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Abstract

It is generally accepted that models of the deep ocean must assimilate observations

in order to make realistic forecasts in regions dominated by mesoscale variability

(i.e., “ocean weather”). The present study is an attempt to quantify the information

on ocean weather that is contained in Lagrangian trajectories, and the best way to

extract it. Following a review of ocean data assimilation in a Bayesian framework,

including the Ensemble Kalman Filter and the Particle Filter, a new class of idealized

models of self advecting vortices is introduced. Through a large number of carefully

designed Monte Carlo experiments it is shown when, where and why the Ensemble

Kalman Filter will fail. The study concludes with a discussion of a hybrid scheme that

takes advantage of the lower computational cost of the Ensemble Kalman Filter and

the ability of the Particle Filter to handle highly non-Gaussian probability density

functions.
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Chapter 1

Introduction

Over the last 20 years there has been a revolution in the way ocean data has been col-

lected. Since the early 1980’s satellites (e.g. Nimbus, Geosat, ERS, Topex/Poseidon,

Jason-1) have provided near-global monitoring of sea surface height and temperature,

ocean color, winds and surface waves (Le Traon [2002]). Satellites generally provide

good spatial coverage of surface properties but do not provide direct observations of

the interior of the ocean. The repeat time (about 10 days for Jason-1) is comparable

to the time-scale of mesoscale ocean and this can cause serious aliasing problems if

the eddies move significantly (e.g. Chen and Chen [2004], Gille [2001], Le Traon et al.

[1998], Le Traon and Dibarboure [2002]). The altimeter is one of the most important

satellite sensor for physical oceanographers (e.g. Ducet and Le Traon [2001], Le Traon

et al. [2003], Keppenne et al. [2005], Pascual et al. [2006], Thompson and Demirov

[2006]).

Recently a new stream of in situ data has became available from the Argo pro-

gram, an international effort to deploy profiling floats that drift freely with the ocean

currents at about 1000m depth. Before ascending to the surface every ten days,

the floats descend to 2000m and then record the vertical profile of temperature and

salinity during their ascent. At the surface the float transmits these profiles, and its

position, to a data center via a satellite link. The float then sinks back to the 1000m

depth and the cycle repeats. The Argo program has presently deployed approximately

3000 floats throughout the world’s oceans.

The Argo program is revolutionizing the collection of in situ ocean data. The

1



2

temperature and salinity profiles from the Argo floats complement the altimeter ob-

servations by providing information on the interior state of the ocean. The combi-

nation of these two data streams is providing a wealth of information on large-scale

and mesoscale variability. The Argo floats also provide useful information on the mo-

tion of the upper ocean in the form of their changing horizontal positions. Guinehut

et al. [2004] for example has recently assimilated satellite altimeter and sea surface

temperature observations and temperature profiles from Argo floats into the 1/6◦

resolution Ocean PArallelise (OPA) ocean model, and Fan et al. [2004] assimilated

satellite altimeter observations and float trajectories into the Princeton Ocean Model

(POM). In both studies the additional data stream from the floats led to significant

improvements in the representation of the ocean state. A major goal of this thesis is

to develop ways of extracting useful oceanographic information from the trajectories

of freely advected objects like Argo floats.

It is generally accepted that realistic forecast models of the ocean cannot be based

solely on the governing equations of fluid flow (or their numerical approximations).

As in weather forecasting, errors in the representation of physical processes by the

model, and uncertainties in the initial, surface and lateral boundary conditions, make

it necessary to assimilate observations. As early as 1963 Lorenz showed that data

assimilation is required if unstable systems are to be integrated beyond their deter-

ministic predictability limit (Lorenz [1963a], Lorenz [1963b]). For the synoptic scale

of the atmosphere Lorenz calculated that this limit was about 10-14 days (Lorenz

[1982], see chapter 6 in Kalnay [2003]). The corresponding predictability limit for the

ocean mesoscale is longer, approximately 14-21 days (Powell et al. [2009], Özgökmen

et al. [2000]).

Gridded altimeter fields and Argo profiling floats are now assimilated routinely

by operational ocean forecast agencies using various methods. The most popular

methods are Optimal Interpolation (Cooper and Haines [1996]), Reduced-Order Op-

timal Interpolation (De Mey and Benkiran [2002]) and the Ensemble Kalman Filter

(Evensen [2003]). A detailed description of the ocean model, model resolution and
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assimilation methods used by the various ocean forecast agencies can be found at

http://strand1.mersea.eu.org/html/strand1/model.html.

There is much interest at the present time in assimilating temperature and salinity

profiles from Argo floats (e.g. Guan and Kawamura [2004], Durand et al. [2002],

Delcroix et al. [2005]). These data are now used routinely by several forecast agencies,

e.g. Mercator and UK Meteorological Office. Relatively little work to date has been

completed on the assimilation of Argo float trajectories and this is a major topic for

the present study. In particular I will try to quantify the extra information that can

be gained from Lagrangian data like observed Argo float trajectories as an additional

source of data for assimilation. To this end, data assimilation experiments will be

performed with an idealized multiple vortex model. Several assimilation methods will

be used in combination with a range of pseudo observations (i.e. gridded and in situ

altimeter observations, Lagrangian float trajectories.)

The rest of this chapter provides a brief review of data assimilation, states the

objectives of the research and outlines the rest of the thesis.

1.1 Overview of Data Assimilation

Realistic ocean models are often based on coupled partial differential equations that

have been discretized in time and space. All models only approximate reality and

are subject to errors of various kinds (e.g. incorrect parametrization of physical

processes). The effect of these errors is the inevitable drift of the model from reality.

Assimilation of data into the model is the only way to counteract such a drift of the

model. It has been an essential part of weather forecasting for over 50 years (see

Daley [1992]).

Data assimilation methods can be separated into two main categories: variational

and sequential. Variational methods (e.g. 4DVar) usually fit dynamical models over

a fixed time interval by minimizing a cost function with respect to unknown model

parameters or conditions (e.g. the initial state). The model is often assumed to



4

be error-free “strong constraint”) and the minimization is often carried out using a

tangent linear and adjoint model, both of which can change with the model state.

Any changes in the ocean model requires the appropriate adjustment of the adjoint

model and this can make coding difficult. The strong constraint formulation imposes

limitations on the length of the time interval for non-linear systems. The limitations

are related to the predictability limit of the model (van Leeuwen and Evensen [1996]).

Sequential methods generally allow explicitly for model error (“weak constraint”).

They are easier to implement than the variational techniques, and, unlike variational

methods, provide error estimates for the estimated ocean state. The time series of

covariance is of special interest because it gives insight into how errors in the esti-

mated state evolve in time (Sergers [2002]). The computational cost of sequential

methods are however usually higher than variational methods. Two promising se-

quential methods are the Ensemble Kalman and Particle Filters, both of which are

based on Monte Carlo methods. One of the major difficulties in using such methods is

that the quality of the models’ predictions depend strongly on the assumed statistical

properties of the model error; in practice this is usually not well known.

The standard Kalman Filter applies to linear systems and is thus not relevant to

complex ocean models (Evensen [1992]). There are however extensions of the stan-

dard Kalman Filter that allow for non-linearity: the Extended Kalman Filter (EKF)

and the Ensemble Kalman Filter (EnKF). The EKF requires the Tangent Linear

Model (TLM) of the underlying model and this makes the EKF unsuitable for strong

non-linear models (Evensen [1994]). The EnKF basically uses the same matrix updat-

ing equations as the linear Kalman Filter, but it deals with the non-linear dynamics

using a Monte Carlo approach. More specifically an ensemble of model states is used

to compute the first and second moments of the ensemble which are then used in

the analysis step to linearly assimilate the observations. This underlying assump-

tion of Gaussianity limits its applicability (Kivman [2003] and van Leeuwen [2009]).

Only in the case of a linear model with Gaussian errors will the prior and posterior

distributions be correctly represented and updated as Gaussian distributions.
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In Evensen and van Leeuwen [1996] the EnKF is used to assimilate Geosat altime-

ter data to improve the representation of the Agulhas Current in a quasi geostrophic

5-layer ocean model. It was shown that assimilating the 10 day spaced gridded al-

timeter observations did limit the rapid meandering growth of the jet, compared to

more sophisticated models, and enhanced the eddy shedding which would have been

otherwise too small due to the lack of ageostrophic effects.

Keppenne [2000], Keppenne and Rienecker [2002] and Keppenne and Rienecker

[2003] describe the implementation and testing of the EnKF in the assimilation of

temperature profiles from the Tropical Atmosphere Ocean (TAO) array of moored

buoys into the POSEIDON ocean model. Their conclusion is that the EnKF can

provide better forecasts than the standard optimal interpolation (OI) method which

was widely used at that time.

Molcard et al. [2005] used the EnKF to assimilate float positions into a three-layer

primitive equation Miami Isopycnic Coordinate Ocean Model (MICOM) in a simple

double-gyre configuration. Experiments were carried out with different sampling time

steps (20 minutes, 3 and 6 days) for the observations. In all experiments the ensem-

ble size of the floats was fixed at 24 members. The release positions of the floats on

the western boundary included an energetic region which included the recirculation

regions and the meandering jet. It was concluded that the model error grows signif-

icantly as the sampling time step is increased, in particular when the sampling time

step exceeds the Lagrangian time scale of the float trajectories.

Salman et al. [2006] used a 1 1/2-layer quasi geostrophic ocean model to assimilate

float trajectories. One focus was to investigate dependencies of the model error with

respect to the release domains of the floats and the ensemble size (20, 40 and 80) of

the released floats. A further focus was to investigate the influence of the sampling

time step (1-20 days) on the model error. They concluded that the performance of

the assimilation method degrades with decreasing ensemble size. The assimilation

method seems to be insensitive for sampling time steps smaller than 10 days, increas-

ing the sampling time steps beyond 10 days lead to increase in the model error and
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finally to a complete failure. A further conclusion was that the assimilation of float

observations from eddy-dominated regions surrounding the jet led to smaller model

errors compared to assimilating float observations from quiescent parts of the model

domain.

The Particle Filter (PF) is another Monte Carlo based method of sequential data

assimilation. It imposes virtually no assumptions on either model dynamics or error

statistics. The underlying theory for the PF reaches as far back as 1949 (Doucet

[2006]) making it one of the oldest data assimilation methods, at least in theory. The

only constraint for the application of the PF methods is computational power.

Following the seminal study of Gordon (Gordon et al. [1993]), various particle

filter schemes have been developed and applied to low dimensional problems, mainly

in robotics and target tracking. The main advantage of the PF is that it can be

applied to problems of any complexity and, more importantly, no assumption is made

about the probability distribution of the model and observation errors. A practical

advantage is that the implementation of the method, at least in its simplest form,

is extremely simple, e.g. no matrix inversions are needed. The main reason the

PF is not used more widely in fields such as oceanography and atmospheric science

is related to the so-called ”curse of dimensionality” which refers to the excessive

computational cost of dealing with state vectors of high dimension (such as those

associated with realistic models of the ocean and atmosphere). However with ever

increasing computational power at decreasing costs, and the recognition that it is

the dimension of the effective model error rather than the model state that is most

important, there is hope that the curse will eventually be overcome.

Particle Filters compute probability distributions from an ensemble of model states

that are require to remain ”fairly close” to the observations as they become available.

To accurately approximate the probability density of the model state the ensemble

size usually has to be of order of 103 to 106 depending on the dynamic system. Given

each ensemble member has to be advanced forward in time by the numerical model,

the computational burden can be huge if the model state is large. Because of this



7

limitation, PFs have been mainly used to date in robotics and signal processing using

model states of dimension 10 or lower. The state vector of even the simplest ocean

model is however of order 104.

An early study on the assimilation of gridded altimeter observations using the

PF was carried out by van Leeuwen [2003]. Van Leeuwen argued that the Kalman

update step in the EnKF is not variance-minimizing. To overcome this problem he

introduced a particular form of the PF and showed that it qualitatively outperforms

the EnKF when applied to the Korteweg-DeVries equation. He then assimilated

gridded altimeter data into a 5-layer QG model using the PF and showed that the

model can recover the observed features of the Agulhas Current system. Van Leeuwen

also pointed out some potential problems of the PF, namely the tendency for the

ensemble to collapse over time and the practical limitation of the ensemble size.

1.2 Objectives of the Thesis

The overall objective is to quantify how much information on basin-scale and mesoscale

oceanographic flows can be extracted from Lagrangian float trajectories. An impor-

tant secondary objective is to compare the performance of two very different assimi-

lation methods, the EnKF and PF, and assess their strengths and weaknesses using

a highly idealized model of variability of the ocean mesoscale.

1.3 Structure of the Thesis

The mathematical foundations of the assimilation methods used in this thesis are

given in chapter 2 including worked examples based on a highly idealized, linear

ocean model (the so-called Stommel model). In chapter 3 an idealized model of

the evolution of vortices and drifter position is introduced (the self advecting vortex

model). The main characteristics of the SAVM are discussed in detail. Chapter 4

describes the experiments performed with the SAVM. The purpose of the experiments
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is to compare the performance of the PF and EnKF and study the sensitivity of esti-

mated quantities to changes in the model’s parameters. The results are summarized

and discussed in the final chapter.



Chapter 2

Overview of Sequential Data Assimilation

This section provides an overview of some of the more promising assimilation methods

presently used in oceanography. The focus is on methods that can deal with non-

linearity and non-Gaussianity, namely the Ensemble Kalman Filter and the Particle

Filter.

In the first subsection I will introduce briefly the linear Stommel model. The

purpose of this model is to demonstrate assimilation methods with a very simple

ocean model. In the second subsection the general concept of data assimilation in

the Bayesian framework is introduced. The most widely used Kalman filters (linear

Kalman filter, extended Kalman filter and Ensemble Kalman filter) are presented in

subsection 3. In subsection 4 the general particle filter is introduced including the

sequential importance filter and the Markov Chain Monte Carlo method. The last

subsection is a brief summary of this chapter.

2.1 The Linear Stommel Model

One of the simplest ocean models is the linear Stommel model. The model includes a

simple western boundary current, the steady state Sverdrup balance and is influenced

by the propagation of barotropic Rossby waves.

The governing equation can be derived from the equations of motion and the

continuity equation and is given by the following vorticity equation

∂

∂t
(vx − uy) + f(ux + vy) + βv = Φ− λ(vx − uy) (2.1)

where (u, v) denote the velocities in zonal and meridional directions respectively, f

9
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is the Coriolis parameter, Φ is the curl of the wind stress, β = df/dy, and λ is the

friction parameter. Subscripts denote partial derivatives.

After non-dimensionalization followed by discretization (see Appendix A for de-

tails) the governing equation takes the form

∂

∂t
[Mxx − l2]ψt +Mxψt = Φ− λ[Mxx − l2]ψt (2.2)

where ψt is a column vector describing the stream function at time t, l is the meridional

wave number and M is a matrix which describes the spatial discretization of the

model. Mx and Mxx denote the first and second partial derivatives. The stream

function ψ relates directly to the sea surface height of the model. In steady state

the second and third term describe the Sverdrup balance of the ocean interior. The

first and second term describe the propagation of barotropic Rossby waves. In steady

state the second and fourth terms balance in the western boundary current (which

has width λ/β in dimensional terms as explained in Appendix A).

The purpose of introducing the Stommel model is to illustrate the data assim-

ilation methods presented in the following sections. The discretized model (2.2) is

integrated forward in time and the resulting model fields are taken to represent the

‘true’ model states. These model fields are perturbed with Gaussian random noise to

simulate time series of ’observed’ model fields, analogous to observed sea level fields

in the real world. From these ‘observed’ model fields, pseudo observations are sub-

sampled and then assimilated using the EnKF and PF. Figure 2.1 shows the stream

function of the true ocean state (panel a) and the stream function of the observed

ocean state (panel b). The right panel (b’) shows the stream function with friction

parameter λ = 0.1; this value was used in all data assimilation experiments to test

if the assimilation methods are capable of recovering the true state even with an

incorrect friction parameter.
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2.2 Bayesian View of Data Assimilation

Discrete time dynamical systems are typically represented by a state equation which

describes the time evolution of the state vector x from time k − 1 to k:

xk = fk−1(xk−1, vk−1). (2.3)

In general fk−1 is a known function, often non-linear, that advances the state vector

forward one time step. The term vk−1 is the model noise which represents errors due

to finite resolution, missing physics, imperfect parameterizations, forcing errors, etc.

In the context of the linear Stommel model the state vector xk represents the

stream function ψt and the general function f represents a known linear function

which includes all processes of the model and describes the integration from time

step k − 1 to k.

The relationship between the state at time k and the observations at the same

time is given by the so called measurement equation:

zk = hk(xk, wk) (2.4)

where hk is a known function, often non-linear, that maps the state vector onto the

observations. The term wk is the observation noise that includes the measurement

error and the error of representativeness (e.g. Daley [1992]).

The goal of any data assimilation method is to combine equations (2.3) and (2.4)in

order to estimate the final (also called updated or analyzed) state which should recover

the true state as closely as possible.

In the Stommel model the vector zk represents the observations of the stream

function (which can be thought of as sea level measured by altimeters).

The state and measurement equation together form the so-called state-space model.

Usually the model and measurement errors are assumed to be mutually independent
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(with each other and through time) and have known probability density functions,

pv and pw respectively. This formulation is general and does not assume linearity,

Gaussianity or additive errors.

The filtering problem (e.g. Kitagawa, 1998) is to estimate the state at time k

given all available observations up to and including time k

(Zk
def
= {zi, i = 1, . . . , k}). The solution is given by

p(xk|Zk) ∝ p(zk|xk)
∫
p(xk|xk−1, Zk−1)p(xk−1|Zk−1)dxk−1. (2.5)

If p(xk−1|Zk−1) is available at time k − 1, the prediction density for p(xk|Zk−1) is

given by

p(xk|Zk−1) =

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1. (2.6)

The first term in the integral comes from (2.3) and represents the probability density

function (pdf) of the model forecast. The second term represents the probability of

the analyzed model state at the previous time step, given all measurements up to

that time step.

Given (2.3) describes a first order Markov process, p(xk|xk−1, Zk−1) = p(xk|xk−1),

and (2.5) can be rewritten in the following recursive form

p(xk|Zk) ∝ p(zk|xk)
∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1. (2.7)

The term on the left hand side, p(xk|Zk), is the pdf of the analysis at time k. The first

factor on the right hand side is the likelihood of the most recent observation (zk) and

is determined by the measurement model, (2.4), and the probability density function

pw of the model error. The transitional density, p(xk|xk−1), controls the evolution of

uncertainty in the model state and is determined by the state equation, (2.3), and the

probability density function pv of the measurement error. This term represents the

evolution of the model forecast’s uncertainty from time k−1 to k. The third term on

the right hand side, p(xk−1|Zk−1), represents the analysis at the previous time step.
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The constant of proportionality is fixed by requiring
∫
p(xk|Zk)dxk = 1. Although

(2.7) is the conceptual solution to the non-linear filtering problem, it is generally not

practical to solve this equation directly to find p(xk|Zk).

In practical terms equation (2.7) defines the (model) state x at time k given

a (model) forecast for the state and the measurements at time k. The practical

estimation of p(xk|Zk) will be covered in the following two sections. The estimate

depends on the data assimilation method, which itself is determined by the specific

form of the functions f and h, and the pdf of the model and observation errors.

The recursive equation for the analysis pdf p(xk|Zk) can also be obtained directly

as follows (Ristic et al. [2004]):

p(xk|Zk) = p(xk|zk, Zk−1)

=
p(zk|xk, Zk−1)p(xk|Zk−1)

p(zk|Zk−1)

=
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
(2.8)

where the normalizing constant is given by

p(zk|Zk−1) =

∫
p(zk|xk)p(xk|Zk−1)dxk. (2.9)

Equations (2.3), (2.4), (2.6), (2.8) and (2.9) form basis of all sequential filtering

methods designed to estimate p(xk|Zk).

If f and h are linear, and xk−1|Zk−1 , vk , and wk are all Gaussian it can be shown

that xk|Zk is also Gaussian. This means that the posterior density at every time step

is completely defined by conditional mean and variance of xk|Zk. This is precisely

what is estimated by the linear Kalman Filter as explained below. If f or h, or both,

are nonlinear then p(xk−1|Zk−1) can have a non-Gaussian form and p(xk|Zk) has to

be estimated with a nonlinear filter, e.g. Ensemble Kalman filter or particle filter.

The same is true if vk or wk, or both, have non-Gaussian densities.
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2.3 Kalman Filters

The origin of the Kalman Filter (KF) goes back to the fundamental problem in

signal processing of separating signal from noise. Kalman solved this problem in

state-space for time-varying systems [Kalman, 1960]. The resulting filter technique is

called the linear Kalman Filter (KF) and is the optimal solution to a linear-quadratic

problem (a linear system with a quadratic cost function, Grewal and Andrews [2001])

of estimating the current state of a linear state-space system.

2.3.1 The Linear Kalman Filter

In the linear case, the discretized form of the state equation (2.3) and observation

equation (2.4) can be written as

xk = Fk−1xk−1 + vk−1 (2.10)

and

zk = Hkxk + wk, (2.11)

where Fk comes from the discretized linear model and Hk denotes the linear obser-

vation operator which simply selects linear combinations of the elements of the state

to approximate observations that are available. The model noise vk and observation

noise wk are assumed to be independent, normal distributed, and to have zero mean

with known covariance Qk and Rk respectively:

vk ∼ N (0, Qk) (2.12)

and

wk ∼ N (0, Rk). (2.13)
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(Note the definition of the multivariate normal density is

φN(x;μ,Σ)
def
= (2π)−n/2|Σ|−1/2 exp

[
−1

2
(x− μ)TΣ−1(x− μ)

]
(2.14)

where μ, Σ are the mean and variance of the distribution and n is the dimension of

x. In the Stommel model n is the spatial discretization and set to n = 30). The

covariance matrices Qk and Rk describe the assumed or known spatial structure of

the model and observation errors.

It is well known (Ristic et al. [2004]) that if

p(xk−1|Zk−1) = φN(xk−1; xk−1|k−1, Pk−1|k−1) (2.15)

and

p(zk|xk) = φN(zk; xk, Rk) (2.16)

then the density of the forecast and the analysis at time k are both multivariate

normal:

p(xk|Zk−1) = φN(xk; xk|k−1, Pk|k−1) (2.17)

p(xk|Zk) = φN(xk; xk|k, Pk|k), (2.18)

where P is the covariance matrix. The subscripts of the form k|k− 1 and k|k denote

the prediction and analysis (after data assimilation) respectively of the variable. To

update these densities we need to update the conditional means of xk given the

observations up to time k − 1 and up to time k. Estimating the conditional mean is

equivalent to minimizing the functional

J(xk) =
1

2

[
(xk − xk|k−1)

TP−1
k|k−1(xk − xk|k−1)

]
+

1

2

[
(zk −Hkxk)

TR−1
k (zk −Hkxk)

]
. (2.19)
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The derivative of J(xk) with respect to xk gives

∂J(xk)

∂xk
= −P−1

k|k−1(xk − xk|k−1)−HT
k R

−1
k (zk −Hkxk). (2.20)

Solving equation (2.20) for ∂J(xk)
∂xk

= 0 yields

xk|k = xk|k−1 + Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1(zk −Hkxk|k−1) (2.21)

which is equivalent to (2.25). Thus, the conditional mean of xk can be estimated

using the following algorithm which is known as the Kalman Filter:

Forecast Step:

xk|k−1 = Fk−1xk−1|k−1 (2.22)

Pk|k−1 = Qk−1 + Fk−1Pk−1|k−1F
T
k−1 (2.23)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (2.24)

Analysis Step:

xk|k = xk|k−1 +Kk(zk −Hkxk|k−1) (2.25)

Pk|k = Pk|k−1 + [I −KkHk]Pk|k−1 (2.26)

Note that to apply the KF, the initial state (x0
def
= x0|0) and its covariance (P0

def
= P0|0)

must be specified.

The terms Pk|k−1 and Pk|k denote the covariance matrices of the model forecast

and analyzed state at time k respectively. The Kalman gain K balances the variance

of the model estimate against the sum of the variances of the model estimate and

observations; it also determines how the information of the measurements is spatially

spread over the model state. In the simplest case of a one dimensional state vector

(n = 1) the Kalman gain is simply a scalar factor given by K = (σ2
k|k−1)/(σ

2
k|k−1 +

σ2
obs). In the multivariate case, K is a matrix of dimension n × Nobs and the term
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Kk(zk−Hkxk|k−1) can be viewed as a nudging term that is added to the model forecast

to yield the optimal analyzed model state (given the statistics of v and w).

Table 2.1 lists the model parameters used for the assimilation experiments us-

ing the Stommel model. The observation noise covariance matrix R has a diagonal

structure with σ2
obs on the diagonal. The model noise covariance matrix Q reflects our

assumption that the model errors are autocorrelated. Specifically, Q is a Toeplitz ma-

trix with σ2
model on the diagonal. The off diagonal elements are of the form σ2

modelα
|k|

where α = 0.99, k = 0 on the diagonal, ±1 on the leading sub-diagonals and so on.

DA method Panel λ Nobs Nensembles Nparticles σobs σmodel

True model 2.1a 0.0 0
KF 2.2c 0.1 2 0.1 0.01
KF 2.2d 0.1 30 0.1 0.01

EnKF 2.4e 0.1 2 100 0.1 0.01
EnKF 2.4f 0.1 30 100 0.1 0.01
PF 2.8g 0.1 2 100 0.1 0.01
PF 2.8h 0.1 30 100 0.1 0.01

PF/MCMC 2.9j 0.1 30 100 0.1 0.01

Table 2.1: Model parameters used in the Stommel model. λ is the non-dimensional
friction parameter. The friction parameter used in assimilation experiments was set
to λ = 0.1 and this differs from the value used in the true model. (This is done
on purpose to make the task of data assimilation not too trivial for the assimilation
methods.) Nobs is the number of assimilated observations, Nensembles is the ensemble
size used in the ensemble Kalman filter (EnKF), Nparticles is the number of particles
used in the particle filter (PF), σobs is the standard deviation of the observation
noise and σmodel is the standard deviation of the model noise. The structure of the
observation and model error covariance matrices is described in the text.

Figure (2.2) shows the true model state and estimates recovered by data assimi-

lation using the Kalman filter using only two (panel c) and 30 (panel d) observation

locations. The two locations in panel c where chosen to monitor the central and

western regions of the ocean basin. The results confirm that the number of available

observations does play an important role in recovering the true model state. Indeed
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the Kalman Filter can recover the true state reasonably well with only two observation

locations (and almost perfectly with 30 observation locations, as expected).

In oceanography most models of interest are highly non-linear and thus the KF is

not useful. One possible way to deal with the special case of additive, Gaussian noise

in (2.3) and (2.4) is based on using the linearized forms of fk and hk to propagate

the required error covariance matrices needed by the KF through time. This leads to

the Extended Kalman Filter as described below.

2.3.2 The Extended Kalman Filter

In 1960 Stanley F. Schmidt extended the linear Kalman filter to solve the problem of

trajectory estimation. The resulting filter was originally named Kalman-Schmidt filter

and is today known as the Extended Kalman Filter (Grewal and Andrews [2001]).

The Extended Kalman Filter (EKF) is based on the local linearization of the non-

linear functions fk−1 and hk in (2.3) and (2.4) respectively. The derivation of the EKF

is identical to the KF and can be found in various literature, e.g. Evensen [1994],

Brown and Hwang [1997], Grewal and Andrews [2001], Welch and Bishop [2001],

Zarchan and Musoff [2002]. The recursive form of the EKF is given by

Forecast Step:

xk|k−1 = F̂k−1(xk−1|k−1) (2.27)

Pk|k−1 = Qk−1 + F̂k−1Pk−1|k−1F̂
T
k−1 (2.28)

Kk = Pk|k−1Ĥ
T
k (ĤkPk|k−1Ĥ

T
k +Rk)

−1 (2.29)

Analysis Step:

xk|k = xk|k−1 +Kk(zk − hk(xk|k−1)) (2.30)

Pk|k = Pk|k−1 +
[
I −KkĤk

]
Pk|k−1 (2.31)
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where F̂k−1 and Ĥk are the discretized, local linearization of the non-linear functions

f and h, i.e. the tangent linear models (TLM):

F̂k−1 =
[∇xk−1

fT
k−1(xk−1)

]T ∣∣∣
xk−1=xk−1|k−1

(2.32)

Ĥk =
[∇xk

hTk (xk)
]T ∣∣∣

xk=xk|k−1

(2.33)

where

∇xk
=

[
∂

∂xk,1
. . .

∂

∂xk,n

]T
(2.34)

with xk,i, i = 1 . . . n denoting the ith component of the state vector xk.

It should be noted that the EKF assumes (2.8) is Gaussian. It has been shown

however that for some of the most basic oceanographic applications, such as as-

similation of altimeter data into quasi-geostrophic ocean models, the assumption of

Gaussianity often does not hold and the EKF can quickly diverge (Evensen [1994]).

A more recent example of filter divergence of the EKF is presented in the paper

of Kuznetsov et al. [2003]. In their study the EKF was used to assimilate Lagrangian

data, i.e. the trajectories of drifters, in a simple co-rotating vortex model. It was

shown that the EKF diverges quickly as the model noise (accounting for non-linear

effects neglected by the model) increases.

Related filters based on the EKF are the Singular Evolutive Extended Kalman

(SEEK) filter and the Reduced Rank Square Root Kalman Filter (RRSQKF). Both

filters make use of matrix methods to reduce the rank of the error covariance matrix

Pk and make the filter more stable with respect to strong non-linear system dynamics.

The SEEK filter uses a factorization of Pk into its largest eigenvectors/values (Hoteit

et al. [2000]). The RRSQKF uses a combination of a square root algorithm as well

as a singular value decomposition to reduce the rank of Pk (Madsen and Canizares

[1999]).

No data assimilation example using the EKF is given for the linear Stommel
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model. Since the Stommel model is linear the EKF will give the same results as the

linear KF.

2.3.3 The Ensemble Kalman Filter

In an attempt to overcome the shortcomings of the EKF, Evensen introduced the En-

semble Kalman Filter (EnKF) by blending the EKF with Monte Carlo based methods

(Evensen [1994]). In the EnKF, an ensemble of forecasts evolves under the system’s

non-linear dynamics. The ensemble resulting from this forecast step has, in general,

a non-Gaussian distribution (2.6), i.e. there is no guarantee that the distribution can

be represented accurately by its mean and the variance. At the measurement time,

the first two moments are calculated from the ensemble and then used to combine the

current ensemble with the observations. A new ensemble is thus constructed which

has a Gaussian distribution. The new ensemble is then carried forward one time step

using the system’s dynamics.

The derivation of the EnKF is, in principle, very similar to the linear Kalman

Filter. The main differences are that (1) instead of one state vector, an ensemble

of state vectors is carried forward in time, (2) the error covariance matrix of the

ensemble is computed directly from the ensemble.

Let xlk be one of N ensemble members and let xl0 denote the ensemble of N initial

states where l = 1, . . . , N indexes the individual ensemble members. The complete

recursive formalism for the EnKF is summarized below:

Forecast Step:

xlk|k−1 = fk−1(x
l
k−1|k−1) + vlk−1 (2.35)

x̄k|k−1 =
1

N

N∑
l=1

xlk|k−1 (2.36)

Pk|k−1 =
1

N − 1

N∑
l=1

(xlk|k−1 − x̄k|k−1)(x
l
k|k−1 − x̄k|k−1)

T (2.37)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (2.38)
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Analysis Step:

xlk|k = xlk|k−1 +Kk(zk −Hkx
l
k|k−1) (2.39)

It should be noted that the additive model noise vlk represents the spatial structure

of the model noise scaled with Gaussian noise, i.e.

vlk ≡ Q
1/2
k ulk (2.40)

ulk ∼ N (0, 1) l = 1, ..., N.

The computation of the ensemble mean, x̄k|k, and the error covariance matrix Pk|k

are of no consequence for the EnKF because they are not used. However, they are

typically computed for visualization and analysis purposes

x̄k|k =
1

N

N∑
l=1

xlk|k (2.41)

Pk|k =
1

N − 1

N∑
l=1

(xlk|k − x̄k|k)(xlk|k − x̄k|k)T . (2.42)

The analysis step of the EnKF produces an ensemble from the posterior condi-

tional distribution (2.9) only for linear dynamics and Gaussian errors. Blending the

non-Gaussian predictive density with the Gaussian density from the previous anal-

ysis step can cause problems of more than theoretical concern (Kim et al. [2003],

Evensen and van Leeuwen [2000]). For cases of extreme non-Gaussianity, the EnKF

can produce unrealistic results and sometimes the filter may diverge.

A schematic of the EnKF as implemented in this thesis is given in Figure 2.3

and Figure 2.4 illustrates how well the true state (panel a) can be recovered by this

assimilation scheme. Given a sufficient large number of ensemble members, (e.g.,

Nensemble = 100), the EnKF produces almost the same result as the KF. This is to

be expected because the Stommel model is linear and thus the KF is the optimal

assimilation method.
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2.4 Particle Filters

The particle filter (PF) uses sequential Monte Carlo techniques to numerically solve

equation (2.8). In contrast to the EnKF, the PF does not form a linear combination

of the current ensemble and the observations to estimate the state. In addition, the

estimated posterior density (2.8) is not required to be Gaussian.1

To capture the posterior density reasonably well, the PF requires large ensemble

sizes (e.g., of order 1000 or larger) unless one can impose constraints on the probability

density function by limiting the data assimilation to lower dimensional sub spaces of

the model or limited (smaller) spatial areas, or both.

With present computer resources, a large ensemble size is not a major limitation

for low dimensional problems (e.g., state dimensions less than 100) and an ensemble

size of order 105 can easily be used. However, the typical ocean model has a state

dimension of order 104 to 107, and given every ensemble member (i.e. model state)

has to be integrated forward in time by the ocean model, the ensemble size is limited

by the computational load, typically to an order of 102. For practical reasons the PF

can generally only be applied to small sub domains of interest (using some form of

localization). Such sub domains should be characterized by strong non-linear inter-

actions where the assumption of Gaussianity does not hold, otherwise the additional

computational cost is not justified. For the rest of the domain less computationally

demanding assimilation methods could be used.2

Monte Carlo Integration is described in the next subsection. This is followed

by a description of Sequential Importance Sampling which is the simplest PF. Two

common improvements to Sequential Importance Sampling, namely Sequential Im-

portance Resampling (SIR) and the Markov Chain Monte Carlo (MCMC) step, are

then described.

1The terms ”ensemble member” and ”particle” are to be taken synonymous for the rest of this
thesis.

2An ensemble run (100 members, simulation time of 10 model days) using the Océan PArallélisé
(OPA) model, state dimension of O(106), 1/4 degree resolution of the North Atlantic, 40 CPUs)
takes roughly 10 real time hours.
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2.4.1 Monte Carlo Integration

Monte Carlo (MC) integration is the basis of all sequential MC methods (Doucet

et al. [2001b], Ristic et al. [2004]) and all particle filters. To illustrate the approach,

assume we want to evaluate the multidimensional integral

I =

∫
f(x)π(x)dx (2.43)

where I is the expected value of f(x) where x is the realized value of a random variable

with probability density function π(x). It follows π(x) ≥ 0 and
∫
π(x)dx = 1. If it

is possible to draw N samples {xi; i = 1, . . . , N} from π(x), where the superscript

denotes the ith ensemble member, the MC estimate of I is the sample mean:

IN =
1

N

N∑
i=1

f(xi). (2.44)

As N → ∞, then IN will converge to I. It should be noted that the integral in (2.43)

has the same form as the integral on the right hand side of (2.7) if π(x) is taken to

be the posterior density, p(xk−1|Zk−1).

In many cases π(x) is difficult to sample from. Assuming the density function

q(x) is known and easy to sample from, and q(x) is similar to π(x), then samples can

be drawn from q(x) in order to estimate I using

I =

∫
f(x)

π(x)

q(x)
q(x)dx (2.45)

provided that π(x)/q(x) has an upper bound and the support of q(x) includes the

support of π(x), i.e., π(x) > 0 ⇒ q(x) > 0. More specifically, the MC estimate of I

is given by sampling N independent ensemble members {xi; i = 1, . . . , N} from q(x)

and using

IN =
1

N

N∑
i=1

f(xi)w̃(xi) (2.46)
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where

w̃(xi) =
π(xi)

q(xi)
. (2.47)

The w̃(xi) are called importance weights.

Given the normalizing factor of the density π(x) is usually unknown, the impor-

tance weights need to be normalized. Then IN is estimated as follows:

IN =
1
N

∑N
i=1 f(x

i)w̃(xi)
1
N

∑N
j=1 w̃(x

j)
=

N∑
i=1

f(xi)w(xi) (2.48)

where

w(xi) =
w̃(xi)∑N
j=1 w̃(x

j)
. (2.49)

This technique is termed Importance Sampling. The normalized importance weights

w(xi) can be viewed as weighting factors for the corresponding ensemble member;

members with high weights are closer to the true state and thus more “important”.

The density q(x) is termed the importance or proposal density or transitional prior

and its choice is critical to the success of Monte Carlo Integration.

2.4.2 Sequential Importance Sampling

The idea of evaluating a multidimensional integral using importance weights (e.g.,

equations (2.46) to (2.49)) is the basis of Sequential Importance Sampling (SIS) which

itself is fundamental to particle filtering.

The idea of the SIS filter is to characterize the posterior density by an ensemble

of model states and their associated weights. As the ensemble becomes very large the

pdf of the ensemble members approaches the true posterior pdf of the model state.

The time evolution of the ensemble of random model states is given by (2.35) and

(2.40) which are also used by the Ensemble Kalman filter.

The following derivation of SIS follows closely that of Ristic et al. [2004]. Let

Xk = {xj, j = 0, ..., k} and Zk = {zj, j = 0, ...k} denote the sequence of all states
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and observations respectively up to time k. The joint posterior density of all the

states up to time k, given all available observations, is given by p(Xk|Zk) from which

can be found the marginal density p(xk|Zk). The ensemble {X i
k, w

i
k}Ni=1 represents

the joint posterior p(Xk|Zk) where {X i
k, i = 1, ...N} is an ensemble (N sequences of

states) with associated weights {wi
k, i = 1, ..., N}. The weights are normalized such

that Σiw
i
k = 1. The joint posterior density at time k is then approximated by

p(Xk|Zk) ≈
N∑
i=1

wi
kδ(Xk −X i

k) (2.50)

which is a discrete approximation of the true posterior p(Xk|Zk). The weights w
i
k are

computed according to (2.49) as described in the previous section.

If the ensemble members X i
k are drawn from the importance density q(Xk|Zk)

then it follows from (2.47) that

wi
k ∝

p(X i
k|Zk)

q(X i
k|Zk)

. (2.51)

Assume an ensemble of states is available at time step k − 1 which approximates

p(Xk−1|Zk−1). Given a new measurement zk at time k we want to approximate

P (Xk|Zk) by a new ensemble of states. Factorize q(Xk|Zk) as follows

q(Xk|Zk) ≡ q(xk|Xk−1, Zk)q(Xk−1|Zk−1) (2.52)

The ensemble members X i
k ∼ q(Xk|Zk) can then be drawn by augmenting X i

k−1 ∼
q(X i

k−1|Zk−1) with the new state xik ∼ q(xk|Xk−1, Zk). Applying (2.8) to the posterior
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density p(Xk|Zk) gives

p(Xk|Zk) =
p(zk|Xk, Zk−1)p(Xk|Zk−1)

p(zk|Zk−1)

=
p(zk|Xk, Zk−1)p(xk|Xk−1, Zk−1)p(Xk−1|Zk−1)

p(zk|Zk−1)

=
p(zk|xk)p(xk|xk−1)

p(zk|Zk−1)
p(Xk−1|Zk−1)

∝ p(zk|xk)p(xk|xk−1)p(Xk−1|Zk−1). (2.53)

Substitution of (2.53) and (2.52) into (2.51) gives

wi
k ∝ p(zk|xk)p(xk|xk−1)p(Xk−1|Zk−1)

q(xk|Xk−1, Zk)q(Xk−1, Zk−1)

= wi
k−1

p(zk|xk)p(xk|xk−1)

q(xk|Xk−1, Zk)
. (2.54)

Usually only the filtered estimate of the posterior p(xk|Zk) is required. Then

q(xk|Xk−1, Zk) = q(xk|xk−1, zk), i.e. the importance density is only dependent on

xk−1 and zk. Furthermore only xik is needed and X i
k−1 and Zk−1 are obsolete. The

normalized weights then take the form

wi
k ∝ wi

k−1

p(zk|xik)p(xik|xik−1)

q(xik|xik−1, zk)
(2.55)

and the filtered posterior density p(xk|Zk) is approximated by

p(xk|Zk) ≈
N∑
i=1

wi
kδ(xk − xik) (2.56)

with weights wi
k given by (2.55). As N → ∞ this estimate approaches the true

posterior density, p(xk|Zk).

The practical difficulty with SIS is that it is difficult to estimate the reliability

of IN in (2.48), (MacKay [2005]). One reason is that the variance of IN is unknown
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beforehand, and another is the variance of IN is difficult to estimate because the

variances of f(xi)w̃(xi) and w̃(xi) may not be good guides to the true variances of∑N
i=1 f(x

i)w̃(xi) and
∑N

j=1 w̃(x
j). If q(x) is too small in a region where |f(x)π(x)| is

large then even sampling a large number of ensemble members, xi , from q(x) might

not guarantee that one or more members will fall into that region. In that case the

estimate of IN would be wrong.

In most cases q(x) is only an approximation to p(xk|Zk). In such cases it can be

shown that the variance of the importance weights can only increase over time (Kong

et al. [1994]). A complete proof can be found in appendix A of Hermann [2002].

This leads to a problem known as ”degeneracy”. In practical terms it means that

after a certain number of time steps, all but one ensemble member will have negligible

weight. The degeneracy problem is inherent to SIS and cannot be avoided. The speed

with which the degeneracy progresses can be influenced by a good or bad choice of

the proposal distribution (Figure 2.5).

A measure of degeneracy is described by the effective ensemble size Neff :

Neff =
1∑N

i=1(w
i
k)

2
. (2.57)

At one extreme, all of the N ensemble members have the same normalized weight

(which must therefore equal 1/N). In this case Neff = N . At the other extreme, all

but one ensemble member have zero weight (and thus the remaining ensemble member

must have weight of unity). In this case Neff = 1. In general, Neff lies between 1 and

N . It decreases with the degeneration of the ensemble. If the ensemble degenerates

to the point Neff = 1, there is no guarantee that the ensemble member with non-

zero weight will coincide with the true state and the SIS algorithm will likely diverge

with increasing time. The time for the SIS algorithm to diverge depends on model

dynamics and the statistical properties of the observation and model errors.
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2.4.3 Sequential Importance Resampling

To overcome the degeneracy problem in SIS, a corrective procedure can be used if Neff

falls below a prescribed threshold Nthr. The basic idea is to eliminate ensemble mem-

bers with low weights and replace them with copies of ensemble members with high

weights. Given ensemble members with high weights are “reused” ( i.e. resampled)

to form the new ensemble, this procedure is named Sequential Importance Resam-

pling (SIR). The simplest form of resampling is to generate a new ensemble {xi∗k }Ni=1

by resampling (with replacement) from (2.56) such that P{xi∗k = xjk} = wj
k. Figure

2.6 illustrates the idea for a particularly simple importance density, q(xk|xik−1, zk) =

p(xk|xik−1).

The combination of the SIS and the resampling of high weighted and elimination

of low weighted ensemble members is called the General Particle Filter. All PF are

based on SIS and resampling; they differ only by the algorithms used to compute

the weights and the method used for resampling (Doucet et al. [2001a], Ristic et al.

[2004], Kitagawa [1996]).

One of the most important questions in the design of particle filters is the choice

of the importance density q(xk|xik−1, zk). The optimal choice is

q(xk|xik−1, zk)optimal = p(xk|xik−1, zk)

=
p(zk|xk, xik−1)p(xk|xik−1)

p(zk|xik−1)
. (2.58)

Substitution of (2.58) into (2.55) gives

wi
k ∝ wi

k−1p(zk|xik−1). (2.59)

In order to use the optimal importance function one has to sample from p(xk|xik−1, zk)

and evaluate

p(zk|xik−1) =

∫
p(zk|xk)p(xk|xik−1)dxk. (2.60)
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The analytic evaluation of this expression is not possible with the exception of two

cases: (i) when the optimal importance function can be used directly, i.e. models

for which p(zk|xik−1) is Gaussian, and (ii) when the distribution of xk is discrete. It

can be shown that the first case is identical to the linear Kalman Filter (Ristic et al.

[2004]). In the second case the integral in (2.60) reduces to a sum and sampling from

q(xk|xik−1, zk)optimal is possible.

Given the optimal importance function is usually not available, a known but

suboptimal importance density function q(xk|xik−1, zk) is chosen. A very popular

suboptimal choice is the so-called prior distribution:

q(xk|xik−1, zk) = p(xk|xik−1). (2.61)

Given an additive noise model (2.3), sampling from the prior, p(xk|xik−1), amounts to

sampling from the distribution of the model error, i.e. p(vk−1) or

p(xk|xik−1) = N (xk, Qk−1). (2.62)

Substitution of (2.61) into (2.55) gives

wi
k ∝ wi

k−1p(zk|xik). (2.63)

The weights wi
k are determined by the likelihood p(zk|xik), i.e. the proximity of

the ensemble members to the observations (see equation (2.4)). The same does not

apply to equation (2.59). Note that the right hand sides of (2.61) and (2.63) can be

calculated from the state equation (2.3) and measurement equation (2.4) respectively.

One important reason the prior distribution is a poor choice as a proposal dis-

tribution is that the current observation zk is not taken into account. Figure 2.5

illustrates how the choice of p(xk|xik−1) can lead to poor performance. In this exam-

ple the likelihood p(zk|xk) is much more peaked than p(xk|xik−1) resulting in negligible

weights (see (2.63)) for most ensemble members.
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A schematic of the SIR filter (i.e. the SIS algorithm with resampling) as im-

plemented in this thesis is shown in Figure 2.7. Pseudo codes for the SIS, General

Particle Filter, SIR and resampling are given in Appendix B.

The performance of the SIR filter on the linear Stommel problem is illustrated

in Figure 2.8. This figure compares the true state (panel(a)) with the model states

recovered by the SIR filter given 2 and 30 observations (panels (g) and (h) respec-

tively). Note the SIR filter recovers well the true state, although not quite as well as

the KF or EnKF near the eastern boundary. However, if the SIRF is combined with

an MCMC step (see below) the recovered model state is improved and comparable

with the results from the KF and EnKF (see Figure 2.9). Tuning of the MCMC step

can increase the accuracy further.

2.4.4 Markov Chain Monte Carlo (MCMC)

The previous section described how resampling can reduce the degeneracy problem

in the SIS algorithm. However, it can be shown that resampling can, in turn, induce

another problem: the loss of diversity among the ensemble members. The problem

arises due to the fact that repeated resampling of a finite number of ensemble members

through time can lead to the collapse of the ensemble to a single member, i.e. all N

members occupy the same point in the state space.

This “particle collapse” is due to the design of the SIS algorithm. The fact that

the forecast of each ensemble member includes a random part (via the model error

vlk, see (2.40)) does not always prevent particle collapse. If the SIS algorithm has

discarded all but one particle, the new ensemble will be entirely made up of identical

clones. After the forecast for the next time step (see (2.35)), these clones will differ

only by their model error vlk. Since the statistics are the same for each vlk the ensemble

does not carry more information than one single ensemble member.

Particle collapse can be avoided by a Markov Chain Monte Carlo (MCMC) step

following the SIR step. The MCMC is designed to improve sample diversity without

changing the probability distribution of the ensemble, i.e. the density of the ensemble
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after the SIR step, and after the subsequent MCMC step, are identical. (A more

detailed description of MCMC is given in Appendix C.) Figure 2.9 shows how the

accuracy of the recovered model state in the Stommel model example can be improved

by MCMC.

2.5 Discussion

The Bayesian framework provides a natural and elegant way of describing and de-

veloping data assimilation schemes. Using this framework, a unified description has

been given in this chapter of Kalman Filters (linear, extended and ensemble) and

particle filters (sequential importance resampling, with and without a Markov Chain

Monte Carlo step).

To illustrate the implementation and effectiveness of the various assimilation

schemes, a very simple model of the ocean has been introduced: the Stommel model.

Although the model is linear, it does support the intensification of western boundary

currents, westward propagating Rossby waves, and also an interior ocean in Sverdrup

balance.

The assimilation experiments with the Stommel model show that all of the assimi-

lation methods work well and produce comparable results. The assimilation methods

all used a “wrong” ocean model (i.e. the friction parameter differed from the true

model) and noisy observations. For all assimilation schemes the true model state

was recovered with high accuracy. While the EnKF represents a model state only by

its first two statistical moments, particle filters are able to present the true pdf of

a model state. For many practical applications (e.g. prediction of extreme events)

knowledge of the pdf of the model state, particularly the shape of the tails, can be

as important as the knowledge of the mean and variance. It is encouraging to note

that the SIR filter with an MCMC step performs almost as well as the EnKF. This

motivates the investigation described in subsequent chapters of the performance of

the particle filter when assimilating data into more complex nonlinear systems.
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Stream fct. ψ, λ = 0,  (a)

Dimensionless east−west direction of the ocean basin
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Stream fct. ψ + noise, λ = 0,  (b)
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Stream fct. ψ, λ = 0.1,  (b’)
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Figure 2.1: Stream function for the Stommel model. Panel (a) shows the true stream
function calculated with the friction parameter λ = 0. Panel (b) shows the ”observed”
stream function obtained by adding observation error to the true stream function
shown in Panel (a). Panel (b’) shows the stream function calculated with the friction
parameter λ = 0.1. By comparing panels (a) and (b’) it is clear that increasing
friction decreases the magnitude of the stream function and increases the width of
the western boundary current as expected.
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Stream fct. ψ  , (a)

Dimensionless east−west direction of the ocean basin
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KF ,  2 observations , (c)

0 0.5 1
0

5

10

15

20

25

30

35

40

45

50
KF , 30 observations , (d)
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Figure 2.2: True stream function from the Stommel model and estimates from the
KF. Panel (a) shows the true stream function ψ calculated from the Stommel model
assuming no model error. The remaining two panels show the estimates of ψ from
the Kalman Filter. For panel (c) the two observation locations were grid cells 3 and
15; for panel (d) observations were assumed available from all 30 model grid points.
The main model parameters used in the twin experiments are listed in Table 2.1.
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Figure 2.3: Schematic of the EnKF data assimilation procedure as implemented in
the present study.
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Stream fct. ψ  , (a)

Dimensionless east−west direction of the ocean basin
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EnKF ,  2 observations , (e)
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EnKF , 30 observations , (f)

0 0.5 1
0

5

10

15

20

25

30

35

40

45

50

Figure 2.4: True stream function from the Stommel model and estimates from the
EnKF. Identical format to Figure 2.2.
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Figure 2.5: Example of how a poor choice of proposal density prior can lead rapidly
to degeneracy of the importance weights, the wi. (Figure from Hermann [2002].)
In cases were the model error is much larger than the observation error the prior
p(xk|xik−1) is a poor choice of proposal density (shown by the pdf with dashed lines
and large “spread” compared to the likelihood of the observation, zk).
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Figure 2.6: Illustration of Sequential Importance Resampling. Initially each ensem-
ble member is assigned the same weight wi

k = N−1 which approximates (2.6). The
measurement zk is then used to compute the importance weight for each ensemble
member using (2.55) resulting in the N pairs {xik, wi

k}. In the resampling step, the
“important” ensemble members are selected more frequently to obtain the approxi-
mation of (2.8). The new ensemble members are equally likely and so the state-weight
pairs are now {xi∗k , N−1}. To move to the next time step the model equation is used to
give the {xik+1, N

−1} pairs (which can be used to approximate (2.6) at time k = k+1.
(Figure is from Ristic et al. [2004].)
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Figure 2.7: Schematic of the SIR filter. This approach is based on the SIS algorithm
with resampling. The SIR step is shown by the box enclosed by the dashed line.
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Stream fct. ψ  , (a)

Dimensionless east−west direction of the ocean basin
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SIRF ,  2 observations , (g)
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SIRF , 30 observations , (h)
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Figure 2.8: True stream function from the Stommel model and estimates from the
SIR filter using Nparticles = 100 particles (ensemble members). Identical format to
Figure 2.2.
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Stream fct. ψ  , (a)

Dimensionless east−west direction of the ocean basin
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SIRF ,  30 observations , (i)
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SIRF with MCMC , 30 observations , (j)
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Figure 2.9: True stream function from the Stommel model and estimates from the SIR
filter combined with MCMC. Identical format to Figure 2.2. This figure illustrates
how the quality of the data assimilation using the SIR filter can be improved without
increasing the number of particles, Nparticles. Panel (i) is the same as panel (h) in
Figure 2.8: Nparticles = 100, no MCMC step. Panel (j) shows the recovered model
state when the SIR filter is used in combination with an MCMC step (all other model
parameters remain unchanged).



Chapter 3

A New Class of Idealized Models of Ocean Eddy and

Drifter Position

The Stommel model of ocean circulation was introduced in the previous chapter to

illustrate the main sequential assimilation methods used in this thesis. The Stommel

model is linear in the sense that the change of the ocean state at a given time step is

a linear function of the state and forcing from the previous time step. It is therefore

not surprising that all the assimilation methods performed well when applied to this

simple model.

In this chapter a new class of idealized models of circulation and drifter motion

is introduced. One important feature of this class of models is that the dimension of

the state vector is low (typically 4) and so many sensitivity studies can be performed.

Another feature is that the models are nonlinear in that the change in drifter position

(dx/dt) is a function of position (because the velocity is also a function of x). This

introduces significant complexity and richness to the model. In particular the quality

of the nowcasts and forecasts of the eddies and drifter position will be shown to vary

amongst the assimilation methods. It will become clear that the results obtained in

this chapter will provide insight into the performance of the assimilation schemes when

using more complex ocean models. In particular the results will help determine the

conditions (e.g. intensity of eddies, drifter release point, ensemble size, priors) under

which the various data assimilation schemes break down and the model forecasts

become unreliable.

The new model has essentially two components: one component describes the

evolution of a field of vortices, and the other describes the changing positions of an

arbitrary number of drifters advected by the vortices. Overall the goal is to accurately

41
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nowcast and forecast the changes in the positions of the vortices from the observed

positions of the drifters. It is important to note that the observations are assumed

to be noisy (the true position of the drifters is not known exactly) and they are

intermittent (to simulate Argo drifters that only report their positions on a 10 day

schedule). In general the position of the vortices are fixed with respect to a reference

point that will, for reasons to become clear later, referred to as the saddle point. In

general the individual vortex centers follow the movement of the saddle point and so

if the movement of saddle point can be inferred from the drifter position observations,

so can the evolution of the vortices and thus the complete flow field. This is at the

heart of the low dimensional representation of the instantaneous flow field: all that

is required in the position of the saddle.

The basic idea behind the eddy flow component of the flow field comes from

Aref (1984) who was interested in “chaotic advection” of particles by simple flow

fields. The eddies in Aref’s system are modeled as point-vortices which create a

potential flow. Aref showed that if the position of the vortices is kept fixed, the

motion of the particle is integrable and the system does not stir very efficiently. If

the vortices are moved (or ”blink”) such that the potential flow becomes unsteady,

the motion of the particles can become chaotic and this can lead to efficient stirring.

Aref constructed a simple and illuminating model of particle motion in terms of a

sequence of analytically-specified displacements about a small number of simple flow

structures (vortices). The alternating switching on and off of the vortices lead to

the “blinking vortex” terminology. One attraction of Aref’s approach is that there

is no error in the integration of dx/dt = u(x, t) because the displacements over each

“blink” are specified analytically.

In this thesis we introduce a new class of blinking vortex models to simulate the

complicated flow patterns, and drifter motion, that are observed in the real ocean and

atmosphere as a result of interaction of vortices. The simplicity and computational

efficiency of this class means that it provides an excellent way of testing and com-

paring various assimilation schemes (e.g. EnKF and PF). The success or failure of a
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particular assimilation scheme will shed light on its performance in a more realistic

ocean model.

The blinking vortex class can accommodate different configurations of an arbitrary

number of vortices, drifters and release points. It assumes the vortices are fixed with

respect to a reference point that has coordinates subsequently denoted by cs (where

c denotes center, and superscript s denotes saddle). One special case is the Self

Advecting Vortex Model (SAVM). This model has two point-vortices with centers at

(p, 0) (−p, 0) and fixed radii R. The polarity of the two vortices is the same. As each

vortex blinks on, it advects the position of the other vortex (hence the terminology

“self advecting”). For simplicity the vortices are viewed in a frame of reference that

aligns the x-axis with the two vortex centers (see below for details).

To increase the relevance of the blinking vortex class of models, the evolution of

the saddle point and drifters are allowed to evolve stochastically. The saddle point

is assumed to follow a random walk; this implies that each vortex center follows the

same random walk because their locations are fixed with respect to the saddle. This

random walk will be shown to have a significant effect on the trajectories of the

drifters. The position of each drifter, following advection by the vortices, has also

been assumed to be changed by the addition of a random forcing which represents

unknown and unresolved dynamical processes of the model. The physical motivation

for adding stochasticity is to allow for model error in the motion of the vortices and

the particles. Note that by following an ensemble of saddle and drifter positions we

can propagate uncertainty in their positions and estimate their evolving probability

density functions.

A summary of a single update of the position of the saddle and the drifters for

the blinking vortex class of models is given below:

1. Wind each drifter about each vortex center in turn. The length of the arc is

determined by the distance of each drifter from each vortex center (r), the po-

larity and swirl velocity profile (U(r)) of the vortex (e.g. Rankine, exponential),
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and the model time step (Δt). The drifter is wound separately around each vor-

tex. After each wind, the drifter reaches an intermediate position. The drifter

reaches its final position after it is wound around the last vortex. The sequence

in which the rotations occur is fixed but not critical provided the time step is

small.

2. For the SAVM, the reference frame is rotated so that the position of the two

vortex centers are always aligned with the x-axis.

3. Update the position of the saddle (and thus the position of each vortex) by

adding a random displacement. The standard deviation in x and y is denoted by

σc. The displacement is assumed Gaussian with zero mean and zero correlation

between the x and y displacements. The variance of the displacement controls

the drift of the saddle.

4. Update the position of the drifters by adding random displacements to each

drifter. The standard deviation in x and y is denoted by σd. The displacement

is assumed Gaussian with zero mean and zero correlation between the x and y

displacements, and between drifters. The variance of the displacement controls

the “diffusion” of uncertainty in drifter position.

It is shown below that the blinking vortex class of models can be written in standard

state space form. The state vector (xk) defines the position of the saddle, and each of

the drifters at time step k. The saddle and drifter positions depend only on conditions

at the previous time step, xk = F(xk−1) and so the dynamical model is first-order

Markov. The function F is nonlinear if the swirl profile is a nonlinear function of

distance from the center.

In the next chapter it will be assumed that drifter positions have been observed

and these data are then assimilated into the model to estimate the trajectory of the

saddle (and thus the complete flow field) and the true drifter positions. The rest

of this chapter provides details on the SAVM and some typical model output. In
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section 3.1 the vortex models and the flow fields of the SAVM are introduced and

used to explain the terms saddle, elliptic point, hyperbolic point, separatrix and their

properties. In section 3.2 the drifter model is introduced. In section 3.3 the vortex

and drifter model are combined to form, together with the observation equation, the

state-space form of the model. The results of various sensitivity experiments with the

SAVM are presented in section 3.4.

3.1 The Flow Field

The equations for the flow field of the SAVM are defined in terms of the swirl velocity

profile associated with each individual vortex. Let r denote the distance between the

center of a vortex and a given drifter, R denote the “radius” of the vortex, ω provides

a scale for the swirl speed (positive for an anticyclonic vortex), and θ(r/R) defines

the swirl profile. The swirl velocity is given by

U(r/R) = ωrθ(r/R). (3.1)

The following table lists the vortex profiles used in this study:

Name θ(r)
Solid Body 1
Gaussian exp(−r2/R2)

Point Vortex (ε+ r/R)−1

Exponential exp(−r/R)
Table 3.1: List of vortex swirl velocity profiles used in this study. Note that 0 < ε� 1
is introduced in the point vortex profile to avoid a singularity at r = 0.

I will assume, without loss of generality, that the horizontal position of the vortices

is fixed at |p| = 1. This means that the two vortices of the SAVM are centered at

(−1, 0) and (1, 0). The vortex radius R is thus effectively measured in term of half

the distance between the two vortices. In principle the parameters which define the

swirl velocity U can be different for each vortex. However, for simplicity I will assume
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|ω| and R to be the same for each vortex.

Figure 3.1 shows a typical displacement map for a fixed time, tfrozen. The black

vectors in this figure show how far a particle moves with respect to its position

at the earlier time step. The displacement maps are generated by evaluating the

instantaneous displacement of drifters deployed on a regular field, thereby providing

a view of the overall flow. It is important to note that although the displacement maps

do not allow one to readily deduce the Lagrangian trajectories or their properties,

they do provide useful information in the form of “instantaneous stagnation points”

(ISPs). The location of an ISP, xisp say, is defined implicitly by v(xisp, tfrozen) = 0

where v(x, t) denotes the instantaneous velocity field (e.g. Mancho et al. [2006]).

For two dimensional incompressible flow, the eigenvalues (λ1 and λ2) of the Jaco-

bian ∂v/∂x evaluated at x = xisp, t = tfrozen determine the type of ISP. The most

important cases are given in the following table.

Name of ISP Condition on the λi
Hyperbolic with stable node Both |λi| < 1

Hyperbolic with unstable node Both |λi| > 1
Saddle |λ1| > 1 and |λ2| < 1 or vice versa
Elliptic Both Re(λi) = 0 and Im(λi) 
= 0

Table 3.2: Characterization of the instantaneous stagnation points of a frozen flow
field (v(x, tfrozen)) in terms of the eigenvalues of ∂v/∂x.

The movement over time of a saddle-like hyperbolic point is called a hyperbolic

trajectory (which too can be a stationary point). As noted by Wiggins [2005], curves

that intersect with the saddle and partition the flow in different regions are termed

separatrices. Separatrices are distinguished into stable and unstable manifolds. Par-

ticles moving on the stable manifolds are attracted towards the saddle and particles

moving on the unstable manifold are repelled from the saddle. A separatrix acts

as a barrier to transport, i.e. particles can not cross the separatrix and move from

one region into another region (e.g. the boundary of an eddy in a flow field is a

separatrix).
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In complex dynamical systems the analytic form of the flow field is generally not

known; only flows at spatial and temporal increments are known. (See for example

Figure 3.1.) However, it is still possible to compute the hyperbolic points and sepa-

ratrices of these discrete systems. Knowing their separatrices and hyperbolic points

can allow the flow to be partitioned into distinct flow regions and this can lead to a

low dimensional representation of the original dynamical system.

An instantaneous flow field from the SAVM is shown in Figure 3.1. The red circles

mark the positions of the two, self advecting vortices. The blue squares mark the

centers (elliptic points) of the so-called ghost vortices resulting from the superposition

of individual vortices. The green triangles mark saddle-like hyperbolic points which

too are a result of superposition. Although the flow fields of the SAVM look fairly

simple, the trajectories of particles advected by these flow fields can be very complex.

This is especially true if the vortex centers are subject to random displacements.

This is illustrated by the associated drifter trajectory map shown in Figure 3.2. Four

flow regions around the elliptic points of the real and ghost vortex centers are clearly

evident, one “figure-eight” flow region around the two real vortices, and an almost

circular flow in the far field (computational details below). Similar structures are

found in the more complex, self advecting model of Kuznetsov et al. [2003] (see

Figure 3.3) which is defined in continuous time and requires numerical integration to

estimate drifter trajectories (unlike the simpler SAVM).

The partitioning of the flow into distinct regions raises the possibility of applying

different data assimilations methods in different regions. They could correspond, for

example, to regions that respond in a strongly nonlinear fashion to small perturbations

(e.g. along unstable manifolds, or in the vicinity of saddles). If this can be shown to be

true for idealized models (e.g. the SAVM) then this approach (different assimilation

schemes in different regions) may possibly be applied to more realistic ocean models.

The positions of the two vortices of the SAVM are defined with respect to the
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saddle cSk which may undergo a random walk:

cSk = cSk−1 + uk−1 (3.2)

uk ∼ N (0, σ2
cI)

where cSk ∈ R
2 is the location of the saddle at time step k, uk ∈ R

2 is the additive

random displacement, and I is the identity matrix. The movement of the vortex

centers is controlled by the movement of the saddle because all vortices are referenced

with respect to this point. This means that separate equations are not needed to

describe the evolution of the vortex centers. More specifically let Lv = (Lv
x, L

v
y)

T

denote the fixed difference in position of the saddle and the vth vortex. The position

of the center of this vortex, cvk, is then simply given by

cvk = cSk + Lv. (3.3)

3.2 The Drifter Trajectories

The rotation of a single drifter about the first vortex is denoted by

x′k = c
(1)
k−1 + T (xk−1 − c

(1)
k−1) (3.4)

where T is the rotation matrix denoted by

T =

[
cos(Δθ) − sin(Δθ)

sin(Δθ) cos(Δθ)

]
. (3.5)

The superscript of c(.) denotes the vortex around which the drifter rotates. Interme-

diate drifter positions are denoted by a dash, i.e. x
′
. The angle Δθ denotes the drifter

rotation around the vortex center over one time step and is given by

Δθ =
U

r
Δt. (3.6)
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Combining (3.1) and (3.6) gives

Δθ = ωΔtθ(r/R) (3.7)

If θ is constant we obtain a solid body rotation and the drifter sub model becomes

linear because θ no longer depends on drifter position.

Winding about two or more vortices is straightforward. For example, to wind

about the second vortex we have

x′′k = c
(2)
k−1 + T (x′k − c

(2)
k−1).

One subtlety of the SAVM is that the reference frame is adjusted, by a solid body

rotation, to align the x-axis with the line connecting the two vortex centers after the

second wind has been completed.

After the drifter has been wound around the second vortex, a random displacement

is added to the drifter position

xk = x′′k + wk−1. (3.8)

Note that this equation can be written in the form

xk = Fd(xk−1, c
S
k−1) + wk−1 (3.9)

wk ∼ N (0, σ2
dI)

where Fd is, in general, a nonlinear function. xk ∈ R
2 is the location of the drifter at

time step k, wk ∈ R
2 is the drifter noise (with standard deviation σd).

Figure 3.2 shows the trajectories over 150 time steps of a large number of par-

ticles in the SAVM for the case of no model error, i.e. σd = 0 and σc = 0. The

black dots denote the release points of the drifters. Note that the SAVM produces

a trajectory map that is qualitatively very similar to the published stream function
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map of Kuznetsov et al. [2003], although the SAVM is much simpler than the two

point-vortex model used in Kuznetsov’s study.

3.3 The Augmented State-Space Model

Following Ide et al. [2002] and Kuznetsov et al. [2003] we augment the state equation

for the evolution of the center (3.2) with the equations for the evolution of each

drifter position (3.9). This is done by stacking the equations for the center and

drifter evolution. The state equation for the augmented system now takes the form

(
cSk

xk

)
= F(cSk−1, xk−1) +

(
uk−1

wk−1

)
. (3.10)

The corresponding observation equation for the drifters is of the form

yk = H

(
cSk

xk

)
+ vk (3.11)

where y is the observation vector, v is the observation error and

H = [0n×2 In×n]

where n is twice the number of drifters and 0 and I denote zero and identity matrices

of the indicated dimension.

The important point to note is that equations (3.10) and (3.11) are in state-space

form which means that any of the data assimilation methods (e.g. EnKF or PF) can

now be readily tested.
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As an aside, note that for a single drifter, and a single vortex, we can write

F(cSk−1, xk−1) =

⎡
⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

1 0 cos(θ) − sin(θ)

0 1 sin(θ) cos(θ)

⎤
⎥⎥⎥⎥⎥⎦
(

cSk−1

xk−1 − cSk−1

)

and

H =

[
0 0 1 0

0 0 0 1

]
.

3.4 Propagation of Uncertainty

To illustrate the complexity of drifter dispersion in the SAVM, and also assess pre-

dictability, we now describe a set of simulations with the SAVM using point-vortices

with radius R = 1 and swirl speed scale of ω = π/30. In each experiment 1000

drifters were released around a specified position and their positions computed for

subsequent time steps. This allowed the density of drifter position to be estimated

and plotted as a function of space and time. The two main sets of experiments (I and

II) are described in Table 3.3.

The first set of experiments explores sensitivity of the pdf of drifter position to

its initial condition. The second set explores sensitivity to model error (in both the

evolution of the saddle of the SAVM and also drifter position. Within each set of

experiments the influence of the release locations of the drifters was explored. Drifters

were released at the origin, near elliptic and hyperbolic points, and elsewhere.

3.4.1 Experiment I: Uncertain Drifter Release

Figures 3.4 to 3.6 show the spreading of the uncertainty in drifter location for different

values of σprior d and different release locations (x0, y0). In all six experiments the
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Figure σd σc σpriord σpriorc x0, y0 Time steps
Experiment I: Uncertain Drifter Release

3.4 left 0 0 0.01 0 0, 0 51
3.4 right 0 0 0.1 0 0, 0 51
3.5 left 0 0 0.1 0 -1, 0 51
3.5 right 0 0 0.1 0 0, 1.6 51
3.6 left 0 0 0.1 0 -2, 0 51
3.6 right 0 0 0.1 0 -1, -1.6 51

Experiment II: Uncertain Model Dynamics
3.7 left 0.05 0 0 0 0, 0 51
3.7 right 0.05 0 0 0 -1, 0 51
3.8 left 0.05 0 0 0 -2, -2 51
3.8 right 0.05 0 0 0 -1, -1 51
3.9 left 0 0.05 0 0 0, 0 51
3.9 right 0 0.05 0 0 -1, 0 51
3.10 left 0 0.05 0 0 -2, -2 51
3.10 right 0 0.05 0 0 -1, -1 51
3.11 left 0.05 0.05 0 0 0, 0 51
3.11 right 0.05 0 0 0 0, 0 301

Table 3.3: Model parameters used in the simulations. Experiment I: The initial
drifter positions are not known exactly, rather they have Gaussian pdfs centered on
(x0, y0) with standard deviation σprior d. The saddle of the SAVM is the origin (i.e.,
the standard deviation, σprior c = 0), and the model is error free (σc = σd = 0).
Experiment II: The initial drifter positions coincide exactly with (x0, y0) (σprior d =
0). The origin of the SAVM is the origin (i.e., the standard deviation, σprior c = 0).
The model has non zeros errors for the drifters and/or center (σd and σc are nonzero).

model is assumed error free, i.e. no model error is added to the drifters or center.

The underlying vector map shows the instantaneous displacement field. This field is

constant since the vortex parameters were chosen to be time independent.

All figures show that the drifter distribution is Gaussian initially (ellipses) as

expected. Whether the drifter distribution stays Gaussian or becomes non-Gaussian

depends strongly on the release location of the drifters. For example, the distribution

of drifters released around an elliptic point (e.g. centers of real or ghost vortices) tends

to stay Gaussian (Figure 3.5). Furthermore the distribution tends to be stationary
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in space and in time. Drifters trapped near elliptic points will generally move around

this point for a long time. By way of contrast, the distribution becomes strongly

non-Gaussian (e.g. “banana” shaped) if the drifters are released close to hyperbolic

points, e.g. the origin of the system (Figures 3.4 and 3.6). This is especially true if the

drifters pass through or near hyperbolic points or pass regions with strong velocity

gradients. The drifter distributions released around locations away from hyperbolic

and elliptic points tend to maintain their Gaussian form (right panel of Figure 3.6).

3.4.2 Experiment II: Uncertain Model Dynamics

To investigate the effect of model error, the previous experiments were repeated but

with σc and σd non-zero. However in the new experiments all the drifters are released

at the same known locations, i.e. the prior standard deviation of the initial drifter

distribution is zero.

Figures 3.7 to 3.8 show that the distribution of the drifters spreads as time in-

creases. The drifter distribution becomes more non-Gaussian, even if the drifters

are released near an elliptic point. The nearer the drifters are released to hyperbolic

points, or regions with a strong velocity gradients, the faster the distribution becomes

non-Gaussian.

The introduction of model error for the saddle cS transforms the initial Gaussian

distribution of the drifters into a non-Gaussian distribution with time. Figures 3.9 to

3.10 show that the speed of the transition depends mainly on the release location of

the drifters. The spread of the distribution of the centers increases too over time but

note that it maintains its Gaussian (elliptic/circular) shape. This is to be expected

since the centers are only perturbed with Gaussian noise and not subject to any other

linear or nonlinear transformations. Since drifters depend in a nonlinear way on the

position of the centers, it is to be expected that the drifter distribution evolves in a

much more complex way.

Figure 3.11 (left panel) shows how the combined influence of model error for both

drifter and center leads to an increased non-Gaussian spread in the drifter density
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(compare to Figure 3.7). Figure 3.11 (right panel) shows the same experiment as

Figure 3.7 but for a longer model integration of 300 time steps. This experiment

confirm the result that Aref noted in his paper (Aref [1984]), namely that small

model error in drifter position will increase the total mixing of the system ensuring

that the drifters will eventually become evenly distributed over the model domain.

The speed of the mixing depends mainly on the magnitude of the drifter model errors.

It is noticeable that the distribution is not completely symmetric. This is due to the

asymmetry in the flow field that results from the order in which the vortices in the

SAVM blink.

To summarize the sensitivity of drifter dispersion to release location, a reference

drifter and an ensemble of 1000 additional drifters were released at a fixed point

from a grid that covered the model domain. The differences is position between the

reference and each ensemble drifter were calculated, accumulated and stored. This

was repeated 50 times and the mean and median of the 50 accumulated errors were

calculated, resulting in one total error associated for the chosen release location. This

procedure was repeated for each grid point of a grid covering the model domain.

Figure 3.12 shows the maps of dispersion assuming an integration time of 51

steps, σpriorc = 0.05, σpriord = 0.05, σc = 0.05 and σd = 0.05. The left panel shows

the mean of the squared total error and the right panel shows the median of the

square of total error. These “predictability maps” indicate release locations directly

with drifter dispersion. The color bars show the total squared error. High values are

associated with high dispersion and thus also associated with high uncertainty of the

drifter location and low predictability. Both panels show high drifter dispersion if

drifters are released in the incoming manifold of the saddle point at the origin. The

white contour lines show sample drifter trajectories for a complete error free model.

It should be noted that the method of deriving the total error does play a role in the

outer regions of the domain. Using the median to compute the total error seems to

decrease the magnitude of the total error. This fact should be kept in mind when

ensemble based data assimilation methods are used.



55

Figure 3.13 emphasizes the validity of the predictability map. The figure shows

the trajectories of an ensemble of 100 drifters released on the incoming manifold at

(−0.25, 0.25) (left panel) and the outgoing manifold at (−0.25,−025) (right panel).

The left panel indicates high dispersion of the drifters: approximately 50% of the

drifters follow the left part of the outgoing manifold and 50% the right part. The

right panel shows that drifter dispersion is low until the drifters reach the vicinity of

the incoming manifold of the left saddle at (−2, 0).

3.5 Discussion

A new class of idealized models of for the evolution of ocean eddies and drifter evo-

lution is introduced. The model is very economical both in terms of the dimension

of the state vector and also the computational cost of integrating it forward in time.

Following the pioneering study of Aref, the model is based on a sequence of analyti-

cally defined displacements of the drifters and so there is no numerical error beyond

roundoff associated with the calculation of the drifter trajectories. A particular form

of model, the so-called Self Advecting Vortex Model (SAVM), is shown to give very

similar results to the more complex, continuous-time model of Kuznetsov et al. (2003)

This latter model is more expensive to run and subject to the accumulation of errors

arising from the numerical integration scheme. The simplicity and accuracy of the

SAVM makes it ideal for carrying out a large number of sensitivity studies involving

parameters such as model noise and drifter release points.

It has been shown that the drifter dispersion can be non-Gaussian even for a

simple model such as the SAVM for large areas in the model domain. It follows

that any method that assimilates infrequent drifter data must be able to account for

the non-Gaussian probability density functions of drifter position. The results also

show that drifters are trapped near elliptic points and their density functions tend to

conserve their Gaussian shape for long periods.

By partitioning the flow domain in regions using separatrices, and identifying

the elliptic and hyperbolic points, a hybrid assimilation method may be developed.
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In regions where the density functions generally conserve their Gaussian form, the

EnKF may be applied for data assimilation; for the smaller regions where the density

functions become strongly non-Gaussian, the computationally demanding PF may be

more appropriate.

In the next chapter both the EnKF and PF will be applied separately to the

SAVM. The setup of the experiments will be similar to the ones performed for this

section. The goal of the experiments will be to find the strength and weakness of

each method and, if possible, find a blend of the two methods that takes advantage

of relative efficiencies and accuracies in an effective manner.
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Figure 3.1: Displacement map for the SAVM over one time step. The red circles
mark the centers of the physical vortices. They are point-vortices with radius R = 1,
strength ω = π/30, and ε = 10−4. The green triangles mark the saddle (hyperbolic)
points, and the blue squares mark the centers of ghost vortices.
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Figure 3.2: Trajectory map for the SAVM over 150 time steps. The black dots mark
the release points of the drifters. Point-vortices were used with R = 1, ω = π/30 and
ε = 10−4. Note the trajectories match qualitatively the stream function map shown
in Figure 3.3.
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Figure 3.3: Stream function for a two point-vortex system and the associated 5 sep-
aratrices (thick black lines). From Kuznetsov et al. [2003].
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Figure 3.4: Probability density of drifter position as a function of space and time
steps t = 1, (a,d), t = 26, (b,e) and t = 51, (c,f). The standard deviation of the
drifter prioris σprior d = 0.01 (left panels) and σprior d = 0.1 (right panels). The mean
release location of the drifter is the origin (red square). The green dot marks the
peak of the drifter distribution. The shaded regions encompass 30% (light brown),
60% (dark brown) and 90% (black) of the drifter ensemble.
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Figure 3.5: Same format as Figure 3.4 but for different drifter release locations.
Drifters shown in the left panel side were released at (x0, y0) = (−1, 0), the center
of the left vortex, and for the right panel at (x0, y0) = (0, 1.6), the center of the top
ghost vortex. The standard deviation of the prior for the drifters is σprior d = 0.1.
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Figure 3.6: Same format as Figure 3.4 but different drifter release locations. Drifters
shown in the left panel side were released at (x0, y0) = (−2, 0), the left saddle, and
for the right panel at (x0, y0) = (−1,−1), the center of the top ghost vortex. The
standard deviation of the prior for the drifters is σprior d = 0.1.
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Figure 3.7: Same format as Figure 3.4 but nonzero drifter model error (σd = 0.05).
Drifters were released exactly at the origin (left panels) and (x0, y0) = (−1, 0) (right
panels).
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Figure 3.8: Same format as Figure 3.4 but nonzero drifter model error (σd = 0.05).
Drifters on the left panel side were released at (x0, y0) = (−2, 0) (left saddle point)
and (x, y) = (−1,−1) (right panel). The standard deviation for the model error of
the drifters is σd = 0.05 for both cases.
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Figure 3.9: Same format as Figure 3.4 but nonzero center model error (σc = 0.05).
The release location of the drifters is the origin (left panel) and (x0, y0) = (−1, 0)
(right panel). The red contours show the 30, 60 and 90 percent probability for the
pdf of center location.
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Figure 3.10: Same format as Figure 3.9 but different drifter release locations. Drifters
for the left panels were released at (x, y) = (−2, 0) (left saddle point) and for the right
panels (x0, y0) = (−1,−1).
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Figure 3.11: Left side: Same format as left panels of Figure 3.7 but with uncertain
model dynamics with σd = 0.05 and σc = 0.05 respectively. Right side: Same format
as left panels of Figure 3.7 but at t = 1, (d), t = 151, (e) and t = 301, (f)). The
standard deviation for the model error of the drifters and center is σd = 0.05 and
σc = 0.0. Compared to Figure 3.7 the combined effect of noise in the drifters and
centers leads to an increased non-Gaussian spread of the drifter distribution (left
panel). The experiment (right panel) confirms the result from Aref [1984] that a
small model error for the drifters will lead to complete mixing.
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Figure 3.12: Sensitivity of drifter dispersion to release location in the form of pre-
dictability maps. Left panel: Mean of the square of the total error (i.e., difference
between position of reference drifter and the ensemble). Right panel: Median of the
square of the total error. The white contour lines show selected drifter trajectories
from a completely error free model. σpriorc = 0.05, σpriord = 0.05, σc = 0.05 and
σd = 0.05.
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Figure 3.13: Trajectories of 100 drifters for selected released locations. The left hand
panels are for an incoming manifold, (x0, y0) = (−0.25, 0.25) and the right hand
panels are for an outgoing manifold, (x0, y0) = (−0.25,−0.25). The drifters shown
in the left panels disperse immediately after release. The drifters shown in the right
panels only disperse when they are in the vicinity of the left saddle point (−2, 0) and
its incoming manifold. σpriorc = 0.05, σpriord = 0.05, σc = 0.05 and σd = 0.05.



Chapter 4

Assimilating Trajectories Into the Idealized Model

4.1 Introduction

It was shown in the previous chapter that the probability density function (pdf)

of drifter position depends strongly on the release point of the drifters, the initial

spread of the pdf around this release point (i.e., the prior), and the model error. It

was also shown that the pdf of drifter position can quickly evolve into non-Gaussian

shapes. Given that the instantaneous drifter position is a function of its flow history,

it is relevant to ask if observed drifter positions, and their pdfs, can be inverted to

estimate the flow field. This is the main motivation for this chapter.

One of the attractions of the self advecting vortex model (SAVM) is that the Eule-

rian flow field is defined by a low dimensional state space model. In fact, as discussed

in the previous chapter, the instantaneous flow field is completely determined by the

horizontal position of a “center” about which the various vortices rotate and “blink”

on and off. If the true center is fixed (as is the case here), then the separatrices, hy-

perbolic and elliptic points of the system (and thus the Lagrangian character of the

flow) are also determined by the position of the center. For the SAVM the dimension

of the state vector is 2 (one dimension for each of the horizontal coordinates of the

center) and the goal of the assimilation is to use observed drifter trajectories to infer

the true positions of the center and also the drifters.

It will be assumed that only intermittent, noisy observations of drifter position

are available, and that the position of the drifters and the center (and thus the in-

stantaneous flow field) evolve according to a model which is subject to error. Optimal

70
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blending of the noisy observations with the imperfect model requires careful atten-

tion to propagation of uncertainty in the position of the center and the drifters. The

more accurately the position of the center can be estimated by the assimilation of

the intermittent drifter observations, the better the complete instantaneous flow field

can be reconstructed.

The assimilation procedure also provides the pdf of drifter position for past,

present and future times. It is important to note that this type of information is

potentially useful for a number of applications including marine search and rescue

and pollution control, where a person lost at sea or an oil slick, would be represented

by passively advected particles in the model. The pdfs of future particle position will

map regions where, for example, the probability of a successful rescue operation is

high.

Two data assimilation methods will be compared and contrasted: the ensemble

Kalman filter (EnKF), which assumes all of the pdfs are Gaussian, and the more

flexible particle filter (PF). One goal of this chapter is to identify the flow conditions

under which the EnKF works well and when it fails. To quantify the performance

of the assimilation schemes, two sets of metrics are introduced: one measures the

evolution of non-Gaussianity in the advected pdfs, and the other measures the overall

performances of the assimilation schemes.

Molcard [2003, 2005] has carried out related work using an idealized QG model.

Molcard et al. [2003] showed how the quality of the assimilation of Lagrangian data

depends on the observation interval, number of drifters and release domains of the

drifters. The data assimilation method used by Molcard is a form of optimal inter-

polation (OI) and thus differs strongly from the methods used in this thesis. Salman

et al. [2006] performed a similar study using a QG model for the background flow and

the EnKF for data assimilation. Salman et al. [2006] suggested that the assimilation

scheme fails in the vicinity of hyperbolic points, especially when the observation in-

terval is long. This result was confirmed in the study of Apte et al. [2008] in which the

performances of MCMC based methods and the EnKF for assimilating Lagrangian
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data in an idealized shallow water model with similar characteristics as the self ad-

vecting vortex model introduced in Chapter 3.

The Lagrangian assimilation scheme of Molcard [2003] has subsequently been im-

plemented into the primitive equation model MICOM (Molcard et al. [2005]). In

the studies of Molcard et al. [2003], Molcard et al. [2005] and also of Salman et al.

[2006] the drifters were released in regularly-spaced grids. In Molcard et al. [2006]

this approach was dropped in favor of defining a launch strategy that improved the

performance of the assimilation scheme. It was found that the assimilation scheme

significantly improved if the drifters were initially launched along the outflowing man-

ifolds of hyperbolic points. We will return to this point later.

The outline of the chapter is as follows. In Section 2 an illustrative example is

presented that shows the type of information generated by the EnKF and PF and

the different results that they can generate. In Section 3 a new metric is introduced

for measuring the evolution of non-Gaussianity. In Section 4 this metric is used with

to the PF and EnKF in some simple data assimilation experiments. The results

give an initial indication about the conditions under which the EnKF will break

down. In Section 5 various sensitivity experiments are performed to determine which

parameters have the largest impact on the accuracy of the data assimilation methods.

The chapter concludes with a brief summary and discussion of the results.

4.2 An Illustrative Example

A simple example of the assimilation of drifter data is given in this section to motivate

the subsequent discussion of the performance of the PF and EnKF.

The black lines in Figure 4.1 show the trajectories of selected particles that have

been advected by the SAVM model. The center of the SAVM was at the origin (shown

by the black circle) and the Rankine vortices were centered at y = 0 and x = ±1

(shown by the black crosses). The swirl velocity of the vortices was ω = π/30 and

the threshold for the vortex was ε = 0.05. (See Chapter 3 for definition of these
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parameters.)

The trajectory of a drifter deployed at x = −2.04 and y = 1 over 100 time steps

is shown by the red line in Figure 4.1. (The release point is marked by the red cross.)

The red circles show the position of the drifter at observation times of Nobs = 31, 61

and 91.

In the following assimilation experiment it is assumed that the prior for the center

is a Gaussian centered on x = 0.4 and y = 0 with an isotropic standard deviation

of 0.4. In other words, before the data are assimilated it is believed that the most

likely position for the center is x = 0.4, y = 0 but there is considerable uncertainty

concerning this value (reflected by the standard deviation of the prior of 0.4). As the

drifter observations are assimilated the pdf of center position will change and should

move toward the true value of x = 0, y = 0 used to generate the observations. The

more quickly the assimilation scheme predicts the center is at the origin, the more

effective the scheme.

The model error for the center was taken to be σc = 0. This means that the center

does not move (but the assimilation scheme still updates the pdf of the center as more

data are assimilated.) The model error for the drifter was assumed to be σd = 0.05

and is applied only at observation times. The drifter observations to be assimilated

by the EnKF and PF are given by the circles in Figure 4.1 i.e. the observations are

perfect. However the assimilation scheme does not assume that the observations are

perfect; the observation error is assumed to be σobs,d = 0.05. No useful observations

of the center are available and so it is assumed that σobs,c is a very large number.

The size of the ensemble for the PF was taken to be 10000. The EnKF was run with

ensemble sizes of 100, but averaged over 100 ensembles for an effective ensemble size

that equalled that of the PF.

The time variation of the center and drifter positions estimated by the EnKF and

PF are shown in Figure 4.2. The upper panels show results from the EnKF, and

the lower panels show results from the PF. The first two columns of panels are for

the x and y positions of the drifter; the third and fourth columns are for the x and
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y positions of the center. For each panel, the red lines show the true position of

the drifter or center, with drifter observations shown by the red circles. The black

lines show the mean and standard deviation of the positions estimated by the two

assimilation schemes (calculated from the ensembles).

The effect of the assimilation of the drifter observations is clearly evident in Fig-

ure 4.2; the drifter ensemble is pulled to the observation and the pdf of the center

is updated. The shaded area shows that, as expected, the uncertainty decreases

overall with the assimilation of data. Note however that after the assimilation step

the uncertainty in drifter position grows again with the advection of the ensemble

by the complex SAVM flow field. An important conclusion that can be drawn from

Figure 4.2 is that the PF outperforms the EnKF in terms of estimating the present

and future position of the drifter and center. Note that after the first observation is

assimilated, the PF has accurately inferred the true position of the center and this

results in accurate forecasts of drifter position. The EnKF on the other hand has

difficulty in pinning down the correct position of the center (the black and red lines

do not agree, and the shaded areas are wide) leading to problems in forecasting the

true position of the drifter.

The above experiment (and Figures 4.1 and 4.2) are strongly dependent on the

release point of the drifter. There are regions where the performance of PF and EnKF

are almost the same. In the rest of this section an attempt is made to map out when,

where and why the performance of the EnKF is lower than that of the PF. This

will require highly idealized numerical experiments in order to understand what is

happening e.g., the assimilation of a single drifter observation, with no model error

for the center. It is important to note however that the numerical codes that have

been developed can handle an arbitrary number of drifter and observation times, and

non zero error for the evolution equations for the drifters and center.
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4.3 Measuring Non-Gaussianity

In this section a new metric is defined to quantify the evolution of non-Gaussianity

in the pdf of particle position. The new metric, denoted by Δ, is then used to predict

the conditions under which the EnKF will fail. To motivate the definition of Δ some

illustrative examples of the evolution of the pdf of drifter position by the SAVMare

presented. For these examples (and all subsequent applications of the SAVM in

this chapter) the swirl intensity is taken to be ω = π/30 and the Rankine vortex

threshold is taken to be ε = 0.05. (See Chapter 3 for definition of these parameters.)

The Rankine vortices are located at y = 0 and x = ±1; the separation of the vortices

provides a horizontal scale for all the subsequent maps.

Consider first the upper left panel of Figure 4.3. In this case 100 drifters were

released in a circular pattern coinciding with the red circle of radius r0 = 0.1 centered

on x0 = −2, y0 = 0.4. The drifter positions are subsequently integrated for N = 80

time steps. No model error is added to the position of the drifter (σd = 0) or the center

(σc = 0). In effect this is a deterministic integration with the center remaining fixed

and the drifters simply advected by the steady flow field. (The stochastic versions

of the equations will be considered later.) The positions of the drifters after N = 80

time steps are shown by the small blue crosses. These release points for the drifter

ensemble were centered on the inflowing manifold of the leftmost hyperbolic point

and, as expected, approximately half of the drifters are quickly wrapped around the

leftmost Rankine vortex and the other half are slowly swept around the lower ghost

vortex. The non-linear evolution of drifter position is clearly evident.

A complex distribution of drifter positions is also obtained if the drifters are

released near the inflowing manifold near the center (x0 = −0.1, y0 = 0.1, see lower

left panel of Figure 4.3). The drifters in this case are essentially split into two equal

groups that are carried around the ghost vortices.

The effect of releasing drifters in the vicinity of outflowing manifolds is shown by

the right panels of Figure 4.3. In general the final distribution of the drifter positions



76

is simpler for these two sets of runs although some deviation from an elliptical shape

is evident, suggesting some nonlinearity in the transformation from initial to final

drifter position.

The effect of releasing the drifters in the vicinity of the Rankine and ghost vortices

is shown in Figure 4.4. Drifters released in the ghost vortices (right panels) are hardly

dispersed and the elliptical shape of the distribution suggest that the transformation

from initial to final drifter position is nearly linear. Drifters released in the Rankine

vortices (left panels) are strongly stirred due to the high shears in the vortex (with

exception of the center where the velocity gradients are, by design, small). Although

the overall final shape of the distribution is approximately elliptical the transformation

from the initial to final drifter position is clearly not linear (e.g. a slight ’banana’ is

evident); the initial circular shape of drifter release locations has been transformed

into a spiral.

4.3.1 A Simple Measure of Non-Gaussianity

Figure 4.5 shows the effect of various flow fields on the shape of an initially circular

distribution of particles (denoted by the boundary of the blue patch). Note that for

the upper left pair (A), an almost linear mapping has transformed the circle into an

ellipse and so the mean of the final positions of the particles (denoted by the red cross)

coincides almost exactly with the final position of the particle placed initially at the

center of the circle (position is marked by the red circle). The second transformation

(B) illustrated in Figure 4.5 shows the transformation to a “banana” like distribution

after advection, and a non-zero distance between the mean of the particles initially

around the circle and the center point after advection i.e. the red cross and red

circle do not coincide. We will subsequently use this distance as a simple measure of

the strength of non-gaussian transformations and denote it by Δ. In general Δ will

depend on the position of the center of the initial circle (x0, y0), the radius of the

circle (r0), and the number of advecting time steps (N) so we write Δ(x0, y0|r0, N).

Figure 4.5 also shows that there are situations where Δ ≈ 0 even though the
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transformation is not linear e.g., the spiral and ”S-shaped” transformations illustrated

by C and D respectively. Thus Δ = 0 is a necessary but not sufficient condition for a

linear transformation. This is not surprising because it is impossible to find a single

scalar measure that will cover all possible types of transformation. Two practical

advantages of Δ are its ease of calculation and interpretation.

4.3.2 Non-Gaussianity and the SAV

The drifter distributions shown in Figure 4.3 and 4.4 suggest that the EnKF will

likely perform well in the ghost vortices where the Gaussian assumption is valid and

Δ ≈ 0. To obtain a more precise delineation of regions where the EnKF is expected

to fail, and perform well, Figure 4.6 maps Δ(x0, y0|r0, N) over a 241 × 241 grid of

release points (x0, y0) centered on a circle of radius r0 = 0.2, for 4 integration times

(N = 20, 40, 60 and 80).

The regions of large Δ(x0, y0|r0, N) in Figure 4.6 generally correspond with regions

of strong curvature and high speed. Overall the largest values of Δ are found either

around the Rankine vortices or along the inflowing manifolds that approach the 3

hyperbolic points. This becomes increasingly evident as the length of the integration

(i.e., N) increases. These are also the regions where the EnKF may break down.

This will be checked in the following sections. Figure 4.7 shows the effect on Δ of

increasing r0 from 0.2 to 0.3. Overall the map retains the same features although the

magnitude of Δ and extent the of regions of large Δ generally increases with r0.

One feature evident in Figures 4.6 and 4.7 is that Δ is zero exactly along the

inflowing manifold approaching the hyperbolic point at the origin. This is due to the

generation of the ”S-shaped” distributions discussed above which, while non elliptical,

still have Δ = 0. It is also clear from Figure 4.6 that as N increases, the values of Δ

approach zero around the Rankine vortices. This is the spiral effect evident in case C

in Figure 4.5.

The drifter distributions shown in Figures 4.3 and 4.4 are consistent with the lower

right panel of Figure 4.6 corresponding to N = 80. (The magenta circles in this panel
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mark the drifter release points in Figures 4.3 and 4.4.) Drifters released at locations

where Δ(x0, y0|r0, N) is near zero (e.g., the magenta circles in the dark blue regions

in Figure 4.6) tend to retain an elliptical shape. On the other hand, drifters released

at locations where Δ(x0, y0|r0, N) is high, (e.g., the magenta circles in the light blue

to red regions) evolve into “banana” shaped contours.

4.4 Using Δ to Predict EnKF Failure

Some illustrative examples of data assimilation are now presented for both the EnKF

and the PF. It will be shown that the map of Δ is useful in interpreting the perfor-

mance of the EnKF.

Some relevant data assimilation experiments have been performed by Kuznetsov

et al. [2003] and Ide et al. [2002]. In these works a continuous time analogue of the

SAVM was used in conjunction with the extended Kalman filter. The results with

respect to the release locations found by Kuznetsov et al. [2003] generally agree with

the results for the EnKF presented in this section. The main differences with the

present work is the use of the EnKF rather than the simpler EKF, the use of the

SAVM which is much simpler and more computationally efficient than its continuous

time analogue, and finally the use of Δ to predict when the EnKF will perform poorly.

The experiments performed in this subsection are similar to the runs illustrated in

Figures 4.3 and 4.4. The main difference is that a data assimilation step is included

halfway through the model run. Each experiment consists of a set of two assimilation

runs, one using the PF and the other using the EnKF. The only parameter that varies

amongst the sets of experiments is the release point of the drifters.

For each set of runs, all drifters in the ensemble are released at the same point and

so the standard deviation of prior drifter position, σpr,d, is 0 (i.e., the release point of

the drifter is assumed known). The prior for the center was Gaussian with a mean

at the origin and an isotropic standard deviation of 0.2, i.e. the exact position of the

center, and thus the flow field, is not known exactly and is to be inferred from the
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drifter observations. The standard deviation of the model error for the drifter and

center are taken to be σd = 0.025 and σc = 0 respectively. The model is integrated

for N = 80 time steps and an observation of drifter position data is assimilated half

way through the integration (at time step Nobs = 41).

To generate the observed drifter position at time step 41, a reference run was

made with (i) the same drifter release location, (ii) the center at the origin, and

(iii) σd = σc = 0. The form of the EnKF implemented in this thesis does not

generate pseudo observations because this leads to an inflation of the observation

error variance (the observations are already subject to error) but it was assumed that

the observation noise was not zero i.e., σobs,d = 0.05. Thus the assimilation scheme is

fed perfect observations but told that the observations are imperfect. No observations

of the center are used; this corresponds to taking a very large value for σobs,c. The

initial assumed position of the center is centered on the origin with an uncertainty

given by σobs,c. The goal of the experiments is to determine how quickly the two data

assimilation methods can determine the center is at the origin given observations

associated with different drifter release points. The position of the center defines the

complete flow of the SAVM and so the faster the assimilation method finds the true

location of the center (i.e. the origin) the better the assimilation scheme can predict

the flow and drifter position.

The PF was run with NPF = 10000 ensemble members. The EnKF was run by

taking 100 ensembles each of size 100 and averaging the forecast error covariance

matrices. In this way the (statistical) number of ensemble members for the PF and

the EnKF are effectively the same. Applying the EnKF with one ensemble of size

10000 instead would ’blow’ up the model due to the large matrices and the subsequent

memory usage involved.

Figure 4.8 shows the performance of the PF for a release point in the vicinity

of inflowing manifolds (see corresponding magenta circle in the upper right panel of

Figure 4.6). The Δ map for N = 40 and r0 = 0.2 in Figure 4.6 suggests that this

release point will be dispersed in a non-gaussian shape and the EnKF may encounter
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difficulties. The top left panel shows the prior pdf for the center (shown by the

circle contours centered on the origin), and also the release point of the drifters. The

top right panel shows the marginal pdf of drifter position just before the data are

assimilated (blue lines). Given σc = 0 the marginal pdf of the position of the center

has not changed. The bottom left panel shows the posterior pdf of drifter position

after the drifter observation (shown by the green dot) has been assimilated. Note

that the pdf has collapsed onto the observation point with a standard deviation that

is effectively set by σobs,d. The posterior pdf of the center would be shown by the

red contours, which in this case have collapsed on the red cross, i. e., the PF has

effectively pinned down the correct position of the center (shown by the posterior

pdf concentrated at the origin). The red and blue crosses show the mean of the pdf

for the center and drifter positions respectively. The bottom right panel shows the

marginal pdf after 40 additional time steps following the assimilation step. Note the

pdf is again starting to develop non-gaussian contours.

Figure 4.9 shows the corresponding results for the EnKF. In this case the pdf

at time steps 40, 41 and 80 are shown as a Gaussian pdf with the same mean and

standard deviation as the ensemble. It is clear (compare the upper right panels of

Figure 4.8 and 4.9) that the Gaussian assumption in this case is highly suspect with

the result that there are significant errors in the marginal pdf of drifter position and

the center at time step 80 (lower right panel). It should be noted that the ensemble

of the EnKF is resampled from the posterior pdf (i.e. only the mean and covariance

are used to regenerate the ensemble) and this avoids the collapse of the ensemble;

the resampling also destroys any information beyond the second moment, i. e. any

information on the non-Gaussian structure of the pdf. It is important to note that the

PF will always give the correct pdf for the drifters and center if the model (including

error parameters are correct and a sufficiently large number of particles are used.

Hence any discrepancies between the results from the PF and EnKF are due to errors

in the EnKF.

Figures 4.10 and 4.11 show the performance of the PF and EnKF respectively for
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drifters released near the inflowing manifold at (−0.25, 0.25), close to the center (see

corresponding magenta circle in the upper right panel of Figure 4.6). As the drifters

approach the center they can follow, with approximately equal probability, one of the

two outflowing manifolds. The right top panel of Figure 4.10 shows the marginal pdf

(blue contour lines) of the drifter locations just before the data assimilation step. As

expected the marginal pdf follows approximately the contour lines of the outflowing

manifold. The corresponding Gaussian pdf in the upper right panel of Figure 4.11

covers a larger region, indicating greater uncertainty in the true drifter location when

expressed as a Gaussian distribution.

The assimilation at time step 41 resets the positions of the drifters in the PF and

EnKF at approximately at the same location (blue cross). The PF estimates the

center (red cross) of the SAVM almost exactly at the true location (0, 0) with a small

uncertainty (Figure 4.10, lower left panel). The EnKF estimates the center to be

slightly south of the true center (0, 0) but with a significant uncertainty remaining.

As a result, the drifter location at time step 80 is estimated with a high uncertainty

too, compared to the PF (compare lower right panels of Figure 4.10 and 4.11). The

results of the data assimilation methods confirm, similar to the previous experiment,

the predictions made by the map of Δ.

Although the EnKF can fail in regions of strong nonlinearity, it can perform well

elsewhere. One region where the EnKF performs as well as the PF is in the ghost

vortices. Figures 4.12 and 4.13 show the marginal pdf plots for the same four time

steps as above. The pdf of drifter position computed by the EnKF match the results

of the PF almost perfectly. Given that the EnKF uses an order of magnitude fewer

ensemble members than the PF it is the preferred assimilation method in such regions.

To provide an overall picture of where the EnKF fails, and where it performs well,

Figure 4.14 shows a map of the distance between the mean position of the center

calculated by the EnKF and the PF just after the drifter observation is assimilated

(|xKF − xPF |). To produce this map the experiments illustrated in Figures 4.8 to

4.12 were repeated for a grid of release points. At each release point, i.e. grid point
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of the SAV, an ensemble of drifters were released. At a specified time step one drifter

observation was assimilated by the PF and EnKF respectively. This procedure was

applied in sequence to each release point individually. For each release point the

distance between the mean position of the center calculated by the EnKF and PF

was calculated and contoured over the SAVM domain. Four different maps were

produced for a single drifter observation assimilated at time steps Nobs = 21, 41, 61

and 81, respectively.

There is good qualitative agreement between the maps of Δ and |xKF − xPF |
for the center (compare Figure 4.6 and Figure 4.14). In particular the map of Δ

correctly predicts that the EnKF will perform poorly in the vicinity of the Rankine

vortices and along the inflowing manifolds. It also predicts correctly that the region

of poor performance of the EnKF (compared to the PF) extends with increasing Nobs.

Hence the map in Figure 4.6 can be used to anticipate which assimilation method

will be most effective for particular regions and observation intervals. This point is

reconsidered in the final section of this chapter.

4.5 Sensitivity to Model Parameters

The sensitivity of the performance of the EnKF to changes in model parameters, and

the time to the first observation, Nobs, is explored. The methodology is similar to that

used above: for a given set of parameters the EnKF and PF are used to assimilate

a single drifter observation generated by running the SAVM without model error

and with the center exactly at the origin. The release point of the drifter is assumed

known (σpr,d = 0) and the position of the center is assumed uncertain with a Gaussian

prior with a mean at the origin and a standard deviation of σpr,c. Although an error

free observation of drifter position is fed to the assimilation scheme, the standard

deviation of the observation error, σobs,d, is not assumed zero. As above, the standard

deviation of the model error for the center is taken to be σc = 0.
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4.5.1 Performance Metrics

The metrics used to assess the performance of the assimilation schemes are based on

distances between positions of the center or drifter, based on truth or estimates by

the assimilation schemes. The following four metrics are used:

1. |xPF−xT |d for the drifter: This metric is the distance between the mean position

of the drifter calculated using the PF and the true drifter position (xT ).

2. |xPF − xT |c for the center: Similar to the above metric but for mean position

of the center.

3. |xKF − xPF |d for the drifter: This metric is the distance between the mean

position of the drifter calculated using the PF and the EnKF. This is taken as

the error in drifter position due to using the EnKF.

4. |xKF − xPF |c for the center: Similar to the above metric but for mean position

of the center.

All of the metrics were evaluated at time step 2Nobs. The reason for not using

time Nobs is that the assimilation pulls the drifter ensemble back to the observation

and the spread of the ensemble is effectively controlled by σobs,d. (This is evident in

the lower left panels of Figures 4.8 to 4.13) By evaluating the metrics at 2Nobs allows

the errors in the center to affect the drifter position after the assimilation time.

For a given set of parameters the above calculation was performed for a set of

release points on a 64 × 64 grid that covered the model domain. The above metrics

for each release point were then contoured across the SAVM domain. The PF used

an ensemble size of 10000. The PF also uses 30 MCMC steps and the prior as the

proposal distribution. The EnKF used an ensemble size of 100 particles but the

experiments were repeated 100 times and the results averaged to give an effective

sample size of 10000.

A typical set of plots for the four metrics is shown in Figure 4.15. The upper

panels show the distance between the mean drifter position and truth (left panel)
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and center and truth (right panel). The lower panels show the distances between the

drifter position calculated with the EnKF and PF (left panel) and center calculated

with the EnKF and PF (right panel). By varying the parameters it has been possible

to map out the sensitivity of the four metrics to changes in the prior for the center

(σpr,c), the time to the first observation (Nobs), the size of the model error for the

drifter (σd), and the observation error (σobs,d). The exact parameter settings for the

various experiments, and the numbers of the figures that map the metrics, are given

in Table 4.1.

Exp. σd σpr,c σobs,d Nobs Figure
E0 0.025 0.2 0.05 20 4.15
E1 0.025 0.1 0.05 20 4.16
E2 0.025 0.3 0.05 20 4.17
E3 0.025 0.2 0.05 10 4.18
E4 0.025 0.2 0.05 40 4.19
E5 0.050 0.2 0.05 20 4.20
E6 0.075 0.2 0.05 20 4.21
E7 0.025 0.2 0.10 20 4.22

Table 4.1: Model parameters used in experiments E0 to E7. σd is the drifter model
error, σpr,c is the standard deviation of the prior pdf for the center, σobs,d is the drifter
observation error, Nobs is the time to the first observation. The total length of each
run is 2Nobs. The threshold and swirl speed for the Rankine vortices were 0.05 and
π/30 respectively. The model noise for the center is zero. The position of the center
is not observed and so σobs,c is effectively infinite.

4.5.2 The Sensitivity Maps

Maps of |xPF−xT | and |xKF−xPF | for the drifter and center are plotted in Figures 4.15

to 4.22. The format is the same for each of the figures. The upper panels show errors

in PF estimates of position relative to their true values. The lower panels show the

distance between the estimates of drifter and center position calculated by the EnKF

and PF. Given the PF will always give the correct answer given a sufficiently large
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ensemble size, the lower panels can be interpreted as errors associated with the use

of the KF.

Overall similar features can be seen in all of the plots. The upper right panels

show |xPF−xT | for the center. The largest errors made by the PF when predicting the

position of the center are associated with drifters that are released in the far field (i.e.,

|x| greater than about 2). The reason is that the flow in the far field is not sensitive

to changes of the position of the center and so drifters moving in this region do not

effectively constrain the center. Closer to the center, and the positions of the Rankine

vortices, the values of |xPF − xT | for the center show a complex structure. There are

clearly some release points in this region for which the PF has difficulty pinning

down the center. The PF generally does well if the drifters are released in the ghost

vortices (centered on x = 0). This can be explained by the small velocity gradients

in this region and hence the slow, and easily predictable, movement of the drifter

trajectories. Another region of drifter release for which the PF can accurately predict

the drifter position is close to the center of the Rankine vortices. For computational

reasons the Rankine vortices were designed to have near solid body rotation around

their centers (i.e., through the use of the threshold value). One consequence is that

within the threshold region the drifter trajectories are simple and the PF has little

difficulty inferring the true position of the center.

The upper left panels of Figures 4.15 to 4.22 show |xPF − xT | for the drifter. As

for the center, the PF has difficulty pinning down the true position of the drifter

in the far field. This is due to the difficulty in pinning down the center, and also

the strong velocities in the far field that tend to amplify errors. The PF also has

difficulty pinning down the position of the drifter for specific release regions close

to the Rankine vortices. More detailed calculations (not shown) were unsuccessful

in providing a simple explanation of these features in the error map. Close to the

centers of the Rankine vortices the stronger velocity gradients may result in a so

called chaotic advection (see Aref [1984]).
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The upper left panels also show for almost all experiments two (symmetric) lo-

cations at about (x, y) = (1.5, 045) and (x, y) = (1.5,−0.45) with local maxima of

high errors |xPF − xT |d. The path of drifters released in the near vicinity of these

two locations tend to be split up into two or more directions: One path spirals the

drifters clockwise towards the center of the Rankine vortex, the other paths evolve

along the outflowing manifolds of the hyperbolic points which the drifters pass by.

The magnitude of these two local maxima are proportional with the initial spread of

the center locations, σpr,c, and the length of the observation interval, Nobs. Figure

4.23 shows the final distribution (blue dots) of 200 drifters after 100 time steps. The

figure shows that the drifters follow three distinct paths. The drifters were released

on a circle (red), centered on (x, y) = (−1.5, 0.45), of radius=0.2 (corresponding to

σpr,c = 0.2 as used in most experiments).

The lower panels of Figures 4.15 to 4.22 show the error in position of drifter and

center made by the EnKF relative to the PF. The most important point to note is that,

for all of the figures, the error maps for the center and drifter (left and right panels)

are qualitatively similar to each other and to the maps of Δ shown in Figures 4.6 and

4.7 . This means that the complex spatial structure of the error in the KF can be

explained in terms of the simple measure of non-Gaussianity, Δ. In general the EnKF

performs poorly in the vicinity of the Rankine vortices and on the inflowing manifolds

as mentioned earlier. Figures 4.15 to 4.22 show that this conclusion is robust with

respect to changes in the parameters listed in Table 4.1.

The rest of this subsection describes some of the differences between the various

figures. To simplify the discussion experiment E0 (Figure 4.15 ) is taken as the

reference case against which the other sensitivity runs are compared.

Experiments E1 and E2: These experiments explore the importance of prior

information about the position of the center (see Figures 4.16 and 4.17). In experi-

ment E1 the value of σpr,c is smaller than the reference, thus reflecting greater initial

certainty about the position of the center. In E2 the prior standard deviation reflects

less certainty about the initial position of the center.
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As expected, reducing σpr,c benefits both the EnKF and PF; all 4 performance

metrics generally decrease with lower σpr,c. It is noticeable that the performance of

the EnKF relative to the PF (lower panels) retains the same qualitative shape when

σpr,c is changed. It is also apparent from experiment E1 (see Figure 4.16) that the

EnKF can perform well if the center is initially well known.

Comparison of the lower panels of Figures 4.15 to 4.17 with the Δ maps (upper left

panels of Figures 4.6 and 4.7) shows that nonlinearity around the Rankine vortices

has the largest impact on the estimated position of the center and drifter. Comparing

Figures 4.6 and 4.7 shows the effect on Δ of changing the uncertainty in the release

point of the drifter with respect to the center. Similar behavior is also evident in

the maps of |xKF − xPF |; as σpr,c increases so does the magnitude and extent of

|xKF − xPF | for the drifter and center.

Experiments E3 and E4: These experiments explore the importance of the

observation interval Nobs (see Figures 4.18 and 4.19). In experiments E3 and E4

the observation intervals are half and double of the reference observation time of 20

time steps respectively. Generally the accuracy of the assimilation improves with

decreasing observation interval as expected. To quantify the dependence of the error

on Nobs the total error in the domain region of interest (i.e. the far flow field is

excluded) was calculated for E3, E0 and E4, respectively. The evolution of the total

error with respect to Nobs shows a linear dependence.

In E3 (with relatively frequent observation) the accuracy of the predicted drifter

positions is almost identical for the EnKF and PF as expected. This is because there

is insufficient time for nonlinearity in the flow to generate a non-Gaussian pdf. This

behavior is also evident in the Δ maps; as the time interval decreases so does the

magnitude and extent of the high Δ regions.

Experiments E5 and E6: These experiments explore the importance of the

model error for the drifter, σd (see Figures 4.20 and 4.21). In experiments E5 and E6

the drifter model error is twice and three times the reference value, respectively. The
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main result is that the results for E5 and E6 are nearly identical to E0. This implies

that the drifter model error has little impact on the data assimilation as long as the

error is within certain bounds. The reason is that the drifter is brought back to the

observed value when the data are assimilated. To quantify the dependence of the error

on σd the total error in the domain region of interest (.i e. the far flow field is excluded)

was calculated for experiments with σd = 0.025 (E0), 0.05(E5), 0.075 (E6), 0.15, 0.3

and 0.5, respectively. The evolution of the total error with respect to σobs,d slightly

oscillates. From σd = 0.025 to 0.05 the error increases, decreases for 0.075 and

increases thereafter until σd = 0.3. For σd = 0.5 the error decreases again but

the assimilation nevertheless breaks down and the center position can not longer be

determined.

Experiment E7: In this experiment the impact of drifter observation error σobs,d

is examined. The observation error of the drifter, σobs,d, is doubled compared to E0.

Comparing Figures 4.22 and 4.15 shows only minimal differences in the results. The

reason is as above: the drifter is brought back to the observed value when the data

are assimilated. To quantify the dependence of the error on σobs,d the total error in

the domain region of interest (i.e., the far flow field is excluded) was calculated for

experiments with σobs,d = 0.1 (E8), 0.15, 0.2 and 0.3, respectively. The evolution of

the total error with respect to σobs,d shows a weak quadratic dependence. For a value

of σobs,d > 0.3 the assimilation breaks down and the center position can no longer be

determined.

4.6 Discussion

Although the dimension of the state vector describing the SAVM is only 2, the SAV’s

flow fields are quite complex and the pdf of passively advected particles can quickly

become non-Gaussian for particles released in some regions. One way to describe

the steady flow field of the SAVM is using concepts taken from dynamical systems

theory. By tracing the trajectories of passively advected particles it is possible to

show that the flow field has 4 elliptic points and 3 hyperbolic points. The hyperbolic
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points each have inflowing and outflowing manifolds. It is also possible to define

separatrices that partition the flow domain into separate regions that do not allow

exchange of advected particles. While these concepts are fundamental, they are of

limited usefulness when the flow field, and the drifter trajectories, evolve with time

according to a stochastic updating equation, i.e., when the model for drifter and

center motion includes a random error term.

In order to quantify the evolution of non-Gaussianity in the pdfs of drifter and

center position, the metric Δ was introduced. The metric has two attractive features:

It is easy to calculate and simple to interpret. It was shown that Δ is useful in terms

of understanding why the EnKF will perform poorly compared to the PF. In general

the regions of poor EnKF performance for the flow fields considered here coincide with

inflowing manifolds and the fast, strongly curved flows around the Rankine vortices.

If the drifters are released in these regions the flow field should be estimated using the

computationally more expensive PF. It is important to note that inflowing manifolds

will not always be associated with poor EnKF performance. This is clear when one

considers a simple flow field with velocity field given by u = x, v = −y. This flow

field has a hyperbolic point at the origin but the linearity of the transformation means

that the performance of the EnKF will match that of the PF everywhere. This is

consistent with the map of Δ which is zero everywhere for this flow field.

The four performance metrics gave some insight into the best regions to deploy

drifters in order to estimate the flow field of the SAV. It was shown that deploying

the drifters in the ghost zones generally gives good estimates of the positions of

the center (and thus the positions of the self advecting vortices). For the parameter

settings considered in this study, if the self advecting vortices are centered on x = ±1,

y = 0 then the drifter should ideally be released in the vicinity of x = 0, y = ±1.

Sensitivity experiments were performed to understand how the performance of

the data assimilation schemes depend on the model parameters and the way the

observations are collected. Overall the parameters that have the strongest impact on

the performance of the data assimilation are (i) the release point of the drifter, (ii)
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the time between the drifter observations, and (iii) the prior pdf for the flow field.

For the studies undertaken here, the observation error for drifter position, and also

model error for drifter evolution did not have much impact on the performance of the

schemes.
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Figure 4.1: Basic setup of the illustrative example. The black lines show the tra-
jectories of selected particles advected by the SAVM and are used to visualize the
flow field. The red line is the trajectory of a drifter over a time span of 100 time
steps after being released at the red cross. The red circles show the positions of the
particle at times Nobs = 31, 61 and 91. The black circle shows the center of the SAVM
and the black crosses show the center of the Rankine vortices used to generate the
trajectories. The black square marks the center of the Gaussian prior for the center
used in the example.
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Figure 4.2: Performance of the EnKF and PF for the illustrative example. The red
lines show the true trajectory of the drifter and the center. (Note that the true center
does not move in this experiment.) The red circles correspond to the circles in Figure
4.1 and mark the observed drifter locations that were assimilated. The black lines
show the trajectory of the mean drifter position estimated by the EnKF and PF; the
shaded areas show the standard deviation of the marginal pdf of drifter and center
position calculated from the ensembles.
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Inflowing manifolds Outflowing Manifolds

Figure 4.3: Typical drifter displacements as a function of release point. For each
panel the red circle marks the release points of 100 drifters evenly distributed around
a circle of radius r0 = 0.1. The blue crosses show the positions of the drifters after
N = 80 time steps. The left panels show typical distributions of drifters released in
the vicinity of inflowing manifolds (circles centered on (−2.0, 0.4) and (−0.1, 0.1)).
The right panels correspond to outflowing manifolds (circles centered on (2.0, 0.4) and
(0.1, 0.1)). The black lines show the trajectories of drifters advected with no model
error (σd, σc both zero) and a center exactly at the origin.
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Rankine Vortex Ghost Vortex

Figure 4.4: Typical drifter displacements as a function of release point. Same format
as Figure 4.3. The left panels show flow pattern of drifters released in the vicinity of
a Rankine vortex, (−1.0,−0.25) and (−1.0,−0.4) respectively; the right panels show
the flow patterns of drifters released in the ghost vortices, (0.0, 1.65) and (−0.25, 1.65)
respectively.
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Figure 4.5: A simple measure of non-Gaussianity. Four pairs of typical pdf are shown
before and after advection. The circular boundary of the blue patch shows the initial
distribution of a large number particles centered on the black cross. The mean position
of the particles is marked by the inner circle which, for the blue patch, coincides with
the cross. The boundary of the red patch shows the position of the particles after
advection. The red circle marks the position of the particle that was initially at the
center of the circle; the red cross is the mean position of the drifters that initially
formed the boundary of the blue patch. The nonlinearity measure Δ is the distance
between the red cross and the red circle. Note that for these examples the area of
the red and blue patches are identical because the mapping is area preserving (and
generated by the SAV).
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Figure 4.6: Map of Δ(x0, y0|r0, N) for N = 20, 40, 60 and 80 as a function of release
point (x0, y0). The radius r0 of the release circle is r0 = 0.2. The 8 magenta circles
in the lower right panel (N = 80) show the drifter release locations in Figures 4.3
and 4.4. The 3 magenta circles in the upper right panel (N = 40) show the release
locations as used for figures 4.8 4.9, 4.10, 4.11, 4.12 and 4.13
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Figure 4.7: Map of Δ(x0, y0|r0, N), same format as for Figure 4.6 but with an in-
creased r0 = 0.3.
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Time=1 Time=40

Time=41 Time=80

PF: σc=0 σd=0.025 σobs,d=0.05 σpr,c=0.2

Figure 4.8: Typical results from the Particle Filter. The upper left panel shows the
release point of the drifters (−2.0, 0.4) and the prior pdf of the center (red lines).
For all marginal pdfs the isolines mark the 50 and 90 percentiles. In the remaining
panels the red and blue contours show the pdf of the position of the center and drifter
respectively. One single drifter observation (green dot) is assimilated at time step 41
(lower left panel). The red and blue crosses show the mean position of the ensemble
of centers and drifter positions respectively.
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Time=41 Time=80

EnKF: σc=0 σd=0.025 σobs,d=0.05 σpr,c=0.2

Figure 4.9: Performance of the EnKF. Same format as Figure 4.8.
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Time=1 Time=40
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PF: σc=0 σd=0.025 σobs,d=0.05 σpr,c=0.2

Figure 4.10: Performance of the Particle Filter. Same format for Figure 4.8.
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Time=1 Time=40

Time=41 Time=80

EnKF: σc=0 σd=0.025 σobs,d=0.05 σpr,c=0.2

Figure 4.11: Performance of the EnKF. Same format as Figure 4.8.
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Time=1 Time=40

Time=41 Time=80

PF: σc=0 σd=0.025 σobs,d=0.05 σpr,c=0.2

Figure 4.12: Performance of the Particle Filter. Same format for Figure 4.8 .
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Time=1 Time=40

Time=41 Time=80

EnKF: σc=0 σd=0.025 σobs,d=0.05 σpr,c=0.2

Figure 4.13: Performance of the EnKF. Same format as Figure 4.8.
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Figure 4.14: Error in the EnKF as a function of drifter release point. The shading
shows the distance between the mean position of the center calculated by the EnKF
and PF. Each panel corresponds to a different time, Nobs, just before a single drifter
observation is assimilated. The following model parameters were used for all of the
four experiments: model error for the drifter and center locations are σd = 0.025
and σc = 0, respectively, and the observation error for the drifter is σobs,d = 0.05, no
observations are available for the location of the center. The initial spread (variance)
of the center locations for each state vector is σpr,c = 0.2.
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Figure 4.15: Error maps for experiment E0 (see Table 4.1 for parameter settings).
The white isolines show the steady particle trajectories. The upper panels show the
distance between the true location (of drifter and center) and the mean locations com-
puted using the PF; the lower panels show the distance between positions estimated
by the EnKF and the PF.
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Figure 4.16: Performance metrics for experiment E1. Same format as Figure 4.15.
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Figure 4.17: Performance metrics for experiment E2. Same format as Figure 4.15.
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Figure 4.18: Performance metrics for experiment E3. Same format as Figure 4.15.
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Figure 4.19: Performance metrics for experiment E4. Same format as Figure 4.15.
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Figure 4.20: Performance metrics for experiment E5. Same format as Figure 4.15.
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Figure 4.21: Performance metrics for experiment E6. Same format as Figure 4.15.
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Figure 4.22: Performance metrics for experiment E7. Same format as Figure 4.15.
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Figure 4.23: Final distribution (blue dots) of 200 drifters after 100 time steps.
The figure shows that the drifters follow three distinct paths, clockwise around the
Rankine vortex and along the outflowing manifolds of the left and center hyper-
bolic points, respectively. The drifters were released on a circle (red), centered on
(x, y) = (−1.5, 0.45), of radius=0.2 (corresponding to σpr,c = 0.2 as used in most
experiments).



Chapter 5

Discussion

The overall objective of this study is to quantify how well the ocean mesoscale can

be mapped in an Eulerian frame of reference by assimilating Lagrangian float tra-

jectories. An important related objective is to compare the performance of two very

different assimilation methods, the EnKF and PF, and assess their strengths and

weaknesses using a highly idealized model of the ocean mesoscale.

Chapter 2 provides an overview of ocean data assimilation using a Bayesian frame-

work and a consistent mathematical notation. Several assimilation schemes are intro-

duced including the linear Kalman Filter, its non-linear extension (Extended Kalman

Filter), a version based on ensemble methods (Ensemble Kalman Filter), and the Par-

ticle Filter. Following their description, the various assimilation methods are tested

using a simple but relevant ocean model, i.e., the linear Stommel model. Although

simple, the Stommel model supports some of the most important features found in

more complex models of the large scale ocean circulation including westwards prop-

agating Rossby waves, intensification of western boundary currents, and Sverdrup

balance in the interior ocean. The model is subsequently used in a series of identical

twin experiments in order to illustrate the various assimilation schemes. It is shown

that the linear and Extended Kalman Filter perform very well as expected (not sur-

prising given the linearity of the Stommel model). It is also shown the Ensemble

Kalman Filter performs well. The Particle Filter also recovers the true state accu-

rately except for the very easterly border region of the model domain; the addition

of an extra MCMC step in the PF improves the assimilation results and the eastern

boundary is better recovered. All experiments show that the quality of the estimated

true state improves with the number of observations as expected.
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In chapter 3 a new idealized model is introduced based on two co-rotating, self ad-

vecting vortices: the Self Advecting Vortex Model (SAVM). It is meant to represent,

in the simplest way possible, the interaction of two ocean eddies and their impact

on the trajectories of passively advected particles. It is based in part on the ideas of

Aref (1984) who modeled “chaotic advection” using a system of point-vortices that

could move or ”blink” thus making the Eulerian flow unsteady and the trajectories of

advected particles potentially chaotic. One attraction of Aref’s approach is that there

is no error in the integration of dx/dt = u(x, t) because the displacements over each

“blink” are specified analytically. This is one reason the SAVM is an improvement

over the more complex, continuous-time model of Kuznetsov et al. (2003). Another

reason the SAVM is more attractive than the Kuznetsov et al. model is that it is very

cheap to run, making it ideal when carrying out a large number of sensitivity stud-

ies involving parameters such as model noise and drifter release points. To increase

the relevance of the SAVM, the evolution of the saddle point are allowed to evolve

stochastically. This random component to the model was shown to have a significant

effect on the trajectories of the drifters. The position of each drifter, following ad-

vection by the vortices, was also been assumed to be changed by the addition of a

random forcing which represents unknown and unresolved dynamical processes of the

model.

The SAVM supports a rich array of flow fields. By tracing the trajectories of

passively advected particles it is possible to show that the flow field has 4 elliptic points

and 3 hyperbolic points. The hyperbolic points each have inflowing and outflowing

manifolds. It is also possible to define separatrices that partition the flow domain

into separate regions that do not allow exchange of advected particles. Ensembles

of pseudo drifters released in the model’s flow field were used to detect and evaluate

situations where assimilation methods might break down. Two different types of

experiment are performed, i.e. experiments with uncertain drifter release locations

and experiments with uncertain model dynamics. The objective of these experiments

was to determine the probability density functions (pdf) of the location of the drifters
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and the (moving) center, and to determine when they take on a non-Gaussian shape.

To quantify the onset of non-Gaussianity a new metric, Δ, was introduced. The

new metric is both simple to calculate and interpret. The experiments gave two

main results. The first result is that increasing uncertainty in the model’s dynamics

causes the pdfs of the drifter and center to become more non-Gaussian, as expected.

The second, and more important, result is that the pdf of drifter position depends

strongly on the release location and the growth of non-Gaussianity can be effectively

summarized in a map of Δ.

In Chapter 4 the performance of the Ensemble Kalman Filter and Particle Filter

were evaluated in a series of identical twin experiments based on the SAVM. The

results of Chapter 3 were used to design the assimilation experiments i.e., where

drifters are released in the SAVM, the parameter settings, the locations and timing

of observations, and motion of the moving saddle point. The goal of the assimilation

experiments was to evaluate the limits of the Ensemble Kalman Filter or, equivalently,

when it is outperformed by the Particle Filter. Using the Δ metric it was shown that

the Ensemble Kalman Filter typically performs poorly in regions of high Δ and drifter

release locations located close to, or on, inflowing manifolds. The latter are regions

where the probability distributions of drifter position typically become very non-

Gaussian. A suite of performance metrics gave some insight into the best regions in

which to deploy drifters in order to estimate the flow field of the SAV. For example it

was shown that deploying the drifters in the ghost zones generally gave good estimates

of the position of the center (and thus the positions of the self advecting vortices).

Sensitivity experiments were also performed to understand how the performance

of the data assimilation schemes depend on the model parameters and the way the

observations are collected. Overall the parameters that have the strongest impact on

the performance of the data assimilation are (i) the release point of the drifter, (ii)

the time between the drifter observations, and (iii) the prior pdf for the flow field.

For the studies undertaken here, the observation error for drifter position, and also

model error for drifter evolution did not have much impact on the performance of the
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schemes.

The computationally cheaper Ensemble Kalman Filter only fails in limited re-

gions of the SAVM flow field while performing at least as well as the Particle Filter

elsewhere. However, the regions where the Ensemble Kalman Filter does fail are

important because they are usually around inflowing manifolds. In order to form an

efficient and effective assimilation scheme, and at the same time minimize unnecessary

computational load, a new assimilation method is needed, possibly based on a modi-

fied or hybrid approach based on a combination of the Ensemble Kalman Filter and

the Particle Filter, or the Ensemble Kalman Filter augmented by MCMC. The devel-

opment of this type of hybrid in more realistic ocean models (e.g., a quasi-geostrophic

model) should be considered for a future project or thesis.
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Appendix A

The Linear Stommel Model

One of the simplest ocean models that includes a western boundary current is the

linear Stommel model. The time dependent form of the Stommel model is based on

the following equations:

ut − fv = −gηx + τx − λu (A.1)

vt + fu = −gηy + τ y − λv (A.2)

ηt +H(ux + vy) = 0 (A.3)

where (u, v) denote the velocities in zonal and meridional directions respectively, η

is the sea surface elevation, f is Coriolis parameter, (τx, τ y) are the wind stresses in

zonal and meridional directions respectively, and λ is the friction parameter. Sub-

scripts denote derivatives.

Taking the curl of (A.1) and (A.2), and assuming a rigid lid, leads to the follow-

ing vorticity equation:

∂

∂t
(vx − uy) + f(ux + vy) + βv = Φ− λ(vx − uy) (A.4)

where β = fy and Φ is the curl of the wind stress. Introducing a stream function ψ

such that v = ψx and u = −ψy, it follows

vx − uy = ∇2ψ. (A.5)
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Assuming variations in the meridional direction are periodic with wave number l, the

vorticity equation can be written

∂
∂t
(ψxx − l2ψ) + βψx = Φ − λ(ψxx − l2ψ)

I II III IV
(A.6)

The following balances can be interpreted:

• The balance between II and III holds for the interior of the ocean in steady

state and is the so called Sverdrup balance.

• The balance between I and II is the unforced, non dissipative form of (A.6) and

describes propagating barotropic Rossby waves with the following dispersion

relation

ω =
−βk
k2 + l2

(A.7)

where k is the zonal wave number.

• For a steady state (or slowly varying) solution the balance of II and IV (creation

and dissipation of vorticity) holds for the western boundary current region where

ψxx varies rapidly. The width Ls of the western boundary current can be derived

from this steady state balance and is given by Ls = λ/β. This is called the

Stommel width.

Before discretizing, (A.6) is non-dimensionalized. This is done by scaling such that

x = Lx∗ where L is the ocean width and t = (1/βL)t∗. The non-dimensionalized

form of (A.6) becomes

∂

∂t∗
(ψx∗x∗ − (lL)2ψ) + ψx∗ =

L

β
Φ− λ

βL
(ψx∗x∗ − (lL)2ψ) (A.8)

A.1 Discretization Of The Vorticity Equation

Let ψt denote the spatially discretized form of ψ(t, x):
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ψt = (ψ(Δx, t) ψ(2Δx, t) ... ψ(NΔx, t)) (A.9)

where N is the number of interior grid points. First and second derivatives of

ψ with respect to x can be approximated by the forms Mxψt and Mxxψt where Mx

and Mxx are tridiagonal matrices depending on the grid spacing. Substituting the

discretized derivatives of ψ(t, x) into (A.8) gives

∂

∂t
[Mxx − l2]ψt +Mxψt + λ[Mxx − l2]ψt = Φ (A.10)

with the following changes in notation: ∂
∂t∗ → ∂

∂t
, λ

βL
→ λ, (lL)2 → l2 and L

β
Φ → Φ.

If the time derivative in (A.10) is approximated by the standard finite difference

form we arrive at the following updating equation for the N × 1 state vector ψt:

ψt+1 = Dψt + qt+1 (A.11)

where D =M−1
1 M2 with

M1 =
1

Δt
[Mxx − l2] + (1− θ)(Mx + λ[Mxx − l2]) (A.12)

and

M2 =
1

Δt
[Mxx − l2]− θ(Mx + λ[Mxx − l2]). (A.13)

and Δt is the scaled model time step. The parameter θ controls the extent to which

the scheme is explicit (θ = 0) or implicit (θ = 1). The vector qt represents ”forcing”.



Appendix B

Pseudo codes for the SIS, generic Particle Filter,

SIR Filter and Resample Routine

All listings are taken from Ristic et al. [2004].

B.1 Filtering via SIS

[{xik, wi
k}Ni=1] = SIS[{xik−1, w

i
k−1}Ni=1, zk]

• FOR i = 1 : N

– Draw xik ∼ q(xk|xik−1, zk)

– Evaluate the importance weights up to a normalizing constant

w̃i
k =∝ wi

k−1

p(zk|xi
k)p(x

i
k |xi

k−1)

q(xi
k|xi

k−1,zk)

• END FOR

• Calculate total weight: t = SUM [{w̃i
k}Ni=1]

• FOR i = 1 : N

– Normalize: wi
k = t−1w̃i

k

• END FOR

B.2 Generic Particle Filter

[{xik, wi
k}Ni=1] = PF [{xik−1, w

i
k−1}Ni=1, zk]
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• Filtering via SIS (B.1):

[{xik, wi
k}Ni=1] = SIS[{xik−1, w

i
k−1}Ni=1, zk]

• Calculate Neff using equation (2.57)

• IF Neff < Nthr

– Resample using algorithm (B.4):

[{xik, wi
k}Ni=1] = RESAMPLE[{xik, wi

k}Ni=1

• END IF

B.3 Filtering via SIR

[{xik}Ni=1] = SIR[{xik−1}Ni=1, zk]

• FOR i = 1 : N

– Draw xik ∼ p(xk|xik−1)

– Calculate w̃i
k = p(zk|xik)

• Calculate total weight: t = SUM [{w̃i
k}Ni=1]

• FOR i = 1 : N

– Normalize: wi
k = t−1w̃i

k

• END FOR

• Resample using algorithm (B.4):

[{xik}Ni=1] = RESAMPLE[{xik, wi
k}Ni=1
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B.4 Resample Algorithm

[{xj∗k , wj
k}Ni=1] = SIR[{xik, wi

k}Ni=1]

• Initialize the cumulative sum of weights (CSW): c1 = w1
k

• FOR ii = 2 : N

– Construct CSW: ci = ci−1 + wi
k

• END FOR

• Start at the bottom of the CSW: i = 1

• Draw a starting point: u1 ∼ U [0, N−1]

• FOR j = 1 : N

– Move along the CSW: uj = u1 +N−1(j − 1)

– WHILE uj > ci

∗ i = i+ 1

– END WHILE

– Assign sample: xj∗k = xik

– Assign weight: wj
k = N−1

• END FOR



Appendix C

The Markov Chain Monte Carlo Move Step

The appropriate choice of the proposal density q(x) is critical for the success of se-

quential importance sampling (SIS). SIS can only work well if the proposal density

q(x) is similar to the true density π(x). For complex systems it is in general difficult

to define a proposal density q(x) that satisfies this property.

Since the SIR filter is directly derived from the SIS the SIR filter inherits the

problem for the need of an appropriate proposal density q(x). In order to overcome

this difficulty a method has been developed unknown as the Markov Chain Monte

Carlo (MCMC) step. There exist several derivations how to perform this method and

one of the most known is the Metropolis-Hastings method.

The main idea of the Metropolis-Hastings method is to simulate the given n-

dimensional distribution π(xik) that has density π(x) with respect to some dominating

measure. xik ∈ �n and i = 1 . . .N where N is the number of ensemble members. The

method constructs for a given pdf π(xik) a reversible Markov Chain whose stationary

distribution is the distribution π(xik). To construct the Markov Chain the Metropolis-

Hastings method makes use of the proposal density q(x) which depends on the current

state, denoted by q(·|xk), e.g. q(x
′ |xk) where xk denotes the current state and x

′

denotes an approximation of the current state. Most importantly is that the proposal

density q(x
′ |xk) can be any fixed density from which one can draw samples, i.e.

q(x
′ |xk) does not have to be similar with the true density π(x). Of course there are

proposal densities that work better than others for a given type of model.

The description of the Markov Chain Monte Carlo (MCMC) move step follows the

theoretical foundations given in (Gilks and Berzuini [2001]). The main idea behind

the MCMC move step is that a resampled ensemble member xik is moved to a new
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state xi∗k
xi∗k = xik + hoptDk, (C.1)

only if ui ≤ α, where ui ∼ U [0, 1] and α is the acceptance probability, where U denotes

a uniform distribution. Otherwise the replacement is rejected and xik stays unchanged.

D has the form of a N × nx and introduces a form of jittering to the ensemble

members where N is the ensemble size and nx the dimension of the ensemble member

(state). The N random vectors of D are picked from a multivariate normal distri-

bution with a mean of zero and a covariance Q of the model error (see chapter 2, 2.12).

The scalar hopt can be viewed as a bandwidth parameter for the jitter. This pa-

rameter is actively adapted at every MCMC move step. The more members xik are

being replaced by xi∗k by the MCMC move step the larger hopt becomes and vice versa.

A large hopt indicates that the distance between the resampled ensemble members xik

and the and the corresponding members of the proposal distribution (C.1) is large.

The acceptance parameter α can be derived from the following idea:

Let Xk = {xj , j = 0, . . . , k}, which represents the sequence of all model states up

to time k.

The desired density of the MCMC step is p(Xk|Zk) which can be expressed (see

equation (2.53)) as

p(Xk|Zk) =
p(zk|xk)p(xk|xk−1)

p(zk|Zk−1)
p(Xk−1|Zk−1) (C.2)

The main goal of the MCMC move step is to maximize the density p(zk|xk)p(xk|xk−1)

in equation (C.2) which is equivalent to maximizing p(zk|xi∗k )p(xi∗k |xik−1) in the MCMC.

Assuming
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• member xik has been created by the resampling step such that

X i
k = {xik, X i

k−1}

• member xi∗k has been generated by sampling from the proposal distribution

q(·|xik), such that

X i∗
k = {xi∗k , X i∗

k−1}

Then the Metropolis-Hastings acceptance probability (see Robert and Casella [1999])

is given by

α = min

{
1,
p(X i∗

k |Zk)q(x
i
k|xi∗k )

p(X i
k|Zk)q(x

i∗
k |xik)

}
. (C.3)

A complete derivation of the acceptance probability can be found in Chuang [2006].

Assuming the proposal density q(·|xik) is symmetric, then q(xi∗k |xik) = q(xik|xi∗k )
and substitution of (C.2) into (C.3) gives the acceptance probability α

α = min

{
1,
p(zk|xi∗k )p(xi∗k |xik−1)

p(zk|xik)p(xik|xik−1)

}
(C.4)

The schematics of a PF with SIR and MCMC move step are shown in figure C.1.

All particle filter based data assimilation experiments and sensitivity studies in this

thesis are based on a form of a particle filter configuration based on a combination of

the SIR filter and the MCMC step. The resampling algorithm we used in the SIR and

MCMC is Kitagawa’s form of ”deterministic resampling” (Kitagawa [1996],Kitagawa

[1998]) rather than the standard form as described above for the SIS procedure.
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Figure C.1: Schematic of a data assimilation procedure using the MCMC move step.


