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Abstract

Estimates of flow through soil liners are often performed deterministically. Recent

advances in the state of practice is suggesting estimates of reliability (i.e., risk)

associated with this flow will be required. In this study, probabilistic simulations

are performed to examine the influence of correlation length on the level of risk

associated with flow through soil liner systems. Influence of correlation length

on the statistics of effective hydraulic conductivity is examined for different ge-

ometries of liner. Predictions are made for the statistics of effective hydraulic

conductivity. The predicted results are used to investigate the influence of corre-

lation length, hydraulic conductivity mean and coefficient of variation and aspect

ratio of liner on the probability of exceeding regulatory hydraulic conductivity.

It is shown that probability of exceedance increases with increasing correlation

length and mean and decreasing aspect ratio of liner and coefficient of variation.

Numerical examples are presented to illustrate the proposed methodology.
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Chapter 1

Introduction

Waste containment facilities rely on liner systems placed between the facility and

the underlying aquifer to minimize the migration of contaminant and thereby to

limit the contamination of the surrounding soil and the groundwater. These liner

systems may be naturally placed or engineered and may be comprised of different

materials of different areal extents as well as thickness. The equation governing

the total advective flow through a saturated soil liner is given by

Q = kiA (1.1)

where k is the hydraulic conductivity of the liner, i is the hydraulic gradient across

the liner and A is the plan area of the liner. Hydraulic conductivity is a spatially

variable property both for natural soil (Byers & Stephens, 1983; Freeze & Cherry,

1979) and compacted soil liners (Rogowski, Weinrich & Simmons, 1985; Benson,

1993). Due to this spatial variability in hydraulic conductivity, there is always a

risk that the flow through a soil liner will exceed some desired value. This may

compromise the operation of a reservoir or, if contaminants are present, it may

impart an unacceptable risk to the environment. In this thesis, a probabilistic

simulation technique is utilized to determine the proper average for the hydraulic

conductivity of a soil liner system which characterizes the total flow rate through

a variable soil liner. This averaging technique is further used to evaluate the risk

associated with the flow through a soil liner. The following sections will review

soil liners and their reliability based design.

1
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1.1 Soil Liners

Three types of soil liners are commonly used in the base of waste containment

facilities; natural undisturbed clayey deposits, compacted soil liners and geosyn-

thetic clay liners. Natural clayey liner systems and compacted soil liners are the

subject of this thesis.

Natural clayey deposits consist of thick (up to 30 to 40m) undisturbed clay soil

having low hydraulic conductivity. The hydraulic conductivity of these natural

clay deposits will depend on the clay mineralogy, the manner of deposition and the

stress history of the deposits (Rowe et al., 2004). In-situ hydraulic conductivity

of these deposits can be assessed by triaxial or fixed wall hydraulic conductivity

apparatus in the laboratory; variable head or constant head tests conducted in

piezometers in the field as well as interpretation of pumping tests on underlying

aquifer in the field.

Compacted clay liners, usually 0.6 to 3m thick, consist of natural clay which is

recompacted in the field to obtain the desired hydraulic strength properties. Good

engineering practice and quality assurance programs can result in good quality,

low hydraulic conductivity soil liners (Rowe et al., 2004). The hydraulic conduc-

tivity of compacted clay liners depends on the clay mineralogy and the manner of

placement of the liner. Tests assessing the hydraulic conductivity of compacted

clay liners can be conducted either in the field or in the laboratory. Laboratory

tests include triaxial and fixed wall hydraulic conductivity tests and field tests in-

clude large ring infiltrometers, lysimeters and falling head tests in short boreholes

into liners.

1.2 Reliability Based Design

One of the major issues considered in engineering design is safety. Different de-

sign approaches will evaluate safety differently. Three design approaches used
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in geotechnical engineering are working stress design (WSD), limit states design

(LSD) and reliability based design (RBD). In WSD and LSD, global factors of

safety and partial factors of safety are often used respectively to consider uncer-

tainty in design and construction. These two approaches do not quantify the level

of risk associated with the system due to uncertainty. Reliability and probability

based design is an advancement of WSD and LSD approaches, where a quantita-

tive assessment of the level of risk associated with a system is made. Reliability

based design offers the advantages of being more realistic, rational, consistent and

widely applicable (Becker, 1996) where design parameters are treated as random

variables. As will be discussed in this thesis, probabilities of exceedance of flow

through a liner can be calculated if the distribution of hydraulic conductivity are,

at least approximately, known (Menzies, 2008). Current design practice for soil

liners considers deterministic hydraulic conductivity of soil for contaminant flow

modeling through liners and hence the risk or probability of exceedance associated

with the liner due to the uncertainty in hydraulic conductivity is not currently

incorporated into design. Reliability based design in practice would allow for the

uncertainty in the hydraulic conductivity of soil liners to be accounted for and the

risk associated with this uncertainty to be assessed.

1.3 Objectives

This thesis has three distinct objectives:

1. to examine several different averaging techniques for soil liner systems and

assess them for several geometries of liners;

2. to develop an approximation for the mean and standard deviation of the

effective hydraulic conductivity to allow for use in calculating risk of excess flow

through various liner systems; and,

3. to examine the influence of the correlation length on the risk or probability of
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exceedance related to the flow through soil liners using the approximation for the

mean and standard deviation of the effective hydraulic conductivity.

1.4 Thesis Organization

This thesis is organized as follows:

• Chapter 2 is a literature review on the effective hydraulic conductivity and

the risk or probability of exceedance related to the flow through soil liners.

• Chapter 3 presents the methodology utilized in this research work. Steps

followed in the simulations, performed using a random finite element model,

mrflow3d, are presented.

• Chapter 4 contains results used to develop an approximation to the mean

and standard deviation of the effective hydraulic conductivity of liner sys-

tems of different geometries. Using this approximation, chapter 4 also

presents the risks associated with the spatial variability of hydraulic con-

ductivity.

• Chapter 5 summarizes the results obtained in chapter 4 and draws conclu-

sions from these results. This chapter also presents recommendations for

further study.



Chapter 2

Literature Review

2.1 Background

Research into reliability based design of soil liners has been conducted over two

decades, however, there are few publications related to this topic. The intent

of this chapter is to review the literature on this subject. The literature review

consists of two distinct sections. The first section contains a review of the effec-

tive hydraulic conductivity, keff , and the second contains a review of the risk or

probability of exceedance, P(E), associated with flow through soil liners.

Before proceeding, it is useful to define several terms such as the random field, the

arithmetic, geometric and harmonic averages of point-scale hydraulic conductivity

to facilitate discussion of the literature review.

Random field theory is used to model variable engineering properties (Fenton

& Griffiths, 2008). In a random field, the property of interest is considered as

a random variable. Local Average Subdivision (LAS) is a method to generate

the random field. This method generates realizations of local averages over se-

lected volumes. In generating the random field, the LAS algorithm preserves the

spatial correlation between local averages of the property. Correlation between

local averages can be represented by a distance called a correlation length, θ.

The correlation length is a distance over which the property of interest is signifi-

cantly correlated and beyond which is largely uncorrelated. The concept of LAS

5
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algorithm arises from the fact that instead of point-to-point measurements, engi-

neering properties are measured over some selected volume, thus representing the

average property over that volume. Local averaging reduces the variance of the

average of the random field. The amount of variance reduction depends on the

volume selected for local averaging. The amount of variance reduction increases

as the volume of local averaging increases. The variance function, γ(T ), is used

to express the amount of variance reduction when averaged over some length T

(Fenton & Griffiths, 2008).

The averaging can be performed using either the arithmetic average, kA, the

geometric average, kG and the harmonic average, kH , defined as:

kA =
1

n

n
∑

i=1

ki =
1

D

∫

D

k(x
∼

) dx
∼

(2.1)

kG = exp
1

n

n
∑

i=1

ln ki = exp

[

1

D

∫

D

ln k(x
∼

) dx
∼

]

(2.2)

kH =

[

1

n

n
∑

i=1

1

ki

]

−1

=

[

1

D

∫

D

1

k(x
∼

)
dx
∼

]

−1

(2.3)

where ki is the point-scale hydraulic conductivity, n is the sample size and D is

the averaging domain. The arithmetic, kA, geometric, kG and harmonic averages,

kH , have some physical meanings. The arithmetic, kA and harmonic averages,

kH , are representative of the two extreme flow fields, namely parallel and series

flow respectively as shown in Figure 2.1. Parallel flow is the case where the flow

is parallel to the layers of soil, whereas, series flow is the case where the flow is

perpendicular to the layers of soil. Bouwer (1969) showed that for parallel flow, a

heterogeneous medium of soil can be replaced by a homogeneous medium having

single hydraulic conductivity value equal to the arithmetic average, kA, provided
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that the layers have equal thickness and hydraulic gradient constant along each

layer. For series flow, he showed that layered medium can be replaced by a single

hydraulic conductivity value equal to the harmonic average, kH . However, in
 

Q 

�� 

Q 
�� 

�� 

(a) Parallel  flow 

Q 

(c) Combination of series and parallel flow 

Q Q

Q �� �� �� 

(b) Series flow 

Q  �� Q

 �� Q

 �	 Q QQ 

Figure 2.1: Porous media flow scenarios (from Donald, 1990)

reality, the flow will rarely be either perfectly parallel or series, but somewhere

between the two, as shown in Figure 2.1. The geometric average is another term

which is used to represent the actual flow field. The geometric average, kG, is a

value that lies between kA and kH .

2.2 Effective Hydraulic Conductivity

The effective hydraulic conductivity, keff , is defined as a single value of hydraulic

conductivity which is equivalent to a heterogeneous medium of hydraulic con-

ductivity in terms of the total flow through the medium (Bogardi et al., 1990).

Although effective hydraulic conductivity is an average hydraulic conductivity

of a soil liner, simple averages of point-scale hydraulic conductivity such as the
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arithmetic, geometric, and harmonic averages do not always adequately represent

the total flow. Effective hydraulic conductivity is representative of interconnected

zones of different hydraulic conductivity in the flow field (Benson et al., 1994).

Several researchers have published information related to defining the effective hy-

draulic conductivity. The earliest work relates to when Warren and Price (1961)

studied the influence of three-dimensional heterogeneities of hydraulic conduc-

tivity on flow across a cube and radial flow from an injection well and found the

effective hydraulic conductivity to be the geometric average of individual hydraulic

conductivities. In their investigation, they used a simulation technique. Unlike

Warren and Price (1961), Bouwer (1969) considered a uniform and binomial distri-

bution instead of lognormal distribution of hydraulic conductivity. He used analog

simulations to determine effective hydraulic conductivity for a two-dimensional

flow field and found that the geometric average of hydraulic conductivity was

the best approximation for effective conductivity. Smith and Freeze (1979) used

Monte Carlo techniques to find effective conductivity for two-dimensional steady

state groundwater flow. For an unbounded domain under uniform gradient field,

they found the effective conductivity was described well by the geometric aver-

age and for a bounded domain under non-uniform gradient field, they found the

effective hydraulic conductivity greater than the geometric average of point-scale

hydraulic conductivity. One of the earliest attempts to define effective hydraulic

conductivity analytically is that presented by Gutjahr et al. (1979). They used a

spectral perturbation method to determine the effective conductivity for an un-

bounded domain under uniform gradient and no external stresses. They proposed

the following expressions:

One-dimensional flow:

keff = eµln k

(

1 − σ2
ln k

2

)

(2.4)
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Two-dimensional flow:

keff = eµln k (2.5)

Three-dimensional flow:

keff = eµln k

(

1 +
σ2

ln k

6

)

(2.6)

where µlnk and σ2
ln k are the arithmetic mean and variance of log-hydraulic con-

ductivity distribution. According to Gutjahr, these expressions will be valid for

σ2
ln k ≤ 0.5.

Using a self consistent model, Dagan (1982) also attempted to define the effective

hydraulic conductivity for an infinite domain of flow under a uniform gradient

and having no external stresses. His results were the same as Gutjahr et al.

(1978). Fenton and Griffiths (1993) utilized Monte Carlo simulation technique

to examine the influence of the correlation length and aspect ratio of site on the

effective hydraulic conductivity distribution. For two-dimensional finite domain

of flow, they found the effective conductivity to be the geometric average of point-

scale hydraulic conductivity for a square domain. For small aspect ratios (ratio

between the dimension of the site parallel to the flow to that perpendicular to

the flow) of the site, they found the effective hydraulic conductivity to be the

arithmetic average and for large aspect ratio, they found it as the harmonic average

of hydraulic conductivities. Expressions of the effective hydraulic conductivity for

an unbounded domain of flow will not be valid for the liner system where the flow

domain is finite in dimension. In order to define the effective conductivity for a soil

liner, Benson et al. (1994) used a Monte Carlo simulation approach and examined

the influence of the mean and variance of point-scale hydraulic conductivity and

liner thickness on the effective hydraulic conductivity. By regression, they found

following expression:

keff = kG exp

[

σ2
ln k

(

1.671

N
− 0.452

)]

(2.7)
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where kG is the geometric average of point-scale hydraulic conductivity, σ2
ln k is

the variance of log-hydraulic conductivity and N is the number of lifts.

2.3 Probability of Exceedance

Limited amounts of research has been conducted on the reliability of soil liners

since late 80’s. The earliest attempt to estimate post-construction reliability of

soil liners is that presented by Bogardi et al.(1990). In the study six systems of

reliability measures are defined to estimate post-construction reliability from a

given set of direct and indirect hydraulic conductivity measurements from a test

fill. Benson and Charbeneau (1991) presented a method to estimate the reliability

of compacted soil liners based on first-passage time (time when leakage first starts

from the base of the liner) which is a function of the variability of hydraulic con-

ductivity and liner thickness. They showed that the reliability (probability that

total flow through the liner is below the flow through a regulatory liner having

the same area, i.e., P [keff < kcrit]) of a liner increased with increase in hydraulic

conductivity variance and liner thickness. Benson and Daniel (1994a, 1994b) also

investigated the influence of liner thickness and the mean and variance of hydraulic

conductivity on the performance of compacted soil liners using one-dimensional

and three-dimensional stochastic models. The performance criteria considered

were first passage time and flux. It was found that the effective hydraulic conduc-

tivity decreased with a decrease in the mean and an increase in the coefficient of

variation of point-scale hydraulic conductivity and the liner thickness of a multi-

lift liner. Based on their results, they recommended a minimum thickness of 60

to 90 cm in order to obtain lower probability of exceedance. Benson et al. (1994)

utilized a Monte Carlo simulation approach to examine the influence of the co-

efficient of variation of point-scale hydraulic conductivity and the liner thickness

on the effective hydraulic conductivity. They showed that the effective hydraulic
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conductivity decreased with increased coefficient of variation and increased liner

thickness. In the analysis, no-correlation between point-scale hydraulic conduc-

tivity was assumed. Menzies (2008) was the first who examined the influence of

the correlation length on probability of exceedance (probability that total flow

through the liner exceeds the flow through a regulatory liner having the same

area, i.e., P [keff > kcrit]) associated with the flow through compacted soil liners.

The influences of the hydraulic conductivity mean and variance on probability of

exceedance were also examined. In the study, a two-dimensional stochastic model

was used to perform simulations and the probability of exceedance was calcu-

lated using the arithmetic average. It was found that probability of exceedance

of the liner increases with increase in the mean and decrease in the variance of

point-scale hydraulic conductivity. Probability of exceedance was found to reach

a maximum at a correlation length of 10-20% of liner size in any direction. In his

study, lognormal distribution of hydraulic conductivity and isotropic correlation

length within the random field were assumed.

2.4 Summary

Results from Monte Carlo simulations and analytical approaches to the solution

of the steady state ground water flow equation indicate that for an unbounded

domain under uniform gradient fields and under no external stresses, the effective

hydraulic conductivity is best estimated by the geometric average of point-scale

hydraulic conductivity for two-dimensional domain of flow. For the three di-

mensional case, the effective hydraulic conductivity is larger than the geometric

average and is a function of the variance of log-hydraulic conductivity. Monte

Carlo simulations for bounded domains show that for a two-dimensional case, the

effective hydraulic conductivity is best approximated by the geometric average for

square domains and is larger than the geometric average for small aspect ratios
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and smaller than the geometric average for large aspect ratios of the site. Monte

Carlo simulations for three-dimensional domain of soil liner reveal that the effec-

tive hydraulic conductivity is larger than the geometric average and is a function

of variance of log-hydraulic conductivity.

The risk or probability of exceedance associated with a soil liner system increases

with increase in the mean and decrease in the variance of point-scale hydraulic

conductivity and liner thickness. The correlation length has maximum impact on

the risk when its value is 10-20% of the liner size in any direction.

In evaluating the risk, previous studies considered arithmetic averaging. Hence,

proper averaging techniques should be used for the hydraulic conductivity char-

acterizing the total flow rate through the liner as well as for evaluating the risk

associated with the flow through a soil liner system.



Chapter 3

Methodology

This chapter discusses the methodology utilized to obtain the distribution (mean

and standard deviation) of effective hydraulic conductivity as well as the methods

to quantify risk associated with flow through a soil liner system. The chapter is

sub-divided into following two sections:

(i) simulations and

(ii) parameters utilized in simulations.

3.1 Simulations

In this study, Monte Carlo simulations are performed using the three-dimensional

random finite element model, mrflow3d, designed by Fenton and Griffiths to ana-

lyze stochastic fluid flow problems. The model is described by Griffiths and Fenton

(1997). The mesh discretization used in the simulations is shown in Figure 3.1.

 

 

  

Q 

X 

Y 

Z 

Figure 3.1: Schematic of mesh discretization used in simulation

For the modeling performed, it was assumed that an impervious boundary exists

13
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on vertical edges and a uniform unit pressure head was applied on top which di-

rects the flow vertically downward. The inputs to the model are the mean and

standard deviation of point-scale hydraulic conductivity, correlation lengths (ei-

ther isotropic or anisotropic), number of cells in each direction and size of cells. For

specified inputs, the model generates a random field of log-normally distributed

hydraulic conductivity, which is subsequently analyzed for flow using the finite

element method. The mrflow3d software is freely available (www.engmath.dal.ca

/rfem/rfem pubs.html) and the outputs are scalable. There is also provisions for

users to modify the model, if desired. Limited simulations were also performed

using the two-dimensional random finite element model, mrflow2d, in order to

compare with three-dimensional results.

Steps followed in the simulations were as follows:

1. For each set of input parameters of mean, standard deviation and correlation

length of point-scale hydraulic conductivity, a normally distributed random

field of y = ln k was first generated using Local Average Subdivision (LAS)

algorithm (Fenton & Vanmarcke, 1991).

2. The hydraulic conductivity of each element, which represents the average

over the element, was specified using k = ey.

3. The field was analyzed for flow using the finite element method.

4. The total flow, Q, through the field was obtained by summing the flow from

all elements.

5. The effective hydraulic conductivity, keff , the arithmetic average, kA, and

geometric average, kG, of point-scale hydraulic conductivity were calculated

using the following expressions.

keff = µk

(

Q

Qµk

)

(3.1)
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kA =
1

n

n
∑

i=1

ki (3.2)

kG = exp

{

1

n

n
∑

i=1

ln ki

}

(3.3)

where

Q=total flow through the random field considering random hydraulic con-

ductivity throughout,

Qµk
=total flow through the field having constant hydraulic conductivity, µk,

throughout,

ki=local average of hydraulic conductivity over the ith element, and

n=number of elements.

6. The mean and standard deviation of each output quantity over 1,000 real-

izations (single generation of random field and subsequent analysis for flow

is termed a realization) were then computed.

If keff is lognormally distributed, the exceedance probability is,

P (E) = 1 − Φ

[

ln kcrit − µln keff

σln keff

]

(3.4)

where Φ=cumulative density function of standard normal variate, µlnkeff
and

σlnkeff
are the mean and standard deviation of log-effective hydraulic conductivity

respectively.

3.2 Parameters Used in Simulations

In simulations, the mean of point-scale hydraulic conductivity of the input distri-

bution, µk, the arithmetic average, kA, the geometric average, kG, of point-scale
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hydraulic conductivity and the effective hydraulic conductivity, keff , are normal-

ized with respect to the regulatory hydraulic conductivity, kcrit.

µ′

k =
µk

kcrit
(3.5)

k′

A =
kA

kcrit
(3.6)

k′

G =
kG

kcrit

(3.7)

k′

eff =
keff

kcrit
=

µk

(

Q
Qµk

)

kcrit
(3.8)

The correlation length, θk, is normalized by the effective dimension of the liner,

D, where D = 3
√

XY Z and X, Y and Z are the dimensions of the liner.

θ′k =
θk

D
(3.9)

Normalization of hydraulic conductivity by regulatory hydraulic conductivity and

correlation length by the effective dimension of the liner, enable the results to be

scaled to any desired regulatory hydraulic conductivity and any liner size with

same aspect ratio respectively.

Parametric variations considered in the simulations were:

• Normalized mean hydraulic conductivity, µ′

k=0.5, 1.0, 1.5 and 2.0,

• Coefficient of variation, νk =0.5, 1.0 and 2.0,

• Normalized correlation length,
θk

D
=0.01, 0.02, 0.04, 0.08, 0.1, 0.2, 0.4, 0.8,

1.0, 10.0 and 100.0, and,

• Aspect ratio of liner, X/Y =0.1, 0.3 and 1.0.
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In the simulations performed, the parametric variations considered for the mean

and standard deviation were intended to simulate a wide range of field conditions.

Smaller values of aspect ratio (i.e., 0.1) simulate liners used in landfill having large

areal extent compared to the thickness and larger aspect ratios (i.e., 0.3 and 1)

simulate liners used in small leachate lagoons.

In this study, the correlation length was assumed to be equal in all three direc-

tions. In the simulations, the correlation function (ρ) is assumed to be Markovian

with exponentially decaying correlation between points in the field (Vanmarcke,

1983):

ρ (τ1, τ2, τ3) = exp

(

−2

√

τ 2
1

θ2
1

+
τ 2
2

θ2
2

+
τ 2
3

θ2
3

)

(3.10)

where

θi=correlation length in the ith direction.

τi=distance in the ith direction between points where correlation coefficient is

desired.

The corresponding variance function is

γ (T1, T2, T3) =
8

T 2
1 T 2

2 T 2
3

∫ T1

0

∫ T2

0

∫ T3

0

(T1 − τ1) (T2 − τ2) (T3 − τ3)

ρ (τ1, τ2, τ3) dτ3dτ2dτ1 (3.11)

where Ti is the dimension of the averaging domain in the ith direction.

A sensitivity analysis was performed in order to examine the influence of the ele-

ment mesh size on the distribution of output quantities (i.e., the effective hydraulic

conductivity, keff , the arithmetic average, kA, and the geometric average, kG of

point-scale hydraulic conductivity). For the same domain size, element sizes con-

sidered were 0.05, 0.0417, 0.0357 and 0.03125 corresponding to an element mesh

of 20×20×20, 24×24×24, 28×28×28 and 32×32×32 respectively. As shown

by the results included in Appendix A, all sizes give similar results. Based on the
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least computing time, a 0.05×0.05×0.05 element was selected for all simulations.

Twenty elements of 0.05 × 0.05 × 0.05 size were specified in length and breadth

directions in order to obtain a plan liner area of 1 and the number of elements

was varied in thickness direction (i.e., ”X”) according to the aspect ratio. In the

simulations consideration of liner of plan area of 1 × 1 enables the results to be

scaled to any liner size. For each set of input parameters, 1,000 realizations (single

generation of random field and subsequent analysis for flow is called a realization)

were performed.



Chapter 4

Results

4.1 Influence of Correlation Length on Mean of Effective Hydraulic

Conductivity

Figure 4.1 shows the influence of normalized correlation length on the arithmetic

and geometric averages of point-scale hydraulic conductivity as well as on the ef-

fective hydraulic conductivity, for a coefficient of variation of point-scale hydraulic

conductivity of 1.0 and an aspect ratio of liner (ratio between the thickness to the

width of the liner) of 0.1. Each point on the plot is the corresponding average of

1,000 realizations. Figure 4.1 indicates that as the correlation length increases,

the mean of the arithmetic average and geometric average of point-scale hydraulic

conductivity and the effective hydraulic conductivity increases. These results are

as expected, because as the correlation length increases, fewer low hydraulic con-

ductivity zones are developed in each realization in the random field. Deviations

in this increasing trend with correlation lengths are due to the sampling error

which could be avoided somewhat by using more than 1,000 realizations at those

correlation lengths. It is also shown that for a particular correlation length, the

mean of the effective hydraulic conductivity approaches the mean of the arithmetic

average for an aspect ratio, X/Y, of 0.1.

For example, for the case of µ′

k=1, νk=1 and
θk

D
=0.8, when X/Y=0.1,

µ̂kA
=0.969, µ̂kG

=0.748, and µ̂keff
=0.937.

Results for a coefficient of variation of 1.0 and an aspect ratio of liner of 0.3

19
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Figure 4.1: Influence of correlation length on the mean of effective hydraulic
conductivity for a coefficient of variation of 1.0 and an aspect ratio of liner of 0.1

are presented in Figure 4.2. Similar to the results in Figure 4.1 for an aspect

ratio of 0.1, increasing trends with correlation lengths are observed for the mean

of the arithmetic and geometric average of point-scale hydraulic conductivity as

well as the effective hydraulic conductivity. It is shown that compared to the case

of aspect ratio of liner of 0.1, the mean of the effective hydraulic conductivity

deviates away from the mean of the arithmetic average and becomes closer to the

mean of the geometric average.

For example, for the case of µ′

k=1, νk=1 and
θk

D
=0.8, when X/Y=0.3,

µ̂kA
=0.954, µ̂kG

=0.751, and µ̂keff
=0.886.

Figure 4.3 shows the influence of the correlation length on the mean of the arith-

metic and geometric average of point-scale hydraulic conductivity and the effective

hydraulic conductivity for a coefficient of variation of 1.0 and an aspect ratio of

liner of 1.0. As with the other aspect ratios examined, increasing trends in the
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Figure 4.2: Influence of correlation length on the mean of effective hydraulic
conductivity for a coefficient of variation of 1.0 and an aspect ratio of liner of 0.3
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Figure 4.3: Influence of correlation length on the mean of effective hydraulic
conductivity for a coefficient of variation of 1.0 and an aspect ratio of liner of 1.0

mean of the arithmetic and geometric average of point-scale hydraulic conductiv-

ity and the effective hydraulic conductivity with increasing correlation lengths are

observed. Figure 4.3 also shows that for an aspect ratio, X/Y, of 1.0, the mean of
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Figure 4.4: Influence of correlation length on the mean of effective Hydraulic
conductivity for a coefficient of variation of 0.5 and an aspect ratio of liner of 0.1

the effective hydraulic conductivity approaches the mean of the geometric average,

moving away from the arithmetic average.

For example, for the case of µ′

k=1, νk=1 and
θk

D
=0.8, when X/Y=1.0,

µ̂kA
=0.991, µ̂kG

=0.843, and µ̂keff
=0.843.

The influence of correlation length on the mean of the effective hydraulic con-

ductivity, for a coefficient of variation of 0.5 and an aspect ratio of liner of 0.1,

shown in Figure 4.4, indicates that the mean of the effective hydraulic conduc-

tivity also approaches the mean of the arithmetic average of point-scale hydraulic

conductivity. Compared to a coefficient of variation of 1.0, it is also shown that

the differences between the effective hydraulic conductivity and the arithmetic

average at smaller correlation lengths are lower.

Figure 4.5 presents the results of the influence of correlation length on the mean

of the arithmetic and the geometric average of point-scale hydraulic conductivity
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and the effective hydraulic conductivity for a coefficient of variation of 0.5 and an

aspect ratio of liner of 1.0. It is observed that the mean of the effective hydraulic

conductivity approaches the mean of the geometric average, similar to a coefficient

of variation of 1.0, but differences between them is comparatively not so large.

When the coefficient of variation is 2.0 and the aspect ratio of liner is 0.1, the

mean of the effective hydraulic conductivity continues to approach the mean of

the arithmetic average which is shown in Figure 4.6. It is also noted that at lower

correlation lengths, the means are lower than those obtained for coefficients of

variation of 1.0 and 0.5.
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Figure 4.5: Influence of correlation length on the mean of effective hydraulic
conductivity for a coefficient of variation of 0.5 and an aspect ratio of liner of 1.0

Results for the influence of correlation length on the mean of the effective hydraulic

conductivity, for a coefficient of variation of 2.0 and an aspect ratio of liner of

1.0, presented in Figure 4.7, indicate that the mean of the effective hydraulic

conductivity approaches the mean of the geometric average.
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Figure 4.6: Influence of correlation length on the mean of effective hydraulic
conductivity for a coefficient of variation of 2.0 and an aspect ratio of liner of 0.1
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Figure 4.7: Influence of correlation length on the mean of effective hydraulic
conductivity for a coefficient of variation of 2.0 and an aspect ratio of liner of 1.0

For all cases in which the coefficient of variations are 0.5 and 2.0, as well as

for all aspect ratios of liner, the mean of the arithmetic and geometric average
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of point-scale hydraulic conductivity and the effective hydraulic conductivity in-

crease with increasing correlation lengths and the deviations from this increasing

trend are found for some correlation lengths due to sampling error. In order to

reduce sampling error, more than 1,000 realizations is suggested.

The decreasing trend in the effective hydraulic conductivity with increasing aspect

ratio of liner is as expected. As the aspect ratio of liner increases, the freedom of

the flow to avoid low hydraulic conductivity zones increases (Griffiths & Fenton,

1997).

4.2 Prediction of Mean of Effective Hydraulic Conductivity

Results showing the influence of correlation length on the mean of the effective hy-

draulic conductivity indicates that for small aspect ratios of liner (i.e., X/Y=0.1),

the arithmetic average of point-scale hydraulic conductivity is the best approxi-

mation for the effective hydraulic conductivity and for larger aspect ratio of liner

(i.e., X/Y=1.0), the geometric average is the best approximation for the effective

hydraulic conductivity. However, many liners will have different aspect ratios.

Proper averaging for the effective hydraulic conductivity needs to be determined

for other aspect ratios in order to quantify the risk of flow exceeding that regulated.

Based on the results presented in the previous section, a prediction of the mean

of effective hydraulic conductivity can be made

µ̂keff
= e−1.21(X/Y )µ̂kA

+
[

1 − e−1.21(X/Y )
]

µ̂kG
(4.1)

where

µ̂keff
=estimated mean of the effective hydraulic conductivity from the simulation,

µ̂kA
=estimated mean of the arithmetic average of point-scale hydraulic conduc-

tivity from the simulation, and
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µ̂kG
=estimated mean of the geometric average of point-scale hydraulic conductiv-

ity from the simulation.
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Figure 4.8: Comparison between simulated and predicted mean of effective hy-
draulic conductivity for a coefficient of variation of 1.0 and an aspect ratio of liner
of 0.1
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Figure 4.9: Comparison between simulated and predicted mean of effective hy-
draulic conductivity for a coefficient of variation of 1.0 and an aspect ratio of liner
of 0.3

Figures 4.8 to 4.14 compare the simulated results of the mean of effective hydraulic
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conductivity to those predicted with equation 4.1 for different coefficients of varia-

tion and aspect ratios. Comparison between simulated and predicted results show

excellent agreement for all cases.
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Figure 4.10: Comparison between simulated and predicted mean of effective hy-
draulic conductivity for a coefficient of variation of 1.0 and an aspect ratio of liner
of 1.0
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Figure 4.11: Comparison between simulated and predicted mean of effective hy-
draulic conductivity for a coefficient of variation of 0.5 and an aspect ratio of liner
of 0.1
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Figure 4.12: Comparison between simulated and predicted mean of effective hy-
draulic conductivity for a coefficient of variation of 0.5 and an aspect ratio of liner
of 1.0
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Figure 4.13: Comparison between simulated and predicted mean of effective hy-
draulic conductivity for a coefficient of variation of 2.0 and an aspect ratio of liner
of 0.1
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Figure 4.14: Comparison between simulated and predicted mean of effective hy-
draulic conductivity for a coefficient of variation of 2.0 and an aspect ratio of liner
of 1.0

4.3 Influence of Correlation Length on Standard Deviation of Effective

Hydraulic Conductivity

Simulations are performed in order to have an approximation for the standard

deviation of the effective hydraulic conductivity which is used to evaluate the risk

associated with the flow through a soil liner system. To achieve this target, the

influence of the correlation length on the standard deviation of the effective hy-

draulic conductivity is examined.

Figure 4.15 shows the influence of the correlation length on the standard deviation

of the arithmetic and the geometric average of point-scale hydraulic conductivity

as well as the effective hydraulic conductivity for a coefficient of variation of 1.0

and an aspect ratio of liner of 0.1. Each point on the plot is obtained by taking

the corresponding standard deviation of 1,000 realizations. Results show that as

the correlation length increases, the standard deviation of the effective hydraulic
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conductivity also increases. The reason for this increase is because in statistics, it

is well known that as the number of independent samples in an average decreases,

the variance of the average increases. In the random field context, the increase

in variance of the flow rate is to be expected due to the decrease in the number

of independent samples that results with increasing correlation length (Griffiths

& Fenton, 1997). It is also found that the standard deviation of the effective hy-

draulic conductivity approaches the standard deviation of the arithmetic average

for this case.
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Figure 4.15: Influence of correlation length on the standard deviation of effective
hydraulic conductivity for a coefficient of variation of 1.0 and an aspect ratio of
liner of 0.1

For example, for µ′

k=1, νk=1 and
θk

D
=0.8, when X/Y =0.1,

σ̂kA
=0.321, σ̂kG

=0.236, and σ̂keff
=0.321.

The influence of correlation length on the standard deviation of the effective hy-

draulic conductivity for a coefficient of variation of 1.0 and an aspect ratio of

liner of 0.3, presented in Figure 4.16, indicates that the standard deviation of the
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effective hydraulic conductivity trends closer to the standard deviation of the ge-

ometric average and away from the standard deviation of the arithmetic average
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Figure 4.16: Influence of correlation length on the standard deviation of effective
hydraulic conductivity for a coefficient of variation of 1.0 and an aspect ratio of
liner of 0.3

(i.e., for higher X/Y).

For example, for µ′

k=1, νk=1 and
θk

D
=0.8, when X/Y=0.3,

σ̂kA
=0.366, σ̂kG

=0.284, and σ̂keff
=0.339.

Similarly, Figure 4.17 presents the results on the influence of correlation length

on the standard deviation of the effective hydraulic conductivity for a coefficient

of variation of 1.0 and an aspect ratio of liner of 1.0. For this case, the standard

deviation of the effective hydraulic conductivity trends even more towards the

standard deviation of the geometric average.

For example, for µ′

k=1, νk=1 and
θk

D
=0.8, when X/Y=1.0,

σ̂kA
=0.429, σ̂kG

=0.332, and σ̂keff
=0.365.
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Figure 4.17: Influence of correlation length on the standard deviation of effective
hydraulic conductivity for a coefficient of variation of 1.0 and an aspect ratio of
liner of 1.0
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Figure 4.18: Influence of correlation length on the standard deviation of effective
hydraulic conductivity for a coefficient of variation of 0.5 and an aspect ratio of
liner of 0.1

Figures 4.18 to 4.21 show the influence of correlation length on the standard de-

viation of the effective hydraulic conductivity for different coefficients of variation
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Figure 4.19: Influence of correlation length on the standard deviation of effective
hydraulic conductivity for a coefficient of variation of 0.5 and an aspect ratio of
liner of 1.0
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Figure 4.20: Influence of correlation length on the standard deviation of effective
hydraulic conductivity for a coefficient of variation of 2.0 and an aspect ratio of
liner of 0.1

and aspect ratios of liner. Generally speaking, similar trends as that discussed

above for the mean of the effective hydraulic conductivity are obtained.
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Figure 4.21: Influence of correlation length on the standard deviation of effective
hydraulic conductivity for a coefficient of variation of 2.0 and an aspect ratio of
liner of 1.0

4.4 Prediction of Standard Deviation of Effective Hydraulic Conduc-

tivity

In order to evaluate risk that associates with the flow through a soil liner sys-

tem, using equation 3.4, one needs to know the standard deviation of the effective

hydraulic conductivity. For this reason, prediction of the standard deviation of

the effective hydraulic conductivity is made as follows, based on the previous re-

sults that as the aspect ratio of liner decreases, the standard deviation of the

effective hydraulic conductivity approaches the standard deviation of the arith-

metic average and as it increases, the standard deviation of the effective hydraulic

conductivity approaches the standard deviation of the geometric average.

σ̂keff
= e−1.21(X/Y )σ̂kA

+
[

1 − e−1.21(X/Y )
]

σ̂kG
(4.2)

where

σ̂keff
=estimated standard deviation of the effective hydraulic conductivity from
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the simulation,

σ̂kA
=estimated standard deviation of the arithmetic average from the simulation,

and

σ̂kG
=estimated standard deviation of the geometric average from the simulation.

The good agreement obtained between simulated and results predicted by equation

4.2, for different coefficients of variation and aspect ratios of liner, is illustrated

in Figures 4.23-4.28.
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Figure 4.22: Comparison between simulated and predicted standard deviation of
effective hydraulic conductivity for a coefficient of variation of 1.0 and an aspect
ratio of liner of 0.1
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Figure 4.23: Comparison between simulated and predicted standard deviation of
effective hydraulic conductivity for a coefficient of variation of 1.0 and an aspect
ratio of liner of 0.3

 

0

0.4

0.8

1.2

1.6

2

0.01 0.1 1 10 100 1000

σ
k΄

ef
f

Normalized Correlation Length, θk/D

µ΄k=1.0
νk=1.0

X/Y=1.0

Simulated Predicted

Figure 4.24: Comparison between simulated and predicted standard deviation of
effective hydraulic conductivity for a coefficient of variation of 1.0 and an aspect
ratio of liner of 1.0



37

 

0

0.4

0.8

1.2

1.6

2

0.01 0.1 1 10 100 1000

σ
k΄

ef
f

Normalized Correlation Length, θk/D

µ΄k=1.0
νk=0.5

X/Y=0.1

Simulated Predicted

Figure 4.25: Comparison between simulated and predicted standard deviation of
effective hydraulic conductivity for a coefficient of variation of 0.5 and aspect ratio
of liner of 0.1

 

Figure 4.26: Comparison between simulated and predicted standard deviation of
effective hydraulic conductivity for a coefficient of variation of 0.5 and an aspect
ratio of liner of 1.0
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Figure 4.27: Comparison between simulated and predicted standard deviation of
effective hydraulic conductivity for a coefficient of variation of 2.0 and an aspect
ratio of liner of 0.1
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Figure 4.28: Comparison between simulated and predicted standard deviation of
effective hydraulic conductivity for a coefficient of variation of 2.0 and an aspect
ratio of liner of 1.0
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4.5 Comparison between Simulated and Predicted Probability of Ex-

ceedance

Simulations were performed to examine the influence of the correlation length on

the mean and the standard deviation of the effective hydraulic conductivity. Based

on the findings, predictions were made for the mean and the standard deviation

of the effective hydraulic conductivity in order to obtain the risk associated with

the flow through soil liner systems (i.e., equation 3.4).

Figures 4.29 to 4.35 show comparison between simulated and predicted proba-

bility of exceedance for different coefficients of variation and aspect ratios of liner.

Each of the figures indicates good agreement between simulated and predicted

results.
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Figure 4.29: Comparison between simulated and predicted probability of ex-
ceedance for a coefficient of variation of 1.0 and an aspect ratio of liner of 0.1
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Figure 4.30: Comparison between simulated and predicted probability of ex-
ceedance for a coefficient of variation of 1.0 and an aspect ratio of liner of 0.3

 

Figure 4.31: Comparison between simulated and predicted probability of ex-
ceedance for a coefficient of variation of 1.0 and aspect ratio of liner of 1.0
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Figure 4.32: Comparison between simulated and predicted probability of ex-
ceedance for a coefficient of variation of 0.5 and an aspect ratio of liner of 0.1
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Figure 4.33: Comparison between simulated and predicted probability of ex-
ceedance for a coefficient of variation of 0.5 and aspect ratio of liner of 1.0
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Figure 4.34: Comparison between simulated and predicted probability of ex-
ceedance for a coefficient of variation of 2.0 and aspect ratio of liner of 0.1
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Figure 4.35: Comparison between simulated and predicted probability of ex-
ceedance for a coefficient of variation of 2.0 and aspect ratio of liner of 1.0
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4.6 Influence of Correlation Length on Probability of Exceedance

The two limiting values for the random field correlation length for hydraulic con-

ductivity are when the correlation length is equal to zero or when it is equal to

infinity. When θk is equal to 0, points within the field have no correlation with

each other. In other words, they are independent (Fenton and Griffiths, 2008).

In this case, each local average sample will consist of an infinite number of in-

dependent values whose average is a constant. For this limiting case, probability

of exceedance would be either 1 or 0, depending on whether the specified mean

hydraulic conductivity is above or below regulatory hydraulic conductivity, kcrit.

For the other extreme of when θk is equal to infinity, points within the random

field are perfectly correlated with each other. In other words, for a particular

realization, the field can be represented by a single hydraulic conductivity value.

For this case, the mean and standard deviation of the effective hydraulic conduc-

tivity will be the specified mean and standard deviation of point-scale hydraulic

conductivity.

In this section, the results related to the influence of the correlation length on the

probability of exceedance for different specified means and coefficients of variation

of point-scale hydraulic conductivity and aspect ratios of liners are presented. All

results are based on the predictions made in the previous sections for the mean

and standard deviation of the effective hydraulic conductivity. Figure 4.36 shows

the influence of the correlation length on the probability of exceedance for dif-

ferent aspect ratios of liner. The specified mean and coefficient of variation of

point-scale hydraulic conductivity for all cases are 1.0. For µ′

k and νk of 1.0 and

a particular X/Y, each point on the plot is the calculation for a particular value

of
θk

D
.
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Figure 4.36: Influence of correlation length on probability of exceedance for dif-
ferent aspect ratios of liner

Figure 4.36 indicates that as the correlation length increases, probability of ex-

ceedance of soil liner increases due to increasing mean and standard deviation of

effective hydraulic conductivity. The deviations in the increasing trend due to

the sampling error can be avoided by taking more than 1,000 realizations. The

increase in probability of exceedance with the correlation length is as expected.

Because increase in the correlation length of hydraulic conductivity increases the

uniformity of the random field and the flow finds less low-k zones along the flow

path. The consequence of this is a higher probability of exceedance. For µ′

k of 1.0,

the results for all aspect ratios show expected probability of exceedance of zero

at correlation length of 0.01. For an aspect ratio of 0.1, worst case correlation

length (correlation length at which the probability of exceedance is maximum) is

obtained at a value of 0.8. For all other aspect ratios, at higher correlation length,

probability of exceedance is tending towards the limiting value of 0.339 which re-

sults from the mean and standard deviation of effective hydraulic conductivity
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of 1.0 when θk is equal to infinity. Results also indicate that the probability of

exceedance decreases with increasing aspect ratio of liner.

 

Figure 4.37: Influence of correlation length on probability of exceedance for dif-
ferent means

Figure 4.37 presents the results for the influence of the correlation length on the

probability of exceedance for different means, µ′

k. Each point on the plots is the

predicted result for a coefficient of variation of 1.0, aspect ratio of liner of 0.1 and

a particular mean. When µ′

k=0.5 or 1.0, an increasing trend in the probability

of exceedance with the correlation length is obtained. For a mean of 1.5 and

2.0 times of the regulatory hydraulic conductivity, the probability of exceedance

decreases from 1 (as expected for the limiting case at θ′k = 0) as the correlation

length increases. Figure 4.37 also indicates that for a particular correlation length,

the probability of exceedance increases as the mean increases. This is as expected

because increasing mean increases the probability of high-k zones along the flow-

paths.
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The influence of the correlation length on the probability of exceedance for dif-

ferent coefficients of variation is shown in Fig.4.38. The mean and aspect ratio

of liner for this case are 1.0 and 0.1 respectively. For this case, the probabil-

ity of exceedance increases with increasing correlation length. For a particular

 

Figure 4.38: Influence of correlation length on probability of exceedance for dif-
ferent coefficients of variations

correlation length, probability of exceedance decreases with increasing coefficient

of variation. This is as expected, because for a particular mean, an increase in

the coefficient of variation increases the positive skew of a lognormal hydraulic

conductivity distribution, which results in an increase in the probability of low

hydraulic conductivities more compared to the increase in the probability of high

hydraulic conductivities. Thus, a small change in the probability of high keff

and a large change in the probability of low keff results in an increase in the

coefficient of variation of hydraulic conductivity (Benson & Daniel, 1994a). This

consequences decrease in probability of exceedance with increasing coefficient of

variation.
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4.7 Predicted Probability of Exceedance Based on the Simulated and

Analytical Parameters

In this study, predictions have made for the mean and standard deviation of the

effective hydraulic conductivity using simulation derived sample means and stan-

dard deviations according to equations 4.1 and 4.2. The mean and standard de-

viation of arithmetic and geometric averages can be estimated analytically, which

allows the mean and standard deviation of effective hydraulic conductivity to be

obtained without the need of simulation. To this end, equations 4.1 and 4.2 can

be modified to become

µkeff
= e−1.21(X/Y )µkA

+
[

1 − e−1.21(X/Y )
]

µkG
(4.3)

σkeff
= e−1.21(X/Y )σkA

+
[

1 − e−1.21(X/Y )
]

σkG
(4.4)

According to Fenton and Griffiths (2008), predictions of µkA
, µkG

, σkA
, and σkG

can be made analytically as follows:

µkA
= µk (4.5)

µkG
= e

(

µln kG
+ 1

2
σ2

ln kG

)

(4.6)

σkA
=
√

γ (T1, T2, T3)σk (4.7)

σkG
=

√

[

e

(

2µln kG
+σ2

ln kG

)

]

[

e
σ2

ln kG − 1
]

(4.8)

where

µln kG
= ln µk −

1

2
ln(1 + ν2

k)
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σln kG
=
√

γ(T1, T2, T3)σln k

γ (T1, T2, T3) is the three-dimensional Markovian variance function. It is calculated

here considering correlation structure to be separable so that the variance function

is also separable.

γ (T1, T2, T3) = γ (T1) γ (T2) γ (T3) (4.9)

where

γ (Ti) =
θ2

i

2T 2
i

[

2|Ti|
θi

+ exp

{

−2|Ti|
θi

}

− 1

]
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Figure 4.39: Comparison between simulated and analytical standard deviation of
the arithmetic average

An example can be given for the agreement between the simulated, σ̂kA
, and the

analytical, σkA
, for aspect ratio of liner of 1.0, which is shown in Figure 4.39. Nice

agreement between the simulated and analytical results is obtained for this case.

Figure 4.40 shows nice agreement between the simulated, σ̂kG
, and the analyt-

ical, σkG
.
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Figure 4.40: Comparison between simulated and analytical standard deviation of
the geometric average
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Figure 4.41: Predicted probability of exceedance for simulated and analytical
parameters

Figure 4.41 shows good agreement between the predicted probability of exceedance

calculated using equation 3.4, based on the simulated, µ̂kA
, µ̂kG

, σ̂kA
, and σ̂kG
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and the analytical µkA
, µkG

, σkA
, and σkG

.

4.8 Comparison between 3-D and 2-D Probability of Exceedance

Simulations are performed using the two-dimensional model, mrflow2d, to in-

vestigate if two-dimensions are sufficient for modeling purposes. The advantage

of two-dimensional modeling is that it requires less computing time relative to

three-dimensional modeling. Figure 4.42 shows comparison between 3-D and 2-D
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Figure 4.42: Comparison between 3-D and 2-D probability of exceedance for as-
pect ratio of liner of 0.1

probability of exceedance vs. correlation length for an aspect ratio of liner of 0.1,

Figures 4.43 and 4.44 show the same comparison for aspect ratios of 0.3 and 1.0

respectively.

Results show that for a particular correlation length, 3-D case gives similar results

of probability of exceedance as that for 2-D case for all cases of aspect ratios of

liner. The exception to this statement may be at smaller correlation lengths for

an aspect ratio of 0.1. A comparison between 3-D and 2-D results for the mean

and standard deviation of the effective hydraulic conductivity for all aspect ratios
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Figure 4.43: Comparison between 3-D and 2-D probability of exceedance for as-
pect ratio of liner of 0.3
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Figure 4.44: Comparison between 3-D and 2-D probability of exceedance for as-
pect ratio of liner of 1.0

are included in Appendix B.
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4.9 Using The Proposed Method for Calculating Probability of Ex-

ceedance: Two Examples

Two examples can be given to clarify the proposed method in this study to eval-

uate the risk (i.e., probability of exceedance) associated with a soil liner.

Example 1

Consider a liner to be constructed that has a plan area of 100 m×100 m. Testing

on readily available clay soil revealed mean hydraulic conductivity to be 2× 10−9

m/s with a coefficient of variation of 2.0. The correlation length is assumed to

be θk = 3 m in all three directions. The regulatory requirement for the liner

construction is X=1 m thick clayey liner with hydraulic conductivity of 1 × 10−9

m/s. It is necessary to quantify the risk associated with the proposed liner.

Given the mean and coefficient of variation of point-scale hydraulic conductivity,

the standard deviation and mean of log-k of the clayey liner are as follows:

σln k =
√

ln(1 + ν2
k)

=
√

ln(1 + 22)

= 1.269

µln k = ln µk −
1

2
σ2

ln k

= ln(2 × 10−9) − 1

2
(1.269)2

= −20.835

Using γ(T1 × T2 × T2) = γ(T1)× γ(T2)× γ(T3) where T1 = T2=100 and T3=1 and

γ (Ti) =
θ2

i

2T 2
i

[

2|Ti|
θi

+ exp

{

−2|Ti|
θi

}

− 1

]

, the variance function is calculated as

7.08 × 10−4.
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The geometric average of point-scale hydraulic conductivity can be calculated to

be,

kG = eµln k

= e−20.835

= 8.944 × 10−10m/s

The mean and standard deviation of the arithmetic and geometric averages of

point-scale hydraulic conductivity can be calculated as follows:

µkA
= µk

= 2 × 10−9m/s

µkG
= exp

{

µlnkG
+

1

2
σ2

ln kG

}

= 8.95 × 10−10m/s

where

µlnkG
= ln µk −

1

2
ln(1 + ν2

k)

= ln(2 × 10−9) − 1

2
ln(1 + 22)

= −20.83

σln kG
=

√

γ(T1, T2, T3)σln k

=
√

(7.08 × 10−4)(1.269)

= 0.0337
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σkA
=

√

γ(T1, T2, T3)σk

=
√

γ(T1, T2, T3)(νk × µk)

=
√

(7.08 × 10−4)(2 × 2 × 10−9)

= 1.06 × 10−10

σkG
=

√

[

e

(

2µln kG
+σ2

ln kG

)

]

[

e
σ2

ln kG − 1
]

=
√

[e2(−20.83)+(0.0337)2 ] [e(0.0337)2 − 1]

= 3.02 × 10−11

The mean and standard deviation of the effective hydraulic conductivity can be

calculated as follows:

µkeff
= e−1.21(X/Y )µkA

+
[

1 − e−1.21(X/Y )
]

µkG

= e−1.21(1/100)(2 × 10−9) +
[

1 − e−1.21(1/100)
]

(8.95 × 10−10)

= 1.986 × 10−9m/s

σkeff
= e−1.21(X/Y )σkA

+
[

1 − e−1.21(X/Y )
]

σkG

= e−1.21(1/100)(1.06 × 10−10) +
[

1 − e−1.21(1/100)
]

(3.02 × 10−11)

= 1.055 × 10−10

The standard deviation and mean of log-effective hydraulic conductivity can be
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calculated as,

σln keff
=

√

ln(1 + ν2
keff

)

= ln

[

1 +

(

1.055 × 10−10

1.986 × 10−9

)2
]

= 0.05306

µln keff
= ln µkeff

− 1

2
σ2

ln keff

= ln(1.986 × 10−9) − 1

2
(0.05306)2

= −20.04

The probability of exceedance can be calculated as:

P (E) = 1 − Φ

[

ln(kcrit) − µlnkeff

σln keff

]

= 1 − Φ

[

ln(1) − (−20.04)

0.05306

]

= 1.0
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Example 2

It is desired to quantify the risk associated with the flow though a soil liner having

a size of 10 m×10 m×10 m, to be used under a 10 m×10 m leachate lagoon. All

other data related to the clay will remain same as in example 1.

Given the mean and coefficient of variation of point-scale hydraulic conductivity,

the mean and standard deviation of log-k of the clayey liner are as in the previous

example,

µlnk = −20.835

σln k = 1.269

Using γ(T1 × T2 × T2) = γ(T1) × γ(T2) × γ(T3) where T1 = T2 = T3=10 and

γ (Ti) =
θ2

i

2T 2
i

[

2|Ti|
θi

+ exp

{

−2|Ti|
θi

}

− 1

]

, the variance function is calculated as

0.0527.

The geometric mean of point-scale hydraulic conductivity can be calculated as,

kG = 8.94 × 10−10m/s

The mean and standard deviation of the arithmetic and geometric averages of

point-scale hydraulic conductivity can be calculated as follows:

µkA
= 2 × 10−9m/s

µkG
= exp

{

µlnkG
+

1

2
σ2

ln kG

}

= 9.33 × 10−10m/s
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σkA
=

√

γ(T1, T2, T3)σk

= (0.0527)(2 × 3 × 10−9)

= 9.184 × 10−10

σkG
=

√

[

e

(

2µln kG
+σ2

ln kG

)

]

[

e
σ2

ln kG − 1
]

= 2.777 × 10−10

The mean and standard deviation of the effective hydraulic conductivity can be

calculated as follows,

µkeff
= e−1.21(X/Y )µkA

+
[

1 − e−1.21(X/Y )
]

µkG

= e−1.21(10/10)(2 × 10−9) +
[

1 − e−1.21(10/10)
]

(9.33 × 10−10)

= 1.25 × 10−9m/s

σkeff
= e−1.21(X/Y )σkA

+
[

1 − e−1.21(X/Y )
]

σkG

= e−1.21(10/10)(9.184 × 10−10) +
[

1 − e−1.21(10/10)
]

(2.777 × 10−10)

= 9.11 × 10−10

The mean and standard deviation of log-effective hydraulic conductivity can be

calculated as,

µln keff
= ln µkeff

− 1

2
σ2

ln keff

= ln(1.25 × 10−9) − 1

2
(9.11 × 10−10)2

= −20.71
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σln keff
=

√

ln(1 + ν2
keff

)

= 0.507

Probability of exceedance can be calculated as:

P (E) = 1 − Φ

[

ln(kcrit) − µlnkeff

σln keff

]

= 0.507



Chapter 5

Conclusion

5.1 Summary and Conclusions

In this study, Monte Carlo simulations were performed using a random field finite

element model, mrflow3d, to evaluate the risk associated with the flow through

soil liner systems. In this regard, an attempt was first made to determine the

proper average to use to characterize the effective hydraulic conductivity, which

in turn, characterizes the total flow rate through a saturated soil liner. A simi-

lar prediction was also made for the standard deviation of the effective hydraulic

conductivity. The influence of the correlation length was considered in obtaining

these predictions. The risk that soil liner system fails to perform adequately was

evaluated using the predicted distribution of the effective hydraulic conductivity.

Using this proposed method, designers will be able to evaluate the risk associated

with the flow through a soil liner at the design stage on set limits on the variability

expected for the construction.

Based on the results obtained in this study, the following conclusions can be

drawn:

• The mean of the effective hydraulic conductivity increases with a increase

in the correlation length and a decrease in the aspect ratio of the liner.

• A prediction for the mean effective hydraulic conductivity is,

59
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µ̂keff
= e−1.21(X/Y )µ̂kA

+
[

1 − e−1.21(X/Y )
]

µ̂kG

• The standard deviation of the effective hydraulic conductivity increases with

an increase in the correlation length and a decrease in the aspect ratio of

liner.

• A prediction for the standard deviation of the effective hydraulic conductiv-

ity is,

σ̂keff
= e−1.21(X/Y )σ̂kA

+
[

1 − e−1.21(X/Y )
]

σ̂kG

• The probability of exceedance increases with increasing correlation length

of hydraulic conductivity.

• The probability of exceedance increases with increasing hydraulic conduc-

tivity mean.

• The probability of exceedance increases with decreasing liner aspect ratio.

• The probability of exceedance increases with decreasing hydraulic conduc-

tivity variance.

• A comparison between 3-D and 2-D case for the probability of exceedance

indicates that the 2-D model is a reasonable approximation.

5.2 Recommendations for further study

Although reliability of soil liner is an issue of research for over two decades (Boga-

rdi et al., 1989, 1990; Benson and Charbeneau, 1991; Benson et al., 1994; Benson

and Daniel, 1994a, 1994b; Benson et al. 1999) there are still some issues which

should be included into future research, such as,
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• This study assumes equal correlation length in all three directions. But for a

layered soil mass, the horizontal correlation length are generally larger than

the vertical correlation length due to the natural stratification of many soil

deposits. Consideration of this anisotropy in the correlation length in future

research will be more rational.

• Future study should examine the influence of sampling on the probability

of exceedance.

• In further study, uncertainty in hydraulic gradient across the liner could be

considered to evaluate the probability of exceedance associated with the flow

through soil liner systems.

(Fenton & Griffiths, 1993) (Menzies, 2008) (Donald, 1990) (Dagan, 1982) (Gut-

jahr, Gelhar & MacMillan, 1978) (Warren & Price, 1961) (Bouwer, 1969) (Rowe,

Quigley, Brachman, Richard & Booker, 2004) (Bogardi, Kelly & Bardossy, 1989)

(Bogardi, Kelly & Bardossy, 1990) (Benson & Charbeneau, 1991) (Benson, Zhai

& Rashad, 1994) (Benson & Daniel, 1994a) (Benson & Daniel, 1994b) (Benson,

Daniel & Boutwell, 1999) (Smith & Freeze, 1979)
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Appendix A 
 
Influence of Element Size on Results 

 

Table A.1: Sensitivity Analysis 

Element Size Effective 
Hydraulic 

Conductivity 

Arithmetic 
Average 

Geometric 
Average 

Time 
(hr) 

µ σ µ σ µ σ 

0.05 × 0.05 × 0.05 0.818 0.236 0.968 0.280 0.744 0.211 0.62 

0.0417 × 0.0417 × 0.0417 0.812 0.229 0.968 0.276 0.739 0.205 3.83 

0.0357 × 0.0357 × 0.0357 0.815 0.232 0.974 0.283 0.739 0.207 10.16 

0.03125 × 0.03125 × 0.03125 0.812 0.235 0.971 0.283 0.736 0.208 15.26 

 



Appendix B

Statistics of Effective Hydraulic Conductivity: 3D vs. 2D
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Figure B.1: Comparison between 3-D and 2-D mean of effective hydraulic con-
ductivity for aspect ratio of liner of 0.1
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Figure B.2: Comparison between 3-D and 2-D mean of effective hydraulic con-
ductivity for aspect ratio of liner of 0.3
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Figure B.3: Comparison between 3-D and 2-D mean of effective hydraulic con-
ductivity for aspect ratio of liner of 1.0
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Figure B.4: Comparison between 3-D and 2-D standard deviation of effective
hydraulic conductivity for aspect ratio of liner of 0.1
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Figure B.5: Comparison between 3-D and 2-D standard deviation of effective
hydraulic conductivity for aspect ratio of liner of 0.3
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Figure B.6: Comparison between 3-D and 2-D standard deviation of effective
hydraulic conductivity for aspect ratio of liner of 1.0




