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ABSTRACT 
 

Web page classification is the process of assigning predefined categories to web pages. 

Empirical evaluations of classifiers such as Support Vector Machines (SVMs), k-Nearest 

Neighbor (k-NN), and Naïve Bayes (NB), have shown that these algorithms are effective 

in classifying small segments of web directories. The effectiveness of these algorithms, 

however, has not been thoroughly investigated on large-scale web page classification of 

such popular web directories as Yahoo! and LookSmart. Such web directories have 

hundreds of thousands of categories, deep hierarchies, spindle category and document 

distributions over the hierarchies, and skewed category distribution over the documents. 

These statistical properties indicate class imbalance and rarity within the dataset.  

 

In hierarchical datasets similar to web directories, expanding the content of each category 

using the web pages of the child categories helps to decrease the degree of rarity. This 

process, however, results in the localized overabundance of positive instances especially 

in the upper level categories of the hierarchy. The class imbalance, rarity and the 

localized overabundance of positive instances make applying classification algorithms to 

web directories very difficult and the problem has not been thoroughly studied. To our 

knowledge, the maximum number of categories ever previously classified on web 

taxonomies is 246,279 categories of Yahoo! directory using hierarchical SVMs leading to 

a Macro-F1 of 12% only.  

 

We designed a unified framework for the content based classification of imbalanced 

hierarchical datasets. The complete Yahoo! web directory of 639,671 categories and 

4,140,629 web pages is used to setup the experiments. In a hierarchical dataset, the prior 

probability distribution of the subcategories indicates the presence or absence of class 

imbalance, rarity and the overabundance of positive instances within the dataset. Based 

on the prior probability distribution and associated machine learning issues, we 

partitioned the subcategories of Yahoo! web directory into five mutually exclusive 

groups. The effectiveness of different data level, algorithmic and architectural solutions 

to the associated machine learning issues is explored. Later, the best performing 

classification technologies for a particular prior probability distribution have been 

identified and integrated into the Yahoo! Web directory classification model. The 

methodology is evaluated using a DMOZ subset of 17,217 categories and 130,594 web 

pages and we statistically proved that the methodology of this research works equally 

well on large and small dataset. 

 

The average classifier performance in terms of macro-averaged F1-Measure achieved in 

this research for Yahoo! web directory and DMOZ subset is 81.02% and 84.85% 

respectively.  
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CHAPTER 1: INTRODUCTION 

 

Over the past decade, web users have been witnessing an exponential growth in the 

number of web pages accessible through popular search engines. Organizing the large 

volume of web information in a well-ordered and accurate way is critical for using it as 

an information resource. One way of accomplishing this in a meaningful way requires 

web page classification. Web page classification addresses the problem of assigning 

predefined categories to the web pages by means of supervised learning. This inductive 

process automatically builds a model by learning over a set of previously classified web 

pages. The learned model is then used to classify new web pages. This technology 

integrates Information Retrieval, Data mining, Machine Learning and Natural Language 

Processing. 

 

Numerous classifiers proposed and used for machine learning can be applied for web 

page classification. These include Support Vector Machines (SVMs), k-Nearest Neighbor 

(k-NN), and Naïve Bayes (NB) classifiers. Empirical evaluations of these algorithms on 

selected small segments of popular web directories have shown that most of these 

methods are effective in web page classification (Chen, 2000; Sebastiani, 2002; Yang Y., 

1999). However, the effectiveness of these algorithms on very large web taxonomies like 

the Yahoo! directory and Open Directory Project (ODP) is not thoroughly investigated. 

Web taxonomies like the Yahoo! directory and the Open Directory Project have hundreds 

of thousands of categories and millions of web pages. The sheer volume of categories and 
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web pages makes large-scale web page classification an inevitable component for web 

directories and search engines. 

 

In contrast to the traditional benchmark datasets, web directories generally have complex 

statistical properties. This makes large-scale hierarchical web page classification 

significantly different from the traditional text classification and web page classification 

with limited categories and documents. Web directories usually have more categories and 

documents in the middle of the hierarchy than at either the upper or the lower levels of 

the hierarchy. This spindled distribution is an indication of the class imbalance within the 

dataset. The class imbalance problem is a relatively new research area, which emerged 

during the growth of machine learning from its embryonic state to an applied technology. 

In an imbalanced dataset, almost all examples belong to one class, while far fewer 

examples represent the other class. When a machine learning algorithm is exposed to an 

imbalanced dataset, standard classifiers tend to focus on the large classes and ignore the 

small classes. In addition, popular evaluation measures such as accuracy place more 

weight on the common classes than on rare classes. Thus, the performance with respect to 

small classes is difficult to assess (Japkowicz, N.,& Stephen, S, 2002; Kotsiantis, S., 

Kanellopoulos, D., & Pintelas, P., 2006). 

 

Another distinguishing attribute of web directories is the skewed category distribution 

over the web pages. The number of web pages assigned to the categories follows the 

power law distribution (Liu,T., Yang, Y., Wan, H., Zeng, H., Chen, Z., & Ma,W., 2004). 

The skewed category distribution and power law distribution on the number of web pages 
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indicates that most categories have very few labeled web pages. This indicates rarity 

within the dataset. Data level or algorithmic treatments are necessary to learn the rare 

categories of the web directory.  

 

In web taxonomies similar to Yahoo!, the assignment of a web page into a category will 

not automatically grant this assignment to its parent categories or vice versa. The 

recursive assignment of the web pages of a category into its parent category helps to 

decrease the degree of rarity within web taxonomies. This process, however, results in the 

localized over-abundance of positive instances especially in the upper level categories of 

the hierarchy. When classifying categories with very large numbers of positive training 

instances, it is crucial to assess whether the classifier trained with a very large dataset is 

better than the one trained with a small subset of data. In theory, classifier performance 

should not be reduced when trained on a large dataset. However, classifiers using large 

dataset for training may not always be better, and may be slightly worse due to the much 

larger solution space. 

 

The wide variation in the content and quality of the web page is another challenge of 

large-scale web page classification. Most of the categorization algorithms assume that the 

training data is of good quality. Web pages, however, have highly variable size and 

different tag formats along with noise content such as advertisement banners and 

navigation bars. Thus, compared to other text datasets, web pages lack homogeneity and 

regularity. Furthermore, a huge number of distinct words exist in the pages including 
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proper words and misspelled words. Thus, an intelligent preprocessing of the web pages 

is necessary (John, M.P., 2000). 

 

Web page classification is an inductive procedure that automatically builds a model by 

learning over a set of previously classified web pages. Hence, the degree of agreement on 

the category of a web page among a group of raters, also known as inter-rater reliability, 

is critical for web page classification. Unfortunately, the inter-rater reliability of popular 

web directories is not well studied.  

 

Liu et al. (Liu, T., Yang, Y., Wan, H., Zeng, H., Chen, Z., & Ma, W., 2004) evaluated the 

performance of flat and hierarchical SVMs on a 246,279 category subset of the Yahoo! 

directory. To our knowledge, this is the maximum number of categories ever previously 

classified on web taxonomies. In their research, hierarchical SVMs lead to a Micro-F1 of 

24% and a Macro-F1 of 12%. The authors conclude that in terms of effectiveness neither 

flat nor hierarchical SVMs can fulfill the classification needs of very large-scale 

taxonomies. The skewed distribution of the large web directories like Yahoo! with many 

extremely rare categories makes SVM performance ineffective. Their research, however, 

completely overlooked the machine learning aspects and solutions to the class imbalance 

and absolute rarity. This may be the root cause for poor SVM classifier performance.  

 

Different statistical properties of web taxonomies question whether the existing web page 

classification technologies can perform well on large and imbalanced web taxonomies. 

The difficulties in applying classification algorithms to very large web taxonomies are 
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not thoroughly studied. Previous web page categorization research on a few common 

categories or selected small segments of web taxonomies could not preserve the original 

characteristics of the web taxonomy as a whole. Hence, the observations from earlier 

studies do not take a broad view of this area. 

 

This research investigates the development of a unified framework for the content based 

classification of imbalanced hierarchical datasets such as web directories.  In an 

imbalanced dataset like Yahoo! web directory, the prior probability distribution of a 

category indicates the presence or absence class imbalance, alone or together with 

absolute rarity or large-sample learning issues due to the overabundance of positive 

instances. Based on the prior probability distribution and associated machine learning 

issues, we partitioned the subcategories of Yahoo! web directory into 5 mutually 

exclusive groups. The effectiveness of different data level, algorithmic and architectural 

solutions to these machine learning issues is explored. Later, the best performing 

classification technologies for a particular prior probability distribution have been 

identified and used to design a content based classification model for complete Yahoo! 

web directory of 639,671 categories and 4,140,629 web pages. Afterward, the 

methodology is evaluated using a DMOZ subset of 17,217 categories and 130,594 web 

pages and we statistically proved that the methodology of this research works equally 

well on large and small datasets. 

 

A thorough review to evaluate the breadth and depth of the issues pertaining to web page 

classification technology is discussed in Chapter 2. A typical web page classification 
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process consists of steps such as feature selection, feature extraction, classifier design, 

and finally performance evaluation. Numerous feature selection methods, feature 

extraction methods, and classifiers have been proposed and were used for the web page 

classification problem. However, previous web page categorization research on a few 

common categories or selected small segments of web taxonomies could not preserve the 

original characteristics of the web taxonomy as a whole. Hence, the observations from 

earlier studies do not take a broad view of this area.  

 

Different data level, algorithmic, and architectural solutions to the over-abundance of 

positive instances, class imbalance and rarity problem associated with classification 

research have been proposed and were used by the machine learning community. The 

effectiveness of these approaches in large-scale web page classification is critically 

analyzed in Chapter 3. 

 

The methodology of this research is discussed in Chapter 4. This includes multiple 

machine learning models to classify an imbalanced dataset with localized over-abundance 

of positive instances, rarity and class imbalance. In Chapters 5, 6 and 7, these machine 

learning models combined with popular feature selection methods such as Information 

Gain, Document Frequency and popular classifiers such as Perceptron, Support Vector 

Machine and Maximum Entropy Classifiers, have been examined and their relative merits 

and demerits are critically analyzed. Later, a Yahoo! web directory classification model is 

designed using the best performing classification technologies. The Yahoo! web directory 

classification model is discussed in Chapter 8.  
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Whether the methodology of this research works equally well on large and small dataset 

is examined in Chapter 9.  A DMOZ subset of 17,217 categories is used to set up the 

experiments. At the time of our crawling in October, 2009, there were 602,410 categories 

and 4,519,050 web pages  in the topmost 14 levels of the DMOZ web directory. The 

category distribution of the DMOZ web directory with hierarchy depth is similar to that 

of Yahoo! web directory. Evaluation of the methodology using a DMOZ subset of 17,217 

categories is discussed in Chapter 9. 

 

Chapter 10 is the conclusion and future research. The breadth and depth of the issues 

pertaining to the large-scale web page classification technology is studied in this 

research. The average classifier performance in terms of macro-averaged F1-Measure 

achieved in this research for Yahoo! web directory and DMOZ subset is 81.02% and 

84.85% respectively. To our knowledge, the maximum number of categories ever 

previously classified on web taxonomies is 246,279 categories of Yahoo! directory. In 

their research, hierarchical SVMs lead to a Macro-F1 of 12% only. Similarly the highest 

average F1-Measure reported for DMOZ subset is 35.37%. In these research works, the 

hierarchical classifier evaluation procedure they followed to calculate the reported 

Macro-F1 measure is not clear. 

 

There are a few areas in large-scale web page classification that need more investigation. 

The impact of class imbalance on the popular feature selection measures is not examined 

in this research. However, preliminary studies are conducted and we conclude that the 
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statistical feature selection method such as Information Gain is not optimal for the 

classification of very large web directories.  

 

At this point, extreme rarity prevents training individual classifiers for categories with 

fewer than 10 labeled web pages. We cannot expect any statistical learner to perform well 

on such rare categories. In this research, the classifiers of the parent categories have been 

used to classify these categories. The advantage of merging extreme rare categories with 

the parent categories is applicable to the hierarchical dataset only. Around 70% of the 

categories of the popular web directories are extremely rare with fewer than 10 labeled 

instances. A better alternative to categorize these categories will complement many real-

world flat and hierarchical classification problems including text classification, medical 

dataset classification and intrusion detection. 
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CHAPTER 2: REVIEW OF POPULAR WEB PAGE CLASSIFICATION 

TECHNOLOGIES 

 

2.1  Introduction 

 

Web page classification is essential to many tasks in Web Information Retrieval, such as 

maintaining web directories and focused crawling. Compared to traditional text 

classification datasets such as the Reuter‘s corpus, web pages generally have variable size 

and different tag formats along with noise content such as advertisement banners and 

navigation bars. The irregular nature of the web pages and their exponential growth in 

number make web page classification an inexhaustible challenge. Different web page 

classification technologies from machine learning and Information Retrieval have been 

proposed and their relative merits on classifying the new web pages have been 

experimentally evaluated. This chapter reviews these technologies. This includes 

different web page preprocessing techniques, accepted dimensionality reduction methods, 

popular web page classifiers and popular evaluation measures.  

The overall goals of the review are to address the following queries: 

1. Why intelligent preprocessing of the web pages is required prior to the    

classification and how it can be achieved? 

2. What are the best feature reduction and feature extraction methods? 

3. What learning algorithm is most suitable for web page classification? 

4. What are the limitations of earlier web page classification research? 

5. Why is large-scale web page classification needed? 
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Web pages, compared to traditional text classification datasets, are highly irregular in 

nature due to the variable size, different tag formats and noise content such as 

advertisement banners. Hence, an intelligent preprocessing of the web pages before 

application of the classification algorithm is necessary. Different web page preprocessing 

methods that have been proposed and used by earlier web page categorization research 

are reviewed in Section 2.2. After preprocessing, web pages are represented as multi-

dimensional vectors, where each dimension encodes a single feature of the web pages. 

Different web page representation methods are discussed in Section 2.3. If all the features 

are used to represent a candidate web page, the total dimension of the vectors will be very 

high. This results in high time and space complexity for the machine learning algorithm. 

Various dimensionality reduction functions, from information theory and linear algebra, 

have been proposed and their relative merits have been experimentally evaluated. These 

functions are divided into feature selection and feature extraction functions based on the 

nature of features chosen. Detailed reviews of different feature selection and feature 

extraction functions are discussed in Sections 2.4 and 2.5.  

 

Dimensionality reduction is also beneficial to reduce the problems of classifier over 

fitting. Over fitting is the phenomenon where a classifier is tuned to the training data, 

rather than being generalized from essential characteristics of the training data to classify 

a new web page (Sebastiani F., 1999). After features have been selected to form concise 

representations of the web pages, classification algorithms are applied to train the 

classifier. Various classification algorithms proven efficient for web page classification 
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are reviewed in Section 2.6. Different classifier evaluation metrics are discussed in 

Section 2.7. A summary of this literature review is provided in Section 2.8. 

 

2.2  Web Page Preprocessing 

 

Web pages are very dynamic in structure with variable size, different tag formats and 

noise contents. The tag format as well as the quantity of textual content within the 

different tags varies widely resulting in an inconsistency in the information across the 

different segments of a web page. Intelligent preprocessing of the web pages is needed 

prior to the classification. Web page preprocessing integrates different approaches to 

identify the concise portion of the web page and its cleaning to remove the noise and less 

informative terms such as stop words. Various web page preprocessing approaches using 

the HTML structure and hypertext structure have been studied and their effectiveness in 

the context of web page classification has been evaluated.  

 

2.2.1  Web Page Preprocessing using the HTML Structure of the Web Pages 

 

Web pages, in contrast to a traditional text dataset, encapsulate the structural information 

in the form of HTML tags. This structural information could be useful to enhance the 

informative segment(s) identification. For example, the HTML structure TITLE gives 

information about the content of the web page. BODY, META TITLE and META 

DESCRIPTION are other excellent textual information sources of the web page. 

However, using different intermediary tools, very short web pages with little text 

information and more non-text based contents can be designed. The HTML structure of 
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these types of web pages will not convey much information about their content. With the 

help of the linked pages, attempts were made to represent these types of web pages 

effectively.  

 
2.2.2  Web Page Preprocessing using the Hypertext Nature of the Web Pages 

 

Web page preprocessing using the hypertext nature of web pages assumes that a link is 

created only if there is a relationship between the contents of the original web page and 

the connected web page. However, a crude and raw combination of the local full text and 

the text in the linked web pages may not help feature selection and classification. This is 

due to the hypertext regularities. The presence or absence of the hypertext regularities 

such as Meta data, Pre-classified, Co-referencing, Encyclopedia, and None can 

significantly influence the relationship between linked web pages and the original web 

page (Yang Y., 1999). Different studies using IBM patent web pages, Yahoo! corpus 

(Chakrabati. S., Dom, B., & Indyk, P., 1998) and online encyclopedia articles (Oh, H., 

Myaeng, S.H., & Lee, M., 2000) also agree with this observation. In these studies, 

increasing the feature space using the text data of the linked web pages resulted in the 

accuracy decrease of 6% and 24% respectively. Instead of adding the complete 

vocabulary, a focused upgrading of the web pages using the anchor text and text nearby 

the anchor text of in-linked web pages has also been studied. Even though anchor text 

seems to be informative, web page classification research shown that using the anchor 

text alone is less efficient compared to the classification using the full text (Blum A. & 

Mitchell. T., 1998; Glover, E. J., Tsioutsiouliklis, K., Lawrence, S., Pennock, D.M., 

Flake, & G.W., 2002). However, alternative web page representation using the terms 
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from the anchor text, headings preceding the anchor text, and paragraphs where the 

anchor text occurs in the in-linked web pages improved the performance by 20% 

compared to the web page representation using local full text (Furnkranz, 1999).  

 

The work cited in this subsection provides some insights in exploring the structural 

information for web page classification. However, drawing general conclusions in this 

area can be misleading (Yang Y, 2001). A better approach may be to perform a 

quantitative analysis on the dataset and identify the information rich segment(s) 

applicable to a majority of the web pages. The following steps remove the less 

informative contents of the identified segment(s): 

1. Removing HTML tags. 

2. Removing scripting languages such as java script 

3. Removing stop words 

4. Word stemming 

The textual information remaining after the preprocessing (known as features) is used for 

the web page representation. Web page representation is the process of projecting the 

textual information, after preprocessing, in a meaningful way for the purpose of feature 

reduction and classification. 

 

2.3  Web Page Representation 

 

The popular web page representation for web page classification is the bag-of-words 

representation. In the bag-of-words representation, a web page is characterized by a 
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vector di with words t1,t2,...,tM as the features, each of which associates with a weight wij. 

That is di=wi1,wi2,wi3,…..wiM  where M is the number of indexing words and wij is the 

importance of term tj in the web page di, often represented as the frequency. The bag-of-

words representation assumes that each word in a document signifies the concept of the 

document. A phrase usually contains more information than a single word. Hence, the 

bag-of-words representation can be enriched by using word sequence. The bag-of-words 

representation, however, does not preserve the structural information formed by the 

HTML tags and the hyperlinks of the web page. 

 

After the web page representation, the whole collection of web pages may contain 

hundreds of thousands of unique terms. If all the unique terms are used for representing 

the web pages, the dimension of the feature vectors will be enormous. For a web page 

categorization problem, dimensionality reduction is necessary due to the following 

reasons. 

1. If all features are used to represent a candidate web page, the total dimension of 

the vectors will be very high. This results in high time and space complexity for 

the machine learning algorithm. 

2.  Dimensionality reduction is also beneficial to reduce the problems of classifier 

over fitting (Sebastiani F., 2002). Over fitting is the phenomenon where a 

classifier is tuned to the training data, rather than being generalized from essential 

characteristics of the training data to classify a new web page. 

3.  For a classification problem, a smaller feature space can give either better or as 

good results as a larger feature space (Tikk,D., Bansaghi,Z.,& Biro,G., 2005). 
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Various dimensionality reduction functions from information theory and linear algebra 

have been proposed and their relative merits have been evaluated. These functions can be 

divided into feature selection and feature extraction functions based on the nature of 

features chosen.  

 
2.4  Dimensionality Reduction by Feature Selection 

 

Two broad approaches available for dimensionality reduction by feature selection are the 

wrapper approach (Kohavi, R., & John, G. H., 1997; John. G., Kohavi, R., & Pfleger, K., 

1994) and the filter approach (John. G., Kohavi, R., & Pfleger, K., 1994). The wrapper 

approach employs search through the feature subspace. Taking the neural network as an 

example, the wrapper approach starts training with an initial subset of features and 

measures the performance of the network. If the classification error is beyond the given 

limit, an improved feature set with more features is generated and network performance 

is measured. This process is repeated until the termination condition in minimal error 

value or total number of iterations is reached. The high time and space complexity due to 

the huge size of web page dataset and feature set makes the wrapper approach highly 

inappropriate for web page classification.  

 

The filter approach is an alternative feature selection method more suitable to web page 

classification. In the filter approach, feature selection is detached from the learning 

algorithm and is performed as a preprocessing step prior to the machine learning. Hence, 

the filter algorithm does not bring additional time complexity to classification systems. 
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Considering the advantages of the filter approach over the wrapper approach and the 

suitability of the filter approach for web page classification problem, wrapper approaches 

are not discussed in this review. 

 

The filter approach processes the features independently and assigns a numeric sore to 

the features based on some statistical criteria. The best features for the classification 

process are selected by fixing a predefined threshold of the assigned score. Many feature 

selection criteria from statistics and information theory have been studied and their 

relative merits on identifying the discriminating features have been evaluated. In a broad 

view, the filter approach based feature selection criteria can be divided into two sets. One 

set of feature selection methods, such as, Document Frequency, Mutual Information, 

Cross Entropy, and Odds Ratio considers the possible value of features that are present in 

the document. The other set of feature selection methods, such as, Information Gain and 

Chi-square Statistic, considers all possible values of features including those that are 

present in and those that are absent from a document ( Yang, Y., & Pederson, J. O., 1997; 

Mladenic. D. & Grobelnik. M., 1998, Mladenic. D. & Grobelnik. M., 1999). 

 

2.4.1  Comparison of Different Feature Selection Techniques 

 

While many feature selection techniques have been proposed, a thorough evaluation of 

these methods over a very large feature space is not reported. However, Yang et al. 

(Yang, Y., & Pederson, J. O., 1997) and Mladenic et al., (Mladenic, D., & Grobelnik, M., 

1998; Mladenic, D., & Grobelnik, M., 1999) did remarkable research in this area. Yang et 

al. (1997) evaluated the effectiveness of Information Gain, Chi-square statistics, 
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Document frequency, and Mutual Information as feature selection methods and their 

relative merits on classification using k-nearest neighbor (k-NN) and Linear Least 

Squares Fit mapping algorithms. The Reuter‘s collection and the OHSUMED collection 

were used to set up the experiments. The Information Gain feature selection method 

achieved up to 98% reduction in the feature space and yielded 10% improvement in the 

classification accuracy. This research reported Information Gain and Chi-square statistics 

as more effective for feature selection as compared to Document Frequency and Mutual 

Information. However, considering the strong correlation among document frequency, 

information gain and chi-square statistics established in this research, we may conclude 

that, document frequency, the simplest feature selection method with lowest cost 

complexity, can also be reliably used in place of the computational expensive information 

gain and chi-square statistics. This research reported mutual information as a weak 

feature selection criteria and this naturally points to the inherent bias of the mutual 

information towards the rare features. However, in their research, removing the rare 

features from the feature set do not made any remarkable improvement on mutual 

information compared with other measures. 

 

Mladenic et al. (Mladenic, D., & Grobelnik, M., 1998; Mladenic, D., & Grobelnik. M., 

1999) evaluated the effectiveness of Odds Ratio, Cross Entropy, Information Gain and 

Mutual Information in association with the Naive Bayes classifier. Web pages from the 

Yahoo! dataset were used to set up the experiments. This research reported Odds Ratio 

and Cross Entropy as the two best performing feature selection methods. Mutual 

information showed poorer performance than Cross Entropy. The weakest feature 
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selection method reported in this research is Information Gain, which, on the other hand 

is one of the best feature selection method reported by Yang et al. (1997). 

 

The differences in evaluation results may be due to the differences in the nature of the 

datasets used. Mladenic et al. used the data collection from the Yahoo! directory which 

has an unbalanced class distribution and highly unbalanced feature distribution. The prior 

probability of a feature, on an unbalanced data set with few categories will be small. In 

this experiment, most of the features picked by information gain may be the features 

having a high absent feature value. Of course, the knowledge of a feature absence in a 

web page conveys useful information for a classification algorithm. However, a 

classification scheme relying on feature absence is usually more difficult and requires a 

larger feature space than a classification relying on feature presence.  

 

While choosing feature selection methods, the nature of the classification algorithm and 

the statistical distribution of the data domain should be taken into consideration. It is 

already proved that a smaller feature subset can give either better or as good results as 

larger feature space (Tikk, D., Bansaghi, Z., & Biro, G., 2005). Studies show that feature 

selection methods favoring frequent features can achieve better results compared to the 

methods favoring rare features (Sebastiani F., 2002).  The main limitation of the 

discussed feature selection methods is their inability to estimate the effect of co-

occurrence of features. For example, two or more features considered independently may 

not be very effective, but may turn highly effective, when grouped together. This 

limitation is addressed by applying dimensionality reduction by feature extraction.  
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2.5  Dimensionality Reduction by Feature Extraction 

 

Feature extraction methods produce a set of optimum synthetic features of smaller size 

from the original large feature set without losing any of the significant features. Several 

approaches have been reported and successfully tested in this area. Principal components 

analysis (PCA) is a popular statistical technique for reducing a multidimensional dataset 

to a lower dimensional space. PCA is an orthogonal linear transformation that maps the 

data points into a new coordinate system in such a way that the first greatest variance by 

any projection of the data comes to lie on the first coordinate known as first principal 

component, the second greatest variance on the second coordinate, and so on. The first 

few principle components convey the most significant aspects of the data. By keeping the 

first few principle components only, PCA can be used for dimensionality reduction 

without losing any of the characteristic features. This is an unsupervised dimension 

reduction method widely used in information retrieval and text data mining. However, the 

vectors generated by PCA are not directly connected to the original vector space. This 

prevents deriving meaningful interpretations from the reduced feature space (Sebastiani 

F., 2000). Latent semantic indexing (LSI) is another popular feature reduction technique. 

LSI is based on the assumption that there is a basic or concealed semantic structure in the 

pattern of features used across the web page corpus. Statistical techniques are used to 

estimate these semantic structures. LSI uses singular value decomposition (SVD), which 

is a technique related to eigenvector decomposition and factor analysis. (Sebastiani F., 

2002). 
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2.5.1  Comparison of Different Feature Extraction Methods 

 

Techniques, such as PCA and LSI, have been shown to improve the quality of the 

information being retrieved by capturing the latent meaning of words present in the 

documents. However, after applying PCA and LSI, the discrimination power of some 

extremely good features may be lost in the new vector space (Sebastiani F., 2002). A few 

earlier researches attempted to overcome this limitation by upgrading the feature space 

after feature extraction with a group of manually identified feature vectors that are good 

for classifying given categories (Zelikovitz, S., & Hirsh,H., 2000). This is not an optimal 

solution for large-scale classification. 

 

2.6  Popular Web Page Classification Algorithms and Earlier Research 

 

After the features of training web pages have been selected to form concise 

representations of the web pages, various classification algorithms were applied to induce 

the classifier. A large number of statistical learning methods have been applied to the text 

classification problem in recent years. Some of them are regression models (Fuhr, N., 

Hartmanna, S., Lustig, G., Schwantner, M.,& Tzeras, K., 1991; Yang, Y.,& Liu, X., 

1999), nearest neighbor classifiers (Creecy, & Robert, H., 1992; Yang, Y.,& Liu, X., 

1999), Bayesian probabilistic classifiers (Tzeras, K.,& Hartman, S., 1993; Lewis, D. D., 

& Ringuette, M., 1994), decision trees (Fuhr, N., Hartmanna, S., Lustig, G., Schwantner, 

M., & Tzeras, K., 1991; Lewis, D. D.,& Ringuette, M.,1994), inductive rule learning 

algorithms (Weiss, S. M., Apte, C., Damerau, F.J., Johnson, D.E., Oles, F.J., Goetz, T., & 

Hampp, T., 1999; Cohen W., & Singer Y., 1999; Moulinier, I., Raskinis, G., & Ganascia, 
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J., 1996), neural networks (Wiener, E., Pedersen, J.O., & Weigend, A.S., 1995 ; Ng, H.T., 

Goh, W.B.,& Low, K.L., 1997) and on-line learning approaches (Cohen W., & Singer Y., 

1999 ; Lewis, D.D., Schapire, R.E., Callan, J. P.,& Papka, R., 1996). Since a large 

number of methods and results are available, a cross-method evaluation is important to 

comprehend the current status of the text categorization research. The comparison of 

different text and web page classification methods, however, is very difficult due to the 

absence of a cohesive methodology for the matter-of-fact evaluation. Cross-method 

comparisons with a limited number of methodologies have been reported in the literature. 

However, these types of small-scale comparisons can either lead to highly comprehensive 

statements that are based on inadequate observations, or provide limited insight into a 

global comparison among a wide range of approaches. 

 

The lack of a standard data collection is the main bottle-neck for cross-method 

comparison in text categorization research. For a given dataset, there are many possible 

ways to introduce inconsistent variations. For example, the popular Reuters news story 

corpus has multiple versions depending on difference in the training, test and evaluation 

set combinations. Whether the reported classifier performance on the different versions of 

Reuters is comparable is not clear (Yang Y., 1999). Incomparability across different 

evaluation measures used in individual experiments is another concern on cross-

experiment evaluation (Yang Y., 1999). Lots of measures such as recall and precision, 

accuracy or error, Precision-Recall breakeven point or F1-Measure have been proposed 

and used for the classifier evaluation. Each of these measures is designed to evaluate 

some characteristic of the categorization. However, none of them conveys identical or 



 

22 

 

comparable information. There exist some difficulties in comparing published results of 

text categorization methods when they are evaluated using different performance 

measures. In general, one should be very vigilant while comparing the published text 

categorization research. 

 

Due to the aforementioned issues, a comprehensive evaluation of different classification 

methods is not reported. However, Yang et al. (Yang, Y., & Liu, X., 1999) did 

remarkable research in this area. They published an evaluation of fourteen classifiers 

using the Reuter‘s corpus. The k-Nearest Neighbor (k-NN) classifier has shown the best 

performance. Other top performing classifiers listed in their research were Linear Least 

Square Fit (LLSF) and Neural Net. Rule induction algorithms like SWAP-1, RIPPER and 

CHARADE, show apparently good performance. Relatively worse performance was 

reported for Rocchio and Naive Bayes classifiers.  

 

In a different study conducted by Yang (1999), the robustness of SVM, linear regression 

(LLSF), logistic regression (LR), Neural Net, Rocchio, Prototypes, k-Nearest Neighbor 

(k-NN), and the Naive Bayes classifier, when applied to a dataset with skewed category 

distribution were evaluated. For a skewed dataset, SVM, k-NN, and LLSF significantly 

outperformed Neural Net and Naive Bayes classifiers. 

 

Different studies (Sebastiani F., 2002; Yang Y., 1999; Lewis, D. D., Yang, Y., Rose, T. 

G., & Li, F., 2004; Liu,T., Yang, Y., Wan,H., Zeng, H., Chen,Z., & Ma,W., 2004) have 

shown that SVM has high training performance and low generalization error. However, 
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SVMs when applied to an imbalanced dataset, produce a less effective classification 

boundary skewed to the minority class (Akbani, R., Kwek, S., & Japkowicz, N., 2004). 

 

In general, empirical evaluations of popular classification algorithms such as SVMs, k-

NN, and Naïve Bayes classifiers on selected small segments of popular web directories 

have shown that most of these methods are effective in web page classification (Chen, 

2000; Sebastiani, 2002; Yang Y., 1999). On the other hand, available classification 

research works on reasonably sized subsets of popular web directories conclude that in 

terms of effectiveness these classification algorithms cannot fulfill the classification 

needs of very large-scale taxonomies (Liu,T., Yang, Y., Wan, H., Zeng, H., Chen, Z.,& 

Ma, W., 2004; Chen, 2000; Dumais, S.,& Chen, H., 2000; Xue, G., Xing, D., Yang, Q., 

& Yu, Y., 2008). Such web directories have hundreds of thousands of categories, deep 

hierarchies, spindle category and document distributions over the hierarchies, and skewed 

category distribution over the documents. These statistical properties indicate class 

imbalance and rarity (very small classes) within the data set. These distribution properties 

make applying classification algorithms to such data sets very difficult. A comparison of 

earlier large-scale web page classification is summarized in Table1. 

 

The effectiveness of SVMs while classifying very large-scale taxonomies has been 

studied. Yahoo!, (Liu, T., Yang, Y., Wan, H., Zeng, H., Chen, Z., & Ma, W., 2004) and 

LookSmart (Chen, 2000; Dumais, S., & Chen, H., 2000) datasets were used to set up the 

experiments.  
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Table 1: A Comparison of Earlier Large-Scale Web Page Classification Research 

Researcher Dataset 
No.of 

Categories 
Depth Method 

Micro

-F1 

(%) 

Macro

-F1 

(%) 

Liu, T., Yang, Y., 

Wan, H., Zeng, 

H., Chen, Z.,& 

Ma, W., 2004 

Yahoo! 246,279 14 
Hierarchical 

SVM 
24 

12 

Chen, Dumais, 

S.,& Chen, H., 

2000 

LookSmart 163 2 
Hierarchical 

SVM  

52.40 

Xue, G., Xing, 

D., Yang, Q., & 

Yu, Y., 2008 

ODP 130,000 17 

Statistical 

language 

model 

51.8 

(at 5th 

level) 
 

Xue, G., Xing, 

D., Yang, Q., & 

Yu, Y., 2008 

ODP 130,000 17 
Hierarchical 

SVM 

29.2 

(at 5th 

level) 
 

 

 

To the best of our knowledge, the maximum number of web categories ever classified is 

not more than 246,279 categories. This was from Yahoo! web directory (Liu, T., Yang, 

Y., Wan, H., Zeng, H., Chen, Z., & Ma, W., 2004). In their research, even with the best 

classifier setting, hierarchical SVMs lead to a Micro-F1 of 24% and a Macro-F1 of 12%. 

This study concludes that in terms of effectiveness neither flat nor hierarchical SVMs can 

fulfill the classification needs of very large-scale taxonomies. The skewed distribution of 

large web directories like Yahoo! with many extremely rare categories makes SVMs 

performance ineffective. Their research, however, completely overlooked the impact of 

class imbalance, and absolute rarity while classifying an imbalanced dataset.  

 

The effectiveness of hierarchical SVM while classifying the top two levels of categories 

of the LookSmart dataset has also been studied. This research reported a macro-average 

F1 measure of 57.2% for the top level 13 categories and 47.6% for the 150 second level 
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categories (Chen, 2000; Dumais, S., & Chen, H., 2000). There is a drop in performance 

in going from 13 to 150 categories. Conversely,  these  study  uses  the  top  two  levels  

of  the LookSmart categories only and the  conclusions might not generalize to the case 

of classifying hundreds of thousands of categories.  

 

Xue et al. (Xue,G., Xing, D., Yang,Q., & Yu,Y., 2008) addressed the large-scale web 

page classification in a two phase process. In the first phase, a category-search algorithm 

is executed to acquire the category candidates for a given dataset. Based on the category 

candidates, the large scale hierarchy is pruned and classification is performed on the 

pruned subset of the original hierarchy. In this research, a statistical-language-model 

based classifier using n-gram features is used for classification. The performance of the 

proposed algorithm is evaluated on the Open Directory Project with over 130,000 

categories. With this approach the Micro-F1 at the fifth level of the hierarchy is 51.8%, 

whereas for top-down based SVM classification algorithms the Mico-F1 at fifth level is 

29.2%.  

 

2.7  Commonly used Evaluation Metrics for Web Page Classification 

 

Precision, recall, accuracy, and error are the popular evaluation metrics used for 

classification. Precision is defined as the number of documents correctly assigned to a 

category divided by the total number of documents assigned to that category. Recall is 

defined as the number of correctly assigned documents into a category divided by total 

number of existing documents, which should have been assigned. Precision has a similar 

meaning as classification accuracy. However, they are different in that precision 
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considers only examples assigned to the category, while accuracy considers both assigned 

and rejected cases. 

 

Precision or recall may be misleading when considered alone since they are 

interdependent. Thus, a combined measure is considered. The effective in terms of both 

precision and recall as follow: 

 

where . A value of a=0.5 is usually used, which attributes equal importance to 

precision and recall and is usually referred to as F1. 

 

The above definitions are applicable for each category. To obtain measures relating to all 

categories, micro-averaging and macro-averaging are used. In micro-averaging, the 

performance measures are obtained by globally summing over all individual decisions. In 

macro-averaging, the performance measures are first evaluated locally for each category, 

and then globally by averaging over the results of the different categories.  

 
2.8  Summary 

 

A thorough review to evaluate the breadth and depth of the issues pertaining to web page 

classification technology has been presented in this chapter. A typical web page 

classification process consists of steps such as feature selection, feature extraction, 

classifier design, and finally performance evaluation. Numerous feature selection 
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methods, feature extraction methods, and classifiers have been proposed and were used 

for the web page classification problem. Empirical evaluations of classifiers such as 

Support Vector Machines (SVMs), k-Nearest Neighbor (k-NN), and Naïve Bayes (NB), 

have shown that these algorithms are effective in classifying small segments of web 

directories. However, previous web page categorization research on a few common 

categories or selected small segments of web taxonomies could not preserve the original 

characteristics of the web taxonomy as a whole. Hence, the observations from earlier 

studies do not take a broad view of this area.  

 

The growing number of categories and web pages makes large-scale web page 

classification an inevitable component for web directories and search engines. 

Unfortunately, the few available web page classification researches on reasonably sized 

subsets of popular web directories conclude that in terms of effectiveness these 

classification algorithms cannot fulfill the classification needs of very large-scale 

taxonomies. Such web directories have hundreds of thousands of categories, deep 

hierarchies, class-imbalance and rarity over the hierarchies. The class imbalance and 

rarity make applying classification algorithms to such data sets very difficult and the 

problem has not been thoroughly studied.  

 

While classifying very large datasets similar to web taxonomies, the impact of class 

imbalance and absolute rarity during the different stages of the classification process 

should be prevented or addressed. Various data level, algorithmic and architectural 

solutions for these issues has been proposed by the machine learning communities. 
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Chapter 3 of this thesis review critically analyzes the relative merits of these solutions in 

the context of large-scale web page classification.  
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CHAPTER 3: CLASSIFICATION OF VERY LARGE AND HIGHLY 

IMBALANCED DATASETS 

 

 
3.1  Introduction 

 

Traditional classification algorithms assume the target classes of the dataset share similar 

prior probability distributions. However, in real-world datasets like web taxonomies and 

intrusion datasets this identical prior probability assumption is violated (Kotsiantis, S., 

Kanellopoulos, D., & Pintelas, P., 2006; Monard, M. C., & Batista, G, 2002; Akbani, R., 

Kwek ,S., & Japkowicz, N., 2004; Xue, G., Xing, D., Yang, Q., & Yu, Y., 2008; 

Japkowicz, N.,& Stephen, S, 2002; Liu, T., Yang, Y., Wan, H., Zeng, H., Chen, Z., & 

Ma, W., 2004; Zelikovitz, S., & Hirsh, H., 2000). This induces class imbalance within the 

dataset. Moreover, most of the categories in web directories have very few labeled 

documents of their own indicating rarity within the dataset. This leads to the situation of 

insufficient training instances to train the classifier. In the absence of a sufficient training 

set, the learning algorithm may find many different learning rules within the decision 

boundary all giving the same accuracy on the training data. In hierarchical datasets 

similar to web directories, expanding the content of each category using the web pages 

from the child categories helps to decrease the degree of rarity. This process, however, 

results in the localized overabundance of positive instances and the machine learning 

issues associated with large-sample learning. When classifying a very large dataset, it is 

critical to strike an optimum balance between the training dataset size and the associated 

solution complexity. Error estimates of a classifier can be improved by training a 

classifier on a very large dataset. This, on the other hand, will result in a large increase in 
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solution complexity. The class imbalance, rarity and large-sample learning issues within 

the web directory make applying classification algorithms very difficult. This chapter 

reviews popular class imbalance, rarity handling and large-sample learning techniques. 

This includes sub-sampling, one-class learning, adaptive over-sampling, incremental 

sampling based learning and ensemble learning. 

The overall goals of this chapter are to address the following queries: 

1. What are the various data level and algorithmic solutions to address class 

imbalance? 

2. What are the various data level and algorithmic solutions for classifying the rare 

categories? 

3. What are the different complexity-effective techniques for learning from large 

dataset? 

4. What are the main limitations of the earlier large scale web page classification 

research resulting poor classifier performance? 

 

Section 3.2 of this chapter evaluates different data level and algorithmic solutions for the 

class imbalance problem. Various data level and algorithmic solutions for learning the 

absolute rare categories are discussed in Section 3.3. Different complexity-effective 

techniques for learning from large dataset are discussed in Section 3.4.  In section 3.5, we 

provide a comprehensive review of the recent research activities in class imbalance and 

rarity. The limitations of earlier large-scale web page classification research are reviewed 

in Section 3.6.  Section 3.7 is the summary of this chapter. 
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3.2  Machine Learning Issues While Classifying Highly Imbalanced Dataset 

 

In contrast to the traditional benchmark datasets used for document classification, web 

directories, in general, have more categories and documents in the middle of the 

hierarchy than at either the upper or the lower levels of the hierarchy. This spindled 

category and document distribution is an indication of the class imbalance within the 

dataset.  

 

The impact of the class imbalance problem varies across the domains. How class 

imbalance affects a particular task must be clearly understood in order to select an 

appropriate approach for the given task using the dataset. Considering the web page 

classification problem, an imbalanced dataset influences the different stages of the 

classification such as feature selection, classifier training and performance evaluation. 

When a classification algorithm is exposed to an imbalanced dataset, standard classifiers 

focus on the large classes and ignore the small classes. The effect of class imbalance on 

feature selection methods is not clear. Preliminary studies in this area conclude that 

implicitly combining positive and negative features using two-sided metrics like 

Information Gain is not inevitably optimal for imbalanced data. The Naïve Bayes 

classifier and Regularized Logistic Regression were used to set up these experiments. 

Classifiers trained on a well-judged combination of positive and negative features 

showed great potential and practical merits over the classifiers trained on the features 

identified by the Information Gain feature selection metric (Zheng, 2004).  
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The overall performance of a classifier and the appropriateness of the different 

classification technologies for a given dataset are analyzed with the help of the evaluation 

metrics. Accuracy is the most commonly used evaluation metric for classification tasks. 

Accuracy computes the fraction of examples that are correctly classified. In an 

imbalanced dataset, accuracy places more weight on the common classes than on rare 

classes. This makes the evaluation of the performance of a classifier on the rare classes 

difficult. An evaluation metric to analyze the performance of rare classes is needed. 

Different Studies by Weiss and Provost (Weiss, G. M., & Provost, F., 2003; Provost, F., 

& Fawcett, T., 2001) also highlight the necessity for an evaluation metric to evaluate the 

rare class performance of a classifier.  

 

The most common evaluation metric used to evaluate the performance of a classifier 

trained on an imbalanced dataset is the Receiver Operator Characteristics (ROC). ROC is 

the relationship between True Positive Rate (TP Rate) and False Positive Rate (FP Rate). 

The area under the ROC curve, AUC is used to assess overall classification performance. 

A classifier with a high value of AUC is better. The ROC curve does not place more 

emphasis on one class over the other. So it is not biased against the minority class.  

 

Other metrics from the Information Retrieval community that are useful to evaluate the 

performance of classifier trained on an imbalanced dataset are Recall and Precision. 

Precision is defined as the number of documents correctly assigned to a category divided 

by total number documents assigned to that category. Recall is defined as the number of 

correctly assigned documents into a category divided by total number of existing 
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documents which should have been assigned. The value of Recall and Precision varies 

between zero and one. Compared to AUC, Precision and Recall have better solution 

interpretability. The Geometric mean and F1-Measure are the combined measures of 

recall and precision to give an overall performance measure. The Geometric mean is 

defined as the square root of precision times recall. The F1-Measure is the harmonic 

mean of recall and precision. Whereas accuracy ignores the performance of rare 

categories, ROC, Geometric mean and the F1-Measure do not.  This is because both the 

TP Rate and the FP Rate are defined with respect to the positive rare class (Kotsiantis, S., 

Kanellopoulos, D., & Pintelas, P., 2006; Visa, S., & Ralescu, A., 2005; Japkowicz, N., & 

Stephen, S, 2002). 

 

The evaluation metric defined with respect to TP Rate and FP Rate helps to evaluate the 

performance of the rare classes correctly. However, the impact of class imbalance during 

the different stages of the classification process should be prevented or treated.   Various 

data level, algorithmic and architectural solutions for classifying an imbalanced dataset 

has been proposed. The next sections of this literature review critically analyze these 

solutions. 

 

3.2.1  Changing Class Distribution 

 

Data level solutions to class imbalance mostly involve changing the prior probability 

distribution of the dataset before applying the machine learning algorithm. These 

comprise different sampling methods. By altering the distribution of training examples, 

sampling attempts to eliminate or minimize the class imbalance. The basic sampling 



 

34 

 

methods to address class imbalance include under-sampling and over-sampling. Under-

sampling eliminates the majority-class examples. Over-sampling, in its basic form, 

duplicates the minority-class examples. Both these sampling techniques decrease the 

degree of class imbalance making the rare classes less rare. After under-sampling, 

classifier performance may degrade due to the potential loss of useful majority-class 

examples. Similarly, the additional training cases introduced by over-sampling can 

increase the time complexity of the classifier. In the worst case, exact copies of examples 

after over-sampling may lead to classifier over-fitting (Kotsiantis, S., Kanellopoulos, D., 

& Pintelas, P., 2006). 

 

Advanced over-sampling methods, such as adaptive over-sampling and boosting, help to 

minimize the flaws of the basic sampling methods (Weiss, S. M., Apte, C., Damerau, F. 

J., Johnson, D. E., Oles, F. J., Goetz, T., &  Hampp, T., 1999; Drummond, C., & Holte, 

R. C., 2003;). In adaptive sampling, new classifiers are iteratively induced by increasing 

the weight of erroneously classified cases. This is achieved by increasing the frequency 

of the wrongly classified cases in the next sample. Boosting, after every iteration, 

increases the weights associated with the incorrectly classified examples and decreases 

the weights associated with the correctly classified examples. In general, advanced over-

sampling methods force the learner to concentrate more on the incorrectly classified 

examples in the next iteration. Any data level approach, however, results in the alteration 

of the prior probability distribution of the original dataset. A classification approach that 

preserves the original prior probability distribution of the dataset is always optimal. This 
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includes different classifier level techniques such as manipulating classifiers internally 

and one-class learning. 

 

3.2.2  Manipulating Classifiers Internally 

 

This approach attempts to compensate for the imbalance in the training sample without 

changing the class distributions. Taking K-NN as an example, Barandela et al. (2003) 

proposed a weighted distance function to bias the discrimination procedure. In their 

research, weights are assigned to the respective classes and not to the individual training 

instances. This ensures a lower distance function to the positive minority class. A new 

case to be classified naturally tries to find their nearest neighbor among the learned 

instances of the minority class.  

 

Bias to the discrimination procedure of the SVM is achieved mostly by moving the 

hyper-plane further away from the positive class. This compensates the skew associated 

with imbalanced datasets that pushes the hyper-plane closer to the positive class. This 

biasing is accomplished in different ways. Popular methods include changing the kernel 

function (Wu, G., & Chang, E., 2003), making errors on positive examples costlier 

(Veropoulos, K., Campbell, C., & Cristianini, N., 1999), and Biased Mini-max 

Probability Machine (BMPM) (Huang,  K. Z., Yang, H. Q., King, I.,& Lyu, M. R., 2004).  

 

Biasing the learned decision space is another popular approach for improving the 

classifier performance on class imbalance. In the basic form, this approach involves 

eliminating some small disjuncts from the learned decision space. A disjunct within a 
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learned decision space can be visualized as an independent segment of the decision space 

formed by the association of a few decision rules. Thus, a small disjunct in a learned 

decision space is a relatively weak area of the decision space due to the minimal support 

from the training instances. The strength or significance of a disjunct is decided after a 

statistical significance test or application of error estimation techniques. Thus, only 

improperly learned disjuncts are removed from the decision space. Many papers 

discussed the interaction between the class imbalance and the small disjunct problems 

(Holte, R. C., Acker, L. E., & Porter, B. W., 1989; Weiss, G. M., & Hirsh, H., 2000). In 

certain cases, addressing the small disjunct problem without considering the class 

imbalance problem improves the classifier performance while for some other cases 

handling the small disjuncts alone is not sufficient to address the class imbalance 

problem. 

 
3.2.3  One-Class Learning 

 

Scholkopf et al. (2001) extended the Support Vector Machine algorithm to address 

training using only positive information known as ―one-class‖ classification. In one-class 

SVM, the origin is treated as the member of the second class and the candidate class is 

separated from the origin. Thus, misconceptions on learning the negative dataset were 

alleviated. Raskutti et al. demonstrated the optimality of one-class SVMs over two-class 

ones by classifying the highly imbalanced genomic data (Raskutti, B. & Kowalczyk, A., 

2004). They conclude that one-class learning is predominantly useful when used on 

extremely unbalanced datasets with a high dimensional noisy feature space.  However, 
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the performance of one-class SVM on very large datasets, such as web taxonomies, is not 

well studied. 

 

3.2.4  Comparison of Different Class Imbalance Handling Techniques 

 

Different data level and algorithmic solutions to address class imbalance problems were 

evaluated in this review. The critical question to be answered is ―Which is the best 

approach?‖ There are no comprehensive empirical studies that evaluate all the 

aforementioned methods. Each research typically compares its method for handling class 

imbalance to a base classifier that has no special modifications for handling class 

imbalance. For extremely skewed datasets, under-sampling and over-sampling methods 

were often combined to improve generalization of the learner (Kotsiantis, S., 

Kanellopoulos, D., & Pintelas, P., 2006; G. Monard, M. C., & Batista, G, 2002). Batista 

et al. (2004) presented a comparison of various sampling strategies. They conclude that 

combining focused over-sampling and under-sampling is applicable when the data sets 

are highly imbalanced or there were very few examples of the minority class. Sampling 

techniques were extensively used in this area and there were a few studies (Drummond, 

C., & Holte, R. C., 2003; Japkowicz, N., & Stephen, S, 2002) that compare sampling 

methods. Unfortunately, even in this case the conclusions are not consistent.  

 
3.3  Machine Learning Issues While Classifying Extremely Rare Categories 

 

Most of the categories in web directories have very few labeled documents of their own. 

This indicates rarity within the dataset. This leads to the situation of insufficient training 

instances to train the classifier. In the absence of a sufficient training set, the learning 
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algorithm may find many different learning rules within the decision boundary all giving 

the same accuracy on the training data. Data level or algorithmic treatments are necessary 

to learn the absolute rare classes of the web directory. Different approaches to address 

absolute rarity are discussed in the next section. 

 
3.3.1  Changing Class Distribution 

 

Over-sampling is a popular method to address absolute rarity. Over-sampling, in its basic 

form, duplicates the rare class examples. Thus, over-sampling techniques address 

absolute rarity by making the rare classes less rare. Exact copies of examples after over-

sampling may lead to the classifier over-fitting. Moreover, basic over-sampling methods 

do not introduce new data. Hence, it does not address the fundamental lack of data issue 

associated with the minority class. This explains why some studies conclude that simple 

over-sampling is ineffective in improving minority classification (Drummond, C., & 

Holte, R. C., 2003; Ling, C.& Li, C., 1998).  

 

Advanced over-sampling methods such as adaptive sampling (Weiss, S. M., Apte, C., 

Damerau, F. J., Johnson, D. E., Oles, F. J., Goetz, T., & Hampp, T., 1999) and Boosting 

(Zhou, 2008; Freund, Y., & Schapire, E., 1999) minimize the discussed flaws of the basic 

over-sampling. If the rare classes are more error-prone than common classes, it is quite 

logical to believe that boosting may improve classification performance of the rare 

classes. Boosting, however, is not well studied in the context of rarity. The advanced 

sampling methods make boosting and adaptive re-sampling free from information loss 
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and classifier over-fitting issues. Hence, these methods may outperform the traditional 

random over-sampling and random under-sampling techniques. 

 
3.3.2  Non-Greedy Search Techniques 

 

Classifiers like the Decision Tree employ a divide-and-conquer approach, where the 

original problem is decomposed into smaller and smaller problems. Thus the instance 

space is partitioned into smaller and smaller pieces after every iteration. This process 

leads to data fragmentation (Friedman, J. H., Kohavi, R., & Yun, Y., 1996). Due to the 

existing lack of data, data fragmentation is an extreme concern on learning from rare 

classes (Weiss G. M., 2004.). Non-greedy search methods were also explored to address 

absolute rarity. A popular non-greedy method involves genetic algorithms. Genetic 

algorithms are global search techniques that work with populations of candidate solutions 

rather than a single solution and employ stochastic operators to guide the search process 

(Weiss G. M., 2004.). These characteristics permit genetic algorithms to deal well with 

attribute interactions to avoid being stuck in local maxima. Hence genetic algorithms may 

be suitable for dealing with absolute rarity.  

 
3.3.3  Ensemble Learning 

 

The functioning of a learning algorithm can be visualized as a search process on a 

decision space to identify the best learning rule. The problems arise when the amount of 

training data is too small compared to the decision boundary. In the absence of sufficient 

data, the learning algorithm may find many different learning rules within the decision 

boundary all giving the same accuracy on the training data. An appropriate architecture 
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may help to reduce the risk of choosing an inappropriate decision rule from the learned 

hypothetical space.  By constructing an ensemble of multiple member classifiers with 

different feature distributions, the algorithm can average the results to reduce the risk of 

choosing a very wrong single classifier (Dietterich, 2000). 

 

3.4  Machine Learning Issues While Classifying a Dataset with Very Large Number 

of Positive Training Instances 

 

In contrast to the traditional benchmark datasets, web directories generally have a very 

large number of positive and negative instances, especially in the upper-level hierarchies. 

Hence, the machine-learning algorithms have to extract knowledge from very large 

datasets. In theory, most prediction methods should perform well with a large dataset due 

to the increased enumeration and search space. Practical limitations like dimensional and 

computational issues, however, limit the advantage gained by using large datasets. In 

addition, more exhaustive searches may also increase the risk of finding a single low 

probability solution that evaluates well, but may fail to classify a new web page. 

Different data level and architectural approaches has been proposed to address the 

abundance of the training instances. This includes sub-sampling, incremental sampling 

based learning and ensemble learning 

 
3.4.1  Sub-Sampling 

 

Sub-sampling is the process of drawing a subset of data from a large dataset. Commonly 

used sampling methods include random sampling and stratified sampling. Numerous sub-

sampling techniques from probability theory and statistics have been studied and their 

relative merits on classification accuracy and solution complexity have been 
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experimentally evaluated.  Catlett, (1991) investigated the effect of sub-sampling using 

random sampling and stratified sampling principles. In this work, learning from the 

subsets showed a decrease in classification accuracy and processing time. This 

observation is drawn from datasets of less than 100,000 records and thus cannot be 

generalized. 

 

The relationship between training data size and prediction accuracy of the classifier is 

further investigated by Harris-Jones, C., & Haines, T.L. (1997). They evaluated two large 

business data sets of 300,000 records using the decision-tree learner C4.5 and its 

successor C5 and an increase in accuracy across the entire range of the dataset was found. 

The improvement in accuracy at the upper size limit, however, is quite small. The benefit 

of such a small improvement is questionable given the associated solution complexity 

due to increased search space and processing time. The major flaw with the above-

mentioned sub-sampling approaches is the loss of information caused by ignoring a 

portion of the original dataset. The impact of information loss due to sub-sampling is 

minimized in Ensemble learning and Incremental sampling based learning (Weiss, S. M., 

& Indurkhya, N., 1998.), two accepted architecture level solutions for learning large 

datasets. 

 
3.4.2  Incremental Sampling and Learning 

 

The incremental sampling based learning (Weiss, S. M., & Indurkhya, N., 1998) is a 

multi-phase process. This includes training a single classifier on an increasingly larger 

random subset of cases, observing the trends and stopping when no progress has been 
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made. The subset should take big bites from the original data to ensure the chances of 

improving performance with more data. The central theme is to observe the trends and 

net change in error. A decision on whether further experiment is necessary is made prior 

to the next increment of the dataset size. A significant amount of new data on every 

iteration should lead to better performance along with an acceptable system complexity. 

 

Taking an example, in the first step two classifiers are designed taking 10% and 20% of 

the cases from the original dataset. The trend of the classifier, in terms of error and 

solution complexity on moving from 10% cases to 20% cases is analyzed using test 

cases. If the error decreases with increased dataset size or if the current complexity is 

acceptable to the maximum of the expected solution complexity, the subset size is further 

increased to 33% of the records. If necessary, the sample size can be increased gradually 

to the full sample of cases. For a given sub-set size, if the error has not decreased, 

increasing the subset size will not be effective. To ensure a stabilized classifier, the trend 

of the error can be noted on increasing the numbers of samples until a plateau is reached. 

 

3.4.3  Ensemble based Average Sampling 

 

In ensemble learning, sub-sampling is performed on the original dataset to create multiple 

training datasets. Instances of each training dataset are varied from that of the original 

training dataset. Member classifiers are developed from each training dataset. An 

ensemble classifier is thus comprised of multiple member classifiers. The classification 

result by the ensemble classifier is determined by voting by the member classifiers. The 

voted solution typically has less error than a single solution. On a sufficient sample size, 



 

43 

 

the average of their solution can produce the same result as much larger samples (Weiss, 

S. M., & Indurkhya, N., 1998). In addition to reducing the average error by voting, 

ensembles on a large-scale learning process has the added advantage of increased 

accuracy compared to the individual classifiers. In a classification process, it is very 

difficult for a machine learning algorithm to find the best hypothesis on a very large 

dataset. On searching for the best hypothesis, many learning algorithms such as neural 

network and decision tree may stick in local optima. An ensemble constructed by running 

the algorithm on different segments of the data set may provide a better approximation to 

the true unknown test data compared to any of the individual classifiers (Dietterich, 

2000). 

 

3.4.4  Comparison of Different Large-Sample Learning Solutions 

 

Irrespective of the consequences, sub-sampling of the original dataset is essential for 

learning from a very large dataset. Therefore, it is important to identify the most efficient 

sub-sizing treatment for a given dataset. Producing random samples efficiently from large 

data sets is a difficult process. Considering a very large dataset, if a sampling 

methodology has to scan the complete dataset in order to randomly sample, much of the 

benefit of sampling will be lost. Despite numerous investigations on the effect of 

different sub-sampling approaches on classification accuracy and processing time, no 

consensus has been reached on which approach is optimal for a given classifier or for a 

given range of dataset size. From the classification perspective, the sub-sampling method 

without disturbing the inherent prior probability distributions of the original dataset may 

be more appropriate. 
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3.5  Learning  Imbalanced and Rare Dataset: Progress and Prospects 

 

In this section, we provide a comprehensive review of the recent research activities in the 

areas of class imbalance and rarity. 

 

In general, sampling methods are effective data level solution to address class imbalance 

and rarity (Seiffert, C., Khoshgoftaar,T.M., Van Hulse,J., & Napolitano,A., 2007). The 

basic sampling methods include under-sampling and over-sampling. As mentioned earlier 

under-sampling randomly discards the majority class samples while over-sampling 

randomly duplicates the minority class samples in order to modify the class distributions. 

Although these two methods do alleviate the rarity and class imbalance problem to some 

extent, they have some limitations too. In random under-sampling, some potentially 

useful majority samples may be left out, resulting in information loss and a less than 

optimal model. Also, in random over-sampling, the size of the training set may increase 

significantly, increasing the computational complexity. Moreover, the exact duplicate 

instances after over-sampling may cause the over-fitting problem (Mease, D., 

Wyner,A.J., & Buja,A., 2007).   

 

Recently, different algorithmic and architectural solutions to  alleviate the issues 

associated with sub-sampling when applied to address class imbalance and rarity have 

proposed and used by the data mining and machine learning community. Most of these 

solutions either try to minimize the negative effects of sampling or address the class 

imbalance and rarity using appropriate machine learning paradigms. 
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For example, Liu et al, (Liu, X.Y., Wu,J., & Zhou.Z.H., 2009) proposed two under-

sampling methods, EasyEnsemble and Balance Cascade, to address the information loss 

introduced in the traditional random under sampling method.  They created multiple 

subsets from the majority class, combined with rare class dataset and used AdaBoost to 

train classifiers for each subset. Finally, the outputs of these classifiers are combined. 

Experimental results suggest that, compared to EasyEnsemble, BalanceCascade is more 

efficient on highly skewed dataset.  

 

Chawla et al, (Chawla, N.V.,Bowyer,K.W.,Hall,L.O., and W. P. Kegelmeyer., 2002) 

proposed an approach called Synthetic Minority Over-sampling Technique (SMOTE). In 

this research, the rare classes are over-sampled using synthetic rare class samples. The 

synthetic rare class samples are generated by applying k- nearest neighbour approach on 

the rare samples. This prevents classifier over-fitting due to the exact duplicates of the 

rare instances.   Experimental results conclude that SMOTE can improve the accuracy of 

classifiers on many rare class problems.  Also, the combination of SMOTE and under-

sampling performed better than pure under-sampling.  

 

ADASYN, another recent research in this area, make use of density distribution function 

to adaptively create different amounts of synthetic data (He, H., Bai,Y.,Garcia,E.A., & 

Li,S., 2008). The density distribution function determines the number of synthetic 

samples that need to be generated for each minority example by adaptively changing the 

weights of different minority examples to compensate for the skewed distributions.  
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It is evident that synthetic sampling methods are quite strong in dealing with learning 

from imbalanced dataset. However, the synthetic data generation methods are mostly 

complex and computationally expensive. Mease et al, (Mease, D., Wyner,A.J., & 

Buja,A., 2007) proposed a much simpler technique for creating synthetic data. Instead of 

generating new data from computational methods, they applied ―perturbations‖ on the 

duplicate data obtained from random sampling. This approach breaks the issue of exact 

duplicates with minimum computational cost. This idea is relatively simple compared to 

its synthetic sampling counterparts and also incorporates the benefits of boosted 

ensembles to improve performance.  

 

The empirical studies suggest that synthetic procedures are successful   in dealing with 

learning from imbalanced dataset if it does not jeopardize the runtime costs. And also, 

intelligently sub-sampled systems like EasyEnsemble, BalanceCascade and SMOTE 

claims some advancements compared to their counterpart systems with basic sub-

sampling. However, while conducting sampling, how to determine the proper sampling 

rate, which directly affects the class distribution ratio, is not known. Another popular 

approach, cost-sensitive learning, is meant to address these issues by integrating cost 

information during the machine learning process.  

 

Cost-sensitive learning is a widely used technique in data mining, where different levels 

of misclassification penalty are assigned to each class. Experimental studies have shown 

that in some application domains cost-sensitive learning is superior to the sampling 

methods (Liu, X.,Y., and Zhou,Z.,H., 2006), (McCarthy, K.,Zabar,B., & Weiss,G.M., 
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2005), (Liu., X.Y & Zhou.,Z.H, 2006). The cost-sensitive techniques, when integrated 

into the classification algorithms attempts to optimize the overall cost of misclassification 

using the cost information provided. Recently, this technique has been applied to the rare 

class problem in which a higher cost is given to the misclassification of rare objects 

compared to the majority class. For example, Statistical Online Cost Sensitive 

Classification (STOCS) (Zhao, J.H., Li,X., & Dong,Z.Y., 2007) is proposed to classify 

rare events as online. Hence, cost-sensitive learning techniques can be considered as a 

viable alternative to sampling methods for imbalanced learning domains. 

 

Many research works apply general sampling and ensemble techniques to the SVM 

framework. Some examples include the SMOTE with Different Costs (SDC) (Akbani, 

R.,Kwek,S., & Japkowicz,N., 2004) and the ensembles of over or under sampled SVMs 

(Vilarino, F., Spyridonos,P., Radeva,P., & Vitria,J., 2005), (Kang, P. & Cho,S., 2006), 

(Liu, Y., An,A., & Huang,X., 2006), (Wang, B.,X., & Japkowicz,N, 2008), (Tang, Y., & 

Zhang,Y.,Q., 2006).  

 

The SDC algorithm uses different error costs (Akbani, R.,Kwek,S., & Japkowicz,N., 

2004) for different classes.  Such   dataset when trained on SVM biases the algorithm and 

imposes an additional shift in the decision boundary farther from positive instances. This 

approach makes positive instances more densely distributed and there by ensure a more 

well-defined boundary. The methods proposed in (Kang, 2006) and (Liu Y. A., 2006) 

develop ensemble systems by modifying the data distributions without modifying the 

underlying SVM classifier. 
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Empirical studies conclude that cost sensitive learning is effective to address class 

imbalance and rarity issues associated with the data classification.  However, in practice, 

it is often difficult to set the cost information. It is well known that a false negative 

prediction is more risky than a false positive prediction. However, to make a quantitative 

analysis between these two risk factors require prior knowledge on the domain or domain 

experts‘ involvement.  

 

Due to the aforementioned underlying issues associated with the sampling and cost 

sensitive learning, different algorithmic solutions to address class imbalance and rarity 

also have been investigated.  

 

Wang and Japkowicz (Wang, B.,X., & Japkowicz,N, 2008) proposed a modified SVM 

architecture with asymmetric misclassification costs to address class imbalance. This 

approaches use an iterative procedure to effectively modify the weights of the training 

observations. In another research, Japkowicz (Japkowicz, N., 2002) attempted to 

formulate rare class less rare through sub-division.  Author claims that after sub-division 

the complex concept become much simpler and this result into the reduction in the degree 

of imbalance. This research used both unsupervised and supervised learning in 

classification tasks where division is implemented via clustering.  

 

Wu et al., (Wu, J., Xiong, H., Wu, P., & Chen, J., 2007) also adopted the idea of sub-

division by developing a method for rare class mining using local clustering. For the 

majority classes, local clustering is employed within each class, and for the rare class, 
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over-sampling is adopted. The algorithm adjusts the over-sampling parameter to fit in 

with the clustering result so that the rare class size is approximate to the average size of 

the partitioned majority class. 

 

The effectiveness of Active Learning methods to address class imbalance also have been 

investigated.  Ertekin et al. (Ertekin, S., Huang,J., Bottou,L., & Giles, L., 2007) and 

(Ertekin, S., Huang, J., & Giles, C.L., 2007) proposed an efficient SVM-based active 

learning method. This is a multi-phase procedure which include training  an SVM using 

the complete dataset, identification of the most informative instances based on the 

hyperplane distance and  training another SVM using the a new training set formed by 

the most informative instances . In general, for each instance of the dataset, the algorithm 

needs to recalculate the distance from the current hyper-plane, makes this approach 

computationally expensive. To solve this problem, they proposed a method to effectively 

select such informative instances from a random set of training populations.  

Additionally, early stopping criteria for active learning are also discussed in this work 

which can be used to achieve faster convergence of the active learning process as 

compared to the random sample selection solution.  

 

Another active learning sampling method is the Simple Active Learning Heuristic 

approach proposed by Doucette et.al. The key idea of this method is to provide a generic 

model for the evolution of genetic programming classifiers by integrating the stochastic 

sub-sampling method and a modified Wilcoxon-Mann-Whitney cost function (Doucette, 

J., & Heywood,M.I., 2008). 
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Solutions to handle the imbalanced learning problem are not exclusively in the form of 

sampling methods, cost-sensitive methods, kernel-based methods, and active learning 

methods. For instance, the one-class learning or novelty detection methods have also 

attracted much attention in the community. 

 

Generally speaking, this group of approaches aims to recognize instances of a concept by 

using a single class of examples rather than differentiating between instances of both 

positive and negative classes as in the conventional learning approaches. Recent 

representative works in this area include the one-class SVMs (Zhuang, L., & Dai,H., 

2006), (Lee, H.,J., & Cho,S., 2006), (Zhuang, L., & Dai, H., 2006) and the autoassociator 

(or autoencoder) method (Manevitz, L., & Yousef, M., 2007). Lee and Cho (Lee, H.,J., & 

Cho,S., 2006) proved that novelty detection methods are particularly useful for extremely 

imbalanced data sets. 

 

The Mahalanobis-Taguchi System (MTS) has also been used for imbalanced learning 

(Su, C.T., & Hsiao,Y.H., 2007). The MTS was originally developed as a diagnostic and 

forecasting technique for multivariate data. Learning in the MTS is performed by 

developing a continuous measurement scale using single class examples instead of the 

entire training data. Hence, MTS model will be least influenced by the skewed data 

distribution. Due to the same reason, MTS may provide robust classification performance 

when applied to the skewed dataset classification. Su et.al compared the effectiveness of 

the MTS model for imbalanced learning with Stepwise Discriminate Analysis (SDA), 
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Backpropagation Neural Networks, Decision Trees, and SVMs.  This work demonstrates 

MTS as an effective solution to imbalance dataset classification. 

 

Most of the research works so far we examined addresses either class imbalance or small 

sample size problem (rarity).  In many of today‘s data analysis and knowledge discovery 

applications, it is often unavoidable to have data with high dimensionality, class 

imbalance and small sample size.  Some specific examples include web directory 

classification; face recognition and gene expression data analysis, among others. In this 

situation, there are many critical issues that arise simultaneously.  

 

If the sample size is small, all of the issues related to lack of sufficient training instances 

and class imbalances are applicable. The combination of class imbalance, rarity and high 

dimensionality hinders the classifier performance. This is because of the difficultly 

involved in forming conjunctions over the high degree of features with limited samples 

and class imbalance.  This issue requires more attention in the machine learning and data 

mining community. 

 

Finally, while this review focused on two-class imbalanced problems, multiclass 

imbalanced learning problems exist and are of equal importance. Sun et.al, proposed a 

cost-sensitive boosting algorithm AdaC2.M1 to tackle the class imbalance problem with 

multiple classes (Sun, Y., Kamel, M.S., & Wang,Y., 2006). They used genetic algorithm 

to fix the the optimum cost setup for each class. Abe et.al, proposed an iterative method 

for multiclass cost-sensitive learning. The key idea of this approach includes iterative 
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cost weighting, data space expansion, and gradient boosting with stochastic ensembles 

(Abe, N., Zadrozny, B., & Langford,J., 2004). Chen et.al, proposed a min-max modular 

network to decompose a multiclass imbalanced learning problem into a series of small 

two-class sub-problems (Chen, K., Lu, B.L., & Kwok, J., 2006).Other works of 

multiclass imbalanced learning include the rescaling approach for multiclass cost-

sensitive neural networks (Zhou, Z.,H., & Liu, X.Y., 2006), (Liu, X.Y. & Zhou, Z.H., 

2006) and others. 

 

3.6  Limitations of Earlier Large Scale Web Page Classification Research 

 

As of our knowledge, the maximum number of web page categories ever classified is not 

more than 246,279 categories from Yahoo! (Liu, T., Yang, Y., Wan, H., Zeng, H., Chen, 

Z., & Ma, W., 2004).  In their research, even with the best setting, hierarchical SVMs 

lead to a Micro-F1 of 24%. However, the hierarchical classifier evaluation procedure they 

followed to calculate the reported Macro-F1 measure is not clear. This section 

investigates the reasons for the poor performance reported by earlier large-scale web page 

classification research. 

 

To start with, we conducted a statistical analysis of Yahoo! and DMOZ web directories.  

These web directories have hundreds of thousands of categories, deep hierarchies, class 

imbalance and rarity (very small classes) within the dataset. These properties make 

applying classification algorithms to such data sets very difficult.  

 



 

53 

 

For example, in the Yahoo! web directory, 0.16% of the total categories (988 categories) 

are very large, containing 1000 to 600,000 labeled web pages of their own; whereas, 

19.06% of the Yahoo! categories are absolutely rare categories of 10 to 100 labeled web 

pages. Classification algorithms, when applied to very large categories of more than 1000 

labeled instances should address the machine learning issues due to the class imbalance 

and large-sample learning. Conversely, classification algorithms, when applied to rare 

categories of 10 to 100 labeled web pages should address the machine learning issues due 

to class imbalance and rarity. Another 1.58% of Yahoo! categories are reasonably sized 

categories holding 100 to 1000 labeled web pages. However, the abundance or shortage 

of negative instances in the sibling categories makes these categories imbalanced. There 

are 504,240 Yahoo! categories containing 1 to 9 web pages. This forms 78.82% of the 

total Yahoo! categories.  

 

Earlier large scale web page classification researches either overlooked the machine 

learning issues due to rarity, class imbalance and over-abundance of training instances or 

addressed these issues using a common methodology. These researches either lead to 

highly comprehensive or inadequate statements such as traditional web page 

classification techniques are insufficient to address the challenges of large-scale web 

page classification problem, or provide limited insight to the real challenges of large-

scale web page classification. 
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3.7  Summary 

 

A thorough review to evaluate the breadth and depth of the issues pertaining to large-

scale web page classification technology has been presented in this chapter. These 

include localized over-abundance of positive training instances, class imbalance and 

rarity. Different data level, algorithmic, and architectural solutions to these issues have 

been proposed and were used by the machine learning community. This chapter analyzes 

the effectiveness of these approaches in the context of large-scale web page 

classification.  
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CHAPTER 4: METHODOLOGY 

 

4.1  Introduction 

 

Web directories have hundreds of thousands of categories, deep hierarchies, class 

imbalance and rarity within the dataset. These properties make applying classification 

algorithms to such data sets very difficult. In this chapter, we investigate a scalable and 

effective classification methodology for large-scale web page classification. 

 

Web page processing is the first step of any content based web page classification 

process. Web page preprocessing for a content-based classification integrates various 

methods to identify the concise portion of the web pages with maximum textual 

information, applicable to the majority of the web pages. Different web page 

preprocessing approaches using the HTML structure and hypertext structure of the web 

pages have been studied and their effectiveness in the context of web page classification 

has been evaluated. However, drawing general conclusions in web page preprocessing 

can be misleading (Yang. Y, 2001). Hence we examined the quality and nature of textual 

information across the various HTML tags prior to the web page preprocessing. The 

distributed version of the popular MapReduce algorithm, Apache Hadoop, is used for this 

purpose.  The distribution of the textual information across the different tags of the 

Yahoo! Web pages is summarized as Table 2. 
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Table 2: Feature Distribution within the HTML Tags of Yahoo! Web Directory 

Tag type 
0 words 

(%) 

1-5 words 

(%) 

5-50 words 

(%) 

51+ words 

(%) 

Title 62.5 27.30 9.001 1.20 

Meta Description 64.9 16.85 15.21 3.04 

Meta Key-word 60.07 14.02 12.21 13.7 

Body text 22.1 17.5 18 52.4 

 

In the Yahoo! Web directory, the most obvious source of textual information for the 

purpose of classification is the body of the web pages. However, 22.1% of the web pages 

have no usable body text. About 52.4% of web pages contain more than 50 words within 

the body of the web page, and 25.5% of the web pages contain 1 to 50 words within the 

body of the web page. Other sources of text are the content in HTML tags including 

titles, Meta-key word and Meta-Description. However, the amount of text within these 

tags is relatively very small. Hence we used the textual content from the body of the web 

pages for the purpose of classification. The following steps have been executed to remove 

the less informative contents of the textual information within the body segment. 

1. Removing HTML tags and scripting languages such as java script 

2. Removing stop words 

3. Word stemming 

The textual information remaining after these steps is known as features. Using the 

features and their frequency of occurrences, the web pages of each category is projected 

into a multidimensional space.  
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4.2  Statistical Analysis of Yahoo! Web Directory 

 

In contrast to the traditional benchmark datasets used for document classification, the 

Yahoo! web directory has more categories and documents in the middle of the hierarchy 

than at either the upper or the lower levels of the hierarchy. This spindled category and 

document distribution is an indication of the class imbalance within the dataset. In an 

imbalanced dataset, almost all examples belong to one class, while far fewer examples 

represent the other classes.  

 

 
Figure 1: Spindled Category Distribution of Yahoo! Web Directory 
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Figure 2: Spindled Web Page Distribution of Yahoo! Web Directory 

 

Class imbalance within the dataset affects different stages of the classification process 

including feature selection, classifier training and performance evaluation. The impact of 

class imbalance on popular feature selection methods is beyond the scope of this 

research. However, preliminary research in this area is conducted to compare the 

optimality of the two-sided metric Information Gain with the one-sided metric Document 

frequency.  

 

When the classification algorithm is exposed to an imbalanced dataset, standard 
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than on rare classes. Thus, the performance with respect to small classes is difficult to 

assess. 

 

Various data level and algorithmic solutions for classifying imbalanced datasets have 

been proposed and used by the machine learning community. This includes different sub-

sampling techniques and one-class learning. However, there are no comprehensive 

empirical studies that evaluate these methods.  

 

We addressed the class imbalance problem by focused over-sampling and under-

sampling of the negative instances. This prevents information loss due to the sub-

sampling of positive instances. One-class learning is another popular algorithmic 

approach that we examined to address class imbalance. In one-class learning, the origin is 

treated as the member of the second class and the candidate class is separated from the 

origin. Hence, the misconceptions on learning the negative dataset will be alleviated.  

 

The macro-averaged F1-measure is used to evaluate the performance of the rare classes 

correctly. Whereas accuracy, the popular evaluation metric for classification, ignores the 

performance of rare categories, the F1-Measure, the harmonic mean of recall and 

precision, does not. This is because both the TP Rate and the FP Rate used to calculate 

recall and precision are defined with respect to the positive class. 

 

Another distinguishing attribute of the Yahoo! web directory is the skewed category 

distribution over the web pages. The skewed category distribution on the number of web 
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pages indicates that most categories have very few labeled web pages. The lack of 

sufficient training instances for classification indicates rarity within the dataset. Data 

level or algorithmic approaches prior to or along with machine learning is necessary to 

learn the rare categories of the web directory. A popular solution to address absolute 

rarity is over-sampling. However, exact copies of examples after basic over-sampling 

may lead to classifier over-fitting. Advanced over-sampling methods such as adaptive 

over-sampling minimize the flaw of the basic over-sampling. Hence, these methods may 

outperform the traditional random over-sampling. The effectiveness of adaptive over-

sampling to address rarity is examined in this research. 

 

To decrease the overall rarity and the number of conceptual nodes, the content of each 

Yahoo! category is expanded using the web pages from the child categories. This is 

performed prior to the feature space reduction and classification. This process, however, 

results in the localized overabundance of positive instances especially in the upper level 

categories of the Yahoo! web directory. 

 

Machine learning algorithms when applied to very large datasets have to extract 

knowledge from a very large decision space. In theory, most prediction methods should 

perform well with a large dataset due to the increased enumeration and search space. 

Practical limitations like dimensional and computational issues, however, limit the 

advantage gained by using large datasets.  In addition, more exhaustive searches may also 

increase the risk of finding a single low probability solution that evaluates well, but may 

fail to classify a new web page. Different data level and architectural solutions including 
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sub-sampling, incremental sampling based learning and ensemble learning have been 

proposed and used to address these issues. The major flaw with sub-sampling approaches 

is the information loss caused by ignoring a portion of the original dataset. The 

effectiveness of Incremental sampling based learning and Ensemble learning when 

applied to very large categories with hundreds of thousands of positive instances is  

compared in this research. 

 

Another distinguishing characteristic of the Yahoo! web directory is web pages with 

multiple labels. The highest number of labels assigned to a Yahoo! web page is 35 and 

the average number of labels assigned to a web page within the Yahoo! web directory is 

3.2. The existence of multiple labels points to the necessity of a classification frame-work 

that assigns multiple labels to the web pages. 

 

4.3  Architecture 

 

In an imbalanced dataset like the Yahoo! web directory, the prior probability distribution 

of a category indicates the presence or absence of class imbalance, rarity and large-

sample learning issues due to the overabundance of positive instances. Based on the prior 

probability distribution and associated machine learning issues, we subdivided the entire 

Yahoo! subcategories into 5 mutually exclusive groups as given in Table 3. 

  



 

62 

 

Table 3: The Prior Probability Distribution of Web Pages within Yahoo! Web Directory 

Group 
Number of 

categories 

% of 

categories 

Categories with more than 1000 labeled web pages 988 0.16 

Categories with 100 to 1000 labeled web pages 10,025 1.58 

Categories with 1 to 10 web pages 504,240 78.82 

Categories without any labeled web pages 3,089 0.38 

 

The rationale for these 5 class sizes are explained fully in chapter 8. Later, different data 

level, algorithmic and architectural solutions are applied to address the machine learning 

issues associated with these 5 groups of categories. The best performing classification 

technologies for each group of categories following a particular prior probability 

distribution has been identified and applied for Yahoo! Web directory classification. The 

different machine learning issues associated with the Yahoo! Web directory is 

summarized as Table 4. 

 

In the Yahoo! web directory, 0.16% of the total categories (988 categories) are very 

large, containing 1000 to 600,000 labeled web pages of their own; whereas, 19.06% of 

the Yahoo! categories are absolutely rare categories of 10 to 100 labeled web pages. 

Classification algorithms, when applied to very large categories of more than 1000 

labeled instances should address the machine learning issues due to the class imbalance 

and large-sample learning. Conversely, classification algorithms, when applied to rare 

categories of 10 to 100 labeled web pages should address the machine learning issues due 

to class imbalance and rarity. Another 1.58% of Yahoo! categories are reasonably sized 

categories holding 100 to 1000 labeled web pages. However, the abundance or shortage 

of negative instances in the sibling categories makes these categories imbalanced. There 
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are 504,240 Yahoo! categories containing 1 to 9 web pages. This forms 78.82% of total 

Yahoo! categories. Due to the extreme lack of training instances, no individual classifiers 

are designed for this group.  

 

Table 4: Machine Learning Issues Associated with Yahoo! web Directory and Experimented 

Solutions 

Machine Learning 

Issues 
Investigated solutions 

Categories with over-

abundance of positive 

training instances 

together with  negative 

dominant class imbalance 

1. Ensemble learning architecture combined with sub-

sampling of negative instances. 

2. Incremental sampling and learning combined with 

sub-sampling of negative instances. 

Categories with 

negative/positive 

dominant class imbalance 

Single classifier with three-fold cross validation using 

complete positive instances and under/over sampled 

negative instances. 

Rarity together with 

negative/positive 

dominant class imbalance 

1. Adaptive over-sampling. 

2. Random over-sampling 

Extreme rarity 

No separate classifier is designed. Web pages of these 

categories are evaluated by the classifiers of the parent 

categories 

 

This research is conducted on Atlantic Canada Excellence Network (ACENet) High 

Performance Computing (HPC) environment. The tailoring, integration and distribution 

of different machine learning architectures is performed using java, FJTask Framework, 

Apache Hadoop, Apache Ant and Matlab Distributed Computing Toolbox.  

 

We used a top down approach, starting at the root of Yahoo! web directory and a 

category includes the subcategories of that category. To start with, preprocessing of the 

Yahoo! category web pages is conducted using 165 clusters of ACENet parallel 
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computing environment.  The distributed version of MapReduce Algorithm, Apache 

Hadoop is used for this purpose.  

 

Later, for each Yahoo! subcategory, say Ci, the collective positive instances by adding 

the positive instances of the Ci and all child category web pages is calculated.  If the 

collective positive instance of Ci is greater than or equal to 1000, the category Ci is 

considered as large category and machine learning architectures described in Section 4.4 

is applied on Ci. If the collective positive instance of Ci is between 100 and 1000, Ci is 

considered as reasonable sized but imbalanced category and the machine learning 

architecture mentioned in Section 4.5 is applied on Ci. Similarly if the collective positive 

instance of Ci is between 10 and 100, Ci is considered as rare category and the machine 

learning architecture mentioned in Section 4.6 is applied. The machine learning 

progresses in a layered mode starting from the first layer of 14 categories. 

 

 The Incremental Sampling Based Learning and Ensemble Learning architecture designed 

to address the over-abundance of positive instances associated with the Yahoo! web 

directory categories of more than 1000 positive instances are discussed in Section 4.4. 

The focused over-sampling and under-sampling procedure applied to address class 

imbalance associated with the Yahoo! categories of 100 to 1000 labeled instances is 

discussed in Section 4.5. The adaptive over-sampling architecture designed to address 

rarity within the Yahoo! web directory is discussed in Section 4.6. 
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4.4  Classification of Very Large Yahoo! Categories with more than 1000 Web Pages 

 

4.4.1  Ensemble Learning Architecture 

 

In ensemble learning, sub-sampling is performed on the original dataset to create multiple 

samples. Member classifiers are trained from each sample. Thus, an ensemble classifier 

comprises a group of member classifiers.  The category of a new web page is determined 

by voting by the member classifiers. If sufficient training instances have been taken, the 

ensemble formed by the multiple member classifiers can produce the same result as much 

larger samples (Weiss, S. M., & Indurkhya, N., 1998). The optimal sample size varies 

with the dataset. The sample size optimization followed in this research includes training 

multiple member classifiers taking increasingly larger samples, observing the trends, and 

stopping when no progress has been made. The sample size used in the first iteration is 

ensured to be the representative of the original dataset. The size of the samples is 

increased gradually in the coming iterations to ensure the chances of improving 

performance with larger sample size.  

 

While classifying a very large category, say Ci, of collective positive instances more than 

100,000, in the 1
st
 iteration, 2% of the labeled instances from Ci and all child categories 

of Ci are drawn and combined with an equal number of negative instances from the 

sibling categories of Ci. Thus, 50 unique samples of Ci are generated for member 

classifier design. To make stratified sampling of extremely rare categories with 1 to 10 

web pages easier, all child categories of Ci of 1 to 5 web pages and 5 to 10 web pages are 

combined separately and treated as two single rare categories of category Ci. 
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In the 2
nd

 iteration, 4% of the labeled instances from Ci and all child categories are drawn 

and combined with an equal number of negative instances from the sibling categories of 

Ci and 25 unique samples of Ci are generated for member classifier design.  

 

In the 3
rd

, 4
th

, 5
th

, 6
th

, 7
th

, and 8
th

 iterations 6.25%, 8.33%, 10%, 20%, 33.33% and 50% of 

the labeled instances of Ci and all child categories are drawn and combined with an equal 

numbers of negative instances from the sibling categories of Ci. In these iterations, 18, 

12, 10, 5, 3 and 2 unique samples of Ci are created for member classifier design. 

 

While classifying categories of 10,000 to 100,000 collective positive instances, in the 1
st
, 

2
nd

, 3
rd

, 4
th

, 5
th

, and 6
th

 iterations, 6.25%, 8.33%, 10%, 20%, 33.33% and 50% of the 

labeled instances of Ci and all child categories of Ci are drawn and combined with an 

equal number of negative instances from the sibling categories of Ci resulting in 18, 12, 

10, 5, 3 and 2 unique samples of Ci for member classifier design. 

 

For categories of 1000 to 10,000 positive instances, in the 1
st
, 2

nd
, 3

rd
, and 4

th
 iterations, 

10%, 20%, 33.33% and 50% of the positive instances from Ci and all child categories are 

drawn and combined with equal numbers of negative instances from the sibling 

categories of Ci resulting in 10, 5, 3, and 2 unique samples of Ci for member classifier 

design. 

 

In this procedure, it is important to analyze the achieved benefit before moving to the 

next iteration of a higher sample size. For each member classifier, the average percentage 
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of True Positive (TP) Rate and False Positive (FP) Rate after 3-fold cross validation is 

calculated. A quality factor, defined as a function of the average TP Rate and FP Rate of 

the member classifiers and the variance of the TP Rate and the FP Rate is used to 

measure the quality of ensembles formed on every iteration. A high TP Rate and low FP 

Rate is desirable for giving a classifier with high recall and precision. The higher the 

variance, the greater will be the dissimilarity between the member classifiers. Hence the 

Quality Factor (QF) of an ensemble formed of N member classifiers is defined as, 

 

QF=Average of percentage TP Rate / (Average of percentage FP Rate × Average 

variance across the TP Rate × Average variance across FP Rate). 

 

The slope in degrees between two consecutive QF‘s (y-axis) and the normalized average 

sample size (x-axis) is measured. A slope of zero degrees means there is no improvement 

in the classifier performance between the two consecutive sample sizes and no further 

iteration is needed. However, this is an optimal situation that rarely happens. For each 

sample, three sets of experiments have been conducted after fixing predefined thresholds 

to the slope as 1 degree, 2 degrees and 5 degrees.  If the slope in degrees between two 

consecutive QF‘s and the average sample size is less than or equal to a predefined 

threshold say x degrees, the member classifiers formed from the higher sample size is 

taken as the optimal ensemble classifier for Ci. These member classifiers will be used 

further for the voting purpose to determine the category of a new web page.  Otherwise 

the algorithm proceeds to the next iteration.  
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In a large scale classification application with hundreds of categories, occasionally the 

ensembles may fail to converge for the predefined slope cut-off. In such cases, the 

ensemble formed by  the middle iteration of three consecutive iterations is taken as the 

optimal ensemble for classification, provided the difference of the two consecutive slopes 

calculated from these three consecutive iterations is less than or equal to 1 degree. 

Otherwise a single classifier is trained for the category taking complete positive instances 

and an equal number of negative instances are trained. 

 

The effectiveness of this ensemble architecture, combined with Information Gain and 

Document Frequency feature selection methods and the Perceptron, Support Vector 

Machine and Maximum Entropy Classifiers have been studied and the best performing 

classification technologies have been applied to classify the Yahoo! web directories of 

more than 1000 positive instances.  

 

Of the total 988 very large Yahoo! categories, 7 categories have positive dominant class 

imbalance. The insufficient number of negative instances, i.e., positive dominant class 

imbalance, in these categories is addressed by training the member classifiers using 

different positive instances and same negative instances. Further lack of sufficient 

negative instances associated with 3 categories, were the ensemble converged into single 

classifier, is addressed by over-sampling the negative instances. The highest percentage 

of over-sampling in this case is 18.23%. 
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4.4.2  Incremental Sampling Based Learning   

 

The main disadvantage of the ensemble architecture is the expense of sampling, training, 

testing and maintaining multiple member classifiers. The effectiveness of incremental 

sampling based learning; another popular and less expensive learning method for 

classifying very large categories is also examined. The ensemble classifier maintains 

multiple member classifiers for each iteration. Whereas Incremental sampling based 

learning, after every iteration, maintains a single classifier only.  

 

Case reduction in incremental sampling is a multi-stage process. This includes training a 

single classifier on an increasingly larger random subset of cases, observing the trends 

and stopping when no progress has been made. The subset should take big bites from the 

original data to ensure the chances of improving performance with more data. The 

smallest subset should be substantial enough to be the representative of the original 

dataset and the size of the subset increased gradually to the full sample size. The central 

theme is to observe the trends and net change in error. A decision on whether further 

experiment is necessary is made prior to the next increment of dataset size. A significant 

amount of new data on every iteration should lead to better performance along with an 

acceptable system complexity. In this procedure, it is important to analyze the cost and 

achieved benefit before moving to the next iteration of higher sample size. For each 

classifier, a quality factor defined as a function of normalized value of average F1-

Measure is calculated. 
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The slope in degrees between two consecutive QF‘s (y-axis) and the normalized average 

sample size (x-axis) is measured. A slope of zero degrees means there is no improvement 

in the classifier performance between these two consecutive sample sizes and no further 

iteration is needed. However, this is an optimal situation that rarely happens. Three sets 

of experiments have been conducted after fixing predefined threshold of slopes as 1 

degrees, 2 degrees and 5 degrees.  If the slope in degrees between two consecutive QF‘s 

and the normalized average sample size is less than or equal to x degrees, the classifiers 

formed from the higher sample size is taken as the optimal classifier for the category 

under consideration.  Otherwise the algorithm proceeds to the next iteration. 

 

Here also, occasionally the classifiers may fail to converge for the predefined slope cut-

off. The classifier formed by the middle iteration of three consecutive iterations is taken 

as the optimal classifier, provided the difference of the two consecutive slopes calculated 

from these three consecutive iterations is less than or equal to 1 degree. Otherwise a 

single classifier taking complete positive instances and an equal number of negative 

instances has been trained. 

 

If the total available positive instance of a category is less than 10,000, iteration starts 

with 10% positive training instances. Similarly, if the total available positive instance of a 

category is between 10,000 and 100,000 positive instances, iteration starts with 6.25% 

positive training instances.  
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For a category, say Ci, of more than 100,000 positive instances, in the 1
st
 iteration of 

incremental sampling based learning; a single sample is generated taking 2% of the 

positive instances from Ci and all child categories and an equal number of negative 

instances from the sibling categories of Ci. Using maximum entropy classification 

algorithm, a classifier has been trained and average TP Rate and FP Rate after 3-fold 

cross validation has been calculated. The Quality factor for 1
st
 iteration is calculated.  

 

In the 2
nd

 iteration, another sample is generated taking 4% of the positive instances from 

Ci and all child categories and an equal number of negative instances from the sibling 

categories of Ci. The maximum entropy classifier is trained and the Quality factor of the 

2
nd

 iteration has been measured. Prior to the third iteration, the achieved benefit after 

increasing the sample size by 2% in the second iteration is calculated. For this, the slope 

between two consecutive QF‘s of 1
st
 and 2

nd
 iteration and average sample size is 

calculated. If the slope in degrees between two consecutive QF‘s and average sample size 

is less than or equal to a predefined threshold, the classifier formed from the higher 

sample size is taken as the optimal classifier for Ci and incremental sampling based 

learning terminates for that category. Otherwise the algorithm proceeds to the next 

iteration of larger sample size.  

 

4.5  Classification of Imbalanced Yahoo! Categories with 100 to 1000 Web Pages 

 

Categories with 100 to 1000 web pages have reasonable numbers of positive instances for 

classification process. Negative or positive dominant class imbalance is the only machine 

learning issue associated with the classification of these Yahoo! categories. The class 
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imbalance issue is addressed by either over or under-sampling the negative dataset. This 

prevents the information loss of positive instances due to sub-sampling. Both these 

sampling techniques decrease the degree of class imbalance by altering negative dataset 

distribution. Text content from the body of the web pages is used for classification. 

Taking complete positive instances and an equal number of negative instances from the 

sibling categories, 3-fold cross validation is conducted on each category of this group. 

 

4.6  Classification Of the Yahoo! Rare Categories with 10 to 100 Web Pages 

 

The lack of training instances and the negative or positive dominant class imbalance are 

the main machine learning issues associated with the classification of Yahoo! rare 

categories of 10 to 100 labeled instances. In the Yahoo! Web directory, the most obvious 

source of textual information for the purpose of classification is the body of the web 

pages. However, 22.1% of the web pages have no usable body text. An attempt has been 

made to reduce the percentage of empty web pages by extending the feature space using 

the complete textual information within the body, title, meta-keyword and meta-

description of the web pages. This decreases the number of web pages with zero textual 

information. In a web page preprocessing and representation using the body text alone of 

the rare category web pages, 22.1% of the rare category web pages were excluded from 

the dataset due to the unavailability of any textual content. However, after extending the 

web page preprocessing and representation using the textual information from complete 

web pages, the percentage of empty web pages has been reduced to 18.01%. 
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Considering the Yahoo! directory rare categories, a slight increase in the number of web 

pages by extending the feature selection to the complete web page alone will not address 

the rarity related issues. Hence, data level solutions to address rarity have been examined. 

Over-sampling is a popular data level approach to address rarity. Over-sampling in its 

basic form duplicates the rare category dataset. However, crude over-sampling may 

results into the classifier over fitting. Weiss proposed an adaptive resampling architecture 

to address the classifier over fitting and related issues associated with random 

oversampling (Weiss,S.M.,& Indurkhya,N.,1998; Weiss,S.M., Apte, C., Damerau, F.J., 

Johnson, D.E., Oles, F.J., Goetz, T., Hampp, T.,1999). Effectivenes of this architecture is  

examined  using the  Reuters-21578 benchmark data and a real-world customer e-mail 

routing system. For both dataset, the adaptivly oversampled architecture  showed much 

superior performance.  Inspired by this research, we designed a modified version of 

Weiss adaptive resampling approach to address the rarity associated with Yahoo! 

Categories of 10 to 100 web pages. 

 

4.6.1  Adaptive Over-Sampling 

 

The basic theory of classifier design using adaptive sampling is to iteratively induce new 

classifiers by increasing the weight of erroneously classified cases in the training set in 

the next iteration. Cases having a large error for the current solution are over-sampled 

with increased frequency. In basic over-sampling, the instances for over-sampling are 

randomly selected with a probability 1/N, where N is the full sample size. However, in 

adaptive-over sampling, for each case in the full training set, a record of the current 

solution performance is kept. In the coming iterations, the instances for over sampling are 
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selected with probability Pi which is determined by the relative probability of the error of 

the case i.   

 

For each category Ci of 10 to 100 web pages, in the 1
st
 iteration, available positive 

instances of Ci and all child categories are drawn and combined with an equal number of 

negative instances from the sibling categories of Ci and a single classifier after 3-fold  

cross validation has been designed. The average F1-Measure of classification, average 

recall of Ci and average recall of all child categories are measured. 

 

In the 2
nd

 iteration, the training instances of Ci and  all child categories of Ci with lower 

average recall than a predefined threshold recall are identified and over-sampled by 10%. 

The test dataset is not over-sampled. The macro-averaged F1-Measure of Ci is calculated. 

The new average recalls of the Ci and child categories are calculated and used for 

deciding the over-sampling criteria in the next iteration. If the increase in the F1-Measure 

of two consecutive iterations is less than 1% no further over-sampling has been 

performed for the category Ci. Otherwise the algorithm proceeds to the next iteration and 

repeat the procedure of iteration-2. Two sets of adaptive over-sampling experiments have 

been conducted by fixing the threshold recall as 85% and 75%. These results are 

compared with basic over-sampling. 

 

4.7  Conclusion 

 

The methodology of this research has been presented in this chapter. Due to the localized 

over-abundance of positive instances, rarity and class imbalance within the dataset, any 
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generalized approach for classifying the complete Yahoo! web directory will be highly 

challenging and inefficient. In this chapter, we designed different architectural solutions 

to these issues. In the coming chapters, these architectures combined with popular feature 

selection methods such as Information Gain, Document Frequency and popular classifiers 

such as Perceptron, Support Vector Machine and Maximum Entropy Classifiers, are 

examined. The complete Yahoo! web directory of 639,671 categories and 4,140,629 web 

pages are used to set-up the experiments. Finally, a Yahoo! web directory classification 

model is designed using the best performing classification technologies.  
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CHAPTER 5: DIMENSIONALITY REDUCTION OF IMBALANCED 

DATASETS 

 

5.1  Introduction 

 

In the Yahoo! Web directory, the most obvious source of textual information for the 

purpose of classification is the body of the web pages. However, 22.1% of the web pages 

have no usable body text. About 52.4% of web pages contain more than 50 words within 

the body of the web page, and 25.5% of the web pages contain 1 to 50 words within the 

body of the web page. Other sources of text are the content in HTML tags including 

titles, Meta-key word and Meta-Description. However, the amount of text within these 

tags is relatively very small. Hence we used the textual content from the body of the web 

pages for the purpose of classification. The following steps have been executed to remove 

the less informative contents of the textual information within the body segment. 

1. Removing HTML tags and scripting languages such as java script 

2. Removing stop words 

3. Word stemming 

The web pages, after preprocessing, contain hundreds of thousands of unique terms. If all 

the unique terms are used for representing the web pages, the dimension of the feature 

vectors will be enormous. This results in high time and space complexity for the machine 

learning algorithm. Hence dimensionality reduction is necessary for web page 

classification. Dimensionality reduction is also beneficial to reduce the problems of 

classifier over fitting. Over fitting is the phenomenon where a classifier is tuned to the 

training data, rather than being generalized from essential characteristics of the training 

data to classify a new web page.  
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Dimensionality reduction is popularly achieved by feature selection and feature 

extraction prior to the classification. While many feature selection techniques have been 

proposed, a thorough evaluation of these methods over a very large feature space is not 

reported.  

 

In a broad view, the feature selection criteria can be divided into two sets. One set of 

feature selection methods, such as, Document Frequency, Mutual Information, Cross 

Entropy, and Odds Ratio considers the possible value of features that are present in the 

document. The other set of feature selection methods, such as, Information Gain and Chi-

square Statistic, considers all possible values of features including those that are present 

in and those that are absent from a document.  In this chapter,  using one representative 

from each type of feature selection methods, ie, Information Gain and Document 

frequency feature selection metrics, together with ensemble architecture, two sets of 

feature selection experiments have been conducted and the relative merits of these feature 

selection methods are examined. Later, the suitability of these feature selection methods 

when applied to the content based classification of an imbalanced dataset is analyzed.   

The overall goal of this chapter is to address the following query: 

 

What are the relative merits and demerits of a two-sided feature selection method 

such as Information Gain and a one-sided feature selection method such as 

Document Frequency when applied to the content based classification of an 

imbalanced hierarchical dataset? 
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The 988 Yahoo! categories of more than 1000 labeled web pages are used to set-up the 

experiments. The negative instances are drawn from the siblings of each category. A 

Perceptron classifier is combined with ensemble architecture. The experimental setup 

used for this research is discussed in Section 5.2. Section 5.3 is the results and 

discussions. The recommendations of this research, while performing dimensionality 

reduction of an imbalanced dataset, are summarized in Section 5.4.  

 
5.2  Experiment Setup 

 

While classifying a very large category, say Ci of collective positive instances more than 

100,000, in the 1
st
 iteration, 2% of the labeled instances from Ci and all child categories 

of Ci are drawn and combined with an equal number of negative instances from the 

sibling categories of Ci. Thus, 50 unique samples of Ci are generated for member 

classifier design.  

 

In the 2
nd

, 3
rd

, 4
th

, 5
th

, 6
th

, 7
th

, and 8
th

 iterations 4%, 6.25%, 8.33%, 10%, 20%, 33.33% 

and 50% of the labeled instances of Ci and all child categories are drawn and combined 

with an equal numbers of negative instances from the sibling categories of Ci. In these 

iterations, 25, 18, 12, 10, 5, 3 and 2 unique samples of Ci are created for member 

classifier design. 

 

While classifying categories of 10,000 to 100,000 collective positive instances, in the 1
st
, 

2
nd

, 3
rd

, 4
th

, 5
th

, and 6
th

 iterations, 6.25%, 8.33%, 10%, 20%, 33.33% and 50% of the 
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labeled instances of Ci and all child categories of Ci are drawn and combined with an 

equal number of negative instances from the sibling categories of Ci resulting in 18, 12, 

10, 5, 3 and 2 unique samples of Ci for member classifier design. 

 

For categories of 1000 to 10,000 positive instances, in the 1
st
, 2

nd
, 3

rd
, and 4

th
 iterations, 

10%, 20%, 33.33% and 50% of the positive instances from Ci and all child categories are 

drawn and combined with equal numbers of negative instances from the sibling 

categories of Ci resulting in 10, 5, 3, and 2 unique samples of Ci for member classifier 

design. 

 

The 3-fold cross validation is used for the evaluation. The Information Gain and 

Document Frequency feature selection methods are applied on the training sets (66.66% 

instances) of each sample. These feature selection methods process the features 

independently and assign a numeric score to the features based on some statistical 

criteria. Using this numeric score, the discriminating features for the classification 

process, also known as a reduced feature set, are identified. To optimize the dimension of 

the reduced feature set, two sets of feature selection experiments, taking the highest 

scoring 20% of the features and 40% of the features of the training set have been 

conducted and two reduced feature sets for each sample are generated.  Using these 

reduced feature sets, the training sets and test sets of each sample are converted into the 

reduced document-term matrices. 
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The main limitation of the discussed feature selection methods is their inability to 

estimate the effect of co-occurrence of features. For example, two or more features 

considered independently may not be very effective, but may turn highly effective, when 

grouped together. This limitation is addressed by applying dimensionality reduction by 

feature extraction. Feature extraction methods like PCA produce a set of optimum 

synthetic features of smaller size from the original large feature set without losing any of 

the significant features. 

 

Feature extraction using PCA is a multi-step procedure. This includes train multiple 

Perceptron classifiers by varying the number of principal components of the reduced 

dataset, measure the average performance of each classifier using the projected test 

dataset, and identify the reduced dataset with the optimum number of principal 

components producing the best Perceptron classifier performance.  By altering the PCA 

variation factor of the Matlab PCA tool box between 0.005 and 0.05% ten sets of reduced 

document-term matrices for the training set are generated. Corresponding test sets are 

also projected into the reduced dimensional space and applied for classification.  

 

Thus, for each sample, for a given feature selection method and a feature selection 

threshold, ten Perceptron classifiers are trained and tested. The classifier with the highest 

average F1-Measure, after 3-fold cross validation, has been identified and used as the 

member classifier for a given sample. Using the average TP Rate and FP Rate of member 

classifiers together with the variance of the member classifiers, the Quality factor (QF) of 

the iteration is calculated.  
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The slope between two consecutive QF‘s of 1
st
 and 2

nd
 iteration and normalized average 

sample size are calculated. A slope of zero degree means there is no benefit after 

increasing the sample size. However, a slope of zero degrees rarely happens. To optimize 

the sample size and quality factor without affecting the quality of ensemble learning, 

three sets of experiments for randomly fixed slope thresholds of 1 degrees, 2 degrees and 

5 degrees have been conducted. If the slope in degrees between two consecutive QF‘s 

and average sample size is less than or equal to a predefined threshold, the member 

classifiers formed from the higher sample size is  considered as the optimal ensemble 

classifier for Ci and ensemble learning terminates for that category. Otherwise the 

algorithm proceeds to the next iteration of larger sample size. The optimality of the 

randomly selected slope cut-offs in the ensemble learning is determined by voting the test 

sets of each member classifier samples across the entire groups of member classifiers.  

 
5.3  Results and Discussions 

 

The average performance of ensemble Perceptron classifiers for 1, 2 and 5 degrees slope 

cut-off, combined with information gain and document frequency feature selection 

methods is summarized in Table 5. For the discussed feature selection methods and 

feature selection thresholds, a slope cut-off of 1 degree is optimal for Yahoo! web page 

classification using Perceptron classifier and ensemble architecture. The highest Recall, 

Precision, and F1-Measure are shown for the Perceptron classifier trained on document 

frequency features. The variation of the F1-Measure across the hierarchy depth, for 

various feature selection methods, for 1 degree slope cut-off is as shown in Figure 3. 
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Theoretically, the knowledge of the feature absence should complement the Perceptron 

classification process. However, the Perceptron classifier trained on the features 

identified by Information Gain shows poor classifier performance compared to the 

Perceptron classifier trained on the features identified by the Document Frequency. This 

performance drop may be due to the increased sparseness associated with the information 

gain feature selection method. Variation of sparseness across the hierarchy depth, 

associated with these feature selection methods is demonstrated in Figure 4. For the 

discussed feature selection methods, the sparseness increases with the hierarchy depth, 

resulting in the average performance drop. 

 

Table 5: Macro-Averaged F1-Measure of Ensemble Architecture Combined with Perceptron 

Classifiers 

Perceptron Classifier trained with 
1 degree 

cut-off 

2 degree 

cut-off 

5 degree 

cut-off 

Average 

sparseness 

for 1 degree 

cut-off (%) 

highest scoring 20% Information 

Gain features  after PCA based 

feature extraction 

66.07 54.43 38.46 42.23 

highest scoring 40% Information 

Gain features after PCA based feature  

extraction 

49.16 40.18 30.67 50.82 

highest scoring 20% Document  

Frequency features after PCA based 

feature extraction 

85.26 71.96 59.02 21.19 

highest scoring 40% Document  

Frequency features after PCA based 

feature extraction 

66.94 55.55 44.18 37.93 
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Figure 3: Variation of F1-Measure with Hierarchy Depth for Ensemble Architecture Combined with 

Perceptron Classifiers 

 

For the top 20% features, when switched from the document frequency to the information 

gain feature selection method, there is a 21.14% increase in the sparseness of the 

document-term matrix. Considering the advantages of the Perceptron classifiers trained 

on Document Frequency features over the Perceptron classifiers trained on Information 

Gain feature selection and the suitability of the document frequency feature selection 

method for large-scale web page classification problem, the Information Gain feature 

selection method is not used in the rest of this research.  
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Figure 4: Sparseness with Hierarchy Depth for Ensemble Architecture Combined with Perceptron 

Classifiers 

 

The Perceptron classifier is designed using Matlab ‗newff‘ routine. While designing a 

Perceptron network object using the newff function, the hidden layer array must be a 

single output layer with a single neuron.  The tan-sigmoid transfer function and conjugate 

gradient training function have been used for the Perceptron design. To train the network, 

the ‗train‘ routine is used. Normally, training of a Perceptron classifier stops when any of 

these conditions occurs: the maximum number of epochs (repetitions) is reached, the 

performance gradient falls below min_grad, or the performance is minimized to the goal. 

However, while training the Perceptron, the first two parameters have been adjusted 

appropriately until the best performance is reached.  
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5.4  Conclusions of the Feature Selection Experiments 

 

Web directories generally have a skewed category distribution and unbalanced class 

distribution. The stratified sampling of the negative instances from multiple sibling 

categories is performed to address over-abundance of the negative instances and 

associated class imbalance. This sampling scheme makes the prior probability 

distribution of the negative features extremely small compared to that of the positive 

features. Thus, the higher value gained by a  feature  by applying feature selection 

methods such as Information Gain might be due to feature absence rather than feature 

presence. This imposes more sparseness in the reduced feature space. Sparseness of the 

dataset unfavorably affects statistical methods such as PCA based feature extraction. For 

an improved classifier performance, the degree of sparseness in the reduced feature space 

should be minimum. Compared to two-sided feature selection method such as 

Information Gain, this can be easily achieved by one-sided feature selection method such 

as Document Frequency. 

 

Moreover, there is a visible drop in the average classifier performance with the hierarchy 

depth.  Most of the earlier research on hierarchical dataset also reported this observation. 

They concluded that the performance drop in lower hierarchies is due to the lack of 

sufficient training instances. However, all categories used in the discussed set of 

experiments have more than 1000 positive instances.  The observed performance drop 

associated with the lower hierarchies points to the limitations of the discussed feature 

selection methods or Perceptron classifier. To make this clear, another set of experiments 

are conducted on the same samples using one-class SVM and two-class SVM classifiers. 
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Document Frequency is applied for feature selection. Similar to the Perceptron 

classifiers, the SVMs also show a drop in the average performance with hierarchy depth. 

The results of those experiments are discussed in detail in Chapter 6. 

 

The poor classifier performance with hierarchy depth is related to the increased average 

sparseness of the reduced feature space (Figure 4).  As categories become more specific 

with hierarchy depth, the ability of the feature selection methods to identify the 

discriminating features applicable to the majority of the web pages may be decreasing, 

resulting in an increased average sparseness and poor classifier performance.  Feature 

selection using subspace clustering or genetic programming may be more appropriate to 

address this situation.  

 

Since sparseness negatively affects the classifier performance, a classification that 

requires feature selection and feature extraction prior to the classification can be highly 

challenging to classify the rare categories of web directories. This is because the basic 

over-sampling methods used to address rarity is not introducing new data. 
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CHAPTER 6: CLASSIFICATION OF VERY LARGE AND HIGHLY 

IMBALANCED WEB DIRECTORIES 

 

6.1  Introduction 

 

In recent years, a large number of statistical learning methods have been applied to the 

web page classification problem. Since a large number of methods and results are 

available, a cross-method evaluation is important to comprehend the current status of the 

web page categorization research. The comparison of different text and web page 

classification methods, however, is very difficult due to the absence of a cohesive 

methodology for the matter-of-fact evaluation. Cross-method comparisons with a limited 

number of methodologies have been reported in the literature. However, these types of 

small-scale comparisons can either lead to highly comprehensive statements that are 

based on inadequate observations, or provide limited insight into the challenges of real 

time web page classification. 

 

The lack of a standard data collection is the main bottle-neck for cross-method 

comparison in web page categorization research. For a given dataset, there are many 

possible ways to introduce inconsistent variations. Whether the reported classifier 

performance on different versions of a dataset is comparable is not clear. Incomparability 

across different evaluation measures used in individual experiments is another concern on 

cross-experiment evaluation. In general, one should be highly vigilant while comparing 

the published text categorization research. Due to the aforementioned issues, a 
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comprehensive evaluation of different web page classification methods using consistent 

samples is not reported.  

 

This research, so far, has determined that the document frequency feature selection 

method with PCA based feature extraction and ensemble architecture has given the best 

result for the classification of categories with more than 1000 web pages. This 

architecture is based on the Perceptron classifier. In this chapter, using the same sample 

and architecture, comparisons of popular statistical learners and maximum entropy 

models are conducted and their relative merits and demerits are discussed. The 

distribution of very large categories across the hierarchy depth is as shown in Table 6. 

 

Table 6: The Distribution of Very Large Yahoo! Categories across the Hierarchy Depth 

level 
Total 

categories 

Categories 

with 1000 to 

10,000 web 

pages 

Categories with 

10,000 to 

100,000 web 

pages 

Categories with 

100,000 to 

600,000 web 

pages 

1 14 0 0 14 

2 133 0 92 41 

3 233 45 188 0 

4 347 227 120 0 

5 138 106 32 0 

6 87 84 3 0 

7 33 33 0 0 

8 3 3 0 0 

 

 

The overall goals of this chapter are to address the following queries: 

1. What is the average performance of popular statistical and maximum entropy based 

classifiers when applied to the content based classification of a dataset? 

2. Whether one-class learning is a better alternative for class imbalance?  
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The experimental setup used for this research is discussed in Section 6.2. Section 6.3 is 

the results and discussions. Summary of this chapter is Section 6.4.  

 

6.2  Experiment Setup 

 

This research, so far, has determined that the document frequency feature selection 

method with PCA based feature extraction and ensemble architecture has given the best 

result for the classification of categories with more than 1000 web pages. This 

architecture is based on the Perceptron classifier. Now we compare the effectiveness of 

the two-class SVM classifier by replacing the Perceptron classifier with the SVM 

classifier in the same architecture.  

 

Later, taking the positive instances of the same  samples  and repeating  document 

frequency based feature selection and PCA based feature extraction experiments, the 

effectiveness of one-class learning is examined using the popular one-class SVM 

classifier. In one-class learning, the member classifiers of the ensembles are trained using 

the positive instances only and tested using an equal number of positive and negative 

instances. Here the origin is treated as the member of the second class and the candidate 

class is separated from the origin. Hence, we expect that the misconceptions on learning 

the negative dataset will be alleviated.  

 

The extensive feature selection and feature reduction, prior to the classification, is the 

main limitation of Perceptron and SVMs when applied to large-scale web page 
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classification. Moreover, to this point, this research concludes that the average 

performance of the popular feature selection methods decreases with hierarchy depth 

resulting in the poor classifier performance. 

 

The maximum entropy classifier, when used for web page classification, does not require 

feature selection or feature extraction prior to the classification.  While designing a 

maximum entropy model one should prefer the most uniform model satisfying any given 

constraint. For example, consider a four way web classification task where on an average 

40% of the documents with the word ―internet‖ is in the ―computer and internet‖ class. 

Given a document with ―internet‖ in it, we would say it has a 40% chance of being a 

―computer and internet‖ document and a 20% chances for each of the other three classes. 

If a document does not have ―internet‖ we will guess a uniform class distribution, 25% 

each. The MEGA Model Optimization Package is used to implement the maximum 

Entropy Classifier (MEGA Model Optimization Package,2007). 

 

The average performance of ensemble SVM classifiers for a 1, 2 and 5 degrees slope cut-

off, combined with the document frequency feature selection method and PCA based 

feature extraction is summarized as Table 7. LIBSVM package is used to set up these 

experiments. The variation of the F1-Measure across the hierarchy depth, for one-class 

SVM and two-class SVM as is shown in Figure 5. 
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Table 7: Macro-Averaged F1-Measure of Ensemble Architecture Combined with SVM 

Classifier 
1 degree 

cut-off 

2 degree 

cut-off 

5 degree 

cut-off 

Two-class SVM trained on the highest scoring 

20% features 
81.45 73.25 58.04 

Two-class SVM trained on the highest scoring 

40% features 
61.53 53.64 42.72 

One-class SVM trained on the highest scoring 

20% features 
70.61 61.34 48.13 

One-class SVM trained on the highest scoring 

40% features 
55.75 46.68 37.51 

 

 

 

 
Figure 5: Variation of F1-Measure with Hierarchy Depth for Ensemble Architecture Combined with 

SVMs 

 

The variation of average F1-Measure with the hierarchy depth  for the ensemble 

architecture combined with Maximum Entropy Classifier is as shown in Figure 6. The 

Macro-averaged F1-Measure for 1 degree slope cut-off is 87.86%. The macro-averaged  
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rare category recall for 1, 2  and 5 degree cut-offs for an ensemble architecture combined 

with maximum entropy classifier is 80.44% and 66.63% and 48.89% respectively. The 

average performance of ensembles of Maximum Entropy classifiers for 1, 2 and 5 

degrees slope cut-off is summarized as Table 8. 

 

Table 8: Average Performance of Ensemble Architecture Combined with Maximum Entropy Classifier 

Slope Cut-off F-Measure Rare Category Recall 

1 degree  87.86 80.44 

2 degree  74.39 66.63 

5 degree  55.43 48.89 

 

 
Figure 6: Variation of F1-Measure with Hierarchy Depth For Ensemble Architecture Combined with 

Maximum Entropy Classifiers 

 

 

6.3  Results and Discussion 
 

The relative merits and demerits of Perceptron classifier, SVM classifiers and Maximum 

entropy classifier combined with ensemble architecture, when applied to very large and 

highly imbalanced dataset classification are discussed below. To avoid the ambiguity in 
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classifier evaluation due to the inconsistent variations in the dataset, we conducted all 

experiments using the same samples, training set and test set. Over-all performance of 

these classification algorithms in association with ensemble architecture is summarized in 

Table 9. The highest average performance is shown for the Maximum Entropy classifier.  

 

Table 9: Average Performance of Ensemble Architecture Combined with Popular Classification 

Techniques When Applied to Very Large Datasets 

Classifier 

Average 

F1-

Measure 

Average 

Recall 

Average 

Precision 

Average  recall 

of  child 

categories with 

1 to 10 web 

pages 

Maximum Entropy Classifier 87.86 86.21 89.56 80.44 

Perceptron with top 20% features 

of highest Document Frequency. 
85.26 85.9 84.63 79.45 

Perceptron with top 20% feature of 

highest Information Gain 
66.07 67.06 65.08 57.59 

One-Class SVM with top 20%  

features of highest Document 

frequency 

70.61 67.83 73.63 55.12 

Two-class SVM with top 20% 

features of highest Document 

Frequency 

81.45 81.92 80.99 75.41 

 

The last column of Table 9 (average recall of child categories with 1 to 10 web pages) 

indicates the average performance of the large-scale classification methodology while 

classifying the rare child category web pages representatives within the dataset that has 

been recursively assigned into it.  The rare category performance is separately analyzed 

to ensure that the applied large-scale web page classification architecture maintains a 

reasonable quality of performance while classifying the rare child category representative 

within the dataset. A separate rare category evaluation is important due to the following 
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reasons. Firstly we recursively assigned the web pages of the child categories into the 

parent categories to decrease the degree of rarity.  Moreover, in a classification problem, 

a rare child category of a very large parent category may be more interesting making the 

misclassification of the rare category web pages more expensive.  Most of the earlier 

large-scale hierarchical web page classification research work; the rare category 

performance is not clear making a conclusion on the average performance of the applied 

technologies towards rare child category classification very difficult. 

 

To check the significant difference in the average F1-Measures between different 

classification methodologies if any, a One-Variable Chi-Square test of independence is 

conducted using macro-averaged F1-Measure.  The formula for Chi-square test of 

independence is, X
2
=∑ (O-E)

 2 
∕ E, where O is the observed frequency, and E is the 

expected frequency 

 

The degree of freedom for the one-dimensional chi-square statistic is defined as,   

df = (C - 1) where C is the number of levels of the variable. In our case, the degree of 

freedom is 5-1= 4. The null hypothesis, H0 and alternative hypothesis, H1 are as follows: 

H0: There is significant difference in the average performance of the different 

classification algorithms. 

H1: There is no significant difference in the average performance of the different 

classification algorithms.  
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The alpha level is set as 0.025. The critical value for Chi-square for 0.025 level and 

degree of freedom 4 is 11.143. Hence, the null hypothesis will be accepted if the obtained 

chi-square value is less than 11.143. In this case, the obtained sum of chi-square value is 

4.58 (Table 10). Hence we conclude that there is significant difference in the average 

performance of the different classification algorithms. 

 

Table 10: One-Variable Chi-Square Test on the Macro-Averaged F1-Measure of Different 

Classification Methodologies 

Attribute 
F1-

Measure 

chi-square 

value 

F1-Measure of Maximum Entropy Classifier 87.86 1.180219 

F1-Measure of Perceptron with top 20% features of 

highest Document Frequency. 
85.26 0.627988 

F1-Measure of Perceptron with top 20% feature of 

highest Information Gain 
66.07 1.895877 

F1-Measure of One-Class SVM with top 20%  

features of highest Document frequency 
70.61 0.745937 

F1-Measure of Two-class SVM with top 20% 

features of highest Document Frequency 
81.45 0.130863 

Total 4.58 

 

The Mean Absolute Deviation (MAD) of the macro-averaged F1-Measure with hierarchy 

depth, for the discussed classification techniques is shown in Table 11. The higher the 

MAD, the greater will be the dispersion of the F1-Measure with hierarchy depth. 

Compared to the SVM‘s and Perceptron trained after feature reduction, the dispersion is 

low for the Maximum Entropy Classifiers.  

 

The highest MAD and lowest average performance is associated with the Perceptron 

combined with Information Gain Feature selection method. Thus compared to statistical 

learners that require feature selection and feature extraction prior to the classification, the 
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Maximum Entropy classifier shows more consistent performance across the hierarchy 

depth.  

 

Table 11: MAD of F1-Measure with hierarchy depth for ensemble architecture 

Classification techniques MAD 
Macro-F1-

Measure 

Ensemble learning (Max. Entropy Classifier) 4.67 88.33 

Ensemble learning (Perceptron+Doc. Freq) 6.39 85.42 

Ensemble learning (One-class SVM+Doc. Freq.) 8.9 70.61 

Ensemble learning (Two-class SVM+Doc. Freq) 7.45 82.34 

Ensemble learning (Perceptron + IG) 9.35 66.08 

 

Considering the advantages of the Maximum Entropy classification algorithm over the 

Perceptron and SVM classification methods and the suitability of the Maximum Entropy 

classification algorithm for large-scale web page classification problem, the Maximum 

Entropy classification algorithm combined with an appropriate architecture to address 

class imbalance, rarity and over-abundance of positive instances is used for remaining 

experiments.  

 

6.4  Conclusions 

 

A comparison of the average performance of the Perceptron trained on Document 

Frequency and Information Gain, one-class SVM, two-class SVM and Maximum 

Entropy Classification model has been conducted. The Yahoo! categories of more than 

1000 labeled instances, is used to set up the experiments. Later, the relative merits and 

demerits of Perceptron classifier, SVM classifiers and Maximum entropy classifier, when 

applied to very large and highly imbalanced dataset classification are discussed. 
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One-class learning is considered as a popular algorithmic solution to class imbalance. 

However, the effectiveness of one-class learning when applied to very large datasets 

similar to web directories is not reported in the literature. In this research, compared to 

two-class SVM and Perceptron, the one-class SVM showed the lowest classification 

performance.  

 

Similarly, compared to the Perceptron and SVM‘s, the Maximum Entropy classifier 

shows the highest F1-Measure of 87.86%.  The Maximum Entropy classifier, when used 

for web page classification, does not require feature selection or feature extraction prior 

to the classification. Hence maximum entropy models are free from the bias of the 

popular feature selection methods discussed in Chapter 5. This is the reason for the 

improved average performance of the Maximum Entropy Classifiers. Moreover, 

compared to statistical learners that require feature selection and feature extraction prior 

to the classification, the Maximum Entropy classifier shows more consistent performance 

across the hierarchy depth. These properties make the Maximum Entropy classifier more 

suitable for large scale web page classification than the Perceptron, one-class SVM and 

two-class SVM classifiers.  
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CHAPTER 7: THE MACHINE LEARNING ARCHITECTURE FOR 

IMBALANCED DATASET CLASSIFICATION 

 

7.1  Introduction 

 

The class imbalance, rarity and large-sample learning issues within the web directories 

make applying feature reduction techniques and classification algorithms very difficult. 

For example, in the Yahoo! web directory, 0.16% of the total categories (988 categories) 

are very large, containing 1000 to 600,000 labeled web pages of their own; whereas, 

19.06% of the Yahoo! categories are absolutely rare categories of 10 to 100 labeled web 

pages. Classification algorithms, when applied to very large categories of more than 1000 

labeled instances should address the machine learning issues due to the class imbalance 

and large-sample learning. Conversely, classification algorithms, when applied to rare 

categories of 10 to 100 labeled web pages should address the machine learning issues due 

to class imbalance and rarity. Another 1.58% of Yahoo! categories are reasonably sized 

categories holding 100 to 1000 labeled web pages. However, the abundance or shortage 

of negative instances in the sibling categories makes these categories imbalanced. 

The impact of a large training space due to the over-abundance of positive instances, 

class imbalance and absolute rarity during the different stages of the classification 

process should be prevented or addressed. This chapter investigates the effectiveness 

various architectural solutions to these issues. 
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The overall goals of this chapter are to address the following queries: 

1. Which architecture is more appropriate for learning very large categories of 1000 

to 600,000 labeled instances: Incremental sampling based learning or Ensemble 

learning? 

2. Which architecture is more appropriate for learning rare categories: adaptive over 

sampling or crude over sampling? 

3. How class imbalance within the dataset can be effectively addressed? 

 

7.2  Comparison of  Ensemble Learning and Incremental Sampling Based Learning  for 

Classifying Very Large and Imbalanced Datasets 

 

S far, in this research, all experiments are conducted on Yahoo! categories of more than 

1000 web pages. An ensemble architecture discussed in Chapter 4 is used to set up the 

experiments. The main disadvantage of the proposed ensemble architecture is the expense 

of sampling, training, testing and maintaining multiple member classifiers. The 

effectiveness of Incremental Sampling based learning; another popular and less expensive 

active learning method for classifying very large categories is also examined. The 

experimental set-up for incremental sampling based learning is discussed in Chapter 4. 

Considering the advantages of Maximum Entropy Classifiers over the Perceptron and 

SVMs, the Maximum Entropy Classifiers are used to set-up the incremental sampling 

based learning experiments.  

 

Similar to ensemble learning, case reduction in incremental sampling is a multi-stage 

process. However, a single classifier is maintained in each iteration. This includes 
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training a single classifier on an increasingly larger random subset of cases, observing the 

trends and stopping when no progress has been made. The subset should take big bites 

from the original data to ensure the chances of improving performance with more data. 

The smallest subset should be substantial enough to be the representative of the original 

dataset and the size of the subset increased gradually to the full sample size. The central 

theme is to observe the trends and net change in error. A decision on whether further 

experiment is necessary is made prior to the next increment of dataset size. A significant 

amount of new data on every iteration should lead to better performance along with an 

acceptable system complexity. In this procedure, it is important to analyze the cost and 

achieved benefit before moving to the next iteration of higher sample size. For each 

classifier, a quality factor defined as a function of normalized value of average F1-

Measure is calculated. 

 

The slope in degrees between two consecutive QF‘s (y-axis) and the normalized average 

sample size (x-axis) is measured. A slope of zero degrees means there is no improvement 

in the classifier performance between these two consecutive sample sizes and no further 

iteration is needed. However, this is an optimal situation that rarely happens. Two sets of 

experiments are conducted after fixing predefined threshold of slopes as 1 degree and 2 

degrees.  If the slope in degrees between two consecutive QF‘s and the normalized 

average sample size is less than or equal to x degrees, the classifiers formed from the 

higher sample size is taken as the optimal classifier for the category under consideration.  

Otherwise the algorithm proceeds to the next iteration. 
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In a large scale classification application with hundreds of categories, occasionally the 

classifiers may fail to converge for the predefined slope cut-off. The classifier formed by 

the middle iteration of three consecutive iterations is taken as the optimal classifier, 

provided the difference of the two consecutive slopes calculated from these three 

consecutive iterations is less than or equal to 1 degree. Otherwise a single classifier 

taking complete positive instances and an equal number of negative instances has been 

trained. 

 

For a category, say Ci, of more than 100,000 positive instances, in the 1
st
 iteration of 

incremental sampling based learning; a single sample is generated taking 2% of the 

positive instances from Ci and all child categories and an equal number of negative 

instances from the sibling categories of Ci. Using maximum entropy classification 

algorithm, a classifier has been trained and average TP Rate and FP Rate after 3-fold  

cross validation has been calculated. The Quality factor for 1
st
 iteration is calculated.  

 

In the 2
nd

 iteration, another sample is generated taking 4% of the positive instances from 

Ci and all child categories and an equal number of negative instances from the sibling 

categories of Ci. The maximum entropy classifier is trained and the quality factor of the 

2
nd

 iteration has been measured. Prior to the third iteration, the achieved benefit after 

increasing the sample size by 2% in the second iteration is calculated. For this, the slope 

between two consecutive QF‘s of 1
st
 and 2

nd
 iteration and average sample size is 

calculated. If the slope in degrees between two consecutive QF‘s and average sample size 

is less than or equal to a predefined threshold, the classifier formed from the higher 
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sample size is taken as the optimal classifier for Ci and incremental sampling based 

learning terminates for that category. Otherwise the algorithm proceeds to the next 

iteration of larger sample size.  

 

In the 3
rd

, 4
th

, 5
th

, 6
th

, 7
th

, and 8
th

 iterations, to generate the  sample, 6.25%, 8.33%, 10%, 

20%, 33.33% and 50% of the labeled instances of Ci and all child categories are drawn 

and combined with an equal numbers of negative instances from the sibling categories of 

Ci. 

 

While classifying categories of 10,000 to 100,000 collective positive instances, in the 1
st
, 

2
nd

, 3
rd

, 4
th

, 5
th

, and 6
th

 iterations, 6.25%, 8.33%, 10%, 20%, 33.33% and 50% of the 

labeled instances of Ci and all child categories of Ci are drawn and combined with an 

equal number of negative instances from the sibling categories of Ci. 

 

For categories of 1000 to 10,000 positive instances, in the 1
st
, 2

nd
, 3

rd
, and 4

th
 iterations, 

10%, 20%, 33.33% and 50% of the positive instances from Ci and all child categories are 

drawn and combined with equal numbers of negative instances from the sibling 

categories of Ci. 

 

The variation of macro-averaged F1-Measure across the hierarchy depth for 1 degree and 

2 degree slope cut-offs is as shown in Figure 7. The average performance of Incremental 

sampling based learning combined with Maximum Entropy classifiers for 1 and 2 degrees 

slope cut-off is summarized as Table 12. 
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Table 12: Average Performance of Incremental Sampling Based Learning 

Slope Cut-off F-Measure Rare Category Recall 

1 degree  79.54 71.07 

2 degree  71.16 62.77 

 

 
Figure 7: Variation of F1-Measure with Hierarchy Depth for Incremental Sampling Based Learning 

 

A comparison of the average performance of the Maximum Entropy classifier combined 

with ensemble architecture and incremental sampling based learning for 1 degree slope 

cut-off is summarized as Table 13.  

 

Compared to ensemble architecture, there is a significant performance drop in the 

classifier performance associated with the incremental sampling based learning 

architecture. This is  because of the information loss due to the sub-sampling associated 

with the incremental sampling based learning. Hence this research consider the ensemble 

architecture as the optimal architectureal solution for very-large dataset classification. 
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Table 13: Comparison of Ensemble Architecture and Incremental Sampling Based Learning When 

Applied to Very Large Datasets 

Architecture Recall Precision 
F1-

Measure 

Recall of the rare 

categories with 1 to 10 

web pages 

Ensemble 86.21 89.57 87.86 80.44 

Incremental 

Sampling  
77.77 81.39 79.54 71.07 

 

7.3  An Evaluation of Focused Under-Sampling and Over-Sampling to Address Class 

Imbalance Associated with Categories of 100 to 1000 Labeled Instances. 

 

The explicit machine learning issue associated with the Yahoo! categories of 100 to 1000 

web pages is negative and positive dominant class imbalance. However, the chances of 

rarity and over-abundance of positive instances associated with border categories of this 

group cannot be ignored. 

 

This research has already been examined the effectiveness of different class imbalance 

handling techniques. This includes various sub-sampling techniques and one-class 

learning. These class imbalance techniques are tailored in the ensemble and incremental 

sampling based learning architectures, modeled to classify Yahoo! categories of more 

than 1000 positive instances. 

 

In incremental sampling based learning, sub-sampling of the positive instances is 

performed to address the over-abundance of positive instances. The class imbalance is 

addressed by sub-sampling the negative instances. 
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In ensemble learning, the class imbalance is addressed by sub-sampling the negative 

instances. The over-abundance of positive instances is addressed by maintaining multiple 

member classifiers. In our proposed ensemble model, the complete positive instances are 

distributed across multiple member classifiers and hence there is no information loss due 

to the sub-sampling of the positive instances. 

 

 A comparison of these architectures unseals the relative merits and demerits of sub-

sampling and one-class learning as class imbalance handling practices. In this research, 

compared to ensemble learning, incremental sampling based learning showed an inferior 

average performance. This is due to the sub-sampling of the positive instances associated 

with the incremental sampling based learning. Compared to one-class learning, sub-

sampling of negative instances is much superior to address class imbalance within the 

dataset.  

 

Considering these observations, we propose sub-sampling of the negative instances to 

address the class imbalance associated with categories of 100 to 1000 web pages. As the 

next step, the proposed class imbalance handling technique is tailored on an appropriate 

machine learning architecture and used further to classify the Yahoo! categories of 100 to 

1000 labeled instances.  Before fixing the machine learning architecture, the chances of 

rarity and overabundance of positive instances associated with the Yahoo! categories of 

around 100 and 1000 web pages are examined.  
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If the ensemble learning turns unprofitable for the given Yahoo! subcategory of more 

than 1000 labeled instances, our ensemble model converges into a single classifier and 

undergoes three fold cross validation. Of the total 988 Yahoo! categories of more than 

1000 positive instances, 24 categories converged like this into the single classifiers. This 

covers 89.56% of the categories of less than 1700 positive instances.  

 

Similarly, in the adaptive over-sampling based learning architecture designed to classify 

rare categories with 10 to 100 web pages,  all categories of more than 75 web pages is 

oversampled by less than or equal to 20% only. Whereas, all categories of less than 45 

web pages is oversampled by more than 50%. The highest over-sampling is performed 

with the Yahoo! categories of less than 20 labeled web pages. 

 

Based on these observations, there are no evidences for rarity or over-abundance of 

positive instances associated with Yahoo! categories of 100 to 1000 web pages. Hence, 

for each category of this group, a three-fold cross validation taking the complete positive 

instances and equal number of negative instance using the best performing Maximum 

entropy classification algorithm will meet the machine learning architectural 

requirements. 

 

Text content from the body of the web pages is used for classification. The Maximum 

Entropy Classifiers are used to set up the experiments. A 3-fold cross validation is 

conducted on each category of this group. Average recall and precision of this group of 

categories is 73.02% and 79.65% respectively. Variation of rare category performance 
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and F1-Measure across the hierarchy depth is demonstrated in Figure 8 Average F1-

Measure is 76.19%. Average recall of the rare categories is 67.49%. 

 

 
Figure 8: Average Classifier Performance of Yahoo! Categories with 100 to 1000 Labeled Instances 

 

7.4  An Evaluation of Adaptive Over-Sampling to Address Rarity 

 

The lack of training instances and the negative or positive dominant class imbalance are 

the main machine learning issues associated with the classification of Yahoo! rare 

categories of 10 to 100 labeled instances. In the Yahoo! Web directory, the most obvious 

source of textual information for the purpose of classification is the body of the web 

pages. However, 22.1% of the web pages have no usable body text. An attempt has been 

made to reduce the percentage of empty web pages by extending the feature space using 

the complete textual information within the body, title, meta-keyword and meta-

description of the web pages. This decreases the number of web pages with zero textual 

information. In a web page preprocessing and representation using the body text alone of 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 1 2 3 4 5 6 7 8 9 10 11 12

F1
-M

e
as

u
re

/R
ar

e
 c

at
e

go
ry

 r
e

ca
ll

 

Hierarchy depth 

Recall_RC_categ_100_1000 F1-Measure



 

108 

 

the rare category web pages, 22.1% of the rare category web pages were excluded from 

the dataset due to the unavailability of any textual content. However, after extending the 

web page preprocessing and representation using the textual information from complete 

web pages, the percentage of empty web pages has been reduced to 18.01%. 

 

Considering the Yahoo! directory rare categories, a slight increase in the number of web 

pages by extending the feature selection to the complete web page alone will not address 

the rarity related issues. Hence, data level solutions to address rarity have been examined. 

Over-sampling is a popular data level approach to address rarity. Over-sampling in its 

basic form duplicates the rare category dataset. However, crude over-sampling can be 

insufficient. In this research, advanced over-sampling of the rare category web pages, 

adaptive over-sampling, is experimented to address the rarity. 

 

7.4.1  Adaptive Over-Sampling 

 

The basic theory of classifier design using adaptive sampling is to iteratively induce new 

classifiers by increasing the weight of erroneously classified cases in the training set in 

the next iteration. Cases having a large error for the current solution are over-sampled 

with increased frequency. In basic over-sampling, the instances for over-sampling are 

randomly selected with a probability 1/N, where N is the full sample size. However, in 

adaptive-over sampling, for each case in the full training set, a record of the current 

solution performance is kept. In the coming iterations, the instances for over sampling are 

selected with probability Pi which is determined by the relative probability of the error of 

the case i.   
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For each category Ci of 10 to 100 web pages, in the 1
st
 iteration, available positive 

instances of Ci and all child categories are drawn and combined with an equal number of 

negative instances from the sibling categories of Ci and a single classifier after 3-fold 

cross validation has been designed. The average F1-Measure of classification, average 

recall of Ci and average recall of all child categories are measured. 

 

In the 2
nd

 iteration, the training instances of Ci and/or all child categories of Ci with lower 

average recall than a predefined threshold recall are identified and over-sampled by 10%. 

However, the test dataset is not over-sampled. The macro-averaged F1-Measure of Ci is 

calculated. The new average recalls of the Ci and child categories are calculated and used 

for deciding the over-sampling criteria in the next iteration. If the increase in the F1-

Measure of two consecutive iterations is less than 1% no further over-sampling has been 

performed for the category Ci. Otherwise the algorithm proceeds to the next iteration and 

repeat the procedure of iteration-2. Two sets of adaptive over-sampling experiments have 

been conducted by fixing the threshold recall as 85% and 75%. These results were 

compared with basic over-sampling. 

 

The highest average F1-Measure is shown for recall cut-off of 85%. Later, a basic over-

sampling experiment is conducted for the same cut-off recall. Here, instead of measuring 

the average recall of child categories of Ci separately and over-sampling them separately, 

average recall of Ci together with child documents is measured. If this recall is less than 

85%, 10% of web pages of training set is randomly identified and duplicated. The 
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average improvement in the total F1-Measure on every iteration for different recall cut-

offs after every iteration is demonstrated in Figure 9. The percentage of over-sampling 

and the percentage of the new categories over-sampled after every iteration for recall cut-

offs of 75% and 85% are shown in Table 14 and Table 15. 

 

 
Figure 9: Comparison of Percentage of Over-Sampling and Average Classifier Performance for 

Different Adaptive Over-Sampling and Crude Over-Sampling Experiments 
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Table 14: Adaptive Over-Sampling Statistics for 75% Recall Cut-Off 

iteration 

# 

Highest % of 

over-sampling 

% sub-categories 

involved in the 

over-sampling 

% of new sub-

categories 

involved in over-

sampling 

F1-

Measure 

0 0 0 0 66.83 

1 10 41.44 41.44 67.94 

2 20 39.69 15.73 69.12 

3 30 25.89 8.91 70.25 

4 40 17.98 1.73 73.24 

5 50 12.62 1.02 74.27 

6 60 8.77 0.83 78.29 

7 70 3.09 0.05 79.02 

  

Average over-

sampling =18.68%   

 

Table 15: Adaptive Over-Sampling Percentage for 85% Recall Cut-Off 

iteration 

# 

Highest % of 

over-sampling 

% sub-categories 

involved in the 

over-sampling 

% of new sub-

categories 

F1-

Measure 

0 0 0 0 66.83 

1 10 60.72 60.72 68.03 

2 20 54.29 37.23 70.24 

3 30 48.9 22.19 71.25 

4 40 40.17 18.37 75.48 

5 50 26.15 12.01 79.72 

6 60 17.67 10.28 81.19 

7 70 14.19 5.42 83.15 

8 80 10.57 3.23 83.85 

  

Average over-

sampling=32.76%   

 

The highest average F1-Measure is shown for a recall cut-off of 85%. The average 

percentage of over-sampling associated with 85% recall cut-off is 32.76% whereas the 
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average percentage of over-sampling associated with 75% recall cut-off is 18.68%. The 

average F1-Measure for 75% and 85% recall cut-off is 83.85% and 79.02%. An achieved 

benefit of 4.83% in the average F1-Measure, associated with 14.08% increase in the 

average over-sampling for a recall cut-off of 85%, is questionable. Especially, an exact 

copy of samples after over-sampling may lead to the classifier over-fitting. To prevent the 

risks of classifier over-fitting we use 75% recall cut-off for the Yahoo! web directory rare 

category classification. The basic over-sampling ends up with lowest average F1-

Measure of, 76.09%. The variation of the F1-Measure with hierarchy depth, for 75% and 

85% recall cut-off is shown in graph below. 

 

 
Figure 10: Average Rare Category Performance for Different Adaptive Over-Sampling 

 Experiments 

 

7.5  Results and Discussions 
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Perceptron, one-class SVM, two-class SVM, and Maximum Entropy classifiers, a series 

of experiments using Yahoo! categories of more than 1000 positive instances have been 

conducted. In this research, compared to incremental sampling based learning, the 

ensemble architecture combined with a Maximum Entropy Classifier produced a much 

superior and cost effective performance.  

 

In this research, the focused over-sampling and under-sampling of the negative instances 

is found effective to address the class imbalance associated with categories of 100 to 

1000 web pages. Over-sampling is a popular data level approach to address rarity. Over-

sampling in its basic form duplicates the rare category dataset. However, crude over-

sampling may lead to classifier over-fitting.  Advanced over-sampling of the rare 

category web pages, adaptive over-sampling, is found effective to address the rarity. The 

optimal solutions for class imbalance, rarity issue associated with categories of 10 to 100 

web pages and large sample learning issues identified by this research are summarized in 

Table 16. 

 

Table 16: Best Performing Classification Solutions for Imbalanced Dataset 

Category 

Size 
Machine Learning Issues 

Best performing 

architecture 

Average  

F1-

Measure 

1000 to 

600,000 

Class imbalance, over-

abundance of positive 

instances 

Ensemble architecture 

combined with maximum 

entropy classifier 

87.86 

100 to 1000 Class imbalance 

Single maximum entropy 

classifier with focused 

over/under sampling of the 

negative instances 

76.19 

10 to 100 Rarity, class imbalance 
Adaptively oversampled 

maximum entropy classifier 
79.02 
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CHAPTER 8: AN OPTIMAL SOLUTION FOR CONTENT BASED LARGE-

SCALE WEB PAGE CLASSIFICATION 

 

 
8.1  Introduction 

 

This research investigates a scalable and effective methodology to fulfill the 

classification requirements of popular web directories. In a hierarchical dataset similar to 

the Yahoo! Web directory, the prior probability distribution of subcategories indicates the 

presence or absence of class imbalance, rarity and the overabundance of positive 

instances within the dataset. The best performing classification techniques for these 

machine learning issues has been investigated in Chapters 4, 5, 6 and 7. Based on these 

results, in this chapter, we design a unified framework for the classification purpose of 

the complete Yahoo! Web directory.  

 

The overall goals of this chapter are to address the following queries: 

1. How can the automatic classification of the Yahoo! web directory be achieved 

and what is the best performance? 

2. Are the arbitrarily fixed ranges for very-large categories, reasonably sized 

categories, rare categories, and absolute rare categories are justifiable? 

3. What are the reasons for the improved classifier performance achieved in this 

research? 

However, before discussing our Yahoo! Web directory classification model, we briefly 

review the spectrum of different hierachical classifier evaluation methods and also briefly 

disscuss about the hierchical classifier design and evaluation followed by this research. 
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8.2  Hierachical Classifier Evaluation:The Significance and Challenges 

 

Over the years, classification research has emerged as a matured branch of machine 

learning with a large number of classification methods, each with different strengths and 

advantages.   Enormous effort has been made to improve the basic classification methods 

but this has been only marginally succefull. With the large number of classification 

methods and results the consumers and researchers are equally uncertain about its worth, 

making future prospects of the classification research unclear. 

 

The classification procedure used by the majority of researchers consists of selecting an 

evaluation metric, selecting a dataset, selecting a convincing number of previously 

designed strong learning algorithms to be compared to one another or compared against a 

new proposed method, and running stratified or random t-fold cross-validation 

experiments on the dataset domain. The average performance is calculated using popular 

evaluation metrics such as the F1-Measure, Precision/recall or accuracy.  

 

While the machine learning community keeps busy with extensive comparisons of 

different classification algorithms in between or against a new proposed method, there is 

a strong need for empirical comparisons of different evaluation measures, to better 

identify their similarities and differences. Such empirical comparisons are not trivial due 

to the existing lack of clear definitions for the best evaluation criteria.  
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Based on the nature and structure of the dataset to be dealt with, classifiers can be 

evaluated in multiple ways. In a balanced flat dataset classification, an optimal evaluation 

of the methodology is mostly achieved by validating the system using a separate 

evaluation dataset. In this case, the average performance for each category after binary or 

multi-way classification is calculated and globally averaged into micro or macro 

measures.  

 

According to Freitas et. al, (Freitas, A. A., & Carvalho, A. C. P. F., 2007) the problem of 

hierarchical classifier evaluation can be addressed using four different approaches.  The 

first approach is known as ―transformation of the hierarchical problem into a flat 

classification problem‖.  In this approach, taking the leaf node classes alone, the 

hierarchical dataset classification is reduced to the flat classification problem. Later, flat 

dataset classification methods are applied.  

 

The second approach is named as ―hierarchical prediction with flat classification 

algorithms‖. In this approach, a hierarchical problem is divided into a set of flat 

classification problems. Typically one classifier is maintained for each level of the 

hierarchy. Later, the flat dataset classification methods are applied.  

 

The third approach is known as ―top-down approach‖. In this approach, one or more 

classifiers are trained for each level of the hierarchy. The root classifier is trained with all 

training examples. At the next class level, each classifier is trained with just a subset of 

the examples. The testing and evaluation starts with the root node. Based on the 
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predictions produced by a classifier in each level, an example is classified in a top-down 

manner. Compared to the first two approaches, top-down approach produces a 

hierarchical classifier. However, in this approach, the errors made in higher levels of the 

hierarchy will be propagated to the most specific levels.  

 

The forth approach is known as ―big-bang approach‖. In the big-bang approach, using the 

complete training set, a single iteration of the classification algorithm is performed to 

train the complete classification model. This approach increases the algorithmic 

complexity, but may avoid the risk of error propagation from the root.  

 

The effectiveness of several other alternative methods to measure the predictive 

performance of a hierarchical classification algorithm including distance-based (Sun, A., 

& Lim, E. P., 2001), depth-dependent (Blockeel, H., Bruynooghe, M., Dzeroski, S., 

Ramon, J., & Struyf, J. , 2002), semantics-based (Sun & Lim, 2001) (Freitas, A. A., & 

Carvalho, A. C. P. F., 2007) and hierarchy-based measures (Ipeirotis, P ) are also 

examined by the machine learning community. However, none of the discussed methods 

is frequently adopted by the machine learning community and there is not yet a consensus 

on which evaluation measure should be used in the evaluation of a hierarchical classifier.  

To our knowledge, no empirical comparisons of the discussed hierarchical classification 

evaluation methods have been reported. Such empirical comparisons are highly important 

to seek out the similarities and differences between the available classification evaluation 

methods. Such empirical comparisons are not trivial due to the existing lack of clear 

definition for the best evaluation criterion. 
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In addition to the aforementioned issues, most of the hierarchical classification problems 

need to address the instances with multiple labels. The effectiveness of the discussed 

hierarchical classifier evaluation measures when exposed to a dataset with multiple labels 

is not clear.  

 

The validation of different evaluation schemes is quite time-consuming and not within 

the scope of this research. In the next section we will discuss the validation method we 

followed and our justifications for the same.   

 

 

8.3  Content Based Classification of Yahoo! Web Directory 

 

The prior probability distribution of a category indicates the presence or absence of 

relative rarity (class imbalance), alone or together with absolute rarity or large-sample 

learning issues due to the overabundance of positive instances. Based on the prior 

probability distribution and associated machine learning issues, we subdivided the 

subcategories of Yahoo! web directory into 5 mutually exclusive groups. These include 

very-large and imbalanced categories (categories of 1000 to 600,000 labeled instances), 

reasonably sized but imbalanced categories (categories of 100 to 1000 web pages), rare 

and imbalanced categories (categories of 10 to 100 labeled instances), extremely rare and 

imbalanced categories (categories of 1 to 10 web pages) and conceptual nodes. The 

effectiveness of different data level, algorithmic and architectural solutions to these 

machine learning issues is investigated in Chapters 4, 5, 6 and 7. These results are    

summarized as Table 17.   
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Table 17: A Comparison of Different Experiments Conducted on Yahoo! Web Directory 

Category Size Architecture 

Average F1-

Measure 

(%) 

1000 to 

600,000 

Ensemble architecture combined with maximum 

entropy classifier 
87.86 

1000 to 

600,000 

Ensemble architecture combined with Perceptron 

Classifier (Information Gain feature selection) 
66.07 

1000 to 

600,000 

Ensemble architecture combined with Perceptron 

Classifier (Document Frequency feature selection) 
85.26 

1000 to 

600,000 

Ensemble architecture combined with One-Class 

SVM Classifier (Document Frequency feature 

selection) 

70.61 

1000 to 

600,000 

Ensemble architecture combined with Two-Class 

SVM Classifier (Document Frequency feature 

selection) 

81.45 

1000 to 

600,000 

Incremental sampling based learning combined with 

Maximum  Entropy Classifier 
79.54 

100 to 1000 Single maximum entropy classifier 76.19 

10 to 100 
Adaptively oversampled maximum entropy classifier 

(recall cut-off 75%) 
79.02 

10 to 100 
Adaptively oversampled maximum entropy classifier 

(recall cut-off 85%) 
83.15 

10 to 100 Crude over-sampling (recall cut-off 75%) 76.09 

 

We designed a hierarchical machine learning model for the content based classification of 

the Yahoo! web directory. The best performing classification technologies for a particular 

prior probability distribution (Table 17) is used for this purpose. The model contains 

132,342 classification units distributed in 14 layers. Each unit of this hierarchical 

classification model maps a Yahoo! web directory category of more than 10 labeled 

instances. Of the total 132,342 classification units, 988 units are ensembles of multiple 

member classifiers. The remaining classification units are modeled after sub-sampling or 

adaptive over-sampling.  The first layer of the model contains 14 ensemble units only. 

The second layer of the model contains 196 classification units, of which, 133 units are 
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ensemble classification model and remaining units are sub-sampled classification models 

designed for 63 reasonably sized and imbalanced categories. The distribution of 

ensemble, sub-sampled and adaptively over-sampled classification units in the designed 

Yahoo! classification model is summarized as Table 18. 

 

We recursively assigned the contents of each category into its parent categories and 

designed a top-down classification model by integrating Ensemble Architecture, Sub 

sampled Architecture and Adaptively Over-Sampled Architecture trained on Maximum 

Entropy Model.  

 

As mentioned earlier, the designed classification model has 14 layers and multiple 

classifiers are constructed at each level of the classification tree.  Each classification unit 

within this hierarchy works as a flat binary classifier for a specific category.  For each 

classification unit, the average F1-Measure after 3-fold cross validation is calculated. 

Then the Macro Averaged F1-Measure for each group of architecture at each level is 

calculated. Later, the average of the Macro-Average F1-Measure at each level, for each 

architecture, is separately calculated. The obtained value is reported as the average 

performance for the particular architecture. An unlabeled document will first be classified 

by the classifier at the root level into one or more lower level categories. It will then be 

further classified by the classifier(s) of the lower level categories until it reaches a final 

category which could be a leaf category or an internal category. 
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For an extremely imbalanced dataset similar to Yahoo! Web directory, the process of 

gathering a test set or evaluation set of the same prior probability distribution as the 

original dataset is statistically almost impossible. Hence we validated the model using a 

DMOZ subset.(Discussed as the Next Chapter) 

 

With this classifier evaluation scheme, the duplicate instances due to the recursive 

expansion of the dataset do not mislead the evaluation process.  However, global 

averaging of such results without taking the learning architecture used under 

consideration can be quiet misleading. This is because; each sub categories of a 

hierarchical dataset have different prior probability distribution and complexity of 

concept manifesting different combinations of the machine learning issues. Globally 

averaging such results will not reveal the impact of specific machine learning issue in the 

in the imbalanced dataset classification process.  

 

With this classifier evaluation scheme, one may argue that the high average performance 

achieved by Yahoo! Classification model can be mostly contributed by a specific 

segment of the dataset say the upper level categories of the hierarchy or by a specific 

architecture say voted ensembles. We too noticed that the average performance is 

dropping with hierarchy depth and the average performance of the ensemble units are 

better compared to sub-sample or adaptively over sampled units. However, this research 

narrowed down the issues associated with large-scale web page classification research 

and the future research works in this area can focus more specific issues that we 

highlighted at the end of each chapter. 
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The average classifier performance across the hierarchy depth for different groups of 

Yahoo! categories is summarized in Table 19. The overall macro-average F1 Measure is 

81.02. 

 

This research is conducted on the Atlantic Computational Excellence Network (ACEnet). 

ACEnet is a High Performance Computing (HPC) environment providing distributed 

HPC resources, visualization and collaboration tools. Java 2 Enterprise Edition (J2EE) 

tools and architecture is used for software design, development and testing.  

 

Table 18: The Structural Information of the Yahoo! classification model 

level 

Adaptively over-

sampled 

classification units 

Sub-sampled 

classification units 

Ensemble 

classification units 

1 0 0 14 

2 0 63 133 

3 995 728 233 

4 8,420 2,222 347 

5 11,530 2,895 138 

6 28,705 2,161 87 

7 33,997 1,082 33 

8 16,569 529 3 

9 10,981 229 
 

10 5,776 84 
 

11 3,043 22 
 

12 1,002 10 
 

13 268 
  

14 43 
  

Total 121,329 10,025 988 
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Table 19: Macro-Average F1 Measure Achieved for Yahoo! Web Directory Classification 

Level 

Categories with 

1000+ labeled 

instances 

Categories with 100 to 

1000 labeled instances 

Categories with 10 to 

100 labeled instances 

1 95.74 
  

2 95.01 91.33 
 

3 90.84 84.90 88.68 

4 88.87 84.65 87.09 

5 87.21 82.29 85.71 

6 85.22 82.16 83.39 

7 81.97 78.09 81.14 

8 78.06 72.61 80.33 

9 
 

69.63 78.36 

10 
 

59.50 75.82 

11 
 

56.74 74.31 

12 
  

72.48 

13 
  

71.24 

14 
  

69.74 

Average 87.86 76.19 79.02 

 

 

8.3  Optimality of Arbitrarily Fixed Ranges for Machine Learning 

 

This research fixed some arbitrary ranges for very large and rare categories. Whether 

these ranges are justifiable from the machine learning point of view is analyzed in this 

section.  

 

While classifying very large datasets, the ensemble architecture is more promising than 

incremental learning. However, the definition for ―large dataset‖ or number of positive 

instances required to form a ―large dataset‖ is not clear.  In this research, we defined all 

categories of more than 1000 labeled instances as large categories. In this section we 

analyze the appropriateness of this arbitrarily fixed range. 
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In our ensemble architecture, sub-sampling is performed on the original dataset to create 

multiple samples. Member classifiers are trained from each sample. Thus, an ensemble 

classifier comprises a group of member classifiers where each classifier maps the 

knowledge contained in the small segment of the original dataset.  The category of a new 

web page is determined by voting by the member classifiers. If sufficient training 

instances have been taken, the ensemble formed by the multiple member classifiers does 

not result in any performance drop due to the sub-sampling. But the optimal sample size 

varies with the dataset. This makes sample size optimization for member classifier 

critical. 

 

 The sample size optimization followed in this research includes training multiple 

member classifiers taking increasingly larger samples, observing the trends, and stopping 

when no progress has been made. The sample size used in the first iteration and the 

increase in the sample size in the proceeding iterations are ensured large enough to be 

representative of the original dataset. This prevents the situation of two consecutive 

iterations not bringing any significant difference in the classifier performance due to an 

insufficient number of training instances, leading to wrong interpretations on the average 

performance. This is achieved by a set of predefined conditions to be followed while 

performing the sub-sampling. The summary of these conditions is as follows: 

 

While classifying a very large category, say Ci of collective positive instances more than 

100,000 instances, in the 1
st
, 2

nd
, 3

rd
, 4

th
, 5

th
, 6

th
, 7

th
, 8

th
 and 9

th
 iterations 2%, 4%, 6.25%, 
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8.33%, 10%, 20%, 33.33%, 50% and 100% of the labeled instances of Ci and all child 

categories are drawn and combined with an equal numbers of negative instances from the 

sibling categories of Ci. These iterations progress to 50, 25, 18, 12, 10, 5, 3, 2 and 1 

unique samples of Ci  and are created for member classifier design. Whereas, while 

classifying categories of 10,000 to 100,000 collective positive instances, the 1
st
 iterations 

starts with 6.25% of the labeled instances and for categories of 1000 to 10,000 positive 

instances, in the 1
st 

iteration starts with 10% of the positive instances from Ci and all child 

categories and an equal numbers of negative instances from the sibling categories of Ci. 

Thus we ensure an optimal sample size and an optimal step size across the categories of 

varying size. 

 

In this architecture, the average performance of each iteration is evaluated using TP Rate, 

FP Rate and variance across TP and FP Rates. This prevents the situation of selecting a 

wrong group of member classifiers for ensemble learning with high average performance 

but high a degree of dissimilarity between them. Also, the average sample size is 

normalized to unity before calculating the slope between two consecutive sample size and 

QF. This prevents bias due to the minute fluctuations in the average sample size if any. 

 

Moreover, the ensemble architecture converges to a single classifier if sub-sampling and 

ensemble learning is not profitable for the given category. This prevents the chances for 

data fragmentation and associated performance drop. 
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Taking the best performing Perceptron classifiers and Maximum Entropy classifiers 

combined with ensemble architecture, the percentage of categories converged into a 

single classifier is 3.03% and 2.43% respectively. This covers 93% and 89.56% of the 

categories of less than 1700 positive instances. For the remaining categories, the 

ensemble architecture converged between 6.25% and 50% of positive instances. Thus, in 

the given situation there is no evidence of data fragmentation associated with the lower 

range. The sub-sampling statistics for the Perceptron and Maximum Entropy classifier is 

as shown in Figure 11 and 12. 
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Figure 11:Sub-Sampling Statistics for Ensemble Learning Combined With Perceptron Classifiers 

and Document Frequency Feature Selection Method 
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Figure 12: Sub-Sampling Statistics for Ensemble Learning Combined With Maximum Entropy 

Classifiers 

 

Similarly, the sample size that makes ―rarity‖ is also not predefined and is highly domain 

dependent.  The optimality of the fixed rage (10 to 100 positive instances) and recall cut-

off of 75% for rare categories is analyzed. For the categories of 10 web pages, the highest 

percentage of oversampling is 70%.  If the categories of 9 and 8 labeled instances were 

included, the percentage of over-sampling could have been 90% and 100% respectively.  

Thus, the probability for the number of categories with exact duplicate samples resulting 

in classifier over-fitting will be higher if we would have been fixed a lower limit of less 

than 10 positive instances for rare categories. Similarly, an achieved benefit of 4.83% in 

the average F1-Measure, associated with 16.07% increase in the average over-sampling 

for a recall cut-off of 85%, is questionable. Hence, for Yahoo! rare categories, a recall 

cut-off of 75% is more suitable for adaptive over-sampling based learning. 
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While considering Yahoo! categories of 100 to 1000 labeled instances focused over 

sampling and undersampling has been performed, to address the class imbalance and 

associated issues. In this group, 5% of the categories are  over-sampled. This includes 

over-sampling of negative instances. The highest percentage of over-sampling is 18.17%. 

For the remaining categories, the negative instances have been undersampled. The 

average performance of Yahoo! categories of this group at different category sizes is 

listed as Table 20  and compared with the average performance of categories with 10 to 

100 web pages. 

 

Table 20: Average F1-Measure of Yahoo! Categories With 100 to 1000 Labeled Instances 

Category Size Macro-F1 Measure 

Categories of 100 to 500 positive instances 70.78 

Categories of 500 to 1000 positive instances 81.6 

Categories of 100 to 1000 positive instances 76.19 

Categories of 10 to 100 positive instances(discussed in 

section:5.3) 
79.02 

 

The average F1-Measure of adaptivly over-sampled rare categories with 10 to 100 web 

pages, discussed in the next section, is 79.02%, which is 2.83% higher  than the average 

F1-Measure of categories with 100 to 1000 web pages. However, the average F1-

Measure of categories with 500 to 1000 is 81.6%,  which is 2.58% higher than the 

average F1-Measure of categories with 100 to 1000 web pages. Thus, we could conclude 

that, with the current architecture, the categories with 100 to 500 web pages show a  

slight drop in the average classifier performance. However, all categories of more than 75 

web pages is oversampled less than 30%, where as all categories of less than 45 Web 

pages is oversampled by more than 50%. The highest over-sampling is performed with 



 

129 

 

the categories of less than 20 labeled web pages. Based on the results of rare category 

classification discussed in the next section, a slight  improvement on the classification of 

categories with 100 to 500 web pages can be achieved by adaptive over-sampling. 

 

8.4  The Reasons for Improved Average Performance Achieved in this Research  

 

The class imbalance, rarity and large-sample learning issues within web directories make 

applying feature reduction techniques and classification algorithms very difficult. The 

earlier large scale web page classification research works either overlooked the machine 

learning issues due to rarity, class imbalance and over-abundance of training instances or 

addressed these issues using a common framework. These researches either lead to highly 

comprehensive or inadequate statements such as traditional web page classification 

techniques are insufficient to address the challenges of large-scale web page 

classification problem, or provide limited insight to the real challenges of large-scale web 

page classification. 

 

In our opinion, addressing class imbalance, rarity and overabundance of positive 

instances within a dataset using a generalized methodology is highly insufficient. 

Similarly, the class imbalance can be either positive dominant or negative dominant and 

should be addressed separately using appropriate architecture or algorithm. We designed 

a unified framework applicable for the classification of imbalanced dataset of any size 

with extreme rarity. In this research, based on the prior probability distribution and 

associated machine learning issues, we subdivided the entire Yahoo! categories into 5 

mutually exclusive groups. The effectiveness of different data level, algorithmic and 
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architectural solutions to these machine learning issues is explored. The best performing 

classification technologies for a particular prior probability distribution has been 

identified and integrated to the Yahoo! web directory classification model. Later the 

methodology used for Yahoo! categorization is evaluated using a DMOZ subset and we 

statistically proved that the methodology works equally well when applied to any content 

based hierarchical web page classification of larger or smaller dataset. 
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CHAPTER 9: VALIDATION OF THE METHODOLOGY USING DMOZ 

SUBSET 

 

 
9.1  Introduction 

 

The effectiveness of different data level, algorithmic and architectural solutions to the 

over-abundance of positive instances, class imbalance and rarity problems associated 

with large-scale web page classification is examined in this research. These methods, 

combined with the Perceptron, Support Vector Machine and Maximum Entropy 

Classifiers, have been analyzed and the best performing classification technologies have 

been applied to classify the complete Yahoo! web directory of 639,671 categories and 

4,140,629 web pages. Whether the methodology of this research will work equally well 

when applied to the content based hierarchical web page classification of larger or 

smaller dataset is examined in this chapter. These experiments are conducted on a 

hierarchical subset of the DMOZ web directory. 

 

9.2  Categorization of DMOZ Subset 

 

At the time of our crawling in October, 2009, there were 602,410 categories and 

4,519,050 web pages  in the topmost 14 levels of the DMOZ web directory. The category 

distribution of the DMOZ web directory with hierarchy depth is similar to that of Yahoo! 

web directory and is as shown in Figure 13. Like the Yahoo! web directory, most of the 

DMOZ categories are extremely rare with fewer than 10 labeled web pages. 
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Figure 13: DMOZ Web Directory Category Distribution with Hierarchy Depth 

 

The effectiveness of the best performing Yahoo! Web directory classification 

technologies are analyzed using a DMOZ subset of 17,217 categories and 130,594 web 

pages. This dataset is downloaded from the Large Scale Hierarchical Text 

classification (LSHTC) Pascal Challenge (http://lshtc.iit.demokritos.gr/). The LSHTC 

Challenge is a hierarchical text classification competition using large datasets based on 

DMOZ web directory. The category distribution of this subset with hierarchy depth is as 

shown in Figure 9. The detailed category distribution of this subset is summarized in 

Table 21. 
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Figure 14: Category Distribution of DMOZ Subset 

 

We partitioned the categories of the DMOZ subset into five mutually exclusive groups as 

shown in Table 22. There are 62 DMOZ categories containing 1000 to 100,000 web 

pages. Ensemble learning combined with the Maximum Entropy Classifiers, the best 

performing classification technology when applied to the Yahoo! categories of more than 

1000 positive instances, is applied to classify the DMOZ categories of this group.  

 

Table 21: Detailed category distribution of DMOZ subset 

Hierarchy 

depth 

Total 

Categories 

Categories 

with 1000+ 

labeled web 

pages 

Categories 

with 100 to 

1000 web 

pages 

Categories 

with 10 to 

100 web 

pages 

Categories 

with 1 to 10 

web pages 

1 9 9 0 0 0 

2 311 33 112 118 48 

3 2522 15 242 1144 1121 

4 6993 4 175 2276 4538 

5 7382 1 103 2111 5167 
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Table 22: DMOZ Subset Category Distribution 

Group Number of 

categories 

Categories with more than 1000 labeled web 

pages 

62 

Categories with 100 to 1000 labeled web pages 632 

Categories with 10 to 100 web pages 5,649 

Categories with 1 to 10 web pages 10,873 

Categories without any labeled web pages 0 

 

There are 632 DMOZ categories containing 100 to 999 web pages. These are reasonably 

sized categories for efficient machine learning; however, dominance or scarcity of 

negative instances of the sibling categories results in the class imbalance.  

 

In addition to the class imbalance, 5,649 categories of this DMOZ subset are rare 

categories of 10 to 100 positive training instances. Adaptive over-sampling combined 

with Maximum Entropy Classifiers, the best performing categorization technique for 

Yahoo! categories of 10 to 100 web pages, is used to classify these categories. There are 

10,873 Yahoo! categories containing 1 to 9 web pages. Due to the lack of training 

instances, no individual classifiers have been designed for this group. 

 

The macro-averaged F1-Measure of DMOZ subset achieved in this research is 84.85%. 

The highest average F1-Measure reported for this dataset in LSHTC Pascal Challenge is 

35.49% (http://lshtc.iit.demokritos.gr/node/23).  In their research, whether any hierarchy 

pruning or expansion has been performed prior to the classification is not clear. The 

average F1-Measure and rare category recall for categories with more than 1000 web 

pages achieved for DMOZ subset is 86.27% and 79.68% respectively. Average F1-
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Measure and rare category recall for categories with 100 to 1000 web pages is 84.3% and 

77.50% respectively. For categories with 10 to 100 web pages, the achieved average F1-

Measure and rare category recall is 83.99% and 77.86% respectively. Adaptive over-

sampling with 75% recall cut-off is used to set up this experiment. The average classifier 

performance of DMOZ subset is summarized in Table 23. 

 

Table 23: Average Classifier Performance of DMOZ Subset 

Category Group 
# of 

categories 
Methodology 

Macro-

F1 

Rare 

category 

recall 

1000-600,000 

labeled web pages 62 
Ensemble architecture combined 

with maximum entropy classifier 
86.27 79.68 

100-999 labeled 

web pages 
632 Single maximum entropy classifier 84.3 77.5 

10-99 labeled web 

pages 
5649 

Adaptively oversampled maximum 

entropy classifier 
83.99 77.86 

1-9 labeled web 

pages 
10,873 Macro averaged Recall :70.58 

 

To check the significant difference in the average F1-Measures between Yahoo! web 

directory and DMOZ subset if any, a two-variable Chi-Square test of independence is 

conducted. The Macro-averaged-F1 Measures of the Yahoo! and DMOZ subset is used 

for this. The two variable chi-square test of Independence is discussed as the next section. 

 

9.3  Test of Independence 

 

The two variables considered for test of independence using Chi-square test are F1-

Measure of the 3 groups of Yahoo! and DMOZ subset categories (categories with more 
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than 1000 labeled instances, categories with 100 to 1000 labeled instances and categories 

with 10 to 100 labeled instances).  The formula for Chi-square test of independence is  

 

X
2
=∑ (O-E)

 2 
∕ E, where O is the observed frequency, and E is the expected frequency. 

The degree of freedom for the two-dimensional chi-square statistic is defined as,  

df = (C - 1) x (R - 1) where C is the number of columns or levels of the first variable and 

R is the number of rows or levels of the second variable. In our case, C is the number of 

datasets, which are 2. R is the three sets of Macro-averaged F1-Measure for each dataset. 

Hence the degree of freedom, (3-1) x (2-1), is 2. The five step process for testing 

statistical hypotheses for our research problem is as follows: 

1. State the null hypothesis and the alternative hypothesis based on the research question. 

             H0: The methodology of this research works equally well on small datasets. 

             H1: The methodology of this research is not applicable to small datasets. 

2. Set the alpha level. 

            We set ∞ as 0.025. 

3. Calculate sum of Chi-square value (Table 24)  

Table 24: Chi-Square Test Result on the Macro-Averaged F1-Measure of Yahoo! Web Directory  

and DMOZ Subset 

Dataset 
F1-

Measure 

chi-square 

value 

Yahoo!: categories of 1000+ labeled instances 87.86 0.292062062 

Yahoo!: categories of 100 to 1000 labeled instances 76.19 0.549077482 

Yahoo!: categories of 10 to 100 labeled instances 79.02 0.185114415 

DMOZ: categories of 1000+ labeled instances 86.27 0.13383714 

DMOZ: categories of 100 to 1000 labeled instances 83.99 0.013336093 

DMOZ: categories  of 10 to 100 labeled instances 84.3 0.022356702 

Total 1.9588 
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4. Write the decision rule for accepting the null hypothesis 

The critical value for Chi-square for 0.025 level and degree of freedom 2 is 7.378. Hence, 

null hypothesis H0 will be accepted if sum of chi-square value is less than 7.378.  

5.  Conclusion 

The obtained value of Chi-square for Macro-averaged F1-Measure of DMOZ and Yahoo! 

subset is 1.9588. Hence the null hypothesis is accepted. We conclude that the 

methodology works equally well on large and small datasets.  

 
9.4  Conclusions 

 

We designed a unified framework applicable for the content based classification of any 

imbalanced dataset with extreme rarity. Methodology of this framework is tested on the 

complete Yahoo! web directory of 639,671 categories and 4,140,629 web pages. Later, 

the methodology is evaluated using a DMOZ subset of 17,217 categories and 130,594 

web pages and we statistically proved that the methodology used works equally well on 

large and small dataset. A comparison of the average performance of complete Yahoo! 

web directory and DMOZ subset is summarized as Table 25.  

Table 25: A Comparison of Yahoo! Web Directory and DMOZ Subset Classification 

Category Size 

Yahoo! DMOZ 

F1-

Measure 

Rare 

Category 

Recall 

F1-

Measure 

Rare 

Category 

Recall 

1000+  labeled web pages 87.86 80.44 86.27 79.68 

100 to 1000 labeled web pages 76.19 67.49 83.99 77.86 

10 to 100 labeled web pages 79.02 65.34 84.3 77.5 

1 to 10 labeled web pages 
Macro averaged 

Recall:71.09 

Macro averaged 

Recall:78.34 
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Comparison of our results with other large-scale web page classification is summarized in 

Table 26. This table presents the cardinal comparison only as the hierarchical classifier 

evaluation procedure other researchers followed to calculate the reported F1 measure is 

not clear. 

Table 26: A Comparison of Our Results with Other Large-Scale Web Page Classification Research 

Researcher Dataset 

No of 

Categori

es 

Dept

h 
Method 

Micro-

F1 (%) 

Macro

-F1 

(%) 

Liu, T., Yang, Y., 

Wan, H., Zeng, H., 

Chen, Z., & Ma, 

W., 2004 

Yahoo! 246,279 14 
Hierarchical 

SVM 
24 12 

Chen, 2000; 

Dumais, S., & 

Chen, H., 2000 

LookSmar

t 
163 2 

Hierarchical 

SVM  
52.4 

Xue, G., Xing, D., 

Yang, Q., & Yu, 

Y., 2008 

ODP 130,000 17 

Statistical 

language 

model 

51.8 (at 

5
th

  

level) 
 

Xue, G., Xing, D., 

Yang, Q., & Yu, 

Y., 2008 

ODP 130,000 17 
Hierarchical 

SVM 

29.2 (at 

5
th

 

level) 
 

Marath, S., 

Shepherd, M., 

Duffy, J., Milios, 

E., & Heywood, 

M.,2009 

Yahoo! 639,671 17 

Maximum 

Entropy 

Classifier 
 

81.02 

Marath, S., 

Shepherd, M., 

Duffy, J., Milios, 

E., & Heywood, 

M., 2009 

DMOZ 

subset 
17,217 5 

Maximum 

Entropy 

Classifier 

 84.85 

Jhuang, LSHTC 

Challenge 

DMOZ 

subset 
17,217 5 NA  35.49 
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CHAPTER 10: CONCLUSION AND FUTURE RESEARCH 

 

Traditional classification algorithms assume the target classes of the dataset share similar 

prior probability distribution. However, in real-world datasets like web taxonomies, and 

intrusion dataset this identical prior probability assumption is violated. For example, the 

popular web directories have hundreds of thousands of categories, deep hierarchies, class 

imbalance and rarity (very small classes) within the dataset. These properties make 

applying classification algorithms to such data sets very difficult.  The available 

classification results on reasonably sized subsets of popular web directories conclude that 

in terms of effectiveness, the popular classification algorithms cannot fulfill the 

classification needs of very large-scale taxonomies. 

 

We investigated a scalable and effective methodology to fulfill the classification 

requirements of popular web directories. To start with, we conducted the statistical 

analysis of Yahoo! and DMOZ web directories.  In Yahoo! web directory, 0.16% of the 

total categories (988 categories) are very large, containing 1000 to 600,000 labeled web 

pages of their own; whereas, 19.06% of the Yahoo! categories are absolutely rare 

categories of 10 to 100 labeled web pages. Classification algorithms, when applied to 

very large categories of more than 1000 labeled instances should address the machine 

learning issues due to the class imbalance and large-sample learning. Conversely, 

classification algorithms, when applied to rare categories of 10 to 100 labeled web pages 

should address the machine learning issues due to class imbalance and rarity. Another 

1.58% of Yahoo! categories are reasonably sized categories holding 100 to 1000 labeled 
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web pages. However, the abundance or shortage of negative instances in the sibling 

categories makes these categories imbalanced. There are 504,240 Yahoo! categories 

containing 1 to 9 web pages. This forms 78.82% of total Yahoo! categories.  

 

The earlier large scale web page classification research works either overlooked the 

machine learning issues due to rarity, class imbalance and over-abundance of training 

instances or addressed these issues using a common framework. These researches either 

lead to highly comprehensive or inadequate statements. Therefore they are insufficient to 

address the challenges of large-scale web page classification problem, or provide limited 

insight to the real challenges of large-scale web page classification. 

 

In our opinion, addressing multiple machine learning issues within in a dataset of 

hundreds of thousands of categories issues using a generalized methodology is highly 

insufficient. In this research we analyzed the prior probability distribution of each Yahoo!  

subcategory and applied appropriate classification techniques. Later the methodology 

used for Yahoo! categorization is evaluated using a DMOZ subset and we statistically 

proved that the methodology works equally well when applied to any content based 

hierarchical web page classification of larger or smaller dataset. 

 

There are a few areas in large-scale web page classification that need more investigation. 

The impact of class imbalance on the popular feature selection measures is an unexplored 

area of this research. However, preliminary studies are conducted and we conclude that 
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statistical feature selection methods such as Information Gain are not optimal for the 

classification of very large web directories.  

 

At this point, extreme rarity prevents training individual classifiers for categories with 

fewer than 10 labeled web pages. We cannot expect any statistical learner to perform well 

on such rare categories. In this research, the classifiers of the parent categories have been 

used to classify these categories. The advantage of merging extreme rare categories to the 

parent categories is applicable to the hierarchical dataset only. Around 70% of the 

categories of the popular web directories are extremely rare with fewer than 10 labeled 

instances. A better alternative to categorize these categories will complement many real-

world flat and hierarchical classification problems including text classification, medical 

dataset classification, intrusion detection, etc., where extreme rarity is an inexhaustible 

challenge. 
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