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ABSTRACT

Most researchers contend that the destruction of the Rheic Ocean culminated in the
formation of the supercontinent Pangea. However, despite the importance of this ocean,
there are major uncertainties in the identification of its margins, mechanisms and timing
of its formation, and the geodynamics of its closure. Rocks recording the evolution of the
Rheic are excellently preserved in the southern Iberian peninsula of Western Europe.
Here, the Ossa Morena (OMZ) is separated from theSouth Portuguese (SPZ) zone by a
sequence of polydeformed rocks know as the Pulo do lobo Zone (PDLZ). The PDLZ
isinterpreted as a late Paleozoic accretionary prism, which contains potential vestiges of
the ancient Rheic Ocean (ophiolites). The objective of this study is to better understand
the processes associated with the formation of Pangea by determining the lithotectonic
histories of both the PDLZ and SPZ. New field, geochronological and geochemical data
are used to test and further constrain current models for the evolution of Pangea as
recorded in the Variscan orogen.Fieldwork and geochronological data indicate that the
PDLZ was derived from neither the OMZ (Gondwana) nor the SPZ suggesting that if the
PDLZ is an accretionary prism it was not derived from the upper or lower plate. This
apparent conundrum can be reconciled by a model involving excision of a crustal
fragment during collision between an Iberian indenter (Gondwana) with Laurussia during
the formation of Pangea. Geochronological and Geochemical data from the SPZ indicate
that the lower crust isnot compositionally similar to the overlying Devonian-
Carboniferous continental detritus. This unusual relationship is similar to the relationship
between the relatively juvenile basement and ancient upper crust documented in the
exposed portion of the Meguma terrane in the northern Appalachians, which
paleogeographic reconstructions show was immediately outboard of southern Iberia in
the Late Devonian. Taken together with the suggested complex tectonic history of the
PDLZ the results of this thesis provide important insight into the geometry and timing of
the formation of Pangea and indicate that re-interpretation may be required for what is

known concerning the tectonic evolution of both the Variscan and Appalachian orogens.

xiii



LIST OF ABBREVIATIONS USED

BAO = Beja Acebuches Ophiolite
BCSZ = Badajoz Cordoba Shear Zone
BFZ = Bristol Fault Zone

CAA = Cantabrian Asturias Arc
CHUR = Chondritc Uniforn Reservoir
eNd = Epsilon Neodymium

HREE = Heavy Rare Earth Elements
IPB = Iberian Pyrite Belt

IAA = Iberian Armorican Arc
LA-ICPMS = Laser Ablation Inductively Coupled Mass Spectrometry
LREE = Light Rare Earth Elements
OMZ = Ossa Morena Zone

PCIGR = Pacific Centre for Isotopic and Geochemical Research
PDL = Pulo do Lobo Formation

PDLZ = Pulo do Lobo Zone

RDL = Ribeira de Limas Formation
REE = Rare Earth Elements

Tpm = Depleted Mantle Model Age
SIF= Santa Iria Flysch

SISZ = South Iberian Shear Zone
Sm-Nd = Samarium- Neodymium
SNB = Sierra Norte Batholith

SPZ = South Portuguese Zone

U/Pb = Uranium / Lead

VSC = Volcano Sedimentary Complex

Xiv



ACKNOWLEDGEMENTS

I am grateful to my primary supervisor Brendan Murphy for his guidance,
support and generosity not only throughout this endeavor but also throughout my entire
tenure as an undergraduate and graduate student. I am also grateful to Nick Culshaw
Rebecca Jamieson and John Gosse for their support throughout this thesis work.Cecilio
Quesada is thanked for his wisdom and guidance with fieldwork in Spain and writing of
the thesis. Rafael Lopez-Guijarro helped me immensely with fieldwork and logistics in
Spain. I thank him greatly for his practical help and also his friendship. I also thank my
other Spanish friends, Javier Fernandez-Suarez, Gabriel Gutierrez-Alonso and Maider
Armendariz for their generosity and help. James Mortensen at the Pacific Center for
Geochemical and Isotopic Research at the University of British Columbia provided
invaluable assistance with the geochronological analyses and is also thanked for taking
time to discuss the process and results. Luke Bickerton and Elizabeth Walsh helped
prepare figures, tables and maps. Stephen Johnston from the University of Victoria is
thanked for inspiring discussions and comments.I also thank my friends Jonathan Taylor,
Curran Jensen and Ben Theuerkauf for their support and timely distractions. Last but not
least I am grateful to my wife Cori and the rest of my family for giving me support,
inspiration and the necessary time to complete this thesis. Much of this work was funded
by and Natural Sciences and Engineering Research Council of Canada (NSERC) post-
graduate (CGS-M and PGS-D) scholarships, as well as a Dalhousie Killam scholarship.
Fieldwork and most of the analytical work was supported by an NSERC discovery grant
to Brendan Murphy.

XV



CHAPTER 1

GENERAL INTRODUCTION

1.1. Introduction

Pangea formed in the late Paleozoic as the result of the closure of the Rheic
Ocean and the terminal collision between Gondwana and Laurussia (Fig. 1.1). These
events gave rise to the Alleghenian orogen in eastern North America and the Variscan
orogen of Western Europe. Aside from shaping the planet geologically, the formation of
Pangea and its dispersal had a fundamental impact on paleobiology, ecology and climate,
which is echoed in our modern understanding and interpretation of many of these systems
(Poulsen et al., 2007;Veevers, 1990; Hoffman et al., 1998;Worsley et al., 1984).
However, despite the fact that Pangea is a foundation for understanding many modern
earth systems, its geometry, timing of formation and processes that contributed to its
formation, remain poorly understood.

The investigation of suture zones are of fundamental importance to the
understanding of processes involved in collisional orogenesis because these zones link
pieces of autochthonous continental crust that were once separated by an intervening
oceanic basin. As a result, these suture zones potentially record in their

lithological,geochemical and structural



Fig. 1.1 (a)Paleozoic reconstructions showing the location of peri-Gondwananterranes
along the Gondwanan margin at ca. 500 Ma, the opening of the Rheic Ocean by
separation and northward drift of these terranes from Gondwana by 460 Ma, their ca. 440
Ma accretion to Baltica, followed by accretion to Laurentia, leading to the closure of the
Iapetus Ocean. Subsequent northwesterly-directed subduction beneath the Laurussian
margin leading to closure of the Rheic Ocean and the beginning of the amalgamation of
Pangea by ca. 350 Ma). (b)Late Paleozoic reconstruction showing approximate locations
of ITapetan and Rheic suture zones. Ac-Oax, Acatlan-Oaxaquia; Fl, Florida; C, Carolinia;
A, Avalonia; OM Ossa Morena; NW-I, Northwest Iberia; Arm, Armorica; BM,
Bohemian massif, MC Massif Central(from Murphy et al., 2006) (modified from
Stampfli et al., 2002).



makeup the main events that contributed to supercontinent amalgamation. In terms of late
Paleozoic geologic events, a complete picture of Pangean orogenesis is hampered by (i)
limited exposure of late Paleozoic suture zones which potentially record these processes,
and (ii) the lack of continuity of the Variscan and Appalachian belts which were sundered
in the Early Mesozoic by the opening of the Atlantic Ocean. As a result many of the
suture zones that marked the late Paleozoic stitching between Gondwana and Laurussia,
particularly those that formed by consumption of the Rheic Ocean, were either destroyed,
hidden beneath the Atlantic continental shelves or are covered by post-Pangean rocks.
Therefore, understanding the processes, which led to the formation of Pangea requires the
targeting of specific regions and sequences, which escaped post-Pangean destruction.

In the Variscan orogen of southern Iberia, a rare exposure of a Pangean suture
zone is potentially preserved (Fig. 1.2). Here, the Gondwanan parautochthon is separated
from a sliver allochthonous crust known as the South Portuguese Zone (SPZ) by a
sequence of Late Devonian mélange, metasediments and mafic complexes known as the
Pulo do lobo Zone (PDLZ). As a result this region of southern Iberia provides an
excellent opportunity to document first order geologic events associated with
convergence and collision of Gondwana with Laurussia.

The PDLZ is classically considered an accretionary complex, developed during
the subduction of the Rheic Ocean beneath Gondwana and deformed during collision
between Gondwana and the SPZ (e.g. Eden, 1991; Onézime et al., 2003). Although the

SPZ is widely considered allochthonous with respect to the Gondwana para-autochthon,



its oldest exposed units are Late Devonian. Therefore determining its pre-Pangean
affinity requires determination of (i) its late Paleozoic relationships to the PDLZ and (ii)
the composition and geologic history of the unexposed SPZ basement.

This thesis reports the results of two field seasons in southern Iberia including
detailed field mapping of a portion of the PDLZ and geochronological, isotopic and
geochemical investigations of the PDLZ and the SPZ. Based on this work, new models
for the tectonic evolution of the SPZ and PDLZ are proposed. These models have
implicationsfor the timing of formation of Pangea and processes that contributed to its

formation, as well as the paleogeography within and adjacent to the suture zone.
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Fig. 1.2Zonal subdivisions of Southern Iberia outlining a potential Rheic suture (inset).
In terms of late Paleozoic geodynamics The Ossa Morena Zone = Gondwana; the Pulo do
Lobo Zone (PDLZ) and Beja Acebuches Ophiolite (BAO) = Pangean suture zone; The
South Portuguese Zone = exotic terrane; Dashed line = The South Iberian Shear Zone

1.2. Geologic Background

1.2.1. The Formation of Pangea

Paleogeographic reconstructions show that Pangea was formed by the sequential
closure of the Iapetus and Rheic oceans (e.g. Scotese, 2003) (Fig. 1.1a). The Iapetus
Ocean formed from ca. 610 to 530 Ma (Cawood et al., 2001) and was closed by ca.
420 Ma. The closure is marked by the collision between peri-Gondwanan terranes (e.g.
Ganderia, Avalonia, Meguma) Baltica and Laurentia (e.g. van Staal et al., 1998; van Staal
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et al., 2009). These collisions were responsible for several orogenic events in the northern
Appalachians and the British Caledonides and are delineated by well-defined suture
zones. Vestiges of the lapetus Ocean are preserved along this suture zone as ophiolites in
central and western Newfoundland, Canada (e.g. Jamieson, 1981; Williams and Hatcher,
1982; Williams et al., 1987; Kurth et al., 1998) (Fig 1.1b).

The Rheic Ocean, opened by the Early Ordovician with the separation of the peri-
Gondwanan terranes from the margin of northern Gondwana (e.g., Avalonia, Ganderia,
Carolinia, Meguma). Therefore Gondwana and the eastern margin of peri-Gondwana
(Meguma terrane) flanked the Rheic throughout its evolution. The Rheic Ocean reached
its greatest width (~ 4000 km) in the Silurian by which time Laurentia had collided with
Baltica to the north and with Avalonia—Carolinia to the south, subsequently closing the
Iapetus (e.g. Stampfli et al., 2002; Scotese, 2003). Closure of the Rheic Ocean began in
the Early Devonian and it generally accepted that this closure was accommodated by
northward subduction beneath the Laurussian margin, where arc magmatism developed
on the previously accreted peri-Gondwanan terranes (e.g.,), Vestiges of the Early
Ordovician—Carboniferous Rheic Ocean are preserved in several ophiolitic complexes in
western Europe (e.g. the Lizard Complex of Britain (Davies, 1984) (Fig 1.1b). Terminal
collision between Gondwana and Laurussia was complete by the Late Carboniferous and
gave rise to the Alleghenian orogeny of North America and the Variscan orogeny of

Western Europe.



1.2.2. Peri-Gondwanan Terranes

Peri-Gondwanan terranes are arc-related terranes that formed along the periphery
of western Gondwana in the Neoproterozoic (e.g. Avalonia, Carolinia, Ganderia,
Meguma). During the Cambrian - Ordovician opening of the Rheic Ocean these terranes
separated from the Gondwanan margin. Peri-Gondwanan type rocks are exposed
throughout the Appalachian orogen from the United States through Atlantic Canada, with
correlatives in Ireland and Britain (e.g. Landing, 1996). Most late Paleozoic
reconstructions indicate that the Avalon and Meguma terranes formed the easternmost
margin of Laurussia and were roughly along strike of Iberia during the amalgamation of
Pangea (e.g. Scotese, 2003; Woodcock et al., 2007).

Avalonia is the largest suspect terrane in the northern Appalachian orogen. It
occupies much of the southern flank of the Appalachians and also occurs in the basement
rocks of Ireland, southern Britain, and adjacent parts of continental Europe (O’Brien et
al., 1983; Johnson and Van der Voo 1986, Nance and Murphy, 1989;Nance and Murphy,
1994; Keppie et al. 1996, Murphy et al. 1997) (Fig 1.1a).In the northern Appalachians the
terrane contains abundant late Neoproterozoic voluminous volcanic rocks (ca. 570—680
Ma). Geochemistry of these volcanic rocks indicates that they were erupted in a volcanic
arc environment (Keppie et al., 1991).

On the other hand, the Meguma terrane, which is the most outboard of the
Appalachian terranes, is exposed only in southeastern Nova Scotia (Maritime Canada),

however samples from offshore wells and geophysical data show that the Meguma



terrane forms the basement of Mesozoic—Cenozoic sedimentary basins as far as 200 km
offshore Nova Scotia (Pe-Piper and Jansa, 1999). The Avalon terrane and the Meguma
terrane collectively comprise the present day geology of Nova Scotia (northern
Appalachians). The Meguma terrane is principally characterized by a thick (>10 km)
succession of Cambrian to Ordovician turbiditic meta-sandstones and slates (the Meguma
Supergroup) overlain by thinner Silurian to Devonian volcanics and shelf sediments (e.g.
Schenk, 1997). Although the basement to the Meguma terrane is not exposed, the isotope
geochemistry of (i) ca. 440 Ma within plate volcanics (White Rock formation), (ii) Late
Devonian Meguma granitoid rocks (Clarke et al. 1988) and (iii) lower crustal xenoliths
(Owen et al. 1988; Owen and Greenough 1991; Eberz et al. 1991; Greenough et al.,
1999) suggest the Meguma terrane is underlain by comparatively juvenile peri-
Gondwanan (Avalonian?) basement. Conversely, geochemistry of granitoid rocks
offshore on the continental shelf indicates a relatively ancient basement signature

consistent with the West African craton (Pe-Piper and Jansa, 1999).

1.2.3. Iberian-Armorican Arc

The Iberian-Armorican arc is defined as a curvilinear macrostructure that
dominates the late Paleozoic Variscan orogenic belt of Iberia and France (Fig. 1.3) (Matte
and Ribeiro, 1975;Franke, 1989, 2000; Onézime et al., 2003; Van Der Voo, 2004). This

macrostructure includes two lines of sutures parallel to the orogenic belt that separate



three distinct tectono-stratigraphic zones that are correlated along the length of the
macrostructure. These zones are, from the core to the outer arc: (1) the Moldanubian-
Central and South Armorican-Central Iberian, (2) the Saxothuringian and Barrandian-
North Armorican-Ossa Morena (3) the Rheno-Hercynian-Southwest England-South
Portuguese zones (Franke, 2000; Onézime et al., 2003). The Rheno-Hercynian-
Southwest England-South Portuguese Zone is characterized by synorogenic flysch
deposits and by local occurrences of oceanic terranes delineating potential Variscan
sutures between the Gondwanan autochthon and allochthonous terranes (ribbon
continents, exotic terranes?) accreted during the late Paleozoic closure of the Rheic
Ocean (Matte, 1986; Ribeiro, 1995; Lefort, 1999; Franke, 2000) (Fig. 1.3). Although the
existence of these relationships and geometric associations was recognized in the 1920’s,
both the genesis of this macrostructure and the lateral continuity of the suture zones
remain controversial (e.g. Franke, 2000;Simancas et al., 2005).

It has been suggested that the Iberian-Armorican arc is a direct result of continent-
continent collision between an Iberian-Aquitanian indenter (Western Gondwana) and a
northern continent (Laurussia) (Brun and Burg, 1982; Matte, 1986; Burg et al., 1987,
Ribeiro et al., 1990; Quesada, 1991; Quesada et al., 1991; Dias and Ribeiro, 1996). This
indenter model proposes that collision produced crustal imbrication in northern Iberia
related to continent-continent collision, and explains the kinematic evidence for coeval
left-lateral transpression in southern Iberia and right-lateral transpression in Armorica.

Alternatively, the arcuate shape is attributed to oroclinal bending of an originally linear



belt accompanied by lithospheric thinning and delamination (Weil et al., 2001; Van der
Voo, 2004; Gutiérrez-Alonso et al., 2008). This latter model requires late-to-post-
orogenic bending of the lithosphere around a vertical axis accommodated in the upper
crust either by tangential longitudinal strain (Gutiérrez-Alonso et al., 1999) or by flexural
movement along existing shear zones (ribbon continent sutures) (Van der Voo, 2004).
The southern branch of the Iberian-Armorican arccrops out in the western part of
the Iberian Peninsula (Fig 1.3). The Iberian Peninsula is classically divided into six
distinct tectono-stratigraphic zones (Fig. 1): the Cantabrian, West Asturian-Leonese,
Galicia-Tras-os-Montes, Central Iberian, OMZ and SPZ (Lotze 1945; Julivert et al.,
1974; Franke, 1989; Ribeiro et al., 1990). The Cantabrian, West Asturian-Leonese and
Central Iberian zones occur in the core of the Iberian-Armorican arc and are correlated
with the Moldanubian domain. The Galicia-Tras-os-Montes and OMZ are correlated with
the internal segment (Armorican-Barrandian) and the SPZ is commonly correlated with
the outer domain (Rheno-Hercynian) (Fig. 1.3) (Julivert et al., 1974; Ribeiro et al., 1991;
Quesada et al., 1991; Ribeiro and Sanderson, 1996). In the late Paleozoic, the OMZ is
therefore considered para-autochthonous with respect to Gondwana, the SPZ
allochthonous (underlain by peri-Gondwanan basement (e.g. De la Rosa et al., 2001)) and
the PDLZ, an oceanic terrane that potentially records the docking of the SPZ to the OMZ
during the formation of Pangea (Fig. 1.4) (Quesada, 1991; Ribeiro et al., 1990; Quesada

etal., 1991).
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Fig. 1.3 Tectonostratigraphic zonation of the Variscan orogen in Europe showing the
Iberian-Armorican arc (after Franke 2000; Martinez Catalan et al. 2007). SPZ, South
Portuguese Zone; PDL, Pulo de Lobo Zone; CIZ, Central Iberian Zone; RHZ, Rheno-
Hercynian zone; ST Saxothuringian Zone; M, Moldanubian.
1.2.4. Ossa Morena Zone

The OMZ has been interpreted as a composite terrane accreted to the Central
Iberian Zone (CIZ) during the Cadomian orogeny (Quesada et al., 1991; Quesada et al.,
2006) (Fig 1.2). The suture separating these zones is considered cryptic within the
Badajoz-Cérdoba shear zone (Quesada, 1990,1997). Prior to the onset of the Variscan
orogeny, the stratigraphy in both the OMZ and CIZ includes Ediacaran and Paleozoic

rocks that are interpreted to record the Neoproterozoic to Early Cambrian accretion of the

OMZ to the CIZ and the subsequent opening of the Rheic Ocean (Quesada, 1991;
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Quesada et al., 1991, 2006; Sanchez-Garcia et al., 2003, 2008; Lopez-Guijarro et al.,
2008). The inferred sequence of events includes:

(a) a deposition of an Ediacaran pre-Cadomian sedimentary succession along the
Gondwanan passive margin succeeded by syn-Cadomian arc sequences;

(b) the Late Ediacaran-Early Cambrian Cadomian orogeny culminating in accretion of
the OMZ to the CIZ;

(c) a Late Cambrian - Early Ordovician sedimentary and igneous succession inferred to
record a rifting event (opening of the Rheic Ocean);

(d) deposition of an Ordovician — Devonian passive margin succession along the

Gondwanan margin as the Rheic Ocean opened.

Volcanic and plutonic rocks with calc-alkalic affinities of Visean age occur along
the southern margin of the OMZ. This magmatism ended by ca. 330 ma and is thought to
be genetically related to late Paleozoic subduction beneath the OMZ (Jesus et al., 2007;

Castro et al., 2002).

1.2.5. Pulo do Lobo Zone and Beja Acebuches Ophiolite

The Pulo do Lobo Zone(PDLZ) is in faulted contact with the Beja Acebuches
Ophiolite (BAO) to the north (Fig. 1.5). The BAO (Ca. 334 + 2 Ma; Azor et al., 2008) is
commonly correlated with the closure of the Rheic Ocean and delineates the northern

contact between the PDLZ and OMZ(Silva et al., 1990;Fonseca et al., 1993;Quesada et
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al., 1994). It has been suggested that Geochemical analysesindicate the primary igneous
rocks of the BAO have a MORB affinity(e.g. Quesada et al., 1994). The BAO was
thought to be correlative with the ca. 390 Ma Lizard complex (Davies, 1984). However
recent ca. 334 Ma age date (Azor et al., 2008) suggests the BAO formed during the final
stages of Rheic Ocean closure.Azor et al., 2008 have interpreted the BAO to have formed
during a transtensional event following the main continent-continent collision (390-345
Ma).

Across strike, the BAO displays an increasing metamorphic grade to the north (i.e.
highest temperature mineral assemblages located along the contact with the OMZ). This
metamorphic grade is interpreted as the result of Variscan thrusting of the OMZ over the
BAO (e.g. Quesada et al., 1994; Castro et al., 1996). The contact between the BAO and
the PDLZ exhibits intense shearing and retrograde metamorphism, as a result of
mylonitization along the South Iberian Shear Zone (SISZ) (Crespo-Blanc and Orozco,
1988, 1991) (Fig 1.2).

The PDLZ consists of fault-bounded tectono-stratigraphic units that strike east-west
and dip steeply to the north (Eden 1991). The nomenclature and description of these units
vary from Spanish to Portuguese sections (e.g. Silva et al., 1990; Oliveira, 1990; Eden,
1991; Giese et al., 1994) (Fig. 1.4). However, there is a consensus that the lowermost
units of the PDLZ comprise phyllites, quartzites and mica schists and the uppermost units
are a varied siltstone and greywacke flysch sequence (Santa Iria Flysch, SIF). Various

tectonic and sedimentary mélanges are also recognized (Eden, 1991). To the south, the
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Gil Marquez granodiorites (Ca. 330 Ma.; De la Rosa et al., 2001) locally intrude the
PDLZ metasediments. These granodiorites are locally foliated parallel to the east-west
orogenic grain and are commonly interpreted to have been emplaced during the latest
stages of deformation in the PDLZ (e.g. Castro et al., 1995). Taken together, the units of
the PDLZ are considered to have evolved from a pre-early orogenic to a syn-orogenic
sequence that accreted to the OMZ during northward-directed subduction beneath the
OMZ (Eden, 1991;Quesada et al., 1994; Onézime et al.,1999, 2003).However, the
specific timing of deposition and deformation of units within the PDLZ remains poorly
constrained. Within the Ribeira de Limas Formation, palynomorphs yielded Givetian-
Frasnian ages (Oliveira et al., 1986; Giese et al., 1988) while spores and acritarchs
indicate a Late Famennian age for the Santa Iria Formation (Eden, 1991;). Onézime et
al.(2003) suggest that these data indicate an Early-to-Middle Devonian age for the basal
formation (Pulo do Lobo Formation) of the accretionary wedge.

The regional structure of the PDLZ has been interpreted as a broad antiform (Pulo
do Lobo (Portugal) - Los Ciries (Spain) Antiform) that reveals a complex internal
structural history (Crespo Blanc, 1989; Silva et al., 1990; Eden, 1991; Onézimeet al.,
2002). It has been suggested the type area has undergone three distinct deformation
events (D1, D2, D3) (Silva et al., 1990; Giese et al., 1994; Giese et al., 1999), attributed
to changing tectonic conditions during subduction of Rheic oceanic crust under the OMZ

(Eden, 1991; Quesada et al., 1994; Onézimeet al., 1999, 2003).
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Fig. 1.4 Previously defined formations in the Pulo do Lobo Spanish section. Relativeages
from palynologic data (Apalategui et al., 1983, 1984; Oliveira et al., 1986; Oliveira,
1990; Silva et al., 1990; Giese et al., 1988;Eden, 1991).
1.2.6. South Portuguese Zone

The SPZ crops out directly to the south of the PDLZ (Fig. 1.5) and consists
mainly of Late Devonian—Late Carboniferous metasedimentary and metavolcanic rocks
that are interpreted to have been deposited in an intracontinental transtensional basin
(Fonseca et al., 1993). The SPZ is classically divided into three tectonostratigraphic units
(Schermerhorn, 1971): (i) Devonian continental shelf quartzites and phyllites, which are
interpreted as a passive margin sequence and the oldest unit exposed in the SPZ; (ii) an
overlying bimodal volcano — sedimentary complex (VSC) dominated by Fammenian to

Tournaisian (Munha, 1983; Rosa et al., 2008) volcanic rocks interbedded with silicious
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shale and chert; and (iii) a Visean to Westphalian flysch sequence known as “Culm” or
Baixo Alentejo flysch (Oliveira et al., 1979; Oliveira, 1983, 1990). Flysch sediments
contain mainly metamorphic lithic fragments and have been interpreted to reflect
derivation from an OMZ and/or PDLZ source (Oliveira, 1988). Higher up, the Culm
contains numerous volcanic clasts suggesting that the SPZ and the VSC in particular are
also possible sources. Intrusive bodies of granitic, tonalitic, gabbroic and dioritic
compositions (Ca. 350 to 300 Ma), are exposed in the northeastern part of the SPZ (Sierra
Norte Batholith) and are considered to be syn- to post-tectonic with respect to Variscan
events (Simancas et al., 1986; De la Rosa et al., 1993; Soriano et al., 2002).

During the Variscan orogeny, the SPZ is interpreted to have undergone a transition
from a passive margin shelf environment, through a transtensional basin where the VSC
was emplaced, to a syn-orogenic flysch setting (Silva, 1990; Quesada, 1991). Southwest-
verging folds and thrusts, together with a general decrease of deformation intensity to the
southeast, suggest that both fold vergence and syn-tectonic sedimentation propagated
toward the southwest (Oliveira et al., 1990; Quesada, 1998; Onézime et al., 2002). This
southward propagation of sedimentation and intensity of deformation, together with the
younging of tectonstratigraphic units to the south (Early-Middle Devonian Pulo do Lobo
Antiform, LateDevonian-Visean Iberian Pyrite Belt, Early Wesphalian flysch
sequences),are interpreted to reflect a north-directed subduction beneath the OMZ (e.g.

Quesada, 1998).
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Metamorphism is low grade, ranging from epizonal in the southeast to anchizonal
in the southwest, typical of shallow crustal environments within external orogenic
domains (Munha, 1990). Quesada (1998) proposed that SPZ records three distinct
Variscan tectonic events:

(i) an initial transtensional event accompanied by lateral escape of marginal units of
the SPZ and by extensional collapse of the pre-existing passive margin;

(i1) an inversion of the previous transtensional basin by major transpressional
deformation associated with the obduction the OMZ onto the SPZ;

(ii1)a late-stage transtensional event associated with the collapse of the previously
thickened orogen in the OMZ and SPZ, during which the emplacement of the

Sierra Norte Batholith took place.

Deformation recorded within the PDLZ (D1, D2, and D3) is considered to be directly

related to the second tectonic event (transpression associated with collision).

17



|
I i ssarquas Phicn [ SentaiiaFysct L
[ Beinacsbuchea Opiiioite [ AldjarMélange
mmegauth fherin Shear Zons [ Bibeira de Limas Formation
= Contast

[ Pulodo Lobo Mélangs

Fig. 1.5 Variscan tectonic terranes of Southern Iberia showing proposed suture zone
(PDLZ and BAO) between the South Portuguese Zone and the Ossa Morena Zones
(adapted from Onézime et al., 2003). Inset black square shows detailed PDLZ study area.

1.3 Objectives and Approach

This thesis provides a detailed examination of a potential exposure of a Pangean suture
zone of the Variscan orogen. In order to test models concerning the development of this
suture zone detailed fieldwork and mapping were completed as a framework for

geochronological analyses (provenance) as well as geochemical and isotopic tracing.
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1.3.1. Deformation in Accretionary Systems

The PDLZ is classically considered an accretionary complex developed during
the formation of Pangea (e.g. Eden, 1991). However a detailed analysis of the structural
geology in the Spanish portion of the PDLZ has not been published. This thesis presents
the first detailed maps and structural analyses of the PDLZ and proposes new methods for

interpreting deformation in highly deformed rocks within accretionary-type settings.

1.3.2. Provenance of the Pulo do Lobo Zone

Accretionary complexes are generally considered to be derived from either (i)
sediment scraped from the lower plate or (ii) sediments eroded from the overriding plate
and carried by turbidity currents in to the bottom of the trench (e.g. Twiss and Moores,
2007). Although these complexes mark important geologic divisions and events
throughout geologic time, little is known about their evolution prior to incorporation into
the upper plate, as intense deformation often overprints evidence of their derivation.
Furthermore most orogenic events involve oblique collision, suggesting evolution of
accretionary complexes may be in some cases more complex than generally thought.
Based on field mapping and previous work the Variscan collision is thought to be highly
oblique. An important objective of this thesis is to test the provenance of the PDLZ in
order to determine how accretionary complexes evolve in oblique collisional settings.
These data also help to provide regional constraints on the tectonic relationship of the

PDLZ and the SPZ.
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1.3.3. Provenance of the South Portuguese Zone

Determining the pre-orogenic provenance of allochthonous terranes that are
covered by syn-orogenic and post orogenic geologic sequences is key to unraveling
paleogeographic history. This scenario is recognized in the southern Iberia where the
oldest exposed units in the SPZ are Late Devonian. Determining the provenance of the
SPZ basement has broad implications not only for determining the tectonic development
of southern Iberia but also for understanding the relationships of these Variscan events to
the development of the Appalachian orogen. A main objective of this thesis is to test
various hypotheses surrounding the paleogeographic history of the SPZ basement by

determining the composition of the SPZ basement.

1.3.4. Summary of Thesis Objectives

(1) To constrain how accretionary systems are deformed in oblique collisional settings.

(i1) To test whether the PDLZ is a Pangean suture zone and Variscan accretionary prism.

(111)To determine the provenance of the PDLZ and its relationship to the development of
the Variscan-Appalachian orogens.

(iv) To determine the provenance of the SPZ and its relationship to the development of
the Variscan and Appalachian orogens.

(v) To provide insights into the timing, geometry and processes associated with the

formation of the supercontinent Pangea
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1.4. Thesis Structure and Organization

1.4.1. Relationship to Published Work

The main chapters of this thesis are written as independent but complementary
manuscripts that have been published or submitted for publication. Some repetition of
background material is therefore unavoidable. Furthermore, geological interpretations
evolved during this study as a result of the acquisition of new data, resulting in some
differences in interpretation between the manuscripts. These differences are reconciled in
the synthesis and discussion chapter (Chapter 5).

Chapter 2 presents results from detailed field mapping in the Spanish portion of
the PDLZ. This chapter presents new interpretations on the structural evolution of the
PDLZ, the lithologic and structural relationship of the PDLZ to the OMZ and SPZ, and
supplies the groundwork for targeted sampling within the PDLZ and SPZ as described
and analyzed in subsequent chapters. Furthermore this paper presents a possible template
for interpreting similar collisional accretionary events. This chapter is a journal
manuscript published in a special issue ofGondwana Research entitled The Rheic Ocean:
Palaeozoic Evolution from Gondwana and Laurussia to Pangaea. Co- authors are J.B.
Murphy and Cecilio Quesada. 1 did the primary fieldwork and manuscript preparation
myself. Both J.B. Murphy and C. Quesada contributed significantly to ideas and

discussions in the field and to editing the manuscript.
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Chapter 3 discusses the provenance of the PDLZ and the SPZ and demonstrates
that (i) the SPZ was outboard of Gondwana in the Late Devonian (ii) the PDLZ is also
exotic to Gondwana and (iii) in general what was thought to be a simple accretionary
style deposition may have had a complex and long lived history. This chapter is a journal
manuscript accepted for publication in the Journal of theGeological Society of
Londonand is co-authored by J.B. Murphy, Cecilio Quesada and Jim Mortensen. This
paper presents new LA-ICPMS U/Pb detrital zircon data from the PDLZ and SPZ. These
samples were collected based on fieldwork presented in Chapter 2. I completed zircon
separations, sample preparation, U/Pb analytical work and data reduction, with help from
Jim Mortensen and the Pacific Centre for Isotopic and Geochemical Research (PCIGR) at
the University of British Columbia. I have interpreted the geochronological data myself
with helpful suggestions from J.B. Murphy and C. Quesada.

Chapter 4 discusses the composition of the SPZ basement and its potential pre-
Devonian tectonothermal and paleogeographic history.This chapter is under review for
publication in the Canadian Journal of Earth Sciences, co-authored by J.B. Murphy, C.
Quesada, L. Bickerton and J. Mortensen. There may be some discrepancy in text of this
journal article and the text in this thesis pending suggestions by reviewers. This paper
presents new LA-ICPMS zircon geochronological data, geochemical and Sm—Nd isotopic
data from representative samples from a granite batholith that cuts both the PDLZ and the
SPZ. This paper also presents new lithogeochemical and Sm-Nd isotopic data from

exposed sedimentary sequences in the SPZ and PDLZ. These data facilitate (1)
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comparison between the SPZ and various tectonostratigraphic zones in the northern
Appalachians; and (ii) an interpretation of the geometry and age of the closure of the
Rheic Ocean and the formation of Pangea. All samples were selected based on field
relationships outlined in Chapter 2. Zircon separations, sample preparation, U/Pb
analytical work and data reduction were done myself, with help from Jim Mortensen and
the Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of
British Columbia. The major and selected trace elements were analyzed by X-ray
fluorescence at the Nova Scotia Regional Geochemical Centre at St. Mary’s University,
Halifax. Rare Earth Elements (REE) by neutron activation for Sm-Nd compositions at
the Atlantic Universities Regional Isotopic Facility (AURIF) at Memorial University.
J.B. Murphy and Cecilio Quesada provided valuable assistance in the tectonic
interpretations and manuscript editing. Luke Bickerton assisted with the geochemical

and geochronological plots and interpretation.

1.4.2. Originality Summary

I have done the following myself with important input and writing corrections from
my thesis committee and co-authors on submitted papers:

e Fieldwork, mapping and structural interpretations

e Sample selection

e U/Pb zircon sample separation, analyses and interpretation

e SEM backscatter imaging and interpretation
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Geochemical and isotopic interpretations
Petrographic analyses and interpretation

Manuscript writing
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CHAPTER 2

STRUCTURAL ANALYSIS OF AN ACCRETIONARY PRISM IN A
CONTINENTAL COLLISIONAL SETTING, THE LATE PALEOZOIC
PULO DO LOBO ZONE, SOUTHERN IBERIA

2.1. Abstract

Models concerning the tectonic evolution of accretionary complexes typically
relate outcrop-scale to plate-scale multiphase deformation as a smooth variation of strain
on all scales. However, at oblique convergent margins, regional-scale brittle faults in the
shallow crust are commonly parallel to the main orogenic grain. These faults impose a
strong structural anisotropy and can subsequently control deformation at subordinate
scales.As a result, finite strain in each domain may not record local kinematics consistent
with the overall orogenic-scale motion implying that structural data must be analyzed
selectively from a large area in order to relate outcrop-scale kinematics to global plate-
scale dynamics. Field mapping and preliminary structural analysis of the Late Devonian
Pulo do Lobo (PDLZ) Formation, and suspect “exotic” South Portuguese Zone (SPZ) in
southern Iberia indicate tectonic juxtaposition of diverse deposits such as foreland basin
flysch, sedimentary and tectonic mélange, and passive margin sediments showing an
overall geometry consistent with an accretionary wedge setting. Variations in finite
strain, lithology and regional structure were used as proxies for defining tectonic domains
for structural analysis. Numerous local kinematic indicators within the PDLZ suggest a
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complex regional deformation with several enigmatic features that can be explained by
sequential compartmentalization of strain during the development of the imbricate stack
followed by late-stage bulk strain imposed across the entire complex. Structural data
produced by local strain partitioning reveals kinematic indicators, which contradict the
overall regional structural style (e.g. spatial juxtaposition of sinistral and dextral fabrics).
When viewed at larger scales (i.e. regional scale), however, these data indicate that
significant sinistral strike-slip movement occurred in conjunction with both an extension
and shortening. Outcrop-scale deformation in polydeformed domains is controlled by
local conditions resulting from brittle deformation coeval with orogenic-scale bulk strain.
The entire Pulo do Lobo Zone is dominated by a pervasive late-stage vertical to sub-
vertical E-W cleavage, axial planar to chevron folds which overprint earlier deformation
in the older passive margin units. This overprinting suggests that in the late stages of the
evolution of the accretionary complex, bulk strain was imposed over the entire complex
as a result of internal locking of the accretionary complex and reduced strain rates during
the waning stages of collision between Gondwana and Laurentia. Stereographic analysis
of fabric elements from each distinct tectonic domain, together with regional geological
constraints, support this hypothesis and are indicative of progressive deformation

imposed on the PDLZ during the Variscan Orogeny.
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2.2. Introduction

Although accretionary complexes are an integral manifestation of convergent
margins, their internal structural complexities make it difficult to relate outcrop and
regional-scale observations to orogenic scale events. These internal complexities are
typically characterized by an imbricate structure (at both outcrop and regional scale) and
by pervasive thrusting and shearing (e.g. Pini, 1999; Kusky et al., 2004). Accretionary
complexes also typically develop a block-in-matrix “mélange” fabric due to layer-parallel

extension and shearing (Niwa, 2006).

Despite the recognition that (i) deformation in accretionary complexes can be
considered progressive (e.g. Ujiie, 2001) and (ii) there is a kinematic requirement for
variability in strain compatibility from a bulk orogenic scale across all subordinate scales
in orogenic belts(Jones et al., 2005), most studies of late Palacozoic accretionary
complexes in western Europe and southern Iberia (Variscan orogen; Lotze, 1945)
interpret outcrop-scale and map-scale structures as fractal with respect to larger orogen-
scale kinematics and processes (e.g. Diaz et al., 1999, Martinez Catalan et al., 1997). As
a result, there are a plethora of tectonic models that attempt to explain plate-scale
processes from regional structural interpretations across the Variscan orogenic belt. For
example, some models claim deformation in accreted terranes is genetically linked to a
westward subduction beneath the Laurussian margin (e.g. Martinez Catalan et al., 1997,
Diaz et al., 1999; Sanchez Martinez et al., 2007), with Gondwana situated on the lower
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plate, whereas others ascribe late Paleozoic Variscan events to an eastward-dipping
subduction zone beneath the Gondwanan margin (e.g. Rapela et al., 1992; Fonseca et al.,
1993; Onézime et al., 2003).

In southern Iberia, a late Paleozoic accretionary complex, known as the Pulo do
Lobo Zone, (PDLZ) (Fig. 1.2) separates the Ossa Morena Zone (OMZ), which has
Gondwanan affinities throughout the Paleozoic, from the South Portuguese Zone (SPZ),
which is considered to be underlain by Avalonian or Meguma basement (e.g. De la Rosa
et al., 2001; Simancas et al., 2005). As Avalon was accreted to Laurussia by the Mid-
Silurian (Murphy et al., 1996; Van Staal et al., 1998; Nance et al., 2002; Keppie et al.,
2003), the accretionary complex (known as the Pulo do Lobo Zone, PDLZ), potentially
represents an exposed suture zone that records the closure of the late Paleozoic Rheic
Ocean and the amalgamation of Pangea. This suture zone was first recognized by the
occurrence of rocks with oceanic type geochemistry (Beja Acebuches Ophiolite, BAO)
(Quesada et al., 1994) outcropping along the boundary between the OMZ and the PDLZ.
The BAO is historically interpreted as a Variscan ophiolite of the Rheic Ocean (i.e.
Munha et al., 1986; Castro et al., 1996; Fonseca et al., 1993). However, recently the BAO
has been dated at 334 + 2 Ma (U/Pb zircon, SHRIMP, Azor et al., 2008) and interpreted
as formed during post-collisional (Laurussia-Gondwana) extension (Azor et al., 2008).
Both models for the BAO have in common the hypothesized exotic nature of the SPZ and

imply subsequent deformation in the PDLZ potentially records an important part of the
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accretionary history. As a result, the PDLZ is an ideal field laboratory to study the
structural evolution of accretionary prisms in late Paleozoic orogenic systems.

To date, most studies detailing the geologic evolution of the PDLZ have focused
on describing internal lithostratigraphic relationships (Carvalho et al., 1976; Eden, 1991,
Giese et al., 1994). The internal structural development and kinematic relationship of
deformation in the PDLZ to Variscan orogenic processes remains poorly understood.

In this paper, we present field relationships and structural data which suggest that
(1) the complex deformation of the PDLZ can be explained by compartmentalization of
bulk strain at a regional-scale, and (ii) outcrop-scale structures in the shallow crust were
controlled primarily by a strong structural anisotropy which developed within the
accretionary system. Our data indicate that deformation of the PDLZ was progressive
with the development of different structural styles in distinct tectonic domains as a
function of time and changing boundary conditions. However, we suggest that although
kinematics on an outcrop to regional scale may not be directly indicative of orogen-scale
kinematics and processes, recognition of the scales at which compatibility is maintained
is predictable and may provide a template for interpreting coeval systems throughout the
Variscan orogenic belt. To view maps, field notes and field pictures please refer to the

supplementary DVD.
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2.3. Tectonic Domains ~ General Considerations

In accretionary complexes, bulk strain on a regional scale typically changes
progressively with time (e.g. Ramsey and Lisle, 2000; Jones et al., 2005). Finite strain
recorded at an outcrop scale is a composite of different strains as a result of temporal
changes in stress fields. Rheologic contrasts and secondary strain regimes (e.g. riedel
shears on a subordinate scale) add to the complexity. As a result, systems affected by
regional-scale simple shear or non-coaxial non-plane strain exhibit a variety of brittle or
ductile structures at subordinate scales (Jones et al., 2005). If regional-scale deformation
includes an array of shear zones or faults, the magnitude and orientation of coaxial and
non-coaxial components will be heterogeneous, and the extent to which bulk strain is
recorded in the rock record varies both in space and time (e.g. Jones et al., 2005).
Consequently, the use of non-penetrative or outcrop-scale structures, as evidence for
distinct deformational events (the so-called deformation phases) is typically misleading.
Added complexity arises in accretionary complexes such as the PDLZ that contain
sedimentary or tectonic mélange units. Tectonic and sedimentary mélanges form
mappable (1:25,000 or smaller scale) units in the PDLZ that are internally fragmented
and consist of mixed rock bodies containing a variety of blocks in a deformed matrix
(Silver and Beutner, 1980). Although mélanges are typically represented as coherent
units on a geologic map, internally they are chaotic, and are discontinuous along strike
and in the subsurface (Wakabayashi, 2004). By implication, most investigations of
mélanges using classical mapping techniques do not adequately characterize their spatial
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distribution, lithological and tectonic character. Although mélanges are considered in
integral component of accretionary complexes, the use of this term has been mostly
descriptive, given the lack of consensus concerning their genesis. Most researchers have
interpreted asymmetric shear fabrics and sheared block/matrix contacts in mélanges as
indicative of a primary tectonic origin. On the other hand, sedimentary mélanges are
considered to have a primary sedimentary origin due to the lack of such shear fabrics.
The presence of rounded blocks or “cobbles” and preserved sedimentary structures
internal to mélange blocks is also indicative of a primary sedimentary origin. However,
recently Osozawa et al., 2009 point out that mélange “blocks” with pre-existing fabrics,
which potentially record older tectonic events, can be incorporated into the mélange by
sedimentary processes and deformed following deposition. In this case the mélange
records independent sedimentary and tectonic processes (deposition and subsequent
deformation) as well as pre-accretionary tectonic events (pre-existing fabrics in blocks).
As the PDLZ is fault-bounded, internally sheared and mélange-bearing (Eden,
1991; Giese et al., 1999), the above considerations suggest that conventional mapping
and structural analysis techniques may not be practical in determining the tectonic history
of the area. As a result, tectonostratigraphic domains were selected in the PDLZ (Fig. 2.1)
by: (1) relating similar brittle and ductile structural styles over a maximum spatial extent
(i.e. outcrop-microscopic-scale strain patterns, which could be related spatially over the
mapping area), and (2) recording variations in the relative development of strike-slip,

shortening and extensional features. Using this approach we were able to identify and
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map five domains (A through E). Domain Ais defined by the presence of a well-
developed shallowly plunging stretching lineation and by outcrop-to-microscopic scale
ptygmatic folds. Domain B is defined by complex outcrop-scale folding patterns, conical
and intrafolial folds, pervasive anastamosing schistosity and a localized block-in-matrix
mélange fabric. Domain C is defined by outcrop-scale folding patterns and crenulation
cleavage. Domain D is defined by a block-in-matrix mélange fabric, a shallowly-
plunging stretching lineation, duplexing and conjugate fault sets. Domain E is defined by
outcrop-scale upright cylindrical folds, pervasive fracture cleavage and conjugate fracture
sets. Domain A corresponds with the northern margin of the Pulo do Lobo Formation
(southern margin of the SISZ), domain B with the Pulo do Lobo Formation and Permora
mélange, domain C with the Ribeira de Limas Formation, domain D with the Alajar
Formation (a mélange) and domain E with the Santa Iria flysch (Figs 1.4, 2.2).

Although internal structures in each domain are interpreted as part of a domain-
specific system, for comparison, relatable events in the structural evolutionary path for a
given domain are separated into distinct events (e.g. A-D;=domain A, event 1; A-D, =

domain A, event 2; A-D3;= domain A, event 3...etc.).
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Classic nomenclature This study ~ Lithotectonic Domains
A - Santa Iria Formation

'] Ribeira de Limas Formation
'] Pulo do Lobo Formation

[l
[]
B Permora Mélange (Eden, 1991) B oomeinc
o
B

DomainE  [I]  Beja Acebuches Ophiolite

Domain D . Granite & Granodiorite

Domain B

B Acebuches Amphibolite
t | Granite & Granodiorite

Domain A

Fig 2.1Comparison of tectonostratigraphic domains with current geologic maps (adapted
fromOnézime et al., 2003).

2.4. Field Observations

2.4.1. Domain A
Observations

Domain A crops out along the northern margin of the PDLZ (Fig. 2.1) and is
bordered to the north by the BAO and the South Iberian Shear Zone (SISZ) of Crespo

Blanc and Orozco (1988, 1991). The domain is characterized by L-tectonite, and by fine-
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grained pelitic schists composed predominantly of muscovite, biotite and quartz. Pre-
tectonic plagioclase-rich layers occur locally in the schists and are enveloped by a
mylonitic foliation. This mylonitic foliation, defined by muscovite and minor chlorite,
strikes east-west, and is sub-vertical (A-D,) (Fig. 2.2a). A well-developed stretching
lineation (A-L;) defined by quartz rods is visible along foliation planes and plunges
shallowly to the southeast and to the northwest (Fig. 2.2a). Plagioclase is boudinaged
along foliation planes and displays both brittle and plastic deformation (Fig. 2.2b). On a
microscopic scale, the mylonitic foliation is also locally deformed into ptygmatic folds
with steeply plunging hinges (A-D;) in oriented sections cut parallel to the A-L;
stretching lineation (A-D;) (Fig. 2.2¢). Plagioclase boudins show sinistral back-rotation

(A-Ds) (Fig. 2.2d).

Interpretation

To a first order, the pervasive occurrence of shallowly plunging stretching
lineations suggests the main deformation coeval with fabric development was
predominantly strike-slip (A-D;). The east-west strike of the mylonitic foliation and the
sinistral kinematics displayed by plagioclase boudins associated with this deformation
implies relative bulk sinistral kinematics. In this case, the shallow easterly plunge of the
stretching lineations also suggests a minor reverse component (i.e. north side up). The
steep plunge of A-D, minor folds of the mylonitic foliation indicates subsequent rotation

of the main fabric and that strain was predominantly non-coaxial. This sinistral strike-
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slip motion constitutes the bulk of internal deformation in the domain. However, a plot of
minor fold axis orientations from outcrop-scale (A-D;) folds also shows potential bulk
cylindrical rotation of conical minor fold axial planes about an axis shallowly plunging to
the west (A-Dy) (Fig. 2.2e).

The presence of muscovite, biotite, and chlorite indicate peak metamorphic
conditions were at maximum upper-greenschist facies during A-D;. This interpretation is
consistent with textural evidence for the close spatial juxtaposition of both plastic and
brittle deformation in the plagioclase suggests deformation potentially took place at the

brittle-plastic transition zone (~450 °C) (van der Pluijm et al., 1997).
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® A-D, minor fold axis ~ measured

*  A-D, fold axis ~ derived

Fig. 2.2 Domain A (A) Mylonitic Foliation (A-D1) (east—west striking) trace with
shallowly plunging stretching lineations A—L1in thin section (plane polarized). (Inset)
equal anglestereoplot of stretching lineations measured throughout the domain on
outcrop-scale. (B) Plagioclase-rich layers displaying spatially juxtaposed brittle and
plastic behaviorassociated with A-D1. (C) Photo micrograph of minor ptygmatic fold
showing sinistral kinematics (plane polarized) (A—D2). (D) Plagioclase boudins show
sinistral back-rotation(A—D?3). (E) Equal angle stereoplot showing conical rotation of (A—
D2) minor fold axes by (A-D4).

2.4.2. Domain B
Observations

Domain B (Fig. 2.3) is dominated by quartz-mica phyllite and schist comprised of
quartz, sericite, minor biotite, chlorite and plagioclase. Both phyllites and

schistsarebandedonamicroscopicscale (from0.05tolmm) and these bands are definedby
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varying abundances ofquartzandphyllosilicates. Quartz-rich bands,
however,arenotpersistent laterally andcommonlypinch out (Fig. 2.3a). Locally, minor
phacoidal quartzite and greenschist (metabasalt) blocks (cm to m scale) enveloped by the
schists and phyllites are exposed and grade continuously into zones dominated entirely by
the schist and phyllite. The greenschist blocks contain a mylonitic foliation (B-D,) (Fig.
2.3b). A well-developedpenetrative foliation (B-D,) envelopes the greenschist and
quartzite blocks, is defined by muscovite and biotite, strikes predominantly east-west and
is consistently steeply dipping (Fig. 2.3c). A stretching lineation (B-L) (plunging
shallowly to the east) defined by quartz is weakly developed along the foliation planes in
the schists and the long axis of the coarser grained (quartz-rich) bands are commonly
boudinaged parallel to this lineation (Fig. 2.3c). The long axes of greenschist and
quartzite blocks (where present) are also commonly boudinaged parallel to the stretching
lineation. Slickensides are also common along block/matrix contacts.

Minor folds (B-Ds3) of the foliation are visible throughout the domain on an
outcrop and microscopic scale (Fig. 2.3d). At an outcrop scale, this foliation is folded into
meter-scale folds (B-D3), which locally envelope intrafolial folds (of similar pelitic
schist) (Fig. 2.3e). Using the methos described in Keppie et al., 2002, stereographic
projections show that these meter-scale folds (B-D3) have a conical geometry.
Petrographic examination shows that textures in the schists are defined by sutured grain
boundaries between quartz grains and micas, and S/C fabric development with micas

oriented parallel to the S and C-fabrics.
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Interpretation

The occurrence of quartzite and greenschist blocks in the schistose matrix
suggests that, locally, lithologies in this domain attain a mélange-type character.
Although the overall structural style is consistent throughout the domain (S/C fabric,
conical folds) the local occurrence of block-in-matrix mélange enveloped by a strong
tectonic fabric and sheared block/matix contacts (slickensides) suggest the entire domain
may be tectonically shuffled, implying that the original stratigraphy is not preserved. The
presence of this strong tectonic fabric is further supported by the occurrence of intrafolial
folds in the matrix, enveloped by the main foliation. These intrafolial folds potentially
represent bulk shortening (B-D,) prior to the main shearing event (B-D,). The well-
defined S/C fabric and stretching lineations in the schistose units may be indicative of
this strong shearing and suggest a dominant overall sinistral strike-slip component during
B-D,. However, the presence of numerous conical folds of the schistosity, from
microscopic to outcrop scale, also implies that shortening (B-D3) occurred following
fabric development. Stereoplots of these fold axes reveal evidence of two discrete phases
of conical folding. Minor folds of the schistosity are each defined by conical folds axes
with an internally consistent orientation. However, a synoptic plot shows that these cone
axes are rotated about late-stage regional cone axes that plunge shallowly to the east and
the west (B-D4) (Fig. 2.3f). Taken together, the development of the primary schistosity,

the two different phases of conical folding of this schistosity and the subsequent rotation
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of those folds about axes with different orientations suggest a minimum of three different
stress regimes imposed on the domain throughout its tectonic evolution. The presence of
minor biotite, sericite and chlorite along B-D, foliation planes in the schists indicate that

peak metamorphism associated with B-D, was greenschist facies.
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Minor fold axes domain B-D,,
Minor fold axes domain B-D,,
Minor fold axes domain B-D,,

Poles to main foliation (B-D,)
<l Conical axes (B-D,)
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Fig. 2.3Domain B (A) Photo micrograph showing laterally discontinuous quartz-rich
bands in a metapelitic matrix (crossed polarized). (B) Mylonitic foliation (B-D1) from
agreenschist*“block”(photo micrograph). (C) Main foliation (B—D2) defined by
muscovite, sericite and biotite with boudinaged quartzite block emplaced prior to B—
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D2(crossedpolarized thin section). (D) Photo micrograph of minor folds of B-D2foliation
(by B-D3) (crossed polarized). Dashed line along B-D3hinge trace. (E) Main foliation
B-D2surroundsintrafolial fold (B-D1?). (F) Equal angle stereoplot of measured B—
D3minor fold axes rotated by B-D4where B—-D3a,b,crepresent outcrop-scale sub-
domains within domain B.
2.4.3. Domain C
Observations

Domain C (Fig. 2.4) is dominated by bedded quartzwacke (ca. 40cm thick)
comprised of angular quartz clasts in a groundmass of finer grained quartz and
plagioclase. The quartzwacke is interbedded with thin (ca. 10 cm) layers of phyllitic
metasediments comprised mainly of quartz, biotite, chlorite, and sericitized plagioclase.
On an outcrop scale, minor folds of quartzwacke beds (C-D,) are locally developed about

vertical hinges (Fig. 2.4a) and are asymmetric. Phyllites are characterized by a

penetrative cleavage defined by sericite, biotite and chlorite.

Minor folds are also developed about horizontal hinges (C-D,) (Fig. 2.4b) which
rotate the C-D; fabric and show both “s” and “z” symmetry. A fracture cleavage (C-D3)
that is weakly developed in the quartzwacke units is near vertical and east-west striking.
A crenulation cleavage (Fig. 2.4c) in the phyllites (D-C;) crenulates the pre-existing C-D;
penetrative cleavage. Locally, cordierite porphyroblasts in phyllitic horizons exhibit
poikiloblastic textures and their growth is post-tectonic with respect to C-D; penetrative
cleavage and C-Dj crenulation cleavage. These cordierite porphyroblasts occur only in

close spatial proximity to exposed granites and granodiorites to the south.
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Interpretation
The preservation of bedding throughout the domain (as seen in the quartzwacke
units) indicates the domain was not strongly internally sheared during the main phase of

(Y=}

deformation. Minor “z” and

(I3
S

fold vergences of upright folds (C-D,), however, are
inconsistent with the tectonic facing as indicated by bedding/cleavage relationships,
suggesting they formed prior to the larger-scale structural development (C-Ds). This
inconsistency implies the (C-D,) minor folds are related to an earlier shortening-
dominated regime and the fracture cleavage is associated with the regional structure. A
synoptic plot of the poles to minor fold axial planes measured throughout the domain
define a great circle distribution about an axis plunging shallowly to the east (C-D3)
which lies on the C-Dj crenulation axial plane (Fig. 2.4d). Fracture cleavage intersection
lineations also lie on the crenulation cleavage plane suggesting fracture cleavage was
developed during C-Ds.

The presence of biotite and chlorite on C-D; suggests a peak metamorphism of
greenschist to lower greenschist facies (i.e. phyllitic fabric crenulated by C-D3). The
development of crenulation cleavages on pre-existing C-D, cleavage planes also suggests
continued progressive shortening (C-Ds) at higher structural levels than C-D;.

Given the regional scale of typical greenschist facies minerals, the presence of
cordierite mineral post (C-D,.;) overgrowths on the fabric suggests proximity to an
intrusive igneous body (i.e. contact metamorphism), which, therefore, intruded after the

main deformation. The Gil Marquez (Ca 330 Ma; De la Rosa et al., 2001) granodiorite
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crops out directly to the south (Fig. 1.5) and is a likely heat source for the contact
metamorphism evidenced in Domain C. In this case, C-D;_; occurred prior to 330 Ma.

and post-emplacement movement would be limited.

Intersection lineations (C-D,)
Minor fold axial planes C-D, ,
C-D, fold axis

Best fit minor fold axial planes

v\DOe

Mean crenulation cleavage plane

Fig. 2.4 Domain C (A) Minor C-D1folds of quartzwacke bed with sub-vertical hinge
(plunging into page). (B) Minor*“s”C—D2fold of quartzwacke bed with sub-horizontal
hinge(plunging into page). (C) Lineation formed by crenulation of the phyllitic cleavage
(C-D2). (D) Equal angle stereoplot domain C fabric elements (C—D3).
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2.4.4. Domain D
Observations

Domain D (Fig. 2.5) consists of hectometer-size sigmoidal, phacoidal quartzites
and centimeter-to-meter-size rounded quartzite “cobbles” enveloped in a
slate/phyllite/quartzite matrix (Fig. 2.5a). The main fabric in the phyllitic matrix is
defined by sericite and chlorite. Individual quartzite cobbles are elongate along an east-
west trend that is parallel to the phyllitic fabric in the finer grained matrix and to the
major lithological contacts. The entire domain forms a regional topographic high. To the
west, the domain is dominated by interbedded planar quartzite and phyllite. The thickness
(perpendicular to strike) varies considerably along strike and is directly proportional to
cobble abundance. The quartzite cobbles are resistant to erosion and the portions of this
domain that contain abundant cobbles tend to occupy high elevations. The meter to
hectometer size phacoidal quartzite cobbles preserve sedimentary structures such as cross
bedding and load casts, and internally contain interbedded pelitic horizons (Fig. 2.5b).
Graded bedding in zones of quartzite-rich matrix also occurs where deformation is less
intense. Locally the smaller centimeter to meter size rounded cobbles contain an internal

folded tectonic fabric (folded fabric=D-D;) (Fig. 2.5¢).

Deformation in the domain is accommodated primarily in the matrix as indicated
by a moderately developed stretching lineation (D-L;) along the main phyllitic foliation

that plunges shallowly to the east. An S/C fabric is also locally developed in the matrix

44



(Fig. 2.5d) and the intersection of the S/C planes is observed to be perpendicular to the
stretching lineation (D-D;). The larger phacoidal quartzites (hectometer size) display only
minor internal duplexing and conjugate fault sets, and are internally undeformed. Most of
the smaller cobbles, however, show internal sinistral duplexing (Fig. 2.5¢) and an overall
sigmoid geometry with “tails” displaying predominantly sinistral kinematics when

viewed parallel to the stretching lineation.

Interpretation

Although the domain exhibits an asymmetric shear fabric (D-D;) the presence of
(1) isolated rounded quartzite cobbles, (2) preservation of sedimentary structures internal
to cobbles, (3) quartzite in the matrix, (4) preserved (D-D;) fabric in cobbles, suggest the
primary formation of the mélange was a sedimentary process and the block-in-matrix
fabric is olistostromal. In this case, the D-D; fabric may be indicative of sedimentary
recycling within the accretionary system (e.g Osozawa et al., 2009) and the tectonic
fabric (D-D») represents an independent post-emplacement tectonic process imposed on
the mélange. The fact that only a small portion of the cobbles show this pre-emplacement
tectonic fabric indicates either multiple sedimentary sources, or a uniform source with a
partitioned pre-emplacement deformation.

The main fabric in the matrix (D-D,) wraps these cobbles and the D-D; fabric,
indicating progressive deformation (D-D,), as denoted by fabric development and

rotation of the quartzite cobbles. Field observations of stretching lineation traces in the
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sigmoidal quartzite cobbles (i.e. stretching directions defined by sigmoid tails) indicate
that they are oblique sections whose orientation varies depending upon the planar surface
on which the measurement is made. This variation indicates that they represent apparent
rather than true stretching directions. Using the stereographic method described by Ragan
(1985), which incorporates measurement of both the stretching lineation traces and the
planar surface on which the lineation was measured, yields a true stretching direction
orientation moderately plunging to the east (D-L;) (Fig. 2.5f). The observed moderate
plunge to the east is consistent with an oblique shear sense for D-D,. This obliquity is
also supported by the coexistence of both outcrop-scale ramp thrust faults (D-D,) and
sinistral S/C fabrics (D-D5).

A stereoplot of the main fabric in the matrix suggests the entire domain is tightly
folded about an axis that gently plunges to the east (D-D;) (Fig. 2.5g). The occurrence of
slate in the matrix and the presence of sericite and chlorite suggest a lower greenschist

facies metamorphic grade associated with D-D; (i.e. visible in the phyllitic foliation).
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\Great circle defined by D-L,.and P’
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Fig. 2.5 Domain D (A) Quartzite cobble enveloped by a phyllitic matrix. (B) Phyllite
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internal to hectometer size quartzite cobble (load cast structure). (C) Quartzite cobble
withan internal folded fabric (D-D1). (D) S/C fabric showing sinistral kinematics in
phyllitic matrix (D-D2). (E) Cobble with an internal duplex structure showing sinistral
kinematics(D—D2). (F) Derivation of true stretching direction D—L1f{rom apparent
lineations measurements (D—L1) and exposure planes (P’) (method afterRagan, 1985).
(G) Equal anglestereoplot showing rotation of D—D2fabric by (D-D3).
2.4.5. Domain E
Observations

Domain E (Fig. 2.6) is dominated by feldspar-rich greywacke and shale. Grain
size in the greywacke varies from coarse to very fine sand and the quartz grains are
angular. Bedding is preserved (E-Sy) and crossbeds indicate that the strata throughout the
domain are right way up. Repeated fining-upward sequences are recognized from meter-
to kilometer-scale. Minor folds (E-D;) predominantly occur in the coarser grained units,
are locally chevron in style and range from centimeter to decameter in wavelength. Open,
cuspate, upright folds (Fig. 2.6a, b) also occur in conjunction with chevron geometries. A
fracture cleavage is axial planar to these folds and no crenulation cleavage is visible
within the shale. Bedding -cleavage intersections (E-L;) (Fig. 2.6d) are well defined and

consistently plunge shallowly to the east or west (Fig. 2.6¢). Locally granites and

granodiorites of the Sierra Norte Batholith intrude and crosscut E-D; structures.

Interpretation
The angular quartz grains and lithic fragments in the greywacke suggest the

sedimentary sequence is texturally immature. This immaturity, together with the presence
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of simple fold geometries and limited metamorphism, suggests a simple tectonic history
compared to domains A-D. Pervasive chevron fold geometries imply (i) E-D; occurred at
upper crustal levels and (ii) are indicative of a shortening-dominated regime. A stereoplot
of a representative minor folds show a simple cylindrical geometry with a near-vertical

axial plane and a shallowly plunging fold axis (E-D,) (Fig. 2.6c¢).

s
Cleavage (£-D1)'

*E-D, minor fold axis
random sampling

/

E-So Minor folds (E-D, )

Fig. 2.6 Domain E (A) Open folds of greywacke and (B) shale. Insets: equal angle
stereoplot showing orientations of minor fold axes (E-D1). (C) Minor fold of bedding
with shallowplunge. Inset = synoptic equal angle stereoplot of fold axes (random
sampling). (D) Cleavage / Bedding (E—S0) intersections (E-L1).
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2.5. Summary and Synthesis

2.5.1. Structural Relationships Between Domains

Domain A exhibits structures (A-D . 3) consistent with a major sinistral strike-
slip component (Figs 2.7a, b). Although the various structures are sequential (i.e. A-D,
folds A-D)) their respective orientations are associated with non-coaxial sinistral rotation
(Figs. 2.7a, b). Consequently, if their orientations are associated with the same overall
bulk strain, A-D;_; deformation can be viewed as progressive. The higher metamorphic
grade associated with A-D; (upper greenschist) and the brittle-plastic behavior suggests
that A-D; of domain A exposes deeper structural level than the other domains. The lower
metamorphic grades of A-D, 4 suggest these phases occurred at higher crustal levels (no
recrystallization) suggesting exhumation coeval with progressive deformation. A-D,
however, is a bulk rotation of all pre-existing fabric elements and is therefore clearly not
associated with the same bulk strain conditions and consequently constitutes a later
change in bulk strain.

Domain B deformation also records a major non-coaxial bulk strain component
(B-D») suggesting a possible transient linkage with A-D; » 3 (Figs. 2.7a, b). However, the
presence of a pre-existing fabric in mélange blocks and intrafolial folds suggest that a
deformation (B-D;) pre-dated B-D, fabric development and metamorphism. Upright
conical folds (B-Ds) imply progressive shortening associated with a complex sinistral
non-coaxial-non-plane strike-slip regime (Figs. 2.7a, b) (e.g. Jones et al., 2004, 2005) and
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the absence of new metamorphic minerals associated with B-D; suggests ensuing
deformation occurred at higher structural levels. The latest deformation phase (B-Dy) is
linked to A-Dy, as its internal structure (i.e. B-D3) is a bulk rotation about an axis of
similar orientation to A-D4 of domain A.

The multiphase folding patterns in domain C (C-D; ,) suggests bulk strain was
shortening dominated (Figs. 2.7a, b) and that overall internal shear component was
minimal. The final deformation event (C-Ds) is again consistent with the later
deformation in domain A (A-D4) and domain B (B-D4) and its internal structures are
folded about a similar axis.

Domain D shear fabric development (D-D;) suggests an overall non-coaxial bulk
strain (i.e. S/C fabrics in matrix; conjugate fault sets) (Figs 2.7a,b). Pre-existing D-D,
fabric in quartzite cobbles suggests tectonic activity prior to emplacement in the mélange
and potential cannibalization of the cobbles during their incorporation into the mélange.
However, the final deformation (D-Ds3) is again similar to A-D4, B-D4 and C-Ds, in that
its structures are folded about a similar axis.

Taken together these data suggest that (1) although structural styles vary among
each domain there are transient linkages between both progressive deformational style
within each domain and among the domains (Figs. 2.7a, b) and (i1) the entire package
(domains A-D) was rotated about the same axis during the final stages of deformation.

When compared to structural elements in domain E, this axis which internal

structures of A-D;3, B-D;.3, C-Dj.,, D-D;_; are rotated about has the same orientation as
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measured minor fold hinges and cleavage / bedding intersections (E-D;), implying a

genetic link between the deformation in domain E and the final deformation of domains

A-D (Fig. 2.8).
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Fig. 2.7 The structures are plotted on a strain triangle in which the apices represent



individual plane strain components and the inside of the triangle represents combinations
of thesecomponents to give non-coaxial non-plane strains (Modified fromJones et al.,
2005). (A) Brittle structures associated with domain specific deformation, (B) ductile
structuresassociated with domain specific deformation.

@ Intersection lineation (E-D,)

Fig. 2.8 Equal angle stereoplot of E-Dlintersection lineations compared with fold
axesA-D4, B-D4, C-D3, and D-D3.
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2.5.2. Mélange Fabric and Scale

Variscan deformation recorded by domains A-E in the PDLZ shows a complex
history characterized by changing regional bulk strain conditions and variations of
structural style with scale. These complexities suggest traditional structural interpretation
techniques are not applicable in determining the regional tectonostratigraphic history (e.g.
Wakabayashi, 2004). On a regional scale, domains (A-D) in the PDLZ are characterized

by:

(i) Original stratigraphy not preserved (domains A,B,D)
(i) Fault-bounded units (domains)
(ii1) Various mélange fabrics

(iv) Changing true thickness along strike

Domains B and D display classic characteristics of a mélange (Greenly, 1919). Domain B
contains both amphibolite and quartzite blocks in a schistose matrix. Domain D contains
phacoidal quartzites of varying sizes (centimeter to hectometer in scale) and rounded
quartzite cobbles, which locally preserve internal sedimentary structures. In this case, the
domain displays a block-in-matrix aspect characteristic of a sedimentary mélange
(olistostrome; Pini, 1999). However, domain D also locally displays some structural order
(parallel orientation of phacoidal quartzites and outcrop-scale boudinage), which is

characteristic of a tectonic mélange (tectonosome; Pini, 1999). On a map scale, although
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the cobbles are aligned in an east-west orientation (parallel to the orogenic grain)
individual units are not traceable along strike. As boudins are traceable parallel to the
main fabric, the inability to map phacoidal quartzites along strike, suggests the isolation
of phacoidal quartzites is not a tectonic process. Furthermore, evidence of deformation
(D-D)) of quartzite cobbles prior to incorporation into the mélange suggests sedimentary
recycling within the accretionary system (e.g. Osozawa et al., 2009). As a result, the
dominant lithology of this domain is interpreted as a sedimentary olistostromal mélange
where cobbles were deformed prior to erosion and emplacement and subsequently
deformed and metamorphosed by D-D; during continued subduction.

Domain B is marked by highly variable abundances of “blocks” and matrix and
boudinaged structures. Boudinaged greenschist blocks contain a pre-emplacement fabric
and the inherent higher metamorphic grade than the surrounding matrix is evidence of
exposure of deeper crustal levels. There is, however, no definitive evidence to support an
olistostromal interpretation. The seemingly random variability in block composition, size
and shape and contrast of block and matrix composition (i.e. domain D blocks similar in
composition to matrix) and strong pervasive internal deformation along block-matrix
contacts suggest a primary tectonic derivation of the mélange fabric.

Alternatively, domains A and C do not contain “blocks” or “cobbles” typical of a
tectonic or sedimentary mélange. Although internal deformation is complex (A-Dj.4, C-
D,.3) and the units are internally untraceable along strike, on a local scale they can be

considered coherent (e.g. Wakabayashi, 2003). At regional scales (Fig. 1.5), however,
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domains A and C can be viewed as tectonically imbricated with the mélange units of
domains B and D (i.e. fault-bounded). At these regional scales bulk strain asymmetry is
evidenced in the changing internal deformation for a given domain. As it is now widely
accepted that extensive asymmetric shear fabric is a defining characteristic of tectonic
mélanges and that all block-in-matrix fabrics should exhibit shear planes (Onishi and
Kimura, 1995; Osozawa et al., 2009), together domains (A-D) can be interpreted to as a
tectonic mélange at regional scales. In this case each domain records mélange formation
during different tectonic and metamorphic conditions during the evolution of the
accretionary wedge (i.e. domain D is a sedimentary mélange within a larger scale tectonic

mélange).

2.5.3. Regional Tectonic Evolution

Various theoretical models can be applied to describe the deformation and
tectonic evolution of the PDLZ (i.e. non-cohesive, cohesive, elastic, plastic and Coulomb
wedge) (e.g. Davis et al., 1983; Fletcher, 1989). Coulomb wedge models are widely used
in describing the regional shape and overall mechanical behavior of accretionary prisms
(e.g. Davis et al., 1983; Schott et al., 2001). In the Coulomb wedge model, the material
within the wedge deforms internally until a critical taper (shape for which the wedge is
on the verge of failure under horizontal compression) is attained, after which faults
continue to grow at constant taper as additional material is incorporated at the toe.

Eventually, as friction (related to fault angle, thickness, internal rheology, etc.) along
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existing thrust faults increases (assuming constant subduction angle) and as horizontal
stresses along the active imbricate surface within an accretionary wedge attain a “critical”
limit, a new thrust will develop at the toe, forming a new imbricate system (Koyi et al.,
2001).

As the PDLZ is defined by fault-bounded domains, each showing discrete
episodes of internal deformation, the Coulomb model is applicable to describing the
regional behavior of the system. In the PDLZ, domain A shows evidence of both plastic
and brittle deformation of quartz, suggesting deformation (A-D; ») occurred at higher
temperatures and pressures than deformation of domains B,C,D and E. If one assumes
that domain A constitutes the earliest imbricate wedge (i.e. close to the basal
décollement) then subsequent domains were deformed at higher structural levels and
Domain A exhumed by continued transcurrent motion. In this case, if classic Coulomb
wedge dynamics are applied, each domain records internal deformation before a critical
taper is attained. Following the development of a new frontal thrust, a new imbricate slice
will form (i.e. domain B) (Fig. 2.9). Structures internal to each domain (e.g. B-D;.3)
within the PDLZ (Fig. 2.7a, b), however, suggest that the fault movement was
predominantly non-coaxial. As a result, the relative amount of shortening vs. strike-slip
shear together with the regional orientation of the stretching lineation and the changing
fault angle will dictate the amount of time needed for the fault to reach a critical taper.

In the PDLZ, as all domains show a bulk rotation, coeval with the deformation of

domain E (i.e. minor folds rotated by same stress field), a critical taper must have been
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attained for each domain prior to E-D;. Domains A-D locally record earlier strain
compartmentalization during internal structural development and each were subsequently
overprinted by the deformation seen in domain E. This common internal deformation
implies that the steeply dipping faults (which bound each domain within the PDLZ and
do not cut the domain E) were not active during the final stages of deformation.
Therefore, domain E cannot be considered a new frontal thrust developed in the
“bulldozer” Coulomb wedge model but rather implies that domain E was deposited
during the final stages of collision unconformably over domains A-D. In this case, the
final deformation (E-D;) could be indicative of the final stages of collision (i.e. OMZ and
SPZ are juxtaposed) and the flysch sequence of domain E could potentially be derived
from the OMZ, SPZ or domains A-D (Fig. 2.9). In domain E, bedding is internally
preserved and the presence of cylindrical, outcrop scale chevron folds and the lack of
variation of structures on smaller scales within the domain suggest strain was internally
homogeneous. These characteristics imply a discrete change in deformational style
between the domain E and domains (A-D) supporting the interpretation that domain E is

the youngest unit in the PDLZ (e.g. Giese et al., 1999).

58



BULK STRAIN

Non-coaxial strike-slip

- Domain A

(sinistral)

ca. 405-330 Ma. A-D 3
- Domain B Non-coaxial non-plane

N2 (sinistral)

ca. 405-330 Ma. ® B-D .,
- Domain C _ Shortening dominated

b5 c-D

ca. 370-330 Ma =12
- Domain D A Non-coaxial strike-slip

& (sinistral)

D-D 2-3

? ,
I:lDomainE(Flysch) - /—7—]

Deposition ca. 360 Ma

Shortening dominated

o S A-D,, B-D,,
) e / Va C"‘D y D"'D 3

ca. 360-330 Ma USPZ _)l\ «— OMZ \/ Ea-D1 3

(@) Into page
@ Out of page

Folding of entire prism

Fig. 2.9 Evolutionary model for the Pulo do Lobo Accretionary complex assuming north
directed subduction: (1) non-coaxial strike—slip bulk strain (deformation domain A);(2)
Non-coaxial non-plane bulk strain (deformation domain B); (3) Bulk shortening
(deformation Domain C); (4) Non-coaxial strike—slip bulk strain (Domain D);
(5)“locking”of regional faults, deposition of domain E, Deformation of domain E and
rotation of domains A-D.
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2.5.4. Constraints on the Timing of Deformation

The age of the deformation events are only broadly constrained, and a detailed U-
Pb geochronological investigation is in progress. The best constraint on the age of
deformation is in domain E, and is bracketed between ca. 360 (the depositional age of the
Santa Iria flysch) and 330 Ma (the intrusive age of the Gil Marquez pluton). The plutons
locally crosscuts domain E, however, as the plutonic rocks are locally foliated, they may
by synkinematic to deformation of domain E.

On a regional scale domains A-D are interpreted as a tectonic mélange and
consequently their internal age relationships are difficult to determine. However, in
domain C, fabrics C-D; and C-Dj are crosscut by the Gil Marquez granodiorite
suggesting internal deformation in this domain occurred prior to ca. 330 Ma. The Gil
Marquez granodiorite is assumed partly coeval with the granites which intrude domain E,
thus suggesting that at least a part of these plutons (Sierra Norte Batholith) intruded the
PDLZ following deposition of domain E and bulk rotation of domains (A-D).

The internal deformational events in domains A-D must pre-date the regional E-
D, deformation, which involved bulk rotation of all domains, and is younger than the
Devonian age of their respective protoliths. For example, the Frasnian depositional age
for the Ribeira de Limas Formation (Oliveira et al., 1986; Giese et al., 1988) constrains
the internal deformation of domain C to ca. 370-330 Ma. The Early Devonian age for the
Pulo do Lobo Formation (Onézime et al., 2003), constrains the deformation in domain A

between ca. 405-330 Ma.
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If the BAO represents a vestige ocean lithosphere deformed during accretion to
the Gondwanan margin (e.g. Crespo-blanc and Orozco, 1988; Diaz-Apiroz et al., 2005),
then the ca. 334 + 2 Ma (protolith) age (Azor et al., 2008) of the ophiolite would
constrain the internal deformation of the PDLZ accretionary prism to between 334-330
Ma. On the other hand, if the BAO was generated in a post-collisional setting, then the
BAO age does not constrain deformation in the accretionary prism. The strong mylonitic
foliation in domain A (D-A) suggests a possible genetic link with deformation of the
adjacent BAO and South Iberian Shear Zone (SISZ, Crespo-Blanc and Orozco, 1988).
The recent 334 + 2 Ma age for the BAO protolith implies that if D-A;_; were coeval with
development of the SISZ then deformation in domain A should be coeval or post ca. 334
Ma. However, domains A-D were rotated coeval with deformation in domain E (Fig. 2.8)
suggesting internal deformation in these domains must have occurred prior to the Late
Fammenian. Consequently, internal deformation of domains A-D cannot be genetically
related to the deformation in the SISZ as it is today, though nothing precludes such a
relationship during initial, presently exhumed, parts of this important shear zone. This
apparent lack of association of deformation between the PDLZ and SISZ supports the
internal compartmentalization regional strain within lithotectonic domains and further
suggests that later deformation in the SISZ (post-330 Ma.) was also internally localized
within the shear zone (i.e. PDLZ kinematically isolated from bulk strain). This apparent

isolation may be a result of late Variscan re-activation of regional-scale faults within the
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PDLZ allowing for localized deformation of the BAO-domain A contact and may also be
responsible for localized fabrics within the granites and granodiorites.

Field and paleontological data therefore support the hypothesis that the PDLZ
deformation and accretion was associated with an extremely diachronous (as is typical of
largely oblique convergent processes) Late Devonian-Early Carboniferous oblique
(sinistral) subduction/collisional event, propagating from NW to SE, (e.g. Quesada et al.,
1994, 2006). This oblique subduction/collision event (Variscan orogeny) may have been
punctuated in time and/or space (e.g. at releasing bends along the suture zone) by
localized transtensional events eventually leading to marginal oceanic basin opening
(formation of BAO at Ca. 334 Ma) or massive emplacement of late plutonic rocks (Sierra
Norte Batholith). In this case, the deformation of the entire package (domains A through
E of the PDLZ) (Fig. 2.9, stage 5) would have taken place before the formation of the
BAO. Subsequent inversion of the BAO and the SISZ would be responsible for internal
deformation/exhumation of the former and the present geometric arrangement of

lithotectonic units.

2.6. Conclusions

Previous studies have interpreted the PDLZ in the type area as affected by three
distinct phases of deformation (e.g. Silva et al., 1990; Giese et al., 1994; Giese et al.,
1997). Although our findings show evidence of polyphase deformation, field evidence
suggests that strain compatibility is highly scale dependent. Although deformation across
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the entire map area is highly heterogeneous, homogeneity is generally achieved within
each tectonostratigraphic domain. Also, although observed structures on a local scale
(microscopic, outcrop, etc.) may conflict with the overall kinematics of the given domain,
a large sampling of structural data shows general consistency of structural style, where
both brittle and ductile deformation show a combination of dip-slip, strike-slip, oblique
slip, or shortening (Fig. 2.7a, b).

The variation in structural style from each domain in the map area suggests that
bulk strain orientations on a regional scale changed during progressive deformation,
which directly influenced the spatial extent of observed structures in the field. This
variation suggests that the kinematics associated with regional-scale faults, which border
each domain, directly controlled the style of internal deformation (Fig. 2.8). The Late
Fammenian SIF is generally considered to show only one deformation phase. Our
findings are consistent with this conclusion; however, we suggest this deformation
affected not only the SIF but was recorded internally by all units within the PDLZ, where
earlier deformation was only locally developed. By implication, it can be hypothesized
that during the waning stages of continent-continent collision and accretionary wedge
development, energy-release mechanisms along internal structural breaks became less
efficient, causing a shift in boundary conditions to a higher scale level. This shift would
subsequently result in a “locking” of bounding faults and the distribution of strain across

larger scales. Recognition of these systems (where strain is homogenous on higher scales)
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across assumed coeval accretionary systems may help to improve our understanding of

the Variscan Orogenic belt.

2.7 Acknowledgements

JAB thanks Nick Culshaw and Rebecca Jamieson for discussions related to the
project as advisors on JAB thesis committee. The support of theNatural Sciences and
Engineering Research Council, Canada throughthe PGS-D grant to JAB and Discovery
and Research Capacity grants toJBM. JAB also acknowledges the support of the
Dalhousie Killampredoctoral scholarship program. St. Francis Xavier University
Councilfor Research grants to JBM. We are grateful to Stephen Johnston and
ananonymous reviewer for their very insightful and constructive reviewsand to Rafael

Lopez-Guijarro for help withfieldwork and discussions.

64



CHAPTER 3

EXCISION OF A CRUSTAL FRAGMENT DURING THE
CLOSURE OF THE RHEIC OCEAN: U-PB DETRITAL ZIRCON
DATA FROM THE LATE PALAEOZOIC PULO DO LOBO AND
SOUTH PORTUGUESE ZONES, SOUTHERN IBERIA

3.1 Abstract

The Pulo do Lobo Zone (PDLZ), which crops out immediately north of the
allochthonous South Portuguese Zone (SPZ) in southern Iberia, is classically interpreted
as a polydeformed accretionary complex developed along the southern margin of the
Gondwanan para-autochthon (Ossa Morena Zone, OMZ), during the late Palacozoic
closure of the Rheic Ocean. This closure was a major event during the amalgamation of
Pangea. U/Pb laser ablation inductively coupled mass spectrometry dating of detrital
zircons from late Palaeozoic Devonian-Carboniferous clastic units in the SPZ and PDLZ
yield contrasting age populations and attest to the exotic nature of both zones. Detrital
zircons from the SPZ display populations typical of detritus derived from either
Gondwana (OMZ), or peri-Gondwanan terranes. In contrast, rocks from the PDLZ
contain populations consistent with derivation from Baltica, Laurentia or recycled Early
Silurian deposits along the Laurentian margin. An example of one such deposit is the
Southern Uplands terrane of the British Caledonides. Taken together, these data can be

65



reconciled by a model involving tectonic transport of a crustal fragment that was laterally
equivalent to the Southern Uplands terrane between the allochthonous SPZ and
Gondwana as a result of an Early Devonian collision between an Iberian indenter with

Laurussia.

3.2 Introduction

The geology of the middle to late Palacozoic era was dominated by the
amalgamation of the supercontinent Pangea, which produced orogens in eastern North
America and Western Europe that lay within Pangea’s interior (Murphy and Nance,
2008; Cawood and Buchan, 2007). The Appalachian-Caledonide-Variscan orogens were
produced by (i) the Ordovician-Silurian accretion of peri-Gondwanan terranes (e.g.
Ganderia, Avalonia, Meguma) to Laurentia, which resulted in closure of the lapetus
Ocean, followed by (i1) the Carboniferous closure of the Rheic + Palaeotethys oceans and
ensuing terminal collision between Gondwana and Laurussia (e.g. van Staal et al., 1998,
2009; Stamfli and Borel, 2002) (Fig. 3.1). The former continuity of these belts was
sundered in the Early Mesozoic by the opening of the Atlantic Ocean. As a result, many
of the suture zones, particularly those that formed by consumption of the Rheic Ocean
during Pangea amalgamation, were either destroyed or are hidden beneath the Atlantic

continental shelves.
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In Southern Iberia, the Pulo do Lobo Zone (PDLZ) has been interpreted as a rare
exposure of part of a suture zone that records the final stages of the closure of the Rheic
Ocean and the terminal collision between Gondwana and Laurussia (e.g. Eden, 1991;
Onézime et al., 2003). The PDLZ is an Early to Middle Devonian polydeformed tectonic
mélange of oceanic metasediments and olistostromal phacoidal quartzites unconformably
overlain by a simply deformed Visean flysch sequence (Eden, 1991; Giese et al., 1999;
Braid et al., 2010). Together with (i) adjacent portions of the Ossa Morena Zone (OMZ)
to the north, (ii) a sequence of dismembered mafic rocks with ophiolitic affinities (Beja
Acebuches Ophiolite) and (iii) the South Portuguese Zone (SPZ) to the south, these rocks
are generally thought to preserve a segment of the Pangean suture (e.g. Quesada et al.,

1994; Onézime et al., 2003) (Fig. 3.2)
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Fig. 3.1Schematic late-Devonian palaeocontinental reconstruction (modified from
Woodcock et al., 2007) assuming a unified Iberia and Armorica with Gondwana. White
star shows approximate location of the Southern Uplands terrane of the British
Caledonides and black rectangle the approximate location of figure 3.2.

In this scenario, the OMZ, which has Palaeozoic Gondwanan faunal affinities (Robardet,
2003), represents the Gondwanan parautochthon and the SPZ is underlain by exotic
basement of unknown origin (Quesada et al., 1994; Onézime et al., 2003; Pous et al.,
2004). Based on palacogeographic reconstructions (e.g. Scotese, 2003; McKerrow and
Scotese, 1990), it has been suggested that the SPZ basement can be correlated with
extensions of either Avalonia (e.g. Simancas et al., 2005; Leistel et al., 1998) or the
Meguma terrane (e.g. Martinez Catalan et al., 1997; de la Rosa et al., 2001). Avalonia
and Meguma are among several terranes collectively known as peri-Gondwanan, that

originated along the northern Gondwanan margin in the Neoproterozoic but lay along the
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southern flank of Laurussia by the middle Devonian as a result of the closure of the
Iapetus Ocean (Van Staal et al., 1998, 2009; Murphy and Nance, 2002) (Fig. 3.1).
Despite these correlations there is considerable debate surrounding the late Palacozoic
palaeogeographic history of the SPZ and the relationship of the SPZ to Gondwana and
peri-Gondwanan terranes, which flanked the Rheic Ocean during its consumption.

In order to further investigate the processes associated with the formation and
evolution of this putative Pangean suture zone, we sampled the clastic metasedimentary
rocks and phacoidal quartzites in the PDLZ and the Late Devonian metasedimentary
rocks in the SPZ and present laser ablation inductively coupled plasma mass
spectrometry (LA-ICPMS) U/Pb analyses of detrital zircons from these samples. Our
data provide new insights into the timing of collision between Gondwana and Laurussia
and demonstrate that the PDLZ mélange and metasedimentary rocks are not simply
derived from the flanking Laurussian or Gondwanan margins. To account for the detrital
zircon populations in the PDLZ we propose derivation from a crustal fragment, which
escaped laterally as the result of an Early Devonian collision between an Iberian indenter
(Gondwana) with Laurussia. Our model not only provides a method for emplacement of
the PDLZ but also potentially explains genetic linkages between enigmatic voluminous
magmatism and widespread mineralization in both the Meguma terrane of the northern

Appalachians and the Iberian Pyrite Belt of the SPZ not accounted for in other models.
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Fig. 3.2 Variscan tectonic terranes of Southern Iberia showing suspect suture zone
(PDLZ) between the South Portuguese Zone (Laurussia?) and the Ossa Morena Zone
(Gondwana) (sample locations in PDLZ inset) (adapted fromOnézime et al., 2003).
Sample locations numbered: (1) Quartzite (sample JB-17) from the Phyllite Quartzite
Group, Virgen de la Pefia nappe (N37°36.153 W007°12.223); (2) Alajar Mélange along
Rivera de Santa Ana, phacoidal quartzite (sample RSA-01) (N37°51.429 W006°42.013)
and quartzite matrix (sample RSA-02) (N37°51.202 W006°41.817); (3) Aldjar Mélange
phacoidal quartzite (sample JB-43) (N 37°53.954 W 006°56.013); (4) Ribeira de Limas
formation along Rivera de Acebuches (sample AC-03) (N37°52.049 W006°49.044); (5)
Santa Iria Flysch greywacke (sample JAB-08) (N37°52.310 W006°51.642).

3.3. Geology and Tectonic Framework

3.3.1. South Portuguese Zone
The oldest exposed units in the SPZ are Late Devonian continental shelf strata of

the Phyllite Quartzite Group. The Phyllite Quartzite Group is composed of siliciclastic
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rocks deposited in a subtidal environment from fan delta and sand bar systems on a
shallow marine continental platform (Moreno and Saez, 1990; Oliveira, 1990; Moreno et
al., 1996). The base of this unit is not exposed and has a minimum thickness of 300—400
m (Soriano and Marti, 1999). Its depositional age is constrained by the presence of
Fammenian conodonts in limestone lenses interbedded with the clastic strata (Boogaard
and Schermerhorn, 1980; 1981). The Phyllite Quartzite Group is conformably overlain
by the Late Famennian - Late Visean (Oliveira, 1990) bimodal volcanic and sedimentary
successions of the Volcano-Sedimentary Complex deposited in a transtensional basin
(Schermerhorn, 1971; Rosa et al., 2009). The Volcano-Sedimentary Complex is in turn
overlain by a Late Visean to the Serpukhovianturbiditic flysch group,

(Schermerhorn,1971; Oliveira,1990) (Fig. 3.2).

3.3.2. Pulo do Lobo Zone

The PDLZ is classically interpreted as an accretionary prism formed during the
closure of the Rheic Ocean (e.g. Eden, 1991) and is comprised of four polydeformed
fault-bounded lithotectonic units: (i) the quartz-mica schists and local quartzite mélange
of the Pulo do Lobo formation, (ii) a sequence of quartzwackes and phyllites of the
Ribeira de Limas formation, (iii) hectometre to metre-scale internally deformed
olistostromal quartzites in a polydeformed phyllite/quartzite matrix of the Al4jar mélange
(Eden, 1991) and (iv) tectonically emplaced mafic blocks in a volcaniclastic matrix

(Peramora M¢élange) (Eden, 1991). Together these polydeformed units are

71



unconformably overlain by the relatively simply- deformed (Giese et al., 1999)
greywackes and shales of the Santa Iria Flysch, interpreted to have been deposited during
terminal collision between Gondwana and Laurussia (e.g. Braid et al., 2010). Locally,
these flysch deposits are crosscut by the ca. 330 Ma Gil Marquez pluton, which is part of
the voluminous ca. 350-300 Ma Sierra Norte Batholith (de la Rosa, 1992). The protolith
ages of the PDLZ are constrained by Givetian-Frasnian palynomorphs (Ribeira de Limas
formation) andLate Devonian-Early Carboniferous spores and acritarchs in the flysch
deposits (Santa Iria Flysch) (Giese et al., 1988;Lake et al., 1988).

To the north of the PDLZ, a sequence of dismembered mafic rocks, known as the
Beja Acebuches Ophiolite (ca. 330-345 Ma) (U/Pb Shrimp; Azor et al., 2009), delineates
the boundary between the PDLZ an the OMZ. The genesis of the Beja Acebuches
Ophiolite remains controversial and is thought to represent either (i) obducted primary
Rheic oceanic lithosphere (e.g. Castro et al., 1996) or (i1) mafic rocks formed during a
transtensional event following the maincontinent—continent collision (ca. 345-390 Ma)

(Quesada et al., 1994; Azor et al., 2008; Braid et al., 2010.)

3.3.3. Tectonic Evolution

In the late Paleozoic, regional Late Devonian to Early Carboniferous south—
southeasterly propagating (e.g. Quesada, 1998) deformation in the SPZ occurred as a
result of northward-directed oblique (sinistral)subduction of the Rheic Ocean lithosphere

beneath the OMZ (Gondwana) (Crespo Blanc and Orozco, 1988; Quesada, 1998).
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Subsequently, this subduction would have led to the eventual collision of the continental
margin of the SPZ (which may have been part of Avalonia or Meguma, e.g. Leistel et al.,
1998; de la Rosa et al., 2001),with the OMZ. In this scenario, oblique sinistral
convergence resulted in the development of an accretionary prism (PDLZ) and is
evidenced by widespread ca. 355-300 Ma calc-alkaline andesitic magmatic arcin the
OMZ (Jesus et al., 2007).

The PDLZ also preserves evidence of this pervasive Late Devonian regional
sinistral shear, compartmentalized within Pulo do Lobo formation, the Ribeira de Limas
formation and the Alajar Mélange (Braid et al., 2010). Furthermore, the Beja Acebuches
Ophiolite is deformed along a sinistral orogen-scale shear zone localized along the
boundary with the PDLZ (South Iberian Shear Zone; Crespo-Blanc and Orozco, 1988)

(Fig. 3.2).

3.4. Sample Selection and Methodology

To investigate the development of this putative suture zone, six samples were
collected for detrital zircons from Devonian to Early Carboniferous units of the PDLZ
and SPZ (Fig. 3.2). We analysed (i) one sample from the Late Devonian passive margin
quartzites (Phyllite Quartzite Group) from the SPZ to test the provenance of the SPZ and
its relationship to the PDLZ and (i1) two samples of phacoidal quartzites and one sample

of matrix from the mélange deposits (Aldjar Mélange) and one sample of quartzwacke
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(Ribeira de Limas formation) from the PDLZ (suture zone). The samples from the PDLZ
test the provenance of the PDLZ and potential changes in sediment provenance in
different lithotectonic units within the suture zone. We also analysed (iii) a sample of
greywacke from the overlying Late Devonian Early Carboniferous flysch (Santa Iria
Flysch) from the PDLZ to investigate the potential changes in sediment provenance with
proposed changes in tectonic environment.

Approximately sixty-five zircon grains from each sample were mounted, polished,
imaged by electron back-scatter, and analysed for their U and Pb isotopic composition
(one analysis per zircon grain) using an Thermo Element 2 high resolution Inductively
Coupled Plasma-Mass Spectrometer coupled to a New Wave Research 213 nm Nd-YAG
laser. Detailed description of analytical instrumentation, analytical protocol and
methodology, data reduction and age calculation at the Pacific Centre for Isotopic and
Geochemical Research (PCIGR) at the University of British Columbia are described in
Mortensen et al. (1995, 2007). All zircons were analysed using line scans with a laser
spot diameter of 20 pm. Data were reduced using theprogram GEMOC Glitter and plots
generated using Isoplot (Ludwig 1999). Age uncertainties are reported at 2c¢ and either
the Pb**"/Pb** or the Pb>*°/U**® age is reported depending on which value gives the lower
uncertainty. Of the six samples (~65 analyses per sample) only eight analyses revealed
>10% discordance and were discarded. Probability distribution plots for all remaining
concordant grains are shown in Figure 3.3.U-Pb concordia diagrams and full tables of

results can be found in appendix B.
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3.5. Results

3.5.1. South Portuguese Zone

A sample of quartzite (JB-17) was selected from the Late Devonian continental
shelf deposits (Phyllite Quartzite Group), which are considered the oldest exposed unit in
the SPZ proper. Of the sixty concordant analyses, only four grains (~7%) are
Mesoproterozoic. The bulk of the sample (~52%) is dominated by Neoproterozoic (ca.
0.5-0.7 Ga) zircons, with a strong peak at ca. 590 Ma. The remainder of the detritus
(~35%) is dominated by (ca. 1.8-2.3 Ga) Palaeoproterozoic zircons with only four grains

(<7%) yielding Archean ages (Figs. 3.3, B.7) (Table B.3).

3.5.2. Pulo Do Lobo Zone

Both the phacoidal quartzites (RSA-01, JAB-43) and quartzite matrix (RSA-02)
from the Alajar mélange in the suture zone have similar detrital zircon age distributions
(Figs. B.7, B.8, B.9) (Tables B.2, B.4, B.5), but display a very different distribution than
the JB-17 sample from the SPZ. For each of the three samples (i) the largest population is
Mesoproterozoic (ca. 1.0-1.5 Ga) comprising approximately (55-70%) of zircons
analysed, (i1) a significant population (15-25%) is Palaeoproterozoic (ca. 1.6-1.9 Ga) but
younger on average than the Palacoproterozoic population in the JB-17 sample from the
SPZ and (ii1) small populations (< 10%) of Archean (ca. 2.5-3.0 Ga) and ca. 440 Ma
Early Silurian zircons (<5%) occur (Fig. 3.3). A concordant grain (JB-43) at 438.7+ 4.38
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Ma provides a maximum depositional age for the phacoidal protolith. SEM backscatter
images of these ca. 440 Ma zircons reveal a zoned, euhedral, multifaceted zircon
morphology, whereas older populations are generally well-rounded (Fig. 3.5).

The quartzwacke (Ribeira de Limas formation) sample from the PDLZ (AC-03)
lacks ca. 440 Ma zircons but otherwise displays a similar detrital zircon age distribution
(Fig. 3.3). The dominant population (~55%) is Mesoproterozoic (ca. 1.0-1.5 Ga) in age.
A second large population (~35%) is late Palaeoproterozoic (ca. 1.6-1.9 Ga), and one
zircon is early Palacoproterozoic (2447.6 £10.2 Ma) in age. The remainder of the detrital
zircons are Archean (~10%) in age. The youngest concordant zircon in the sample is

947.6 £4.3.

3.5.3. Flysch

A sample of Greywacke (JAB-08) from the flysch (Santa Iria Flysch), which
unconformably overlies the mélange phacoids and matrix (Al4jar Mélange) and
quartzwacke (Ribeira de Limas formation) in the PDLZ, displays the widest range of
detrital zircon ages and contains the most Devonian-Carboniferous detritus (~32%) of all
samples, with a strong peak at ca. 347 Ma. The sample also displays a variety of
Proterozoic populations (~ 30% Neoproterozoic, ~12% Mesoproterozoic and 21%
Palaeoproterozoic) with only minor (<5%) Archean detritus (Fig. 3.3). An elongate,
multifaceted and zoned concordant grain at 347.2 £ 5.5 Ma provides a maximum

depositional age.
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Fig. 3.3 U-Pb detrital zircon relative probability distribution plots for samples from the
PDLZ (suture) and the SPZ (Laurussia?) from this study compared with samples
(highlighted in red) from Early Silurian Kirkcolm Formation of the Southern Uplands
terrane of the British Caledonides (after Waldron et al., 2008), the Cambrian-Ordovician
Meguma terrane from the northern Appalachians (after Waldron et al., 2009) and the
Devonian-Carboniferous Horton Group from the St. Mary’s Basin of the northern
Appalachians (after Murphy and Hamilton., 2000) (in red). Plots were generated by
ISOPLOT (Ludwig, 2003).

77



3.6. Tectonic Significance

3.6.1. Origins of the Pulo do Lobo and South Portuguese Zones

A comparison between U/Pb detrital zircon ages in the samples and the ages of
detrital zircon populations and tectonothermal events in potential source areas are shown
in Figure 3.4. The dominant Neoproterozoic (ca. 0.5-0.7 Ga) and Palaeoproterozoic (ca.
2.0-2.5 Ga) zircon populations in the continental clastic rocks (Phyllite Quartzite Group)
of the SPZ are typical of derivation from either West Africa (e.g. Rocci et al., 1991), or
the peri-Gondwanan Meguma terrane which is the only known location in Laurussia with
such detrital zircon populations (Krogh and Keppie, 1990; Murphy et al., 2004; Waldron
et al., 2009) (Fig. 3.4). However, the presence of minor Mesoproterozoic zircons in the
Phyllite Quartzite Group sample are not typical of derivation from West Africa but are
present in peri-Gondwanan Avalonia and Meguma. Mesoproterozoic zircons (ca. 1.0 Ga)
are common in Avalonia but rare in Meguma. As a consequence the Meguma terrane is a
more likely candidate for the source of the PQ group detrital zircon distribution.

In contrast, the dominant Mesoproterozoic (ca. 1.0-1.5 Ga) and late
Palaeoproterozoic populations (ca. 1.6-1.9 Ga) in the phacoidal quartzites and matrix
(Al4jar mélange) and from the quartzwacke (Ribeira de Limas formation) in the PDLZ
are typical of both Laurentia and Baltica (Laurussia) (e.g. Cawood et al., 2007). The
PDLZ samples also lack Neoproterozoic and early Palacoproterozoic zircon populations,
which are typically abundant in Neoproterozoic through Devonian units derived from
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Gondwana (e.g. Martinez Catalan et al., 2004; Fernandez Suarez et al., 2002a, 2002b;
Gutiérrez-Alonso et al., 2007; Lopez-Guijarro et al., 2007) and from peri-Gondwanan
terranes (i.e. Meguma, Avalonia) (e.g. Murphy and Hamilton, 2000; Murphy et al., 2004;
Fyffe et al., 2009) but typically absent in clastic rocks derived from both Laurentia and
Baltica (Fig. 3.4). Consequently, the age distributions of these samples suggest that the
detritus in the PDLZ was neither derived from Gondwana (OMZ), nor from the sources
of the Late Devonian clastic rocks (Phyllite Quartzite Group) of the SPZ or peri-
Gondwanan terranes which flanked the margin of Laurentia and Baltica in the Devonian-

Carboniferous.

79



Ul SJUSAD [RULIDYIOUO03I) dJe UMOUS OS[V (0007 ‘uolrwey pue Aydinjy) sueryoeieddy WwIOUION dU3 JO UISed S AIBIA

"1 o) wolj dnoIn 0O SNOIAIUOGIE)-URIUOAI(] Y} PUB (6007 T8 12 UoIP[eA) 10)Je) sueryoeeddy wroydy oy woiy
ouelId ], BWNSIA (00T B 19 UOIP[BAN) SIPIUOPI[e)) YsnLIg Y} JO duelId [, spue[d) WIOYIN0OS 9y} JO UOBULIO{ W[OIITY]
ueLIN[IS A[1eg9Y) WOIJ BIEp UOIIIZ [eILap m paredwios are vlep 9soy ] ZdS Yyl Jo dnoin) 9y1zyren() oNj[Ayd oy} woij
(L1-4r) anzyrenb pue ouoz armns oy Jo (Y0-9V () YOSA[] U] BIURS PUR (£)-DV) 3joemzirenb uoneuwio] sewl | op eIdqry
pue (20-VS¥) Xew (¢h-d[ ‘10-VSY) sprodeyd a3ueo Iefery oy woly sojdures woiy safe uodz [eine( ¢ “s14

lllll = 000
-8 . - . - NVINOTT e ;,.:fh_nw‘m .- W
. . . - 0
. . L . NVTHIEIT k 3 z
“ M . ﬂ NVId ﬁ
. ] =
' . : ! -
. : - 2
. Y OM
H . AVRAON
[ ]
=
z
. . " i..”ﬁ_.,m._- ooz =
. L]
i ' C . : . '
[] H . - . b
¢ “ “ NVIHLOD , w
| ] YO IS DN - =
= ] = " - §== .-. |||||||||||||||||||||||||||| === 0051 ﬁ
. o s ] 2
! * : ’ * ==
. 512
. " . . . e NWIMIASZTS =1l
Y n NVID! _.C.z‘, IN m
R ATIANTHD e
. 0001
. H . SY100 .W\w.
_ — - — ._I..._.__r.—..z:. E u L]
L = - ol e
>
| ! ' ' S e
o|m
HE
0N
Slo
= = = = = g - —
= o = 7 & = ==
=] jazy & 4 = o X=] NOLVHD
b k] 5 2 & z S & £ A vousve | VILNSIOVI - g1vs
& =4S = * I~ = = T | NVORAV | NOZVINY S NYALSVA AWIL
= = CE 153m .
HISATA ZdS = J4n.Lns %2




Taken together these interpretations suggest that the quartzite phacoids and matrix
(Al4jar mélange) and metasediments (Ribeira de Limas formation) of the PDLZ were
derived from either Baltica or Laurentia. The presence of euhedral, multifaceted ca. 440
Ma zircons in the mélange phacoids (RSA-01 and JB-43) suggests a local Early Silurian
volcanic source. Volcanism of this age is rare in Gondwana but common along eastern
Laurentia (e.g. Midland valley terrane; Grahame et al., 2008). As this volcanism is
generally associated with the closure of the lapetus Ocean, the presence of these euhedral
ca. 440 Ma zircons (Fig. 3.5) is indicative of a source proximal to the [apetan suture zone
located between eastern Laurentia and peri-Gondwanan terranes (Fig. 3.4). As a result,
the PDLZ sediments were not only derived from Laurentia and/or Baltica but also likely
derived from Early Silurian rocks associated with the closure of the Iapetus, along the
eastern margin of Laurentia.

An example of one such potential source is the Early Silurian Southern Uplands
terrane of the British Caledonides (Fig. 3.1), which borders the Midland Valley terrane to
the south. The Southern Uplands terrane is interpreted as a quartzite-dominated
accretionary prism (McKerrow et al., 1977) that developed along the eastern margin of
Laurentia during the closure of the Iapetus Ocean. A comparison of the PDLZ detrital
zircon data with the detrital zircon ages obtained from quartzite units in the Southern
Uplands terrane (Waldron et al., 2008) reveals striking similarities (Figs. 3.3, 3.4). Most
notably, similar to the detritus in the PDLZ, detritus from the Southern Uplands terrane

contains abundant Mesoproterozoic and late Palaecoproterozoic zircons as well as ca. 440
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Ma Palaeozoic zircons. Furthermore, the Southern Uplands terrane also lacks early
Palaeoproterozoic and significant Neoproterozoic zircons. As the Southern Uplands
terrane has potential lateral equivalents in Newfoundland (Waldron et al., 2008) this
connection refers not only to the Southern Uplands terrane sensu stricto but also coeval
units developed along the Laurentian margin during similar processes, which have been

identified in Scotland, Ireland and Atlantic Canada (Waldron et al., 2008).
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Fig. 3.5 SEM Backscatter images of selected zircon grains from the PDLZ.
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To a first order, the data suggest that during at least the Early to Middle Devonian
the SPZ was outboard of the Gondwanan margin (OMZ). This interpretation is consistent
with late Palaeozoic calc-alkaline andesitic arc magmatism present in the OMZ (Jesus et
al., 2007), which suggests subduction of oceanic lithosphere beneath the OMZ margin.
Therefore the SPZ basement is either (i) a rifted Silurian West African ribbon continent
which derived Late Devonian passive margin clastic rocks from itself or (ii) peri-
Gondwanan Meguma basement with Phyllite Quartzite Group clastic rocks sourced from
the Meguma Group, which is dominated by ca. 0.6-2.1 Ga detritus (Krogh and Keppie,
1990; Waldron et al., 2009). However, the Phyllite Quartzite Group (JB-17) contains a
paucity of Mesoproterozoic zircons (Fig. 3.4), the lack of which is generally considered a
fingerprint of West African provenance (e.g. Linneman and Romer, 2002). In addition,
the fact that (1) palacogeographic reconstructions propose that the Meguma terrane was
immediately outboard of the Southern Iberia margin during the Early Devonian (e.g.
Martinez-Catalan et al., 1997; Onézime et al., 2003; Simancas et al., 2003) and (i1) West
Africa lacks Silurian-Early Devonian rift to passive margin deposits that would reflect a
separation of the SPZ along the periphery of West Africa, we support the former scenario

where the SPZ basement is part of the peri-Gondwanan Meguma terrane.

3.6.2. Timing of Ossa Morena Zone / South Portuguese Zone Collision

The detrital zircon signature of the flysch (Santa Iria Flysch) in the PDLZ displays
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a broad range of Neoproterozoic to Palacoproterozoic zircons consistent with derivation
from sources located in Gondwana, peri-Gondwanan terranes and Laurussia (Fig. 3.4).
This signature is also similar to the detrital zircon data obtained from the PQ group of the
SPZ. These data imply that by the Visean, detritus was being shed to the PDLZ from the
SPZ (Meguma?). Therefore, juxtaposition of the SPZ and OMZ occurred between ca.
347.2 Ma and ca. 330 Ma as constrained by the maximum age for deposition of the Santa
Iria Flysch and the age of the crosscutting Gil Marquez Pluton. These data suggest that if
the ophiolites (Beja Acebuches Ophiolite) formed during ca. 330-345 Ma (Azor et al.,
2008) then they are likely related to transtensional bend along the sinistral South Iberian
Shear Zone. In this case, later transpressional deformation recorded along the South
Iberian Shear Zone (e.g. Crespo Blanc and Orozco, 1988) was likely a result of continued
transpression during continent-continent collision, and was isolated from the simply
deformed Visean Santa Iria Flysch (Braid et al., 2010). However our data do suggest
that, despite the possibility that the Beja Acebuches Ophiolite may not be primary Rheic
oceanic lithosphere as was already suggested by Quesada et al. (1994), the SPZ did not
contribute detritus to the suture zone until the Visean and therefore supports an exotic

SPZ palaeogeographic history with respect to Gondwana (OMZ).

3.6.3. Synthesis and Evolutionary Model
Taken together, the detrital zircon data from the PDLZ and the SPZ indicate that (i)

the polydeformed Al4jar mélange and metasediments of the PDLZ were all derived from
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a similar source, (ii) the PDLZ polydeformed sediments were neither derived from the
(OMZ) nor from the (SPZ) during Devonian subduction of an oceanic basin beneath the
OMZ, (iii) a source for the PDLZ polydeformed deposits similar to the Southern Uplands
terrane of the British Caledonides is required, (iv) the SPZ is likely exotic with respect to
both the PDLZ and the OMZ and contains Late Devonian continental clastic rocks
(Phyllite Quartzite Group) similar to the Devonian detritus from the Meguma terrane of
the northern Appalachians and (v) the SPZ accreted to the PDLZ and the OMZ by ca. 347
Ma, the age of the youngest concordant detrital zircon in the PDLZ flysch (Santa Iria
Flysch), which contains zircon populations similar to the SPZ as well as younger zircons
consistent with upper plate arc magmatism (ca. 350 Ma).

Interpretation of a source equivalent to the Southern Uplands terrane for the PDLZ
requires either (i) a substantial across-strike fluvial transport during the Devonian from a
source northwest of the peri-Gondwanan terranes (e.g. Avalonia, Meguma, Ganderia) or
(11) a tectonic transport of a crustal fragment along strike of the Southern Uplands to a
location between the SPZ and the OMZ. In our view, the latter scenario is favored by (i)
presence of ca. 440 Ma grains with a euhedral morphology, consistent with a short lived
sedimentary history, in both the quartzite phacoids and quartzite matrix as well as (i1) the
absence of peri-Gondwanan detritus in the PDLZ samples that would be expected in a
fluvial system spanning from the Laurentian margin to a Devonian basin outboard of
Gondwana and (ii1) our interpretation that both the polydeformed olistostromal phacoidal

quartzites (samples RSA-01, JB-43) of the Al4jar mélange as well as the quartzite matrix
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(sample RSA-02) were derived from the same source. These factors favor a proximal
source for the PDLZ deposits over a distal fluvial derivation of individual zircon grains.
This interpretation requires that the quartzite phacoids and matrix (Aldjar mélange) and
metasediments (Ribeira de Limas formation) were all derived locally and not the result of
distal fluvial systems where the phacoids would be expected to yield different zircon
populations from the matrix. Taken together these data and interpretations suggest the
deposition of the PDLZ units requires not only a source along the Early Silurian
Laurentian margin (Southern Uplands terrane?) but also the subsequent spatial
juxtaposition of this source with the OMZ, prior to ca. 347 Ma (i.e. a many hundred
kilometers relative displacement).

A model, which satisfies these requirements, should also be consistent with late
Palaeozoic continental reconstructions. Although most late Palaeozoic reconstructions
agree on the general relative positions of Gondwana and Laurussia during the closure of
the Rheic Ocean, the relative positions of Iberia and Gondwana are debated. There are
essentially two versions which may affect the details of models concerning Iberian late
Palaeozoic geological evolution: (i) Iberia was part of autochthonous Gondwana
throughout the Palacozoic (e.g. McKerrow and Scotese, 1990; Scotese, 2003; Robardet,
2002; 2003; Martinez Catalan et al., 2004 ) or (i1) Iberia was part of the Armorican
Composite terrane (ACT) which separated from Gondwana during the Silurian and
collided with Laurussia prior to its terminal collision with Gondwana (e.g. Van der Voo,

1979; 1982; Stampfli and Borel, 2002). The latter is largely based on palacomagnetic
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evidence and the interpretations of the age of magnetization of units in the Iberian
autochthon remain controversial (e.g. Perroud et al., 1991). On the other hand, faunal,
lithological and palaeoclimatic indicators are in general agreement and indicate that the
southern European regions (e.g. OMZ) remained connected with Gondwana throughout
the late Palaeozoic (e.g. Robardet, 2002, 2003). Furthermore the OMZ records an Early
Ordovician to late Palacozoic passive margin (RobardetandGutiérrez Marco, 2004),
which lacks Silurian rift to drift deposits predicted by an early Palacozoic separation of
an Armorican Composite terrane from Gondwana. Therefore in terms of understanding
the enigmatic and contrasting Devonian-Carboniferous evolution of the PDLZ, SPZ and
the OMZ we adopt a reconstruction with a unified Iberia and Gondwana. Although this
choice may affect the details of our model, it does not affect the basic processes involved.

Reconstructions, which unify Gondwana and Iberia, also indicate Iberia as a
promontory of Gondwana, with a re-entrant between this promontory and North Africa
(e.g. McKerrow and Scotese, 1990; Scotese, 2003; Woodcock et al., 2007). This
promontory likely experienced post-orogenic oroclinal bending to form the Iberian-
Armorican arc (e.g. Weil et al., 2010), however we adopt the view that the continental
margin was likely non-linear prior to the Variscan orogen (e.g. Matte, 1991; Woodcock et
al., 2007).

Using this general reconstruction, we propose that Early Devonian oblique collision
between an Iberian indenter and Laurussia and the existence of a small remnant ocean

basin (re-entrant) between southern Iberia, North Africa and the northern Appalachians
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resulted in excision of a crustal fragment correlative with the Southern uplands of the
British Caledonides across the remnant ocean. This excision was accommodated by
development of a new subduction zone beneath the OMZ (Fig. 3.5b). A collision
originating at ca. 390-400 Ma between a late Palaeozoic Iberian indenter and Britain and
Ireland (Woodcock et al., 2007) (Fig. 3.5b) is supported by (i) Early Devonian Acadian
shortening in central Britain, (ii) coeval dextral Early Devonian deformation along the
Bristol Fault zone in Southeastern England, (iii) opposing sinistral deformation in the
Southern Uplands of Scotland (Phillips et al., 1995) and the South Iberian Shear Zone
(Crespo-Blanc and Orozco, 1988) and other major lineaments (Quesada, 1991) in
Southern Iberia (Fig. 3.6) and (iv) onset of deformation and flysch deposition in Iberia
(Quesada et al., 1990; Gonzalez Clavijo, 1996).

In this model, northwesterly subduction beneath Laurussia in the Late Silurian
was disrupted by collision with the Iberian promontory of Gondwana such that oblique
subduction with a sinistral component commenced beneath the OMZ. This subduction
was accompanied by the generation of the sinistral South Iberian Shear Zone (Crespo
Blanc and Orozco, 1988) and a tectonic free face (e.g. Mann, 1997) along the re-entrant
between Iberia and North Africa (Fig. 3.6b,c). This situation is analogous to the
generation of microplates and tectonic escape (excision) of crustal blocks away from a
continental indenter in modern Mediterranean (e.g. Dhont et al., 2006) and Himalayan

(e.g. Tapponier and Molnar, 1976; Kapp et al., 2004) collisional zones.

88



During the stages of excision of the crustal block, Late Devonian passive margin
deposits (Phyllite Quartzite Group), likely sourced from the Meguma terrane, were
deposited on SPZ basement, which was part of the escaping block. As these are passive
margin deposits they are only indicative of a local passive margin setting in basins ].
Following deposition of these continental clastic rocks, Late Devonian-Early
Carboniferous extension occurred within the SPZ, typical of internal deformation in
escaping blocks (e.g. Mann et al., 1997; see also the model by Castroviejo et al. 2010 for
the particular case of the SPZ and how this transtensional event facilitated ascent and
eruption of the bimodal volcanism in the Iberian Pyrite Belt). This model is consistent
with (i) documented dextral movement in the Meguma terrane relative to Avalonia in the
northern Appalachians (Keppie and Dallmeyer, 1987) (ii) the Late Devonian-Early
Carboniferous transtension required for bimodal volcanism (ca. 355-330 Ma) of the
Iberian Pyrite Belt (e.g. Quesada, 1998; Solomon and Quesada, 2003; Castroviejo et al.,
2010) in the SPZ and (ii1) extension-related voluminous magmatic episodes evident in the
Meguma terrane in Maritime Canada (ca. 380-300 Ma) and the SPZ (Sierra Norte
Batholith, ca. 350-300 Ma). Although these connections are independent of the derivation
of the PDLZ they further support both a detrital zircon genetic linkage between the SPZ
and the Meguma terrane and a Devonian-Carboniferous excision of a crustal block as the
probable mode of transport for part of the Laurentian / lapetan suture (Southern

Uplands?) toward the OMZ.

89



The eventual juxtaposition of rocks from the Southern Uplands equivalent terrane
with a Rheic subduction zone beneath the OMZ (Fig. 3.6¢) led to cannibalization and
deposition of metasediments (PDLZ) from this terrane and spatial juxtaposition of the
SPZ, PDLZ and OMZ. In this case, the internal fabric evident in the cannibalized
phacoidal quartzites of the PDLZ (Aldjar mélange) (Braid et al., 2010) potentially
preserves a record of the closure of the lapetus, whereas deformation in the quartzite
matrix and the quartzwacke (Ribeira de Limas formation) records subduction of the
Rheic related ocean basin and terminal collision between the OMZ and the SPZ.

The data presented here suggest that both the PDLZ and the SPZ terranes should
be regarded as exotic to the Gondwanan parautochthon (OMZ) and terminal collision
between the OMZ and SPZ occurred between ca. 347 Ma and ca. 330 Ma. The PDLZ
records the juxtaposition of an exotic crustal fragment with southern Iberia and occurred
as a result of movement along orogen-scale shear zones (e.g. South Iberian Shear Zone,

and probably others), which spanned across the lapetan suture.
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CHAPTER 4

PROBING THE COMPOSITION OF UNEXPOSED BASEMENT,
SOUTH PORTUGUESE ZONE, SOUTHERN IBERIA:
IMPLICATIONS FOR THE CONNECTIONS BETWEEN THE
APPALACHIAN AND VARISCAN OROGENS

4.1. Abstract

The SPZ of southern Iberia is an allochthonous terrane of the late Paleozoic
Variscan orogen. The oldest exposed units in the SPZ are Late-Devonian continental
clastics and as a result the origins of the SPZ are unknown.Geochemistry and Sm-Nd and
U-Pb (magmatic zircon) isotope data from a post-collisional batholith that crosscuts the
allochthonous South Portuguese Zone (SPZ) suggest that the basement is compositionally
more juvenile than the exposed upper crust.. Multifaceted inherited zircon cores from a
granitoid batholith (Sierra Norte Batholith reveal) Neoproterozoic (ca. 561 Ma to 647
Ma) and Mesoproterozoic ages (ca. 1075 to ca. 1116). Granitoid samples are
characterized by eNdvalues ranging from +1.4 to —9.6 and model ages ca. 0.76-1.8 Ga.
Conversely the exposed Late Devonian clastics of the SPZ are characterized by more
negative eNd values (-7.5 to -10.4). Taken together U-Pb and Sm-Nd data indicate the
lower crust that melted to yield the SNB was (i) Neoproterozoic (ca. 560- 650 Ma) to

Mesoproterozoic (ca. 1.0 -1.2 Ga) in age (ii) was not compositionally similar to the
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overlying Devonian-Carboniferous continental detritus, but was instead more juvenile
with model ages between ca. 0.9-1.2 Ga. This unusual relationship is similar to the
relationship between the relatively juvenile basement and ancient upper crust documented
in the exposed portion of the Meguma terrane in the northern Appalachians, which
paleogeographic reconstructions show was immediately outboard of southern Iberia in

the Late Devonian.
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4.2. Introduction

Allochthonous terranes typically preserve evidence of their original tectonic setting
as well as events relating to their accretion and subsequent dispersal (e.g. McWilliams
and Howell, 1982; Beck, 1989; Dallmeyer et al., 1991; Van der Voo, 1993; Fernandez
Sudrez et al., 2002). Therefore determining the geologic history of orogenic belts
typically requires an understanding of the tectonic evolution and paleogeography of
allochthonous terranes prior to accretion.

Terrane accretion is commonly accompanied by the deposition of syn- to post -
orogenic sedimentary sequences, which overstep terrane boundaries and cover the pre-
orogenic geology. Such a scenario occurs in southern Iberia where an allochthonous
terrane in the late Paleozoic Variscan orogen of Western Europe, known as the South
Portuguese Zone (SPZ, Lotze, 1945), exposes only late Paleozoic clastic rocks and
granitoid rocks which intrude across the terrane boundary (Fig. 4.1). The SPZ is located
outboard of a suture zone (Pulo do Lobo Zone; PDLZ) to the north, which separates SPZ
from the Iberian autochthon (Fig. 4.1). The suture zone is particularly significant as it is
widely thought to have developed during the closure of the late Paleozoic Rheic Ocean
and terminal collision between Gondwana and Laurussia (Quesada et al., 1994; Onézime
et al., 2003), which is a major event in the formation of the supercontinent Pangea.

Lithologic (Onézime et al., 2003; Simancas et al., 2005) and geochronological data
(e.g. Braid et al., in press) indicate the SPZ was outboard of the Gondwanan margin at
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least until the Late Devonian. However, the oldest exposed units in the SPZ are Late

Devonian continental clastic strata and as a result the composition of the SPZ basement

cannot be directly determined.
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Fig. 4.1 Summary of the geology of the South Portuguese and Pulo do Lobo Zones in the
study area (adapted fromOliveira, 1990). For detailed PDLZ geology see Braid et al.,
2010. Location of sedimentary samples for lithogeochemistry and Sm- Nd isotopes

shown.
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Despite this limited geologic record, the pre-Variscan SPZ crust is thought to be a
fragment of a peri-Gondwanan terrane; either the Meguma terrane (Martinez Catalan et
al., 1997; de la Rosa et al., 2001) or Avalonia (e.g. Leistel, 1998; Simancas et al., 2005).
These interpretations of the potential connection between the SPZ and these peri-
Gondwanan terranes is inferred from late Paleozoic reconstructions (e.g. McKerrow and
Scotese, 1990; Scotese, 2003; Woodcock et al., 2007), which place southern Iberia
adjacent to Maritime Canada during the formation of Pangea. These terranes are currently
exposed in the northern Appalachians and in southern Britain (e.g. Keppie, 1985, 1993;
Murphy et al., 2004; Hibbard et al., 2006; Waldron et al., 2009; in press;Nance et al.,
2010).

Although these Late Devonian reconstructions provide a general paleogeographic
framework for the Paleozoic evolution of the SPZ, the potential connections between the
SPZ and the northern Appalachians remain poorly documented. Therefore determining
the original affinity of the SPZ has profound implications on our understanding of the
processes affecting the Appalachian and Variscan orogens as well as the timing and
geometry of the formation of Pangea.

As the basement to the Late Devonian clastic successions is unexposed in the SPZ,
its age and composition must be determined by indirect methods, such as U-Pb
geochronology of detrital zircons in the clastic successions and of xenocrystic cores of
zircons in plutonic rocks. In addition, Sm-Nd isotopic analyses of clastic rocks can

provide information on the provenance and tectonic processes such as uplift or terrane

97



accretion that accompanied deposition, (e.g. Thorogood, 1990; Murphy et al., 1996;
Murphy and Nance, 2002) and of crustally-derived plutonic and volcanic rocks can

provide constraints on isotopic composition of basement sources (e.g. DePaolo, 1981,

1988).
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Fig. 4.2 Summary of the geology of the Sierra Norte Batholith (adapted from de la Rosa,
1993). Granitoid samples for lithogeochemistry, Sm-Nd isotopes and La-ICPMS zircon
age dating shown.
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In order to constrain the composition and origin of the SPZ basement, we present
new LA-ICPMS zircon geochronological data, geochemical and Sm—Nd isotopic data
from representative samples from a granite batholith (Sierra Norte Batholith, SNB; de la
Rosa, 1992), which crosscuts both the PDLZ and the SPZ. We also present new
lithogeochemical and Sm-Nd isotopic data from exposed sedimentary sequences in the
SPZ and PDLZ. These data facilitate a comparison between the SPZ and various
tectonostratigraphic zones in the northern Appalachians (e.g. peri-Gondwanan terranes),
which may have been connected to SPZ in the late Paleozoic. Finally, we attempt to
evaluate the significance of these connections in interpreting the geometry and timing

surrounding the closure of the Rheic Ocean and the formation of Pangea.

4.3. Geology

The SPZ of the Iberian Massif forms part of the Variscan orogenic belt inWestern
Europe (Leistel et al., 1998; Carvalhoet al., 1999; Franke, 2000). The SPZ isin faulted
contact to the north with the PDLZ, which contains a sequence of mafic rocks known as
the Beja-Acebuches ophiolite complex (BAO). The PDLZ is in faulted contact to the
northeast with the OssaMorena Zone (OMZ) (Fig. 4.1). The OMZ has faunal affinities
with Gondwana throughout the Paleozoic (e.g. Robardet et al., 2003) and is generally
thought to have accreted obliquely to Gondwana (Iberian autochthon) in the
Neoproterozoicalong an orogen-scale transcurrent shear zone (Tomar-Badajoz-
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Cordobashear zone). This shear zone was reactivated in the Carboniferous during the
collision between Laurussia and Gondwana (Quesada andDallmeyer, 1994). During the
Late Devonian, the continental margin of the SPZ,is widely held to have drifted
northward by subduction beneath the OMZ margin of Gondwana until ca. 330 Ma (Jesus
et al., 2007). The PDLZ crops out between the SPZ and Gondwana and is classically
interpreted as an accretionary complex between SPZ and OMZ that developed during the
closure of the Rheic Ocean (e.g. Eden, 1991) in the Late Devonian-Early Carboniferous

time span.

4.3.1. South Portuguese Zone

The exposed geology of the SPZ is dominated by the Late Devonian—Early
Carboniferous sedimentary and bimodal volcanic sequences of the Iberian Pyrite Belt
(IPB) (Fig. 4.1) (e.g. Schermerhorn, 1971; Onézime et al., 2003). Three lithostratigraphic
formations are recognized in the IPB (Schermerhorn, 1971) from the oldest to the
youngest: (i) the Late-Devonian detrital Phyllite-QuartziteGroup (PQ), which are
continental clastic strata; (i1) theVolcanic Siliceous Complex (VSC), hosting the
VMSmineralization of Late Famennian to middle Visean age (Rosa et al., 2008);and (ii1)
a Late Visean to the Serpukhovianturbiditic flysch group, (Schermerhorn,1971;
Oliveira,1990).

The PQ is composed of siliciclastic pre-volcanic rocks deposited in a subtidal

environment from fan delta and sand bar systems on a shallow marine continental
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platform (Moreno and Saez, 1990; Oliveira, 1990; Moreno et al., 1996). The base of this
unit is not exposed and, has a minimum thickness of 300-400 m (Soriano and Marti,
1999). The depositional age is constrained by the presence of Fammenian conodonts in
limestone lenses interbedded with the clastic strata (Boogaard and Schermerhorn, 1980;
1981). Detrital zircon U/Pb age data from the PQ group display age populations
dominated by Paleoproterozoic (ca. 1.8-2.3 Ga) and Neoproterozoic (ca. 0.5-0.7 Ga)
zircons with minor Archean zircons (ca. 2.5-2.9 Ga) (Braid et al., 2010 in press).
VSCvolcanicandsedimentary strata
accumulatedconformablyonthePQGroupshelffaciesbasement (Oliveira, 1990).The VSC is
comprised ofmaficandfelsicrocks,interfingered with
purpleshales,siltstones, tuffitesandminorlimestones. These rocks are further subdivided
into three sedimentary and igneous successions (termed V1, V2 and V3, from lowermost
to uppermost).A unit of purple shale occurs along the contact between the V2 and V3,
and 1s generally referred to as the purple shale horizon.
Limestonesoftheintermediatesuccession
(V2)aredatedbyconodontsandcephalopodsasupperFamennian/ToumasiantoLowerUpperVi
sean(Boogaard1963;0liveiral983;0Oliveiraetal.1986.). The large variation in the
geochemistry of the volcanic rocks compared to that of the sedimentary strata suggests
that the sedimentary rocks were not derived from the coeval mafic and felsic volcanics

(Boulter et al., 2004).
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4.3.2. Pulo Do Lobo Zone & Beja Acebuches Ophiolite

The PDLZ is characterized by a series of tectonically imbricated polydeformed
metasediments, olistostromal mélange and tectonic mélange deposits overlain by a
relatively simply deformed flysch sequence (e.g. Eden, 1991; Braid et al., 2010) (Fig.
4.1). Although nomenclature and lithologies vary between Spanish and Portuguese
sections there is a general consensus that the lowermost unit is a tectonic mafic mélange
(e.g. Eden, 1991) with local occurrences of amphibolite blocks in a tectonically
imbricated volcaniclastic and schistose matrix. These mélange deposits are also crosscut
by mafic dykes and are in fault contact with a polydeformed sedimentary mélange
deposit comprised of olistostromal phacoidal quartzites in a phyllite/quartzite matrix,
which in turn are in fault contact with a sequence of polydeformed quartzwackes and
phyllites. Collectively, these units are unconformably overlain by a Visean (ca. 330 Ma
to ca. 347 Ma); (Braid et al., in press) simply deformed sequence of siltstone and
greywacke known as the Santa Iria Flysch (SIF). For detailed descriptions of the
mélange, metasedimentary and flysch deposits see Braid et al., 2010.

The PDLZ is classically interpreted as an accretionary complex developed along
the margin of the OMZ during the collision between Gondwana and Laurussia (e.g. Eden,
1991; Onézime et al., 1999, 2003). However, recent detrital zircon U/Pb age data (Braid
et al., in press) reveal a more complex history. Olistostromal quartzite clasts and matrix
from the polydeformed PDLZ have detrital zircon populations that cannot be derived

from either the SPZ or Gondwana. These rocks are both characterized by an abundance
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of Mesoproterozoic zircons (ca. 1.0-1.5 Ga), a subordinate Paleoproterozoic (ca. 1.6-1.9
Ga) population, as well as minor Archean and euhedral ca. 440 Ma zircons. PDLZ
polydeformed samples lack the Neoproterozoic (ca. 0.6-0.9 Ga) and Paleoproterozoic (ca.
2.0-2.5 Ga) detrital zircons that are typical of late Paleozoic sedimentary rocks derived
from either Gondwana (OMZ), peri-Gondwanan terranes (e.g. Meguma terrane) or the
middle Devonian continental clastics (PQ) of the SPZ. These data suggest the PDLZ
mélange and metasediments were derived from neither the upper plate (OMZ) nor the
lower plate (SPZ) (La-ICPMS; Braid et al., in press). Braid et al., in press suggest this
enigmatic scenario can be reconciled by derivation of the PDLZ from an excised crustal
fragment laterally equivalent to the Southern Uplands terrane of the British Caledonides,
during oblique collision between Gondwana and Laurussia in the Late Devonian.

To the north, the PDLZ is in fault contact with theBAO (ca. 334 + 2 Ma;Azor et al.,
2008), which has ophiolitic affinities (Silvaet al., 1990; Fonseca and Ribeiro, 1993;
Quesada et al., 1994) anddelineates the northern contact between the PDLZ and
OMZ.Geochemical analyses (e.g.Quesada et al., 1994) have shown theprimary igneous
rocks of the BAO have a MORB affinity. Across strike,the BAO displays an increasing
metamorphic gradient to the north(i.e. highest temperature mineral assemblages located
along contactwith OMZ). This metamorphic gradient is interpreted to be the result
ofVariscan thrusting of the OMZ over the BAO (e.g.Quesada et al., 1994; Castro et al.,
1996). The contact between the BAO and the PDLZ showsintense shearing and

retrograde metamorphism, related to themylonitization along the South Iberian Shear
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Zone (SISZ) (Crespo-Blanc and Orozco, 1988, 1991). The genesis of the BAO remains
controversial and is thought to represent either (i) obducted primary Rheic oceanic
lithosphere (e.g. Castro et al., 1996) or (ii) mafic rocks formed during a transtensional
event following the maincontinent—continent collision (ca. 345-390 Ma) (Quesada et al.,

1994; Azor et al., 2008; Braid et al., 2010; Braid et al., in press).

4.3.3. Sierra Norte Batholith

The Sierra Norte Batholith (SNB) is a composite batholith (Fig. 4.2) that intrudes
the PDLZ and the SPZ (de la Rosa, 1992; Castro et al., 1995). One of its components, the
Gil Mérquez granodiorites (ca. 330 Ma La-ICPMS;de la Rosa et al., 2001)locally intrudes
both the polydeformed mélange and metasediments and the flysch of the PDLZ. These
granodiorites are typically foliated parallel to the east—west orogenic grain and are
interpreted to have been emplaced during the latest stages ofdeformation in the PDLZ
(e.g.Castro et al., 1995). The ca. 330 Ma age date was obtained exclusively from these
foliated granodiorites. The remainder of the SNB is comprised of non-
foliatedgabbro,diorite,tonalite, monzograniteandgraniteand crops
outintheNEpartofthelberianPyriteBelt(Soler,1980;Schultzetal. 1987)(Fig. 4.2).

ThisbatholithisinterpretedtorepresenteitherthedeepequivalentsoftheVolcanic-
SiliceousComplexvolcanics of the IPB in the SPZ (Soler,1980;Schultzetal. 1987),orlate-
orogenicintrusives, which areunrelatedtotheVSC volcanics(Simancas1983). Rb—Sr

wholerock isotopic data are interpreted to indicate that the SNB calc-alkalinegranitoids
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are the product of interaction the of magmasderived from the lithospheric mantle with
magmasdeveloped by partial melting of a deep mafic andpelitic granulitic crust in an

active continental margin(de la Rosa et al., 1993, 2001).

4.4. Sample Selection and Analytical Methods

In order to further constrain the composition of the SPZ basement, representative
samples were collected from granitoid rocks of the SNB for LA-ICPMS U/Pb dating,
lithogeochemical and Sm-Nd isotope analysis (Fig. 4.2). As the granitoids were emplaced
following collision of the SPZ and the OMZ and are generally considered a product of
melting the deep continental crust, these samples may possibly preserve an inherited
signature of the SPZ basement. To date a LA-ICPMS age (ca. 330 Ma; de la Rosa et al.,
2001) has been obtained only from one unit in the SNB (i.e. the foliated Gil Marquez
pluton), which locally crosscuts the PDLZ suture. In order to better assess the potential
contribution of SPZ basement to the granitoid melt away from the suture zone as well as
the range in age of magmatism across the batholith, representative samples were selected
from both the foliated Gil Marquez pluton and non-foliated rocks of the SNB outboard of
the PDLZ (Fig. 4.2). Furthermore in order to assess (i) the relative contribution of the
exposed sedimentary units in the SPZ and PDLZ to the granitoid melts and (i) potential
differences in composition of the lower and upper crust, we also present
lithogeochemistry and Sm-Nd isotopic data from representative samples collected from
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sedimentary units in both the SPZ and the PDLZ, which are crosscut by the SNB (Fig.

4.1). Full tables of results can be found in the appendix.

4.4.1. Lithogeochemistry and Sm-Nd Isotopes

The major and selected trace elements were analyzed by X-ray fluorescence at the
Nova Scotia Regional Geochemical Centre at St. Mary’s University, Halifax. The
accuracy and precision of all analyses are generally better than 10%. Details of the
analytical methods are given in Dostal et al. (1994).Rare earth element analyses were also
determined at Memorial University, Newfoundland by ICP-MS according to methods
described in Jenner et al. (1990). Samples were analyzed for Sm-Nd compositions at the
Atlantic Universities Regional Isotopic Facility (AURIF) at Memorial University,
Newfoundland. Analytical procedures for Sm-Nd analyses are described in Kerr et al.
(1995).The Nd isotope signature in clastic sedimentary rocks is interpreted to represent
the weighted average of values for detrital contributions from the various source areas
(see Arndt and Goldstein, 1987; Thorogood, 1990; Murphy and Nance, 2002). The

geochemical and Sm-Nd data are available in appendix C and D.

4.4.2. U/Pb LA-ICPMS
Approximately sixteen to thirty zircon grains from each of four representative
granitoid samples taken from both the Gil Marquez granodiorite (two samples) and across

the SNB (two samples) were mounted, polished, imaged by electron backscatter (samples
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JAB-09; JAB 28) and cathode luminescence (ACR-04; JB-26B). Of these samples, two
were foliated (JAB-09; ACR-04) and two were non-foliated (JB -26B; JAB-28). SEM
imaging was done at the Pacific Centre for Isotopic and Geochemical Research (PCIGR)
at the University of British Columbia. Cathode luminescence images were obtained at the
Zircon and Accessory Phase Laboratory (ZAPLab) at the University of Western Ontario.
Zircon grains were analyzed for their U and Pb isotopic composition using a Thermo
Element 2 high resolution Inductively Coupled Plasma-Mass Spectrometer coupled to a
New Wave Research 213 nm Nd-YAG laser. Detailed description of analytical
instrumentation, analytical protocol and methodology, data reduction and age calculation
at the Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University
of British Columbia are described in Mortensen et al. (1995, 2007). All zircons were
analyzed using line scans with a laser spot diameter of 20 pm along either a zircon core
or rim. For each line scan (one analysis), which crossed both a core and a rim, data was
selected from either the core or rim section. In some cases where the rims were thick (i.e.
> 20 um) two lines scans (two analyses) were performed on an individual zircon grain.
Age uncertainties are reported at 2c and either the Pb>"/Pb*® or the Pb***/U**® age
is reported depending on which value gives the lower uncertainty (Ludwig, 1998). A total
of ninety analyses were obtained in the four samples. Six analyses revealed >10%
discordance and were discarded. U/Pb concordia distribution plots for the remaining
eighty-four concordant grains are shown in figures 4.8 and 4.9and compared in a relative

probability plot (Fig.4.12).
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4.5. Results ~ Sierra Norte Batholith

4.5.1. Lithogeochemistry

Ten representative samples were selected from the SNB (Fig. 4.2). Sample ACR-
04 and sample JAB-24 were taken from foliated granitoid bodies within the SNB that
crosscut the SIF within the PDLZ. Two SNB samples were selected from foliated
granodiorites near the town of Gil Marquez (JAB-09, JAB-02) and the remaining six
samples (JAB-10, JAB-25, JB-26B, JAB-26, JAB-27, JAB-28) were selected from
various non-foliated SNB intrusive bodies. All samples display sericitization of feldspars
in thin section indicative of post-emplacement alteration and/or weathering. The major-
and trace-element chemistry (Table D.1) for theSNB samples can be found in Appendix
D.

Most of the SNB samples are felsic (Si02> 67 wt %, on a volatile-free basis) but
one sample (JB-26B) has a SiO, content of ~ 60 wt%. TiO,,Fe,0O3, Al,O3 (with exception
of JB-26B), and CaO display negative linear correlationswith SiO,, whereas Na,O and
K,O display more complex patterns (Fig. 4.3). Trace element correlations with
SiO,display more complexpatterns than the major elements, although Zr displays a clear

negative correlation (Fig. 4.4).
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As all samples from the SNB display petrographic evidence of alteration and/or
weathering, ratios involving HFSE (high field strength elements) and REEs are generally
considered more reliable indicators of the rock’s original geochemistry because they are
relatively unaffected by those processes (e.g., McLennan et al., 1980; Bhatia and Crook,

1986). HFSE and REE abundances are emphasized, as they are more reliable

geochemical indicators of SNB magmatic affinity and tectonic setting.
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Fig. 4.4 Selected trace elements in Harker plots for the SNB granitoid samples.

Chondrite and primitive mantle normalized plots of rare earth elements (REE) are shown
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Rock/Chondrites

100

100

in figure 4.6. A moderate enrichment in light rare earth elements (LREE) in most SNB

samples is reflected the range in (La/Sm), ratio from 2.3 to 5.7. Sample JAB-27 displays

a slightly positive Sm anomaly and a relatively flat LREE profile reflected by a (La/Sm),

ratio of 1.6. Heavy rare earth element abundances (HREE) generally show flat profiles

which are reflected in the range in (Gd/Lu), ratio of 0.59 to 1.5. All samples are

characterized by a negative europium anomaly, with [(Eu*/Eu) -1] varying between 0.2

(JAB-28) and 4.6 (JAB-24), with a mean value of 1.41 (see inset Fig. 4.5a).
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4.5.2. Sm Nd Isotopes

The Sm-Nd data for nine SNB samples (Table C.2) can be found in Appendix C.
To facilitate comparison between formations, eNd values (relative to CHUR [chondritic
uniform reservoir]) given in the text are for its intrusive age (¢ = 330 Ma). Following
Stern (2002), we report Tpy ages only for samples with '*’Sm/'**Nd < 0.165. Of the nine
samples, one sample (JAB-27) displays a '*’Sm/'**Nd > 0.165 and therefore its Tpy age
is not reported. Of the remaining eight samples Tpy ages vary from ca. 0.76 to 1.80 Ga.
Taken together, all samples in the batholith are characterized by a wide range in eNd
values from +1.4 to -9.6 (Fig. 4.6). Two samples, (JAB-28 and JAB-27) display
comparatively more negative eNd values at T=330 (-9.6 and -7.5 respectively). The
remainder of samples display a more limited range in eNd (-3.0 to 1.4) at T=330 with

model ages ca. 0.9 — 1.2 Ga.
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Fig. 4.6 ¢Nd (?) vs. time (Ga) diagram (at t = 350 Ma) comparing Sm-Nd isotope data for
the PDLZ, SPZ and SNB with typical Sm-Nd isotope compositions of Avalonian crust
(Murphy et al., 1996b, 2000), 1.0-1.2 Ga (Samson et al., 2000) for rocks in the North
American Grenville Province, Meguma Metasedimentary Rocks (MMS) and Meguma
Granitoids Rocks (MGR) (Clarke et al., 1997). Depleted mantle evolution curve isfrom
the model of DePaolo (1981).
4.5.3. U-Pb Isotopic Data, Foliated Rocks

Sample JAB-09 is a strongly foliated granodiorite collected from a large outcrop

exposed along a roadcut immediately south of the village of Gil Marquez (Fig. 4.2). The

sample is coarse-grained (5 to 10 mm), and is dominated by quartz, plagioclase,K
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feldspar, biotiteand amphibole, with subordinateapatite, sphene, zircon and opaque
minerals. Zircons from sample JAB-09 typically show multifaceted terminations with
either a stubby euhedral or elongate morphology. SEM backscatter images reveal: (i)
zircon cores that are either multifaceted or rounded with a thin rim or (ii) zircons without
cores that are zoned and multifaceted (Fig. 4.7a). To determine both the age of igneous
crystallization and the ages of potential inherited cores, line scans were performed on
either the core or rim of thirty representative grains.The results are listed in table B.7 in
the appendix and plotted in Figure 4.8. Of the thirty analyses, three are discordant and
are not considered further. Twenty-four analyses were performed on either multifaceted
zircons with no rims or rims of zircons with cores. These analyses yielded ages ranging
from ca. 327 Ma to ca. 386 Ma. Two analyses were also performed on rounded zircon
cores and revealed concordant ages of ca. 2040 and ca. 2075 Ma. One analysis was also
performed on a multifaceted zircon core and revealed a concordant age of ca. 1180 Ma.
Sample ACR-04was collectedsouth of the Almonaster la Real village from a
granite body that locally crosscuts the metasediments and the Santa Iria Flysch of the
PDLZ (Fig. 4.2). The sample is representative of a granite body that is mildly foliated
and 1s comprised predominantly of quartz, plagioclase,K feldspar, biotiteand amphibole.
Most of the zircon grains (~70%) are medium to large (100-200 um length), elongate
subeuhedral prisms. The grains range from translucent yellow-brown to turbid, and
generally have inclusions and fractures. The remainder of the grains (~30%) are medium

(~100 pm diameter) stubby and subeuhedral to euhedral. Stubby grains generally have
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more inclusions and fractures. CL imaging reveals that most zircons are characterized by
complex zoning patterns. Inherited cores are irregular in shape but appear multifaceted
and zoned (Fig. 4.7b). To determine both the age of igneous crystallization and the ages
of potential inherited cores, line scans were performed across sixteen representative
grains. The U-Pb isotopic data (Table B.10) can be found in the appendixandare plotted
in Figure 4.8. Of the sixteen analyses, fifteen yielded concordant or nearly concordant
ages (i.e. < 10% discordance). Of these fifteen analyses twelve yielded concordant ages
ranging from ca. 325 Ma to ca. 357 Ma. Three analyses of multifaceted zircon cores

yielded concordant ages of ca. 1075 to ca. 1116 Ma.
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Fig. 4.7 SEM backscatter images of representative zircons in sample JAB-09. (b)
Representative CL images of zircons in sample ACR-04. (c) Representative CL images
of zircons in sample JB-26B. (d) SEM backscatter images of representative zircons in
sample JAB-28. Dark lines in SEM images are the raster ionprobe analysis.

4.5.4. U-Pb Isotopic Data, Non-foliated Rocks.

Sample JB-26B is from an outcrop of non-foliated granodiorites exposed along a

roadcut near the town of Castillo de las Guardas (Fig. 4.2). The granodiorite is composed

primarily of quartz, plagioclase,K feldspar, biotiteand amphibole, with minorapatite,

monazite, titanite, zircon and opaques. Zircons from sample JB-26B show a broad range

of morphologies including (i) pale yellow slightly elongate, prismatic and multifaceted
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(~40%) and (ii) clear, stubby, prismatic and multifacted (~30%) to (iii) magmatically
resorbed (~15%) and (iv) multifaceted and fractured (~15%). CL imaging reveals most
zircons contain complex zoning patterns with no inherited cores (Fig. 4.7¢). Fourteen
representative grains were analyzed from sample JB-26B. All yielded concordant or near
concordant ages (<10% discordance) with a mean age of 330.8 = 1.8 Ma.The U-Pb
isotopic data (Table B.9) can be found in the appendixand are plotted in Figure 4.8.
Sample JAB-28 was collected from a granitoid that crops out near the town of
Zufre (Fig. 4.2). The sample is non-foliated and composed primarily of quartz,
plagioclase,K- feldspar, biotiteand muscovite.Most of the zircon grains (~70%) from
sample JAB-28 are medium to large (100-200 um length), euhedral to subeuhedral
prisms. The grains range from translucent yellow-brown to turbid, and generally have
inclusions and fractures. The remainders of the grains (~30%) are medium sized (~100
um diameter), stubby to rounded. BSE imaging shows that the majority of zircons
(~70%) show no zonation and the remainder (20%) have multifaceted elongate cores
rimmed by thick overgrowths or are rounded un-zoned zircons rimmed by thin
overgrowths (Fig. 4.7d). To determine both the age of igneous crystallization and the
ages of potential inherited cores, line scans were performed across thirty representative
grains (one analysis per grain).The U-Pb isotopic data (Table B.8) can be found in the
appendixand are plotted in Figure 4.9. Of these thirty analyses, all yielded concordant
ages. Analysis of multifaceted prismatic zircons and zircon rims (fifteen analyses) reveal

concordant ages ranging from ca. 309 Ma to ca. 361 Ma. Ten analyses of multifaceted
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zircon cores reveal concordant ages ranging from ca. 561 Ma to ca. 647 Ma and five

analyses of rounded zircon cores with thin overgrowths yield concordant ages ranging

from ca. 1989 Ma to ca. 2910 Ma (Fig. 4.9).
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4.6. Results~Sedimentary Units

4.6.1. Lithogeochemistry and Sm-Nd
SPZ

Twelve samples were selected from clastic rocks in the V2, V3 and purple shale
(PS) horizon of the VSC and three samples were selected from the Late Devonian PQ
group (JB-17, JB-24, JB-25) in the SPZ. These sedimentary units are all crosscut by the
SNB. The major-and trace-element chemistry for theVSC and PQ rocks is given in table
D.3 and Sm-Nd data in table C.3 of the Appendix.

Overall, major-oxide concentrations show large ranges in concentrations. One
sample from the V2 contains nearly 100% Si0O,. In the other V2 samples, SiO, ranges
from ~ 57 to 86 wt %, Al,O3 from trace amounts to ~ 20 wt %, TiO, from trace amounts
to 1.07 wt %, CaO from 0.03 to 0.24 wt %, and Fe,O3; from ~4.2 to 10 wt %. By
comparison, major element abundances in the V3 samples show a more restricted range
in concentration with SiO; ranging from ~ 72 to 77 wt %, Al,O3 from ~10.8 to 13.7 wt%,
TiO; from ~0.3 to 0.9 wt %, CaO from 0.05 to 0.3 wt %, and Fe,O3; from ~4.6 to 7.2 wt
%. Major element geochemistry of the PS samples reveal SiO; ranging from ~ 64 to 65
wt %, AlLO3 from ~18.3 to 21.2 wt %, TiO, from ~0.7 to 0.8 wt %, CaO from 0.09 to
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0.18 wt %, and Fe,0O3 from ~7.3 to 7.7 wt %. PQ samples reveal SiO; ranging from ~ 54
to 74 wt %, Al,O5 from ~2 to 25 wt %, TiO, from ~0.23 to 0.96 wt %, CaO from 0.04 to
0.12 wt %, and Fe,O3 from ~6 % to 36 wt %.

In order to more fully document the geochemistry of the SPZ, published major
element (40 samples) and REE data (5 samples) of the VSC (Boulter et al., 2004) are
included on geochemical plots (Figs. 4.5b, 4.10). Complex patterns on plots such as log
(S10,/A1,03) vs. log (Na,O/K,0) VSC rocks (Fig. 4.10a) likely reflect alkali mobility
during sedimentary processes such as weathering and diagenesis. On a Fe,O3 + MgO vs.
Al,03/S10, diagram, the samples display a linear, positive correlation between Fe,O3 +
MgO and Al,03/Si0; (Fig. 4.10d). According to Bhatia (1983) this trend is indicative of
an arc to active-margin to passive-margin signature, which could reflect the tectonic
setting either of the strata or of the source rocks.

On a plot of Zr/Nb vs. Ti/Nb (Fig. 4.11a), VSC samples show a general trend of
increasing T1/Nb with increasing Zr/Nb and PQ samples display little variation in the
Ti/Nb. On a Zr/Y vs. Ti/Y diagram (Fig. 4.11b) the VSC samples show a positive
correlation between Zr/Y and Ti/Y. Similarly, on a Zr/V vs. Ti/V diagram (Fig. 4.11¢),
VSC samples lie on a trend of higher Zr/V with higher Ti/V.

Chondrite-normalized REE patterns for all SPZ samples (Fig. 4.5b) are moderately
sloping and display moderate and relatively restricted LREE enrichment reflected in
(La/Sm), of 2.6-4.3. HREE generally display a flat profile with (Gd/Lu), ranging from

0.94-1.72. All samples are characterized by a slight negative europium anomaly,
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with[(Eu*/Eu) -1] of 0.17 (JAB-12, V3) and 0.84 (JAB-11, V2) (see inset Fig. 4.5b).
Sample JAB-19 displays a negative Ce anomaly.

To facilitate comparison between formations, eNd values (relative to CHUR
[chondritic uniform reservoir]) given in the text are for the same depositional age (¢ = 350
Ma). Taken together, the VSC samples are characterized by a wide range of eNd values.
V2 samples range from -11.2 to -0.7, purple shale samples from -7.1 to -8.4 and V3
samples from -5.9 to -1.6 (Fig 4.6). On the other hand PQ samples show a relatively

restricted range from -10.4 to —7.5.

PDLZ

Samples were selected from the polydeformed mélange, matrix and metasediments
of the PDLZ (RSA-01, quartzite phacoid; RSA-02, matrix; and AC-03; quartzite) and
siltstones from the overlying SIF (samples JAB-01, JAB-03, JAB-08). The major-
element chemistry (Table D.5) for samples from the polydeformed PDLZ rocks displays
high SiO,> 85wt%, whereas SIF samples display SiO, between 70-80 wt%. TiO; in the
PDLZ samples varies from 0.21 to 0.58 wt%, CaO from 0.04 to 0.13 wt%, Fe,O3 from
~2.5 to 3.5 wt%. Na,O typically occurs in very low concentrations. By comparison, SIF
samples are higher in TiO, (from ~0.8 to 0.9 wt%) and Fe,O3 (from ~4.6 to 6.7 wt%) and
lower in CaO (from 0.02 to 0.04 wt%). On plots such as log Si0,/Al,0; vs. log
Na,O/K,0 PDLZ polydeformed rocks display extremely low Na,O/K,O (due to the very

minor abundance of Na,O in the samples) and a slightly negative correlation (Fig. 4.10a).
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On the Fe,O3+ MgO vs. Al,03 / (CaO+Na,0) and the Fe,0O3+ MgO vs. Al,O3 /
Si0, diagrams (Figs. 4.10 b, c,) the rocks display more complex patterns suggesting
alkali mobility during weathering. However on the Al,03/SiO; vs. Fe;O3 + MgO diagram
(Fig. 4.10d), the polydeformed PDLZ and SIF samples display increasing Al,O3/Si0,
with increasing Fe,O; +MgO. The relatively low Fe,O; + MgO and Al,05/SiO; in the
PDLZ samples are typical of upper crustal rocks either deposited in, or derived from, a
passive margin setting (after Bhatia et al., 1983).

On a plot of Zr/Nb vs Ti/Nb (Fig. 4.11a) PDLZ polydeformed samples (RSA-01,
RSA-02, RSA-03) display a general trend of increasing Ti/Nb ratio with increasing Zr/Nb
whereas SIF samples display a limited range in Ti/Nb and Zr/Nb. Alternatively, on a plot
of Zr/Y vs. Ti/Y, SIF samples exhibit a positive relationship between Zr/Y and Ti/Y (Fig.
4.11b). On a plot of Ti/V vs. Zr/V both SIF and PDLZ polydeformed samples together
display an increasing trend between Ti/V and Zr/V (Fig. 4.11c¢)

Chondrite-normalized REE patterns for the polydeformed PDLZ are gently sloping
(Fig. 4.5¢) and display moderate LREE enrichment with a relatively restricted range
(La/Sm = 3.5-3.8). HREE display flat profiles as reflected in (Gd/Lu), which ranges
from 0.88-1.2. All polydeformed PDLZ samples also display a negative europium
anomaly ([(Eu*/Eu) -1]=0.41-1.27).

Sm-Nd compositions of the olistostromal mélange and the metasedimentary rocks
(RDL) are characterized by negative eNd values (calculated at T=350 Ma) (-0.9;

metasediments), (-8.4; phacoidal quartzite) and (-6.8; phyllitic matrix) (Fig. 4.6) (Table
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Si0,/Al,03; (B) K,O/Na,O vs. Si02 (after Roser and Korsch, 1986); (C) Al,O3/(CaO +
NayO) vs. Fe, 03 + MgO (after Bhatia, 1983); (D) Al,03/S10; vs. Fe,O3 + MgO (after
Bhatia, 1983); (E) K,O/Na,O vs. Fe,0O3 + MgO (after Bhatia, 1983). In B, ACM-active
continental margin; PM-passive margin. In C, D, and E, 1-oceanic island arc; 2-
continental island arc; 3-active continental margin; 4-passive margin.
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Fig. 4.11Plots using interelement ratios of high field strength elements: (A) Zr/Nb vs.
Ti/Nb; (B) Zt/V vs. Ti/V; (C) Zt/Y vs. Ti/Y. MMS—Meguma Group metasedimentary
rocks.

4.7. Interpretation

4.7.1. Magmatic Age of the Sierra Norte Batholith

The youngest ages yielded by prismatic zircon crystals and rims indicate a
concordant age ranging from 325.5 + 1.74 Ma (sample ACR-04) to 333+ 4.78 Ma
(sample JAB-09) for the foliated Gil Marquez pluton, which within our uncertainty
isindistinguishable from the U-Pb age on a late leucogranite dated by de la Rosa et al.,
2001 (ca. 330 Ma). For the non-foliated rocks of the SNB magmatic ages range from
308.3 £3.03 Ma (sample JB-26B) to 309 + 4.43 Ma (sample JAB-28) (Fig.4.8, 4.12).
This range in age suggests the non-foliated rocks are younger than the foliated rocks (Gil
Marquez pluton) and the batholith as a whole composite recording two main stages of

magmatism.

4.7.2. Inherited Ages of the Sierra Norte Batholith
The zircon cores in SNB samples, which reveal ages ranging from ca. 561 Ma to
647 Ma in sample JAB-28, ca. 1075 Ma to ca. 1116 Ma in sample ACR-04 and ca. 1185
Ma in sample JAB-09 all display a multifaceted inherited core morphology (Fig. 4.7).
On the other hand, older Paleoproterozoic inherited cores with concordant ages of
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ca. 2005 Ma (sample JAB-28) and ca. 2073 Ma (sample JAB-09) as well as Archean
inherited cores with concordant ages of ca. 2759 Ma, ca. 2828 Ma, and ca. 2910 Ma in
sample JAB-28 all display a well-rounded morphology (Fig. 4.7). Multi-faceted zircons
are generally indicative of a magmatic protolith (e.g. Timmerman et al., 2000). Therefore
most likely the protoliths for the multifaceted cores are igneous rocks whereas the
rounded cores probably originated from sedimentary rocks containing late
Paleoproterozoic and Archean detrital zircons. As a result the magmatic inherited cores in
the SNB samples likely preserve zircons from the melting of SPZ basement, whereas the
rounded zircon cores are xenocrysts probably derived from the Devonian-Carboniferous
sedimentary rocks of the PQ or PDLZ (which both contain late Paleoproterozoic and
Archean detrital zircons; Braid et al., in press). Furthermore most rounded inherited cores
contain thin magmatic rims, in contrast with thicker well-zoned rims that occur on
prismatic cores of Neoproterozoic age. These different morphological characteristics
suggest that the rounded inherited cores are xenocrysts, which were likely incorporated
into the melt from the adjacent host rock, late in the evolution of the pluton. The
numerous Paleoproterozoic and Archean inherited cores in sample JAB-28 suggest that
this sample was derived from a more evolved granite, which was contaminated by the

upper crust of the PQ and / or VSC.

4.7.3. Sm-Nd Isotopes and Geochemistry of the Sierra Norte Batholith

The SNB samples display eNdvalues ranging from +1.4 to —9.6 and model ages ca.
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0.76-1.8 Ga. One sample (JAB-27) with high '’Sm/'**Nd (>0.165) also has a flat LREE
profile, consistent with fractionation of accessory phase during crystallization of the
granite melt, thereby invalidating Tpy calculations (Arndt and Goldstein, 1987). On
average the bulk of the SNB samples have less negative eNd values (-3.0 to 1.4) than the
PQ detritus (eNd ~ -7.5 to -10.4), the VSC detritus (eNd ~ 11.2 to -0.7) and the PDLZ
detritus (eNd ~ -6.8 to -9.0). However, two samples (JAB-28 and JAB-27) display more
negative eNd (-9.6 and -7.5 respectively) compared to the other SNB samples suggesting
either melting of a relatively ancient basement or significant contamination from the
upper crust.

Samples JAB 28 and JAB 27 have ¢Nd signatures similar to the PQ group (which
they crosscut) suggesting potential contamination from PQ detritus. Furthermore the
presence of rounded Paleoproterozoic (ca. 2.0 Ga) and Archean (ca. 2.7-2.9 Ga) inherited
cores in sample JAB-28 supports a late-stage crustal contamination. These zircon
populations (ca. 1.8-2.3 and ca. 2.5-2.9 Ga) are also present in PQ detrital zircons
samples (Braid et al., in press).

Taken together Sm-Nd and U-Pb data suggest that (i) the granitoid melts of samples
JAB-28 and JAB-27 were contaminated by the overlying SPZ strata, and (i1) the source
for the SNB was on average more juvenile than the sedimentary units. This relationship
indicates the lower crust that melted to yield the SNB was not compositionally similar to
the Devonian-Carboniferous continental detritus (PQ, VSC and PDLZ), but was instead

derived from a more juvenile lower crustal source with model ages between ca. 0.9-1.2
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Ga.

4.7.4. Relationship between the PDLZ and SPZ

Geochemical comparison of rocks involving interelement ratios of high field
strength elements are especially significant because these plots are relatively insensitive
to sedimentary processes that affect the modal abundance of the accessory phases in
which these elements reside (McLennan et al., 1980). The geochemical signatures of the
all SPZ rocks compared with PDLZ rocks show fundamental geochemical differences
suggesting that derivation from a similar source is unlikely. On interelement ratio plots,
PDLZ samples generally display a more restricted range in Ti/Nb, Zr/Y and Ti/Nb than
detritus from the SPZ (Fig. 4.11). Chondrite-normalized REE patterns in the SPZ rocks
compared to PDLZ mélange samples are characterized by higher REEs, especially Ce to
Tb, and gentler HREE profiles. To a first order, differences in REE profiles suggest the
PDLZ and SPZ detritus were not derived from the same source and support the exotic
origin of the quartzite mélange and associated metasediments suggested by Braid et al., in
press.

Within the SPZ, PQ samples generally display more restricted Ti/Nb, Zr/Y and
Ti/Nb ratios than the VSC sedimentary rocks (Fig. 4.11). VSC sedimentary rocks also
contain a wider ranger in eNd (-11 to -0.7) (Fig. 4.6) suggesting a variable contribution

from more juvenile sources probably associated to coeval bimodal magmatic activity. On
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the other hand, the PQ samples show a relatively restricted range (eNd ~ -6.8 to -9.0),
suggesting detritus was derived from (on average) a much older source than in the VSC.
In this case, the wide range in €Nd values for the VSC detritus may be attributed to the
variable isotopic characteristics of the source rocks (e.g. juvenile volcanics and more

ancient sedimentary rocks).

4.8. Synthesis and Discussion

Taken together, geochemistry, Sm-Nd isotopes and zircon geochronology and
morphology suggest that the SNB granitoids: (i) are the product of melting a
Neoproterozoic (ca. 560- 650 Ma) to Mesoproterozoic (ca. 1.0 -1.2 Ga) basement source
that (ii) in some cases were contaminated when they incorporated older detrital zircon
xenocrysts from the rocks they intrude and (iii) are a product of melting a source which
was isotopically more juvenile compared to the Devonian-Carboniferous SPZ and PDLZ
strata.

Late Devonian paleogeographic reconstructions provide constraints for the SPZ
provenance and show West Africa and Laurussia both flanking the Rheic Ocean and in
relative proximity to the Iberian autochthon (e.g. Scotese, 2003). In addition, Braid et al.,
(in press) interpret the PDLZ as a displaced portion of the Laurentian margin that escaped
towards a Rheic Ocean subduction zone at this time. Therefore potential candidates for
the basement of the SPZ in the Late Devonian are: (i) Gondwana (Iberian autochthon or
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West Africa) (ii) the PDLZ (which would have a Laurentia signature) or (iii) peri-
Gondwanan terranes which lay along the outer Laurussian margin.

The West African Craton is generally characterized by Neoproterozoic (ca. 500 -
700 Ma) and ca. 1.9 — 2.1 Ga orogenic events (Pan African and Eburnian orogens)
(Rocciet al., 1991; Boheret al.,1992; Potrelet al., 1998; Hirdes and Davis, 2002).
Tectonothermal events of these ages are also recorded in the Iberian autochthon and
together are reflected in the abundance of local sedimentary deposits with ca. 500-700
Ma and ca. 2.0-2.2 Ga detrital zircons typical of derivation from Gondwana (e.g.
Martinez Catalan et al., 2004; Fernandez Suarez et al., 2002; Lopez-Guijarro et al., 2007).
On the other hand Mesoproterozoic zircons are typically absent in the West African
craton (Linnemann et al., 2002; Abati et al., 2010). As a result, Nance and Murphy
(1996) and Linnemann et al. (2004) suggest that an abundance or lack of
Mesoproterozoic zircon may be used as a diagnostic tool to differentiate terranes
originally adjacent to West Africa.Paleoproterozoic tectonothermal events (ca. 2.0-2.2
Ga) typical of Gondwana are rare in eastern Laurentia (Rocci et al., 1991; Lerouge et al.,
2006), which is instead dominated by Cambrian—Ordovician (ca. 440-550 Ma) (McNicoll
et al. 2001), and Grenvillian (ca. 1.0-1.2 Ga) sources (e.g., Cawood et al., 2007;
Hoftman, 1989).

The Avalon terrane, originated as one of several peri-Gondwana terranes that
formed along the periphery of western Gondwana in the Neoproterozoic (Johnson and

Van der Voo, 1986; Murphy and Nance, 1991; Keppie et al., 1996, O’Brien et al., 1996;
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Murphy et al., 1997). Abundant Neoproterozoic (ca. 570-630 Ma) igneous rocks record
tectonic activity on a margin of Gondwana, from which the Avalon terrane was rifted,
probably in Cambrian time. Furthermore Murphy et al. (2000) suggest the formation of
proto-Avalonian basement occurred at ca. 1.2-1.0 Ga. Avalonian derived rocks also
typically have abundant Mesoproterozoic (ca. 1.0 Ga) detrital zircons (e.g. Keppie et al.,
1998) and relatively juvenile Sm-Nd signatures (eNd ~+1 to -4 at T=350) (Murphy and
Nance, 2002).

The Meguma terrane, the most outboard of peri-Gondwana terranes in North
America, is principally characterized by a thick (>10 km) succession of Cambrian to
Ordovician turbiditic meta-sandstones and slates (the Meguma Group). The Meguma
Group sedimentary rocks typically display (on average) a relatively ancient source (eNd~
-8 to -12; T=370 Ma) (Clarke et al., 1997) and detrital zircon populations dominated by
late Neoproterozoic (ca. 550-700 Ma) and early Paleoproterozoic zircons (ca. 2.0 -2.2
Ga) (Krogh and Keppie, 1990; Waldron et al., 2009). In some samples late
Mesoproterozoic zircons occur (Waldron et al., 2009). Together, this age distribution is
thought to indicate the Meguma terrane was originally located between Avalonia and
West Africa, in the rift system along which the Rheic Ocean opened (Waldron et al.,
2009).Although the basement to the Meguma Group is not exposed the geochemistry of
ca. 375 Ma Meguma granitoid rocks (Clarke etal., 1988) and the geochemistry and
mineralogy of lowercrustal xenoliths (Owen et al., 1988; Owen and Greenough,1991;

Eberz et al., 1991; Greenough et al., 1999) suggest the Meguma terrane, in the Late
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Devonian was underlain by 1.0-1.2 Ga juvenile basement similar in composition to
Avalonia. As a result the Meguma terrane, as a whole, displays a rather unusual scenario
where a comparatively juvenile basement is overlain by strata derived from a more
ancient cratonic source.

When compared to the above potential sources for the SPZ basement the presence
of Mesoproterozoic zircons in the primary SNB melt suggests that the basement to the
SPZ is not West African. Furthermore the PQ clastics also contain a paucity of
Mesoproterozoic detrital zircons (Braid et al., in press) indicating the West African
craton was not a source for the Late Devonian cover in the SPZ. The PQ also contains an
abundance of Paleoproterozoic (1.8-2.3 Ga) zircons, which are rare in Laurentia (e.g.
Rocci et al. 1991) and lack the Cambrian—Ordovicianzircons that are typical Laurentia-
derived sedimentary rocks (McNicoll et al., 2001). The Neoproterozoic (ca. 560- 650 Ma)
and Mesoproterozoic (ca. 1.0-1.2 Ga) inherited zircons and the ca. 0.9-1.2 Ga model ages
of the SNB granitoid samples, which are not crustally contaminated, are consistent with
the main range of Avalonian magmatism (e.g. Murphy et al., 2000) and a basement
source that is isotopically indistinguishable to the Avalon terrane (Fig. 4.12). However,
the abundant Paleoproterozoic detrital zircons (ca. 1.8-2.3 Ga) (Braid et al., in press), the
lack of ca 1.0 Ga zircons and time older model ages (ca. 2.0 Ga) from the PQ Group
contrast sharply with typical of strata deposited on Avalonia or Avalonian derived rocks
(eNd ~+1 to -4 at T=350) (Murphy and Nance, 2002). Therefore, although the SPZ

basement displays an Avalonian-type signature, the basement and PQ clastics, together
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are not consistent with derivation from one of West Africa, Avalonia or Laurentia sensu
stricto. Taken together these data imply either (i) the PQ was not derived from the SPZ
basement or (ii) the SPZ was derived from a crust with an Avalonian-type basement

beneath strata derived from a more ancient cratonic source.
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Fig. 4.12Relative Probability Plots of U/Pb data from SNB granitoid samples compared
with U-Pb detrital zircon relative probability distribution plots for samples from the
PDLZ (suture) and the SPZ (Laurussia?) from this study compared with samples
(highlighted in red) from Early Silurian Kirkcolm Formation of the Southern Uplands
terrane of the British Caledonides (after Waldron et al., 2008), the Cambrian-Ordovician
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Meguma terrane from the northern Appalachians (after Waldron et al., 2009) and the
Devonian-Carboniferous Horton Group from the St. Mary’s Basin of the northern
Appalachians (after Murphy and Hamilton., 2000) (in red). Plots were generated by
ISOPLOT (Ludwig, 2003).

Deposition of the PQ group and the VSC sediments in the Late Devonian is
generally considered the result of local extension) in an intracontinental rift basin (e.g.
Mullane, 1998; Quesada, 1998; Rosa et al., 2010). Therefore the local dominant source
for the relatively immature sediments of the PQ was likely the SPZ basement (Mullane,
1998). If so, the SPZ is characterized by Late Devonian strata derived from
Paleoproterozoic rocks (eNd=6.8 to -9) that were deposited above a relatively juvenile
basement (eNd = +1.4 to —3.0) (Fig. 4.6).

This unusual relationship is similar to the relationship between the relatively
juvenile basement and ancient upper crust documented in the exposed portion of the
Meguma terrane in the northern Appalachians. Therefore a likely candidate for the
derivation of Neoproterozoic (ca. 560- 650 Ma) and Mesoproterozoic zircons (ca. 1.0-1.2
Ga) in magmatic inherited cores of the SNB is basement equivalent to the peri-
Gondwanan Meguma terrane. SNB Neoproterozoic and Mesoproterozoic inherited zircon
ages and model ages are consistent with the relatively juvenile basement, which underlies
the Meguma terrane in Atlantic Canada (Fig. 4.12). Furthermore, detrital zircons from the
Late Devonian PQ of the SPZ reveal similar detrital zircon populations to the Cambrian-

Ordovician Goldenville Group of the Meguma terrane and the Late Devonian Horton
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PQ Group (Fig. 4.12). These data support a Meguma basement for the SPZ where the PQ

Group that was deposited on the Meguma terrane at the same time as deposition of the

group was deposited in basins and derived sediment locally
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However the geochemical and isotopic differences of the PQ Group rocks compared to
the VSC rocks suggest both suites were not directly derived from underlying basement
rocks. When compared to the Meguma terrane metasedimentary rocks (Goldenville
Group) the PQ rocks are broadly similar inTi/Nb, Zr/Y and Ti/Nb ratios, but VSC rocks
show a somewhat wider range. These data support the detrital zircon data (Braid et al., in
press), which indicate the Meguma terrane as a potential source for the PQ group. Taken
together, geochemical and detrital zircon data suggest the PQ group may have been
derived directly from Meguma terrane bedrock,whereas the VSC sediments were likely
derived from a more heterogeneous source. This heterogeneity is likely a reflection of the
contribution of the coeval mafic and felsic volcanics to VSC sediments.

The Meguma terrane extends offshore in Maritime Canada along the Scotian shelf
where it is thought to be underlain by West African basement (Pe Piper and Jansa, 1999;
Pe Piper et al., 2010). This interpretation is based largely on the geochemical signature
of granitoid samples retrieved in drill core, which indicate a granite melt source (eNd ~-
12; Tam=1857 at T=375). These data contrast with the geochemistry of onshore Meguma
terrane plutons and xenoliths of the lower crust, which generally indicate derivation from
a younger more juvenile basement (e.g. Eberz et al., 1991) similar to the eNd of the

basement signature of the SPZ and Avalonia.
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Taken together, these interpretations imply that either (i) the basement to the
Meguma terrane is highly variable in composition switching across strike from more
juvenile to more ancient and back to juvenile or (ii) the SPZ is along strike of a lateral
equivalent of the portion of the Meguma terrane that was close to the suture zone
between Meguma and Avalonia (Fig. 4.13). However late Paleozoic reconstructions
show that the OMZ and the orogen parallel shear zones (e.g. South Iberian Shear Zone,
Badajoz Cordoba Shear Zone) in the Variscan belt were roughly perpendicular to the
contact between the Meguma terrane and Avalonia in Maritime Canada (e.g. Braid et al.,
2010 in press; Woodcock et al., 2007). Therefore we suggest the latter scenario is more
likely, where the SPZ is a lateral equivalent of the onshore Meguma terrane in Maritime

Canada rather than an eastward correlative of offshore Meguma crust (Fig. 4.13).

140



(A) LATE SILURIAN. [ Y

BZsuT correLaTivEs
[ MEGUMA

[ AVALONIA

== [APETAN SUTURE

(B) EARLY DEVONIAN | U \
®

(D) VISEAN |
[ PDLZ - Recycled SUT correlatives

[JSANTA IRIA FLYSCH

Fig. 4.14Tectonic model showing juxtaposition of the lapetan suture and a Southern
Uplands equivalent crustal block with the OMZ assuming juxtaposition of the OMZ with
West Africa (e.g. Robardet, 2003) and the Bay of Biscay closed (e.g. Ries, 1978) (a) Late
Silurian closure of the Rheic Ocean (b) Early Devonian collision of the Iberian
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promontory with the British Caledonides (c) Late Devonian-Early Carboniferous excision
of a crustal fragment toward a Gondwana re-entrant with associated local extension and
deposition of the PDLZ (d) Visean juxtaposition of the SPZ, PDLZ and OMZ and
deposition of the Santa Iria flysch. Inset showing the along strike equivalent of onshore
Meguma terrane adjacent to southern Iberia in the Late Devonian (after Braid et al., in
press)
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

5.1 Regional Geologic Constraints

This thesis has contributed to the understanding of southern Iberian regional
geology in the following ways:

(1) U/Pb zircon geochronology and Sm/Nd isotopic data demonstrate that the
composition of the SPZ is different than that of Gondwana suggesting that the
SPZ was likely exotic with respect to Gondwana in the late Paleozoic, a
subject which has been extensivelydebated in the literature;

(i)  U/Pb zircon geochronology (chapter 3) demonstrates that the PDLZ, which
was previously considered an accretionary prism derived from the SPZ plate,
is also exotic with respect to Gondwana and the SPZ;

(iii))  U/Pb zircon geochronology indicates the maximum depositional age of the
Santa Iria flysch is ca. 347 Ma and the age of the crosscutting Gil Marquez

pluton is 325.5 + 1.74 Ma. Together these data provide age constraints on the
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spatial juxtaposition of the OMZ (Gondwana) and the SPZ in the late
Paleozoic;

(iv) Detailed mapping provides the first in-depth structural analysis of the PDLZ
and demonstrates that lithotectonic domains in the PDLZ were deformed as

the result of strain compartmentalization during oblique subduction.

5.2. Implications of Regional Geologic Constraints

5.2.1. Complexities in Accretionary Systems in Oblique Collisional Settings
Relevant conclusions of this work
e The PDLZ was derived from neither the upper nor lower plates but rather a far
travelling crustal fragment inboard of the Rheic suture.
e The PDLZ structures show highly compartmentalized strain during oblique

collision

Discussion

Most accretionary complexes are typically analyzed within a 2-D framework,
including previous analysis of the PDLZ in southern Iberia (e.g. Eden, 1991; Giese et al.,
1997) an approach that influenced the understanding of the geodynamic evolution of the

orogen. This thesis reveals two important attributes of the PDLZ that provide additional

144



insights into how accretionary systems evolve in three dimensions. First, the PDLZ is
characterized by highly compartmentalized deformation, where bounding faults between
lithotectonic units control deformation of subordinate levels. Second, detritus in the
PDLZ was derived from a crustal fragment, which traveled toward the subduction system
beneath the OMZ. In this case the characteristics of the PDLZ suggest that in oblique
subduction and collisional settings, with the existence of promontories and re-entrants
along a continental margin involved in the collision, accretionary prisms are not
necessarily simply derived from the upper or lower plates. Instead excision of crustal
blocks along the peripheries of promontories have the potential to deliver crustal
fragments as well as detritus from crustal fragments, which were once located in crust
which was inboard of the margins of a closing oceanic basin (i.e. Rheic). Furthermore
these processes also result in intense strike-slip shear parallel to the orogenic grain. In
the case of the PDLZ, what was previously interpreted as a simple off-scraping of
sediments from the lower plate during Variscan subduction of the Rheic Ocean is a
complex process of involving excision of crustal blocks and juxtaposition of lithotectonic
units with variable provenance. The PDLZ contains three groups of lithotectonic units,
which may have variable provenance:

(1) a mafic mélange (provenance unknown)

(11) a quartzite mélange and metasediments (exotic origin)

(111)a flysch sequence (derived from the upper and lower plates)
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Identifying similar scenarios where portions of a so-called accretionary prism are
exotic facilitates comparison between exotic units and units derived locally (e.g. SIF).
By comparing the timing of deposition of overlying units to exotic units, the timing of
collision between two continental landmasses can be tightly constrained. In the case of
the PDLZ, because of the exotic nature of the mélange and metasedimentary rocks, the
maximum depositional age (ca. 347 Ma) of the flysch (which displays local derivation)

provides an upper age constraint on the juxtaposition of the SPZ and OMZ.

Suggestions for Further Work

. More detailed petrographic and provenance study of the PDLZ to more tightly

constrain its original protolith prior to recycling.

o Detailed U-Pb, Isotopic and sampling along strike of the PDLZ (along the Rheic
suture) to identify other potential allochthonous units. These data will help

constrain the extent, geometry and timing of the tectonics associated with

transport of the PDLZ.

5.2.2. Implications and Relationship of the Tectonic Development of Southern Iberia to

the Variscan Orogen
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Relevant conclusions of this work
e The SPZ basement is possibly an equivalent to a correlative of the onshore
Meguma terrane in Maritime Canada
e Structural analyses show no Late Carboniferous to Permian re-activation along

major structures

Discussion

The SPZ is typically correlated with the Rheno-Hercynian domain of the Iberian-
Armorican arc, which delineated the outer arc of the Variscan macrostructure (Fig. 5.1).
The existence of this arc has provided a template for tectonic studies in the Variscan
orogen for more than 20 years. This interpretation is based on (i) the correlation of the
BAO with the Lizard ophiolites and (ii) the correlation of Late Devonian to
Carboniferous deposits of Iberia of coeval “Avalonian” strata of southern Britain and
northern Europe (e.g. Franke, 2000).

However, the results of this thesis suggestcorrelation of the SPZ with an along
strike equivalent of the Meguma terraneof the northern Appalachians and imply the SPZ
cannot be directly linked with the foreland basin deposits of the Rheno-Hercynian zone
on the northern limb of the Iberian-Armorican arc. In addition, a recent ca. 334 Ma age
of crystallization for the BAO (Azor et al., 2008) suggests the BAO formation occurred
during the final stages of continent-continent collision and isconsiderably younger than

the formation of the lizard ophiolite (ca. 397 + 2 Ma, U-Pb, zircon; Clark et al. 1998).
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The along strike correlation of the exposed portion of the Meguma terrane with
southern Iberia is also consistent with Late Devonian paleogeographic reconstructions
which place southern Iberia adjacent to Maritime Canada during the formation of Pangea
(e.g. Scotese, 2003). This interpretation implies that after the opening of the Atlantic
Ocean southern Iberia (SPZ) was not rotated significantly. Paleomagnetic data, however,
suggests that SPZ delineates the southern limb of the Iberian-Armorican arc, which was
formed by Late Carboniferous to Early Permian thick-skinned oroclinal bending (Weil et
al., 2010; Gutiérrez-Alonso et al., 2008; Weil et al., 2002). At the core of this arc the
Cantabrian Asturias Arc (CAA) displays apparent folding of over 180 degrees (Fig. 5.2).

As aresult, a complete tectonic evolution of the Iberian-Armorican arc from the
Late Devonian through to the Permian requires re-evaluation. Any new model should
consider the ramifications of (i) the apparent correlation of the SPZ with the Meguma
terrane (i1) the discontinuity of the Rheno-Hercynian zone from the southern to northern
limb of the arc and (ii1) the apparent post-Variscan folding of the orogen. Furthermore
the contrasting orogen-scale Early Devonian strike-slip tectonics recognized on the
northern and southern limbs of the arc (SISZ, BFZ) are consistent with tectonics
associated with the collision of a Gondwanan promontory with Laurussia. Excision of
crustal blocks during this collision is also suggested by the juxtaposition of Laurentian
deposits along the lapetan suture with the OMZ (which were re-deposited as the PDLZ)
(Fig 5.2). Alone, the oroclinal bending model does not explain the highly transpressional

strain regime in both limbs of the arc since the inception of Variscan
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convergence,suggesting that probably both models are not exclusive but rather
complementary of each other.Together these observations suggest that the Gondwanan
margin prior to collision with Laurussia was at least not entirely linear.

The tectonic development of the Iberian-Armorican Arc, therefore, appears to be
the result of both a pre-collisional Gondwanan promontory and post-collisional oroclinal
bending. As a result the geologic evolution of the belts which define the arc were likely
originally linear, whereas the continental margin defined a Gondwanan promontory.
Post-collision bending, however, likely affected only part of the orogen as the SPZ is
tectonically severed from the interior of the Iberian-Armorican arc and major structures
bounding the SPZ (i.e. SISZ) show no evidence of Late Carboniferous to Permian
reactivation. As a result, the southern limb of the arc was tectonically isolated from the
core of the arc (CAA). This isolation was likely accommodated by movement along pre-
existing shear zones (i.e. Badajoz Cordoba shear zone; South Iberian Shear Zone) (Fig
5.2). In this case the SPZ was isolated from the Iberian-Armorican arc during Late
Carboniferous to Permian shortening in the core of the arc, and remained along strike of

the Meguma terrane in Maritime Canada.
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Suggestions for Further work

o Further study of the Badajoz-Cordoba and associated orogen-parallel shear
zones is needed to confirm Early Permian reactivation and test this model.

. The correlation of Meguma with maritime Canada implies that the geometry of
the Iberian-Armorican arc is a result of a combination of complex shuffling of
tectonic blocks, as well as oroclinal bending. U-Pb detrital zircon studies are

needed from the northern limb of the arc to test for shuffling of crustal blocks

associated with collision of a Gondwanan promontory.
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Fig 5.1Reconstruction showing the position of Iberia and the SPZ in relation to the
Appalachian, Caledonide and Variscan belts at the end of Gondwana / Laurussia
convergence. Blue star = site of the future core of the Iberian-Armorican arc (following
Late Carboniferous bending). Blue arrow shows excision of Laurussian crust towards a
Gondwanan re-entrant. (Modified from Martinez Catalan et al., 2002).
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5.2.3. Preferential Extrusion of Pre-Existing Suture Zone in Indenter Style Collisional
Orogenesis
Relevant conclusions of this work
e The PDLZ was likely derived from part of the [apetan accretionary complex
between peri-Gondwana and Laurentia. This derivation implies excisions of a
crustal block containing these accretionary deposits toward a Gondwanan re-

entrant.

Discussion

The PDLZ was classically considered as an accretionary prism deriving its detritus
from the lower plate (SPZ) during Pangean amalgamation (e.g. Eden, 1991; Giese et al.,
1999). However, detrital zircon U-Pb data (Braid et al., in press; chapter 3 this study)
demonstrates that part of the PDLZ (polydeformed) records a long-lived tectonic history
and likely traveled as an excised crustal fragment far from its original source.

Thismovement appears to have nucleated along the pre-existing boundary between
peri-Gondwanan terranes and Laurentia (Iapetan suture), which would provide the
appropriate crustal weakness. Similar processes are well documented in modern orogens.
For example in the Mediterranean the Mesozoic-Cenozoic tectonic escape of the

Anatolian microplate is accommodated largely by deformation of the weak Anatolian
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accretionary collage between the southern margin of the Eurasian Plate and the Arabian
Plate (e.g. Piper, 2008). In terms of the closure of the late Paleozoic collision between
Gondwana and Laurussia, the intervening suture zones between peri-Gondwana terranes
and Laurentia would have been favorable for nucleating the excision of a crustal block.
In this scenario, similar to the Anatolian accretionary collage, suture zones and
accretionary prisms marking the closure of the Iapetus Ocean (e.g. southern uplands
terrane) would havemoved toward a tectonic free face along the re-entrant between West
Africa and Iberia. This movement was marked by dominant Devonian-Carboniferous
dextral tectonics in Atlantic Canada and sinistral tectonics in the British Caledonides

(Fig. 5.3).
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Fig. 5.3Simplified Late Devonian- Carboniferous reconstruction showing movement of

structurally weaker Iapetan suture zone deposits toward a Gondwana re-entrant (modified
from Simancas et al., 2005; Braid et al., in press).

Suggestions for Further work

. More geochronological data is needed from other accretionary- type deposits
along strike of the PDLZ to test for exotic provenance

. Offshore data is needed from the Continental shelf near the interface with

oceanic lithosphere to test for structural discontinuities and Laurentian-type

deposits.
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5.2.4. Timing of the formation of Pangea
Relevant conclusions of this work
e The regional expression of collision between the SPZ and Gondwana (OMZ) can
be bracketed between ca. 347 Ma (the maximum age for deposition of the flysch)
and ca. 325 Ma (the age of the foliated granite which crosscuts the flysch)
e The SPZ basement can be correlated with a lateral equivalent of the Meguma

terrane in Maritime Canada.

Discussion

Like in any supercontinent formation involving non-linear margins (i.e.
promontories and re-entrants) the collision of Gondwana and Laurussia resulted in
variations in the timing of collision as recorded by regional geologic sequences around
the Pangean suture zone. However it is generally considered the final closure of the Rheic
occurred by the Early Visean (e.g. Nance et al., 2010).

The correlation of the SPZ with the onshore Meguma terrane provides an
important insight into the timing of Rheic closure in the Appalachians as well as the
timing of the Variscan Orogen. Reconstructions show that the OMZ of southern Iberia,
in the late Paleozoic, was located on the margin of a re-entrant between an Iberian and a
North African promontory. To a first order, the movement of crustalblocks toward this
re-entrant likely resulted in the juxtaposition of the SPZ with the PDLZ and OMZ.

However this re-entrant would also be one of the last ocean basins to close between the
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northern Appalachians and the Variscides in Europe. As a result the ca. 325 Ma Gil
Marquez Granodiorite, which crosscuts both the PDLZ flysch deposits (ca. 347 Ma) and
the SPZ, potentially provides an upper age constraint on the collision between Gondwana
and Laurussia. In this case, the final closure of the Rheic occurred much earlier than has
been suggested (e.g. ca 300 Ma; Pe-Piper et al., 2010 or Early Permian; Nance et al.,
2010) and younger granitoid bodies in the Meguma are the result of post collisional

processes associated with crustal thickening and/or extension.

5.2.5. Geometry of the Formation of Pangea
Relevant conclusions of this work
e The SPZ basement is an along strike correlative of the Meguma terrane in

Maritime Canada.

Discussion

The Wegenerian configuration of Pangea, also known as Pangea ‘A’, is the
generally accepted paleogeographic geometric arrangement in the Early Jurassic just
prior to opening of the North Atlantic (e.g. Muttoni et al., 2003). The earlier history of
Pangea in the late Paleozoic is, however, still debated since the introduction of the
Pangea ‘B’ model (Irving, 1977). Paleomagnetic analyses demonstrate that a substantial

amount of overlap of continental crust would have occurred in the Early Permian
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between Gondwana and Laurasia if reconstructed in a Pangea ‘A’ configuration (Muttoni
et al., 1996). The overlap could be eliminated by sliding Gondwana along lines of latitude
to the east with respect to Laurasia, which would maintain the coherence of the
paleomagnetic poles. This modification results in a Pangea ‘B’ configuration which
markedly differs from the Wegenerian Pangea ‘A’ and places South America (and
Africa) adjacent to the southern margin of Europe. It has been suggested that the
transformation from Pangea ‘B’ to Pangea ‘A’ was the result of intra-Pangea megashear
that occurred, according to paleomagnetic data, within the Permian, after the Variscan
orogeny but prior to the Triassic (Muttoni et al., 2003).

In this scenario, however, the along strike preservation of terranes along both the
Laurussian and Gondwanan margins following the Variscan and Appalachian orogenies
would be unlikely as megashear between the two continents would offset or destroy
continuity between the two continental margins. However, the suggestion that Southern
Iberia preserves an along strike remnant of the Meguma terrane as exposed in Atlantic
Canada suggests a Late Devonian connection between the Laurussia and Gondwana
similar to a Pangea ‘A’ configuration. As this arrangement predates the supposed post
Variscan megashear required for the transition between Pangea ‘B’ to Pangea ‘A’ the
along strike connection between the SPZ basement and the onshore Meguma terrane in
the Late Devonian suggests Pangea ‘A’ was formed during primary Pangean

amalgamation.
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Figure 5.4 Pangea reconstructions highlighting latitudinal adjustment of Gondwana
relative to Laurussia in Permian. Pangea A after Van der Voo and French (1974); Pangea
B after Morel and Irving (1981).

5.2.6. Influences of Pangean Amalgamation on the Geometry of Atlantic Ocean
Rifting
Relevant conclusions of this work
e Excision of the Iapetan suture-zone / Laurentian margin occurred in the Late
Devonian — Early Carboniferous toward a Gondwanan re-entrant between Iberia

and West Africa
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e This excision likely nucleated along / resulted in development of orogen parallel

shear zones which crosscut peri-Gondwana Avalonian and Meguma

Discussion

It has been well documented that rifting events of tend nucleate along pre-existing
suture zones (e.g. Murphy et al., 2006; Murphy et al., 2008). For example it is believed
that the Rheic Ocean originated as a result of rifting along pre-existing suture zones
which delineated the divisions between peri-Gondwanan Avalonian-type and Cadomian-
type terranes along the Gondwana margin in the late Neoproterozoic.

Therefore if rifting occurs preferentially along pre-existing zones of weakness, the
dispersal of Pangea should have been the result of rifting events parallel to either (i)
suture zones between peri-Gondwanan terranes and Laurentia or (ii) the primary Pangean
suture between Laurussia and Gondwana. However, although the rifting of the Atlantic
was roughly parallel to the orogens, which lay in Pangea’s interior, the rifting of the
Atlantic crosscut peri-Gondwanan Avalonia and Meguma. This crosscutting resulted in
remnants of along strike Meguma in southern Iberia (SPZ) and Western Avalonia and the
separation of the Appalachians and the British Caledonides. In this case either (i) rifting
did not occur along pre-existing crustal weaknesses or (ii) crustal weaknesses existed
perpendicular to the orogen across peri-Gondwanan terranes.

The juxtaposition of part of the Iapetan suture along southern Iberia, which

transported the source for the PDLZ toward southern Iberia in the late Paleozoic, was
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likely accompanied by shear zones parallel with the southern flank of the Iberian
indenter. In this case the shear zones, which accompanied the movement of this crustal
block would have truncated the orogen between the northern Appalachians and the
British Caledonides. As a result these shear zones would have provided a favorable
structural weakness for nucleation of the Atlantic rift system across Meguma and

Avalonia (Fig. 5.4).
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5.3. Proposal for Future Project

Discussion

A major issue, which was not directly addressed in this thesis, is determining the
processes by which the Rheic Ocean closed. Addressing this issue is of fundamental
importance because as the closure of the Rheic runs contrary to modern understanding of
ocean basin closure. Two general characteristics of the Rheic Ocean indicate these

enigmatic features.

(1) a wealth of geologic evidence indicates that the Rheic began to close some ca. 50 Ma
after its formation (e.g. Scotese, 2003).Murphy and Nance (2008) suggest this closure
indicates subduction rates of the younger more buoyant Rheic Ocean lithosphere
exceeded those of the older and denser Paleopacific Ocean, which surround the external
margins of Gondwana and Laurussia. In this scenario, modern geodynamic models for
supercontinent assembly, whereby the dispersingcontinental fragments of a
supercontinent break up and migratefrom newly formed oceanic lithosphere to
reassemble at subduction zones of older oceanic lithosphere, fail to accountfor the

amalgamation of Pangea.

(i1) Murphy et al. (2009) noted that Devonian and Carboniferous mafic complexes
representing vestiges of the Paleozoic Rheic Ocean are characterized by unusually
depleted Sm-Nd isotopic compositions. Some of these mafic complexes (e.g. Lizard,
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Britain; Caréon, NW Iberia) preserve many of the lithotectonic characteristics of
ophiolites whereas other complexes, although oceanic in origin, do not contain the full
ophiolitic suite of lithologies. Murphy et al., 2010 in press suggest these signatures are
indicative of derivation from a mantle with time-integrated depletion of Nd relative to
Sm, and are consistent with a mantle source that previously had yielded basalt at some
time in the Neoproterozoic. In this case the Rheic Ocean would have incorporated this
older mantle sometime during its evolution.

In terms of the geology of southern Iberia, the BAO is one such mafic complex,
which displays an uncharacteristically high Sm Nd isotopic signature (exqq +7.9 to +9.2)
(Castro et al., 1996). However this thesis supports the notion that the BAO is not
genetically related to other primary Rheic Ocean ophiolitic complexes (e.g. Azor et al.,
2008) despite the fact that its uncharacteristically high Sm-Nd signature indicated that it
may have sourced the same ultra-depleted Neoproterozoic mantle. In any case, if the
BAO is younger than terminal collision between Gondwana and Laurussia then the exact
location of the Rheic suture is cryptic beneath the PDLZ.

The Peramora mélange (Eden, 1991), which is the lowermost tectonstratigraphic
unit within the PDLZ, contains amphibolite blocks (part of Domain B; chapter 2), which
have previously been thought derived from the BAO. However, if the BAO formed
during a transtensional event in the Carboniferous (e.g. Azor et al., 2008) then this
relationship is unlikely as the mélange is (1) polydeformed and (ii) overlain by less

deformed Late Devonian tectonstratigraphic units. As a result the Peramora M¢lange,
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which was not studied in detail in this thesis, may be a more likely candidate for rocks
genetically related to primary Rheic Ocean lithosphere. If so, then constraining the
tectonic evolution of the Peramora mélange is critical in better understanding the tectonic

evolution of the Rheic Ocean.

Proposed Model

Why the Rheic Ocean closed so early in its development may also be linked to the
potential incorporation of this older mantle. As a result of implied earlier (to Rheic
development) basalt extraction, this mantle would be relatively buoyant and thus
preferentially preserved (Prelevi¢ and Foley, 2007). According to Murphy et al., 2010 in
pressthis process many have occurred as portions of more buoyant Paleopacific were
transferred to the upper plate (interior Rheic Ocean) along transform fault induced
subduction zones at its out margins. These subduction zones would have nucleated
where younger Rheic Ocean lithosphere was spatially juxtaposed with denser
Paleopacific lithosphere.

Incorporation of buoyant Paleopacific lithosphere would ultimately create
microplates bounded by subduction zones, which merged with the continental margins of
Gondwana and Laurussia (Fig. 5.4). In this scenario, if enough fragments of buoyant
Paleopacific lithosphere were incorporated into the interior Rheic realm then these
subduction zones could merge to form Rheic subduction zones parallel to the continental

margins. Furthermore the simple subduction of Paleopacific lithosphere beneath Rheic
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lithosphere at the outer margins could facilitate crustal weakness and slab tear along the
Rheic margins (Fig. 5.5). Taken together these suppositions seem to suggest that
subduction at an early stage during Rheic development was entirely possible and
accounts for the enigmatically high Sm Nd isotopic signatures of Rheic Ocean mafic

complexes.

Suggestions for Project

o In order to gain further insight into the development of Rheic Ocean mafic
complexes the tectonothermal history of the Peramora Mélange needs to be better
understood. Asa result further detailed field based mapping and sampling,
geochemical and isotopic analysis and uranium lead isotope dating of this mafic
meélange is needed. Taken together these data will test (i) the regional
relationship of the mafic mélange to the PDLZ (ii) the timing of formation of the
mafic mélange with respect to the rest of the PDLZ and the BAO and (iii) the
genetic linkages between the mélange and the primary Rheic Ocean lithosphere.
Constraining these relationships will greatly improve our understanding of the
geodynamic evolution of this enigmatic ocean and the processes, which led to the

formation of Pangea.
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APPENDIX A

FIELD DATA

A.1. Google Earth

Geologic field data collection, analysis and map compilation are undergoing a
revolution in methods, largely precipitated by global positioning system (GPS) and
geographic information system (GIS) equipped mobile computers paired with virtual
globe visualizations (e.g. Whitmeyer et al., 2010). Geologic data, maps and
interpretations are beginning to be presented in a variety of formats on virtual globes,
such as Google Earth. Google Earth—based interactive geologic maps communicate data
and interpretations in a format that is more intuitive and easy to grasp than the traditional
format of paper maps and cross sections. The virtual three-dimensional (3-D) interface
removes much of the cognitive barrier of attempting to visualize 3-D features from a two-
dimensional map or cross section (Whitmeyer et al., 2010).

In this thesis all field and analytical data has been imported into Google earth (i.e.
field notes, images, U-Pb diagrams) See examples of screenshots in figures A.1, A.2,
A.3, A4, A.5. These images and data can also be accessed in the supplementary DVD
attached to this thesis. The images and overlays are compiled in KML code, which can
be opened with any Google earth application. Insert the DVD into your computer for

more detailed instructions.
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Fig. A.1 Google earth screen shot showing geologic map of southern Iberia overlay
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Fig. A.2 Google earth screen shot showing geologic overlays and placemarks for sample

and outcrop locations.
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RSA 01-16

Notes:
All pictures of oppasing bank taken at this location and described features in surrounding 20m2

« pics taken approx along strike of adjacent south eastern bank of river (See pics 25,26,27) General

orientation of units seen 080°/90

« Note partuclarly relationships between massive cobble type | quartzite and type Il bedded quartzite
Consider both spatial and temporal relationships
Pic 28 Shows quartzite cobble cut by matrix as well as being wrapped / cobble has smooth rounded upper
edge and jagged fractured lower surface / also stretched along east /west plane. Picture is of N/S cross
section. What does this indicate not sure??

Pic 29 shows cobble within cobble phenomenon — suggests possible cannibalization of previous mélange units /
could also be primary bedding showing sinistral shear.

Directions: To here - From here

Fig. A.3 Google earth screen shot showing example of field note and field pictures linked

to outcrop location.
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RSA-02

U/Pb relative probability plot - sample RSA-02

Relative probability

. ,mGoog[e

Fig. A.4 Google earth screen shot showing U-Pb probability plot link to sample and

outcrop location.
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Fig. A.5 Google earth screen shot showing flyover of the PDLZ with sample and outcrop

locations
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APPENDIX B

GEOCHRONOLOGICAL DATA

B.1. Introduction

Uranium — lead(U-Pb) zircon dating of rocks described in chapters 3 and 4
constitutes the primary datasets for this thesis. All U-Pb dates (for both igneousand
sedimentary rocks) were obtained from the mineral zircon using laser ablation
inductively couple mass spectrometry (LA-ICPMS). The first part of this appendix
briefly outlines the general principles behind U-Pb dating and the second part describes

the sample preparation and analytical techniques.

B.2. Principles behind U-Pb dating

The U-Pb dating method relies on two separate decay chains, the uranium series
from ***U to **°Pb, with a half-life of 4.47 billion years and the actinium series from >°U
to 2’Pb, with a half-life of 704 million years. The presence of these two independent
decay processes of uranium results in two independent geochronometers and as a result is
the most widely used geochronological tool. Some minerals, such as zircon, when
formed incorporate 280 and **°U into their mineral structure and at the time of formation

would have no initial radiogenic lead.
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If a mineral remained closed, and therefore no lead loss has occurred, the age of the
zircon can be calculated independently from the two equations:

200phy /28 = ¢ Myt — |

And

207py / B5 = g hyst - 1,

These are said to yield concordant ages. If these concordant ages are plotted over a series
of time intervals, in a**°Pb/>*U vs. 2*’Pb/**°U diagram the resulting curve through time is
generally called a ‘concordia’ line (Wetherill, 1956).

For example at the time of formation a mineral containing uranium with no initial
lead will plot at the origin. The location of the point on concordia depends only on the
age of the sample. If at some later date (e.g. 2.4 billion years after formation) the sample
loses lead (i.e. system is opened), the point will move off of concordia along a straight
line toward the origin (Fig. B.1). This lead loss can occur as the result of some geologic
event (i.e. Mountain building and metamorphism) which causes the crystal system to
become open.

At any time after the episodic lead loss (e.g 1.1 billion years later), various points
will lie on a chord to concordia connecting the original age of the sample and the age of
the lead loss episode, depending on the relative amounts of Pb loss. This chord is called a
discordia. In this case the upper intercept of the discordia with concordia gives the
original age of the rock, or 3.5 Ga in the example shown (Fig B.1c¢). There are several

hypotheses for the interpretation of the lower intercept, but the most common
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interpretation is that it indicates the age of the event that caused the lead loss (e.g. 1.1 Ga
in example).

In addition, an “age” based on the 297pp2%py, ratio can be calculated because this
ratio changes over time. If necessary, a correction can be made for the initial lead in these

. 204 . . . 20651 /238

systems using = Pb as an index. Therefore if the three age calculations agree (* Pb/~"U,
297pb/ 25U and *°’Pb/2*°Pb), then the age represents the true age of the rock. Lead,
however, is a volatile element, and so lead loss is commonly a problem. As a result,

simple U-Pb ages are often discordant.
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Fig. B.1 Principle behind the U-Pb concordia diagram (a) Concordant age (2.4 Ga) (b)Pb
loss event 2.4 Ga after formation (c) 1.1 Ga after Pb loss
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B.3. Laser Ablation Inductively Coupled Mass Spectrometry

B.3.1. Sample Selection and Preparation

Approximately 15-20 Kg of rocks were selected for each sample. Zircon grains
were separated using conventional crushing, grinding and wet shaking table methods,
followed by heavy liquid and magnetic separation at the Pacific Centre for Isotopic and
Geochemical Research (PCIGR). Zircon grains were then hand-picked and mounted,
together with zircon standards and in-house standards on an epoxy puck. The zircons
were mounted in a grid format so individual zircon grains could be indentified.
Following mounting in epoxy the pucks were polished to reveal central portions of the
zircon grains. After polishing the mount was washed by soap and rinsed in deionized

water.

B.3.2. Methodology

Zircon grains were dated using laser ablation LA-ICPMS methods, employing a
New Wave UP-213 laser ablation system and a Thermo Finnigan Element 2 single
collector, double-focusing, magnetic sector ICP-MS. Zircons were handpicked from the
heavy mineral concentrate and mounted in an epoxy puck along with several grains of the
Plesovice zircon standard (Slama et al. 2008), together with a separate in-house, 197 Ma
standard zircon, and brought to a very high polish. High quality portions of each grain

free of alteration, inclusions, or possible inherited cores were selected for analysis. The
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surface of the mount was washed for 10 minutes with dilute nitric acid and rinsed in
ultraclean water prior to analysis. Line scans were employed in order to minimize
elemental fractionation during the analyses. Backgrounds were measured with the laser
shutter closed for ten seconds, followed by data collection with the laser firing for
approximately 29 seconds. The time-integrated signals were analysed using GLITTER
software (Van Achterbergh et al. 2001; Griffin et al. 2008), which automatically subtracts
background measurements, propagates all analytical errors, and calculates isotopic ratios
and ages. Time-resolveddata were carefully examined to identify and avoid portionsof the
signal that reflected Pb loss and/or the presence ofolder inherited cores or altered zones in
the zircon being analyzed. Corrections for mass and elemental fractionation were made
by bracketing analyses of unknown grains with replicate analyses of the PleSovice zircon
standard. A typical analytical session for dating zircons at the PCIGR consists of four
analyses of the standard zircon, followed by four analyses of unknown zircons, two
standard analyses, four unknown analyses, etc., and finally four standard analyses. The
197 Ma in-house zircon standard was analysed as an unknown in order to monitor the
reproducibility of the age determinations on a run-to-run basis. Final interpretation and
plotting of the analytical results employed the ISOPLOT software (Ludwig 2003). The

final interpreted age for intrusive samples is based on a weighted average of the

individually calculated 206py,238y ages. Analytical results for detrital zircon samples
are filtered, with analyses that exhibit >5% reverse discordance or >10% normal
discordance being rejected. Errors are quoted at the 2 level. For samples yielding
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isotopic ages >1Ga, the **’Pb/*°°Pb ages are reported, whereas for samples <1 Ga the
296pp/2¥ ages are reported. Detrital zircon ages are presented as cumulative density

plots.
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ACR-04-R2-Z1 ACR-04-R2-Z1

ACR-04-R3-7Z4 (CL) ACR-04-R3-Z4

Fig. B.2 LA-ICPMS line scan locations for concordant **°Pb/>**U ages for sample ACR-04.
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ACR-04-R4-Z4 ACR-04-R4-74

ACR-04-R1-71 ACR-04-R1-71

ACR-04-R3-71 ACR-04-R3-71

ACR-04-R3-Z5 ACR-04-R3-Z5
Fig. B.2 (cont.). LA-ICPMS line scan locations for concordant **°Pb/>*U ages for sample ACR-
04.
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ACR-04-R3-Z6

ACR-04-R4-Z3 ACR-04-R4-Z3

Fig. B.2 (cont.). LA-ICPMS line scan locations for concordant **°Pb/***U ages for sample ACR-
04.
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ACR-04-R2-7Z7

ACR-04-R3-Z7 ACR-04-R3-Z7

ACR-04-R4-Z5 (CL) ACR-04-R4-Z5 (SEM)

Fig. B.2(cont.). LA-ICPMS line scan locations for concordant °’Pb/**°Pb ages for sample ACR-
04 zircons with xenocrystic cores.
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150KV 6.0 932x BSE 117

JAB09-5 (BSE)

AccV SpotMagn Det WD p————— 10048

AccV SpotMagn Det WD b— 1 100 um
150kV 6.0 932x BSE11.7

JAB09-6 & JAB09-7 (BSE)

&

AccV SpotMagn Det WD |———+—{ 507um
150kvV 6.0 991x  BSE11.7

JAB09-8 (BSE)

<>
/

AccV SpotMagn Det WD |———+ 50um
150kv 6.0 1074x BSE11.7

JAB09-10 (BSE)

AccV SpotMagn Det WD b———— 50um
150kV 6.0 1074x BSE11.7

JAB09-12 (BSE)

Acc.V “SpotMagn Det WD ———— 50um
150KV 6.0 1038x BSE11.7

JAB09-13 & JAB09-21 (BSE)

Fig. B.3 LA-ICPMS line scan locations for concordant “*°Pb/***U ages for sample JAB-09.
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AccV SpotMagn Det WD b———————— 100 um AccV SpotMagn Det WD |———+ 50um
150kV 60 787x BSE11.7 150kv 6.0 1080x BSE 117

JAB09-15 (BSE) JAB09-17 (BSE)

AccV SpotMagn Det WD p—— 4 50 pum AccV SpotMagn Det WD p————————— 100 prtv
150kv 6.0 1022x BSE 11.7 150kV 60 847x BSE11.7

JAB09-18 (BSE) JAB09-22 (BSE)

AceV SpotMagn Det WD }——+— 50um
150kV 60 1022x BSE 11.7 150kV 6.0 1060x BSE 11.7

JAB09-24 (BSE) JAB09-30 (BSE)
Fig. B.3 (cont). LA-ICPMS line scan locations for concordant **°Pb/~**U ages for sample JAB-09.
253

Acc.V SpotMagn Det WD }——— 50um




AccV SpotMagn Det WD —— 50 um
150kV 60 1070x BSE11.7

JAB09-2 (BSE)

Det WD |——— 50um
150kv 60 1038x BSE11.7

JAB09-14 (BSE)

AccV SpotMagn Det WD }——————— 50um
150kV 6.0 1080x BSE 117

JAB09-16 (BSE)

AccY SpotMagn Det WD |————— A 50um
150kV 6.0 1061x BSE 11.7

JAB09-19 (BSE)

AccV SpotMagn Det WD ——{ 50 pum
150kV 6.0 1061x BSE 11.7

JAB09-20 (BSE)

Fig. B.3 (cont). LA-ICPMS line scan locations for concordant **°Pb/***U ages for sample JAB-09.

Det WD p——— 50um
BSE 11.7

JAB09-20B (BSE)
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AccV SpotMagn Det WD b—— 50 um
150KV 60 1022x BSE 11.7

JABO09-25 (BSE)

AccV SpotMagn Det WD ——{ 50 pm
150kV 60 1069x BSE 117

JAB09-28 (BSE)

AccV SpotMagn Det WD p———— 100um
150kV 60 847x BSE11.7

JAB09-23 (BSE)

AccV SpotMagn Det WD |——— 50um
150kV 60 1034x BSE 11.7

JAB09-4 (BSE)

Fig. B.3 (cont). LA-ICPMS line scan locations for concordant **°Pb/~**U ages for sample JAB-09.
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AccV SpotMagn Det WD |——+ 50um
150KV 6.0 1070x BSE 117

JAB09-1 (BSE)

AccV SpotMagn  Det WD |———+— 50 pum
150KV 6.0 1069x BSE 11.7

JAB09-29 (BSE)

AccY SpotMagn Det WD p—— 50pum
150kv 60 1070x BSE 11.7

JAB09-3 (BSE)

AccV SpotMagn Det WD |——— 50pum
150kV 6.0 1000x BSE 117

JAB09-26 (BSE)

Fig. B.3 (cont). LA-ICPMS line scan locations for concordant *°Pb/***U ages for sample JAB-09.
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AccV SpotMagn Det WD b——— 50 um
15.0kv 60 1074x BSE11.7

JAB09-9 (BSE)

AccV SpotMagn Det WD |————— 50um
15.0kv 6.0 1074x BSE 11.7

JAB09-11 & JAB09-27 (BSE)

Fig. B.3 (cont) LA-ICPMS line scan locations for concordant ’Pb/*”°Pb ages for sample JAB-09
zircons with xenocrystic cores.
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Acc.V ag
150KV 60 1072x  BSE 117

n Det WD ——————{ 50m

JB28-2 & JB28-3 (BSE)

Det WD |p————— 50um
BSE 118

JB28-21 & 22 (BSE)

JB28-23 (BSE)

Magn

Det WD }———— 50um

1001x BSE 117

JB28-5 (BSE)

Fig. B.4 LA-ICPMS line scan locations for concordant “*°Pb/***U ages for sample JB-28.
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Det WD p————— 50pm
x BSE 117

JB28-9 (BSE)

AccV SpotMagn Det WD ————— 504m
150K 60 1003x BSE 117

JB28-11 (BSE)

Magn Det WD ——{ 50m
1031x BSE 118

JB28-25 (BSE)

Magn Det WD —————| 50zm
968 BSE 118

JB28-16 & JB28-17 (BSE)

AccV SpotMagn Det WD p————— 50am
150KV 60 1038x BSE 117

JB28-8 (BSE)

Fig. B.4 (cont) LA-ICPMS line scan locations for concordant **°Pb/***U ages for sample JB-28.
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Acc.V SpotMagn Det WD |——— 50um
150KV 60 1072x BSE 11.7

JB28-1 (BSE)

AccV SpotMagn Det WD p———— 50um
150kv 6.0 986x BSE117

JB28-13 (BSE)

AccV SpotMagn Det WD —— ] 50um
150kv 6.0 1069x BSE 11.7

JB28-30 (BSE)

AccV SpotMagn Det WD p——— 50 um
150kV60 986x BSE11.7

JB28-14 (BSE)

AccV SpotMagn Det WD p————| 50um
150kV 6.0 1057x BSE11.7

JB28-12 (BSE)

AccV SpotMagn Det WD p——+ 50um
150kv 6.0 1031x BSE 118

JB28-24 (BSE)

Fig. B.4 (cont) LA-ICPMS line scan locations for concordant **°Pb/***U ages for sample JB-28.

Zirconswith xenocrystic cores.
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AccV SpotMagn Det WD |——— 50um
150kV 6.0 967x BSE117

JB28-7 (BSE)

AccY SpotMagn Det WD p—— 4 50 um
150kV 60 1054x BSE 118

JB28-15 (BSE)

AceV SpotMagn Det WD p——— 50um

150KV 60 1061x BSE 118
JB28-18 (BSE)

AccY SpotMagn Det WD p———— 50um
150kV 6.0 1042x BSE 118

JB28-27 (BSE)

Fig. B.4 (cont) LA-ICPMS line scan locations for concordant **’Pb/**°Pb ages for sample JB-28 zircons

with xenocrystic cores.
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1989+25

_ >

Acc.Y SpotMagn Det WD —— 50um
150KV 6.0 1031x BSE 118

JB28-26 (BSE)

Acc.V SpotMagn Det WD ————{ 50 um
150KV 60 1107x BSE 117

JB28-28 (BSE)

Fig. B.4 (cont) LA-ICPMS line scan locations for concordant °’Pb/*?°Pb ages for sample JB-28
zircons with xenocrystic cores.
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Ac SpotMagn Det WD j—— 50pum
150kV 60 1001x BSE 11.7

Accl SpotMagn Det WO ————{ 50m
150KV 60 1038x BSE 117

JB28-10 (BSE)

2828+15

Accl SpotMagn Det WD ———| 50um
150KV 60 1061x BSE 118

JB28-19 (BSE)

Fig. B.4 (cont). LA-ICPMS line scan locations for concordant *’Pb/**°Pb ages for sample JB-28
zircons with xenocrystic cores.
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JB26B-R8-Z4 (SEM)

JB26B-R8-Z4 (CL)

e

JB26B-R10-Z2 (SEM)

JB26B-R10-Z2 (CL)

JB26B-R10-Z1 (CL) JB26B-R10-Z1 (SEM)

Fig. B.5LA-ICPMS line scan locations for concordant **°Pb/***U ages for sample JB-26B.
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i .

JB26B-R11-Z11 (CL)

JB26B-R11-Z11(SEM)

Fig. B.5 (cont) LA-ICPMS line scan locations for concordant **Pb/***U ages for sample JB-26B.
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- _—

FLATIES

JB26B-R10-Z5 (CL) JB26B-R10-Z5 (SEM)

Fig. B.5 (cont) LA-ICPMS line scan locations for concordant **Pb/***U ages for sample JB-26B.
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JB18-R10a-Z9 (CL)

| . 5%
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Fig. B.6LA-ICPMS line scan locations for concordant ***Pb/?*U ages for sample JB-18.
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Fig. B.6 (cont) LA-ICPMS line scan locations for concordant **Pb/**U ages for sample JB-18.
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Fig. B.6 (cont) LA-ICPMS line scan locations for concordant **Pb/**U ages for sample JB-18.
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Fig. B.6 (cont) LA-ICPMS line scan locations for concordant **Pb/**U ages for sample JB-18.
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Fig. B.7 U-Pb concordia for sample RSA-01.
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Fig. B.8 U-Pb concordia for sample JB-43.
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Fig. B.9 U-Pb concordia for sample RSA-02.
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APPENDIX C

PRINCIPLES OF SM-ND ISOTOPIC ANALYSIS

C.1. Sm/Nd Systematics

Understanding the processes which occur during mountain building and the
destruction of oceanic lithosphere rely heavily on determining the timing of important
geologic events internal to these systems. While surface geology remains the foundation
for any tectonic study, many steps in the history of an exposed rock cannot be determined
by simple field methods. This is true particularly for igneous rocks, which often have
long lived complex thermal histories recording processes deep within the earth’s crust to
eventual exposure at shallow levels. To understand these processes Sm Nd isotopic
systems are extremely valuable. Samarium and neodymium are rare earth elements (REE)
joined in a parent-daughter relationship by the alpha-decay of '*’Sm to '*Nd with a half
life of 1.06 x 1011 years. The isotopes also have both a similar ionic radii and valency,
and consequently intra-crustal processes such as anatexis, fractionation and regional
metamorphism rarely have little effect on the samarium neodymium ratio (Murphy and
Nance, 2002). This ratio is controlled primarily by the depleted mantle, which

preferentially retains samarium over neodymium (DePaolo, 1981). Consequently, the
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samarium, neodymium ratio is about 40% lower in crustal rocks than it is in the depleted
mantle.

This difference is the primary control on samarium neodymium systematics;
resulting in differential isotopic signatures through time on both the crustal and depleted
mantle reservoirs. Due to the radioactive decay of'¥’Sm to '**Nd and these varying initial
concentrations the ratio of "*Nd to '**Nd (a stable isotope) will increase more rapidly in
the depleted mantle than in the continental crust. The bulk earth (represented by CHUR;
Chondritc Uniforn Reservoir) is a mixing of both depleted and enriched sources,
subsequently the initial Sm/Nd ration increases more rapidly than continental rocks and
less than the depleted mantle (See Fig. C.1). Differences between the '*Nd/"**Nd initial
ratios for each system can be expressed by epsilon neodymium (eNd). A given sample
plotted for eNd at the time of crystallization can be extrapolated backward using the
Sm/Nd ratio to the intersection with the depleted mantle. This intersection gives the
depleted mantle model age (Tq4n). This intersection is the potential age at which the crust
was derived from the mantle. Model ages, however may be influenced by mixing of a
relatively juvenile with a relatively ancient crust during its thermal evolution (Fig. C.1)
and consequently T4, ages must be interpreted with caution in conjunction with primary
data indicative of the crustal evolution of the rock (e.g. Petrology, U/Pb geochronology).

The samarium neodymium ratio is not only preserved through crustal processes
but also through most surface processes. This is due predominantly to the natural
tendency for REE (rare earth elements) to concentrate in robust accessory mineral phases.
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During melt evolution, minerals that crystallize early in the fractionation processes, (i.e.
olivine clinopyroxene), generally contain low REE abundances and consequently total
REE concentration in a melt tends to increase during fractionation processes. During
eventual magma cooling, REE’s ultimately become concentrated in accessory phases
such as zircon, titanite and monazite.

The robust nature of some of these minerals (ie zircon) in most geologic
environments allow for samarium and neodymium to remain intact during weathering
processes, carried in solid detritus and deposited in various sedimentary systems. This
characteristic enables Sm/Nd to be used as a tracer of the source materials of sedimentary
rocks (e.g. McCulloch and Wasserburg, 1978). Sm-Nd isotopic ratios determine a
weighted average of samarium neodymium ratios in the source material. However as
noted by Murphy and Nance (2002), because REEs are concentrated in heavy minerals,
sedimentary processes such as fractionation or accumulation of heavy minerals during
sediment transport may exert a dominant control, so that the source of the dominant

silicate phases is unconstrained.
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Samarium-Neodymium CONTINENTAL
Isotopic System CRUSTAL ROCKS

147gm /143Nd

Sm/Nd ~0.2

DEPLETED MANTLE
Sm/Nd ~0.5

A%

Crust Formation
over >3900 Ma

ORIGINAL BULK
CHONDRITIC EARTH
Sm/Nd ~0.32

143 Nd / 144Nd

Now TIME (Ma) Then

T
Now TIME (Ma) Then

Fig. C.1 (from Murphy and Nance, 2002) Sm — Nd isotopic system. Upper panel: The
depleted mantlepreferentially retains Sm over Nd so that its Sm/Nd ratio (f0.5) isgreater
than that of bulk earth (CHUR) (~0.32) and the continentalcrust (~0.2). Center panel: As
a result of the variations in Sm/Ndand the decay of'*’Sm to'*Nd, the'**Nd/"**Nd initial
ratioincreases more rapidly in the depleted mantle than in CHUR and incontinental
crustal source rocks. Lower panel: Differences betweenthe'“*Nd/'**Nd initial ratio of
depleted mantle, CHUR, and crustalrocks expressed asepsilon Ndvalues relative to
CHUR. The Sm/Nd ratioand theeNdvalue of a sample (calculated for the age of the rock)
canbe used to produce a growth line that intersects the depleted mantlecurve. This
intersection yields a depleted mantle (Tpy)model age. This model age is open to various
interpretations. It could reflect thetime (T,)at which the crust was derived from the
depleted mantle.Alternatively, the model age may reflect a mixing age of moreancient
(e.g. with aTDMmodel age of T;)with more juvenile (with aTpymodel age ofT3) crust
(modified fromFryer et al., 1992).
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APPENDIX D

GEOCHEMISTRY

Table D.1 Geochemistry of granite samples from Sierra del Norte Batholith (SDNB)

Sample JAB-02 JAB-09 JAB-10 JAB-24  JAB-25 JAB-26 JAB-27 JAB-28 JB-26B

Formation SDNB SDNB SDNB SDNB SDNB SDNB SDNB SDNB SDNB

Si02 75.32 68.07 76.63 76.18 76.31 71.69 76.72 71.44 60.28
Ti02 0.183 0.542 0.257 0.139 0.051 0.375 0.028 0.209 0.74
Al203 13.61 15.45 13.1 12.69 13.02 14.08 14.21 14.97 12.11
Fe203 1.57 4.75 0.99 1.1 0.61 2.55 0.98 1.18 7.45
MnO 0.021 0.086 0.004 0.009 0.003 0.034 0.029 0.008 0.16
MgO 0.19 0.69 0.31 0.09 0.01 0.76 0.19 0.69 2.94
CaO 0.78 2.85 2.71 0.24 0.83 1.63 0.83 1.77 435
Na20 3.39 4.17 52 3.46 3.64 3.26 0.51 3.38 3.39
K20 5.04 3.34 0.26 5.05 4.7 4.26 3.63 5.27 0.77
P205 0.055 0.182 0.05 0.028 0.021 0.132 0.164 0.174 0.14
LO.L 0.79 0.10 1.18 0.53 0.20 1.55 2.89 0.26
Total 100.949 100.23 100.691 99.516 99.395 100.321 100.181 99.351 94.89
\% 13 42 24 205 186 309 4 120 101
Cr 0 3 488 115 75 0 37 197
Co 1 5 2 37 21 31 1 16
Ni 3 4 3 133 68 23 4 37 10
Cu 2 7 1 69 28 35 3 88 155
Zn 23 76 6 &7 96 85 13 85 34
Ga 16 23 14 15 26 19 24 21 9
Rb 167 117 6 91 189 22 283 155 32
Sr 81 141 164 1097 81 159 58 2973 136
Y 24 48 41 24 30 42 29 25 51
Zr 107 267 119 241 188 153 47 611 1126
Nb 6 11 7 28 20 7 18 75 11
Ba 333 420 82 1099 445 42 140 2887 113
La 32 48 32 47 36 7 19 185
Pb 26 20 8 5 14 14 8 -1 39
Th 16 11 18 5 20 6 5 48 32
U 4 2 2 0 5 4 10 6 <LD
Ce 41 83 55 82 65 28 15 304 292
Nd 19 44 21 50 30 23 4 130
Cs 2 4 2 0 7 3 9 0

284



Table D.2. Rare Earth Elements granite samples from Sierra del Norte Batholith(SDNB)

Sample JAB-02 JAB-09 JAB-10 JAB-24  JAB-25 JAB-26 JAB-27 JAB-28 JB-26B

Formation SDNB SDNB SDNB SDNB SDNB SDNB SDNB SDNB SDNB

Y 17.52 42.10 31.81 81.74 19.47 19.82 28.94 17.82
Zr 130.42 361.92 150.35 242.20 81.49 172.89 66.01 105.23
Nb 4.40 12.34 4.93 4.41 2.01 7.62 9.54 10.01
Ba 342.16 523.24 71.87 165.64 231.70 514.97 101.52 579.22
La 19.59 39.43 20.39 45.12 20.14 32.23 5.79 27.95
Ce 36.15 81.75 47.06 76.91 31.78 61.97 12.76 55.27
Pr 4.67 9.79 4.73 12.34 3.88 7.31 1.60 6.28
Nd 17.62 37.88 18.38 50.61 13.14 26.78 5.65 23.48
Sm 3.79 8.01 3.92 12.40 2.28 5.76 227 4.82
Eu 0.56 1.71 0.69 0.66 0.27 0.92 0.25 1.09
Gd 3.21 7.10 4.07 11.58 221 4.24 2.97 3.41
Tb 0.54 1.31 0.80 2.28 0.41 0.67 0.74 0.61
Dy 3.29 8.26 5.62 15.00 3.09 4.12 5.09 3.51
Ho 0.65 1.58 1.23 3.08 0.64 0.76 1.02 0.66
Er 1.94 4.54 3.59 9.47 2.01 2.04 3.27 1.85
Tm 0.25 0.69 0.57 1.36 0.35 0.32 0.52 0.27
Yb 1.88 4.45 3.93 8.62 2.47 1.94 3.29 1.68
Lu 0.28 0.64 0.56 1.25 0.37 0.28 0.48 0.22
Hf 3.29 7.06 4.14 6.54 3.59 4.50 2.42 2.69
Ta 0.28 0.42 0.35 0.41 0.23 0.71 1.45 1.04
Th 10.22 7.71 11.69 12.34 15.18 15.67 5.18 11.57
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Table D.3. Geochemistry of samples from the South Portuguese Zone (SPZ)

Sample IB-24 IJB-25 JB-17 JAB-19 JAB-14 JAB-12 JAB-13 JB-13

Formation PQ PQ PQ VSC VSC VSC VSC VSC
Si02 74.10 53.85 54.99 64.54 64.08 76.9 75.32 64.91
Ti02 0.65 0.96 0.23 0.729 0.741 0.402 0.321 0.81

Al203 12.32 24.80 1.57 16.7 18.33 10.8 10.75 21.20
Fe203 5.63 9.29 36.48 7.65 7.3 4.57 4.69 7.30
MnO 0.10 0.11 0.09 0.436 0.209 0.11 0.169 0.18
MgO 2.00 2.02 0.06 1.68 1.33 1.17 1.3 1.82
CaO 0.12 0.05 0.04 0.18 0.09 0.05 0.16 0.17
Na20 0.78 0.71 <LD 0.95 0.32 0.01 -0.01 0.18
K20 1.38 3.70 0.18 3.11 4.78 3.8 3.62 4.61
P205 0.08 0.07 0.32 0.068 0.087 0.068 0.124 0.07
L.O.L 3.74 3.15 2.59 3.31
Total 97.33 95.84 93.99  99.783 100.417 100.47 99.754 101.52
v 62 147 47 200 7 84 188 138
Cr 65 137 49 114 0 39 112 96
Co 27 2 12 13
Ni 26 61 44 78 4 37 57 59
Cu 5 51 19 33 3 95 29 259
Zn 17 51 21 123 39 52 104 41
Ga 8 31 <LD 28 25 17 27 23
Rb 40 174 6 179 172 155 188 193
Sr 34 103 18 100 18 16 95 88
Y 20 28 16 33 106 29 30 28
Zr 228 165 404 173 181 77 193 154
Nb 13 21 6 22 23 9 23 18
Ba 267 726 52 446 184 568 447 495
La 53 61 30 48
Pb 8 14 17 15 26 9 11 19
Th 8 14 <LD 22 14 13 19 13
U <LD <LD 6 8 7 3 4 <LD
Ce 72 166 62 97 86 45 86 125
Nd 51 56 21 40
Cs 6 5 8 8
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Table D.3 (continued). Geochemistry of samples from the South Portuguese Zone (SPZ)

Sample JB-14  JB-10 JB-11 JB-16 JAB-15 JAB-17 JAB-18
Formation VSC VSC VSC VSC VSC VSC VSC
Si02 72.45 103.53 68.92 86.68 62.01 57.24 59.15
Ti02 0.91 <LD 0.63 0.49 1.066 1.073 1.09
Al203 13.69 <LD 16.20 11.19 19.78 19.61 19.56
Fe203 7.19 7.48 5.03 4.22 6.43 10.06 8.2
MnO 0.44 0.18 0.16 0.04 0.068 0.112 0.072
MgO 4.05 <LD 1.55 1.17 1.27 1.53 1.39
CaO 0.30 0.03 0.24 0.06 0.05 0.08 0.13
Na20 1.22 <LD 4.83 0.33 0.36 0.33 0.27
K20 2.04 0.01 1.57 1.40 3.93 3.7 39
P205 0.07 0.00 0.06 0.05 0.108 0.129 0.117
L.O.L 493 5.95 5.75
Total 102.55 110.73 99.37 105.77  100.002 99.814 99.629
\Y 157 28 78 72 71 151 151
Cr 39 <LD 9 41 54 301 626
Co 8 27 35
Ni 23 <LD 15 21 20 114 150
Cu 47 81 12 19 19 49 63
Zn 32 <LD 5 6 59 72 71
Ga 20 <LD 23 8 20 19 15
Rb 81 <LD 46 51 162 177 209
Sr 53 2 84 41 1115 1245 896
Y 27 <LD 70 16 16 23 12
Zr 143 <LD 348 219 334 354 244
Nb 8 <LD 20 11 56 38 10
Ba 263 <LD 282 142 1495 2113 1534
La 60 69 31
Pb <LD 5 7 7 15 9 13
Th 5 <LD 13 6 15 6 11
U <LD <LD <LD <LD -1 2 2
Ce 57 <LD 153 45 93 121 62
Nd 35 56 31
Cs 2 0 4
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Table D.4 Rare Earth Elements from the South Portuguese Zone (SPZ)

Sample JB-24  ]B-25 JB-17 JAB-19 JAB-14 JAB-12 JAB-13 ]JB-13
Formation PQ PQ PQ VSC VSC VSC VSC VSC
Y 19.72 34.88 24.59 21.67 20.68
Zr 199.91 137.62 13525  88.37 66.30
Nb 12.27 16.52 17.92 9.53 7.74
Ba 220.94 656.20 563.07 681.20 476.75
La 23.77 51.39 44.66 19.05 26.67
Ce 48.46 57.26 84.29 38.17 50.31
Pr 5.60 11.25 10.24 4.69 6.07
Nd 21.53 43.50 38.26 18.52 24.43
Sm 4.32 7.73 6.84 3.82 4.84
Eu 0.94 1.57 1.40 0.95 0.99
Gd 4.50 6.76 4.75 333 4.30
Tb 0.69 1.08 0.83 0.63 0.70
Dy 4.23 6.60 5.20 4.12 4.28
Ho 0.84 1.38 0.96 0.84 0.75
Er 2.29 3.65 2.87 2.40 2.00
Tm 0.38 0.51 0.42 0.35 0.27
Yb 2.35 3.25 2.82 2.30 1.80
Lu 0.34 0.49 0.41 0.34 0.27
Hf 3.98 2.87 2.89 1.71 1.41
Ta 0.50 0.69 0.68 0.36 0.25
Th 7.00 10.40 11.72 7.43 5.13
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Table D.4 Continued. Rare Earth Elements from the South Portuguese Zone(SPZ)

Sample JB-14  JB-10 JB-11 JB-16  JAB-15 JAB-17 JAB-18
Formation VSC VSC VSC VSC VSC VSC VSC
Y 62.72 13.19 23.71 26.35 25.41

Zr 293.79 163.64 195.95 175.88 201.53
Nb 18.33 8.70 23.68 23.81 24.80

Ba 297.25 130.93 522.70 497.25 532.56
La 47.97 15.55 47.41 48.29 47.13
Ce 100.72 31.55 95.07 96.02 95.04
Pr 13.89 3.68 10.86 11.20 10.74
Nd 57.84 14.42 40.29 41.89 40.89
Sm 12.02 2.82 7.42 7.71 7.50
Eu 1.89 0.66 1.37 1.61 1.51
Gd 10.56 2.72 4.23 5.21 4.58
Tb 1.74 0.44 0.81 0.92 0.81
Dy 11.34 2.78 4.75 5.61 5.27
Ho 243 0.50 0.97 1.07 1.00
Er 7.32 1.61 291 3.32 3.07
Tm 1.09 0.21 0.42 0.44 0.46
Yb 6.82 1.52 2.79 3.02 2.77
Lu 1.02 0.22 0.46 0.42 0.43
Hf 6.79 3.39 4.41 4.10 4.30
Ta 0.82 0.50 0.97 0.95 0.98
Th 14.67 5.14 13.64 13.84 14.49
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Table D.5 Geochemistry of samples from the Pulo do Lobo Zone (PDLZ)

Sample JAB-01 JAB-03 JAB-08 RSAOI  RSA02 ACO3

Formation SIF SIF SIF melange melange melange
Si02 75.16 76.33 72.26 90.12 88.91 83.98
TiO2 0.792 0.889 0.92 0.58 0.21 0.51

Al203 11.95 11.74 13.37 6.07 3.36 10.68
Fe203 6.24 4.57 6.69 3.50 2.49 3.21
MnO 0.09 0.126 0.031 0.02 0.02 0.05
MgO 0.48 0.36 0.7 0.87 0.78 1.26
CaO 0.02 0.04 0.02 0.04 0.03 0.13
Na20 0.14 0.05 0.17 <LD <LD 0.33
K20 2.45 2.08 2.03 0.54 0.26 1.56
P205 0.11 0.069 0.113 0.06 0.02 0.06
LO.L 2.86 3.29 3.87
Total 100.292 99.544 100.174 101.82 96.04 101.95
\Y% 87 94 104 28 10 44
Cr 58 68 80 47 97 62
Co 4 9 11
Ni 25 37 50 17 6 18
Cu 30 18 27 4 <LD 10
Zn 55 64 84 13 9 15
Ga 16 16 18 -1 <LD 8
Rb 118 96 100 14 6 42
Sr 49 16 43 16 4 22
Y 18 35 27 21 5 17
Zr 247 272 262 463 115 271
Nb 16 15 16 16 11 14
Ba 316 444 404 47 39 221
La 20 57 42
Pb 24 14 15 6 <LD 12
Th 12 17 15 8 <LD 7
U 8 7 3 <LD <LD <LD
Ce 29 49 69 63 <LD 70
Nd 6 51 40
Cs 1 6 4
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Table D.5 Continued. Geochemistry of samples from the Pulo do Lobo Zone

Sample JAB-07 JAB-06 JAB-23 JAB-05 JAB-21 JAB-22
Formation mafic matrix mafic block mafic block basalt basalt basalt
SiO2 48.24 44.65 48.55 47.32 49.24 50.7
TiO2 1.633 1.359 1.806 1.161 1.406 2.289
Al203 14.41 15 13.46 15.01 16.71 15.37
Fe203 12.5 11.49 12.56 10.89 10.19 13.1
MnO 0.204 0.169 0.2 0.177 0.19 0.262
MgO 8.56 7.41 6.46 8.63 7.85 5.6
CaO 9.13 16.55 11.35 13.02 11.31 9.85
Na20 3.25 0.62 2.94 1.83 1.58 1.71
K20 0.21 0.32 0.32 0.16 0.61 0.35
P205 0.154 0.121 0.197 0.095 0.163 0.283
L.O.L 2.00 1.97 2.00 1.88 0.93 0.69
Total 100.291 99.659 99.843 100.173 100.179  100.204
VvV 305 286 98 269 331 22
Cr 212 361 9 460 273 23
Co 41 41 12 38 38 3
Ni 64 107 20 101 66 9
Cu 34 37 68 47 59 2
Zn 90 76 76 76 91 8
Ga 14 21 21 15 16 12
Rb 4 7 107 2 6 136
Sr 111 203 4527 122 199 202
Y 35 33 20 27 39 25
Zr 88 79 855 61 129 93
Nb 3 4 104 2 5 11
Ba 21 26 4083 26 71 595
La 2 3 201 6 2 40
Pb 6 5 0 10 5 32
Th 2 0 52 0 6 15
U 2 3 0 3 2 6
Ce 10 11 327 11 21 59
Nd 6 13 132 12 12 21
Cs 0 2 0 4 0 2
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Table D.6 Rare earth elements of samples from the Pulo do Lobo Zone (PDLZ)

Sample JAB-01 JAB-03 JAB-08  RSAO0I RSA02  ACO03

Formation SIF SIF SIF melange melange melange
Y 20.86 5.08 14.91
Zr 351.59 108.57  252.24
Nb 15.25 10.03 12.66
Ba 72.33 29.94 191.78
La 25.44 8.34 20.26
Ce 48.46 15.87 37.03
Pr 5.80 1.87 4.71
Nd 22.90 7.62 18.99
Sm 4.27 1.46 3.74
Eu 0.87 0.17 0.69
Gd 3.67 0.90 3.02
Tb 0.62 0.13 0.48
Dy 3.80 0.95 2.90
Ho 0.83 0.20 0.57
Er 2.58 0.56 1.70
Tm 0.39 0.10 0.25
Yb 247 0.66 1.66
Lu 0.40 0.10 0.26
Hf 7.08 2.23 4.87
Ta 0.66 0.36 0.50
Th 7.58 1.80 5.61
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