split and merge during insertion and deletion of records. Using these

strategies, the query performance of the R-tree does not deteriorate as drastically

as when arbitrarily distributing records between nodes during node splitting and

merging.



111

Lawder and King proposed a multi-dimensional index that uses a tree structure

derived from the construction rules of the Hilbert curve [106]. Each level of this

tree corresponds to a level of resolution, or order, of the Hilbert curve and partitions

the covered subspace into quadrants. At the root of the tree the entire space is

covered. Records are stored at the leaf level of the tree in the subspace quadrants

that correspond to the Hilbert values derived from their original coordinates.

None of the previous approaches to indexing multi-dimensional data with the help

of Hilbert curves addressed the issue of continuous dimensions. All proposed tech-

niques operate on multi-dimensional grids whose resolutions are known in advance,

and records are mapped into cells of these grids. Hence, they require that the cardi-

nality of each dimension is fixed and known in advance. This, however, is not practical

in a spatial OLAP environment where multiple continuous dimensions may exist and

their attribute values are not fixed and may change over any number of updates.

A more application-oriented approach to the integration of spatial and categorical

data based on building composite systems that integrate existing OLAP and GIS

systems has been pursued by both academic [56,69,83,153,165] and industrial [40,49,

87, 100, 161] research groups. Systems such as SOVAT [161] or Kheops Technology’s

JMap [100, 154] address the integration at a higher level, closer to the end-user, and

internal data representation and storage mechanisms manage categorical and spatial

data independently by means of traditional categorical data warehouses and spatial

databases. While this approach speeds software development, it does not lead to

systems that scale well in the face of massive datasets.

6.2 Our Approach

The central problem we address in this chapter is the representation and indexing

of mixed categorical and continuous data in a Relational OLAP setting. We first

describe a general approach that has been shown to be effective for representing and

indexing relational tables in a variety of settings (e.g., sequential [96], parallel [45],

and P2P [158]) and then show how this method, based on the use of space-filling

curves, can be extended to the mixed categorical/continuous setting.

The approach has three basic steps.

1. Map the multi-dimensional data into a linear ordering using a locality-preserving



112

space-filling curve, such as a Hilbert curve [88].

2. Use the linear order to distribute the data over the available storage. In the

sequential setting this may be one or more disks [96], in the parallel setting this

may be disks across a set of processors [45], and in the P2P setting it may be

disks across a collection of peers [158].

3. Build an index structure on top of the ordered data for efficient query processing.

Typically, this is some variant of the B-tree [14] with query properties similar

to those of the R-tree [76].

The resulting indexing structure is basically an R-tree; however, the use of space-

filling curves to fold the multi-dimensional space into a one-dimensional space is

particularly well-suited for the even distribution of records over multiple disks, pro-

cessors, or peers, and it facilitates batch updates of views by merging record updates

into the original view with a single linear scan.

In an OLAP setting, this indexing structure presents a number of advantages:

• The disk layout favours sequential block access and thus reduces the amount of

disk I/O and seeks.

• Multi-dimensional data is indexed in such a way that no dimension is favoured

over another and the disk layout preserves the locality of the data.

• Extensions to the indexing structure can provide additional support for OLAP-

specific operations, such as range aggregate or roll-up queries [136].

In this chapter, we use the Hilbert curve as the space-filling curve that underlies

our method. The Hilbert curve is defined on a d-dimensional grid with a side length

of 2k, where d denotes the number of dimensions of the view and k is the resolution

or order of the Hilbert curve. This grid covers the entire space of the view and

the resolution k must be chosen in such a way that each grid cell contains at most

one record (see Figure 6.2a). Given a view with d categorical dimensions and each

dimension Di containing |Di| distinct values (dimension cardinality), then a grid with

a resolution of k = ⌈log2 maxdi |Di|⌉ ensures each record is located in a distinct grid

cell.



113

b1

b2

b4

b3

a1 a2 a3 a4
(a) Grid for which each cell con-
tains at most one record.

b1

b2

b4

b3

a1 a2 a3 a4

5

2

3 4

1

6

(b) Hilbert curve on grid. Points
are numbered in order along the
curve.

Figure 6.2: Hilbert curve.

The Hilbert curve on this grid passes through each record in the view exactly once

and thereby generates the Hilbert order of the records (Figure 6.2b). The important

property of the Hilbert curve is that it provides a mapping from d-dimensional space

to 1-dimensional space that preserves much of the locality of the higher-dimensional

space [127].

In the following section we show how to index continuous space dimensions without

pre-discretization by proposing a technique that dynamically adapts the resolution

of the Hilbert curve and determines the order of records locally. Unlike previous

approaches that exploit the clustering properties of the Hilbert curve [45,96,98,127],

this new technique is flexible with respect to the resolution of the grid, as it attempts

to optimally utilize the grid space for continuous dimensions; it achieves a significant

reduction of the grid resolution required to map records with continuous dimensions

into distinct grid cells when compared to a pre-discretization approach; and it also

allows for the introduction of new records with previously unknown attribute values

without the need to recompute the entire view. Introducing a batch of new records

into an existing view has a cost proportional to that of sorting the records to be

inserted in Hilbert order and linearly scanning the existing view to merge the new

records into it.



114

6.3 Dynamic Resolution of Hilbert Curves

In this section we describe a method for ordering multi-dimensional records in Hilbert

order when some of the dimensions are continuous. The main strength of this ap-

proach is that it is dynamic, allowing on-the-fly calculation of the resolution of the

Hilbert space for continuous dimensions.

Generating a Hilbert ordering requires a discrete space in which each record is

mapped to an associated coordinate and distinct records map to distinct coordinates.

The näıve approach to generating a Hilbert ordering over a space that contains con-

tinuous dimensions would discretize those dimensions in advance and then generate

the Hilbert ordering of the resulting entirely discrete space. This approach, however,

exhibits a number of disadvantages that impact its effectiveness:

• The discretization of the continuous space requires multiple expensive sort and

scan operations on the original dataset.

• Discretizing each continuous dimension individually causes the resulting space

to be skewed, as only the relative order of records, but not the magnitude of

their attributes, is preserved.

• The space resulting from the discretization is sparse and not well utilized, as

each continuous value is assigned a distinct index, independent of whether or

not this is in fact necessary to place each multi-dimensional record into its own

grid cell.

• The entire space needs to be rediscretized when an update introduces a new

attribute value.

A second approach is to map the continuous space attributes onto a multi-dimensional

grid that defines the discrete space. Predetermining the resolution of this grid requires

the computation of pairwise Euclidean distances between records, which is not prac-

tical when the number of records is large.

The method proposed here takes a different approach. Based on the recursive

definition and the self-similarity of the Hilbert curve, the Hilbert ordering of records

can be efficiently computed in continuous space by using an adaptive resolution for



115

Figure 6.3: Increasing the resolution of the Hilbert curve preserves the order of
records.

the underlying discretization grid. We observe that a Hilbert ordering of records has

the property that the relative order of records is preserved when the resolution of the

Hilbert curve is increased (see Figure 6.3). Increasing the resolution of the Hilbert

curve, in turn, increases the resolution of the multi-dimensional grid, on which the

curve is defined. This property can be used to dynamically adjust the resolution of

the grid onto which the continuous space attributes are mapped during the generation

of the Hilbert ordering of the records, in order to guarantee that distinct records map

to distinct grid cells and thus become comparable in Hilbert order.

The idea behind this approach is to resolve any conflict where two records that

are compared map to the same grid cell while sorting the records in Hilbert order.

This is done by increasing the resolution of the underlying grid until both records

map to distinct grid cells. Due to the self-similarity of the Hilbert curve, changing

the resolution of the Hilbert curve does not have an impact on records that have

been sorted already. Thus, the resolution can be increased dynamically during the

comparison of pairs of records. Furthermore, this technique achieves a better space

utilization than a pre-discretization approach because a grid cell is split into smaller

cells only if there is in fact a conflict between two records in that cell. Finally, since

the grid is dynamically adjusted to the actual multi-dimensional data, the space

is not skewed and the relative differences between the continuous values of records

are preserved. Figure 6.3 illustrates how the increase of resolution resolves conflicts

between records that are mapped to the same grid cell.

Algorithm 6.1 outlines a method to produce a Hilbert ordering of records that



116

are defined in both continuous and discrete space. It uses a standard comparison-

based sorting algorithm (e.g., Quicksort or Merge Sort) with a comparison function

(Algorithm 6.2) that determines the relative order of two records on a Hilbert curve

at a particular resolution. The relative order is determined by finding the minimum

resolution of the Hilbert curve such that both records have a distinct rank with respect

to the curve.

Algorithm 6.1 Algorithm to sort records in Hilbert order using dynamic resolution
adaptation.

Procedure: hilbert-sort
Input: set R of records in no particular order,

set of categorical dimensions D, with |Di| being the number of distinct values in
dimension Di

Output: set R of records in Hilbert order
⊲ compute initial resolution

1: k ← ⌈log2 max{|Di| : ∀Di ∈ D}⌉
⊲ call sorting algorithm with hilbert-compare as comparison function

2: sort(R,hilbert-comparek)

Algorithm 6.2 Algorithm to determine the order of two records with respect to the
Hilbert curve by dynamically adapting the resolution of the Hilbert curve if necessary.

Procedure: hilbert-compare
Input: pair of records (r1, r2), initial resolution k
Output: −1 if rankk(r1) < rankk(r2), 0 if r1 = r2 or 1 if rankk(r1) > rankk(r2)
1: if r1 = r2 then
2: return 0
3: else
4: while rankk(r1) = rankk(r2) do
5: k ← k + 1 ⊲ determine resolution suitable for comparison
6: end while
7: if rankk(r1) < rankk(r2) then
8: return -1
9: else

10: return 1
11: end if
12: end if

The resolution that is found during a comparison is used as the initial resolution

for subsequent comparisons and may be increased. That way, the resolution of the

grid is either maintained or increased for each comparison. After the sorting process,



117

all records are in Hilbert order, and the resolution determined by the last comparison

during the sorting process is the minimal resolution for a grid such that every record

of the dataset maps to a distinct cell in that grid.

6.4 Exploiting Hilbert Order for I/O-Efficient Indexing

Once the Hilbert ordering of the records has been determined, the records are sequen-

tially written to disk in a block-wise manner. Each block on disk stores a constant

number, B, of records that are consecutive in Hilbert order. Then an indexing struc-

ture is built on top of the ordered records that provides features comparable to those

of a combination of a B-tree and an R-tree [45]. Figure 6.4 illustrates the construction

of such a tree structure with a specific example. While each intermediate node of the

tree is very similar to a node in a conventional B-tree, it is also annotated with the

minimum bounding box of the records in its subtree, similar to nodes in an R-tree.

This allows for an efficient evaluation of multi-dimensional range queries while ex-

hibiting most of the I/O-efficient properties of B-trees. Due to the self-similarity of

the Hilbert curve and its property to not favour any specific dimensions, the bounding

boxes of the records in the subtrees at each level of the indexing structure are usually

fat and usually overlap only very little, if at all. This is crucial for increasing the per-

formance of queries. Figure 6.4 illustrates the evaluation of a two-dimensional range

query on this indexing structure. Note that to answer a query, the tree is traversed in

a breadth-first manner, thus limiting the disk accesses to a combination of sequential

reads and forward-seek operations and reducing the amount of random access [50].

6.4.1 Answering Range Aggregate Queries

Range aggregate queries are a very common query type in OLAP applications. In

particular, when spatial information is processed, range-aggregate queries over mil-

lions of points may be typical. The indexing structure described above can be used

to answer range aggregate queries. Without extensions it requires retrieval of each

individual record within the query range in order to compute a desired aggregate

value. To retrieve the required records, the tree is traversed by starting from the root

and determining, for each child node of a non-leaf node, if its bounding box intersects

with the query region. If so, all or some records in its subtree may contribute to



118

2

3

4

5

6

1

1 2 3 4 5 6

Figure 6.4: Records in Hilbert order are stored in consecutive blocks on disk and form
multi-dimensional regions in the original space. The evaluation of a range query in
breadth-first fashion only traverses part of the tree and results in a combination of
sequential read and forward-seek operations at the leaf level.

the final query result, so the traversal continues in the subtree of this node. This

traversal is performed in a breadth-first manner, so that records at the leaves of the

tree can be reported by a combination of sequential read and seek-forward operations.

The retrieval of all records contained in a range to compute a single aggregate value

is, however, computationally expensive and is often overkill because the records only

contribute to the aggregate value and are discarded after this computation.

As proposed in [136], a more efficient approach to answering aggregate range

queries is the use of pre-aggregated values. The idea is to annotate non-leaf nodes

in the tree with aggregate information derived from the points that are stored in

the node’s subtree. This supports an improved evaluation of aggregate queries, since

a full traversal of the tree down to its leaf level may not be necessary to answer an

aggregation query. When the bounding box of a non-leaf node is completely contained

in the query region, all records in its subtree contribute to the final query result, and

we can use the aggregate stored at the node instead of inspecting all records in its

subtree. Thus, the answer to a query can potentially be assembled from a small set

of partial results instead of inspecting all points in the query region.

To help answer aggregate OLAP queries efficiently, the aggregate information to

be stored at each node is pre-computed while iterating over the children of the node

during the bottom-up construction of the index tree. Note that this pre-computation



119

n1 n2 n3 n4 n5 n6

n7

n9

n8

COUNT(n8) =  9

BOX

BOUNDING 

SUM(n4) +
SUM(n5) +
SUM(n6)

SUM(n8) =

Figure 6.5: Annotation of non-leaf nodes with aggregate information and references
to records at the leaf level.

of aggregate information works well for distributive (e.g., COUNT, SUM) and alge-

braic (e.g., AVERAGE) aggregation functions. Holistic aggregation functions (e.g.,

MEDIAN), on the other hand, require the retrieval of the actual records enclosed in

the query region in order to compute the aggregate value. This can be supported by

additionally annotating each non-leaf node with a direct reference to the sequence

of leaves in its subtree. When evaluating a query, the records in a node’s subtree

can be reported immediately, once the node has been reached, without traversing the

remaining subtree below this node (see Figure 6.5).

6.4.2 Updating OLAP Views

A key advantage of using Hilbert curves of dynamic resolution over pre-discretization

is that an existing, possibly very large view can be efficiently updated in a batched

fashion in time proportional to the cost of sorting the records in the update batch

and linearly scanning the existing view. To do so, all records of the update view

are sorted, using the same comparison function as in Algorithm 6.2. The minimum

resolution that has been determined while sorting the original records is used as the

initial resolution when sorting the update records. Once the update records are in

Hilbert order, they are merged with the original dataset in a single scan over both

datasets. As update datasets in an OLAP environment are often only a fraction of

the size of the entire data warehouse (typically 1%), the cost of sorting the update

view is relatively small compared to rebuilding the entire view.

Algorithm 6.3 shows in detail how both sequences are merged. It iterates through



120

Result View

Update View Target View

Figure 6.6: Merging the target view with the update view may result in a dynamic
adaptation of the Hilbert curve resolution.

the records in both datasets in Hilbert order and repeatedly compares the two current

records from both datasets. If both records share the same attribute values, the

record from the update dataset is considered an update of the existing record and

therefore moved into the output dataset, while the original record is discarded. If the

attribute values of both records differ in at least one dimension, the Hilbert ranks

of both records at the initial resolution are determined and compared. If one record

has a lower Hilbert rank than the other, it is moved to the output dataset and a new

current record is fetched from the respective input dataset. In the case when the same

Hilbert rank is computed for both records, the resolution has to be increased until

the Hilbert ranks differ. Since the locality of records mapped into Hilbert space is

preserved when increasing the resolution of the Hilbert curve, records that have been

merged already are not affected by the increase of resolution (see Figure 6.6). The

merging process continues until all records from both datasets have been processed.

The output dataset is a set of records in Hilbert order and will contain all records

from the update dataset as well as those from the original dataset that have not been

updated. Following the merging process, the indexing data structure is rebuilt over

the output dataset.

6.5 Implementation and Experiments

Based on the proposed approach, a prototype, called “geoCUBE”, was implemented

and extensively evaluated. The focus of the implementation was on determining the



121

Algorithm 6.3 Merge algorithm to incorporate update dataset into target dataset.

Procedure: hilbert-merge
Input: stream U of update records in Hilbert order, stream T of existing target

records in Hilbert order, resolution k of the Hilbert curve used to order the existing
records

Output: merged stream O of records in Hilbert order
1: let u be the first element in U or empty if no such element exists
2: let t be the first element in T or empty if no such element exists
3: while u and t are not empty do
4: if hilbert-compare(u, t, k) = 0 then
5: write u to O
6: let t be the next element in T or empty if no such element exists
7: let u be the next element in U or empty if no such element exists
8: else if hilbert-compare(u, t, k) < 0 then
9: write u to O
10: let u be the next element in U or empty if no such element exists
11: else
12: write t to O
13: let t be the next element in T or empty if no such element exists
14: end if
15: end while
16: if u is not empty then
17: write the remainder of U to O
18: else if t is not empty then
19: write the remainder of T to O
20: end if



122

Hilbert order for records with attribute dimensions defined in continuous and discrete

space and on evaluating query performance and the construction and batched update

time of the proposed indexing structure. The software was written in C and includes

implementations of Algorithms 6.1, 6.2 and 6.3 as well as variations of them to explore

performance trade-offs.

Computing a point’s mapping from n-dimensional discrete space to one-dimensional

Hilbert space was implemented based on a modified version of Doug Moore’s Hilbert

mapping library [128]. The data types that are supported by the implementation

are 64-bit integers and 32-bit floating-point numbers. The implementation presented

here assumes that the attribute values of each continuous space dimension are nor-

malized to the interval [0.0; 1.0) and that the attribute values of each discrete space

dimension are natural numbers in the interval [0, c− 1], with c being the cardinality

of the dimension.

6.5.1 Performance Evaluation

The experimental platform was a workstation with one Intel Xeon 1.8GHz processor

and 1.5 GB of RAM, running FreeBSD 6.2. The compiler used to translate the C

programs was part of the GNU Compiler Collection version 3.4.6.

The experiments we conducted evaluate the cost of sorting records into Hilbert

order, building the index, evaluating queries, and performing view updates. The

running times were measured as wall-clock times in seconds. Both synthetic and

“real-world” datasets were used in the evaluation. Synthetic datasets were generated

with a uniform distribution so that we could better understand the effects of various

dataset parameters on performance. The categorical and continuous dimensions of

the synthetic datasets were generated with cardinalities of 64 and 1000, respectively.

The real-world datasets were drawn from the HYDRO1k dataset published by the

U.S. Geological Survey and, where necessary, were reduced in dimensionality and

size through uniform random sampling. The main test dataset was a 6-dimensional

dataset composed of two categorical dimensions, with 57 and 51 distinct categorical

values, and four continuous dimensions with 956, 1000, 802 and 288 distinct contin-

uous values. It was used in each of the following experiments unless explicitly stated

otherwise.



123

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M

T
im

e
 i
n

 s

Number of Records

Pre-Discretization vs. Dynamic Adaptation (Sort)

Pre-Discretization
Dynamic Adaptation

Figure 6.7: Overhead of pre-discretization compared to dynamic resolution adapta-
tion.

Throughout the experiments, the impact of the sizes of the datasets on the running

times of the various algorithms was investigated. Additionally the benefit of proposed

optimizations was determined, and the traditional method of pre-discretizing continu-

ous space into discrete space [45,96,127] was compared to the new dynamic approach.

Unless stated otherwise, all experiments were performed with the most beneficial op-

timization enabled. In particular, each record was annotated with its last computed

Hilbert rank.

For completeness, the evaluation also contains a performance comparison of the

geoCUBE prototype to a conventional R-tree implementation from the Spatial Index

Library [77].

Dynamic Adaptation versus Pre-Discretization

Figure 6.7 shows a direct comparison of the dynamic adaptation of the Hilbert curve

resolution versus the traditional method of pre-discretization. The top curve repre-

sents the time required to pre-discretize and sort the synthetic dataset into Hilbert

order. The pre-discretization involves the sorting of each continuous space dimension

and the subsequent enumeration of their unique values, resulting in only categorical



124

 0

 100

 200

 300

 400

 500

 600

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M

T
im

e
 i
n

 s

Number of Records

Store vs. Recompute Rank (Sort)

Recompute Rank
Store Rank

Figure 6.8: Recomputing each record’s Hilbert rank for each comparison versus stor-
ing the last computed Hilbert rank of each record.

dimensions. The dataset is then sorted in Hilbert order with a resolution derived from

the cardinalities of the dimensions. The bottom curve represents the time required

for sorting the same synthetic dataset into Hilbert order using our dynamic resolution

adaptation approach. As one can see, dynamic adaptation of the Hilbert curve per-

forms better than the pre-discretization approach. In particular for 3 million records,

the pre-discretization approach requires approximately 38 seconds to pre-discretize

and sort the dataset, while the dynamic approach takes only 28 seconds. This corre-

sponds to a speed improvement of about 26%, which we also observed for most other

datasets we tested. We believe that this better performance is the result of avoiding

the expensive process of identifying distinct attribute values.

Optimization 1: Annotating Records With Their Last Computed Hilbert

Ranks

Before computing the Hilbert order of records by using an adaptive increment of the

Hilbert curve resolution, the base resolution, kbase, that is required to map all discrete

space dimensions into Hilbert space must be computed from their cardinalities. In the

following, this base resolution is initialized to kbase = ⌈log2 cmax⌉ with cmax = max |Di|



125

if there exists at least one discrete dimension, or kbase = 0 if only continuous space

dimensions are defined.

To compare two records based on their Hilbert ranks, the ranks of both records

have to be computed at the same resolution. With O (n log n) comparisons to sort n

records, recomputing the Hilbert rank of a record for each comparison it is involved in

is computationally very expensive. To limit the amount of recomputation, each record

can be annotated with its last computed rank and the resolution for which this rank is

valid. Even though the resolution may increase, causing the Hilbert rank of the record

to be recomputed, this will affect only records that are not in their final position yet

and those for which the rank has not been computed yet. Also, instead of globally in-

creasing the resolution for all subsequent comparisons, the resolution is only increased

locally for each comparison if necessary. This avoids the computation of Hilbert ranks

at an unnecessarily high resolution for other records. In practice, storing the last com-

puted Hilbert rank reduces the number of rank calculations considerably and improves

the overall sort time. The main drawback of storing the computed rank along with

each record is a substantial increase in the space requirements. In the best case, the

overhead, in bits, of storing the Hilbert rank for n records at a given resolution k

for d dimensions is n
∑d

i=1 min{k, ⌈log2 |Di|⌉}, where |Di| is the cardinality of dimen-

sion Di. However, this is true only when continuous dimensions are pre-discretized.

For the dynamic mapping of continuous dimension values and the preservation of

their spatial relationships, k may become significantly larger than ⌈log2 |D|⌉, as the

minimum Euclidean distance between two normalized records is the decimal preci-

sion p of the continuous dimensions (e.g. p = 10−3). In this case the overhead can

be quantified as n
∑z

i=1 min{k, ⌈log2 |Zi|⌉}+ n
∑r

i=1 k, where z is the number of cat-

egorical dimensions, r the number continuous dimensions and k ≤ ⌈log2 1/p⌉. Thus,

in the worst case the overhead in number of bits for z categorical dimensions and r

continuous dimensions at resolution p is n(z+ r) ·max (maxzi (⌈log2 |Zi|⌉), ⌈log2 1/p⌉).

However, in the general case the minimum Euclidean distance between two normal-

ized records is often greater than the decimal precision of the continuous dimensions,

such that the worst case is rarely encountered. Also, the overhead for storing the

Hilbert rank per record is not related to the number of records in the dataset, but

depends on how these records are distributed within the space.



126

 0

 5

 10

 15

 20

 25

 30

 35

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M

T
im

e
 i
n

 s

Number of Records

Constant Time vs. Iterative Rank Computation (Sort)

Iterative
Constant Time

Figure 6.9: Iterative versus constant-time resolution determination.

Figure 6.8 shows the impact of annotating each record with its last computed

Hilbert rank compared to recomputing the record’s Hilbert rank during each com-

parison. The dataset used for this experiment was the HYDRO1k dataset. As can

be clearly seen, the optimization has a very significant effect on the overall running

time and results in an order of magnitude performance gain. Specifically, for 3 million

records, the annotation approach takes 46 seconds, while the recomputation approach

takes 517 seconds; this represents a performance improvement by a factor of 11.2.

Optimization 2: Iterative versus Constant Time Resolution Determination

Another possible bottleneck in the proposed comparison function is the iterative de-

termination of the grid resolution that guarantees that no two records share the same

rank. In the worst case, this requires many iterations, and consequently recompu-

tations of Hilbert ranks for the records that are compared, if the two records are

sufficiently close to each other in continuous space. It would be desirable to deter-

mine the necessary minimal resolution with a constant amount of computation for

any two records. The approach presented here takes constant time to determine a



127

resolution at which both records do not share the same rank. This is achieved by com-

puting the Euclidean distance between both records and determining the resolution

at which the diagonal of a grid cell is shorter than the distance between the records.

This guarantees that both records are mapped to distinct cells, but the determined

resolution may not be minimal, as there may be a lower resolution that already maps

both records into different cells. The disadvantage of obtaining a resolution that is

not minimal is an additional space requirement and a slight increase in computation

required to determine the Hilbert rank at this resolution.

Figure 6.9 illustrates the effects that the method of resolution determination has

on the overall running time of the algorithm. For datasets with only continuous space

dimensions, the on-the-fly determination of the resolution is essential, since no initial

resolution can be computed. The curves presented in Figure 6.9 were obtained using

experiments with the HYDRO1k dataset. The top curve represents the performance

of the iterative method. Note that this method always finds the minimal resolution

necessary to compute distinct Hilbert ranks for all records. The bottom curve shows

the performance of the constant-time method. This method performs approximately

10% better than the iterative method. In some cases, however, the determined res-

olution of the Hilbert curve may not be minimal, causing the computation of each

Hilbert rank to become more expensive. Also, as records may be arbitrarily close to

each other in the original space, the constant-time approach may determine a res-

olution that is significantly higher than the minimum resolution determined by the

iterative approach. Consequently, there is a trade-off between the performance gain

of the constant-time approach and the likelihood that it will exceed the available

storage to represent Hilbert ranks.

Update Time

The implementation of the update mechanism follows the description in Algorithm 6.3.

First the update dataset is sorted into Hilbert order using, as a starting resolution, the

minimum resolution that was determined for the original dataset. The next step then

merges both, the original and the update dataset, by sequentially scanning through

them and repeatedly comparing the next records from both datasets. If both records

are equivalent, only the update record is written to the output dataset; otherwise,



128

 0

 10

 20

 30

 40

 50

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M

T
im

e
 i
n

 s

Number of Records

Pre-discretization vs. Dynamic Adaptation (Update)

Pre-discretization 20% update
Pre-discretization 10% update
Pre-discretization 2% update

Dynamic Adaptation 20% update
Dynamic Adaptation 10% update

Dynamic Adaptation 2% update

Figure 6.10: Batch update time for different update sizes.

the comparison function used for sorting both datasets is used to determine the order

in which the records should be written to the output dataset. As in the sorting step,

if the order of two distinct records cannot be determined at a given resolution, the

resolution of the Hilbert curve is dynamically increased until both records map to

distinct ranks on the Hilbert curve.

The main advantage of this approach is that only the updates need to be sorted,

while a linear scan of the updated dataset is sufficient. In contrast, when applying

updates that introduce new attribute values, the pre-discretization approach requires

to newly discretize the entire merged dataset.

Figure 6.10 shows the times required to obtain the Hilbert order of the updated

dataset for updates with 2%, 10% and 20% of the sizes of the original dataset. The

graph compares the update performance of both the pre-discretization approach and

our dynamic adaptation approach. Since the dynamic adaptation approach does not

require the resorting of the entire updated dataset, its total update time is composed

of the time required to sort the update into Hilbert order and the time required to

sequentially merge the original dataset with the update dataset. Hence, our dynamic

adaptation approach performs updates significantly faster in comparison with the pre-

discretization approach, which requires the sorting of the entire updated dataset. In



129

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M

T
im

e
 i
n

 s

Number of Records

geoCUBE Index Construction

Hilbert Sorting
Hilbert Sorting + Indexing

Figure 6.11: Time to construct the index including sorting of the dataset for the
geoCUBE index.

particular, we observe an improvement between a factor of 23 for the 2% update and

a factor of 6 for the 20% update. As updates to data warehouses are commonly very

small (less than 1%), the performance benefits of our dynamic adaptation approach

over pre-discretization, especially for small updates, is very significant.

Index Construction

The construction of the indexing structure is implemented as a bottom-up approach

starting with the sorted data at the leaf level of the tree. At each non-leaf level, nodes

at this level have a fan-out of f children, so that nodes from the level immediately

below are combined into groups of size f . For each of these groups, the corresponding

parent node in the tree is annotated with the group’s minimum bounding box. The

nodes of each level of the tree are stored as consecutive segments in memory to

minimize the effect of fragmentation. This method to construct the index turned out

to be extremely efficient, accounting for about 1% of the total time required to build

the geoCUBE for a given dataset, as shown in Figure 6.11.



130

 0

 0.5

 1

 1.5

 2

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M

T
im

e
 i
n

 s

Number of Records

geoCUBE vs. R-Tree (Query)

R-Tree
geoCUBE

Figure 6.12: Query performance of geoCUBE vs. R-tree for real world data.

Range Query Performance

Figure 6.12 shows the average range query time on the HYDRO1k dataset over 1000

experiments using our geoCUBE index and an R-tree index from the Spatial Index

Library [77]. The queries were constructed as hypercuboids from pairs of records,

randomly selected from the dataset and involving all dimensions of the dataset. This

graph clearly shows a superior query performance of the geoCUBE index compared

to this R-tree implementation. The geoCUBE query time increases only marginally

with an increasing number of records, and query results are reported in less than

0.2 seconds even for 3M records. The query time of the R-tree index, on the other

hand, quickly deteriorates for larger numbers of records, resulting in query times of

more than 1.5 seconds for a single query. Note that some caution is required when

interpreting these results. Since we are comparing two independent codebases, it

is harder to determine how much of this improvement should be attributed to the

improved I/O and cache efficiency of our algorithms and how much is due to better

coding practices.



131

6.6 Summary

In this chapter we have proposed a new technique for representing and indexing rela-

tional OLAP views with mixed categorical and continuous dimensions. Our approach

is flexible with respect to dimension cardinality and thus allows for the indexing of

continuous space dimensions, while building on top of established mechanisms for

index construction and querying. Our contribution is significant, as it integrates

the representation of mixed categorical/continuous data at the storage level, thereby

forming the basis for efficient Spatial OLAP systems that can handle massive amounts

of data. Such systems are gaining in importance with the increasing amount of spatial

data that is collected. Our experimental evaluation shows the practical benefits of the

proposed approach. Although our method is specifically intended for the indexing of

views in a relational OLAP (ROLAP) setting, some ideas used by our methodology,

specifically the use of the Hilbert space-filling curve, may also be applicable to the

multidimensional storage of views (MOLAP).



Chapter 7

OLAP for Moving Object Data1

7.1 Introduction

The analysis of moving object databases is a field of research that has received signifi-

cant attention in recent years [18,61,62,67,75,103,107,169,192]. Typical applications

of this discipline are location-based services [155], traffic control [136], transport lo-

gistics [48], wildlife tracking [104] and epidemiology [168]. With the large adoption of

Global Positioning Systems (GPS), Radio Frequency Identification (RFID), and mo-

bile devices in everyday life, an increasing amount of data is being collected by such

applications, and there is a growing need for the analysis of aggregated information

about moving objects.

In traditional data warehouses a key instrument for the analysis of aggregated

information is Online Analytical Processing (OLAP) [31]. OLAP enables the effi-

cient analysis of multidimensional data by allowing the user to interactively explore

the multidimensional space. As has been previously described in this thesis, this

is achieved through a number of operations. The selection of views of the multi-

dimensional space is realized by projecting multidimensional points (facts) into a

lower-dimensional space defined by only a relevant subset of dimensions. This ap-

proach projects a number of points onto the same point in lower-dimensional space

for which the measures of the projected points are aggregated using a predefined ag-

gregation function. Additionally, there may be hierarchies defined for each dimension,

which provide a hierarchical grouping of dimension values into categories resulting in

a decrease of cardinality for the dimension at each hierarchy level. During a roll-up

operation the categorical grouping of dimension values at each level of the hierarchy

is used to aggregate the measures of facts that are mapped into the same group,

similar to the aggregation of measures of multidimensional facts when they are pro-

jected into lower-dimensional space. Other important operations provided by OLAP

1A preliminary version of this work appeared in DEXA 2008 [12].

132



133

7

8

6

6
9

76

8

7

8

Figure 7.1: OLAP For Trajectories Example. (a) Input data. (b) Groups with sup-
port above the required minimum support. (c) Aggregate results reported (aggregate
trajectories and counts).

are slice and dice, which can select sub-spaces of the multidimensional space and are

comparable to range queries.

To enable a similar interactive analysis of moving object data in an OLAP man-

ner, mechanisms need to be provided that support basic OLAP operations, such as

conceptual aggregation of facts with respect to selected dimensions and at varying

levels of granularity. When analyzing moving object data, the objects’ trajectories

can be considered the facts of the analysis, and their relationship to each other a

variable dimension.

In this chapter we propose algorithms that facilitate OLAP-like analysis of moving

object data. Our algorithms focus on the identification of aggregate groups among

trajectories at varying levels of resolution. However, the underlying conceptual ideas

may be applicable to other analysis scenarios as well.

Consider a set of moving objects stored as a relational table objects where each

record has an attribute trajectory = [(x1, y1, t1), (x2, y2, t2), . . . (xm, ym, tm)] repre-

senting the movement of the respective object as a sequence of positions at times

t1, t2, . . . tm. Within the scope of this chapter we investigate the problem of eval-

uating OLAP-typical GROUP BY queries with respect to the trajectory dimension as

subject of the GROUP BY operator. The problem is illustrated using the example shown

in Figure 7.1. In Figure 7.1a, we observe a number of individual objects that move

on random paths, plus ten groups of objects that move together on similar paths.

Each group consists of more than five objects moving on similar paths which, taken

together, appear to the human eye as “bold” paths.

Furthermore, consider the following SQL query where trajectory is both a feature



134

dimension that is the subject of the GROUP BY operator and a measure dimension that

is subject to the aggregation function AGGREGATE:

SELECT AGGREGATE(trajectory) AS trajectory

COUNT(trajectory) AS count

FROM objects

GROUP BY GROUP_TRAJECTORIES(trajectory, resolution)

HAVING COUNT(*) >= 5

In this example, the aim of the GROUP BY operation with respect to the feature dimen-

sion trajectory is to group similar trajectories and eliminate groups with less than a

given minimum support (less than 5 similar trajectories). The resulting set of groups

is shown in Figure 7.1b. Once the groups of trajectories have been determined, ag-

gregate trajectories summarizing the trajectories in each group are reported. In this

example, an aggregate trajectory is the average trajectory computed by calculating

for each time ti, the average of the locations (xi, yi) of the trajectories contained in

the corresponding group. The result is shown in Figure 7.1c, where each qualifying

group is represented by its aggregate trajectory and support (count).

In this chapter we propose a new class of GROUP BY operators specifically targeted

to the OLAP analysis of trajectories and to answering aggregate queries with respect

to the spatio-temporal movement of a set of objects. The main problem studied is

how to identify aggregation groups with respect to a feature dimension represent-

ing trajectories. It is very unlikely that any two trajectories are exactly the same.

Hence, standard aggregation of records based on groups with equivalent trajectory

values is not very useful in most cases. Instead, we propose to partition the given tra-

jectories into groups of trajectories using a new GROUP BY operator, which we term

GROUP TRAJECTORIES. This operator returns a group identifier for each trajectory,

and then OLAP can proceed with standard aggregation according to the group iden-

tifiers instead of the trajectories themselves. The ideal case for forming these groups

is to identify disjoint groups. However, when grouping moving objects, this may not

always be possible or desired, due to the change of association over time. The goal

of the new GROUP TRAJECTORIES operator is to identify groups of objects that have

sufficiently similar behavior and to deal with the variances in moving object data,

which often renders traditional GROUP BY operators unusable.

There exist a number of previous approaches for identifying groups of moving



135

objects, which we will discuss in detail in Section 7.2. However, many proposed

solutions have been developed for a specific domain and do not easily adapt to an

application in a general-purpose OLAP framework.

Frequent pattern mining is the only method that has been largely adopted by

the data warehousing and data mining community. Many frequent pattern mining

approaches have shown good results when identifying patterns that are shared be-

tween individual objects. However, our experience is that they often do not produce

results suitable for interactive analysis by the users. The most significant reason for

this is the amount of redundant information generated by many of the algorithms.

For example, with only a small amount of noise present in the original data, many

frequent patterns are detected that in fact do not provide any valuable information

to the user, as they are based on noisy data. Additionally, frequent pattern mining

algorithms consider each pattern as an independent piece of information and do not

take into account any relationships that may exist between the detected patterns. In

many scenarios, however, interesting patterns may be related to each other by the

trajectories they share. These relationships are of utmost importance in applications

such as disease tracking, as they may characterize groups of people who potentially

have communicated a disease virus through transitive relationships.

The solution proposed in this chapter extends the frequent pattern mining meth-

ods already available in today’s data warehousing solutions with new algorithms that

are more appropriate for identifying groups of moving objects. It is specifically de-

signed to capture relationships between movement patterns and thus allows to identify

groups of objects that exhibit a complex behavior, as in the example of a spreading

virus above. At the same time it integrates well with existing OLAP models by

using established data representations and query languages, as well as allowing the

user to interactively browse the results at varying levels of resolution and aggregated

information.

The main problem addressed in this chapter is how to define and compute the

GROUP TRAJECTORIES operator that defines groups that allow for a meaningful anal-

ysis of object movements via OLAP. We propose two versions of the GROUP TRAJEC-

TORIES operator to compute groups of trajectories that are appropriate for OLAP

analysis in different circumstances and applications:



136

GROUP_TRAJECTORIES

GROUP-ID =  G1 
COUNT = 4

GROUP-ID =  G2 
COUNT = 4

(a) (b)

GROUP_TRAJECTORIES

Figure 7.2: Illustration of two different version of operator GROUP TRAJECTORIES (a)
Group by Intersection, (b) Group by Overlap.

1. Group by Overlap

2. Group by Intersection.

Section 7.3 shows in detail how the two versions of the GROUP TRAJECTORIES op-

erator are defined and computed. The following outlines the intuition and motivation

behind these operators.

The Group by Intersection method identifies subsets of trajectories that corre-

spond to movements along a similar path. Figure 7.1 shows an example where move-

ments that follow similar trajectories are aggregated. Group by Intersection also

identifies groups with parallel movements, such as “marching band” style parallel

trajectories. A schematic illustration is shown in Figure 7.2a. The trajectories shown

could for example represent a group of four people walking together, and the aggre-

gate would be a simplified representation of that movement. Our Group by Overlap

method aggregates subsets of trajectories that correspond to sequences of movements

with sufficient overlap between subsequent trajectories. A schematic illustration is

shown in Figure 7.2b. The trajectories shown could for example represent movements

of people who pass on a disease virus, and the aggregate would then represent the

total movement of the virus.

The definitions and algorithms for the two versions of the GROUP TRAJECTORIES

operator presented in Section 7.3 depend on various parameters, including spatial

and time resolution. This allows for analyzing trajectories at various levels of de-

tail/resolution and provides another opportunity for an OLAP-style analysis by en-

abling drill-down and roll-up on this resolution dimension. An experimental eval-

uation of the proposed algorithms is presented in Section 7.5. The main goal of



137

the experiments is to determine how well the two versions of the GROUP TRAJECTO-

RIES operator allow meaningful analysis of object movements via OLAP. We have

used various generated and real-life moving object data sets and tested whether the

GROUP TRAJECTORIES operator is appropriate for the OLAP analysis of trajectories

in the context of different application scenarios. Finally, in Section 7.4, we briefly

discuss an interactive OLAP environment for the analysis of trajectories that allows

resolution drill-down and roll-up as well as parameter browsing, and is based on the

algorithms discussed in this chapter.

7.2 Related Work

Research focusing on the storage and processing of moving object data is a relatively

new discipline and has evolved from topics such as time series databases, spatio-

temporal databases and databases for location-dependent information [74, 169, 192].

A number of data structures and access methods have been proposed to efficiently

store, retrieve and update information about moving objects [4, 32, 78, 101, 144, 145,

148,155,174,188,200]. An overview and classification of most of these data structures

can be found in [126]. In many applications, however, the amount of collected data

makes it infeasible to analyze the raw information of every individual object. Instead,

data is being processed and analyzed in an aggregated manner to extract trends, rules,

and typical behavior, as well as exceptions from this typical behavior.

There are a multitude of criteria and information embedded in moving object data

that can be analyzed in an aggregated manner. However, much of the previous work

focused on the aggregation of only numerical facts that are without correlation to the

spatio-temporal properties of the objects’ trajectories. Typical choices for aggregate

dimensions are often time-only dimensions to provide aggregation “by day” or “by

year,” or space-only dimensions for aggregation based on topological relationships,

such as “by location square” or “within 10 km of” (e.g., [117]). A comprehensive

survey of these methods can be found in [112].

A different kind of aggregated analysis of moving object trajectories that focuses

on the combined spatio-temporal properties of the trajectories has its roots in the

area of Visual Reasoning and Artificial Intelligence [196]. In these disciplines, it often

is not sufficient to aggregate the numerical properties of trajectories with respect to



138

auxiliary dimensions. Instead, the spatio-temporal properties of the trajectories are

aggregated with respect to groups of trajectories that exhibit a similar behavior.

Next we discuss the previous work in more detail, focussing first on identifying

groups of moving objects and then on aggregating their associated information.

7.2.1 Identifying Group of Moving Objects

There exist a number of approaches to identify groups of moving objects, and the

methods they employ vary greatly over a wide range of common techniques. For

this section we will use the following, hopefully meaningful classification of common

techniques:

• Clustering,

• Computational geometry,

• Edit distance and variants thereof, or

• Frequent pattern or association rule mining.

Clustering

An intuitive approach to identifying groups of moving objects is clustering. Tra-

ditional static geometry-based clustering techniques, such as k-means [86] or [84],

however, are not always sufficient for moving objects, as objects may leave and en-

ter clusters over time and thus impact the set of clusters that are formed. Li et al.

addressed this problem by applying a micro-clustering strategy [108], which allows

for efficient updating of clusters as time passes and the original set of clusters dete-

riorates. The underlying concept of this strategy is that objects move continuously

and micro-clusters are formed among a small number of close objects with a similar

short-term movement (their bounding box does not exceed a given threshold). As the

motion within each micro-cluster is roughly the same, each micro-cluster can be con-

sidered as an individually moving unit, and updates over time only need to consider

interactions among micro-clusters and locally within each cluster. This separation of

global and local interactions leads to a significantly reduced amount of computation



139

required to maintain a reasonable clustering over time, when compared to recomput-

ing clusters for the entire dataset at each time step. To report groups of similarly

moving objects, however, the sequence of clusterings that was found through this

approach has to be post-processed, an issue not addressed in [108].

In [102], Kriegel and Pfeifle revisited static clustering for moving object data

and proposed an approach using what they call Medoid Clustering. This approach

takes into account the uncertainty that is associated with the position of an object

for a particular observation. By sampling object locations from a spatial density

function that models the location uncertainty, it is possible to compute a set of static

clusterings. These static clusterings are then compared and ranked according to their

distance to each other. The clustering with the smallest rank, i.e., the smallest average

distance to other clusterings, is then considered the medoid clustering—the average

and most stable clustering of the original dataset.

To address the shortcomings of traditional clustering methods, such as k-means,

with respect to clustering of moving object trajectories, Nanni and Pedreschi [129]

proposed the use of density-based clustering [55]. Using a näıve distance function for

trajectories, they showed that density-based clustering is more suitable for clustering

trajectories, as the produced clusters can have an arbitrary non-spherical shape and

are more robust with respect to noise. However, Nanni and Pedreschi noted that

the näıve distance function considers trajectories as atomic entities, which is not

suitable in many application. To address this issue, they proposed a technique called

Temporal Focusing, which examines the neighborhood of each trajectory to identify

time intervals that potentially produce a more meaningful and interesting clustering.

Their results show that temporal focusing greatly improves the clustering quality of

the näıve distance function.

Clustering is a technique that would be intuitive to use for the identification of

groups of moving objects. However, the spatio-temporal nature of trajectories makes

it difficult to apply common clustering approaches. While the solutions discussed

above are suitable for a number of special-purpose applications, they do not fit into

a general-purpose data warehousing and OLAP context. Our research focuses on

methods that can be applied universally and build on top and integrate with existing

database, data warehousing, and data mining technologies.



140

Computational Geometry

One of the first approaches to use computational geometry to identify patterns in

large moving object datasets was proposed by Laube et al. [105] as an extensions

to an analysis approach called REMO [104]. REMO is based on a coarse-grained

analysis of motion parameters that have been stripped of their absolute positions in

Euclidean space and instead use parameters such as orientation, speed and acceler-

ation. These parameters, once mapped to discrete values, and obtained at constant

time intervals for each object can be represented as a 2-dimensional bitmap. The two

dimensions of the bitmap represent the set of objects and time respectively and the

value for each element of the bitmap is a numerical value representing a particular

motion parameter. Interesting patterns in the dataset are then identified by deter-

mining continuous regions of identical value within the bitmap. The patterns that can

be detected using this approach are constance (an object maintains constant motion

parameter values over a consecutive set of time intervals), concurrence (a number of

objects have the same motion parameters during the same time interval), and trend-

setter (a constance pattern followed by a concurrence pattern). Laube et al. extended

this method by including absolute position information for each recorded observation

and employ computational geometry algorithms to identify movement patterns in ad-

dition to those above. The general approach is to compute the spatial region, e.g., a

circular region, for which a set of constraints is satisfied. These constraints can be for

example the size of the region or the number of observations for different objects in

the region. The additional patterns Laube et al. proposed to detect using the compu-

tational geometry approach were track (a constance pattern additionally constrained

by a maximum Euclidean distance between two consecutive observations of the same

object), flock (a concurrence pattern constrained by a maximum distance of the ob-

jects to each other), leadership (a trend-setter pattern constrained by a maximum

distance between the objects when concurrent movement commences), convergence

(a minimum number of objects pass through a region of fixed size independent of

time), and encounter (a convergence pattern with the constraint that the objects are

within the identified region at the same time). Gudmundsson et al. improved the

complexity of the exact encounter algorithm from [105] and provided approximation

algorithms for all grouping patterns discussed in [105] to estimate the size of a region



141

and the minimum number of objects for which interesting patterns can be detected

in a given dataset [72]. More recently, Benkert et al. [19] provided computational

geometry approximation algorithms with improved asymptotic bounds for the flock

pattern and Andersson et al. [10] discussed an algorithm to detect leadership without

an a priori knowledge of the time interval of interest.

The described computational geometry approaches to identifying groups of mov-

ing objects appear very powerful and able to identify well-defined patterns. These

approaches, however, are not designed to integrate with technologies such as data

warehouses or OLAP, and rather represent stand-alone solutions without the support

of established data processing frameworks.

Edit Distance

The edit distance approach, and variations of it, has also been the subject of many

studies regarding similarity measures for trajectories that can be represented as se-

quences of motion parameters (e.g., location, orientation, speed, etc.). The most com-

mon method that is related to the edit distance and used to measure the similarity

between two or more trajectories is finding the longest common subsequence (LCSS).

LCSS has originally been proposed for finding similarity in time-series databases [195],

which is a problem area closely related to moving object databases. Sclaroff et al.

extended the LCSS approach to trajectories and proposed three new similarity func-

tions [159]: (1) trajectories are similar when they are close to each other and, within

a given tolerance, represent the same path; (2) trajectories are similar if, independent

of their extent and location, their change in orientation and movement is similar;

and (3) trajectories are similar if they follow a similar path but are translated from

one another. By relaxing the requirement for an exact match and allowing limited

deviation in space and time, Sclaroff et al. were able to provide better complexity

bounds for their versions of LCSS compared to exact match approaches. For their

third similarity function, Sclaroff et al. additionally proposed an approximation algo-

rithm to estimate the amount of translation at which two trajectories match within

a given error.

Vlachos et al. built on top of this approach and provided a more extensive anal-

ysis [187]. Shim and Chang extended the basic LCSS approach with a k-warping



142

technique [166], allowing up to k replications of motion segments in the query trajec-

tory in order to match similar trajectories. Further, Zeinalipour-Yazti et al. addressed

the interesting problem of querying similar trajectories from a bulk of trajectory frag-

ments that are distributed across a network of nodes [198]. Their approach performs

localized top-k queries using LCSS to find the k most similar trajectory fragments

at each node and then combine only fragments that are associated with the same

trajectory across all nodes.

Edit distance techniques are powerful approaches for determining similarity be-

tween two sequences of discrete items. However, for large datasets they become

computationally very expensive. In contrast, approaches applying sequential pattern

mining, as described in the next subsection, are significantly more efficient. They

are also better suited for data processing frameworks, such as data warehousing and

OLAP, as they are very similar to other pattern mining approaches already available

in such systems.

Frequent Pattern Mining

Another, recently very common, approach to identifying groups of trajectories is pat-

tern mining. Pattern mining is a method that has its origins in the mining of associa-

tion rules from large sets of transactional data [6]. It is often described in the context

of mining frequent sets of items from shopping baskets to identify items or products

that are frequently bought together [81]. It has also been shown that the pattern

mining approach is applicable to identifying patterns in sequence databases [7]. The

analysis of sequential data is a requirement for a wide area of applications including

for example the analysis of DNA or protein sequences, data streams in telecommuni-

cation or tracking of diseases. A number of approaches that focus on the analysis of

sequence data have been proposed and show an improved performance in identifying

patterns when compared to transactional approaches. Most recent representatives of

these approaches are PrefixSpan introduced by Pei et al. [140,141] and CloSpan intro-

duced by Yan et al. [193], as well as an algorithm suitable for noisy data streams by

Yang et al. [194]. A special case of identifying patterns in sequence data is the iden-

tification of patterns that occur periodically in constant time intervals. This special

case of sequential pattern mining has been addressed by [80] and [113].



143

One of the first approaches that utilizes frequent pattern mining for the analysis of

spatio-temporal databases was introduced by Tsoukatos and Gunopulos [177]. Their

algorithm is based on the SPADE algorithm [197], which was originally proposed for

mining frequent subsequences from sequence databases. Both algorithms represent

the search space for frequent subsequences as a lattice and then traverse the lattice to

identify frequent subsequences that occur in the dataset. The two algorithms differ

by the method that is used to search the lattice and by the results they produce. The

SPADE algorithm performs a lattice-decomposition to obtain sublattices on which

it can perform localized in-memory breadth-first search to find all frequent subse-

quences. Tsoukatos and Gunopulos’s algorithm, on the other hand, uses a depth-first

search on the entire search space lattice and finds only maximal frequent subse-

quences, i.e., frequent subsequences for which no supersequences exist that are also

frequent. Many authors have since focused on developing improved algorithms for the

mining of patterns from spatio-temporal databases and in particular moving object

databases. Other than in classical subsequence mining, the data stored in moving ob-

ject databases is inherently noisy and exact subsequences are rarely found. Wang et

al. [191] and Hwang et al. [91] introduced algorithms specifically for the detection of

grouping behavior among moving objects. In both cases the algorithms are intended

to find patterns which resemble the movement of multiple objects in unison along

similar trajectories. In [191] the trajectories are represented as sequences of observa-

tion points, and Wang et al. proposed algorithms which identify similar trajectories

by permitting a certain level of spatial and temporal mismatch when comparing ob-

servation points of two trajectories. The two algorithms Wang, et al. proposed have

been derived from the well-known frequent pattern mining algorithms Apriori [6] and

FP-growth [82] and extended to allow for the desired “fuzziness” when comparing

observation points. The Apriori algorithm exploits the property of frequent itemsets

that every subset of a frequent itemset is also a frequent itemset, to efficiently prune

the search space for frequent itemsets. The FP-growth algorithm, on the other hand,

first encodes the data set in a data structure called FP-tree and then extracts frequent

itemsets from this data structure directly.

Hwang et al. extended the algorithms proposed in [191] by representing trajec-

tories as sequences of line segments rather than observation points, so that for each



144

point along a trajectory, the distance to another trajectory can be determined. This

approach improves the quality of results compared to those obtained in [191] and is

in particular superior when observations are sparsely distributed along trajectories.

Similarly, Cao et al. described an approach allowing trajectory data to be noisy and

imprecise by employing a line simplification method which locally removes segment

points from a trajectory if they are within a certain distance to the resulting trajec-

tory. Frequent patterns are then determined based on the simplified trajectories [27].

With a focus on mining periodic spatio-temporal patterns, Mamoulis et al. pro-

posed two algorithms: STPMine1 and STPMine2 [116]. Both algorithms consider

trajectories as sequences of locations that have been sampled in uniform time inter-

vals. To determine frequent periodic patters within these trajectories, both algorithms

first employ a clustering of locations that have been sampled at time steps that are

multiples of a fixed period length apart from each other. The clustering determines

dense regions of locations, and regions with a number of locations below the minimum

support are discarded. The remaining regions are then considered frequent 1-itemsets

from which the STPMine1 (Apriori-based) and STPMine2 (FP-growth-based) algo-

rithms can generate all remaining frequent itemsets. While the generation of the

remaining frequent itemsets is efficient, especially when using the STPMine2 algo-

rithm, the generation of the initial frequent 1-itemsets is costly for both algorithms,

as it requires the use of expensive clustering methods.

Two interesting application scenarios for the mining of patterns from moving ob-

ject databases are described by Peng and Chen in [143] and Gidófalvi and Pedersen

in [62]. Peng and Chen addressed the problem of data allocation in mobile commu-

nication systems and how the identification of frequent patterns in the movement of

the system’s users can help to optimize the allocation of system resource and improve

the system’s performance [143].

In [62], Gidófalvi and Pedersen focused on the problem of identifying ride-share

opportunities for commuters. Their dataset consisted of long-term route information

for a number of cars that were equipped with GPS recording devices. Gidófalvi and

Pedersen’s approach employs a frequent pattern mining algorithm that finds closed

frequent itemsets and is based on a database projection method allowing the algorithm

to be entirely implemented in SQL and executed on the database system storing the



145

actual trajectory data.

7.2.2 Extending OLAP Query Languages

The easiest way to provide a universally accessible OLAP framework for moving object

data is by extending the already existing query languages offered by data warehouses

with syntax that enables the desired OLAP functionality. In this chapter we introduce

the GROUP TRAJECTORIES operator and adopt the idea of extending the SQL syntax to

simplify OLAP queries from Gray et al., who first proposed a similar extension with

the CUBE operator in [70]. Gray et al. suggested to extend SQL’s GROUP BY syntax

to allow the inclusion of grouping functions in the GROUP BY list. This approach

is illustrated with an example application that uses the grouping functions Day to

map timestamps to individual days, and Country to map longitude/latitude pairs to

distinct country names:

SELECT day, nation, MAX(Temp) FROM Weather

GROUP BY Day(Time) AS day,

Country(Latitude, Longitude) AS nation;

7.3 OLAP for Trajectories

Consider N moving objects, each identified by a unique tag number i. Object move-

ments are recorded through a set of readings (i, t, (x, y)) indicating that object i

was located at position (x, y) at time t. The N moving objects are represented by

a relational table objects with N records. Each record contains attributes such as

tag, name, size, color, etc. describing an object in a traditional relational manner

that can be represented as a Star schema [31]. Among these attributes is an at-

tribute trajectory representing the movement of the respective object as a sequence

[(x1, y1, t1), (x2, y2, t2), . . . , (xm, ym, tm)] of positions at times t1, t2, . . . , tm. Our goal

is to group objects with respect to attribute dimension trajectory. For this purpose,

we define a new operator GROUP TRAJECTORIES, which returns for each trajectory a

group identifier, and then proceeds with standard OLAP aggregation according to

the group identifiers instead of the trajectories themselves.

In this section we present two different implementations of the operator GROUP TRA-

JECTORIES, which compute groups of trajectories that are appropriate for OLAP



146

analysis in different application scenarios: Group by Overlap and Group by Intersec-

tion.

7.3.1 General Framework and Preprocessing

We begin with an outline of the high-level framework and preprocessing steps for

the two implementations of the GROUP TRAJECTORIES operator. The details of these

implementations are then discussed in Sections 7.3.2 and 7.3.3.

The analysis of trajectories begins with a preprocessing step. The goal of this

preprocessing step is to prepare the set of input trajectories T for the further pro-

cessing by one of the implementations of our GROUP TRAJECTORIES operator. The

preprocessing stage is composed of three parts: (1) the mapping of trajectories to

sequences of distinct items, (2) the extraction of frequent patterns from the set of

mapped trajectories, and (3) the reverse association of frequent itemsets with sets of

trajectories that contain them.

As discussed earlier, the readings of real-world trajectories are often inherently

noisy and, even though two trajectories follow approximately the same path, the

attribute values of their readings may differ. This issue is addressed in the first part

of the preprocessing stage by transforming the attribute values of each reading into

corresponding discretized dimensions whose resolution is selected by the user. The

motivation behind this transformation is two-fold: (1) noise and minor variances

within trajectories are being compensated by mapping fine-grained coordinates to a

coarser-grained grid, and (2) the user has control over the granularity of the mapping

in an interactive manner.

This transformation of attribute values is also applied to the time dimensions,

allowing trajectories to be analyzed at different level of time resolution. For example,

the time granularity “day” may be sufficient for a high-level analysis of GPS data for

the movement of a fleet of ships. An analysis of the set of paths taken by a group of

ships entering a port, on the other hand, may require a time granularity “minute”.

Following the mapping of each trajectory’s time/position pairs into a discrete

space, individual readings from different trajectories may now be mapped onto the

same discrete attribute values and consequently can be considered equivalent. Based

on this property, we now employ frequent itemset mining using an external tool



147

set [110] to identify sets of distinct time/position pairs that are shared among a min-

imum number of trajectories. We specifically mine for closed frequent itemsets, which

are frequent itemsets for which any superset does not have the same support [138].

We refer to each of these sets as a frequent itemset and call the number of trajec-

tories which share the frequent itemset the “support” of the frequent itemset. The

minimum support an itemset must have to be considered frequent is user-specified

and allows the user to control the size of initial groups of trajectories that should be

considered for further analysis.

Additionally we apply a threshold on the size of each frequent itemset, which is

also controlled by the user. It allows the user to limit the frequent itemsets to those

which contain a minimum number of items. The motivation for this threshold is that

frequent itemsets with a larger number of distinct items corresponds to longer shared

paths, while frequent itemsets with fewer items correspond to shorter shared paths.

The rationale for this is that we assume longer shared paths to be more interesting

than shorter paths. This method can be analogously applied to prefer shorter paths.

The last step of the preprocessing is dedicated to the mapping of frequent item-

sets back to the sets of trajectories that contain them. For each frequent itemset

f , we determine the set C of trajectories such that each trajectory contains all of

the time/position pairs in f . We let C be the set of all pairs (f, C), where f is a

frequent itemset and C is the corresponding set of trajectories. After the completion

of the preprocessing phase, the group merging phase follows, which employs our new

GROUP TRAJECTORIES operator. The details of our two versions of the GROUP TRAJEC-

TORIES operator Group by Overlap and Group by Intersection are discussed in the

following subsections.

7.3.2 Group by Overlap

The Group by Overlap method, shown in Algorithm 7.1, introduces a parameter,

called the overlap ratio threshold (ORT), that controls the strength of the grouping

process. The interactive OLAP environment discussed in Section 7.4 allows for an

interactive modification of this parameter. The method uses a relationship graph

Γ whose vertices correspond to the trajectories. For each frequent itemset f and

corresponding set C of trajectories, we consider all pairs of trajectories (ti, tj) with



148

ti

tj

f

(a) (b)

g
i

g
j

g     g 
U

i j

Figure 7.3: Illustration of (a) Overlap Ratio and (b) Intersection Ratio.

ti ∈ C and tj ∈ C and add an edge (ti, tj) to Γ if 2·|f |
|ti|+|tj |

≥ ORT . We call 2·|f |
|ti|+|tj |

the overlap ratio of the trajectories. The intuition is to quantify the amount of

overlap between two trajectories relative to their sizes. Figure 7.3a illustrates the

relationship between trajectories and their overlap that is characterized by a frequent

itemset. The resulting graph Γ then contains edges between those trajectories that

have an overlap ratio of at least ORT . We then compute the connected components

of graph Γ and report each connected component as a group of trajectories. The

nature of the obtained groups of trajectories is characterized by two factors: (1) the

overlap ratio threshold determines how much overlap two trajectories must have to

be considered to belong to the same group, and (2) the construction of connected

components captures transitivity among trajectories and, thus, cascaded “relay”-

type movements, as illustrated in Figure 7.2b. Depending on the chosen overlap ratio

threshold, objects will have to move in unison for more or less of their own individual

movements to form cascading trajectories.

7.3.3 Group by Intersection

The Group by Intersection method is shown in Algorithm 7.2. It introduces a

parameter called the intersection ratio threshold (IRT), which is used to control how

aggressively groups are formed. In an interactive OLAP environment, this parameter

can be modified interactively as part of the explorative analysis process. The Group by

Intersection algorithm first creates an initial set G of groups of trajectories, where each

group C is the set of trajectories associated with a frequent itemset f as determined in

the preprocessing step discussed in 7.3.1. Each group C is assigned a group strength



149

Algorithm 7.1 Group by Overlap

Input:
1. Set T of trajectories,
2. Set C of mappings from frequent itemsets identified using [110] to sets of
trajectories as determined in Section 7.3.1,
3. Overlap ratio threshold ORT .

Output: Set of groups G

Build relationship graph Γ = (VΓ, EΓ)

1: Initialize set of vertices VΓ ← T
2: Initialize set of labeled edges EΓ ← ∅
3: for all (f, C) ∈ C do
4: for all pairs (ti, tj) with ti ∈ C and tj ∈ C do

5: Add an edge (ti, tj) to EΓ if 2·|f |
|ti|+|tj |

≥ ORT

6: end for
7: end for

Determine overlap groups in Γ

8: Compute connected components G of graph Γ
9: Remove singletons from G
10: return G

GS(C), which is initially set to the size of the corresponding frequent itemset. Using

the unweighted size of the frequent itemset allows us later to identify groups that

are characterized by long frequent itemsets. The remainder of our method merges

groups in G by iterating the following loop (Lines 6-20 in Algorithm 7.2): for each

pair gi, gj ∈ G, compute the intersection ratio IR(gi, gj) = min
(

|gi∩gj |

|gi|
,
|gi∩gj |

|gj |

)

, which

represents the number of trajectories that occur in both gi and gj, relative to the sizes

of gi and gj. The intuition behind this definition is that pairs of groups that share

a large percentage of their trajectories are more strongly related to each other than

pairs that do not share as many trajectories relative to their group sizes. Figure 7.3b

illustrates a pair of trajectory groups and the trajectories they share. After computing

the intersection ratio, we consider only those pairs (gi, gj) as candidates for merging

whose intersection ratio is larger than the intersection ratio threshold. The parameter

allows control of how strongly related two trajectory groups are required to be to

qualify for merging. For each qualifying pair (gi, gj), we compute its merge strength,

which is the average of their group strength values: MS(gi, gj) =
GS(gi)+GS(gj)

2
. The

merge strength represents the average support in terms of shared locations the new



150

Algorithm 7.2 Group by Intersection

Input:
1. set C determined as in Section 7.3.1 using [110]
2. Intersection Ratio Threshold IRT .

Output: set of groups G

Create initial set of intersection groups

1: G ← ∅
2: for all (f, C) ∈ C do
3: G ← G ∪ {C}
4: set initial Group Strength GS(C) = |f |
5: end for

Merge intersection groups

6: repeat
7: for all gi, gj ∈ G, gi 6= gj do
8: set Intersection Ratio

IR(gi, gj) = min
(

|gi∩gj |

|gi|
,
|gi∩gj |

|gj |

)

9: if IR(gi, gj) > IRT then
10: set Merge Strength

MS(gi, gj) =
GS(gi)+GS(gj)

2

11: else
12: set Merge Strength MS(gi, gj) = 0
13: end if
14: end for
15: find (gi′ , gj′) for which MS(gi′ , gj′) is maximal
16: if MS(gi′ , gj′) 6= 0 then
17: G ← (G \ {gi′ , gj′}) ∪ {gi′ ∪ gj′}
18: set Group Strength

GS(gi′ ∪ gj′) = MS(gi′ , gj′)
19: end if
20: until MS(gi′ ∪ gj′) = 0
21: return G



151

group receives from each contributing group independent of the actual number of

trajectories in the group. We chose to not weight the merge strength by the size

of the groups that contribute to the merged group as the goal of the merging is to

identify groups that are supported by long frequent itemsets. The influence of the

number of trajectories in each group is only intended to impact the intersection ratio

and otherwise have no influence on the grouping process. Hence, the number of

trajectories in each group is not considered when computing the merge strength.

All candidate pairs are then ranked by their merge strength and a pair (gi′ , gj′)

with maximum merge strength is merged to produce a new group. The intuition

for using a pair with maximum merge strength is that the average support in terms

of shared locations in the resulting group is highest. This implies that trajectories

within the group are oi average supported by more shared locations than in other

groups and are consequently characterized by longer frequent itemsets. The group

strength GS(gi′ ∪ gj′) of the new merged group is the merge strength MS(gi′ , gj′) of

the pair (gi′ , gj′). This process is repeated until there are no more pairs of groups

with intersection ratio larger than the intersection ratio threshold and non-zero merge

strength.

The Group by Intersection method aggregates subsets of trajectories that consti-

tute a movement of individual objects in parallel similar to that of a marching band

or a flock of birds. The nature of the obtained groups of trajectories is characterized

by: (1) the intersection ratio threshold, which determines how many shared trajec-

tories between two groups are “sufficient” for them to be merged, and (2) the merge

strength, which favors the merging of groups that are supported by long frequent

itemsets. Thus, groups that are merged do not only share trajectories, but share

trajectories that are supported by long and interesting frequent itemsets. We first

merge those candidate groups whose shared trajectory segments are longest and then

proceed top-down, merging groups with shorter shared trajectory segments. Unlike

the Group by Overlap method, which combines sequences of trajectories, the Group

by Intersection method combines parallel trajectories.



152

Figure 7.4: Screenshot of the interactive environment for OLAP For Trajectories.

7.4 Interactive OLAP for Trajectories

The algorithms for the two different versions of the GROUP TRAJECTORIES operator

presented in Section 7.3 are guided by the following parameters:

• Space resolution,

• Time resolution,

• Minimum support of a frequent itemset,

• Intersection ratio threshold, and

• Overlap ratio threshold.

This provides an opportunity for an interactive OLAP analysis of groups of trajecto-

ries at various levels of resolution or “connectedness.” For example, consider the anal-

ysis of tracking data from GPS-enabled trucks. A high-level analysis of trajectories

belonging to trucks that travel long distances may be sufficient at a time-dimension

granularity of “day.” However, an analysis of trajectories that belong to trucks within

an urban area may require a time-dimension granularity of “minute” to capture more

detailed movement patterns. This approach suggests to provide the user with the



153

ability to browse the parameter space interactively and allow the parameters to be

adjusted as necessary for a given analysis objective. As an example for browsing a

parameter like the overlap ratio threshold, consider a set of trajectories representing

movements of people who pass on a disease virus. The grouping determined by the

Group by Overlap method could be used to analyze the total movement of the virus.

In this example, the overlap ratio threshold would represent the amount of interac-

tion between individuals required to pass on the virus. Changing the threshold value

allows to evaluate how far the virus will spread based on different assumptions about

its transmission. A prototype of an interactive environment for the OLAP analysis of

trajectories is shown in Figure 7.4. The interactive environment allows for resolution

drill-down and roll-up, as well as parameter browsing. The system visualizes an im-

plementation of the two GROUP TRAJECTORIES operators presented in this chapter. It

does not yet include other OLAP functionality, such as spatio-temporal aggregation

or aggregation with respect to other feature dimensions. The system allows to explore

the results of the GROUP TRAJECTORIES operators depending on different resolution

and threshold values for several synthetic and real-life data sets.

7.5 Experimental Evaluation

The experimental evaluation of the GROUP TRAJECTORIES operators presented in this

chapter is divided into four parts. Section 7.5.1 provides a detailed analysis of

each algorithm using appropriate examples. In Section 7.5.2 the robustness of the

GROUP TRAJECTORIES operators against background noise is evaluated. Section 7.5.3

then investigates the influence of the algorithms’ parameters on the results produced.

Finally, Section 7.5.4 concludes the experimental evaluation with results obtained

using real-world data and compares them to results obtained using frequent pattern

mining only.

7.5.1 Detailed Analysis

In this section we evaluate our algorithms with respect to a variety of synthetic

scenarios that are carefully designed to demonstrate the strengths and weaknesses of

the grouping algorithms. Each scenario addresses a specific property of the dataset

and evaluates the influence of changing that property on the results obtained by both



154

Dataset A2

Dataset A1

F1

F3
F2

F3

F1

F2

Figure 7.5: Two datasets each containing three closed frequent itemsets but with
different associated overlap.

of our algorithms.

Overlap

The overlap property represents the number of shared frequent items (grid cells)

between at least two trajectories compared to their total lengths. This property

is used by the Group by Overlap algorithm to identify trajectories that should be

grouped together.

Figure 7.5 shows two datasets, each containing three frequent itemsets with a

minimum support of 2. The frequent itemsets are closed, that is, there are no fre-

quent itemsets with the same or greater support that are supersets of the frequent

itemsets shown. Both datasets are identical except for the change in the length of

the overlapping trajectories that appear to connect the “left” and the “right” side

of each dataset: the number of shared locations in frequent itemset F3 changes from

|F3| = 1 to |F3| = 2.

Figure 7.6 shows the resulting groups for each of our algorithms when applied to

dataset A1. For the Group by Overlap algorithm, we chose an overlap ratio threshold

of ORT = 0.25; for the Group by Intersection algorithm, we chose an intersection

ratio threshold of IRT = 0.25. None of our algorithms combines the groups on ei-

ther side of the overlap, as the overlap ratio OR = 1/6 does not satisfy the overlap

ratio threshold ORT = 0.25, and the intersection ratio of IR = 1/5 for the associa-

tion of the overlapping trajectories with the shorter trajectories does not satisfy the

threshold IRT = 0.25 required for grouping by intersection. Hence, for the Group by



155

(a) Group by Overlap

(b) Group by Intersection

Figure 7.6: Grouping results for dataset A1 with ORT and IRT set to 0.25 respec-
tively.

(a) Group by Overlap

(b) Group by Intersection

Figure 7.7: Grouping results for dataset A2 with ORT and IRT set to 0.25 respec-
tively. Note, the change in overlap results in a different grouping for Group by Overlap

when compared to dataset A1.

Intersection algorithm, each of the overlapping trajectories is present in two groups

(represented as dashed lines in Figure 7.6), one group for each closed frequent itemset

it shares.

When increasing the length of the overlap between the “left” and the “right” side

from |F3| = 1 to |F3| = 2 shared frequent items in dataset A2, the overlap ratio for the

overlapping segment changes from 1/6 to 2/7 and consequently satisfies the overlap

ratio threshold of ORT = 0.25. This results in the merging of the “left” and “right”

side into a single group by the Group by Overlap algorithm, as shown in Figure 7.7.

The result of the Group by Intersection algorithm does not change, as the length of

the overlap does not affect the intersection ratio.



156

Dataset B1

F1 → g1, |g1| = 11

F3 → g3, |g3| = 4 F2 → g2, |g2| = 11

Dataset B2

F1 → g1, |g1| = 12

F3 → g3, |g3| = 6 F2 → g2, |g2| = 12

Figure 7.8: Changing the Intersection Ratio by changing the number of parallel tra-
jectories.

(a) Group by Overlap

(b) Group by Intersection

Figure 7.9: Grouping results for dataset B1 with ORT and IRT set to 0.2, respec-
tively.

Intersection

The Intersection Ratio between two groups is the number of trajectories shared be-

tween the groups relative to the size of the larger of the two groups. This property is

used by the Group by Intersection algorithm to recursively identify groups that can

be merged.

Figure 7.8 illustrates two datasets, each containing three closed frequent itemsets

with a minimum support of 4. Both datasets are identical except for two additional

trajectories added to dataset B2. The added trajectories have an influence on the

intersection ratio between the initial groups that are formed from the three frequent

itemsets.



157

(a) Group by Overlap

(a) Group by Intersection

Figure 7.10: Grouping results for dataset B2 with ORT and IRT set to 0.2, respec-
tively. Note, the increase of intersection size results in a different grouping for Group

by Intersection when compared to dataset B1.

Figure 7.9 shows the results for each of our grouping algorithms when there are

only two trajectories on every side overlapping with the trajectories of the other side

(dataset B1). The Overlap Ratio Threshold ORT and Intersection Ratio Threshold

IRT were both chosen to be 0.2. For the Group by Intersection algorithm, the initial

groups g1, g2 and g3 are created from the frequent itemsets F1, F2 and F3, respectively.

Since the size of the intersection between groups g1 and g3, or g2 and g3 is only of

size 2, and g1 and g2 each have 11 trajectories, the intersection ratio of IR = 2/11

does not satisfy the requirement of IRT = 0.2. Hence, the Group by Intersection

algorithm does not combine the groups into a single group. Similarly, the overlap of

|F3| = 1 is not sufficient to match the required overlap ratio threshold ORT = 0.2

for the Group by Overlap algorithm.

However, the Group by Intersection algorithm is able to combine groups if the size

of the intersection is increased so that the requirement of IRT = 0.2 is satisfied for the

candidate groups. For the first merge iteration, the example contains two candidate

groups g1 ∪ g3 and g2 ∪ g3, both with an intersection ratio of 3/12 = 0.25. Since both

candidate groups have the same merge strength, either group can be chosen to be

created first. Assume group g1 ∪ g3 is chosen to be created first. The next merge

iteration then contains a single candidate group (g1∪g3)∪g2 with an intersection ratio

of 3/15 = 0.2. The intersection ratio 0.2 satisfies the requirement IRT = 0.2, and the

group is created, resulting in a single group containing all trajectories in dataset B2



158

as shown in Figure 7.10. In this scenario the Group by Overlap algorithm is not able

to combine the groups, as the size of the intersection does not have an influence on

the overlap ratio between two trajectories.

The experiments discussed in this section demonstrate the detailed behaviour of

our algorithms for carefully designed synthetic datasets and explore various boundary

cases of our algorithms. The experiments show the different properties of the input

dataset for which either our Group by Overlap algorithm or our Group by Intersection

algorithm is better suited to identify groups. For the Group by Overlap algorithm,

the experiments show that the algorithm favours the combination of groups whose

trajectories have a sufficient amount of locations in common. It can therefore be

used to identify groups of trajectories that are formed by sequentially connected

trajectories, where each “connection” must be of a certain length in comparison to the

length of each trajectory in the group. The experiments for the Group by Intersection

algorithm, on the other hand, show that the algorithm is better suited for identifying

groups that are composed of trajectories that run in parallel. It favors the merging of

groups that have entire trajectories in common, i.e., trajectories that run in parallel,

and the number of trajectories in common is at least a given fraction of the size of each

group. Thus, if the goal is to identify groups that are formed by the partial overlap

of trajectories, the Group by Overlap algorithm should be applied. If groups should

be identified that have many parallel trajectories, then the Group by Intersection

algorithm is a more adequate choice.

7.5.2 Robustness Against Noise

We tested the robustness of the GROUP TRAJECTORIES implementations against back-

ground noise. For that, we created a synthetic dataset of 10 groups with 10 trajec-

tories each, and then added random trajectories as background noise. Figure 7.11a

shows four input datasets, all containing the same groups but each with a different

amount of background noise. For this example we have chosen datasets with 0% (no

noise), 50%, 75% and 95% noise. The percentage of noise is specified with respect

to the total number of trajectories in the dataset. The subject of the evaluation is:

What level of noise can be present in the input data while maintaining a correct re-

sult? Here, correctness means that GROUP TRAJECTORIES reports the original groups



159

(a) Input data with 0%, 50%, 75% and 95% noise respectively.

(b) Groups identified by frequent itemset mining.

(c) Groups identified by Group by Overlap with ORT = 0.5.

(d) Groups identified by Group by Intersection with IRT = 0.5.

Figure 7.11: Groups identified by each of our algorithms from a dataset with varying
levels of noise. The input parameters were set to a space resolution of 5, a minimum
support of 4 and a minimum frequent itemset length of 4.

and discards the randomly added trajectories. Figure 7.11b shows the initial groups

obtained by the frequent itemset mining algorithm before applying the Group by

Overlap or Group by Intersection algorithm. The frequent itemset mining algorithm

identifies 51 groups for noise levels of 0%, 50% and 75% and 52 groups for a noise

level of 95%. While it eliminates most of the noise from the input data, it does not

identify a suitable grouping of the remaining trajectories, as it does not capture the

relationships between trajectories characterized by different frequent itemsets. The

Group by Overlap algorithm on the other hand identifies for each dataset the correct

set of 10 distinct groups (see Figure 7.11c). It improves on the grouping obtained



160

from frequent itemset mining, and the 10 groups it identifies sufficiently represent

the original groups. Only 16% of trajectories that belong to groups in the input

dataset were not captured by the algorithm. These false negatives, i.e. trajectories

that should be detected, but are not, can be attributed to the choice of resolution

used for the discretization of the trajectories as their discretized representation does

not generate any frequent itemsets. Those trajectories are not characterized by any

frequent itemset and, thus, could not have been included in the final grouping. For

this example, at 95% noise, the frequent itemset mining also classifies only a single

trajectory (1.18%) as a false positive, i.e. a trajectory that should not be detected,

but is detected regardless, which subsequently is reported as part of a final result

group determined by the Group by Overlap algorithm.

Figure 7.11d shows the final groups identified by the Group by Intersection algo-

rithm. It improves on the grouping determined by frequent itemset mining. However,

as it shares the same preprocessing steps with the Group by Overlap algorithm it is

also missing the 16% of trajectories that are not found by the frequent itemset min-

ing. For this scenario, the Group by Intersection algorithm does not produce the

same quality of groups as the Group by Overlap algorithm. For the 0% and 50% noise

levels, it produces 12 final groups; and for 75% and 95% noise levels, it produces 13

final groups, resulting in some trajectories not being grouped together in the same

group, though still being reported as a separate group. Depending on the applica-

tion scenario, this deficiency is acceptable, as the overall result is still superior when

compared to results obtained by frequent itemset mining only. Note, at a noise level

of 95%, it becomes difficult for the human eye to visually detect the original groups;

however, both GROUP TRAJECTORIES methods still report very good results.

7.5.3 Input Parameters

In this section we examine the influence of the algorithms’ input parameters on the

results produced. As input data, we use a synthetic dataset that consists of a mix

of groups of trajectories. Some groups are of the type that is best for Group by

Overlap, and some groups are of the type that is best for Group by Intersection. The

dataset is shown in Figure 7.12. It consists of three spirals with parallel paths in

each spiral for a total of 24 groups. While a spiral-like movement is not a pattern



161

Figure 7.12: Synthetic dataset with 24 groups each consisting of 10 trajectories and
a partial overlap of approximately 25%.

commonly occurring in real world data, it represents a challenging pattern for our

methods. Note the subdivision of the spiral into several color-coded segments. Each

such segment represents a group of trajectories that are moving in unison. To achieve

a more realistic movement, a small random variance is added to the movement of each

trajectory. Furthermore, each segment overlaps with the previous and the following

segment.

The parameters whose influence on the results obtained by our algorithms we

examine are the resolution at which the frequent pattern mining is performed, the

overlap ratio threshold (ORT ) parameter of the Group by Overlap algorithm, and the

intersection ratio threshold (IRT ) parameter of the Group by Intersection algorithm.

Resolution

The resolution parameter determines the discretization of the space that is performed

before the mining of the frequent itemsets from the trajectories. It is used to generalize

the trajectories’ locations so that locations that are mapped to the same grid cell are

regarded as identical locations. This approach reduces noise and local variances in

trajectories and allows for more meaningful frequent itemsets to be found. It has a

strong influence on the quality of the final groups found by our algorithms. Figure 7.13

shows the results of both of our algorithms for the dataset described above, a set of

fixed parameters min support = 4, min length = 4, ORT = 0.2, IRT = 0.2, and

a variable resolution between 2 and 8 bits across the extent of each dimension. We

observe that the Group by Overlap algorithm indeed favors the overlapping spiral

segments and eventually identifies one group for each spiral for a total of 3 groups at



162

(a) Group by Overlap

(b) Group by Intersection

Figure 7.13: Groups identified by each of our algorithms at levels of resolution between
2 and 8 (left to right). Fixed parameters are min support = 4, min length = 4,
ORT = 0.2, IRT = 0.2.

resolution levels of 5 and 6 bits. The Group by Intersection algorithm, on the other

hand, does not make use of the overlap between the segments and cannot clearly

identify individual spirals. Even at higher resolutions, when the generalization of the

trajectories becomes less effective, our Group by Intersection algorithm can still be

used to identify individual segments of the spirals that constitute parallel movements.

Although, it detects 21 groups at resolutions 6 and 7, the quality of these groups

does not appear to be as good as the quality of the 18 groups detect at resolution

4. We can also observe, that due to the choice of resolution some details about

trajectories are lost. In particular groups at the centers of the spirals are affected

and are either not detected or grouped together into larger groups. Note, that at

lower and higher resolutions the sizes of the detected groups significantly decrease

compared to medium resolutions. This can be attributed to the fact that at lower

resolutions most frequent itemsets do not satisfy the minimum length of at least 4

items, and at higher resolutions frequent itemsets do not satisfy the minimum support

of 4 trajectories due to the variance in the trajectories.

Figure 7.14 illustrates the relationship between the level of resolution and the

number of groups identified by each algorithm. It can be observed that the Group

by Intersection algorithm tends to identify many, but smaller groups, while Group by

Overlap favors fewer but larger groups.



163

 0

 5

 10

 15

 20

 25

0 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r 

o
f 

g
ro

u
p

s

Level of resolution

Number of groups vs. resolution (ORT = 0.2 / IRT = 0.2)

Group by Overlap
Group by Intersection

Figure 7.14: Number of groups each algorithm identifies for the given input dataset
depending on the resolution. Note, Group by Overlap tends to identify fewer but
larger groups, Group by Intersection, on the other hand, identifies more but smaller
groups.

Overlap Ratio Threshold and Intersection Ratio Threshold

The overlap ratio threshold (ORT ) and intersection ratio threshold (IRT ) input

parameters for our GROUP TRAJECTORIES implementations influence their sensitivity

towards identifying groups.

Using the dataset in Figure 7.12, we tested our GROUP TRAJECTORIES implemen-

tations for various values of ORT and IRT. The results are shown in Figure 7.15.

We observe that, for lower values of ORT and IRT , the identified groups become

larger in size, but fewer groups are identified. This behavior is expected, as a lower

threshold provides less constraints on the formation of groups. For larger values of

ORT and IRT , on the other hand, the algorithms become more restrictive in terms

of identifying and merging groups, and other, more subtle patterns are detected.

In the example shown in Figure 7.15, theGroup by Overlapmethod identifies larger

groups for low values of ORT , and reports the entire spirals with a total of 3 groups



164

(a) Group by Overlap

(b) Group by Intersection

Figure 7.15: Groups (identified by color) computed by both of our methods for ORT
= IRT = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 (min support = 4, min length = 4).

for ORT = 0.1 and ORT = 0.2. The identified groups become closer to the initial

set of groups of trajectories in the spirals as the value for ORT increases. For large

values of ORT , there is insufficient overlap between parallel paths and the reported

groups become smaller to a point where individual trajectories are not grouped any

more and are being discarded as singletons. For the Group by Intersectionmethod, we

observe that the number of groups reported increases from 11 for IRT = 0.1 to 1594

for IRT = 0.9 with increasing values for IRT as the algorithm becomes more and

more discriminating between the initial groups formed by frequent itemset mining,

eventually reporting almost each individual frequent itemset as a separate group. A

summary of the number of groups reported as a function of ORT = IRT is given in

Figure 7.16.

7.5.4 Real World Data

For the evaluation of our methods on real-world data, we have chosen the school buses

dataset that can be freely obtained from [175]. The dataset contains 145 trajectories

of buses that are moving in and around an urban area.

Figure 7.17a shows the majority of the data set around the urban center (a few

routes going to far out places were removed to better display the data). Figure 7.17b

represents the 76 groups that are identified by applying only frequent pattern mining

(as e.g. in [27,62,116]) (plus a minimum length cutoff as used in our methods). The

large number of groups reported by frequent-pattern-mining-based methods is often a



165

 1

 10

 100

 1000

 10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u

m
b

e
r 

o
f 

g
ro

u
p

s

OST/AST

Number of groups vs. OST/AST

Group by Overlap
Group by Intersection

Figure 7.16: Relationship between the number of identified groups and values for
Overlap Ratio Threshold ORT and Intersection Ratio Threshold IRT .

disadvantage because it may lead to very little aggregation in an OLAP setting. Fig-

ure 7.17c shows the groups reported by the Group by Overlap method for ORT values

0.4, 0.5, 0.6, and 0.7. We observe that the parameter ORT in our Group by Overlap

method allows for a much finer control over the grouping of trajectories reported and

that this method reports a considerably smaller number of groups when compared

to the original number of frequent patterns. Additionally, the groups found by the

Group by Overlap algorithm are significantly more distinct than the original frequent

itemsets and one can distinguish sets of trajectories that appear to be grouped due to

their spatial proximity and the locations they share. For example, the orange group

in Figure 7.17c for ORT = 0.5 primarily includes trajectories in the southern region

of the sample dataset. For the larger ORT values of 0.6 and 0.7, however, this group

is no longer identified, as the overlap among trajectories in this group does not satisfy

the ORT constraint anymore. The groups that remain for ORT values of 0.6 and

0.7 are spatially smaller and denser groups where many trajectories share locations

within a smaller spatial region. This selectivity of groups depending on the values

of ORT makes the Group by Overlap algorithm a good choice for the analysis of the



166

(a) Entire dataset. (b) Groups reported (identified by
color) using frequent itemset min-
ing only (76 groups).

(c) Groups reported (identified by color) using Group by Overlap and
ORT = 0.4, 0.5, 0.6, 0.7 (min support = 5, min length = 30).

(d) Groups reported (identified by color) using Group by Intersection

and IRT = 0.05, 0.35, 0.64, 0.95 (min support = 9, min length = 18).

Figure 7.17: Results obtained for the School Buses Dataset.

given dataset. It furthermore enables an interactive exploration of moving object

data and helps discovering hidden relationships among the moving objects.

Figure 7.17d shows groups within the real-world dataset that have been identi-

fied using our Group by Intersection algorithm. At a first glance the groups that

are identified by the Group by Intersection algorithm are not as distinct as those

identified by the Group by Overlap algorithm. However, the Group by Intersection

algorithm does exhibit a very subtle selection of groups with properties that satisfy

the intersection ratio threshold (IRT). Assume the example dataset represents the

trajectories of roaming individuals and the subject of the analysis is the spreading of



167

an infectious disease, where a transfer of the disease is only likely when a critical mass

of individuals in the same location is met. Given an IRT value of 0.05, i.e. a critical

mass of 5% of the population in a particular location, we can see in the left-most plot

in Figure 7.17d that there are two distinct groups (red and green) which are able to

carry the disease. If the critical mass increases to 65%, i.e. IRT = 0.65 (third plot

from the left), we observe that the Group by Intersection algorithm identifies more

distinct groups that can carry the disease; however, the population in each group is

much smaller. Assuming the origin of a disease infection is known, the use of this

algorithm can help to quickly identify populations that may be at risk.

7.6 Summary

In this chapter we have introduced a novel approach for the evaluation of group-by

queries over trajectories to facilitate an OLAP-like analysis of moving object data.

This approach leads naturally to a number of possible extensions (see Appendix C).

We introduced the concept of the GROUP TRAJECTORIES group-by operator and pro-

vided two implementations of this operator. Our approach builds on top of the

established frequent pattern mining method, which is readily available in many data

warehousing systems, while improving its results by making them more suitable for

interactive analysis. Each of our two algorithms is designed to group trajectories that

exhibit a particular type of movement, and we support this claim with a detailed

experimental evaluation using synthetic and real-world datasets.



Chapter 8

Conclusion

In this thesis we have investigated computational methods for the design and imple-

mentation of spatial OLAP systems. The main challenges of spatial OLAP systems,

when compared with traditional OLAP systems, is the integration of new spatial data

types with all aspects of a typical OLAP system in a uniform manner. As such a

spatial OLAP system must support the evaluation of OLAP queries over data with

dimension hierarchies represented by spatial and non-spatial attribute values as well

as spatial and non-spatial measures. Additionally, it must allow for the efficient stor-

age and retrieval of spatial and non-spatial data and provide functions and operators

to facilitate OLAP analysis.

In particular, our focus has been on

• the analysis of spatial dimension hierarchies;

• a pipeline-based query evaluation model for spatial OLAP;

• the indexing of records with spatial and non-spatial attribute values in an effi-

cient and uniform manner;

• operators for the identification of groups in moving object data to support

aggregate analysis.

We elaborate on each of these contributions in Section 8.1 and provide directions

for future work in Section 8.2.

8.1 Contributions

Analysis of Spatial Dimension Hierarchies

Using a simple application example, we have explored the influence of asymmetric,

multiple-alternative, generalized and non-strict spatial hierarchies on the evaluation

168



169

of roll-up and cube queries and how the query results can be expressed. Our findings

identify that generalized and non-strict dimension hierarchies are common in spatial

data but are not readily supported by traditional OLAP models. New spatial OLAP

models must account for these particular types of spatial dimension hierarchies.

A Pipeline-Based Query Evaluation Model for Spatial OLAP

We introduced a pipeline-based model for the evaluation of spatial OLAP queries,

which employs a uniform representation of spatial and non-spatial data while sup-

porting all major spatial dimension hierarchy types. Our model is designed to sat-

isfy critical requirements of spatial OLAP systems, such as performance, flexibility,

and extensibility. In addition, it provides a high level of abstraction and expres-

siveness. A reference implementation of our pipeline-based query evaluation model

called “LISA” is provided and validates the main objectives for the development of

the model. LISA supports complex spatial and non-spatial OLAP queries and demon-

strates high performance and scalability, particularly on modern multi-processor and

multi-core hardware platforms.

Indexing of Records With Spatial and Non-Spatial Attribute Values

We introduce the “geoCUBE” index—a new data structure for the indexing of records

in a spatial OLAP system. It addresses the challenge of indexing attribute values

defined in continuous space, while preserving locality of attribute values and records

by exploiting the recursive nature of the Hilbert space filling curve. In addition, our

geoCUBE index permits efficient batch updates of existing views, and we demonstrate

its effectiveness and superior performance with an experimental evaluation.

Operators for the Identification of Groups in Moving Object Data

We present a new class of GROUP BY operators that facilitate the aggregate analysis of

moving object data while seamlessly fitting into established OLAP query models. Our

new GROUP TRAJECTORIES operators exploit data mining methodologies and transitive

relationships between trajectories to identify groups of moving objects. We present

two variants of the GROUP TRAJECTORIES operator and show our operators can be



170

used to reliably distinguish groups of related trajectories when applied to synthetic

and real-world moving object data.

8.2 Future Work

This thesis has addressed a number of fundamental problems in the design and im-

plementation of spatial OLAP systems. It provides a concrete framework to realize

a spatial OLAP system that can form the basis for future work. In the following we

provide some directions for prospective research opportunities.

Query Languages

While SQL is a powerful and flexible query language, the specific requirements of

traditional OLAP have given rise to alternative query languages that specifically

facilitate OLAP-type analysis, such as MDX, and XML for Analysis [124,125]. These

query languages, however, have been developed for traditional OLAP analysis and do

not provide the feature set required to express queries for meaningful spatial analysis.

Hence, extensions to existing OLAP query languages or new query languages must be

explored to allow data analysts to express complex spatial analysis objectives [22,68].

Spatial Aggregates

Spatial OLAP systems not only support spatial attribute values, but also spatial mea-

sures. Therefore, it is important to define the aggregation of these spatial measures

in order to permit aggregate analysis. Aggregate functions for spatial data types,

such as union and intersection, require further research. Also, many more specialized

application-specific spatial aggregate functions can be considered [39,65,112,139].

Pre-Materialization

To address the high demands on query response time for interactive analysis, many

traditional OLAP systems employ pre-materialization of all or a subset of the views in

the data cube to pre-compute aggregate values and answer queries faster using these

pre-materialized views. Similar techniques can likely provide notable performance

savings for spatial OLAP queries, as the operations involved in spatial analysis are



171

often significantly more complex than for data types involved in traditional OLAP

queries. There exists some initial research on this subject [139,147], but the proposed

methodologies have not yet been integrated into a fully functional spatial OLAP

system that supports spatial and non-spatial data.

Scalable Storage and Computation Platforms

With the increasing amount of spatial and non-spatial data being collected from

location-based services and mobile applications, traditional architectures for data

warehouses and OLAP systems are quickly reaching their limitations. There already

exists a large amount of academic [35, 109, 182] and commercial [123] work to uti-

lize distributed and parallel architectures for traditional OLAP systems. These ap-

proaches can serve as a basis for the extension to spatial OLAP systems. Additionally,

new query evaluation models, such as introduced in Chapter 4, can be designed that

naturally adapt to parallel and distributed architectures.

User Interfaces

One of the greatest outstanding challenges of spatial OLAP is the availability of ap-

propriate user interfaces to support the multi-dimensional analysis of both spatial

and non-spatial data. In traditional OLAP, a tabular representation of dimension

attributes and numerical measures is typical, and the pivot table has become the

de facto standard for navigating analysis results. Spatial data, on the other hand,

presents itself naturally in the form of maps that the analyst is familiar with navi-

gating. While some research suggests that thematic maps, which overlay non-spatial

data on top of spatial data, may be a suitable method for the representation of spa-

tial OLAP results [154, 161], it is not clear whether such an interface is sufficiently

universal to support a broad variety of spatial OLAP analysis objectives.



Appendix A

Optimization Opportunities for LISA

This appendix provides, in some detail, directions for optimization opportunities that

exists in LISA’s current implementation.

A.1 Query Planner and Query Optimization

Although not subject of the investigation in Chapter 5, one of the current major

fundamental drawbacks of our LISA implementation is the lack of an automatic query

planner. A query planner uses a symbolic representation of a query, for example SQL

instructions, and transforms it into a query execution plan. In addition, a query

planner typically also employs a number of algorithms and heuristics in an attempt

to identify an evaluation plan that satisfies specific cost constraints that might be

imposed upon the query.

At this point, our implementation of LISA requires the manual construction of

query plans and their translation into programs that are executable within the LISA

framework. A fully automatic query planner specifically designed for LISA would have

to take into account in which order the different layers involved in the query should

be queried and arrange mini-engines accordingly. In addition, it should consider the

foreseeable load on each mini-engine and identify appropriate points in the data flow

where the use of multiple tracks could be potentially beneficial in satisfying cost

constraints.

Query planners are an important subject of study and a vast amount of research in

this area exists. Although the majority of this research focusses on relational database

systems [79], some research exists that targets other special-purpose models [3,47,167].

172



173

A.2 Implementation Language and Process Model

Another shortcoming of our current LISA implementation is its implementation lan-

guage and the process model it employs. Although not a functional weakness, we

have observed these factors to have a notable impact on LISA’s performance.

LISA’s current primary implementation language is Python, and Python programs

are executed through interpreted byte-code. The primary objective of this language,

however, is not performance but instead to provide a high-level, flexible, and feature-

rich environment for rapid application development using a very clean and structured

syntax. While it has suited our requirements of providing a reference implementation

of LISA well, future development efforts should explore more efficient low-level im-

plementation languages that can be compiled into native machine code, such as C or

C++. Also, as the pipeline-model is closely related to functional computing models,

the use of functional programming languages, such as Haskell, Erlang, or Scala may

remove some complexity from the implementation.

The process model currently used by LISA does not scale well for queries involv-

ing a large number of mini-engines or that make use of a large number of processing

tracks. At this point, each mini-engine is represented as an independent system pro-

cess to allow the operating system to allocate different system resources to different

mini-engines. However, for each process, additional overhead is incurred associated

with scheduling and context switching performed by the operating system. Further-

more, inter-process communication methods, which are required for mini-engines to

exchange information, contribute additional overhead due to their use of mechanisms

for dealing with concurrency and signaling. Both of these issues can be addressed

without undermining the fundamental idea of independent and well encapsulated

mini-engines by employing a hybrid process model. Such a hybrid model can combine

the use of a small number of system processes or threads, which are subject to common

preemptive scheduling, and lightweight cooperatively scheduled “fibres” of execution

that are not subject to the operating system scheduler. In this model, an instance of

LISA can create as many system processes as there are physical processing cores, to

allow the operating system to allocate one processing core to each independent sys-

tem process. Within each of these “native” processes, a cooperative scheduler then

executes individual mini-engines as needed. The cooperative scheduling approach is



174

particularly suitable for LISA, as multiple mini-engines depend on one another to

produce and respectively consume records to perform their tasks. That is, a produc-

ing mini-engine can, after producing a record, voluntarily yield to other mini-engines

that can consume this record. This cooperative scheduling model is very effective, as

it does not require the intervention of the operating system, and it does not require

expensive context switches between system processes. In addition, mini-engines that

are executed within the same system process do not require inter-process communi-

cation to exchange data, as data can be passed directly through the process’s own

memory space. The hybrid process model still requires some inter-process communi-

cation between mini-engines that are executed within different system processes, but

an intelligent and dynamic allocation of mini-engines to system processes can greatly

reduce the amount of communication required and dynamically adapt to changing

requirements throughout the execution of the query.

While most operating systems provide extensive support for multi-processing,

multi-threading, and inter-process communication based on a preemptive schedul-

ing model, the implementation of cooperative multitasking is commonly done at the

application level. Some programming languages have native support for cooperative

scheduling, typically implemented as “continuations” or “coroutines” (e.g., Ruby,

Stackless Python, Python, Scala, and Erlang). For other languages that do not

support this cooperative scheduling model natively, it can often be added using ex-

tension libraries, such as “Boost.Coroutine”for C++ [46], or GNU Portable Threads

for C [52].

A.3 I/O Latency and Bandwidth

In Section 5.2.1 we have identified that I/O latency and bandwidth have a significant

impact on the query evaluation performance. Although these issues are largely in-

herent to the underlying hardware platform, some of them can be addressed through

carefully engineered software solutions. These software approaches typically include

the use of separate I/O processes, which run independently of the actual computation

processes and are solely responsible for the execution of I/O operations. The benefit

from using dedicated I/O processes results from the operating system not having to

manage a large number of processes that compete for access to the same I/O resources.



175

In addition, I/O processes can implement application-specific algorithms or heuris-

tics that optimize the sequence in which the I/O operations are executed to achieve

a higher throughput from the I/O subsystem. Furthermore, the software system can

be extended with shared I/O caches. These caches can be combined with dedicated

I/O processes or with individual mini-engines. The advantage of using shared caches

is that in situations where different mini-engines need to access the same data mul-

tiple times or the same data is accessed by multiple mini-engines, the presence of a

shared cache results in data being retrieved only once and then being held in memory

for subsequent accesses. This caching approach does not only reduce the latency for

subsequent accesses to the same data but also reduces the load on the I/O subsystem,

which can instead be used to retrieve data that has not yet been retrieved. Many

database and data warehousing systems already employ dedicated I/O processes and

caching mechanisms extensively, and there exists a vast selection of literature which

discusses I/O optimizations for database software systems [28,60,99].

Other approaches for addressing the issues around I/O latency and bandwidth

involve the optimization of the underlying hardware platform. The use of high-

performance disk arrays that stripe data across multiple disks can greatly increase

the throughput between the disk subsystem and the application processes. The use

of disks that are specifically designed for low latency access, such as solid state drives

(SSD), can reduce the latency on disk operations. Also, common for large instal-

lations where cost factors play an important role, are multi-tier non-volatile caches

that consist of hierarchies of mass-storage devices where each hierarchy level provides

different guarantees on bandwidth and latency, and data migrates through the cache

hierarchies based on access frequency and other criteria.

Alternatively, other approaches to address the limitations of I/O subsystems is

to distribute I/O accesses and, if possible, computations across multiple systems.

The pipeline-based query evaluations is well suited for a distributed computation

model in which each system contributes only a part of the overall result and multiple

systems work in parallel sharing only a small amount of resources (shared-nothing

model) [29, 119,171].



176

A.4 Storage Models, Access Methods, and Indexing

Our current implementation of LISA uses a mixture of different storage models and

access methods depending on the type of data being stored. Non-spatial data is

currently stored in SQLite databases and indexed using SQLite’s B-tree. SQLite’s

architecture manages data effectively and employs caching mechanisms appropriate

for its target domain [89]. However, SQLite’s process model is inherently based on a

single process, and multiple processes that share access to a single SQLite database do

not share any caches or information that can aid them in collectively optimizing access

to the data. In addition, the access to data stored in SQLite through the SQL query

language imposes an additional overhead, as each query must be parsed and evaluated

by SQLite’s query evaluator, even though LISA only uses a subset of SQLite’s SQL

capabilities. A more effective way for LISA to store and access non-spatial data may

be a storage model natively implemented as part of LISA, in the spirit of the one

currently used for spatial data. Such a storage model can store records of one entity

in an ordered fashion in a flat binary data file and in addition construct B-tree indices

over individual attributes to quickly locate records in the data file. This approach

removes the overhead of parsing each query on an entity using a fully featured SQL

parser. In addition, access to the data file can be block-based instead of record-

based, which could result in the aggregation of multiple record requests into a single

I/O operation. Furthermore, LISA can use dedicated I/O processes, as discussed in

Section A.3, to provide additional optimizations of I/O operations and facilities for

shared block caches. At this point, LISA is solely intended as a read-only system,

which can greatly simplify the implementation of alternative storage models with a

much greater performance.

For spatial data, LISA already uses its own storage model consisting of a data file

that stores the records and an R-tree index to efficiently locate records in the data

file. The R-tree implementation is provided through the Spatial Index library [77] and

uses page-based access and caching methods. However, accesses to the data file are

not explicitly cached other than through the operating system. In Section 5.2.2 we

have identified that spatial objects can greatly vary in their complexity and that the

performance of some operations on spatial objects is significantly affected by the ob-

jects’ complexity. This provides motivation to investigate alternative storage models



177

and indexing structures for spatial data, specifically targeted to operations performed

within LISA. For example, to calculate the intersection of two spatial objects that

only partially overlap, not all vertices of the objects need to be retrieved, but only

those that form the overlapping region. One method that potentially improves the

performance of such operations is to store the vertices of the spatial objects in a

hierarchical data structure, e.g., quadtree [57], and only retrieve data from those

paths of the hierarchy for which the objects overlap. The retrieved vertices then

form fragments of the corresponding spatial objects that are sufficient to calculate

their intersection. There exists a large amount of literature discussing data struc-

tures for spatial applications, which can serve as a starting point for future work in

this area [59]. As discussed for non-spatial data storage models, spatial data storage

models can similarly benefit from block-based I/O access and shared caches.

A.5 Integration with Existing Data Sources

Last but not least, one shortcoming of our current LISA implementation that con-

strains its use in real-world applications is its lack of integration with existing and

external data sources. Often times, the data on which OLAP or spatial OLAP queries

are to be executed is already present in existing databases or data warehouses. LISA

should be able to directly interface with such data sources or provide mechanisms

to convert such data into LISA’s native data storage models. To support such func-

tionality, LISA can be extended with adaptors to standardized interfaces, such as the

Open Database Connectivity standard [94], and use SQL for the retrieval of data.

In addition, a generic adaptor API can be provided which allows users of LISA to

develop their own adaptors to legacy systems.



Appendix B

Implementation of Example Queries in LISA

B.1 Query 1

1 #############################################################

2 #

3 # Query 1

4 #

5 # SELECT species.id, MAX(plants.height)

6 # FROM species

7 # LEFT JOIN plants ON plants.species_id = species.id

8 # WHERE plants.age >= 10 AND plants.age <= 50

9 # GROUP BY species.id;

10 #

11 #############################################################

12

13 # Schema definition of the query stream: an interval across all species

14 # IDs.

15 query_schema = Schema()

16 query_schema.append(Attribute(’species.id’, IntInterval))

17

18 # Schema definition of the species record stream.

19 species_schema = Schema()

20 species_schema.append(Attribute(’species.id’, int))

21

22 # Schema definition of the plant record stream.

23 plants_schema = Schema()

24 plants_schema.append(Attribute(’plants.id’, int))

25 plants_schema.append(Attribute(’plants.height’, int))

26 plants_schema.append(Attribute(’plants.age’, int))

27 plants_schema.append(Attribute(’plants.species_id’, int, True))

28

29 # Filter plants to only include those 10 years or older and 50 years or

30 # younger.

31 class FilterAge(object):

32 def __init__(self, input_schema):

33 self._input_schema = input_schema

34 self._p = [

35 (

36 input_schema.index(’plants.age’),

37 lambda x: x >= 10 and x <= 50

38 ),

39 ]

40

41 def accepts(self, other_schema):

42 return self._input_schema == other_schema

43

44 def __call__(self, r):

45 for p in self._p:

46 if not p[1](r[p[0]]):

47 return False

48 return True

49

50 # Aggregation function for max height.

178



179

51 class MaxHeightAggregator(object):

52 def __init__(self, input_schema):

53 self._input_schema = input_schema

54 self._af = []

55 for a in self._input_schema:

56 if a.name() == ’plants.height’:

57 # Only keep the maximum

58 self._af.append((

59 0,

60 lambda x, v: x >= v and x or v,

61 ))

62 else:

63 # Everything else keep as is

64 self._af.append((

65 None,

66 lambda x, v: v,

67 ))

68

69 def accepts(self, other):

70 return self._input_schema == other

71

72 def init(self):

73 ’’’

74 Initializes and resets the aggregation value.

75 ’’’

76 self._c = list(af[0] for af in self._af)

77 self._calls = 0

78

79 def record(self):

80 ’’’

81 Returns the record that represents the current aggregation value.

82 ’’’

83 return tuple(self._c)

84

85 def count(self):

86 return self._calls

87

88 def __call__(self, r):

89 ’’’

90 Adds the specified record to the aggregate value.

91 ’’’

92 self._calls += 1

93 for i, c in enumerate(self._c):

94 self._c[i] = self._af[i][1](c, r[i])

95

96 engines = []

97 # The query stream contains only a single query.

98 query_streamer = ArrayStreamer(query_schema, [

99 (IntInterval(0, int(1E10)),),

100 ])

101 engines.append(query_streamer)

102

103 # Create a species data source: a table in the input database.

104 species_source = DBTable(input_file, ’species’, species_schema)

105 # Data accessor for the species data source.

106 species_accessor = DataAccessor(

107 query_streamer.output(),

108 species_source,

109 FindRange

110 )

111 engines.append(species_accessor)

112

113 demux = Demux(species_accessor.output())

114 engines.append(demux)

115

116 mux_streams = []

117 for i in range(tracks):



180

118 channel = demux.channel()

119

120 # Select only the species ID for querying plants.

121 species_id_select = Select(

122 channel,

123 UniversalSelect(

124 species_accessor.output().schema(),

125 {

126 ’plants.species_id’: {

127 ’type’: int,

128 ’args’: [’species.id’],

129 ’function’: lambda v: v

130 }

131 }

132 )

133 )

134 engines.append(species_id_select)

135 # Data source for the plants.

136 plants_source = DBTable(input_file, ’plants’, plants_schema)

137 # Data accessor for the plants data source.

138 plants_accessor = DataAccessor(

139 species_id_select.output(),

140 plants_source,

141 FindIdentities

142 )

143 engines.append(plants_accessor)

144

145 plants_filter = Filter(

146 plants_accessor.output(),

147 FilterAge(plants_accessor.output().schema())

148 )

149 engines.append(plants_filter)

150

151 # Select only the species ID for querying plants.

152 plants_height_select = Select(

153 plants_filter.output(),

154 UniversalSelect(

155 plants_filter.output().schema(),

156 {

157 ’plants.height’: {

158 ’type’: int,

159 ’args’: [’plants.height’],

160 ’function’: lambda v: v

161 }

162 }

163 )

164 )

165 engines.append(plants_height_select)

166

167 plants_height_aggregate = Aggregate(

168 plants_height_select.output(),

169 MaxHeightAggregator(plants_height_select.output().schema())

170 )

171 engines.append(plants_height_aggregate)

172

173 species_id_grouper = Group(

174 channel,

175 {’species.id’: lambda a, b: a == b}

176 )

177 engines.append(species_id_grouper)

178

179 joiner = Join(species_id_grouper.output(), plants_height_aggregate.output())

180 engines.append(joiner)

181 mux_streams.append(joiner.output())

182

183 mux = Mux(*mux_streams)

184 engines.append(mux)



181

185

186 result_file = ResultFile(

187 ’query1-results.txt’,

188 mux.output(),

189 )

190 engines.append(result_file)

B.2 Query 2

1 #############################################################

2 #

3 # Query 2

4 #

5 # SELECT nation.id, customer.id, orders.id, MAX(lineitem.price)

6 # FROM nation

7 # LEFT JOIN customer ON customer.nation_id = nation.id

8 # LEFT JOIN orders ON orders.customer_id = customer.id

9 # LEFT JOIN lineitem ON lineitem.order_id = orders.id

10 # WHERE lineitem.quantity >= 10 AND lineitem.quantity <= 15

11 # GROUP BY ROLLUP(nation.id, customer.id, orders.id)

12 #

13 #############################################################

14

15 # Schema definition of the query stream: an interval across all families.

16 query_schema = Schema()

17 query_schema.append(Attribute(’nation.id’, IntInterval))

18

19 # Schema definition of the nation record stream.

20 nation_schema = Schema()

21 nation_schema.append(Attribute(’nation.id’, int))

22

23 # Schema definitions of the customer record stream.

24 customer_schema = Schema()

25 customer_schema.append(Attribute(’customer.id’, int))

26 customer_schema.append(Attribute(’customer.nation_id’, int, True))

27

28 # Schema definitions of the orders record stream.

29 orders_schema = Schema()

30 orders_schema.append(Attribute(’orders.id’, int))

31 orders_schema.append(Attribute(’orders.customer_id’, int, True))

32

33 # Schema definition of the lineitem record stream.

34 lineitem_schema = Schema()

35 # lineitem_schema.append(Attribute(’lineitem.id’, int))

36 lineitem_schema.append(Attribute(’lineitem.quantity’, int))

37 lineitem_schema.append(Attribute(’lineitem.price’, float))

38 lineitem_schema.append(Attribute(’lineitem.order_id’, int, True))

39

40 # Filter lineitem to only include those 10 years or older and 50 years or

41 # younger.

42 class FilterQuantity(object):

43 def __init__(self, input_schema):

44 self._input_schema = input_schema

45 self._p = [

46 (

47 input_schema.index(’lineitem.quantity’),

48 lambda x: x >= 10 and x <= 15

49 ),

50 ]

51

52 def accepts(self, other_schema):

53 return self._input_schema == other_schema

54



182

55 def __call__(self, r):

56 for p in self._p:

57 if not p[1](r[p[0]]):

58 return False

59 return True

60

61 # Aggregation function for max price.

62 class MaxPriceAggregator(object):

63 def __init__(self, input_schema):

64 self._input_schema = input_schema

65 self._af = []

66 for a in self._input_schema:

67 if a.name() == ’lineitem.price’:

68 # Only keep the maximum

69 self._af.append((

70 0,

71 lambda x, v: x >= v and x or v,

72 ))

73 else:

74 # Everything else keep as is

75 self._af.append((

76 None,

77 lambda x, v: v,

78 ))

79

80 def accepts(self, other):

81 return self._input_schema == other

82

83 def init(self):

84 ’’’

85 Initializes and resets the aggregation value.

86 ’’’

87 self._c = list(af[0] for af in self._af)

88 self._calls = 0

89

90 def record(self):

91 ’’’

92 Returns the record that represents the current aggregation value.

93 ’’’

94 return tuple(self._c)

95

96 def count(self):

97 return self._calls

98

99 def __call__(self, r):

100 ’’’

101 Adds the specified record to the aggregate value.

102 ’’’

103 self._calls += 1

104 for i, c in enumerate(self._c):

105 self._c[i] = self._af[i][1](c, r[i])

106

107 engines = []

108

109 # The query stream contains only a single query.

110 query_streamer = ArrayStreamer(query_schema, [

111 (IntInterval(0, int(1E10)),),

112 ])

113 engines.append(query_streamer)

114

115 # Create a nation data source: a table in the input database.

116 nation_source = DBTable(input_file, ’nation’, nation_schema)

117 # Data accessor for the orders data source.

118 nation_accessor = DataAccessor(

119 query_streamer.output(),

120 nation_source,

121 FindRange



183

122 )

123 engines.append(nation_accessor)

124

125 # A group mini-engine to split the nation IDs into groups.

126 nation_id_grouper = Group(

127 nation_accessor.output(),

128 {’nation.id’: lambda a, b: a == b}

129 )

130 engines.append(nation_id_grouper)

131

132 # Select only the nation ID for querying genera.

133 nation_id_select = Select(

134 nation_accessor.output(),

135 UniversalSelect(

136 nation_accessor.output().schema(),

137 {

138 ’customer.nation_id’: {

139 ’type’: int,

140 ’args’: [’nation.id’],

141 ’function’: lambda v: v

142 }

143 }

144 )

145 )

146 engines.append(nation_id_select)

147

148

149 # Data source for the genera.

150 customer_source = DBTable(input_file, ’customer’, customer_schema)

151

152

153 # Data accessor for the genera data source.

154 customer_accessor = DataAccessor(

155 nation_id_select.output(),

156 customer_source,

157 FindIdentities

158 )

159 engines.append(customer_accessor)

160

161

162 # A join mini-engine to associate families with genera.

163 nation_customer_joiner = Join(

164 nation_id_grouper.output(),

165 customer_accessor.output(),

166 )

167 engines.append(nation_customer_joiner)

168

169

170 # A group mini-engine to split the (nation, customer) IDs into groups.

171 nation_customer_id_grouper = Group(

172 nation_customer_joiner.output(),

173 {

174 ’nation.id’: lambda a, b: a == b,

175 ’customer.id’: lambda a, b: a == b

176 },

177 )

178 engines.append(nation_customer_id_grouper)

179

180

181 # Select only the customer ID for querying orders.

182 customer_id_select = Select(

183 nation_customer_joiner.output(),

184 UniversalSelect(

185 nation_customer_joiner.output().schema(),

186 {

187 ’orders.customer_id’: {

188 ’type’: int,



184

189 ’args’: [’customer.id’],

190 ’function’: lambda v: v

191 }

192 }

193 )

194 )

195 engines.append(customer_id_select)

196

197

198 # Data source for the orders.

199 orders_source = DBTable(input_file, ’orders’, orders_schema)

200

201

202 # Data accessor for the orders data source.

203 orders_accessor = DataAccessor(

204 customer_id_select.output(),

205 orders_source,

206 FindIdentities

207 )

208 engines.append(orders_accessor)

209

210

211 # A join mini-engine to associate families, genera and orders.

212 nation_customer_orders_joiner = Join(

213 nation_customer_id_grouper.output(),

214 orders_accessor.output(),

215 )

216 engines.append(nation_customer_orders_joiner)

217

218 demux = Demux(nation_customer_orders_joiner.output())

219 engines.append(demux)

220

221 mux_streams = []

222 for i in range(tracks):

223 channel = demux.channel()

224

225 # Select only the orders ID for querying lineitem.

226 orders_id_select = Select(

227 channel,

228 UniversalSelect(

229 channel.schema(),

230 {

231 ’lineitem.order_id’: {

232 ’type’: int,

233 ’args’: [’orders.id’],

234 ’function’: lambda v: v

235 }

236 }

237 )

238 )

239 engines.append(orders_id_select)

240

241 # Data source for the lineitem.

242 lineitem_source = DBTable(input_file, ’lineitem’, lineitem_schema)

243 # Data accessor for the lineitem data source.

244 lineitem_accessor = DataAccessor(

245 orders_id_select.output(),

246 lineitem_source,

247 FindIdentities

248 )

249 engines.append(lineitem_accessor)

250

251 lineitem_filter = Filter(

252 lineitem_accessor.output(),

253 FilterQuantity(lineitem_accessor.output().schema())

254 )

255 engines.append(lineitem_filter)



185

256

257 # Select only the orders ID for querying lineitem.

258 lineitem_price_select = Select(

259 lineitem_filter.output(),

260 UniversalSelect(

261 lineitem_filter.output().schema(),

262 {

263 ’lineitem.price’: {

264 ’type’: int,

265 ’args’: [’lineitem.price’],

266 ’function’: lambda v: v

267 }

268 }

269 )

270 )

271 engines.append(lineitem_price_select)

272

273 lineitem_price_aggregate = Aggregate(

274 lineitem_price_select.output(),

275 MaxPriceAggregator(lineitem_price_select.output().schema())

276 )

277 engines.append(lineitem_price_aggregate)

278

279 nation_customer_orders_id_grouper = Group(

280 channel,

281 {

282 ’nation.id’: lambda a, b: a == b,

283 ’customer.id’: lambda a, b: a == b,

284 ’orders.id’: lambda a, b: a == b

285 }

286 )

287 engines.append(nation_customer_orders_id_grouper)

288 # mux_streams.append(nation_customer_orders_id_grouper.output())

289

290 orders_lineitem_joiner = Join(

291 nation_customer_orders_id_grouper.output(),

292 lineitem_price_aggregate.output()

293 )

294 engines.append(orders_lineitem_joiner)

295 mux_streams.append(orders_lineitem_joiner.output())

296

297 mux = Mux(*mux_streams)

298 engines.append(mux)

299

300

301 # First aggregation level output selection

302 nation_customer_orders_select = Select(

303 mux.output(),

304 UniversalSelect(

305 mux.output().schema(),

306 [

307 (’nation.id’, {

308 ’type’: int,

309 ’args’: [’nation.id’],

310 ’function’: lambda v: v

311 }),

312 (’customer.id’, {

313 ’type’: int,

314 ’args’: [’customer.id’],

315 ’function’: lambda v: v

316 }),

317 (’orders.id’, {

318 ’type’: int,

319 ’args’: [’orders.id’],

320 ’function’: lambda v: v

321 }),

322 (’lineitem.price’, {



186

323 ’type’: int,

324 ’args’: [’lineitem.price’],

325 ’function’: lambda v: v

326 }),

327 ]

328 )

329 )

330 engines.append(nation_customer_orders_select)

331

332 # Second aggregation level output selection

333 nation_customer_select = Select(

334 nation_customer_orders_select.output(),

335 UniversalSelect(

336 nation_customer_orders_select.output().schema(),

337 [

338 (’nation.id’, {

339 ’type’: int,

340 ’args’: [’nation.id’],

341 ’function’: lambda v: v

342 }),

343 (’customer.id’, {

344 ’type’: int,

345 ’args’: [’customer.id’],

346 ’function’: lambda v: v

347 }),

348 (’lineitem.price’, {

349 ’type’: int,

350 ’args’: [’lineitem.price’],

351 ’function’: lambda v: v

352 }),

353 ]

354 )

355 )

356 engines.append(nation_customer_select)

357

358 nation_customer_sorter = Sort(

359 nation_customer_select.output(),

360 [

361 (’nation.id’, lambda a, b: cmp(a, b)),

362 (’customer.id’, lambda a, b: cmp(a, b))

363 ],

364 True # sort all input, not only the current partition

365 )

366 engines.append(nation_customer_sorter)

367

368 # Generate aggregation groups for second aggregation level.

369 nation_customer_grouper = Group(

370 nation_customer_sorter.output(),

371 {

372 ’nation.id’: lambda a, b: a == b,

373 ’customer.id’: lambda a, b: a == b

374 },

375 )

376 engines.append(nation_customer_grouper)

377

378 # Aggregate second level

379 nation_customer_aggregate = Aggregate(

380 nation_customer_grouper.output(),

381 MaxPriceAggregator(nation_customer_grouper.output().schema())

382 )

383 engines.append(nation_customer_aggregate)

384

385 # Third aggregation level output selection

386 nation_select = Select(

387 nation_customer_aggregate.output(),

388 UniversalSelect(

389 nation_customer_aggregate.output().schema(),



187

390 [

391 (’nation.id’, {

392 ’type’: int,

393 ’args’: [’nation.id’],

394 ’function’: lambda v: v

395 }),

396 (’lineitem.price’, {

397 ’type’: int,

398 ’args’: [’lineitem.price’],

399 ’function’: lambda v: v

400 }),

401 ]

402 )

403 )

404 engines.append(nation_select)

405

406 # Generate aggregation groups for third aggregation level.

407 nation_grouper = Group(

408 nation_select.output(),

409 {

410 ’nation.id’: lambda a, b: a == b,

411 },

412 )

413 engines.append(nation_grouper)

414

415 # Aggregate third level

416 nation_aggregate = Aggregate(

417 nation_grouper.output(),

418 MaxPriceAggregator(nation_grouper.output().schema())

419 )

420 engines.append(nation_aggregate)

421

422 # Fourth aggregation level output selection

423 all_select = Select(

424 nation_aggregate.output(),

425 UniversalSelect(

426 nation_aggregate.output().schema(),

427 {

428 ’lineitem.price’: {

429 ’type’: float,

430 ’args’: [’lineitem.price’],

431 ’function’: lambda v: v

432 },

433 }

434 )

435 )

436 engines.append(all_select)

437

438 # Generate aggregation groups for fourth aggregation level.

439 all_grouper = Group(

440 all_select.output(),

441 {

442 },

443 )

444 engines.append(all_grouper)

445

446 # Aggregate fourth level

447 all_aggregate = Aggregate(

448 all_grouper.output(),

449 MaxPriceAggregator(all_grouper.output().schema())

450 )

451 engines.append(all_aggregate)

452

453 result_file = ResultFile(

454 ’query6-results.txt’,

455 nation_customer_orders_select.output(),

456 nation_customer_aggregate.output(),



188

457 nation_aggregate.output(),

458 all_aggregate.output(),

459 )

460 engines.append(result_file)

B.3 Query 3

1 #############################################################

2 #

3 # Query 3

4 #

5 # SELECT counties.id, COUNT(geonames.*) FROM counties

6 # LEFT JOIN geonames ON CONTAINS(counties.geom, geonames.location)

7 # WHERE

8 # CONTAINS(

9 # MakeBox2D(

10 # MakePoint(-93.88, 49.81),

11 # MakePoint(-65.39, 24.22)

12 # ),

13 # geonames.location

14 # )

15 # GROUP BY counties.id;

16 #

17 #############################################################

18

19 # Schema definition of the query stream: an interval across all counties.

20 query_schema = Schema()

21 query_schema.append(Attribute(’counties.geom’, Geometry))

22

23 # Aggregation function for max height.

24 class SumAggregator(object):

25 def __init__(self, input_schema, f):

26 self._input_schema = input_schema

27 self._af = []

28 for a in self._input_schema:

29 if a.name() == f:

30 # Only keep the maximum

31 self._af.append((

32 0,

33 lambda x, v: x + v,

34 ))

35 else:

36 # Everything else keep as is

37 self._af.append((

38 None,

39 lambda x, v: v,

40 ))

41

42 def accepts(self, other):

43 return self._input_schema == other

44

45 def init(self):

46 ’’’

47 Initializes and resets the aggregation value.

48 ’’’

49 self._c = list(af[0] for af in self._af)

50 self._calls = 0

51

52 def record(self):

53 ’’’

54 Returns the record that represents the current aggregation value.

55 ’’’

56 return tuple(self._c)



189

57

58 def count(self):

59 return self._calls

60

61 def __call__(self, r):

62 ’’’

63 Adds the specified record to the aggregate value.

64 ’’’

65 self._calls += 1

66 for i, c in enumerate(self._c):

67 self._c[i] = self._af[i][1](c, r[i])

68

69 engines = []

70

71 # The query stream contains only a single query box.

72 query_streamer = ArrayStreamer(query_schema, [

73 (query,),

74 ])

75 engines.append(query_streamer)

76

77 counties_source = Rtree(counties_file, ’counties.geom’)

78 counties_accessor = DataAccessor(

79 query_streamer.output(),

80 counties_source,

81 FindRange,

82 )

83 engines.append(counties_accessor)

84

85 demux = Demux(counties_accessor.output())

86 engines.append(demux)

87

88 def intersection(a, b):

89 g1 = a.geom()

90 g2 = b.geom()

91 try:

92 if g1.is_valid and g2.is_valid:

93 i = g1.intersection(g2)

94 return Geometry(i)

95 else:

96 return None

97 except:

98 return None

99

100 mux_streams = []

101 for i in range(tracks):

102 channel = demux.channel()

103

104 # To query the locations in the geonames layer, trim the counties to

105 # the query.

106 counties_select = Select(

107 channel,

108 UniversalSelect(

109 channel.schema(),

110 {

111 ’geonames.location’: {

112 ’type’: Geometry,

113 ’args’: [’counties.geom’],

114 ’function’: lambda v: intersection(v, query),

115 }

116 }

117 )

118 )

119 engines.append(counties_select)

120

121 geonames_source = Rtree(geonames_file, ’geonames.location’)

122 # Data accessor for the geonames.

123 geonames_accessor = DataAccessor(



190

124 counties_select.output(),

125 geonames_source,

126 FindRange

127 )

128 engines.append(geonames_accessor)

129

130 # XXX At this point no additional filter for the contraining the

131 # geonames to the query region is required.

132

133 # Send ’1’ for each retrieved geoname location.

134 geonames_select = Select(

135 geonames_accessor.output(),

136 UniversalSelect(

137 geonames_accessor.output().schema(),

138 {

139 ’count’: {

140 ’type’: int,

141 ’args’: [’geonames.location’],

142 ’function’: lambda v: 1

143 }

144 }

145 )

146 )

147 engines.append(geonames_select)

148

149 geonames_aggregate = Aggregate(

150 geonames_select.output(),

151 SumAggregator(geonames_select.output().schema(), ’count’)

152 )

153 engines.append(geonames_aggregate)

154

155 select = Select(

156 channel,

157 UniversalSelect(

158 channel.schema(),

159 {

160 ’oid’: {

161 ’type’: int,

162 ’args’: [’oid’],

163 ’function’: lambda v: v

164 },

165 }

166 )

167 )

168 engines.append(select)

169

170 counties_grouper = Group(

171 select.output(),

172 {’oid’: lambda a, b: a == b}

173 )

174 engines.append(counties_grouper)

175

176 joiner = Join(counties_grouper.output(), geonames_aggregate.output())

177 engines.append(joiner)

178 mux_streams.append(joiner.output())

179

180 mux = Mux(*mux_streams)

181 engines.append(mux)

182

183 result_file = ResultFile(

184 ’query3-results.txt’,

185 mux.output(),

186 )

187 engines.append(result_file)



191

B.4 Query 4

1 #############################################################

2 #

3 # Query 4

4 #

5 # SELECT states.id, counties.id, COUNT(geonames.*) FROM states

6 # LEFT JOIN counties

7 # ON CONTAINS(states.geom, counties.geom)

8 # LEFT JOIN geonames ON CONTAINS(counties.geom, geonames.location)

9 # WHERE

10 # CONTAINS(

11 # MakeBox2D(

12 # MakePoint(-93.88, 49.81),

13 # MakePoint(-65.39, 24.22)

14 # ),

15 # geonames.location

16 # )

17 # GROUP BY ROLLUP(states.id, counties.id);

18 #

19 #############################################################

20

21 # Schema definition of the query stream: an interval across all states.

22 query_schema = Schema()

23 query_schema.append(Attribute(’states.geom’, Geometry))

24

25 # Aggregation function for max height.

26 class SumAggregator(object):

27 def __init__(self, input_schema, f):

28 self._input_schema = input_schema

29 self._af = []

30 for a in self._input_schema:

31 if a.name() == f:

32 # Only keep the maximum

33 self._af.append((

34 0,

35 lambda x, v: x + v,

36 ))

37 else:

38 # Everything else keep as is

39 self._af.append((

40 None,

41 lambda x, v: v,

42 ))

43

44 def accepts(self, other):

45 return self._input_schema == other

46

47 def init(self):

48 ’’’

49 Initializes and resets the aggregation value.

50 ’’’

51 self._c = list(af[0] for af in self._af)

52 self._calls = 0

53

54 def record(self):

55 ’’’

56 Returns the record that represents the current aggregation value.

57 ’’’

58 return tuple(self._c)

59

60 def count(self):

61 return self._calls

62



192

63 def __call__(self, r):

64 ’’’

65 Adds the specified record to the aggregate value.

66 ’’’

67 self._calls += 1

68 for i, c in enumerate(self._c):

69 self._c[i] = self._af[i][1](c, r[i])

70

71 # Helper function to compute the intersection between two geometries.

72 def intersection(a, b):

73 g1 = a.geom()

74 g2 = b.geom()

75 try:

76 if g1.is_valid and g2.is_valid:

77 i = g1.intersection(g2)

78 return Geometry(i)

79 else:

80 return None

81 except:

82 return None

83

84 engines = []

85 counters = []

86

87 # The query stream contains only a single query box.

88 query_streamer = ArrayStreamer(query_schema, [

89 (query,),

90 ])

91 engines.append(query_streamer)

92

93 # Query the states from the data source.

94 states_source = Rtree(states_file, ’states.geom’)

95 states_accessor = DataAccessor(

96 query_streamer.output(),

97 states_source,

98 FindRange

99 )

100 engines.append(states_accessor)

101

102 # Trim the states to the query region.

103 states_select = Select(

104 states_accessor.output(),

105 UniversalSelect(

106 states_accessor.output().schema(),

107 {

108 # trim geometry

109 ’states.geom’: {

110 ’type’: Geometry,

111 ’args’: [’states.geom’],

112 ’function’: lambda v: intersection(v, query),

113 },

114 # keep OID

115 ’states.oid’: {

116 ’type’: int,

117 ’args’: [’oid’],

118 ’function’: lambda v: v,

119 }

120 }

121 )

122 )

123 engines.append(states_select)

124

125 # Only keep the geometry for querying

126 states_query = Select(

127 states_select.output(),

128 UniversalSelect(

129 states_select.output().schema(),



193

130 {

131 ’counties.geom’: {

132 ’type’: Geometry,

133 ’args’: [’states.geom’],

134 ’function’: lambda v: v,

135 },

136 }

137 )

138 )

139 engines.append(states_query)

140

141 # Finally query the counties

142 counties_source = Rtree(counties_file, ’counties.geom’)

143 counties_accessor = DataAccessor(

144 states_query.output(),

145 counties_source,

146 FindRange,

147 )

148 engines.append(counties_accessor)

149

150 # Rename the OID attribute of the counties

151 counties_oid_select = Select(

152 counties_accessor.output(),

153 UniversalSelect(

154 counties_accessor.output().schema(),

155 {

156 ’counties.oid’: {

157 ’type’: int,

158 ’args’: [’oid’],

159 ’function’: lambda v: v,

160 },

161 ’counties.geom’: {

162 ’type’: Geometry,

163 ’args’: [’counties.geom’],

164 ’function’: lambda v: v,

165 },

166 }

167 )

168 )

169 engines.append(counties_oid_select)

170

171 # Group states by OID

172 states_group = Group(

173 states_select.output(),

174 {’states.oid’: lambda a, b: a == b}

175 )

176 engines.append(states_group)

177

178 # Join counties and states

179 states_counties_join = Join(

180 states_group.output(),

181 counties_oid_select.output(),

182 )

183 engines.append(states_counties_join)

184

185 # De-multiplex the joined stream across multiple tracks for better CPU core

186 # utilization.

187 demux = Demux(states_counties_join.output())

188 engines.append(demux)

189

190 mux_streams = []

191 for i in range(tracks):

192 channel = demux.channel()

193

194 # To query the locations in the geonames layer, trim the counties to

195 # the state and query boundary.

196 counties_select = Select(



194

197 channel,

198 UniversalSelect(

199 channel.schema(),

200 {

201 ’geonames.location’: {

202 ’type’: Geometry,

203 ’args’: [’states.geom’, ’counties.geom’],

204 ’function’: lambda s, c: intersection(s, c),

205 }

206 }

207 )

208 )

209 engines.append(counties_select)

210

211 # Data source for geonames

212 geonames_source = Rtree(geonames_file, ’geonames.location’)

213 # Data accessor for the geonames.

214 geonames_accessor = DataAccessor(

215 counties_select.output(),

216 geonames_source,

217 FindRange

218 )

219 engines.append(geonames_accessor)

220

221 # XXX At this point no additional filter for the contraining the

222 # geonames to the query region is required.

223

224 # Send ’1’ for each retrieved geoname location.

225 geonames_select = Select(

226 geonames_accessor.output(),

227 UniversalSelect(

228 geonames_accessor.output().schema(),

229 {

230 ’count’: {

231 ’type’: int,

232 ’args’: [’geonames.location’],

233 ’function’: lambda v: 1

234 }

235 }

236 )

237 )

238 engines.append(geonames_select)

239

240 # Aggregate the geonames

241 geonames_aggregate = Aggregate(

242 geonames_select.output(),

243 SumAggregator(geonames_select.output().schema(), ’count’)

244 )

245 engines.append(geonames_aggregate)

246

247 # Select only the OIDs from each of the hierarchy levels.

248 select = Select(

249 channel,

250 UniversalSelect(

251 channel.schema(),

252 {

253 ’states.oid’: {

254 ’type’: int,

255 ’args’: [’states.oid’],

256 ’function’: lambda v: v

257 },

258 ’counties.oid’: {

259 ’type’: int,

260 ’args’: [’counties.oid’],

261 ’function’: lambda v: v

262 },

263 }



195

264 )

265 )

266 engines.append(select)

267

268 # Generate appropriate groups

269 states_counties_grouper = Group(

270 select.output(),

271 {

272 ’states.oid’: lambda a, b: a == b,

273 ’counties.oid’: lambda a, b: a == b

274 }

275 )

276 engines.append(states_counties_grouper)

277

278 joiner = Join(

279 states_counties_grouper.output(),

280 geonames_aggregate.output()

281 )

282 engines.append(joiner)

283 mux_streams.append(joiner.output())

284

285 mux = Mux(*mux_streams)

286 engines.append(mux)

287

288 states_level_select = Select(

289 mux.output(),

290 UniversalSelect(

291 mux.output().schema(),

292 {

293 ’states.oid’: {

294 ’type’: int,

295 ’args’: [’states.oid’],

296 ’function’: lambda v: v,

297 },

298 ’count’: {

299 ’type’: int,

300 ’args’: [’count’],

301 ’function’: lambda v: v,

302 }

303 }

304 )

305 )

306 engines.append(states_level_select)

307

308 states_ungroup = Group(

309 states_level_select.output(),

310 {

311 }

312 )

313 engines.append(states_ungroup)

314

315 states_sort = Sort(

316 states_ungroup.output(),

317 [

318 (’states.oid’, None)

319 ]

320 )

321 engines.append(states_sort)

322

323 states_level_group = Group(

324 states_sort.output(),

325 {

326 ’states.oid’: lambda a, b: a == b,

327 }

328 )

329 engines.append(states_level_group)

330



196

331 # Aggregate second level

332 states_level_aggregate = Aggregate(

333 states_level_group.output(),

334 SumAggregator(states_level_group.output().schema(), ’count’)

335 )

336 engines.append(states_level_aggregate)

337

338 all_level_select = Select(

339 states_level_aggregate.output(),

340 UniversalSelect(

341 states_level_aggregate.output().schema(),

342 {

343 ’count’: {

344 ’type’: int,

345 ’args’: [’count’],

346 ’function’: lambda v: v,

347 }

348 }

349 )

350 )

351 engines.append(all_level_select)

352

353 all_group = Group(

354 all_level_select.output(),

355 {

356 }

357 )

358 engines.append(all_group)

359

360 # Aggregate third level

361 all_level_aggregate = Aggregate(

362 all_group.output(),

363 SumAggregator(all_level_select.output().schema(), ’count’)

364 )

365 engines.append(all_level_aggregate)

366

367

368 output_level1_attr = Select(

369 mux.output(),

370 UniversalSelect(

371 mux.output().schema(),

372 [

373 (’states.oid’, {

374 ’type’: int,

375 ’args’: [’states.oid’],

376 ’function’: lambda v: v,

377 }),

378 (’counties.oid’, {

379 ’type’: int,

380 ’args’: [’counties.oid’],

381 ’function’: lambda v: v,

382 }),

383 (’count’, {

384 ’type’: int,

385 ’args’: [’count’],

386 ’function’: lambda v: v,

387 }),

388 ]

389 )

390 )

391 engines.append(output_level1_attr)

392

393 output_level2_attr = Select(

394 states_level_aggregate.output(),

395 UniversalSelect(

396 states_level_aggregate.output().schema(),

397 [



197

398 (’states.oid’, {

399 ’type’: int,

400 ’args’: [’states.oid’],

401 ’function’: lambda v: v,

402 }),

403 (’count’, {

404 ’type’: int,

405 ’args’: [’count’],

406 ’function’: lambda v: v,

407 }),

408 ]

409 )

410 )

411 engines.append(output_level2_attr)

412

413 output_level3_attr = Select(

414 all_level_aggregate.output(),

415 UniversalSelect(

416 all_level_aggregate.output().schema(),

417 [

418 (’count’, {

419 ’type’: int,

420 ’args’: [’count’],

421 ’function’: lambda v: v,

422 }),

423 ]

424 )

425 )

426 engines.append(output_level3_attr)

427

428 # Output

429 result_file = ResultFile(

430 ’query4-results.txt’,

431 output_level1_attr.output(),

432 output_level2_attr.output(),

433 output_level3_attr.output(),

434 )

435 engines.append(result_file)

B.5 Query 5

1 #############################################################

2 #

3 # Query 5

4 #

5 #############################################################

6

7 # Schema definition of the query stream.

8 query_schema = Schema()

9 query_schema.append(Attribute(’queries.geom’, Geometry))

10

11 # Aggregation function for max height.

12 class SumAggregator(object):

13 def __init__(self, input_schema, f):

14 self._input_schema = input_schema

15 self._af = []

16 for a in self._input_schema:

17 if a.name() == f:

18 # Only keep the maximum

19 self._af.append((

20 0,

21 lambda x, v: x + v,

22 ))



198

23 else:

24 # Everything else keep as is

25 self._af.append((

26 None,

27 lambda x, v: v,

28 ))

29

30 def accepts(self, other):

31 return self._input_schema == other

32

33 def init(self):

34 ’’’

35 Initializes and resets the aggregation value.

36 ’’’

37 self._c = list(af[0] for af in self._af)

38 self._calls = 0

39

40 def record(self):

41 ’’’

42 Returns the record that represents the current aggregation value.

43 ’’’

44 return tuple(self._c)

45

46 def count(self):

47 return self._calls

48

49 def __call__(self, r):

50 ’’’

51 Adds the specified record to the aggregate value.

52 ’’’

53 self._calls += 1

54 for i, c in enumerate(self._c):

55 self._c[i] = self._af[i][1](c, r[i])

56

57 def intersection(a, b):

58 g1 = a.geom()

59 g2 = b.geom()

60 try:

61 if g1.is_valid and g2.is_valid:

62 i = g1.intersection(g2)

63 return Geometry(i)

64 else:

65 return None

66 except:

67 return None

68

69 class UniversalFilter(object):

70 def __init__(self, input_schema, filters):

71 self._input_schema = input_schema

72 self._p = []

73 for k in filters:

74 self._p.append((input_schema.index(k), filters[k]))

75

76 def accepts(self, other_schema):

77 return self._input_schema == other_schema

78

79 def __call__(self, r):

80 for p in self._p:

81 # print ’--> %s : %s’ % (r[p[0]], p[1](r[p[0]]))

82 if not p[1](r[p[0]]):

83 return False

84 return True

85

86 #############################################################

87 #

88 # Query

89 #



199

90 #############################################################

91

92 engines = []

93

94 # The query stream contains only a single query box.

95 query_streamer = ArrayStreamer(query_schema, [

96 (query,),

97 StopWord(),

98 ])

99 engines.append(query_streamer)

100

101 #############################################################

102 #

103 # States

104 #

105 #############################################################

106

107 states_query = Select(

108 query_streamer.output(),

109 UniversalSelect(

110 query_streamer.output().schema(),

111 {

112 ’states.geom’: {

113 ’type’: Geometry,

114 ’args’: [’queries.geom’],

115 ’function’: lambda v: v,

116 },

117 }

118 )

119 )

120 engines.append(states_query)

121

122 #query_schema = Schema()

123 #query_schema.append(Attribute(’states.geom’, Geometry))

124 # The query stream contains only a single query box.

125 #query_streamer = ArrayStreamer(query_schema, [

126 # (query,),

127 # StopWord(),

128 #])

129 #engines.append(query_streamer)

130

131 states_source = Rtree(states_file, ’states.geom’)

132 states_accessor = DataAccessor(

133 states_query.output(),

134 states_source,

135 FindRange

136 )

137 engines.append(states_accessor)

138

139 states_select = Select(

140 states_accessor.output(),

141 UniversalSelect(

142 states_accessor.output().schema(),

143 {

144 ’states.oid’: {

145 ’type’: int,

146 ’args’: [’oid’],

147 ’function’: lambda v: v,

148 },

149 ’states.geom’: {

150 ’type’: Geometry,

151 ’args’: [’states.geom’],

152 ’function’: lambda v: v,

153 }

154 }

155 )

156 )



200

157 engines.append(states_select)

158

159 # join input query stream with the selected states

160 states_join = Join(

161 query_streamer.output(),

162 states_select.output()

163 )

164 engines.append(states_join)

165

166 # trim the states to the boundary of the query

167 states_trim = Select(

168 states_join.output(),

169 UniversalSelect(

170 states_join.output().schema(),

171 {

172 ’states.oid’: {

173 ’type’: int,

174 ’args’: [’states.oid’],

175 ’function’: lambda v: v,

176 },

177 ’states.geom’: {

178 ’type’: Geometry,

179 ’args’: [’queries.geom’, ’states.geom’],

180 ’function’: lambda a, b: intersection(a, b),

181 }

182 }

183 )

184 )

185 engines.append(states_trim)

186

187 # group states by state ID

188 states_group = Group(

189 states_trim.output(),

190 {

191 ’states.oid’: lambda a, b: a == b,

192 }

193 )

194 engines.append(states_group)

195

196 #############################################################

197 #

198 # Counties

199 #

200 #############################################################

201

202 counties_query = Select(

203 states_trim.output(),

204 UniversalSelect(

205 states_trim.output().schema(),

206 {

207 ’counties.geom’: {

208 ’type’: Geometry,

209 ’args’: [’states.geom’],

210 ’function’: lambda v: v,

211 }

212 }

213 )

214 )

215 engines.append(counties_query)

216

217 counties_source = Rtree(counties_file, ’counties.geom’)

218 counties_accessor = DataAccessor(

219 counties_query.output(),

220 counties_source,

221 FindRange,

222 )

223 engines.append(counties_accessor)



201

224

225 counties_select = Select(

226 counties_accessor.output(),

227 UniversalSelect(

228 counties_accessor.output().schema(),

229 {

230 ’counties.oid’: {

231 ’type’: int,

232 ’args’: [’oid’],

233 ’function’: lambda v: v,

234 },

235 ’counties.geom’: {

236 ’type’: Geometry,

237 ’args’: [’counties.geom’],

238 ’function’: lambda v: v,

239 }

240 }

241 )

242 )

243 engines.append(counties_select)

244

245 counties_join = Join(

246 states_group.output(),

247 counties_select.output()

248 )

249 engines.append(counties_join)

250

251 counties_trim = Select(

252 counties_join.output(),

253 UniversalSelect(

254 counties_join.output().schema(),

255 {

256 ’states.oid’: {

257 ’type’: int,

258 ’args’: [’states.oid’],

259 ’function’: lambda v: v,

260 },

261 ’states.geom’: {

262 ’type’: Geometry,

263 ’args’: [’states.geom’],

264 ’function’: lambda v: v,

265 },

266 ’counties.oid’: {

267 ’type’: int,

268 ’args’: [’counties.oid’],

269 ’function’: lambda v: v,

270 },

271 ’counties.geom’: {

272 ’type’: Geometry,

273 ’args’: [’states.geom’, ’counties.geom’],

274 ’function’: lambda a, b: intersection(a, b),

275 }

276 }

277 )

278 )

279 engines.append(counties_trim)

280

281 counties_filter = Filter(

282 counties_trim.output(),

283 UniversalFilter(

284 counties_trim.output().schema(),

285 {

286 ’counties.geom’: lambda g: g and g.geom().is_valid and g.geom().area }

287 )

288 )

289 engines.append(counties_filter)

290



202

291 counties_group = Group(

292 counties_filter.output(),

293 {

294 ’states.oid’: lambda a, b: a == b,

295 ’counties.oid’: lambda a, b: a == b,

296 }

297 )

298 engines.append(counties_group)

299

300 #############################################################

301 #

302 # Zip

303 #

304 #############################################################

305

306 zip_query = Select(

307 counties_filter.output(),

308 UniversalSelect(

309 counties_filter.output().schema(),

310 {

311 ’zip.geom’: {

312 ’type’: Geometry,

313 ’args’: [’counties.geom’],

314 ’function’: lambda v: v,

315 }

316 }

317 )

318 )

319 engines.append(zip_query)

320

321 zip_source = Rtree(zip_file, ’zip.geom’)

322 zip_accessor = DataAccessor(

323 zip_query.output(),

324 zip_source,

325 FindRange,

326 )

327 engines.append(zip_accessor)

328

329 zip_select = Select(

330 zip_accessor.output(),

331 UniversalSelect(

332 zip_accessor.output().schema(),

333 {

334 ’zip.oid’: {

335 ’type’: int,

336 ’args’: [’oid’],

337 ’function’: lambda v: v,

338 },

339 ’zip.geom’: {

340 ’type’: Geometry,

341 ’args’: [’zip.geom’],

342 ’function’: lambda v: v,

343 }

344 }

345 )

346 )

347 engines.append(zip_select)

348

349 zip_join = Join(

350 counties_group.output(),

351 zip_select.output(),

352 )

353 engines.append(zip_join)

354

355 zip_trim = Select(

356 zip_join.output(),

357 UniversalSelect(



203

358 zip_join.output().schema(),

359 {

360 ’states.oid’: {

361 ’type’: int,

362 ’args’: [’states.oid’],

363 ’function’: lambda v: v,

364 },

365 ’states.geom’: {

366 ’type’: Geometry,

367 ’args’: [’states.geom’],

368 ’function’: lambda v: v,

369 },

370 ’counties.oid’: {

371 ’type’: int,

372 ’args’: [’counties.oid’],

373 ’function’: lambda v: v,

374 },

375 ’counties.geom’: {

376 ’type’: Geometry,

377 ’args’: [’counties.geom’],

378 ’function’: lambda v: v,

379 },

380 ’zip.oid’: {

381 ’type’: int,

382 ’args’: [’zip.oid’],

383 ’function’: lambda v: v,

384 },

385 ’zip.geom’: {

386 ’type’: Geometry,

387 ’args’: [’counties.geom’, ’zip.geom’],

388 ’function’: lambda a, b: intersection(a, b),

389 }

390 }

391 )

392 )

393 engines.append(zip_trim)

394

395 zip_filter = Filter(

396 zip_trim.output(),

397 UniversalFilter(

398 zip_trim.output().schema(),

399 {

400 ’zip.geom’: lambda g: g and g.geom().is_valid and g.geom().area }

401 )

402 )

403 engines.append(zip_filter)

404

405 demux = Demux(zip_filter.output())

406 engines.append(demux)

407 mux_streams = []

408 for i in range(tracks):

409 channel = demux.channel()

410

411 zip_group = Group(

412 channel,

413 {

414 ’states.oid’: lambda a, b: a == b,

415 ’counties.oid’: lambda a, b: a == b,

416 ’zip.oid’: lambda a, b: a == b,

417 }

418 )

419 engines.append(zip_group)

420

421 cover_query = Select(

422 channel,

423 UniversalSelect(

424 channel.schema(),



204

425 {

426 ’cover.geom’: {

427 ’type’: Geometry,

428 ’args’: [’zip.geom’],

429 ’function’: lambda v: v,

430 }

431 }

432 )

433 )

434 engines.append(cover_query)

435

436 cover_source = Rtree(cover_file, ’cover.geom’)

437 cover_accessor = DataAccessor(

438 cover_query.output(),

439 cover_source,

440 FindRange

441 )

442 engines.append(cover_accessor)

443

444 cover_select = Select(

445 cover_accessor.output(),

446 UniversalSelect(

447 cover_accessor.output().schema(),

448 {

449 ’cover.geom’: {

450 ’type’: Geometry,

451 ’args’: [’cover.geom’],

452 ’function’: lambda v: v,

453 }

454 }

455 )

456 )

457 engines.append(cover_select)

458

459 cover_join = Join(

460 zip_group.output(),

461 cover_select.output(),

462 )

463 engines.append(cover_join)

464

465 cover_area = Select(

466 cover_join.output(),

467 UniversalSelect(

468 cover_join.output().schema(),

469 [

470 (’states.oid’, {

471 ’type’: int,

472 ’args’: [’states.oid’],

473 ’function’: lambda v: v,

474 }),

475 #’states.geom’: {

476 # ’type’: Geometry,

477 # ’args’: [’states.geom’],

478 # ’function’: lambda v: v,

479 #},

480 (’counties.oid’, {

481 ’type’: int,

482 ’args’: [’counties.oid’],

483 ’function’: lambda v: v,

484 }),

485 #’counties.geom’: {

486 # ’type’: Geometry,

487 # ’args’: [’counties.geom’],

488 # ’function’: lambda v: v,

489 #},

490 (’zip.oid’, {

491 ’type’: int,



205

492 ’args’: [’zip.oid’],

493 ’function’: lambda v: v,

494 }),

495 #’zip.geom’: {

496 # ’type’: Geometry,

497 # ’args’: [’counties.geom’, ’zip.geom’],

498 # ’function’: lambda a, b: intersection(a, b),

499 #},

500 (’area’, {

501 ’type’: float,

502 ’args’: [’zip.geom’, ’cover.geom’],

503 ’function’:

504 lambda a, b:

505 intersection(a, b).geom().area / b.geom().area

506 })

507 ]

508 )

509 )

510 engines.append(cover_area)

511

512 #############################################################

513 #

514 # 1st level aggregation

515 #

516 #############################################################

517

518 cover_aggregate = Aggregate(

519 cover_area.output(),

520 SumAggregator(cover_area.output().schema(), ’area’)

521 )

522 engines.append(cover_aggregate)

523 mux_streams.append(cover_aggregate.output())

524

525 mux = Mux(*mux_streams)

526 engines.append(mux)

527

528 #############################################################

529 #

530 # 2nd level aggregation

531 #

532 #############################################################

533

534 counties_level_select = Select(

535 mux.output(),

536 UniversalSelect(

537 mux.output().schema(),

538 [

539 (’states.oid’, {

540 ’type’: int,

541 ’args’: [’states.oid’],

542 ’function’: lambda v: v,

543 }),

544 (’counties.oid’, {

545 ’type’: int,

546 ’args’: [’counties.oid’],

547 ’function’: lambda v: v,

548 }),

549 (’area’, {

550 ’type’: float,

551 ’args’: [’area’],

552 ’function’: lambda v: v,

553 }),

554 ]

555 )

556 )

557 engines.append(counties_level_select)

558



206

559 counties_level_ungroup = Group(

560 counties_level_select.output(),

561 {}

562 )

563 engines.append(counties_level_ungroup)

564

565 counties_level_sort = Sort(

566 counties_level_ungroup.output(),

567 [

568 (’states.oid’, None),

569 (’counties.oid’, None)

570 ]

571 )

572 engines.append(counties_level_sort)

573

574 counties_level_group = Group(

575 counties_level_sort.output(),

576 {

577 ’states.oid’: lambda a, b: a == b,

578 ’counties.oid’: lambda a, b: a == b,

579 }

580 )

581 engines.append(counties_level_group)

582

583 counties_level_aggregate = Aggregate(

584 counties_level_group.output(),

585 SumAggregator(counties_level_group.output().schema(), ’area’)

586 )

587 engines.append(counties_level_aggregate)

588

589 #############################################################

590 #

591 # 3rd level aggregation

592 #

593 #############################################################

594

595 states_level_select = Select(

596 counties_level_aggregate.output(),

597 UniversalSelect(

598 counties_level_aggregate.output().schema(),

599 [

600 (’states.oid’, {

601 ’type’: int,

602 ’args’: [’states.oid’],

603 ’function’: lambda v: v,

604 }),

605 (’area’, {

606 ’type’: float,

607 ’args’: [’area’],

608 ’function’: lambda v: v,

609 }),

610 ]

611 )

612 )

613 engines.append(states_level_select)

614

615 states_level_ungroup = Group(

616 states_level_select.output(),

617 {}

618 )

619 engines.append(states_level_ungroup)

620

621 states_level_sort = Sort(

622 states_level_ungroup.output(),

623 [

624 (’states.oid’, None)

625 ]



207

626 )

627 engines.append(states_level_sort)

628

629 states_level_group = Group(

630 states_level_sort.output(),

631 {

632 ’states.oid’: lambda a, b: a == b,

633 }

634 )

635 engines.append(states_level_group)

636

637 states_level_aggregate = Aggregate(

638 states_level_group.output(),

639 SumAggregator(states_level_group.output().schema(), ’area’)

640 )

641 engines.append(states_level_aggregate)

642

643

644 ############################################################

645 #

646 # 4th level aggregation

647 #

648 ############################################################

649

650 all_level_select = Select(

651 counties_level_aggregate.output(),

652 UniversalSelect(

653 counties_level_aggregate.output().schema(),

654 {

655 ’area’: {

656 ’type’: float,

657 ’args’: [’area’],

658 ’function’: lambda v: v,

659 },

660 }

661 )

662 )

663 engines.append(all_level_select)

664

665 all_level_group = Group(

666 all_level_select.output(),

667 {}

668 )

669 engines.append(all_level_group)

670

671 all_level_aggregate = Aggregate(

672 all_level_group.output(),

673 SumAggregator(all_level_group.output().schema(), ’area’)

674 )

675 engines.append(all_level_aggregate)

676

677 ############################################################

678 #

679 # Output

680 #

681 ############################################################

682

683 result_file = ResultFile(

684 ’query5-results.txt’,

685 mux.output(),

686 counties_level_aggregate.output(),

687 states_level_aggregate.output(),

688 all_level_aggregate.output()

689 )

690 engines.append(result_file)



208

B.6 Query 2 in optimized PostgreSQL PL/pgSQL

1 \begin{Verbatim}[commentchar=CREATE TYPE query6_result_type AS (

2 nation_id INTEGER,

3 customer_id INTEGER,

4 orders_id INTEGER,

5 price FLOAT

6 );

7 CREATE OR REPLACE FUNCTION query6_compute()

8 RETURNS SETOF query6_result_type AS

9 $BODY$

10 DECLARE

11 _nation RECORD;

12 _nation_max FLOAT;

13 _customer RECORD;

14 _customer_max FLOAT;

15 _orders RECORD;

16 _price FLOAT;

17 _result query6_result_type;

18 BEGIN

19 FOR _nation IN SELECT nation.id as id

20 FROM nation_50 AS nation LOOP

21 _nation_max := 0.0;

22 FOR _customer IN SELECT customer.id AS id

23 FROM customer_50 AS customer

24 WHERE customer.nation_id = _nation.id LOOP

25 _customer_max := 0.0;

26 FOR _orders IN SELECT orders.id AS id

27 FROM orders_50 AS orders

28 WHERE orders.customer_id = _customer.id LOOP

29 SELECT MAX(lineitem.price) INTO _price

30 FROM lineitem_50 AS lineitem

31 WHERE

32 lineitem.order_id = _orders.id

33 AND lineitem.quantity >= 10

34 AND lineitem.quantity <= 15;

35 IF _price IS NOT NULL THEN

36 _result.nation_id = _nation.id;

37 _result.customer_id = _customer.id;

38 _result.orders_id = _orders.id;

39 _result.price = _price;

40 _customer_max := greatest(_customer_max, _price);

41 RETURN NEXT _result;

42 END IF;

43 END LOOP;

44 _result.nation_id = _nation.id;

45 _result.customer_id = _customer.id;

46 _result.orders_id = NULL;

47 _result.price = _customer_max;

48 _nation_max := greatest(_nation_max, _customer_max);

49 RETURN NEXT _result;

50 END LOOP;

51 _result.nation_id = _nation.id;

52 _result.customer_id = NULL;

53 _result.orders_id = NULL;

54 _result.price = _nation_max;

55 RETURN NEXT _result;

56 END LOOP;

57 RETURN;

58 END

59 $BODY$

60 LANGUAGE ’plpgsql’;



209

B.7 Query 5 in optimized PostgreSQL PL/pgSQL

1 CREATE TYPE query5_result_type AS (

2 counties_id INTEGER,

3 states_id INTEGER,

4 zip5_id INTEGER,

5 area FLOAT

6 );

7 CREATE OR REPLACE FUNCTION query5()

8 RETURNS SETOF query5_result_type AS

9 $BODY$

10 DECLARE

11 query geometry;

12 state RECORD;

13 state_total FLOAT;

14 county RECORD;

15 county_total FLOAT;

16 zip RECORD;

17 lulc RECORD;

18 cover FLOAT;

19 result query5_result_type;

20 BEGIN

21 query := CAST(makebox2d(

22 makepoint(-93.88, 24.22),

23 makepoint(-65.39, 49.81)

24 ) AS geometry);

25 FOR county IN SELECT

26 counties.id AS id,

27 INTERSECTION(query, counties.geom) AS geom

28 FROM counties

29 WHERE

30 counties.geom && query

31 AND INTERSECTS(counties.geom, query)

32 LOOP

33 county_total := 0.0;

34 IF (GeometryType(county.geom) = ’MULTIPOLYGON’

35 OR GeometryType(county.geom) = ’POLYGON’)

36 AND isValid(county.geom)

37 AND NOT isEmpty(county.geom)

38 THEN

39 FOR state IN SELECT

40 states.id as id,

41 INTERSECTION(county.geom, states.geom) as geom

42 FROM states

43 WHERE

44 states.geom && county.geom

45 AND INTERSECTS(states.geom, county.geom)

46 LOOP

47 state_total := 0.0;

48 IF (GeometryType(state.geom) = ’MULTIPOLYGON’

49 OR GeometryType(state.geom) = ’POLYGON’)

50 AND isValid(state.geom)

51 AND isSimple(state.geom)

52 AND NOT isEmpty(state.geom)

53 THEN

54 FOR zip IN SELECT

55 zip5.id AS id,

56 INTERSECTION(state.geom, zip5.geom) AS geom

57 FROM zip5

58 WHERE

59 zip5.geom && state.geom

60 AND INTERSECTS(zip5.geom, state.geom)

61 LOOP

62 IF (GeometryType(zip.geom) = ’MULTIPOLYGON’



210

63 OR GeometryType(zip.geom) = ’POLYGON’)

64 AND isValid(zip.geom)

65 AND NOT isEmpty(zip.geom)

66 THEN

67 cover := 0;

68 FOR lulc IN SELECT

69 lulc_large.id AS id,

70 (AREA(INTERSECTION(zip.geom, lulc_large.geom))

71 / AREA(lulc_large.geom)) as c

72 FROM lulc_large

73 WHERE

74 lulc_large.geom && zip.geom

75 AND INTERSECTS(lulc_large.geom, zip.geom)

76 LOOP

77 cover = cover + lulc.c;

78 END LOOP;

79 IF cover IS NOT NULL THEN

80 result.counties_id = county.id - 1;

81 result.states_id = state.id - 1;

82 result.zip5_id = zip.id - 1;

83 result.area = cover;

84 state_total := state_total + cover;

85 RETURN NEXT result;

86 END IF;

87 END IF;

88 END LOOP;

89 END IF;

90 IF state_total result.counties_id = county.id - 1;

91 result.states_id = state.id - 1;

92 result.zip5_id = NULL;

93 result.area = state_total;

94 county_total := county_total + state_total;

95 RETURN NEXT result;

96 END IF;

97 END LOOP;

98 END IF;

99 IF county_total result.counties_id = county.id - 1;

100 result.states_id = NULL;

101 result.zip5_id = NULL;

102 result.area = county_total;

103 RETURN NEXT result;

104 END IF;

105 END LOOP;

106 RETURN;

107 END

108 $BODY$

109 LANGUAGE ’plpgsql’;

B.8 Query 5 in PostgreSQL standard SQL

1 SELECT

2 counties_large.id,

3 states_large.id,

4 zip5_large.id,

5 SUM(

6 Area(

7 Intersection(

8 Intersection(

9 Intersection(

10 counties_large.geom,

11 states_large.geom

12 ),

13 zip5_large.geom



211

14 ),

15 lulc_large.geom

16 )

17 ) / AREA(lulc_large.geom)

18 )

19 FROM

20 counties_large

21 JOIN

22 states_large

23 ON

24 counties_large.geom && states_large.geom

25 AND INTERSECTS(counties_large.geom, states_large.geom)

26 JOIN

27 zip5_large

28 ON

29 counties_large.geom && zip5_large.geom

30 AND states_large.geom && zip5_large.geom

31 AND

32 INTERSECTS(

33 INTERSECTION(

34 counties_large.geom,

35 states_large.geom

36 ),

37 zip5_large.geom

38 )

39 JOIN

40 lulc_large

41 ON

42 counties_large.geom && lulc_large.geom

43 AND states_large.geom && lulc_large.geom

44 AND zip5_large.geom && lulc_large.geom

45 AND

46 INTERSECTS(

47 Intersection(

48 Intersection(

49 counties_large.geom,

50 states_large.geom

51 ),

52 zip5_large.geom

53 ),

54 lulc_large.geom

55 )

56 WHERE

57 lulc_large.geom && makebox2d(

58 makepoint(-93.88, 24.22),

59 makepoint(-65.39, 49.81)

60 )

61 AND

62 INTERSECTS(

63 lulc_large.geom,

64 makebox2d(

65 makepoint(-93.88, 24.22),

66 makepoint(-65.39, 49.81)

67 )

68 )

69 GROUP BY counties_large.id, states_large.id, zip5_large.id;



Appendix C

OLAP for Moving Object Data: Research Opportunities

The solutions proposed in Chapter 7 are address only some of the aspects of OLAP on

moving object data. There are some open problems that may provide opportunities

for future work. Next we outline some of them.

C.1 Alternative Grouping Operators

The GROUP TRAJECTORIES operators introduced in this chapter are based on a heuris-

tic approach by using specific properties (overlap and intersection) of the relation-

ships between groups of trajectories as criteria for merging sufficiently related groups

into larger combined groups of trajectories. Alternative approaches that define other

GROUP TRAJECTORIES operators and use different criteria for combining groups should

be discussed in future work. One such approach is probabilistic modeling of the groups

of trajectories. For this approach, future work needs to identify appropriate mecha-

nisms to assign probabilities to relationships of trajectories that are characterized by

frequent itemsets, and formalize the criteria for combining trajectories into groups.

For example, in such a model a frequent pattern that is shared by two of more tra-

jectories may be used to assign a probability to the pairwise relationships between

the trajectories based on the size of the frequent itemset relative to the length of the

related trajectories. Once the initial probabilities of relationships between trajecto-

ries have been determined, we can use the joint probability of two relationships to

determine the probability of a relationship between two trajectories that do not share

a frequent itemset but have a common neighbour who shares a frequent itemset with

both.

212



213

(a) Moving into the
same direction

(b) Moving toward
the same point

Figure C.1: Examples of different movement patterns.

C.2 Alternative Movement Patterns

For the algorithms introduced in Chapter 7, it was assumed that frequent itemsets

where determined on trajectories that are represented within their original space but

potentially mapped to a lower resolution. This enables the algorithms to group to-

gether trajectories that are moving in unison for a certain number of shared locations

along their individual paths. In many applications, however, it may be desirable to

identify groups of the trajectories that show different movement patterns, such as

those shown in Figure C.1.

Future work should investigate how preprocessing of trajectories can be used to

facilitate the identification of alternative movement patterns without significant mod-

ifications to the existing grouping algorithms. For example a transformation of tra-

jectories of the form [(x1, y1, t1), . . . , (xm, ym, tm)] to [(α1, t1), . . . , (αm, tm)], where αi

is the orientation of the object with respect to a reference axis, may allow to identify

groups of trajectories that move in the same direction, as shown in Figure C.1a.

C.3 Aggregation of Trajectories

As shown in the previous section, there is a lot of work that focuses on the identi-

fication of groups of moving objects. However, only few authors address the issue

of summarizing and aggregating the information that captures the characteristics of

each group of moving objects.

Güting was one of the first authors who investigated the problem of spatial ag-

gregation [73]. He suggested aggregation functions such as UNION (the union of all

(xi, yi, ti) tuples that define the trajectories in the aggregation group) and CONTOUR



214

(the outline of a group of trajectories) to capture summarized properties of groups of

spatial objects. In [139] Pedersen and Tryfona provided an in-depth analysis of spatial

aggregation with respect to pre-aggregation and the derivation of aggregation results

from already pre-aggregated data. Additionally, many current commercial database

systems have adopted spatial aggregation functions in their spatial extensions and

provide support for the implementation of custom, special-purpose aggregation func-

tions that can be defined by the user [93, 122, 133]. To facilitate this, frameworks to

support the implementation of aggregation functions have been proposed that specif-

ically cater to tasks related to data mining [189]. Based on the aggregation of spatial

properties, various approaches for the aggregation of spatio-temporal data have been

derived. An extensive review of these approaches for spatio-temporal aggregation is

provided in [112].

The identification of groups of trajectories is a necessary part of OLAP on moving

object data. However, to facilitate an interactive analysis of the data, methods have

to be provided that reduce the amount of information displayed to the user to the

essential minimum. In OLAP this is achieved using aggregation. Depending on the

application scenario, existing aggregation functions for categorical or spatial data may

not be sufficient when applied to moving object data, and there is a need for powerful

and expressive aggregation functions that support the aggregation of trajectories.

For example, when aggregating trajectories, an AVERAGE function may be suitable

to determine the average path that is described by all trajectories that are within

a group. Alternatively, a GENERALIZE function, that can be used to determine a

visual generalization of the movements of a group of trajectories may be useful when

a graphical representation of the aggregate is required. Figures C.2a and C.2b show

such graphical representations and suggest that objects moving along a shared path

may be represented as a single “arrow” whose width is proportional to the size of the

group it represents.



215

(a) Non-generalized groups
of trajectories

(b) Generalized groups of
trajectories

Figure C.2: A visual generalization function for groups of trajectories.



Bibliography

[1] SQL Part 2: Foundation. Spec, International Organization for Standardization,
2003. ISO/IEC 9075-2:2003.

[2] Improving emergency planning and response with geographic information sys-
tems. White paper, ESRI, 2005.

[3] R. Abdel Kader, P. Boncz, S. Manegold, and M. van Keulen. ROX: run-time
optimization of XQueries. In Proceedings of the 35th ACM SIGMOD Interna-

tional Conference on Management of Data, pages 615–626. ACM, 2009.

[4] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. Journal of

Computer and System Sciences, 66(1):207–243, 2003.

[5] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F. Naughton, R. Ramakr-
ishnan, and S. Sarawagi. On the computation of multidimensional aggregates.
In Proceedings of the 22th International Conference on Very Large Data Bases,
pages 506–521. Morgan Kaufmann, 1996.

[6] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets
of items in large databases. ACM SIGMOD Record, 22(2):207–216, 1993.

[7] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the

11th International Conference on Data Engineering, pages 3–14. IEEE, 1995.

[8] T. Ahmed. Spatial on-line analytical processing (SOLAP): Overview and cur-
rent trends. In Proceedings of the 2008 International Conference on Advanced

Computer Theory and Engineering, pages 1095–1099. IEEE, 2008.

[9] J. H. Albrecht. Universal GIS operations for environmental modeling. In Pro-

ceedings of the 3rd International Conference on Integrating GIS and Environ-

mental Modeling, 1996.

[10] M. Andersson, J. Gudmundsson, P. Laube, and T. Wolle. Reporting leadership
patterns among trajectories. In Proceedings of the 2007 ACM Symposium on

Applied Computing, pages 3–7. ACM, 2007.

[11] T. Badard. Developing geospatial business intelligence solutions. Geospatial

Today, Nov. 2010.

[12] O. Baltzer, F. Dehne, S. Hambrusch, and A. Rau-Chaplin. OLAP for trajec-
tories. In Proceedings of the 19th International Conference on Database and

Expert Systems Applications, pages 340–347. Springer, 2008.

216



217

[13] O. Baltzer, A. Rau-Chaplin, and N. Zeh. Storage and indexing of relational
OLAP views with mixed categorical and continuous dimensions. Journal of

Digital Information Management, 5(4):180, 2007.

[14] R. Bayer and E. McCreight. Organization and maintenance of large ordered
indexes. Acta Informatica, 1(3):173–189, 1972.

[15] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered
indexes. Acta Informatica, 1:173–189, 1972.

[16] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient
and robust access method for points and rectangles. ACM SIGMOD Record,
19(2):322–331, 1990.

[17] Y. Bédard, T. Merrett, and J. Han. Research Monographs in GIS, chapter Fun-
damentals of Spatial Data Warehousing for Geographic Knowledge Discovery
in Geographic Data Mining and Knowledge Discovery, pages 53–73. Taylor &
Francis, 2001.

[18] R. Benetis, C. S. Jensen, G. Karĉiauskas, and S. Ŝaltenis. Nearest and reverse
nearest neighbor queries for moving objects. The International Journal on Very

Large Data Bases, 15(3):229–249, 2006.

[19] M. Benkert, J. Gudmundsson, F. Huebner, and T. Wolle. Reporting flock
patterns. In Proceedings of the 14th European Symposium on Algorithms, pages
660–671. Springer, 2006.

[20] E. Bernier, P. Gosselin, T. Badard, and Y. Bédard. Easier surveillance of
climate-related health vulnerabilities through a web-based spatial OLAP appli-
cation. International Journal of Health Geographics, 8(1):18, 2009.

[21] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and Iceberg
CUBE. ACM SIGMOD Record, 28(2):359–370, 1999.

[22] S. Bimonte, V. Fatto, L. Paolino, M. Sebillo, and G. Vitiello. A visual query
language for spatial data warehouses. Geospatial Thinking, pages 43–60, 2010.

[23] S. Bimonte, J. Gensel, and M. Bertolotto. Enriching spatial OLAP with map
generalization: A conceptual multidimensional model. In Proceedings of the

2008 IEEE International Conference on Data Mining, pages 332–341. IEEE,
2008.

[24] S. Bimonte, P. Wehrle, A. Tchounikine, and M. Miquel. GeWOlap: A web
based spatial olap proposal. In Proceedings of the OnTheMove Workshops,
pages 1596–1605. Springer, 2006.

[25] C. Böhm, S. Berchtold, H.-P. Kriegel, and U. Michel. Multidimensional index
structures in relational databases. Journal of Intelligent Information Systems,
15(1):51–70, 2000.



218

[26] H. Boral and D. J. DeWitt. Design considerations for data-flow database ma-
chines. In Proceedings of the 1980 ACM SIGMOD International Conference on

Management of Data, pages 94–104. ACM, 1980.

[27] H. Cao, N. Mamoulis, and D. W. Cheung. Mining frequent spatio-temporal
sequential patterns. In Proceedings of the 5th International Conference on Data

Mining, pages 82–89. IEEE, 2005.

[28] P. Cao, E. Felten, A. Karlin, and K. Li. Implementation and performance of
integrated application-controlled file caching, prefetching, and disk scheduling.
ACM Transactions on Computer Systems, 14(4):311–343, 1996.

[29] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chan-
dra, A. Fikes, and R. Gruber. Bigtable: A distributed storage system for struc-
tured data. ACM Transactions on Computer Systems, 26(2):1–26, 2008.

[30] N.-B. Chang, H. Y. Lu, and Y. L. Wei. GIS technology for vehicle routing
and scheduling in solid waste collection systems. Journal of Environmental

Engineering, 123(9):901–910, 1997.

[31] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap tech-
nology. ACM SIGMOD Record, 26(1), 1997.

[32] J. Chen and X. Meng. Update-efficient indexing of moving objects in road
networks. GeoInformatica, 13(4):397–424, 2009.

[33] P. P.-S. Chen. The entity-relationship model-toward a unified view of data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[34] Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin. PnP: Parallel and external
memory iceberg cubes. In Proceedings of the 21st International Conference on

Data Engineering, pages 576–577. IEEE, 2005.

[35] Y. Chen, A. Rau-Chaplin, F. Dehne, T. Eavis, D. Green, and E. Sithirasenan.
cgmOLAP: Efficient parallel generation and querying of terabyte size ROLAP
data cubes. In Proceedings of the 22nd International Conference on Data En-

gineering, page 164. IEEE, 2006.

[36] E. Clementini and P. Di Felice. A comparison of methods for representing topo-
logical relationships. Information Sciences Applications, 3(3):149–178, 1995.

[37] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP to user-analysts:
An IT mandate. Technical report, E.F.Codd & Associates, 1993.

[38] T. L. Cohen, J. R. Baitty, R. G. Plamer, K. T. Adams, and J. A. Weyl. Health
resources and services administration geospatial data warehouse. In Proceedings

of the 2004 ESRI International Users Conference. ESRI, 2004.



219

[39] J. da Silva, V. Times, A. Salgado, C. Souza, R. Fidalgo, and A. de Oliveira.
A set of aggregation functions for spatial measures. In Proceeding of the 11th

ACM International Workshop on Data Warehousing and OLAP, pages 25–32.
ACM, 2008.

[40] J. da Silva, V. C. Times, R. N. Fidalgo, and R. S. M. Barros. Web Technologies

Research and Development, chapter Providing Geographic-Multidimensional
Decision Support over the Web, pages 477–488. Springer, 2005.

[41] M. Davis, Y. Bychkov, et al. GEOS: Geometry Engine Open Source, Apr. 2010.
http://trac.osgeo.org/geos/.

[42] M. Davis et al. Java Topology Suite, 2002–2006. http://www.vividsolutions.-
com/jts/jtshome.htm.

[43] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational

Geometry. Springer-Verlag, 2 edition, 1998.

[44] F. Dehne, T. Eavis, and A. Rau-Chaplin. Computing partial data cubes for
parallel data warehousing applications. In Recent Advances in Parallel Vir-

tual Machine and Message Passing Interface, volume 2131 of Lecture Notes in

Computer Science, pages 319–326. Springer, 2001.

[45] F. Dehne, T. Eavis, and A. Rau-Chaplin. Parallel multi-dimensional ROLAP
indexing. In Proceedings of the 3rd International Symposium on Cluster Com-

puting and the Grid, pages 86–96. IEEE, 2003.

[46] G. P. Deretta. Boost.coroutine, 2006. http://www.crystalclearsoftware.com-
/soc/coroutine/.

[47] A. Deshpande and L. Hellerstein. Flow algorithms for parallel query optimiza-
tion. In Proceedings of the 24th International Conference on Data Engineering,
pages 754–763. IEEE, 2008.

[48] Z. Ding and R. H. Guting. Managing moving objects on dynamic transportation
networks. In Proceedings of the 16th International Conference on Scientific and

Statistical Database Management, pages 287–296. IEEE, 2004.

[49] E. Dube and T. Badard. GeoMondrian, 2009. http://www.spatialytics.org-
/projects/geomondrian/.

[50] T. Eavis. Parallel relational OLAP. PhD thesis, Dalhousie University, 2003.

[51] M. Egenhofer. Spatial SQL: A query and presentation language. IEEE Trans-

actions on Knowledge and Data Engineering, pages 86–95, 1994.

[52] R. S. Engelschall. Gnu portable threads, 1999–2006. http://www.gnu.org-
/software/pth/.



220

[53] A. Escribano, L. Gomez, B. Kuijpers, and A. Vaisman. Piet: A GIS-OLAP
implementation. In Proceedings of the 10th ACM International Workshop on

Data Warehousing and OLAP, pages 73–80. ACM, 2007.

[54] ESRI Inc. ArcGIS, 2010. http://www.esri.com/software/arcgis/arcgis10-
/index.html.

[55] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the

2nd International Conference on Knowledge Discovery and Data Mining, pages
226–231. AAAI Press, 1996.

[56] R. N. Fidalgo, V. C. Times, J. Silva, and F. F. Souza. Data Warehousing and

Knowledge Discovery, chapter GeoDWFrame: A Framework for Guiding the
Design of Geographical Dimensional Schemas, pages 26–37. Springer, 2004.

[57] R. Finkel and J. Bentley. Quad trees a data structure for retrieval on composite
keys. Acta Informatica, 4(1):1–9, 1974.

[58] C. Franklin. An introduction to Geographic Information Systems: Linking maps
to databases. Database, 15(2):12–21, 1992.

[59] V. Gaede and O. Günther. Multidimensional access methods. ACM Computing

Surveys, 30(2):170–231, 1998.

[60] H. Garcia-Molina, J. Ullman, and J. Widom. Database System Implementation.
Prentice Hall, 2000.

[61] G. Gidófalvi and T. Pedersen. Mining long, sharable patterns in trajectories of
moving objects. GeoInformatica, 13(1):27–55, 2009.

[62] G. Gidófalvi and T. B. Pedersen. Mining long, sharable patterns in trajectories
of moving objects. In Proceedings of the 3rd Workshop on Spatio-Temporal

Database Management, 2006.

[63] S. Gillies, H. Butler, and B. Pedersen. Python R-tree bindings, Apr. 2010.
http://trac.gispython.org/lab/wiki/Rtree.

[64] S. Gillies et al. Shapely – GEOS Python bindings, Jan. 2011.
http://trac.gispython.org/lab/wiki/Shapely.

[65] L. I. Gómez, S. Haesevoets, B. Kuijpers, and A. Vaisman. Spatial aggregation:
Data model and implementation. Information Systems, 34(6):551–576, 2009.

[66] L. I. Gómez, B. Kuijpers, B. Moelans, and A. Vaisman. A survey of spatio-
temporal data warehousing. International Journal of Data Warehousing and

Mining, 5(3):28–55, 2009.



221

[67] L. I. Gómez, B. Kuijpers, and A. A. Vaisman. Aggregation languages for moving
object and places of interest data. In Proceedings of the 2008 ACM Symposium

on Applied Computing, pages 857–862. ACM, 2008.

[68] L. I. Gómez, A. Vaisman, and S. Zich. Piet-QL: A query language for GIS-
OLAP integration. In Proceedings of the 16th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, pages 1–10. ACM,
2008.

[69] L. I. Gómez, A. Vaisman, and E. Zimányi. Physical design and implementation
of spatial data warehouses supporting continuous fields. Data Warehousing and

Knowledge Discovery, pages 25–39, 2010.

[70] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A relational
aggregational operator for generalizing group-bys, cross-tabs, and sub-totals.
Technical Report MSR-TR-95-22, 1995.

[71] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational ag-
gregation operator generalizing group-by, cross-tab, and sub-totals. Proceedings
of the 12th International Conference on Data Engineering, page 152, 1996.

[72] J. Gudmundsson, M. van Kreveld, and B. Speckmann. Efficient detection of
motion patterns in spatio-temporal data sets. In Proceedings of the 12th ACM

International Workshop on Geographic Information Systems, pages 250–257.
ACM, 2004.

[73] R. H. Güting. An introduction to spatial database systems. The VLDB Journal,
3(4):357–399, 1994.

[74] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schnei-
der, and M. Vazirgiannis. A foundation for representing and querying moving
objects. Transactions on Database Systems, 25(1):1–42, 2000.

[75] R. H. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann,
2005.

[76] A. Guttman. R-trees: a dynamic index structure for spatial searching. Readings
in database systems, pages 599–609, 1988.

[77] M. Hadjieleftheriou. Spatial index library, Jan. 2011. http://trac.gispython.-
org/spatialindex/wiki.

[78] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos. Efficient
indexing of spatiotemporal objects. In Proceedings of the 8th International

Conference on Extending Database Technology, pages 251–268. Springer, 2002.

[79] A. Hameurlain and F. Morvan. Evolution of query optimization methods.
Transactions on Large-Scale Data-and Knowledge-Centered Systems, pages 211–
242, 2009.



222

[80] J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in
time series database. In Proceedings of the 15th International Conference on

Data Engineering, pages 106–115. IEEE, 1999.

[81] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2001.

[82] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge

Discovery, 8(1):53–87, 2004.

[83] J. Han, N. Stefanovic, and K. Koperski. Selective materialization: An efficient
method for spatial data cube construction. In Proceedings of the 2nd Pacific-

Asia Conference on Research and Development in Knowledge Discovery and

Data Mining, pages 144–158. Springer, 1998.

[84] S. Har-Peled. Clustering motion. Discrete and Computational Geometry,
31(4):545–565, 2004.

[85] G. Häring et al. SQLite Python bindings, Jan. 2011. http://docs.python.org-
/library/sqlite3.html.

[86] J. A. Hartigan. Clustering Algorithms. John Wiley & Sons, 1975.

[87] V. Hernandez, A. Voss, and W. Gohring. Sustainable decision support by
the use of multi-level and multi-criteria spatial analysis on the nicaragua
development gateway, from pharaohs to geoinformatics. In Proceedings of

the Fédération Internationale des Géomètres Working Week, pages 16–21.
Fédération Internationale des Géomètres, 2005.

[88] D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück. Math-

ematische Annalen, 38:459–460, 1891.

[89] D. R. Hipp et al. The architecture of SQLite, Jan. 2011. http://www.sqlite.org-
/arch.html.

[90] D. R. Hipp et al. SQLite, Jan. 2011. http://www.sqlite.org/.

[91] S. Y. Hwang, Y. H. Liu, J. K. Chiu, and E. P. Lim. Mining mobile group
patterns: A trajectory-based approach. In Proceedings of the 9th Pacific-Asia

Conference on Knowledge Discovery and Data Mining, pages 713–718. Springer,
2005.

[92] J. Hyde et al. Mondrian OLAP Server, 2010. http://mondrian.pentaho.com/.

[93] IBM Corporation. Informix Dynamic Server v11 Information Center.
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp.



223

[94] K. Idehen. Open database connectivity without compromise, 1993. http://-
www.openlinksw.com/info/docs/odbcwhp/tableof.htm.

[95] Intelli3 Inc. Map4Decision, 2010. http://www.intelli3.com/en-
/map4decision en.php.

[96] H. V. Jagadish. Linear clustering of objects with multiple attributes. In Pro-

ceedings of the 1990 ACM SIGMOD International Conference on Management

of Data, pages 332–342. ACM, 1990.

[97] M. Jarke and J. Koch. Query optimization in database systems. ACM Com-

puting Surveys, 16(2):111–152, 1984.

[98] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved R-tree using fractals.
In Proceedings of the 20th International Conference on Very Large Databases,
pages 500–509. Morgan Kaufmann, 1994.

[99] R. Karedla, J. Love, and B. Wherry. Caching strategies to improve disk system
performance. IEEE Computer, 27(3):38–46, 2002.

[100] KHEOPS Technologoies. JMap spatial OLAP – Innovative technology to sup-
port intuitive and interactive exploration and analysis of spatio-temporal mul-
tidimensional data. Technical report, 2005.

[101] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. In
Proceedings of the 18th Symposium on Principles of Database Systems, pages
261–272. ACM, 1999.

[102] H.-P. Kriegel and M. Pfeifle. Clustering moving objects via medoid clusterings.
In Proceedings of the 17th International Conference on Scientific and Statistical

Database Management, pages 153–162. Lawrence Berkeley Laboratory, 2005.

[103] B. Kuijpers and A. A. Vaisman. A data model for moving objects support-
ing aggregation. In Proceedings of the 23rd International Conference on Data

Engineering, pages 546–554. IEEE, 2007.

[104] P. Laube and S. Imfeld. Analyzing relative motion within groups of trackable
moving point objects. In Proceedings of the 2nd International Conference on

Geographic Information Science, pages 132–144. Springer, 2002.

[105] P. Laube, M. van Kreveld, and S. Imfeld. Finding REMO–detecting relative
motion patterns in geospatial lifelines. In Proceedings of the 11th International

Symposium on Spatial Data Handling, pages 201–214. Springer, 2004.

[106] J. K. Lawder and P. J. H. King. Querying multi-dimensional data indexed using
the Hilbert space-filling curve. ACM SIGMOD Record, 30(1):19–24, 2001.



224

[107] L. Leonardi, G. Marketos, E. Frentzos, N. Giatrakos, S. Orlando, N. Pelekis,
A. Raffaetà, A. Roncato, C. Silvestri, and Y. Theodoridis. T-Warehouse: Visual
OLAP analysis on trajectory data. In Proceedings of the 26th International

Conference on Data Engineering, pages 1141–1144. IEEE, 2010.

[108] Y. Li, J. Han, and J. Yang. Clustering moving objects. In Proceedings of

the 10th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 617–622. ACM, 2004.

[109] A. Lima, C. Furtado, P. Valduriez, and M. Mattoso. Parallel OLAP query
processing in database clusters with data replication. Distributed and Parallel

Databases, 25(1):97–123, 2009.

[110] G. Liu, H. Lu, J. Yu, W.Wei, and X. Xiao. AFOPT: An efficient implementation
of pattern growth approach. In Proceedings of the ICDM 2003 Workshop on

Frequent Itemset Mining Implementations. CEUR-WS.org, 2003.

[111] P. A. Longley and M. Batty, editors. Spatial Analysis: Modelling in a GIS

Environment. John Wiley & Sons, 1996.

[112] I. F. V. López, R. T. Snodgrass, and B. Moon. Spatiotemporal aggregate com-
putation: A survey. IEEE Transactions on Knowledge and Data Engineering,
17(2):271–286, 2005.

[113] S. Ma and J. L. Hellerstein. Mining partially periodic event patterns with
unknown periods. In Proceedings of the 17th International Conference on Data

Engineering, pages 205–214. IEEE, 2001.

[114] E. Malinowski and E. Zimányi. Spatial hierarchies and topological relationships
in the spatial MultiDimER model. In Proceedings of the 22nd British National

Conference on Databases, pages 17–28. Springer, 2005.

[115] E. Malinowski and E. Zimányi. Implementing spatial data warehouse hierarchies
in object-relational DBMSs. In Proceedings of the 9th International Conference

on Enterprise Information Systems, volume 7, pages 186–191, 2007.

[116] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. W.
Cheung. Mining, indexing, and querying historical spatiotemporal data. In
Proceedings of the 2004 International Conference on Knowledge Discovery and

Data Mining, pages 236–245. ACM, 2004.

[117] P. Marchand, A. Brisebois, Y. Bédard, and G. Edwards. Implementation and
evaluation of a hypercube-based method for spatiotemporal exploration and
analysis. ISPRS Journal of Photogrammetry & Remote Sensing, 59(1), 2004.

[118] S. Martino, S. Bimonte, M. Bertolotto, and F. Ferrucci. Integrating Google
Earth within OLAP tools for multidimensional exploration and analysis of spa-
tial data. Enterprise Information Systems, pages 940–951, 2009.



225

[119] M. Mehta and D. DeWitt. Data placement in shared-nothing parallel database
systems. The VLDB Journal, 6(1):53–72, 1997.

[120] Microsoft Corporation. U.s. government agency stores aerial imagery in new
25-terabyte warehouse growing warehouse. Case study, 2004.

[121] Microsoft Corporation. SQL Server 2005 Analysis Services, 2007. http://www-
.microsoft.com/sqlserver/2005/en/us/analysis-services.aspx.

[122] Microsoft Corporation. SQL Server 2005 Programming Reference, 2007.

[123] Microsoft Corporation. SQL Server 2008 R2 Parallel Data Ware-
house, 2008. http://www.microsoft.com/sqlserver/2008/en/us/parallel-data-
warehouse.aspx.

[124] Microsoft Corporation. Multidimensional Expressions (MDX) Reference, 2011.
http://msdn.microsoft.com/en-us/library/ms145506.aspx.

[125] Microsoft Corporation and Hyperion Solutions Corporation. XML for
Analysis Specification, Apr. 2001. http://msdn.microsoft.com/en-us/library-
/ms977626.aspx.

[126] M. Mokbel, T. Ghanem, and W. Aref. Spatio-temporal access methods. IEEE
Data Engineering Bulletin, 26(2):40–49, 2003.

[127] B. Moon, H. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering
properties of the Hilbert space-filling curve. Knowledge and Data Engineering,
13(1):124–141, January 2001.

[128] D. Moore. C Hilbert mapping library, 1998. http://computation.pa.msu.edu-
/NO/F90/SFC/hilbert.c.

[129] M. Nanni and D. Pedreschi. Time-focused clustering of trajectories of moving
objects. Journal of Intelligent Information Systems, 27(3):267–289, 2006.

[130] A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.

[131] J. R. Nuckols, M. H. Ward, and L. Jarup. Using geographic information systems
for exposure assessment in environmental epidemiology studies. Environmental

Health Perspectives, 112(9), 2004.

[132] Open GIS Consortium. OpenGIS simple feature specification for SQL, 1999.

[133] Oracle Corporation. Oracle Database Data Cartridge Developer’s Guide 10.2,
2005.

[134] Oracle Corporation. Oracle Spatial User’s Guide and Reference, 2005.



226

[135] R. Osegueda, A. Garcia-Diaz, S. Ashur, O. Melchor, S.-H. Chang, C. Carrasco,
and A. Kuyumcu. GIS-based network routing procedures for overweight and
oversized vehicles. Journal of Transportation and Engineering, 125(4), 1999.

[136] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP operations in
spatial data warehouses. In Proceedings of the 7th International Symposium on

Advances in Spatial and Temporal Databases, pages 443–459. Springer, 2001.

[137] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexing spatio-temporal data
warehouses. In Proceedings 18th International Conference on Data Engineering,
pages 166–175. IEEE, 2002.

[138] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proceedings of the 7th International Conference

on Database Theory, pages 398–416. Springer, 1999.

[139] T. B. Pedersen and N. Tryfona. Pre-aggregation in spatial data warehouses.
In Proceedings of the 7th International Symposium on Advances in Spatial and

Temporal Databases, pages 460–480. Springer, 2001.

[140] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. C. Hsu.
PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern.
In Proceedings of the 17th International Conference on Data Engineering. IEEE,
2001.

[141] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and
M.-C. Hsu. Mining sequential patterns by pattern-growth: The PrefixSpan ap-
proach. IEEE Transactions on Knowledge and Data Engineering, 16(11):1424–
1440, 2004.

[142] N. Pendse. The OLAP report, May 2005. http://www.olapreport.com/.

[143] W. C. Peng and M. S. Chen. Developing data allocation schemes by incremental
mining of user moving patterns in a mobile computing system. Transactions

on Knowledge and Data Engineering, 15(1):70–85, 2003.

[144] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query pro-
cessing for moving object trajectories. In Proceedings of the 26th International

Conference on Very Large Data Bases, pages 395–406. Morgan Kaufmann, 2000.

[145] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying mobile objects in spatio-
temporal databases. In Proceedings of the 7th International Symposium on

Advances in Spatial and Temporal Databases, pages 59–78. Springer, 2001.

[146] PostgreSQL Global Development Group. PostgreSQL, 1997–2011.
http://www.postgresql.org/.



227

[147] S. Prasher and X. Zhou. Multiresolution amalgamation: dynamic spatial data
cube generation. In Proceedings of the 15th Australasian Database Conference,
pages 103–111. Australian Computer Society, 2004.

[148] C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled. STAR-Tree: An efficient
self-adjusting index for moving objects. In Proceedings of the 4th International

Workshop on Algorithm Engineering and Experiments, pages 178–193. Springer,
2002.

[149] E. Rahm and H. H. Do. Data cleaning: Problems and current approaches.
IEEE Data Engineering Bulletin, 23(4):3–13, 2000.

[150] F. Rao, L. Zhang, X. L. Yu, Y. Li, and Y. Chen. Spatial hierarchy and OLAP-
favored search in spatial data warehouse. In Proceedings of the 6th ACM In-

ternational Workshop on Data Warehousing and OLAP, pages 48–55. ACM,
2003.

[151] Refractions Research et al. PostGIS, 2000–2011. http://postgis.refractions.net/.

[152] P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases with Application to

GIS. Morgan Kaufmann, 2002.

[153] S. Rivest, Y. Bédard, and P. Marchand. Toward better support for spatial deci-
sion making: Defining the characteristics of spatial on-line analytical processing
(SOLAP). Geomatica, 55(4):539 – 555, 2001.

[154] S. Rivest, Y. Bédard, M.-J. Proulx, M. Nadeau, F. Hubert, and J. Pastor.
SOLAP technology: Merging business intelligence with geospatial technology
for interactive spatio-temporal exploration and analysis of data. ISPRS Journal

of Photogrammetry & Remote Sensing, 60:17–33, 2005.

[155] S. Saltenis and C. S. Jensen. Indexing of moving objects for location-based ser-
vices. In Proceedings of the 18th International Conference on Data Engineering,
pages 463–472. IEEE, 2002.

[156] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
1989.

[157] SAS Institute Inc. SAS Enterprise BI Server, 2010. http://www.sas.com-
/technologies/bi/entbiserver/index.html.

[158] C. Schmidt and M. Parashar. Enabling flexible queries with guarantees in P2P
systems. IEEE Internet Computing, 08(3):19–26, 2004.

[159] S. Sclaroff, G. Kollios, and M. Betke. Motion mining: discovering spatio-
temporal patterns in databases of human motion. In Proceedings of the 2001

ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge

Discovery. ACM, 2001.



228

[160] M. Scotch and B. Parmanto. Development of SOVAT: A numerical-spatial de-
cision support system for community health assessment research. International
Journal of Medical Informatics, 75(10–11):771–784, 2005.

[161] M. Scotch and B. Parmanto. SOVAT: Spatial OLAP visualization and analysis
tool. In Proceedings of the 38th Annual Hawaii International Conference on

System Sciences, pages 142–144. IEEE, 2005.

[162] M. Scotch, B. Parmanto, and V. Monaco. Evaluation of SOVAT: An OLAP-GIS
decision support system for community health assessment data analysis. BMC

Medical Informatics and Decision Making, 8(1):22, 2008.

[163] T. K. Sellis. Multiple-query optimization. ACM Transactions on Database

Systems, 13(1):23–52, 1988.

[164] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index
for multi-dimensional objects. In The VLDB Journal, pages 507–518, 1987.

[165] S. Shekhar, C. Lu, X. Tan, S. Chawla, and R. Vatsavai. Map Cube: A visu-
alization tool for spatial data warehouses. In H. Miller and J. Han, editors,
Geographic Data Mining and Knowledge Discovery, pages 74–109. Taylor &
Francis London, 2001.

[166] C. B. Shim and J. W. Chang. A new similar trajectory retrieval scheme using
k-warping distance algorithm for moving objects. In Proceedings of the 4th

International Conference on Advances in Web-Age Information Management,
pages 433–444. Springer, 2003.

[167] A. Shukla, P. Deshpande, J. Naughton, et al. Materialized view selection for
multidimensional datasets. In Proceedings of the 24th International Conference

on Very Large Data Bases, pages 488–499. Morgan Kaufmann, 1998.

[168] G. Sinha and D. M. Mark. Measuring similarity between geospatial lifelines in
studies of environmental health. Journal of Geographical Systems, 7(1):115–136,
2005.

[169] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying
moving objects. In Proceedings of the 13th International Conference on Data

Engineering, pages 422–432. IEEE, 1997.

[170] N. Stefanović. Design and implementation of on-line analytical processing
(OLAP) of spatial data. Master’s thesis, Simon Fraser University, 1997.

[171] M. Stonebraker. The case for shared nothing. Database Engineering Bulletin,
9(1):4–9, 1986.

[172] Y. Tao and D. Papadias. MV3R-tree: A spatio-temporal access method for
timestamp and interval queries. In Proceedings of the 27th International Con-

ference on Very Large Data Bases, pages 431–440. Morgan Kaufmann, 2001.



229

[173] Y. Tao and D. Papadias. Range aggregate processing in spatial databases. IEEE
Transactions on Knowledge and Data Engineering, 16(12):1555–1570, 2004.

[174] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An optimized spatio-temporal
access method for predictive queries. In Proceedings of the 29th International

Conference on Very Large Data Bases, pages 790–801. Morgan Kaufmann, 2003.

[175] Y. Theodoridis. The R-tree-portal, 2003. http://www.rtreeportal.org/.

[176] Transaction Processing Performance Council. TPC-H benchmark specification,
Nov. 2010. http://www.tpc.org/tpch/.

[177] I. Tsoukatos and D. Gunopulos. Efficient mining of spatiotemporal patterns.
In Proceedings of the 7th International Symposium on Advances in Spatial and

Temporal Databases, pages 425–442. Springer, 2001.

[178] U.S. Census Bureau. 5-digit zip boundaries, 2000. http://www.census.gov/geo-
/www/cob/z52000.html.

[179] U.S. Census Bureau. County boundaries, 2000. http://www.census.gov/geo-
/www/cob/co2000.html.

[180] U.S. Census Bureau. State boundaries, 2000. http://www.census.gov/geo-
/www/cob/st2000.html.

[181] U.S. Geological Survey. Land cover and land usage, Apr. 2007.
http://water.usgs.gov/GIS/dsdl/ds240/.

[182] A. Vaisman, M. Espil, and M. Paradela. P2P OLAP: Data model, implemen-
tation and case study. Information Systems, 34(2):231–257, 2009.

[183] A. Vaisman and E. Zimányi. A multidimensional model representing continu-
ous fields in spatial data warehouses. In Proceedings of the 17th ACM SIGSPA-

TIAL International Conference on Advances in Geographic Information Sys-

tems, pages 168–177. ACM, 2009.

[184] G. van Rossum. Python programming language, 2011.
http://www.python.org/.

[185] P. Vassiliadis and T. Sellis. A survey of logical models for OLAP databases.
ACM SIGMOD Record, 28(4), 1999.

[186] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Conceptual modeling for ETL
processes. In D. Theodoratos, editor, Proceedings of the 5th International Work-

shop on Data Warehousing and OLAP, pages 14–21. ACM, 2002.

[187] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimen-
sional trajectories. In Proceedings of the 18th International Conference on Data

Engineering, pages 673–684. IEEE, 2002.



230

[188] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the
positions of continuously moving objects. ACM SIGMOD Record, 29(2):331–
342, 2000.

[189] H. Wang, C. Zaniolo, and C. R. Luo. ATLAS: A small but complete sql exten-
sion for data mining and data streams. In Proceedings of the 29th International

Conference on Very Large Data Bases, pages 1113–1116. Morgan Kaufmann,
2003.

[190] X. Wang and S. Huang. Development of a flood warning system. In Proceedings

of the 19th ESRI International User Conference. ESRI, 1999.

[191] Y. Wang, E.-P. Lim, and S.-Y. Hwang. On mining group patterns of mobile
users. In V. Maŕık, W. Retschitzegger, and O. Stepánková, editors, Proceedings
of the 14th International Conference on Database and Expert Systems Appli-

cations, volume 2736 of Lecture Notes in Computer Science, pages 287–296.
Springer, 2003.

[192] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving objects databases:
Issues and solutions. In Proceedings of the 10th International Conference on

Scientific and Statistical Database Management, pages 111–122. IEEE, 1998.

[193] X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns
in large datasets. In Proceedings of the 3rd International Conference on Data

Mining, pages 166–177. Society for Industrial and Applied Mathematics, 2003.

[194] J. Yang, W. Wang, P. S. Yu, and J. Han. Mining long sequential patterns in
a noisy environment. In Proceedings of the 2002 International Conference on

Management of Data, pages 406–417. ACM, 2002.

[195] N. Yazdani and Z. M. Ozsoyoglu. Sequence matching of images. In Proceed-

ings of the 8th International Conference on Scientific and Statistical Database

Management, pages 53–62. IEEE, 1996.

[196] K. Yip and F. Zhao. Spatial aggregation: Theory and applications. Journal of
Artificial Intelligence Research, 5:1–26, 1996.

[197] M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Ma-

chine Learning, 42(1):31–60, 2001.

[198] D. Zeinalipour-Yazti, S. Lin, and D. Gunopulos. Distributed spatio-temporal
similarity search. In Proceedings of the 15th ACM International Conference on

Information and Knowledge Management, pages 14–23. ACM, 2006.

[199] D. Zhang and V. J. Tsotras. Improving min/max aggregation over spatial
objects. In Proceedings of the 9th ACM International Symposium on Advances

in Geographic Information Systems, pages 88–93. ACM, 2001.



231

[200] R. Zhang, H. Jagadish, B. Dai, and K. Ramamohanarao. Optimized algorithms
for predictive range and KNN queries on moving objects. Information Systems,
2010.

[201] X. Zhou, D. Truffet, and J. Han. Efficient polygon amalgamation methods for
spatial OLAP and spatial data mining. In Proceedings of the 6th International

Symposium on Advances in Spatial Databases, pages 167–187. Springer, 1999.


