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ABSTRACT 
 

Lineages of the cyanobacteria Prochlorococcus marinus have diverged into two 
genetically distinct ‘ecotypes,’ high-light adapted (HL) and low-light adapted (LL), 
which thrive under different environmental conditions.  This type of niche differentiation 
in prokaryotes is often accompanied by genetic and genomic divergence.  Differential 
selection pressure associated with ecotype divergence can be analyzed using models of 
codon evolution.  However, some characteristics of the Prochlorococcus genome violate 
underlying assumptions of these models.  For example, high levels of recombination 
between bacterial strains are known to cause false positives for codon models.  Therefore, 
it is important that statistical methods for detecting recombination be reliable.  In Chapter 
2, I evaluate a set of recombination detection methods under four different scenarios 
related to functional divergence: 1) varying tree shape, 2) positive selection, 3) non-
stationary evolution, and 4) varying levels of recombination and divergence.  I find that 
some methods yield inflated false positive rates under an asymmetric topology and 
slightly inflated false positive rates under some non-stationary conditions.  Users of these 
methods should therefore be aware of their performance under conditions relevant to a 
given dataset. 

Another limit posed to codon models by Prochlorococcus is the presence of non-
stationary nucleotide composition.  Current models that infer shifts in selection pressure 
do not account for this type of heterogeneity.  For this reason, in Chapter 3, I conduct a 
simulation to determine the effects of non-stationary evolution on the inference of 
selection pressure.  I find that non-stationary evolution can cause a false signal for a shift 
in selective pressure, making analysis of genes from organisms such as Prochlorococcus 
unreliable. 

I use Prochlorococcus as an empirical supplement to my simulations in Chapters 
2 and 3, analyzing a subset of the core genome for functional divergence and within-gene 
recombination.  While my results are preliminary due to the limitations of current 
analytical methods, they do suggest that both of these processes may play a substantial 
role in the evolution of the Prochlorococcus core genome.  In Chapter 4, I take a more 
focused approach, reanalyzing the cpeB gene, which was previously claimed to have 
signal for positive selection based on analysis with codon models.  Using simulations 
based on parameter values estimated from this specific gene, I conclude that, due to the 
degree of heterogeneity present in the gene, this result could be a false positive.  This 
study provides an example of analysis under conditions that violate an assumption of the 
underlying model.  
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CHAPTER 1:  INTRODUCTION 

 

1.1  PROCHLOROCOCCUS ECOLOGY AND EVOLUTION 

The cyanobacteria Prochlorococcus marinus (Chisholm et al. 1988) is a globally 

significant prokaryote that is well studied, particularly with respect to its ability to inhabit 

a broad range of habitats and its unique genomic features.  Although the smallest strain, 

MED4, has a genome of only 1,657,990 bp (Kettler et al. 2007) and is the smallest known 

phototroph (Strehl et al. 1999), members of the Prochlorococcus genus are among the 

most abundant photosynthetic organisms in the open ocean, responsible for up to 80% of 

primary production in oligotrophic surface waters (Goericke and Welschmeyer 1993; 

Campbell et al. 1994; McManus and Dawson 1994; Vaulot et al. 1995; Suzuki et al. 

1995; Liu et al. 1997).  The extreme abundance and productivity of this organism make it 

important to both ecosystem dynamics and global carbon cycling. 

The success of Prochlorococcus is partly attributed to its ability to inhabit a wide 

range of environmental conditions.  This broad distribution is accomplished through the 

presence of different ecotypes, or strains, that thrive in different habitats.  Although the 

ribosomal RNA of all known Prochlorococcus strains is over 97% identical (Moore et al. 

1998), enough genomic variation exists to cause varied relative fitness under different 

environmental conditions.  In most studies, Prochlorococcus strains are divided into two 

ecotypes, a high-light adapted (HL) ecotype and a low-light adapted (LL) ecotype, based 

on optimal light intensity (Moore et al. 1995; Partensky et al. 1997; West and Scanlan 

1999; Rocap et al. 2002).  Chlorophyll b/a ratios differ greatly between these two basic 

ecotypes (Moore et al. 1995).  In addition, several other factors can affect ecotype 
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abundance, such as temperature, nutrient concentration, trace metal concentration, and 

predator abundance (Mann et al. 2002; Tolonen et al. 2006; West et al. 2001; Moore et al. 

2002; Ahlgren et al. 2006).  Recently, several studies argue that the two ecotype model is 

oversimplified and that as many as six distinct ecotypes might exist (Coleman et al. 2006; 

Johnson et al. 2006; Kettler et al. 2007).  For the purpose of this thesis, however, I choose 

to focus on genetic divergence associated with the divergence of HL and LL metabolism 

in Prochlorococcus, so the two-ecotype model is used (Figure 1.1). 

 

 
Figure 1.1.  Phylogeny of Prochlorococcus 16S ribosomal DNA.  High-light and low-
light adapted ecotypes are separated by a dotted line.  This tree was generated for this 
thesis by using maximum likelihood under and HKY85 model with a gamma distribution 
for among-site rate variation. 
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 The distinction between HL and LL ecotypes is supported by the 

Prochlorococcus phylogeny.  The more recently diverged HL strains form a 

monophyletic clade while the LL strains form a more ancestral grade (Figure 1.1).  

Several interesting patterns of evolution are observed in the Prochlorococcus genome.  

Since its divergence from its closest relative, Synechococcus, strains of Prochlorococcus 

have experienced an overall reduction in genome size (Hess et al. 2001; Dufresne et al. 

2005).  While genome reduction is well documented in endosymbionts (e.g., Moran 

2003; Lane 2007), Prochlorococcus was the first example of this pattern in free-living 

bacteria (Rocap et al. 2003).  The more recently diverged strains, specifically those that 

make up the HL clade, are much smaller (1686 genes in HL strain MED4) than their LL 

counterparts (2200 genes in the most deeply branching MIT9313) (Kettler et al. 2007).  

In endosymbionts, the phenomenon of genome reduction is usually attributed to genetic 

drift due to very small effective population sizes (Moran 2003; Kuo et al. 2009).  

However, since Prochlorococcus is presumed to have one of the largest effective 

population sizes on earth, several studies have proposed alternative explanations for the 

reduction in number of genes, including selection for “streamlining” in order to conserve 

resources in a nutrient poor environment (e.g., Rocap et al. 2003; Dufresne et al. 2005). 

Regardless of the cause, genome reduction is often associated with a shift in 

nucleotide composition.  This pattern is observed many times in endosymbionts (e.g., 

Moran 2003; McCutcheon et al. 2009; Rispe et al. 2004; Kneip et al. 2008) and is also 

apparent in Prochlorococcus genomes (Hess et al. 2001; Dufresne et al. 2005).  The most 

deeply branching LL strain, MIT9313, has an overall GC content of 50.7% while the 

most recently diverged HL strain has a GC content of 30.8% (Kettler et al. 2007; Hess et 
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al. 2001).  This difference in composition may be due to the loss of the mutY gene in HL 

lineages, which prevents certain mutations caused by damaged guanine residues (Kettler 

et al. 2007).  However, codon bias may also arise from other situations, such as 

preferential use of AT-rich codons for energetic purposes or selection for certain codons 

based on tRNA concentrations (Hershberg and Petrov 2008). 

Another mechanism that can shape the evolution of genomes is recombination.  

Recombination, in the form of homologous recombination (HR) or lateral gene transfer 

(LGT), can be an important source of genetic variation by allowing access to an extended 

gene pool (e.g., Koonin et al. 2001; Boucher et al. 2003; Narra and Ochman 2006).  In 

Prochlorococcus, evidence of recombination via phage intermediates is observed in 

several photosynthesis-related proteins, including photosystem II core proteins (Mann et 

al. 2003; Zeidner et al. 2005; Sullivan et al. 2006) and high-light inducible proteins 

(Lindell et al. 2004; Mann et al. 2005).  Since these proteins are associated with light-

based metabolism in Prochlorococcus, LGT and HR may have played a role in the 

divergence of HL and LL ecotypes. 

 The motivation of this thesis is to explore genetic and genomic changes associated 

with the ecological divergence of Prochlorococcus ecotypes.  To accomplish this, I 

examine the two main evolutionary forces acting upon Prochlorococcus genomes: 

functional divergence via substitution and homologous recombination.  However, the 

complex evolutionary history of Prochlorococcus, including non-stationary nucleotide 

composition and evolutionary rate variation, may negatively impact methods commonly 

used for evolutionary analysis.  In the next two sections of the introduction, I discuss the 

two major evolutionary forces as well as current analytical methods. 
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1.2  FUNCTIONAL DIVERGENCE 

Niche differentiation is often accompanied by changes in gene function.  In order to 

better understand the process of functional divergence, several statistical methods have 

been developed to model the process (for reviews see Gaucher et al. 2002; Yang 2002).  

Most of these models are based on the concept that evolutionary rate is associated with 

functional constraint and therefore a shift in rate indicates divergence of gene function.  

Specifically, the rate of substitution at a given site is assumed to be dependent on the 

site’s functional importance (Kimura 1983).  A beneficial mutation will get fixed in a 

population through natural selection, while a deleterious mutation will be removed from 

the population.  Because most mutations at functionally important sites are deleterious, 

they are removed from the population by natural selection, so these sites tend to change 

slowly over evolutionary time.  Therefore, the rate of evolution at a site can be used as an 

indicator for the degree of functional constraint (e.g., Gu 1999; Pupko et al. 2002; Blouin 

et al. 2003).  Methods designed to detect functional divergence utilize this association 

between functional constraint and evolutionary rate, testing for sites with a shift in 

evolutionary rate across a phylogeny.  However, there are several different approaches to 

modeling functional divergence, each with unique advantages and limitations. 

Several methods are designed to detect shifts in evolutionary rate at both the 

nucleotide level (e.g., Lockhart et al. 1998; Dorman 2007) and the amino acid level (e.g., 

Gu 1999; Knudsen and Miyamoto 2001; Susko et al. 2002).  However, there are 

limitations to both of these approaches.  At the protein level, many changes in the 

nucleotide sequence that do not code for a change in amino acid are not utilized.  While 
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these changes are apparent at the nucleotide level, models of nucleotide evolution do not 

take into account the dependency of substitutions at different sites within a codon. 

Unlike nucleotide models, codon models take into account the non-independent 

nature of nucleotide sites. In addition, codon models are able to utilize more information 

than amino acid models because they do not ignore synonymous substitutions.  However, 

codon models are only effective when divergence is low enough that synonymous 

changes are not saturated (i.e., new substitutions are replacing previous ones, resulting in 

a loss of information) and high enough that sufficient information is available within the 

data to estimate the nonsynonymous substitution rate (Anisimova et al. 2001).  Hence, 

codon models are applicable only within a window of optimal sequence divergence.  In 

addition, because codon models rely on information from synonymous sites, they may be 

more sensitive than amino acid models to shifts in synonymous codon bias over 

evolutionary time.  Because codon and amino acid models have different advantages and 

limitations, it may be most effective to use them in conjunction with one another.   

 

1.2.1  Codon Models 

 Goldman and Yang (1994) and Muse and Gaut (1994) independently developed 

similar models of codon evolution for the purpose of measuring the intensity of natural 

selection pressure acting on protein coding sequences.  These models use synonymous 

(silent) substitutions as a measure of the rate of evolution of a coding sequence before the 

effect of natural selection on its protein product.  Nonsynonymous substitutions, which 

cause a change in the amino acid sequence, are used to measure the rate of evolution after 

selection acts on the protein.  Rates of nonsynonymous (dN) and synonymous (dS) 
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substitutions can then be calculated across a phylogeny.  The parameter ω, equal to the 

ratio of nonsynonymous to synonymous substitutions (dN/dS), is employed as a measure 

of the strength and direction of selection pressure.  When ω =1, the rate of 

nonsynonymous substitution is equal to the rate of synonymous substitution.  This 

indicates that natural selection is not affecting the substitution rate and thus evolution at 

such a site is consistent with neutrality.  When ω is greater than one, there are more 

nonsynonymous than synonymous mutations being fixed, suggesting that the 

nonsynonymous substitutions have been beneficial to the organism.  Therefore, ω>1 

indicates positive, or diversifying selection.  Likewise, an ω value of less than one is an 

indication of negative, or purifying, selection (Goldman and Yang 1994). 

 Originally, measures of dN and dS were computed only in pairwise fashion using 

counting methods (e.g., Miyata and Yasunaga 1980; Li et al. 1985; Nei and Gojobori 

1986; Pamilo and Bianchi 1993).  These methods simply count the number of 

nonsynonymous and synonymous changes between two sequences and correct for 

multiple substitutions at a site.  However, counting methods often over-simplify the 

evolutionary process.  For example, several methods assume equal rates of transitions and 

transversions (Miyata and Yasunaga 1980; Nei and Gojobori 1986).  In addition, the 

majority of counting methods provide no adjustment for bias in codon usage, which can 

negatively impact estimates of synonymous and nonsynonymous substitution rates (Yang 

and Nielsen 1998; Bielawski et al. 2000; Dunn et al. 2001; Aris-Brosou and Bielawski 

2006). 

Goldman and Yang (1994) and Muse and Gaut (1994) implemented a maximum 

likelihood model for codon evolution in which ω is an explicit parameter and is 
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computed as a function of all the sequences in a given phylogeny.  These models allow 

for several other parameters to be estimated from the data, including the 

transition/transversion ratio and codon frequencies.  In addition, because the model is 

implemented in a maximum likelihood framework, it deals with instantaneous rates of 

substitution and therefore can more accurately estimate substitution rates when multiple 

changes have occurred at a site.  Thus, the main disadvantages of the pairwise counting 

methods are avoided by maximum likelihood estimation of ω from a phylogeny. 

These maximum likelihood models describe the evolution from one codon to 

another using a Markov process where the states are the 61 sense codons (64 codons 

minus 3 stop codons).  The probability of change from codon i to codon j is described in 

matrix Q: 

      

€ 

qij =

0 if i and j differ by 2 or 3 codon positions
π j if i and j differ by one synonymous transversion
κπ j if i and j differ by one synonymous transition
ωπ j if i and j differ by one nonsynonymous transversion
κωπ j if i and j differ by one nonsynonymous transition

 

 

 
  

 

 
 
 

 

where κ is the transition/transversion ratio and πj is the equilibrium frequency of codon j.   

The probability of changing from codon i to codon j over time t is P(t)=pij(t)=eQt 

(Goldman and Yang 1994);  This probability is then used to calculate a log-likelihood 

score for a given tree topology (Felsenstein 1981). 

 Modifications of the original models of Goldman and Yang (1994) allow ω to 

change among sites.  These models, known as “sites models,” allow variation in ω among 

codon sites within a gene, but the site categories are constant across the phylogeny.  For 

example, model M1a, or the “nearly neutral model,” fits the data to a mixture of two 

different site categories.  The first category contains sites under purifying selection (ω 
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constrained to be less than one) while the second contains sites that are evolving neutrally 

(ω fixed to one) (Nielsen and Yang 1998; Wong et al. 2004).  Sites model M3, on the 

other hand, simply fits the data to an unconstrained mixture of three discrete categories 

with no limits on the value of ω for each category (Yang et al. 2000).  In total, 14 

different mixture models have been implemented (Appendix A), but only a small subset 

(M0, M1a, M2a, M3, M7, and M8) are recommended for real data analysis (Bielawski 

and Yang 2005) 

 Codon models also have been modified to allow for variation in evolutionary rate 

among lineages.  These “branch models” average the value of ω over all sites within a 

gene, but allow variation in different branches (Yang and Nielsen 1998; Yang 1998).  

Branch models may be used to test if selection pressure differs across a phylogeny.  

While branch models are an improvement over pairwise comparisons because they can 

compare multiple lineages in a phylogeny, power to detect positive selection is low 

because ω is averaged over all sites within the gene (Yang and Nielsen 2002). 

 A combination of sites models and branch models, “branch-sites models” allow ω 

to vary both among sites and between branches.  Background and foreground branches, 

which are expected to have different rates of codon substitution, are specified a priori.  

For example, branch-sites Model A fits the data to a mixture of four site categories.  The 

first contains sites under purifying selection (ω<1) and the second contains sites evolving 

neutrally (ω=1).  These two categories remain constant throughout the phylogeny.  Site 

categories three and four contain sites that switch from one of the first two categories to 

positive selection (ω>1) in a specific branch, or branches, of a tree.  A branch having ω 

from the first two categories is called a background branch, whereas any branch having a 
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switch to ω>1 is called a foreground branch (Yang and Nielsen 2002; Zhang et al. 2005).  

In total, five such branch-sites models have been implemented (Appendix B). 

 In order to determine the most likely evolutionary scheme for a given dataset, we 

must determine which model best fits the data without employing unnecessary 

parameters.  Methods such as the Akaike information criterion (AIC), Bayesian 

information criterion (BIC), and likelihood ratio tests (LRT) are often used for codon 

models (e.g., Yang et al. 2000; Kosakovsky Pond and Muse 2005a).  The likelihood ratio 

test statistic, used to compare two nested hypotheses, is equal to two times the difference 

in log-likelihoods between the two models (2*ΔlnL) and is compared to a χ2 distribution 

in order to find the probability that the alternate model is a better fit to the data.  For 

example, an explicit test for positive selection in a fraction of sites in foreground 

branches compares sites model M1a with branch-sites Model A (Yang and Nielsen 

2002).  When the test statistic is compared to the χ2 distribution having two degrees of 

freedom, a significant p-value suggests an increased fit, due to the presence of positive 

selection in the foreground branch (as implemented in Model A), is greater than expected 

by chance simply due to the inclusion of extra parameters in the model (Nielsen and 

Yang 1998). 

 While codon models are useful tools for measuring selection pressure acting on a 

gene product, they do have some limitations.  In order to reduce the number of 

parameters involved, codon frequencies are measured empirically from the data and fixed 

across the entire phylogeny.  However, in cases where a shift in codon bias occurs in one 

or more branches of the phylogeny, this is not an accurate representation of the data.  We 

know that other types of heterogeneity, such as large shifts in codon usage among sites 
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(Bao et al. 2008), can negatively impact biological conclusions drawn using codon 

models.  In addition, time-heterogeneity in codon usage may result in phylogenetic 

artifacts (Inagaki and Roger 2006).  However, the impact of non-stationary codon usage 

on conclusions drawn using codon models is not yet known. 

 

1.2.2  Amino Acid Models 

 Heterogeneous rates of amino acid substitution over evolutionary time were first 

observed in the 1970’s.  At this point, Fitch and Markowitz (1970) developed the 

“covarion”  (concomitantly variable codon) model, which suggests a proportion of sites 

will shift between variable and conserved states over time.  This model was later 

expanded upon to allow amino acid sites to shift between variable rate categories (Galtier 

2001; Wang et al. 2007) and to allow for different proportions of variable sites (Lopez et 

al. 2002).  This more general form of rate variation is referred to as heterotachy.  

Heterotachy accounts for shifts in evolutionary rates over time, and these shifts may 

occur at any point in the phylogeny. 

 Often, however, we want to test for a shift in evolutionary rate at a given point in 

a phylogeny (e.g., at a gene duplication event, a speciation event, or an LGT event).  

“Rate-shift” models accomplish this by testing for shifts in evolutionary rates between 

subtrees that are specified a priori (e.g., Gu 1999; Knudsen and Miyamoto 2001; Susko 

et al. 2002).  These models are employed to measure the rates of evolution in two 

separate subtrees.  These rates are then used to identify sites most likely to have 

experienced a shift in functional constraint.  For some rate-shift models, it is assumed a 

known divergence in gene function exists between the two subtrees (e.g., Knudsen and 
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Miyamoto 2001).  However, some methods make no such assumption, using information 

from analysis at amino acid sites to test hypotheses about functional divergence at the 

gene level (e.g., Gu 1999; Susko et al. 2002).  Using these methods, sequence alignments 

can be simultaneously tested for functional divergence at the gene level while identifying 

specific sites associated with that divergence in gene function. 

 While functional divergence is traditionally associated with a shift in evolutionary 

rate, this is not always the case.  Gu (2001) identifies two separate types of functional 

divergence at the amino acid level: Type I and Type II.  Type I functional divergence 

occurs when there is a shift in evolutionary rate between two subtrees.  This type of 

divergence is detected by rate-shift models, which are discussed above.  However, a shift 

in amino acid composition without a shift in evolutionary rate may also indicate 

functional divergence.  This is known as Type II divergence.  Type II divergence may 

occur if a historical relaxation of functional constraint has occurred at a site, but the site 

has since gained a new, but equally important function.  For example, a site that is 

completely conserved in two subtrees may be composed of different amino acids in each 

subtree that have different physico-chemical properties.  Therefore, while there is no shift 

in evolutionary rate at this site, there may still be divergence of gene function.  However, 

only a few methods currently detect Type II functional divergence (e.g., Gu 2006; Gaston 

unpublished method).   

There are many different methods designed to detect functional divergence from 

amino acid data.  They can be divided into categories based on how they identify specific 

sites that have experienced a shift in functional constraint.  One of the most common 

means of identifying these sites is by using posterior probabilities.  These methods (e.g., 
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Gu 1999; Gu 2006; Gaston unpublished method) use empirical Bayesian techniques to 

identify the sites with the greatest posterior probability of contributing to functional 

divergence, based on a given model.  Another common means of identifying site specific 

rate shifts is by searching for a shift in the substitution distribution at a given position, 

using some measure of the difference in rate distribution between the two subtrees (e.g., 

Gaucher et al. 2001; Lopez et al. 2002; Susko et al. 2002; Pupko and Galtier 2002).  

Another alternative is to use the likelihood ratio test on a site-by-site basis (Knudsen and 

Miyamoto 2001) in order to determine whether a rate shift has occurred at a given site.  

All of these methods have successfully been applied to real data (e.g., Gu 1999; Susko et 

al. 2002).  A list of amino acid level methods useful for investigating functional 

divergence is presented in Appendix C. 

 There are both benefits and limitations to modeling evolution at the amino acid 

level. Unlike most codon models, amino acid models take into account variable 

substitution rates between different amino acid states by employing empirical 

exchangeability matrices.  Furthermore, because synonymous substitution rates are not 

measured, amino acid models may be less sensitive than codon models to shifts in 

nucleotide composition.  However, since not all of the sequence information is utilized, 

amino acid models may have low power to detect functional divergence in some cases.  

The performance of these models under some complex evolutionary scenarios, such as 

those seen in Prochlorococcus, has yet to be evaluated. 
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1.3  RECOMBINATION 

Another mechanism that impacts gene evolution is recombination.  Recombination 

is the exchange of genetic material between two sequences.  This exchange may occur 

between genomes of organisms or between different chromosomal locations within the 

same organism.  Recombination can extend across species boundaries, permitting 

organisms to access much larger pools of genetic variation (e.g., Dunn et al. 2009).  By 

allowing access to an extended gene pool, recombination may increase genetic diversity 

in a population, assisting in adaptation.  Although the relative contributions of 

recombination and mutation vary greatly, both play key roles in the evolution and 

adaptation of genes and organisms (e.g., Hanage et al. 2005; Fraser et al. 2007; Didelot 

and Maiden 2010). 

Homologous recombination (HR) and lateral gene transfer (LGT) are two 

mechanisms of recombination that are well documented among prokaryotes (e.g., 

Konstantinos and DeLong 2008; Barker et al. 2000; Lodders et al. 2005).  In HR, a 

sequence fragment from a donor organism is exchanged with a homologous sequence in 

the genome of a recipient organism.  Because the machinery for HR is limited by the 

degree of sequence divergence, HR occurs only among highly similar gene sequences.  In 

lateral gene transfer, on the other hand, homologous or non-homologous genetic material 

can be transferred between organisms, sometimes via phage intermediates (e.g., Zeidner 

et al. 2005; Sullivan et al. 2005; Lindell et al. 2004; Dammeyer et al. 2008).  Viruses can 

mediate the transfer of gene fragments or whole genes, sometimes even between distantly 

related organisms (e.g., Beiko et al. 2005; Kunin et al. 2005).  HR and LGT extend the 

pool of genes which an organism can access, increasing diversity in a population and 
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giving the organism an extended source of potentially adaptive sequence variants from 

outside the population.   

The detection of within-gene recombination is important to understanding bacterial 

evolution, but presents many challenges.  Fully understanding the effect of recombination 

on the evolution of a gene sequence requires successful inference at several levels.  First, 

a qualitative determination of whether or not recombination has occurred must be 

performed.  This is the least difficult task, and there are several methods that are 

reasonably powerful under certain circumstances and adequately manage the type-I error 

rate (Posada and Crandall 2001; Chan et al. 2006).  Second, the number of recombination 

breakpoints and their locations within a gene is often important to determine.  This task 

requires that more information be extracted from a given set of sequences and thus is 

more difficult than the first.  The third task is to identify the donor and recipient 

sequences.  This is the most difficult inference, especially because the exact donor 

sequence is most likely not included in a given sequence alignment (hence, you are often 

working with relatives of the donor sequence).  Because the problem of modeling 

recombination is so complex, reliable methods for detecting recombination are difficult to 

implement. 

 

1.3.1  Methods of Recombination Detection 

 Many different tools are available for the detection and analysis of recombination 

events.  “Basic branch-pattern” methods search for adjacent fragments of genes with 

different branching orders (e.g., Hein 1990; Jakobsen and Easteal 1996; Martin and 

Rybicki 2000; Lole et al. 1999).  Substitution-distribution methods search for sequence 
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fragments with greater than expected similarity (e.g., Sawyer 1989; Maynard Smith 1992; 

Maynard Smith and Smith 1998; Worobey 2001; Posada and Crandall 2001).  More 

recently developed methods are characterized by increasing complexity in modeling the 

evolutionary process (e.g., Suchard et al. 2002; Husmeier and McGuire 2003; 

Kosakovsky Pond et al. 2006).  Because each type of analysis has its benefits and 

limitations, one must carefully consider the data in hand before choosing a method. 

 Basic branch-pattern methods search for adjacent gene fragments with discordant 

phylogenies.  These methods are often referred to in the literature as “phylogeny-based 

methods.”  However, this is a somewhat confusing term because new methods are 

available that also make use of a phylogenetic framework, but are not included in this 

group because they employ a much more complex computational and statistical 

framework.  Therefore, to avoid confusion, I use the term “basic branch-pattern methods” 

to refer to the group of early methods that use simple means to search for discordant 

phylogenies.  To reduce computational costs some of these methods sample, and work 

with, triplets of gene sequences.  One example is the Recombination Detection Program 

(RDP) (Martin and Rybicki 2000).  This method analyzes combinations of three 

sequences (A, B, and C) where A and B are more closely related to one another than C.  

It then searches for sequence fragments in which either AC or BC has a higher similarity 

score than AB.  While this approach allows for quick data analysis, there are analytical 

costs.  First, only a subset of the data is considered at any one time, so power may be 

lower than methods that simultaneously utilize all data.  Also, the method is reliant on the 

UPGMA algorithm for phylogeny generation, so there is no built-in method for handling 

among-lineage rate variation.  Finally, similarity scoring is done on a match or mis-match 
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basis rather than using a substitution matrix, so compositional variation is not taken into 

account.  Nonetheless, RDP is a popular method and appears to perform well under 

certain conditions. 

 Substitution-distribution methods search for segments of genes with significantly 

high similarity, but they do not take into account phylogenetic relatedness.  Here I will 

focus on three such methods (GENECONV, MaxChi, and Chimaera), which a previous 

simulation study found to have relatively high power (Posada and Crandall 2001).  Using 

either pairs or triplets of sequences, MaxChi (Maynard Smith 1992) searches for regions 

of a gene with different proportions of variable to invariable sites than adjacent regions.  

Monomorphic sites are first discarded and then a sliding window is used to compare the 

difference in proportion of variable vs. invariable sites using a χ2 distribution.  When the 

χ2  values are plotted by alignment location, peaks in the distribution indicate potential 

recombination breakpoints.  The Chimaera method is a modification of MaxChi that has a 

more conservative method for discarding monomorphic sites and uses only triplets of 

sequences (Posada and Crandall 2001).  Like MaxChi and Chimaera, GENECONV 

(Sawyer 1989) also discards monomorphic sites in the initial step.  Pairs of sequences are 

then compared for segments that are either identical or have high similarity scores.  

Highly similar segments are scored and assigned a significance value based on the Karlin 

and Altschul (KA) method, which is similar to a BLAST search. 

 Some limitations are inherent in substitution-distribution methods.  In MaxChi 

and Chimaera, the entire alignment is used to determine the proportion of variable sites, 

so if an alignment contains both closely related and very divergent sequences, some 

recombination may be overlooked.  Likewise, a stretch of conserved sites in two very 
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closely related sequences will have high similarity scores, which may result in a false 

positive in GENECONV.  In addition, a single highly diverged sequence may introduce a 

large number of polymorphic sites, resulting in false negatives for some recombination 

events with any of the substitution-distribution methods. 

 Another group of recombination detection methods make use of a Bayesian 

framework (e.g., DualBrothers, BARCE).  These methods use posterior probabilities to 

determine the number and location of breakpoints in a given alignment (e.g., Suchard et 

al. 2002; Suchard et al. 2003; Husmeier and McGuire 2003; Minin et al. 2005; Marttinen 

et al. 2008; Webb et al. 2009).  The majority of these methods employ Markov Chain 

Monte Carlo (MCMC) analysis, where the state is the tree topology and a transition 

between states indicates a recombination break point.  These methods are often very 

computationally intensive, and some are only designed to analyze groups of four taxa 

(e.g., Husmeier and McGuire 2003).  In addition, these methods use more complex 

models than substitution-distribution or phylogenetic methods and thus may be more 

susceptible to model misspecification.  

 Besides Bayesian methods, one alternative to the more simplistic approaches is 

the Genetic Algorithm for Recombination Detection (GARD).  GARD employs a 

heuristic population-based genetic algorithm to search for recombination.  Using a 

maximum likelihood framework, it selects the pattern of recombination, including 

number and location of breakpoints, that best fits a given alignment (Kosakovsky Pond et 

al. 2006).  While GARD is attractive because it employs realistic substitution parameters, 

a complicated dataset may easily fall subject to model misspecification errors when 
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characteristics of the data do not match the assumptions of the underlying model, 

possibly resulting in false biological conclusions. 

Because each recombination detection method has different advantages and 

limitations, it is important to know which methods are appropriate for a given dataset.  

Past simulation studies have evaluated methods for recombination detection under a 

variety of evolutionary scenarios, including various levels of divergence and 

recombination (Wiuf et al. 2001; Brown  CJ et al. 2001; Posada and Crandall 2001; Chan 

et al. 2006).  However, these methods have not been evaluated for their performance 

under some complex evolutionary scenarios, such as those relevant to the process of 

functional divergence. 

 

1.4  MOTIVATION FOR THESIS 

 With the increasing availability of genetic and genomic data, there is an 

increasing desire to carry out large-scale investigations of molecular adaptation (e.g., 

Chen et al. 2006; Dunn et al. 2009).  Codon models are among the more attractive means 

of exploring varying selection pressure on a gene because they permit estimation of an 

easily interpretable measure (ω) of selection pressure.  However, with increasing data, 

there is an ever-increasing push to apply codon models beyond originally intended limits.  

For example, codon models do not take into account non-stationary codon usage, such as 

that observed in Prochlorococcus genes.  Indeed, other types of heterogeneity within a 

dataset may cause serious errors in codon models, leading to false biological conclusions 

in other settings (e.g., Bao et al. 2008; Inagaki and Roger 2006).   
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 Recombination can yield heterogeneous patterns of evolution within gene 

sequences and thus in some cases can lead to a very high rate of false positives for 

positive selection under codon models (Anisimova et al. 2003; Shriner et al. 2003; 

Scheffler et al. 2006).  Therefore, analysis of adaptive evolution in any system where a 

history of recombination is plausible should be accompanied by recombination analysis.  

While several simulation studies have evaluated the performance of recombination 

detection at various levels of mutation and recombination (Wiuf et al. 2001; Brown CJ et 

al. 2001; Posada and Crandall 2001; Chan et al. 2006), those studies explore performance 

under scenarios that are less complex than many real datasets.  In Chapter 2 of this thesis, 

I employ simulation to evaluate several methods of recombination detection under four 

basic scenarios:  1) varying tree shape, 2) positive selection, 3) non-stationary evolution, 

and 4) varying levels of recombination and divergence. 

In addition to recombination, non-stationary evolution may also cause problems 

for codon models.  Despite our lack of knowledge about the impact of non-stationary 

codon usage on inferences about natural selection pressure, codon models have been, and 

continue to be, used to draw conclusions about the biology of Prochlorococcus.  Without 

such knowledge, we simply do not know how to interpret accounts of molecular 

adaptation in Prochlorococcus.  For instance, how reliable is the Zhao and Qin (2007) 

claim that the cpeB gene, which is related to a light harvesting pigment, is subject to 

positive Darwinian selection?  Chapter 3 of this thesis presents an extensive simulation 

study to explore the impact of non-stationary evolution on the inference of selection 

pressure. 
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 In Chapter 4, I conduct an extensive reanalysis of the cpeB gene that I interpret in 

light of the information acquired in Chapter 3.  Zhao and Qin (2007) originally analyzed 

this gene using branch-site codon models, ignoring the fact that non-stationary codon bias 

present in this gene violates an assumption of the underlying model.  Based on their 

analysis, they conclude that HL Prochlorococcus has experienced positive selection in 

this particular gene.  To determine whether this conclusion can be supported or could be a 

false positive due to model misspecification, I conduct a thorough reanalysis of the cpeB 

gene.  Here, using a more focused approach than employed in Chapter 3, I conduct 

simulations based on parameter values derived from the cpeB gene.  In addition to 

providing insight into the selective pressures experienced by the cpeB gene, this study 

serves as an example of evolutionary analysis under non-stationary conditions. 

Because of Prochlorococcus’ divergence into two well-separated ecotypes, it is a 

prime candidate for a large-scale survey of genomic adaptation.   Although several large-

scale genomic surveys have explored the evolution of Prochlorococcus genomes, most 

have sampled only a few lineages and employ simple methods (e.g., Hess et al. 2001; 

Rocap et al. 2003).  In addition, most studies focus on the role of the flexible genome in 

Prochlorococcus divergence, ignoring the possible role of core genes in adaptation.  For 

example, Kettler and colleagues (2007) analyzed all 12 published genomes, but focus on 

the impact of gene gain/loss in Prochlorococcus ecotype divergence.  Another recently 

published study examined the role of selection on the core genome in the divergence of 

HL and LL ecotypes, but conducts only a pairwise analysis of three different 

concatenated genomes (Paul et al. 2010).  Initially, an objective of this research was to 

utilize all 12 genomes to investigate the role of the core genome in the divergence of HL 
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and LL ecotypes of Prochlorococcus.  However, preliminary analyses of the real data, 

combined with simulation studies, revealed that this is not an easy task given the 

limitations of existing methodologies.  While a large-scale genomic analysis is not 

feasible, the simulation studies of Chapters 2 and 3 are followed up with an exploratory 

application of the evaluated models to a subset of the Prochlorococcus core genome.  

These studies provide the first steps towards a comprehensive view of core genomic 

changes associated with the divergence of light-based metabolism in Prochlorococcus. 
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CHAPTER 2: RECOMBINATION DETECTION UNDER 
SCENARIOS RELATED TO FUNCTIONAL DIVERGENCE 

 

2.1  INTRODUCTION 

 Genetic recombination can facilitate the process of functional divergence by 

allowing organisms to access an “extended gene pool.”  Through the exchange of genetic 

material between organisms, or even between species, recombination increases the 

genetic diversity in a population, which can help the population evolve.   Examples of 

recombination-assisted evolution are well documented in bacteria (e.g., Koonin et al. 

2001; Boucher et al. 2003; Narra and Ochman 2006).  For example, homologous 

recombination (HR) and lateral gene transfer (LGT) have impacted the evolution of 

several photosynthesis-related genes in cyanobacteria (e.g., Mann et al. 2003; Zeidner et 

al. 2005; Sullivan et al. 2006; Lindell et al. 2004; Mann et al. 2005).  However, detecting 

the signatures of adaptive substitutions within recombinant gene sequences is a challenge, 

as methods for modeling the substitution process typically assume that sequences are 

non-recombinant. 

 A clear picture of recombination events within a gene not only provides an 

understanding of gene evolution, but also helps avoid error in phylogeny-based analysis.  

Recombination events may cause individual gene or gene fragment phylogenies to be 

incongruent with the evolutionary history of the organism (e.g., Ochman et al. 2000; 

Ragan 2001).  While this phylogenetic disagreement may be useful for understanding the 

recombination process, it may also cause errors in analyses that depend on an accurate 

phylogeny.  For example, methods that detect positive selection at the codon level have 

been shown to yield false positives when recombinant segments are present within gene 
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sequences (Anisimova et al. 2003; Shriner et al. 2003; Scheffler et al. 2006).  For this 

reason, studies of functional divergence among organisms where recombination is 

plausible should be accompanied by an analysis of recombination, as it may lead the 

identification of phylogenetic variation in different segments of a gene. 

 Several types of methods are available for the detection of recombination.  

Substitution-distribution methods (e.g., GENECONV, MaxChi, Chimaera) detect regions 

that have significant sequence similarity based on a scoring method.  Basic branch-

pattern methods (e.g., RDP) detect recombination by searching for variability in tree 

topologies of adjacent sequence fragments. In addition, more computationally complex 

methods are available.  Examples include Bayesian methods (e.g., DualBrothers, 

BARCE), which use posterior probabilities to search for adjacent regions with discordant 

phylogenies, and the Genetic Algorithm for Recombination Detection (GARD), which 

uses a likelihood-based heuristic algorithm to find the best-fit number and location of 

recombination breakpoints.  A more detailed description of these methods can be found 

in Section 1.3.1.   

 Previous simulation studies evaluated methods of recombination under various 

conditions.  Posada and Crandall (2001) simulated varying levels of diversity, 

recombination, and rate variation, finding that in general recombination detection 

methods are not powerful, although power does increase with diversity.  In addition, few 

false positives occur in their simulations.  Wiuf and colleagues (2001) found that certain 

combinations of branch lengths (e.g., short internal branches and long tips) might cause 

detection methods to have increased power.  Chan and colleagues (2006) found, as 

expected, that post-recombination substitutions decrease the ability of methods to detect 
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breakpoints.  While these simulations evaluate recombination detection methods under a 

wide variety of evolutionary patterns, there are still several conditions relevant to cases of 

functional divergence under which we know little about their performance. 

 To further explore the performance of recombination detection methods, I 

evaluate several of them using four simulation studies designed to cover parameters that 

are especially relevant to functional divergence analysis: 1) tree shape, 2) positive 

selection, 3) non-stationary evolution (including functional divergence), and 4) varied 

recombination and diversity.  Simulations 1-3 contain no recombination and so are used 

to evaluate the false positive rates of selected methods under a range of conditions.  In 

Simulation 4, I use recombinant sequences previously simulated by Kosakovsky Pond 

and colleagues (2006) to evaluate the power of the same methods used in Simulations 1-

3.  I then carry out an exploratory analysis of recombination in the core genome of the 

cyanobacteria Prochlorococcus, which is known to have complex evolutionary patterns. 

 

2.2  SIMULATIONS AND ANALYSES 

 For this study, I choose to apply three substitution-distribution methods 

(GENECONV, MaxChi, and Chimaera) and a basic branch-pattern method (RDP), 

because all were found to be relatively powerful by Posada and Crandall (2001).  In 

addition, I also evaluate the more recently published GARD method which, based on the 

authors’ simulations, has high accuracy (Kosakovsky Pond et al. 2006).  Because the 

substitution-distribution and basic branch-pattern methods are based on simple summary 

statistics measured empirically from the data rather than complex models of evolution, 

they might be less subject to the negative effects of model misspecification.  Using the 
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same simulations to compare those four methods with one or more of the more recent 

methods may be very informative.  Both the Bayesian methods and GARD are based on 

explicit models of evolution, which should make them more powerful, but may also make 

them prone to errors when model assumptions are violated.  Of these more complex 

methods, I choose to apply only the GARD method because it is less computationally 

intensive than the Bayesian methods and able to deal with large numbers of taxa. 

All five selected methods (Table 2.1) are applied to a series of four simulation 

studies.  MaxChi, Chimaera, RDP, and GENECONV are included in the RDP3 software 

package (Martin 2009) and GARD is part of the HyPhy software package (Kosakovsky 

Pond and Muse 2005b).  The authors of GARD suggest a single breakpoint analysis 

(hereafter called “GARD-SBP”) for a qualitative determination of the presence of 

recombination (Kosakovsky Pond et al. 2006).  Therefore I apply GARD-SBP, which is 

part of HyPhy, to Simulations 1-3.  This method employs a maximum likelihood 

framework to conduct rapid screening for a single breakpoint with discordant 

phylogenies on either side.  The genetic algorithm for multiple breakpoint analysis that is 

also implemented under GARD will hereafter be referred to as GARD-MBP.  When 

recombination is detected under GARD-MBP, a Kishino-Hasegawa (KH) test (Kishino 

and Hasegawa 1989) is employed with a Bonferroni correction for multiple testing.  The 

purpose of the KH test is to determine whether phylogenies before and after a putative 

breakpoint are significantly different.  Although the correction for multiple tests makes 

GARD-MBP more conservative, resulting in lower power, it also helps to control the rate 

of false positives (Kosakovsky Pond et al. 2006) and so will be applied in the simulation 

studies. 
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Table 2.1.  Recombination detection methods evaluated in Chapter 2. 
Method Type Reference 
GENECONV Substitution Sawyer (1989) 
MaxChi Substitution Maynard Smith (1992) 
Chimaera Substitution Posada and Crandall (2001) 
RDP Basic Branch-Pattern Martin and Rybicki (2000) 
GARD-SBP Likelihood Phylogeny Kosakovsky Pond et al. (2006) 
GARD-MBP Genetic Algorithm Kosakovsky Pond et al. (2006) 

Note: Because the single breakpoint method is used as a supplement for GARD-MBP, I 
refer to it throughout this thesis as GARD-SBP.  However, GARD-SBP does not use a 
genetic algorithm, instead it employs a maximum likelihood framework to search for 
discordant phylogenies. 
 
 
 
 Three separate simulation studies are used to measure how the number of false 

positives yielded by each method might depend on 1) tree shape, 2) positive selection, or 

3) non-stationary evolution.  Because no recombination is simulated in these sequences, I 

am concerned only with the number of replicates that contain a false signal for 

recombination rather than the number of breakpoints detected.  Replicates are considered 

to have significant evidence for recombination if, for a given method, at least one 

breakpoint is detected (p≤0.05).  In addition, for methods that employ phylogenies (RDP 

and GARD) a recombination event is only considered significant if there is phylogenetic 

incongruence on either side of the breakpoint.  In the fourth simulation study, I examine 

power for each method when multiple breakpoints are present.  In that study, the number 

of inferred breakpoints is counted for each method.  These counts are then compared to 

the number of simulated breakpoints. 

 

 

 



 28 

2.2.1  Simulation 1: Tree Shape 

Methods for recombination detection may be impacted by tree topology.  Most 

simulations in the literature employ either symmetric trees or the empirical estimate of a 

tree for a gene of interest (e.g., Posada and Crandall 2001; Chan et al. 2006).  However, 

because most methods measure parameters from the entire alignment, tree shape 

(specifically asymmetry in tree topology) may impact recombination detection by 

increasing the number of informative sites and skewing the parameter estimates. The only 

reference that alludes to this problem is the RDP manual (Martin 2009), which suggests 

that having both closely related and very divergent sequences in an alignment may result 

in errors for some methods.  Some recombination detection methods have been shown to 

have different performance when branch lengths within a tree are varied (Wiuf et al. 

2001), but no studies have explored the impact of tree shape.  Simulation 1 is designed to 

explore the effects of tree shape on false positive rates for recombination detection.  In 

addition, because divergence is known to impact recombination detection, each tree 

shape is simulated under a range of lengths. 

To explore the effects of tree shape, I use INDELible (Fletcher and Yang 2009) to 

simulate a range of tree lengths for two different topologies.  Sequences are simulated 

based on either a 10 taxa asymmetric topology or a 16 taxa symmetric topology (Figure 

2.1).  The evolutionary model is homogeneous throughout the phylogeny, with no 

positive selection.  All non-stop codons have equal frequencies and the 

transition/transversion ratio (κ) is set to 2.  Alternative levels of sequence divergence are 

achieved by altering the internal branch lengths as follows: for the asymmetric topology, 

all internal branch lengths, as well as the most recently diverged tip, are equal to either 
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0.3, 0.2, 0.1, or 0.05 substitutions per codon site and the all terminal branches are 

adjusted so the tree is consistent with a molecular clock.  For the symmetric topology, all 

internal branch lengths are set to either 0.3 or 0.05.  For each level of sequence 

divergence, 50 replicate datasets with an alignment length of 200 codons are simulated. 

 
 

 

          
 
Figure 2.1.  a) Asymmetric and b) Symmetric trees used for simulation studies.  In 
Simulations 2 and 3, shifts in selection pressure and codon bias occur at the point 
represented by the red circle, which separates Type A and Type B evolution.  Type A 
evolution differs from Type B due to a shift in the evolutionary process at this point. 
 
 

 All recombination detection methods shown in Table 2.1 are applied to the 

simulated data.  Results indicate that tree topology can have a large impact on the false 

positive rate for some recombination detection methods (Table 2.2).  All methods yield 

low levels of false positives under a symmetric topology.  Because the type-1 error rate is 

expected to be equal to the level of the test (α=0.05), false positive rates below 5% are 

not considered significant.  These low false positive rates are consistent with those found 

by Posada and Crandall (2001) and Kosakovsky Pond and colleagues (2006). However, 

GARD-SBP, MaxChi, and Chimaera yield much higher false positive rates under an 

Type A 

Type B 

a) 
Type A 

Type B 

b) 
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asymmetric topology.  When topology is asymmetric, the alignment contains sequences 

that are both closely and distantly related.  Because MaxChi and Chimaera search for 

changes in the proportion of variable and invariable sites, which are estimated from the 

entire alignment, conserved sites in closely related sequences may give a false signal for 

recombination.  Likewise, GARD-SBP measures substitution parameters from the entire 

alignment, which may cause false positives when divergence is more heterogeneous 

among sites, such as in an asymmetric tree.   

 

Table 2.2.  Percent false positives (n=50) for each recombination detection method under 
a) symmetric and b) asymmetric topologies with different tree lengths. 
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 Although the simulated tree length has little effect on false positive rate under a 

symmetric tree, increased tree length has a large impact on the rate of false positives 

under an asymmetric tree for some methods (Table 2.2; Figure 2.2).  When the phylogeny 

is asymmetric, an increase in tree length leads to an increase in false positives for 

Chimaera, MaxChi and GARD-SBP.  Chimaera yields the highest level of false positives, 

finding significant evidence for recombination in 48% of replicates simulated under the 

longest tree (0.3 substitutions per codon site for internal branches) compared to 20% 

under the shortest (0.05 substitutions per codon site for internal branches).  MaxChi has 

similar performance, with 46% false positives under the longest tree and 22% in the 

shortest. Although GARD-SBP detects fewer false positives than Chimaera or MaxChi, 

the false positive rate still increases with tree length, with false positive rates ranging 

from 28% in the longest tree to 16% in the shortest.  Previous studies, carried out under 

symmetric tree topologies, have shown that for many methods power to detect 

recombination events increases with sequence divergence, likely because the increased 

variability provides additional information for recombination detection (Posada and 

Crandall 2001).  For similar reasons, the increase in variable sites may result in more 

opportunities for the false detection of recombination events.  For some methods 

(GARD-SBP, MaxChi, and Chimaera), this effect appears to be heightened under an 

asymmetric tree, likely due to an increasing disparity between conserved and quickly 

evolving sequence segments. 
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Figure 2.2.  Percent false positives (n=50) for Simulation 1 under asymmetric tree with 
increasing tree length.   
 
 
 

The other methods, GENECONV, RDP, and GARD-MBP, yield consistently low 

levels of false positives across the simulated levels of tree length and shape (Table 2.2; 

Figure 2.2).  GARD-MBP and GENECONV are most noteworthy, in that levels of false 

positives are insignificant, ranging from 0-4%, and do not increase with tree length or 

asymmetry.  RDP has only slightly higher false positive levels, with a very minor 

increase in false positives with both tree length and asymmetry, reaching a maximum of 

8%.  These results are comparable to those from previous work (Posada and Crandall 

2001), which also found RDP and GENECONV to have low rates of false positives.  My 

results further indicate that these methods are more robust to differing tree shapes than 

are MaxChi, Chimaera, or GARD-SBP.  
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2.2.2  Simulation 2: Positive Selection 

 Recombination is known to negatively impact statistical tests for detecting 

positive selection at the codon level (Anisimova et al. 2003; Shriner et al. 2003; Scheffler 

et al. 2006).  Genetic variability generated by recombination may resemble patterns of 

molecular adaptation because substitution rates of recombinant gene fragments may 

differ from the rest of the alignment.  However, because the patterns of variability created 

by recombination and adaptation are similar, the actual presence of sites in a dataset 

subject to positive selection may likewise affect statistical tests for recombination.  For 

this reason, Simulation 2 evaluates the performance of recombination detection methods 

when some of the sequences in an alignment are under positive selection.  

 For this study, I simulate datasets in which positive selection is present in part of 

the phylogeny.  Simulated datasets, each 200 codons in length, are based on either the 10 

taxa asymmetric phylogeny or the 16 taxa symmetric phylogeny in Figure 2.1.  All 

internal branch lengths in the phylogeny are set to 0.3 substitutions per codon site and all 

other branch lengths are adjusted to simulate rate constancy.  When a shift to positive 

selection is simulated, it occurs at the point shown in red in Figure 2.1 and is present in 

all branches that evolve after that point.  This effectively splits the tree into two types, 

“Type A” and “Type B,” with different evolutionary models (Figure 2.1).   

 The strength and direction of selection pressure is simulated at the codon level by 

specifying a distribution for ω (ω=dN/dS) separately for each part of the phylogeny.  

Omega distributions are modeled using a beta function, which is convenient for this 

purpose because its range from zero to one is ideal for modeling an omega distribution 

with no positive selection (0<ω<1) while employing only two shape parameters (p,q).  To 
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simulate positive selection in a fraction of sites, a single discrete category is added in 

which ω=2.  Type A evolution remains constant throughout all simulation conditions 

while Type B evolution changes (Figure 2.3).  For the Type A evolutionary model, most 

codon sites are under strong purifying selection (ω<<1) and very few sites are evolving 

close to neutrality (p=0.5, q=2). Type B evolution is simulated with 10% of sites under 

positive selection.  The remainder of sites are distributed according to a U-shaped beta 

function, with a large proportion of sites evolving nearly neutrally.  Sites having ω 

between 0 and 1 are divided into nine discrete site categories.  I simulate three different 

sets of shape parameters (hereafter referred to as a, b, and c) for the omega distribution, 

each with a tenth site category under positive selection (Figure 2.3).  I also simulate three 

“null” cases (i.e. no positive selection) under the same shape parameters (a, b, and c).  

For each condition, 50 replicate datasets are simulated. 

 As observed in Simulation 1, data having an asymmetric topology in Simulation 2 

yield a consistently higher rate of false positives for some methods (Table 2.3).  GARD-

MBP and GENECONV yield insignificant rates of false positives (0-6%).  Surprisingly, 

the presence of positive selection in some sequences does not affect the false positive rate 

for most of the methods (Table 2.3).  GARD-SBP is the one exception, yielding increased 

levels of false positives when positive selection is present, but this effect only occurs 

when tree topology is asymmetric.  Overall, methods are robust to the presence of 

positive selection in part of the phylogeny. 

 While positive selection in a portion of the phylogeny may not affect 

recombination detection, the presence of positive selection throughout the entire 

phylogeny might differently impact these methods.  To test this hypothesis, I perform a 
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small simulation study in which positive selection is present throughout the entire 

phylogeny (See Appendix D for detailed methods and results).  None of the methods 

applied show increased rates of false positives under positive selection.  Collectively, 

these results suggest that recombination detection methods might be largely robust to the 

presence of sites subject to positive selection. 

 
Figure 2.3.  Omega distributions used in Simulation 2.  Distributions are modeled by a 
beta function and three different sets of shape parameters (p,q) are represented by 
different colored curves: a) black, b) red, and c) blue. 
 
 

Although studies have shown that recombination events can lead to false 

inferences in positive selection analysis (Anisimova et al. 2003; Shriner et al. 2003; 

Scheffler et al. 2006), my results show that the reverse is not true.  One possible 
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explanation is that positively selected sites, while often localized in 3D space of the 

folded protein product of the gene, are typically spread out along a gene sequence.  

Recall that recombination detection methods search for local variability in adjacent gene 

fragments; i.e., they search for spatial organization along the gene sequence.  However, 

this pattern is unlikely to result from selection acting on the mature and folded protein 

product.  In addition, while positive selection results in a shift in substitution parameters, 

it does not change phylogenetic relationships, so methods that require phylogenetic 

variability among sites would not likely yield false positives for recombination under 

such conditions. 

 

Table 2.3.  Percent false positives (n=50) yielded in Simulation 2. 
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 c 0 90 14 2 38 44 
Note: For both trees, the internal branch length is equal to 0.3 subst./codon site.  Root-to-
tip lengths are therefore 1.2 subst./codon (symmetric) and 2.7 subst./codon (asymmetric). 
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2.2.3  Simulation 3: Non-Stationary Evolution 

Current recombination detection methods often assume that evolutionary 

processes are homogeneous over time.  Parameters such as nucleotide composition and 

substitution parameters are often averaged over an entire phylogeny.  However, these 

assumptions are often violated in real data.  For example, sequences that have 

experienced a divergence in gene function may have evolutionary rates that change 

across a phylogeny.  Simulation 3 is designed to explore the impact of non-stationary 

codon bias and selective constraints on methods for recombination detection. 

For this simulation, I use the same basic pattern as Simulation 2, expanding on the 

evolutionary schemes.  Sequences are simulated under the same two phylogenies 

(symmetric and asymmetric) and each alignment is 200 codons in length.  When a shift in 

the evolutionary process occurs, it takes place in the same phylogenetic location as in 

Simulation 2, again dividing the tree into two “types” of evolution (Figure 2.1).  

However, for Simulation 3, I simulate additional shifts in both codon bias and selection 

pressure to investigate the effects of more complex shifts in selection pressure, but 

without the presence of positively selected sites. 

Codon bias is modeled using the method of Aris-Brosou and Bielawski (2006).  

This method employs a single parameter, “η,” to specify codon frequencies for changing 

GC3 content.   The values of η range from 0≤η≤1, where a value of η=0.5 indicates a 

GC3 content of 50%; all codons that do not code for a stop codon have equal frequencies.  

As η approaches zero, GC3 content increases (Figure 2.4).  Using this system, I can 

easily calculate and specify separate codon biases for different parts of the phylogeny. 
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Figure 2.4.  Scheme used for simulation of GC3 bias.  The single 
parameter η (0<η<1) is used to simulate codon frequencies based on the 
desired GC3 content.  The denominator Σ is a scaling factor to ensure 
frequencies sum to 1. 
 
 
 

 As before, the two parts of the tree (A and B) are simulated under different 

models of evolution.  Type A evolution is simulated under the same model as in 

Simulation 2, with most sites under purifying selection (p=0.5, q=2). The codon bias 

parameter for Type A evolution is set to η1=0.5 (GC3≈50%).  Type B evolution, 

however, varies for each simulation condition.  There are two basic cases for Type B 

evolution (Figure 2.5): 
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Case 1:  Most sites under strong purifying selection, similar to Type A evolution.  

This is modeled by an L-shaped beta function. 

Case 2:  A larger proportion of sites evolving close to neutrality.  This is modeled 

with a U-shaped beta function. 

For each general case, I simulate 3 different ω distributions (designated sub-cases “a,” 

“b,” and “c”) (Figure 2.5).  Case 1a is the “null”; Type B evolution is simulated under the 

same conditions as Type A evolution, so selection pressure is homogeneous across the 

phylogeny. In all other cases (Cases 1b, 1c, and 2a-c) there is a shift in ω distribution.  In 

addition, each case is simulated both with a shift in codon bias (η2=0.1: GC3≈10%) and 

with no shift in codon bias (η2=0.5) across the phylogeny.  The result is a total of 12 

unique evolutionary conditions (Figure 2.5).  For each condition, 50 replicate datasets are 

simulated.   

 Table 2.4 shows the results under the null case (Case 1a), with no shift in 

selection pressure.  Here, I examine the impact of non-stationary codon bias, while all 

other parameters remain homogeneous.  While a shift in codon bias alone does not affect 

the false positive rates under a symmetric tree, for some methods (RDP, MaxChi, and 

Chimaera) non-stationary codon bias does have a small effect on false positive rates 

under an asymmetric tree (Table 2.4).  However, even under an asymmetric tree, this 

effect is not large, with a maximum of 8% increase in false positives due to non-

stationary codon bias.  Because these methods estimate parameters from the entire 

alignment, a shift in codon bias may result in a false signal for recombination. 
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Figure 2.5.  Omega distributions for Simulation 3.  Sub-cases are designated by different 
colored curves a) black, b) red, and c) blue.  Each sub-case is simulated with both 
stationary and non-stationary codon bias. 
 
 
 
 Using the remaining cases (Case 1b, 1c, and 2a-c), I examine the effects of a 

combined shift in the distribution of selection pressure and codon bias.  The full data are 

presented in Appendix E, but to aid presentation, I present averaged false positive rates 

over all selection pressure schemes (Table 2.5).  Taken over the different types of shifts 

in selection pressure, differences due to non-stationary codon bias are, again, small.  

Although some methods do show a slight increase in false positives under non-stationary 

codon bias, this increase does not exceed an average of 5% for any method.  As expected, 
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false positive rates are generally higher for most methods under an asymmetric tree, but 

these values still do not substantially increase when codon bias is non-stationary.  Taken 

together with previous results, this suggests that methods for recombination detection are 

generally robust to shifts in codon bias, with some methods experiencing a minor effect. 

 

Table 2.4.  Percent false positives (n=50) for recombination detection methods under 
homogeneous selection pressure (Case 1a) for both asymmetric and symmetric tree 
topologies with both stationary and non-stationary codon bias. 

Note: For both symmetric and asymmetric trees, the internal branch length is equal to 0.3 
subst./codon site.  This results in root-to-tip lengths of 1.2 subst./codon (symmetric) and 
2.7 subst./codon (asymmetric). 
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Table 2.5.  Percent false positives when non-stationary codon bias is combined with a 
shift in selection pressure. 

Note: Values averaged across different shifts in selection pressure (Cases 1b, 1c, 2a-c).  
For both symmetric and asymmetric trees, the internal branch length is equal to 0.3 
subst./codon site.  This results in root-to-tip lengths of 1.2 subst./codon (symmetric) and 
2.7 subst./codon (asymmetric). 
 
 
 
 This simulation design also permits an investigation of the effect of shifts in the 

distribution of selection pressure characteristic of cases of functional divergence.  Here, I 

calculate average false positive rates separately for Cases 1 and 2 (Table 2.6).  Because 

Case 1a is the null, where selection pressure is stationary, it is not combined with Cases 

1b and 1c in Table 2.6.  Note that there is much variability in false positive rates among 

sub-cases a, b, and c, but no consistent pattern (Appendix E).  Under a symmetric tree, a 

shift in selection pressure does not cause a consistent increase in false positive rates as 

compared to those under the null condition (Table 2.6).  The asymmetric tree is similar in 

that there is no systematic increase in rates of false positives.  However, the one 

exception is the GARD-SBP method, which yields substantially higher false positives for 
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both Cases 1 and 2 under an asymmetric tree. GARD-SBP estimates substitution 

parameters from the entire alignment and uses these in maximum likelihood estimations 

of phylogenies for each gene fragment.  Therefore, this method may be especially prone 

to false positives under non-stationary selection pressures where the effect is variable 

among sites.  GARD-SBP does not explicitly model anything other than rate variability 

among sites; when other types of variability exist among sites (such as in the 

simulations), the only way it can be accommodated is via rate variation among sites.  The 

estimated rate variation among sites under GARD-SBP appears to be “soaking up” other 

aspects of the evolutionary process and this signal is mistaken as a signal for 

recombination. 

 

Table 2.6.  Percent false positives under different shifts in selection pressure for both 
symmetric and asymmetric tree topologies.  

Note: Values averaged over stationary (η2=0.5) and non-stationary (η2=0.1) codon bias.  
For both symmetric and asymmetric trees, the internal branch length is equal to 0.3 
subst./codon site.  This results in root-to-tip lengths of 1.2 subst./codon (symmetric) and 
2.7 subst./codon (asymmetric). 
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2.2.4  SIMULATION 4:  VARIED RECOMBINATION AND DIVERSITY 

Because recombination analysis is a key step in phylogeny-based inference, it is 

important that detection methods be reliable when recombination has truly impacted the 

evolution of a set of gene sequences.  Methods designed to detect recombination events 

must not only detect whether or not recombination is present, but also estimate the 

number and location of breakpoints.  Several simulation studies have evaluated the power 

of these methods under different levels of recombination and divergence (Posada and 

Crandall 2001; Wiuf et al. 2001; Chan et al. 2006; Kosakovsky Pond et al. 2006).  

However, except for GARD-MBP (Kosakovsky Pond et al. 2006), none of the methods 

have been evaluated for their ability to determine the correct number of breakpoints when 

multiple are present.  In Simulation 4, I analyze the power of recombination detection 

methods to qualitatively detect the presence of recombination and to accurately detect the 

number of breakpoints. 

For this simulation, I use datasets from a previous study that have been analyzed 

only with GARD-MBP (Kosakovsky Pond et al. 2006).  These simulated datasets consist 

of 8 taxa alignments with different levels of recombination and diversity.  Each alignment 

is 3,000 bp long and has 0, 1, 2, 4, or 8 recombination breakpoints.  In addition, for each 

number of breakpoints, there are datasets with both low (5%) and high (25%) genetic 

diversity for a total of 10 simulation conditions, each with 100 replicate datasets. 

 Consistent with previous simulation studies, this analysis shows that 

recombination detection methods are not typically powerful (e.g., Posada and Crandall 

2001).  Power for detecting a single recombination event is low for all methods (Table 

2.7).  When just one recombination event is simulated and diversity is low, RDP, 
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GENECONV, MaxChi, and Chimaera have similar performance; detecting just 12-19% 

of replicates as having been subject to recombination.  GARD-MBP has substantially 

lower power, only detecting recombination in 8% of replicates.  This is much lower than 

previously reported for the same set of simulations (56%) (Kosakovsky Pond et al. 2006) 

because I apply the KH test for phylogenetic incongruence, which has the desirable effect 

of controlling the number of false positives (see Simulations 1-3). 

 As the number of simulated recombination events increases, so does the number 

of replicates in which recombination is detected (Table 2.7).  When 8 breakpoints are 

simulated at low diversity, MaxChi and Chimaera detect recombination in 74-75% of 

replicates.  RDP and GENECONV have slightly lower power, detecting recombination in 

67-68% of replicates. These results are consistent with previous studies (Posada and 

Crandall 2001; Kosakovsky Pond et al. 2006), which show that recombination detection 

methods have higher power when levels of recombination are higher.  

GARD-MBP has much lower power, detecting recombination in less than half of 

replicates even when multiple breakpoints are simulated.  This is not consistent with 

previous results (Kosakovsky Pond et al. 2006) due to my use of the KH test for 

phylogenetic incongruence.  Kosakovsky Pond and colleagues (2006) endorse using 

GARD-MBP without requiring phylogenetic incongruence on either side of a breakpoint, 

as this yields very good power (recombination is detected in as many as 98% of replicates 

when both recombination and diversity levels are high).  However, it also increases the 

number of false positives in their simulations (10% in their simulations, as compared to 

1% in my simulations where the KH test is applied). 

 



 46 

Table 2.7.  Capacity of five recombination detection methods to correctly infer 0 to 8 
breakpoints.  

Low Diversity (5%) High Diversity (25%) 
  0 1 2 4 8  0 1 2 4 8 

0 99 83 73 49 32 98 62 53 19 11 
1 1 16 26 39 35 2 37 38 44 30 
2  1 1 11 25  1 8 25 30 
3    1 3   1 6 16 
4     5    4 7 
5+         2 6 

R
D

P 

T 1 17 27 51 68  2 38 47 81 89 
0 99 88 75 59 33 98 76 68 41 29 
1 1 12 25 32 47 2 23 27 43 43 
2    8 15  1 5 14 17 
3    1 2    2 8 
4     2     3 
5+           G

EN
EC

O
N

V
 

T 1 12 25 41 67  2 24 32 59 71 
0 97 81 60 37 25 94 69 48 18 10 
1 3 19 36 42 38 6 28 40 40 28 
2   4 19 27  3 11 25 29 
3    2 6   1 14 20 
4     4    2 7 
5+         2 6 
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T 3 19 40 63 75  6 31 52 83 90 
0 97 84 61 41 26 94 69 48 18 11 
1 3 16 36 43 37 6 29 39 44 25 
2   3 14 26  2 12 25 31 
3    2 6   1 10 19 
4     5    3 9 
5+          5 
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T 3 16 39 59 74  6 31 52 82 89 
0 99 92 72 74 51 94 70 70 57 47 
1 1 8 28 24 43 6 30 25 38 34 
2    2 6   5 4 16 
3         1 3 
4           
5+           G

A
R

D
-M

B
P 

T 1 8 28 26 49  6 30 30 43 53 
Notes: For each method evaluated, columns indicate the number of simulated breakpoints 
while rows indicate the number of breakpoints inferred by a given method.  Values 
indicate the number of replicates (n=100) that infer the number of breakpoints specified 
by the row label.  The rows marked “T” indicate the total number of replicates with a 
signal for recombination for a given condition. 
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Although most methods have increased ability to qualitatively assess 

recombination with increasing number of breakpoints, accuracy in inferring the correct 

number of breakpoints when multiple are present is extremely low (<4% for low diversity 

and <12% for high diversity).  In fact, even when 8 breakpoints are simulated, no method 

infers greater than 5 breakpoints when diversity is low.  As I apply it, GARD-MBP is 

particularly conservative, never inferring more than two breakpoints at low diversity.  In 

general all methods underestimate the number of recombination events.  This decreasing 

ability to correctly identify multiple breakpoints may be due to decreased amount of 

information from which to make inferences.  Small fragments simply do not provide 

enough information for accurate estimation of some parameters, including substitution 

parameters and phylogenies.  Because recombination detection methods require 

parameter estimates to be compared with those in adjacent fragments, decreased fragment 

size may result in false negatives. 

 For all methods, increasing diversity increases power to detect recombination 

(Table 2.7).  For example, in sequences with one simulated breakpoint, RDP detects 

recombination in 38% of alignments with high diversity, compared to just 16% of low 

diversity replicates. This general pattern of increasing recombination detection at high 

diversity is present throughout all levels of recombination.  In addition, when multiple 

breakpoints are present, a larger number of replicates have a signal for more than one 

breakpoint when diversity is high.  These results are consistent with previous findings, 

which suggest the increased information available when genetic variance is high leads to 

increased power for detection (Posada and Crandall 2001; Kosakovsky Pond et al. 2006).  
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However, even under high diversity, methods still do not have the power to accurately 

detect the number of breakpoints.  

 

2.3  PROCHLOROCOCCUS GENOMIC DATA 

 Recombination has had a significant impact on the evolution of the cyanobacteria 

Prochlorococcus (e.g., Mann et al. 2003; Zeidner et al. 2005; Sullivan et al. 2006; 

Zhaxybayeva et al. 2009).  While several studies have explored the role of lateral gene 

transfer (LGT) in the genomic evolution of Prochlorococcus (e.g., Zhaxybayeva et al. 

2006; Zhaxybayeva et al. 2009), none have attempted to quantify within-gene 

recombination. The evolutionary history of Prochlorococcus is complex, including non-

stationary nucleotide composition and evolutionary rate along with an asymmetric 

organismal phylogeny.  According to my simulation studies, tree topology, and to a lesser 

extent codon bias, are conditions that can impact the performance of recombination 

detection methods.  Here, I use the knowledge acquired from my simulation studies to 

evaluate a subset of the core genome of Prochlorococcus for recombination. 

 For the analysis of genomic data, I use a subset of 585 genes from the 

Prochlorococcus core genome.  For the purposes of this study, the “core genome” 

contains all genes present in all 12 Prochlorococcus genomes.  The subset I chose to use 

for recombination analysis consists of those genes with the same fundamental 

evolutionary history as the accepted phylogeny for the organism (See the 16S phylogeny 

in Figure 1.1).  I start with amino acid alignments from a full set of 1812 genes, 

previously clustered into orthologous groups containing both Prochlorococcus and its 

closest relative, Synechococcus, by Zhaxybayeva and colleagues (2009).  Nucleotide 
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sequences from genomic data downloaded from GenBank (Table 2.8) are aligned using 

the amino acid alignments as templates.  For each gene, RAxML (Stamatakis 2006) is 

used to create a phylogeny.  Because the algorithm is start-point dependent, 10 maximum 

likelihood phylogenies are generated using a GTR model with a gamma distribution for 

among-site rate variation.  The phylogeny with the best likelihood score is taken as the 

best estimate for that gene.  A bipartition analysis is then conducted to select those genes 

with phylogenies that separate 1) Prochlorococcus from Synechococcus, 2) HL and LL 

Prochlorococcus, and 3) the two clades within HL Prochlorococcus.  Exclusion of genes 

having other topologies effectively filters out many having experienced whole-gene LGT 

events (Zhaxybayeva et al. 2009).  Thus, the remaining genes have phylogenies “closer” 

to the accepted organismal phylogeny, but nonetheless may have experienced one or 

more within-gene recombination events.  A total of 585 genes from the core genome 

meet this criteria and thus are used for recombination analysis. 
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Table 2.8.  Prochlorococcus strains used for the genomic analysis. 
Strain Ecotype %GC Accession Reference 

CCMP1986 
(MED4) HL 30.8 BX548174 Moore 1995; Rocap et al. 2003 

MIT9515 HL 30.8 CP000552 Rocap et al. 2002 

MIT9301 HL 31.3 CP000576 Rocap et al. 2002 

AS9691 HL 31.3 CP000551 Shalapyonok et al. 1998 

MIT9215 HL 31.1 CP000825 Moore and Chisholm 1999 

MIT9312 HL 31.2 CP000111 Moore et al. 1998; 
Coleman et al. 2006 

NATL1A LL 35.0 CP000553 Partensky et al. 1993 

NATL2A LL 35.1 AE017126 Scanlan et al. 1996 

CCMP1375 
(SS120) LL 36.4 CP000878 Dufresne et al. 2003; 

Chisholm et al. 1992 

MIT9211 LL 38 CP000554 Moore and Chisholm 1999 

MIT9303 LL 50.0 BX548175 Moore et al. 1998 

MIT9313 LL 50.7 CP000435 Moore et al. 1998 

 

 

 Each gene in the subset is analyzed for within-gene recombination by using all 

recombination detection methods evaluated in the simulation studies (GENECONV, 

RDP, MaxChi, Chimaera, GARD-MBP, and GARD-SBP).  The number of genes in 

which recombination is detected is extremely variable, from just 9 genes (1.5% of those 

analyzed) using GARD-MBP to 534 genes (91.3%) using Chimaera (Table 2.9). 
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Table 2.9.  Results from recombination analysis of 585 Prochlorococcus genes. 
Method Number of Genes Percent of Total 
GARD-MBP 9 1.5 
GARD-SBP 487 83.2 
RDP 209 35.7 
GENECONV 50 8.5 
MaxChi 476 81.4 
Chimaera 534 91.3 

 
 

 MaxChi is similar to Chimaera, detecting recombination in a large percentage of 

the genes.  Based on the simulations, asymmetric topologies combined with longer 

branch lengths can cause MaxChi and Chimaera to detect false signals for recombination.  

While most branches within the Prochlorococcus topology are generally short, the branch 

between ecotypes as well as some of the branches within the LL grade are comparable to 

the longer branches used in the simulated asymmetric topology.  In addition, the 

phylogenies of all Prochlorococcus genes are largely asymmetric.  Because both of these 

scenarios are exactly those associated with false positives for Chimaera and MaxChi in 

my simulations, the values yielded by these methods for real Prochlorococcus genes 

should be considered inflated due to potentially large numbers of false positives for genes 

with recombination. 

 Interestingly, GARD-based methods infer among the highest and lowest numbers 

of genes having a history of recombination.  GARD-MBP seems to be extremely 

conservative, detecting recombination in only 9 genes.  This is consistent with results 

from the simulation studies, where GARD-MBP is shown to have fairly low power even 

when multiple breakpoints are present.  However, the GARD-SBP method detects 

recombination in 83.2% of genes, with only Chimaera detecting higher levels.  Given the 
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high false positive rate of GARD-SBP under an asymmetric tree in Simulation 1, as well 

as under non-stationary evolution in Simulation 3, these results are best interpreted as 

negatively impacted by false positives. 

 RDP and GENECONV fall between these two extremes and, based on 

simulations, they are expected to more reliably identify actual cases of recombination in 

Prochlorococcus.  In the simulations, these two methods show reasonable power without 

yielding a large number of false positives when branch length is increased.  In addition, 

RDP and GENECONV perform well under an asymmetric topology and non-stationary 

evolution, which are characteristic of Prochlorococcus.  However, the difference between 

levels of recombination detected with these two methods is still quite large; RDP detects 

recombination in 209 genes while GENECONV detects recombination in only 50.  With 

such vastly different estimates, it is difficult to determine the actual level of 

recombination present in the Prochlorococcus core genome, but it is likely near the 

values detected by GENECONV and RDP (8.5 and 37.5%), suggesting an important role 

for within-gene recombination in the evolution of the Prochlorococcus core genome. 

 

2.4  CONCLUSIONS 

 Analysis of recombination is an important part of any phylogeny-based analysis.  

However, the performances of different methods that are designed to detect 

recombination are impacted by a variety of evolutionary processes.  Based on my results, 

I suggest that caution be exercised when choosing the method best suited for a given 

dataset.  Different methods may lead to drastically different biological conclusions 

depending on the evolutionary forces acting on a gene. 
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 Of the scenarios examined, I find tree shape to have the most substantial impact 

on false positive rate.  Although all methods experience at least a slight increase in false 

positive rates under an asymmetric tree, some methods (GARD-SBP, MaxChi, and 

Chimaera) yield substantially higher false positive rates.  In addition, false positive rates 

for these methods increase with increasing tree length when topology is asymmetric.  It is 

therefore recommended that these three methods not be used when the gene in question 

has a topology that is not symmetric. 

 Somewhat surprisingly, most methods perform consistently under conditions of 

positive selection as well as under non-stationary codon bias and shifts in the distribution 

of selection pressure.  None of the methods show a significant increase in number of false 

positives when positive selection is simulated.  With the exception of the GARD-SBP 

method, none of the recombination detection methods yield substantially higher levels of 

false positives under non-stationary evolution as compared with stationary conditions.  

Two methods (GENECONV and GARD-MBP) stand out in that they are robust to the 

influence of both asymmetric tree topology and non-stationary codon bias. 

 As shown in previous studies, levels of divergence and recombination impact 

power to detect recombination events.  Although power is typically low for all 

recombination detection methods, ability to detect recombination increases with both 

diversity and number of breakpoints.  However, even when diversity is high, the power of 

these methods to accurately determine the number of recombination breakpoints in an 

alignment is very low.  It seems that for all methods, there is a tradeoff between power 

and accuracy.  While the more powerful methods (MaxChi, Chimaera) are more likely to 

accurately detect the presence of recombination when it truly exists, they are also more 
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likely to detect a false signal for recombination when it is absent.  On the other hand, the 

more conservative methods (GARD-MBP, GENECONV, RDP) have low false positive 

rates, but are also likely to miss recombination when it is present.  It appears that a good 

tradeoff between power and accuracy is difficult to achieve with these statistical methods 

for detecting recombination. 

Although using a combination of methods may be the best way to obtain a clear 

understanding of recombination present in a given dataset, one must be careful to choose 

methods that are appropriate and not prone to especially large false positive rates based 

on the characteristics of the data at hand.  For example, the fraction of genes for which 

recombination is detected in the Prochlorococcus genome ranges from 1.5% to 91.3%:  

fundamentally different conclusions would be derived from each extreme if taken alone; 

the average does not seem to be a biologically defendable estimate; and, a consensus that 

includes a method with very low power could yield substantial underestimates.  The key 

to avoiding extremely conservative or extremely liberal estimates of recombination on 

real data is to choose methods that have reasonable power while still controlling the type-

1 error rate. 

 The problem of recombination detection is obviously a complex one and there is 

much room for improvement in developing these methods before we have a true 

understanding of recombination as an evolutionary process.  For the time being, users of 

these methods are encouraged to apply the following guidelines: 

• Do not ignore evolutionary characteristics such as non-stationary codon 

bias and functional divergence.  Analysis for such evolutionary patterns 

should be carried out before conducting recombination analysis. 
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• When characteristics of a given dataset may violate model assumptions, 

simulations should be carried out under conditions that are relevant to the 

data at hand.  These simulations should evaluate both power and false 

positive rates of candidate methods. 

• Pay particular attention to tree shape and sequence divergence, as these 

characteristics may drastically affect performance of recombination 

detection methods. 

• A consensus of several different methods may provide a robust way of 

detecting recombination within a gene, but methods to use in a consensus 

should be chosen carefully.  For instance, taking into account a strict 

consensus across a set of methods that includes an extremely conservative 

one (i.e., very low power) will be unlikely to detect recombination in most 

cases where it truly exists. 

• Overall, my simulations find GENECONV to be both reasonably powerful 

and generally robust.  Therefore, it may be desirable to include 

GENECONV when evaluating a set of potential methods under a given set 

of conditions. 
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CHAPTER 3: ANALYSIS OF DIVERGENCE IN FUNCTIONAL 
CONSTRAINT IN CASES OF NON-STATIONARY EVOLUTION 

 
 
3.1  INTRODUCTION 

 Statistical methods designed to detect functional divergence between homologous 

genes provide valuable tools for analyzing the increasing amount of available genetic 

information.  Most of these methods are derived from the concept that the substitution 

rate at a site is inversely related to functional constraint (Kimura 1983).  Therefore, a 

measurable shift in substitution rate in a protein-coding gene can be associated with a 

divergence in the function of the protein product (e.g., Gu 1999; Knudsen and Miyamoto 

2001; Susko et al. 2002).  A variety of strategies have been developed for detecting shifts 

in the rate of nonsynonymous substitution.  Here I group them into two broad categories: 

1) methods based on a scaled nonsynonymous rate (scaled by the inverse of the 

synonymous rate), and 2) methods based on the absolute rate of nonsynonymous 

substitution. 

 Scaling the nonsynonymous rate (dN) by the synonymous rate (dS) yields a useful 

index, ω (ω=dN/dS), of the strength and direction of natural selection pressure on a 

protein.   Here the rate of synonymous change represents the rate of gene evolution prior 

to the impact of selection on the protein product of the gene.  A value of ω >1 indicates 

nonsynonymous substitutions have been fixed more often than synonymous substitutions, 

which suggests the protein product has been subject to positive selection.  The ratio 

ω=dN/dS can be formulated as an explicit parameter of a Markov model of codon 

evolution (Goldman and Yang 1994; Muse and Gaut 1994).  See Section 1.2.1 of this 

thesis for a more comprehensive review of codon models.  Among the more recent 
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developments are models called branch-site models, which are designed to detect sites 

with a shift in ω among lineages in a phylogeny (Yang and Nielsen 2002; Bielawski and 

Yang 2004; Zhang et al. 2005).  These models make it possible to detect divergence in 

functional constraint by estimating the strength and direction of shifts in natural selection 

(ω) among entire clades (e.g., Bielawski and Yang 2004) 

 Alternatively, functional divergence can be detected by differences in the absolute 

rate of nonsynonymous substitution.  Methods using this approach typically formulate 

this rate as an explicit parameter in a model of amino acid evolution, where it is referred 

to simply as the “evolutionary rate.”  In addition to shifts in evolutionary rate within a 

phylogeny (Type I divergence), some amino acid models also detect historical shifts in 

functional constraint, which are manifested as shifts in amino acid frequencies while 

substitution rate is the same (Type II divergence).  For this reason, I use the term 

“functional divergence” to encompass both Type I and Type II divergence.  There are 

several methods for detecting Type I shifts in functional constraint (e.g., Gu 1999; 

Knudsen and Miyamoto 2001; Susko et al. 2002) and although each method takes a 

different approach, the overall process is essentially the same.  First, two subtrees are 

specified a priori and rates of amino acid substitution at each site are estimated separately 

for each subtree.  Amino acid models are then used to produce some measure of the 

difference between rates at each site.  The methods differ in how rate shifts are 

quantified, in how they are statistically tested, and in how other model parameters are 

treated.  See Appendix C for a list of methods for detecting functional divergence at the 

amino acid level.  Regardless of the differences in methods, those sites with an inferred 



 58 

difference in evolutionary rate among subtrees are interpreted as having undergone a shift 

in functional constraint.   

 Occasionally, other aspects of the evolutionary process, such as codon usage bias 

or amino acid composition also shift within a phylogeny.  However, current methods for 

functional divergence analysis do not account for this type of non-stationary evolution.  

Indeed, shifts in codon bias or amino acid composition are known causes of phylogenetic 

artifacts (Inagaki and Roger 2006; Lake 1994; Mooers and Holmes 2000).  Other types of 

heterogeneity, such as a shift in compositional variation among sites, are known to cause 

false positives in the inference of positive selection using codon models (Bao et al. 2008).  

Because statistical methods for detecting functional divergence can provide valuable 

insight into the genetic basis of adaptation, they are popular and used in a wide variety of 

settings.  However, we do not know their limits; i.e., when violating the assumptions of 

an underlying model will lead to analytical artifacts and, ultimately, false biological 

conclusions.  In this chapter, I use a series of simulations to explore the effects of non-

stationary evolution on the inference of functional divergence using both codon and 

amino acid models.  I specifically address the following three issues: 1) impacts of non-

stationary codon bias alone on codon models, 2) combined effects of non-stationary 

codon bias and changing selection pressure on codon models, 3) power and reliability of 

amino acid models of functional divergence under non-stationary evolution.  I then 

analyze a subset of the core genome of the cyanobacteria Prochlorococcus, which is 

known to have non-stationary evolution, as an empirical supplement to my simulation 

studies. 
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3.2  METHODS 

3.2.1 Simulation Studies 

Simulating gene sequence evolution 

 Using the INDELible simulation software (Fletcher and Yang 2009), I simulate a 

series of datasets under 18 different evolutionary schemes.  Simulated datasets, each 200 

codons in length, are based on the 10 taxa, asymmetric phylogeny shown in Figure 2.1a.  

All internal branch lengths in the phylogeny are set to 0.3 substitutions per codon site and 

all other branch lengths are adjusted to achieve rate constancy.  When a shift in either 

codon bias or selective constraints is simulated, it occurs at the point shown in red in 

Figure 2.1a and is stable in all branches that evolve after that point.  This effectively 

splits the tree into two types, “Type A” and “Type B,” with different evolutionary models 

(Figure 2.1a).   

Codon bias is modeled using the method of Aris-Brosou and Bielawski (2006) 

(Figure 2.4).  This method employs a single parameter, “η,” to specify codon frequencies 

for changing GC3 content (%G+C at the third codon position).   The values of η range 

from 0≤η≤1, where a value of η=0.5 indicates a GC3 content of 50%; i.e., all non-stop 

codons have equal frequencies.  As η approaches zero, GC3 content increases.  Using 

this system, I can easily specify separate codon biases for different parts of the phylogeny 

by setting different η values for Type A and Type B models. 

A shift in the distribution of selection pressures (i.e., a shift in functional 

constraints) is simulated on the codon level by separately specifying a distribution for ω 

for Type A and Type B models.  Omega distributions are modeled using a beta function.  

The beta function is convenient for this purpose because its range from zero to one is 
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ideal for modeling an ω distribution with no positive selection (0<ω<1).  In addition, a 

variety of shapes can be specified using only two shape parameters (p,q).  The beta 

distribution is split into 10 discrete categories of equal probability for the purpose of 

generating datasets without positive selection. When positive selection is simulated, the 

beta distribution is divided into nine categories and an extra site category with ω=2 is 

added (10% of sites).  

 The six most deeply branching taxa in the phylogeny are simulated under Type A 

evolution.  For this evolutionary model, most codon sites are under strong purifying 

selection (ω<<1) and very few sites are evolving close to neutrally (p=0.5, q=2) (Figure 

3.1).  The codon bias parameter for Type A evolution is set to η1=0.5 (GC3≈50%).  Type 

A evolution remains constant throughout all simulation conditions. 

Type B evolution, however, varies for each simulation condition.  There are three 

basic cases for Type B evolution (Figure 3.1): 

Case 1:  Most sites are under strong purifying selection, similar to Type A 

evolution.  This is modeled by an L-shaped beta function.  This case 

represents an “easy null” for tests formulated to detect positive selection. 

Case 2:  A larger proportion of sites evolving close to neutrality.  This is modeled 

with a U-shaped beta function.  This is considered a “hard” null for tests 

formulated to detect positive selection because the increased proportion of 

sites near neutral (ω≈1) are more likely to give a false signal for positive 

selection than when the majority of sites are under strong purifying 

selection. 



 61 

 
Figure 3.1.  Beta functions used for ω distributions in simulation studies.  For each case, 
the black curve represents sub-case “a,” the red curve sub-case “b,” and the blue curve 
sub-case “c.”  For methods designed to detect positive selection, Case 1 is an “easy null,” 
where few sites are evolving close to neutrally.  Case 2 is a “hard null” where a greater 
number of sites are evolving nearly neutrally, but no positive selection is present.  Case 3 
is the alternative model, where a proportion of sites in the foreground branches are 
simulated under positive selection. 

Type A Type B 

!"#$%&%'()#$%*)+),$-$+.%/!0"1 

2).$%3% 2).$.%456%

)%/78)9:1% /;<=041% /;<=0;<=1%

7%/+$>1% /;<3041% /;<60;<61%

9%/78?$1% /;<@041% /;<30;<31%



 62 

Case 3 (Positive Selection):  Same as Case 2, but an extra site category under 

positive selection (ω=2). 

For each case above, I simulate 3 different ω distributions (designated sub-cases “a,” “b,” 

and “c”) with slightly different shape parameters (Figure 3.1).  In Case 1a, Type B 

evolution is simulated under the same conditions as Type A, so selection pressure is 

homogeneous across the phylogeny.  Each sub-case is simulated both with a shift in 

codon bias (η2=0.1: GC3≈10%) and without a shift in codon bias (η2=0.5) across the 

phylogeny.  In total, this design yields 3 cases x 3 different beta distributions per case x 2 

models of codon bias = 18 evolutionary schemes.  For each scheme, 50 replicate datasets 

are simulated. 

 

Analysis at the Codon Level 

 Using codeml in the PAML package (Yang 2007), I analyze each simulated 

replicate under sites models M1a and M3, as well as branch-sites models Model A, 

Model B, and the modified Model A with ω2=1 (Zhang et al. 2005) (see Appendices A 

and B).  For branch-sites models, branches under Type 2 evolution are specified as 

foreground branches (i.e., a foreground clade).  Results from codeml are used to perform 

three likelihood ratio tests, which can be interpreted as tests for a shift in the distribution 

of functional constraints: 

Test 1:  M1a vs. Model A (d.f.=2) 

Test 2:  modified Model A (ω2=1) vs. Model A (d.f.=1) 

Test 3:  M3 vs. Model B (d.f.=2)  
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The test statistics from these likelihood ratio tests are compared to a χ2 distribution to 

obtain a p-value. Tests 1 and 2 (based on Model A) are for sites with a shift to positive 

selection in foreground branches while Test 3 (based on Model B) is for any shift in 

selection pressure, since background branches are not constrained to ω<1 (see Appendix 

B) (Yang and Nielsen 2002). See section 1.2.1 for additional descriptions of the branch-

site models and foreground branches as well as likelihood ratio tests. 

 

Analysis at the Amino Acid Level 

 For analysis of functional divergence at the amino acid level, I apply two different 

methods: Bivar (Susko et al. 2002) and FunDi (Gaston, unpublished method).  For this 

analysis each dataset simulated at the codon level is translated into amino acids.  Both 

Bivar and FunDi are then applied to each replicate to measure the effects of non-

stationary evolution on the output of these methods.   

Bivar separately measures evolutionary rates for two subtrees, which are defined 

a priori.  For a given site, i, the evolutionary rate (ri) is measured using a conditional 

mode estimate; i.e., the rate with the greatest conditional probability given the sequence 

data and phylogeny.  For my simulations, the two subtrees are the two different types of 

evolution (Type A and Type B).  I use the rates estimated from the simulated data to 

compare the rate differences between subtrees using three different measures: 
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where r is the rate of evolution at site i in a given subtree (A or B).  These measures 

provide a test statistic for measuring the difference in rate distribution between the two 

subtrees (Susko et al. 2002). 

 FunDi uses a likelihood-based mixture model to determine the likelihood of 

functional divergence at each site.  The mixture model has two components: 1) a standard 

evolutionary model and 2) a model that treats the two subtrees separately.  To determine 

if some fraction of sites in a gene has been subject to functional divergence, I develop a 

likelihood ratio test based on FunDi.  A test statistic equal to two times the difference in 

log likelihoods (2*ΔlnL) between a standard model (based on 100% of sites belonging to 

component 1 of the mixture model) and the full mixture model is calculated.  This test 

statistic is used to test the hypothesis that a gene is under functional divergence compared 

to the null that the gene has no sites subject to functional divergence. 

 For both methods, I use parametric bootstrapping to determine a p-value for each 

test statistic.  Because this bootstrapping also requires simulation, for clarity purposes I 

use the term “original replicate” to refer to the original simulated data, which is treated 

like a real gene, and “bootstrap sample” to refer to those datasets simulated for the 

purpose of parametric bootstrapping.  For each original replicate, the amino acid 

alignment is used to estimate a maximum likelihood phylogeny using RAxML 

(Stamatakis 2006).  Amino acid frequencies and the proportion of invariable sites are 

then estimated from the alignment using the codeml program in the PAML package.  In 

addition, branch lengths and an alpha shape parameter are estimated by maximum 

likelihood under a WAG model using codeml.  These estimated parameters are then used 

to simulate 100 bootstrap samples with stationary evolution and no shifts in evolutionary 
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rate.  Both Bivar and FunDi are applied to each bootstrap sample in the same manner as 

for the original replicate.  Distributions created from the bootstrap samples for each test 

statistic (arsum, alrsum, and abrsum for Bivar and 2*ΔlnL for FunDi) can be used to 

calculate p-values for the original replicates.  Datasets with a p-value less than 0.05 are 

considered to have significant evidence for functional divergence at the amino acid level. 

 

3.2.2  Prochlorococcus Genomic Data 

 The cyanobacterium Prochlorococcus marinus provides a good example of non-

stationary evolution.  Prochlorococcus lineages have diverged into two phylogenetically 

distinct ecotypes, a high-light adapted ecotype (HL) and a low-light adapted ecotype 

(LL).  A shift in codon bias is observed between the two ecotypes; the most recently 

diverged strain has a GC content of 30.8% while the most deeply branching strain has a 

GC content of 50.7% (Kettler et al. 2007).  This GC bias is reflected in biased 

synonymous codon usage, with the most recently diverged lineage having an effective 

number of codons (ENC) value of 49.0 and the most deeply branching having ENC = 

58.2.  Hereafter, compositional biases are summarized using %GC.  Because the more 

recently evolved strains occupy a different habitat, this organism is a prime candidate for 

functional divergence analysis, yet the non-stationary GC content is a substantial 

deviation from the underlying model of all methods.  For this reason, I choose genes from 

the Prochlorococcus core genome as an example of real data analysis under non-

stationary conditions. 

 

 



 66 

Alignments of Genomic Data and Generation of Phylogenies 

 For the analysis of genomic data, I begin with amino acid alignments of 1812 

genes previously clustered into homologous groups using complete genomes from both 

Prochlorococcus and Synechococcus (Zhaxybayeva et al. 2009).  I align nucleotide 

sequences from genomic data downloaded from GenBank (Table 2.8), using the amino 

acid alignments of Zhaxybayeva and colleagues (2009) as templates.  For each gene, a 

maximum likelihood phylogeny is generated using RAxML (Stamatakis 2006).  Because 

RAxML is start-point dependent, 10 trees are separately inferred under the GTR model 

with a gamma distribution for among-site rate variation.  The tree with the best likelihood 

is used for the gene phylogeny. 

 

Determination of a Core Genome Subset and a “Genome Tree” 

 The core genome is defined here as those genes found to be present in all 12 

Prochlorococcus genomes.  I concatenate nucleotide sequences for all core genes and 

generate a “genome tree” using RAxML.  The genome tree is the best of 10 maximum 

likelihood inferences (GTR with gamma distribution) on the concatenated nucleotide 

sequence.  In addition, I use PAUP* (Swofford 2003) to generate a consensus tree from 

all phylogenies of Prochlorococcus core genes. 

Gene trees with phylogenies that are incongruent with the organismal phylogeny 

may yield false conclusions in phylogeny-based inference, such as in the inference of the 

strength and direction of natural selection pressure (Anisimova et al. 2003; Shriner et al. 

2003; Scheffler et al. 2006).  Although individual genes may have incongruent 

phylogenies, studies suggest that concatenation of multiple genes will be more robust to 
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gene-specific lateral gene transfer events and thus are more likely to represent the 

evolutionary history of the organism (e.g., Brown JR et al. 2001; Snel et al. 2005).  For 

this reason, the genome tree is used as a representation of the organismal phylogeny.  I 

then select the subset of gene trees having the same topology as the genome tree for 

further analysis of functional divergence.  However, because small differences in 

phylogeny, due to either poor resolution or very local recombination events, are not 

expected to impact the inference of functional divergence (Anisimova et al. 2003), I am 

able to identify additional genes suitable for investigating the divergence of HL and LL 

Prochlorococcus.  These additional genes are determined by a three-part bipartition 

analysis.  This analysis filters the core genome for those genes that meet the following 

three conditions: 1) Prochlorococcus is monophyletic, 2) the HL ecotype is 

monophyletic, and 3) there is a bipartition between the two HL clades.  Some topologies 

for this set of genes differ from the genome tree, but only due to “local” differences; i.e., 

the structure of the tree required for testing functional divergence between HL and LL 

lineages is preserved. 

 

Analysis of Prochlorococcus Genomic Data 

 For all genes in the subset, analysis of functional divergence is conducted at both 

the codon and amino acid levels.  At the codon level, I use the codeml program from the 

PAML package (Yang 2007) to fit each alignment to sites-model M1a, branch-sites 

Model A, and modified Model A (ω2=1), under the gene tree topology.  For branch-sites 

models, all HL branches are specified as foreground branches (i.e., a foreground clade).  I 

also conduct an analysis in which only the branch between ecotypes is specified as the 
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foreground branch.  This analysis searches for an episodic shift in selection pressures 

between the two ecotypes.  Using the likelihood for the data under each model, I conduct 

two likelihood ratio tests for positive selection: M1a vs. Model A (Test 1) and modified 

Model A (ω2=1) vs. Model A (Test 2).  The test statistics from these likelihood ratio tests 

are compared with a χ2 distribution to determine a p-value for each test. 

At the amino acid level, both Bivar and FunDi are applied in the same manner as 

described for the simulation study.  HL and LL strains are specified as the two subtrees to 

be analyzed separately.  For each gene, 100 parametric bootstrap samples are generated 

using parameter values estimated from the gene in the same manner as in the simulation 

study.  For Bivar, the three ratios, arsum, alrsum, and abrsum are used as test statistics 

and compared to the distribution from the bootstrap analysis to obtain a p-value.  For 

FunDi, a likelihood ratio test is performed as described above.  Again, the test statistic is 

compared with the distribution from the bootstrap samples to determine a p-value for 

functional divergence. 

 

3.3  RESULTS AND DISCUSSION 

3.3.1  Non-Stationary Codon Bias Alone Does Not Affect Explicit Tests Of 
Positive Selection Using Codon Models 
 
 In some organisms, codon bias is not stationary over evolutionary time (e.g., 

Urbach et al. 1998; Moran 2003).  However none of the current models of codon 

substitution account for this type of evolution; in these models, codon frequencies are 

assumed to be at equilibrium.  Furthermore, codon bias is measured empirically from the 

entire alignment.  Because frequency parameters are essential for the calculation of 
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substitution probabilities, application of the current models to non-stationary data could 

lead to serious errors in the inference of natural selection.  As part of this study, I explore 

how shifts in %GC (codon bias) may impact the inference of selection pressure based on 

the ω parameter of branch-sites codon models. 

 Each branch-site LRT (Tests 1, 2, and 3 in the methods) is evaluated in each of 18 

evolutionary scenarios.  I begin by isolating the simplest scenario (Case 1a), as this is the 

only case where selection intensity is homogeneous across the tree, thereby focusing 

strictly on the effect of non-stationary codon bias (Table 3.1).  Here, Tests 1 and 2 do not 

show excessive rates of false positives when codon bias is stationary.  Somewhat 

unexpectedly, this is also the case when a shift in codon bias is present. Test 3 yields a 

slightly higher false positive rate (as compared with Tests 1 and 2) when codon bias is 

stationary (8%) and this rate increases substantially under non-stationary codon bias 

(18%).  These results indicate that while branch-site models designed to detect positive 

selection (Tests 1 and 2) are not negatively impacted by a shift in codon bias alone, Test 

3, which tests for any shift in selection pressure, may yield an increased number of false 

positives under non-stationary codon bias. 

 

Table 3.1.  Percent replicates (n=50) that yield false positives when no shift in functional 
constraint is simulated. 
Codon Bias Test 1 Test 2 Test 3 
Stationary 4 0 8 
Non-Stationary 4 0 18 

 
 
 
 The constraints placed on model parameters under Tests 1 and 2 appear to give 

those tests some robustness to the type of model misspecification covered in this 
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simulation. Test 3, on the other hand, does not constrain any site categories of the null 

model or the alternative model.  Because the ω parameters for all site categories in both 

the null (M3) and alternative (Model B) are unconstrained, those models are more 

“flexible” in terms of their ability to be fit to the data that is simulated.  In this case, the 

gap between the simulating model and both of the analytical models (M3 and Model B) is 

not small, particularly with respect to a shift in codon bias.  It seems that the shift in 

codon bias in these data is “absorbed” by the variability in ω among lineages under 

Model B, with this variability being mistaken as a signal for a shift in the distribution of 

selective constraints. 

 

3.3.2  Combined Effects of Non-Stationary Codon Bias and Selection 
Pressure Can Negatively Impact Inferences of Selection Pressure Using 
Codon Models 
 
 In real gene sequences, a shift in codon bias is often accompanied by a shift in the 

rate of evolution (e.g., Dufresne et al. 2005; Moran 2003).  Branch-site codon models 

accommodate non-stationary selective constraint by allowing some sites to shift among 

categories of selection pressure in foreground branches.  However, a shift in selective 

constraint may not involve positive selection, as a change in functional constraint alone is 

sufficient to yield a change in evolutionary rate.  An unresolved question is whether such 

changes, when accompanied by non-stationarity in other aspects of substitution, might 

result in false positives for likelihood ratio tests for positive selection.  Here, I examine 

the combined effect of non-stationary functional constraint and codon frequencies on the 

inference of selection pressure. 
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Table 3.2.  Percent replicates with significant likelihood ratio tests (p≤0.05) under non-
stationary evolution. 
 Test 1  Test 2  Test 3 
 S N  S N  S N 
Null (Case 1a) 4 4  0 0  8 18 
Case 1 (b, c) 24 52  1 0  73 87 
Case 2 (a,b,c) 94 95  0 9  85 98 
Note: The complete results can be found in Appendix F.  For this table, values have been 
averaged over sub-cases.  Case 1a is presented separately because it is the null, while 
“Case 1” is the average of Cases 1b and 1c.  For each test, conditions with stationary (S) 
and non-stationary (N) codon bias are shown. 
 
 
 

Five simulation scenarios are characterized by either a small shift in the 

distribution of selection pressures (Cases 1b and 1c) or a large shift in selection pressures 

(Cases 2a, 2b, and 2c) in the foreground clade.  In no case does the shift involve positive 

selection, hence they represent null scenarios with respect to explicit tests for positive 

selection (Tests 1 and 2).  These scenarios are relevant to the question of codon bias 

because they are generated with either the presence or absence of a shift in codon 

frequencies.  Note that individual results for sub-cases a, b, and c are shown in Appendix 

F, whereas results provided here (Table 3.2) are averaged over sub-cases.  Results for 

Case 1 represent an average over scenarios b and c while results for Case 2 represent an 

average over scenarios a, b, and c. 

 For Test 1, even a small shift in the distribution of selection pressure (Case 1b and 

1c) causes a large increase in the false positive rate for positive selection (Table 3.2).  It 

is interesting that even when codon frequencies do not shift and there is only a slight shift 

in selection pressure (Case 1b and 1c), the false positive rate is high (24%).  The addition 

of non-stationary codon bias to this condition causes false positive rates to nearly double 

(52%). There is also an increase in the false positive rate in Case 2, where a large shift in 
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selective pressures occurs (i.e., when there is a larger proportion of sites evolving near 

neutrality, with ω≈1).  However, here the overall effect of non-stationary codon bias is 

small for Test 1 because the false positive rate is unacceptably high (94%) even when 

codon frequencies are stationary. Although here I focus on false positives based on LRT 

results and not parameter estimates, it is interesting to note that in every case, average 

estimates for ω2 are greater when codon bias is non-stationary (Table 3.3), further 

suggesting that the shift in codon bias is being absorbed through variation in ω.  My 

findings are consistent with a previous study, simulated under very different conditions, 

which found high false positive rates for Test 1 (40-70%) depending on topology, branch 

lengths, and selection pattern (Zhang 2004).  A subsequent study found that this LRT is 

better suited as a test for relaxed constraint than positive selection (Zhang et al. 2005).  

Indeed, my study confirms this is the case as even when there is a shift in codon bias, 

Test 1 has a consistently low false positive rate under the null (Case 1a in Table 3.2). 

 

Table 3.3.  Mean and standard error values for ω2 in foreground branches estimated under 
Model A for stationary and non-stationary codon bias and different shifts in selection 
pressure. 
 Stationary  Non-Stationary 
 mean SE  mean SE 
Null (Case 1a) 1.12 0.07  1.29 0.13 
Case 1 (b, c) 1.07 0.05  1.10 0.06 
Case 2 (a, b, c) 1.00 0.00  1.19 0.03 
Case 3 (a, b, c) 1.08 0.01  1.44 0.05 

Note: The true value of ω2 is not greater than 1 in any of these cases.  The values of ω2 in 
the table are the average of separate maximum likelihood estimates taken over all the 
replicates of a given simulation case. 
 
 
 
 Test 3 behaves similarly to Test 1, with non-stationary frequencies causing an 

increase in rejection rate of the null hypothesis (Table 3.2).  The effect of non-stationary 
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codon bias is smaller in Test 3, at least in part because the false positive rate is higher 

than for Test 1 when there is no shift in codon frequencies.  Model B is the alternative 

model for Test 3 and, although it allows for positive selection (as does the null model 

M3), site categories are not constrained to ω>1.  Thus, Test 3 is not an explicit test for 

positive selection in foreground branches (Yang and Nielsen 2002).  Based on the 

formulation of the null and alternative models, Test 3 should be viewed as a test for a 

shift in selection pressure, such as a relaxation of selective constraints.  Hence, rejection 

of the null under Test 3 in Case 1 and Case 2 should not be interpreted as evidence of 

positive selection and consequently they do not represent false positives for positive 

selection (unlike Tests 1 and 2). 

  As tests for relaxed constraint, both Test 1 and Test 3 perform reasonably well.  

When codon bias is non-stationary, Test 1 may be preferred because it yields fewer false 

positives under the null case (Case 1a) and does not show an increase in false positive 

rate under non-stationary codon bias alone.  However, Test 3 has higher power when the 

shift in selection pressure is small (Case 1b and 1c).  Therefore, under stationary codon 

bias, Test 3 may provide a better understanding of the shifts in selection pressure 

experienced by a set of genes.  Both tests appear to have increased power under non-

stationary codon bias.  Because this increase results from a violation of model 

assumptions, it can be considered a systematic error in the direction of the alternative 

model.  While increased power is normally desirable, one can imagine a case where a 

shift in selection pressure is marginal at best.  If this hypothetical dataset also experiences 

a shift in codon bias, the statistical significance of the shift in selection pressure will be 

falsely inflated.  Furthermore, given that the relationship between the assumptions of the 
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model and the true generating process will be unknown for real data, it seems imprudent 

to rely on systematic errors in the direction of the alternative hypothesis as means of 

achieving good power. 

Test 2 is known to be a more conservative test for positive selection (Zhang et al. 

2005).  When a small shift in selection pressure is present, the false positive rate is very 

low regardless of whether codon bias is stationary or non-stationary (Table 3.2).  For a 

large shift in selection pressure combined with a shift in codon frequencies, the false 

positive rate increases to 9%, which is only marginally larger than the level of the test.  

However, this increase is entirely due to one sub-case (see Case 2c in Appendix F), 

which is simulated under the most extreme shift in selection pressure.  Taking Case 2c on 

its own, the false positive rate is estimated to be 24% when codon bias is non-stationary 

(see Appendix F).  These results indicate that even though Test 2 is a conservative test for 

positive selection, it may yield false positives due to model misspecification under strong 

non-stationary evolution. 

 Case 3 (a, b, and c) is relevant to assessing the power of each test to detect 

positive selection when it is truly present in the data (Table 3.4).  Tests 1 and 3 have high 

power in Case 3.  This further validates the potential of these LRTs as tests for a shift in 

selective pressure among lineages.  Unfortunately Test 2, the only defensible test for a 

shift involving positive selection in the foreground clade, has low power.  The best 

performance of Test 2 is under non-stationary conditions, but simulations under Cases 1 

and 2 suggest this reflects systematic error in the direction of the alternative hypothesis.  

Thus it seems that the conservative quality of Test 2 in the face of a shift in codon bias is 
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due to generally low power of the test.  This finding of low power for Test 2 is consistent 

with previous analysis of this LRT under different conditions (Zhang et al. 2005). 

 

Table 3.4.  Percent replicates with significant likelihood ratio tests under positive 
selection and with stationary and non-stationary codon bias.   
 Test 1  Test 2  Test 3 
 S N  S N  S N 
Null (Case 1a) 4 4  0 0  8 18 
Case 3 (a,b,c) 93 94  2 23  96 100 

Note: The complete results can be found in Appendix F.  For this table, values have been 
averaged for Case 3.  “S” indicates that codon bias is stationary across the phylogeny 
while “N” indicates non-stationary codon bias. 
 
 
 
3.3.3  Testing for Functional Divergence Under Non-Stationary Evolution at 
the Amino Acid Level 
 
 Methods designed to detect functional divergence on the amino acid level do not 

take into account synonymous substitution.  For this reason, they may be less sensitive 

than codon models to a shift in GC3 content.  Inagaki and Roger (2006) show 

heterogeneity in codon usage may lead to phylogenetic artifacts under codon models, and 

that amino acid models are more reliable under such conditions.  However, because 

amino acid models do not utilize all of the sequence information, they may have lower 

power to detect some substitution processes.  Here, I evaluate the ability of amino acid 

models to detect a shift in functional constraint as well as test their sensitivity to shifts in 

codon bias. 

Both programs for analyzing functional divergence at the amino acid level, Bivar 

and FunDi, are applied to each of 18 evolutionary scenarios described in the methods.  

Bivar employs three summary statistics to quantify the difference in evolutionary rates 

among sites between two subtrees.  Two of the three measures (alrsum and abrsum) yield 
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reliable results in my simulations (see Appendix G for the full set of results).  The first 

ratio, arsum, yields excessively high levels of false positives (36%) even when evolution 

is stationary (Case 1a).  Since results from the other two ratios, alrsum and abrsum, are 

similar (Appendix G), I will review the abrsum values for discussion. 

As methods based on amino acid models are designed to detect any shift in 

evolutionary rate, the only null scenario is Case 1a, where evolutionary rate is 

homogeneous throughout the phylogeny.  With respect to data simulated under the null 

hypothesis, Bivar yields substantially fewer false positives (2%) as compared to FunDi 

(14%).  All other cases (1b, 1c, 2a-c, 3a-c) are used to investigate their power to detect 

functional divergence.  In Table 3.5, I show only the results from conditions with 

stationary codon bias in order to investigate power for detecting functional divergence 

without any possible error caused by a shift in composition.  Because there is no apparent 

pattern within each case (see Appendix G), I have calculated averages over sub-cases.  

Both methods have moderate power to detect a shift in evolutionary rate (Bivar: 20-54%; 

FunDi: 30-41%).  Bivar has somewhat higher power than FunDi in Cases 1 and 2, but not 

in Case 3.  Recall that Case 3 differs from Cases 1 and 2 by the addition of a fraction of 

sites subject to positive selection.  These results therefore suggest that FunDi may be 

better suited to detecting functional divergence in real datasets subject to positive 

selection.  Because amino acid models do not take into account synonymous 

substitutions, they may be less sensitive to some substitutions that result in a shift in 

functional constraint.  Indeed, these amino acid level methods seem to have lower power 

than codon level models designed to test for a shift in constraint.  For instance, codon-
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based Test 3 detects a shift in constraint in a minimum of 73% of replicates, which is 

substantially higher than either amino acid method in any scenario. 

 

Table 3.5.  Percent of replicates with signals for functional divergence (p≤0.05) for amino 
acid methods under stationary codon frequencies. 
 Bivar (abrsum) FunDi 
Null (Case 1a) 2 14 
Case 1 (b,c) 58 29 
Case 2 (a,b,c) 55 43 
Case 3 (a,b,c) 31 35 

Note: Complete results can be found in Appendix G.  For this table, values are averaged 
over sub-cases.  Case 1a is presented separately because it is the null, while “Case 1” is 
the average of Cases 1b and 1c. 
 
 
 

To determine whether non-stationary codon bias impacts detection of functional 

divergence at the amino acid level, I apply both amino acid level methods (Bivar and 

FunDi) to simulations with non-stationary codon bias.  In these simulations, false positive 

rates increase substantially when a shift in codon bias is present.  The false positive rate 

for Bivar (measured under Case 1a) increases from 2% to 16 % when a shift in codon 

bias is introduced.  The false positive rate for FunDi increases from 14% to 36% when 

there is a shift in codon bias.  Outside of the null, functional divergence is detected in 

more replicates when a shift in codon bias is present (Table 3.6).  These results suggest 

that tests for functional divergence that are formulated at the amino acid level also are 

impacted by non-stationary codon bias usage (in this setting the shift in codon bias is 

manifested as non-stationary amino acid frequencies).  

 

 



 78 

Table 3.6  Percent replicates in which functional divergence is detected by using amino 
acid methods under stationary and non-stationary codon bias. 
 Bivar (abrsum) FunDi 
Stationary 47 36 
Non-Stationary 58 46 

Note:  Complete results can be found in Appendix G.  Here, values are averaged over all 
conditions with a shift in evolutionary rate. 
 
 
 

There are other aspects of the substitution process, in addition to codon bias, that 

are not included in the analytical models and thus may also have impacted the involved 

statistical tests.  Simulation at the codon level in this study is based on generating 

sequences with a specified distribution of nonsynonymous and synonymous substitutions, 

without regard for the specific amino acid encoded.  Tests for functional divergence at 

the amino acid level use models that permit one-step changes between amino acid states 

requiring more than one synonymous change.  Furthermore, both Bivar and FunDi take 

into account differential amino acid exchangeabilities.  It is therefore possible that the 

observed impact of non-stationary codon bias on amino acid methods for functional 

divergence detection is related to this additional gap between the generating and 

analytical models.  To investigate this, I conduct an additional simulation study, 

generated at the amino acid level, in order to determine whether a shift in composition 

alone leads to false positives for amino acid models (See Appendix H for detailed 

methods and results).  For this study, I simulate a shift in amino acid frequencies 

equivalent to the shift in codon frequencies used for the main simulation. Under these 

conditions, Bivar yields only 2% false positives and FunDi yields 6%.  These results 

indicate that a shift in amino acid frequencies alone does not impact amino acid level 

methods for functional divergence analysis. Taken together with the other simulations, 
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these results highlight the importance of the gap between the generating and analytical 

models; the larger the gap, the more serious the effect on any involved statistical tests.  

The problem remains that for any real dataset, we will not know the true generating 

model.  We do know, however, that it is most certainly more complex than the analytical 

models in hand. 

 

3.3.4  Prochlorococcus Genes Appear Subject to Functional Divergence 
Between HL and LL Ecotypes 
 
 Here I analyze a subset of the core genome of the cyanobacterium 

Prochlorococcus, which is well known to contain genes subject to functional divergence 

(among HL and LL ecotypes) as well as strong non-stationary evolution with respect to 

codon bias.  Prochlorococcus genes from previously clustered genomic data are 

processed in order to obtain a subset of the core genome with the same basic evolutionary 

history as the organism.  Out of a total of 1812 genes, 1005 genes are present in all 

Prochlorococcus strains and thus make up the core genome.   This estimate is within the 

range of sizes previously reported for this genus.  It is smaller than the Kettler and 

colleagues (2007) estimate of 1273 core genes, likely due to the use of Synechococcus in 

the initial clustering of my data and the difference in clustering methods (Zhaxbayeva et 

al. 2009). Early studies estimated the core genome to be even larger (e.g., Dufresne et al. 

2003), but do not use information from all 12 genomes.  On the other hand, my estimate 

is much larger than the core proteome identified by Paul and colleagues (2010).  

However, the E-value cutoff used in their study was extremely conservative (1 x 10-20). 

Each gene in the core genome is compared with the genome tree in order to 

identify genes with the same basic evolutionary history as the organism.  Figure 3.3 
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shows the genome tree generated from the concatenation of all core genes as well as the 

consensus tree from all core gene phylogenies.  While both trees clearly separate the 

strains in the HL and LL ecotypes, other parts of the tree are poorly resolved.  For 

example, the consensus tree contains a polytomy for MIT9211 and CCMP1375 within 

the LL grade.  In addition, in the consensus tree, some branches in the HL clade have low 

support, which may be caused by small branch lengths in this part of the phylogeny.  

Because parts of the consensus tree have poor resolution, most genes do not have 

topologies that are congruent with the genome tree.  In fact, only 97 out of 1005 core 

genes have the exact same topology as the genome tree.  This may be due, in part, to 

short branch lengths.  In addition, recombination events may yield gene phylogenies that 

differ from organismal phylogenies.  While small phylogenetic differences, whether due 

to poor resolution or local recombination, are not a problem for phylogenetic-based 

inference, a large difference may negatively impact codon models (Anisimova et al. 

2003; Shriner et al. 2003; Scheffler et al. 2006) and the effects on amino acid models are 

not known.   

In order to obtain more than 97 genes for functional divergence analysis while not 

allowing genes trees to be drastically different than the genome tree, I conduct a three-

part bipartition analysis.  This analysis filters for genes with phylogenies that have three 

bipartitions that match those in the genome tree: 1) between Prochlorococcus and 

Synechococcus, 2) between HL and LL ecotypes, and 3) between the two HL clades.  

Based on this analysis, I find 585 genes with the same fundamental evolutionary pattern 

as the genome tree.  This subset of genes from the Prochlorococcus core genome is used 

in the analysis of functional divergence.  
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Figure 3.3.  a) Genome tree generated from concatenation of all 1005 Prochlorococcus 
core genes. b) Consensus tree of topologies inferred from separate analysis of 1005 core 
genes. 
 
 
 

The subset of 585 core genes are analyzed using the two likelihood ratio tests 

designed to detect positive selection in part of the tree:  Test 1 and Test 2.  Using Test 1, 

a signal for positive selection is observed in 76% of genes when the entire HL clade is 

specified as foreground and 90% of genes when just the branch between ecotypes is 

specified (Table 3.7).  However, results from previous studies (Zhang et al. 2005) and 

simulations presented in this chapter suggest that Test 1 is more appropriate as a test for 

altered constraint than positive selection.  In addition, results from my simulations show 

that non-stationary evolution, such as that present in Prochlorococcus, is associated with 

an increase in false positives for this LRT.  For these reasons, this is likely an 

overestimate of the number of genes under positive selection.  According to the more 

conservative Test 2, no genes in the subset contain a signal for positive selection when 

the whole HL clade is specified as foreground and only 24% when the branch between 

ecotypes is specified.  The increased number of genes under positive selection when the 
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foreground branch is the branch between ecotypes may indicate that an episodic shift in 

selection pressure is more likely to have occurred in Prochlorococcus than an actual shift 

in the entire HL clade.  However, because even this conservative test yields increased 

false positive rates under non-stationary evolution, it is impossible to infer from these 

results a reliable estimate of the proportion of Prochlorococcus core genes that have 

experienced positive selection.  Clearly there is signal in these data that is worth further 

investigation.  New models that explicitly model phylogenetic shifts in codon bias will be 

required for further analysis under the codon model framework. 

 

Table 3.7.  Percent of genes (n=585) with significant results (p≤0.05) for codon level 
analysis of shifts in selection pressure in a subset of the Prochlorococcus genome. 
Foreground Branches Test 1 Test 2 
All HL 76 0 
Between Ecotypes 90 24 

 
 
 
 Analysis at the amino acid level also suggests functional divergence in a 

substantial proportion of genes in the Prochlorococcus core genome.  Under Bivar, the 

abrsum measure detects functional divergence in 268 (46%) genes.  The likelihood ratio 

test used for FunDi yields positive results in 108 (18%) genes of the subset of the core 

genome.  While results from Bivar and FunDi differ, the results of my simulations 

suggest a preference for Bivar.  Bivar has the desirable qualities of moderate power and 

only small elevation of false positive rates under non-stationary codon bias.  To offset 

potentially elevated false positive rates, I recomputed the results for Bivar under a more 

stringent level of the test by setting α = 0.01.  Under this condition, 172 (29%) genes 

yield a signal for functional divergence.  This value is similar to the codon-level Test 2 
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results with the branch between ecotypes specified as foreground.  However, upon closer 

analysis, I find that only 50 genes test positive for a shift in functional constraint for both 

Bivar and codon-level Test 2.  While my findings are preliminary and should be followed 

up with tests that employ models that can explicitly accommodate non-stationary codon 

bias, they suggest core genes might play an important role in ecotype divergence.  

Although many previous studies focus on the role of the flexible genome in the 

divergence of Prochlorococcus ecotypes (e.g., Kettler et al. 2007; Rocap et al. 2003), 

more recent studies suggest that the core genome may be important to niche 

differentiation in other bacteria (Sarkar and Guttman 2004; Dunn et al. 2009).  It seems 

this could be the case for HL and LL divergence in Prochlorococcus as well. 

 

3.4  CONCLUSIONS 

 Models of sequence evolution can be useful tools for the analysis of genetic data.  

However, one must carefully consider the assumptions made by these models and 

determine whether they are acceptable for a given dataset.  My results show that non-

stationary evolution may lead to false conclusions in the inference of selection pressure at 

the codon level.  Even the most conservative of codon models yields significant levels of 

false positives where sequence evolution is strongly non-stationary.  It is therefore 

recommended that current models of codon evolution should not be used when there is a 

large shift in codon bias within a dataset. 

 One possible solution to this problem is to implement models of codon evolution 

that take into account non-stationary composition.  Currently, non-stationary models exist 

at the nucleotide level (e.g., Yang and Roberts 1995; Galtier and Gouy 1998), but have 
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yet to be developed at the codon level.  A major concern in implementing such models is 

that the increase in parameters to account for multiple sets of codon frequencies is too 

large.  However, this can be avoided by using an approximation based on estimates of 

nucleotide frequencies at each of the three codon positions (F3x4) (Yang 2007).  This 

reduces the burden of the estimation from 61 to just 9 frequency parameters per set.  One 

can imagine a model where these frequencies could then be calculated empirically for 

two parts of the phylogeny, specified a priori (i.e., for two sub-trees each containing 

some contemporary sequences) or estimated using a maximum likelihood framework.  

Maximum likelihood estimation would permit greater flexibility in modeling shifts in 

codon bias; for some examples of analogous models at the nucleotide level see models 

N1 and N2 of Yang and Roberts (1995).  However, maximum likelihood estimation will 

incur substantial increases in computational burden.  Implementation of such a model 

would allow for detection of functional divergence that takes advantage of codon-level 

information, but datasets would no longer be subject to the negative effects of model 

misspecification due non-stationary codon bias. 

While amino acid models may be a viable alternative when a shift in composition 

is present, synonymous information is not utilized, which may decrease the power of 

those models in some settings.  In addition, my simulation studies reveal negative effects 

on the involved statistical tests when sequences were simulated at the codon level and 

analyzed with amino acid models. My results therefore highlight the need for the 

integration of information from both codon and amino acid levels.  Ideally both types of 

information could be taken into account.  Some work has been done in this area, using 

empirical codon models to simultaneously account for synonymous substitution and 
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varying amino acid exchangeabilities (e.g., Schneider et al. 2005; Doron-Faigenboim and 

Pupko 2007; Kosiol et al. 2007).  Such models could be extended to permit shifts in the 

distribution of selection pressures among branches, thereby permitting the formulation of 

explicit LRTs.  One difficulty, however, is that the interpretation of the ω parameter is no 

longer straightforward when empirical exchangeabilities are incorporated into codon 

models (Doron-Faigenboim and Pupko 2006; Kosiol et al. 2007). 

While models of functional divergence can provide valuable information 

concerning adaptively significant genetic variation, underlying model assumptions cannot 

be ignored.  Based on my simulations, I provide the following suggestions for using these 

models: 

• Test 1 should not be used as a test for positive selection, as it is sensitive 

to both shifts in codon bias and shifts in the distribution of selection 

pressures that do not involve positive selection. 

• Test 2 is fairly robust, but has low power. 

• Test 3 is a powerful test for functional divergence, but should only be used 

when codon frequencies are stationary.  Furthermore, at α=0.05 the false 

positive rate will be slightly above the level of the test.  I therefore 

recommend using α=0.01 to control for this. 

• Pay particular attention to evolutionary processes that may violate model 

assumptions (e.g., non-stationary evolution, recombination, etc.).  All the 

statistical tests, whether based on codon or amino acid models, were 

negatively affected by errors arising from model misspecification. 



 86 

• Simulate under conditions relevant to the data at hand in order to 

thoroughly understand the limits of candidate methods. 

• Tests based on amino acid and codon models should be complimentary, 

but the specific tests should be chosen judiciously. 
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CHAPTER 4: THE PROCHLOROCOCCUS cpeB GENE AS AN 
EXAMPLE OF ANALYSIS UNDER NON-STATIONARY 

EVOLUTION 
 

4.1  INTRODUCTION 

 Niche differentiation in bacteria is often accompanied by divergence at the gene 

level.  Strains of the cyanobacteria species Prochlorococcus marinus have diverged to 

form two distinct ecotypes, a high-light adapted ecotype (HL) and a low-light adapted 

ecotype (LL), which have different chlorophyll b/a ratios (Moore et al. 1995; Partensky et 

al. 1997; West and Scanlan 1999; Rocap et al. 2002).  Physiological differences such as 

optimal light intensity, optimal temperature, metal tolerance, and nutrient utilization 

allow members of the two ecotypes to thrive at different depths of the water column 

(Mann et al. 2002; Tolonen et al. 2006; West et al. 2001; Moore et al. 2002; Ahlgren et 

al. 2006). 

 Along with differences in physiological characteristics, Prochlorococcus ecotypes 

are separated by several genomic differences, including genome size and base 

composition.  Lineages in the HL clade have much smaller genomes than members of the 

LL ecotype (Hess et al. 2001; Dufresne et al. 2005).  The phenomenon of genome 

reduction is well documented in endosymbionts, but this is the first case observed in a 

free-living organism.  In endosymbionts, genome reduction is often accompanied by a 

shift in base composition.  Prochlorococcus also possesses this characteristic; genomic 

GC contents vary from 30.8% in a HL strain to 50.7% in a LL strain (Kettler et al. 2007; 

Hess et al. 2001).  For more information on the ecology and evolution of 

Prochlorococcus, see Section 1.1. 
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 While the divergence of Prochlorococcus into two separate ecotypes makes it a 

prime candidate for studies that examine shifts in selection pressure, its genomic 

characteristics violate the assumptions of current methods available for such analysis.  

Models of evolution at the codon level do not account for codon bias that is non-

stationary among lineages.  In Chapter 3, I show that branch-sites codon models can yield 

false positives for positive selection under non-stationary evolution, leading to false 

biological conclusions.  Despite the fact that the non-stationary nature of the 

Prochlorococcus genome violates model assumptions, a previous study used codon 

models to analyze the cpeB gene, concluding that there is evidence for positive selection 

(Zhao and Qin 2007). 

The cpeB gene encodes the β subunit of phycoerythrin (PE), which is a 

phycobiliprotein associated with the light-harvesting structures, phycobilisomes.  

However, unlike its closest relative, Synechococcus, strains of Prochlorococcus do not 

use phycobilisomes for light harvesting, instead they harvest light via a chlorophyll 

antenna.  Therefore, the function of cpeB in Prochlorococcus is unknown.  Although the 

function of the cpeB gene is not known, multiple studies have analyzed patterns of 

selective pressure in this gene, examining both divergence from Synechococcus (Ting et 

al. 2001) and divergence of HL and LL ecotypes (Zhao and Qin 2007).  The interest in 

cpeB stems from the notion that it has likely been co-opted to serve a novel function 

within Prochlorococcus.  In this Chapter, I reanalyze the cpeB gene, using both 

information acquired in Chapter 3 and additional simulations specific to this gene, in 

order to draw conclusions about patterns of functional constraint. 
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4.2  METHODS 

4.2.1  Alignment and Analysis of cpeB Gene Sequences 

 Although Zhao and Qin (2007) use environmental sequences in their analysis, I 

choose to use sequences from genomic data, based on the assumption that these 

sequences are more reliable.  Nucleotide sequences for cpeB genes are extracted from all 

12 Prochlorococcus genomes (See Table 2.8) and downloaded from GenBank.  

Additional cpeB sequences from strains PAC1, PAC2, and TAK9803 (Accession 

Numbers:  AJ272069.1, AJ237612.1, and AJ304838.1) are also downloaded from 

GenBank.  All nucleotide sequences are translated into amino acid sequences, which are 

aligned using T-Coffee (Notredame et al. 2000).  This amino acid alignment is manually 

edited in Jal-View (Waterhouse et al. 2009) and is then used as a template to align 

nucleotide sequences. A maximum likelihood phylogeny is generated in PAUP* 

(Swofford 2003) using an HKY85 model with a gamma distribution for among-site rate 

variation.  In addition, a neighbor-joining phylogeny is also generated using paralinear 

(LogDet) distances, which are thought to be less sensitive to compositional shifts (Lake 

1994; Lockhart et al. 1994). 

 Branch length estimates are measured using a non-stationary nucleotide model 

(Yang and Roberts 1995) implemented in baseml of the PAML package (Yang 2007).  

This model allows frequency parameters to be estimated separately for different branches 

of the tree.  The user may specify the number of frequency parameter sets as well as the 

nodes to be used in frequency estimation for each set.  In this case, I specify two sets of 

frequency parameters, one for the HL clade, and one for the LL grade and the root node. 

Using the maximum likelihood topology for the cpeB gene, new branch lengths are 
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estimated using this non-stationary model combined with a stationary correction for 

transition/transversion bias. 

 Recombination is known to lead to false positives in phylogeny-based inference 

(Anisimova et al. 2003; Shriner et al. 2003; Scheffler et al. 2006) and testing for 

recombination is therefore an important step in any analysis of functional constraint 

where recombination is plausible.  If recombination is detected, each fragment in the 

gene should be analyzed separately (Scheffler et al. 2006).  Because the phylogeny of 

Prochlorococcus is largely asymmetric, I use the two methods not adversely affected by 

asymmetric topology or non-stationary evolution (based on simulations in Chapter 2):  

GARD-MBP, and GENECONV.   

 Using the codeml program from the PAML package, several codon models are fit 

to the cpeB data.  These models include sites models M1a and M3 as well as branch-sites 

Model A and Model B.  In addition, HL and LL sequences are separately fit to model M3 

in order to estimate parameters for use in a simulation study.  For the whole dataset, three 

likelihood ratio tests are performed: 1) M1a vs. Model A, 2) modified Model A (ω2=1) 

vs. Model A, and 3) M3 vs. Model B.  For branch-sites models, the HL clade is specified 

as foreground.  Based on previous studies (Yang and Nielsen 2002; Zhang et al. 2005) 

and the results of simulations in Chapter 3, Tests 1 and 3 are best interpreted as tests for a 

shift in functional constraint.  Test 2 is designed as a test for positive selection in 

foreground branches (Zhang et al. 2005).  For more information on codon models and 

likelihood ratio tests, see Section 1.2.1 and Chapter 3. 

Amino acid models are less sensitive to shifts in codon bias than codon models 

(see Chapter 3).  For this reason, I conduct an analysis of functional divergence at the 
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amino acid level using the program Bivar (Susko et al. 2002).  Of the two methods I 

evaluate in Chapter 3, I find Bivar is more powerful and has lower type-I error rates in a 

setting comparable to this one.   For this analysis, I use the HL strains and LL strains to 

designate the required subtrees.  Based on my simulations in Chapter 3, I choose to 

employ only the abrsum test statistic.  This statistic is used as a measure of the difference 

in rate distributions between the two subtrees:  

 

where r is the conditional mode rate estimate at site i for a given subtree (1 or 2).  After 

the test statistic is calculated, parametric bootstrapping, with 100 bootstrap samples, is 

used to determine a p-value for functional divergence.  For more information on Bivar, as 

well as the parametric bootstrapping methodology, see Section 3.2.1. 

 

4.2.2  Simulation 1: Estimation of Selection Pressure 

 In order to determine whether the amount of heterogeneity present in the cpeB 

gene can cause false positives in the inference of selection pressure, a set of simulations 

is performed based on parameter values estimated from the cpeB gene sequences.  Using 

the INDELible program for non-stationary simulation, I simulate alignments of 170 

codons in length (the length of the cpeB gene), using the maximum likelihood phylogeny 

estimated for the cpeB gene with branch lengths estimated using a non-stationary 

nucleotide model and rescaled to represent the mean number of substitutions per codon 

site.  Distributions for ω are estimated separately for HL and LL ecotypes under model 

M3 and codon frequencies are measured empirically for each ecotype.  Using these 

values, I specify separate models for the simulated HL and LL strains.  Two classes of 
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parameters, ω distribution parameters and codon bias frequency parameters, are varied in 

this study (Figure 4.1).  For each of these classes, simulations are conducted in which 

there is either no change (the entire tree is simulated under the HL parameter values) or 

changes occur according to the estimated difference between HL and LL ecotypes 

(Figure 4.1).  As I want to investigate the null scenario, there is an exception to the above 

design: any category of sites estimated to have an ω value greater than 1 is simulated 

under ω=0.9 to avoid a true signal for positive selection.  For each combination of 

parameter values, 100 replicates are simulated. 
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Figure 4.1 Design of simulation studies.  The diagram 
indicates the study is comprised of four cases.  In cases 
where a single parameter value is homogeneous over the 
entire tree, the empirical estimate of that parameter value 
from the HL clade is used. 
 
 
 

 All simulated sequences are analyzed using codeml under sites models M1a as 

well as branch-sites Model A and the modified Model A where ω2 is fixed at 1.  For 

branch-sites models, all branches in the simulated HL clade are specified as foreground.  
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Two likelihood ratio tests are then performed: M1 vs. Model A (Test 1) and Model A 

(ω2=1) vs. Model A (Test 2). 

 

4.2.3  Simulation 2: Estimation of Branch Length 

 Non-stationary codon bias may cause errors not only for likelihood ratio test 

results, but also for estimation of model parameters, such as branch lengths. The purpose 

of Simulation 2 is to investigate the effect of non-stationary evolution on the estimation 

of branch length under the selected codon models.  Here I employ the same four basic 

conditions as in Simulation 1 (Figure 4.1).  However, for each condition, the branch 

between ecotypes is adjusted to 2, 3, 5, or 10 substitutions per codon site.  For each of the 

resulting 16 simulation conditions, 100 replicate datasets are simulated.  For each dataset, 

branch lengths are estimated under a sites model (M1a) as well as a branch-sites model 

(Model A). 

 

4.3  RESULTS AND DISCUSSION 

4.3.1  Analysis of Real cpeB Gene Sequences 

 The presence of recombination events within a gene is known to be associated 

with false positives in the inference of positive selection (Anisimova et al. 2003; Shriner 

et al. 2003; Scheffler et al. 2006).  This occurs because the differences in substitution 

parameters in a segment of recombinant DNA may mimic genetic variability generated 

by a difference in selection pressure among sites.  Tests for recombination using 

GENECONV and GARD-MBP do not yield evidence for recombination within the cpeB 
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gene.  Lacking evidence of recombination, I proceed with a joint analysis of all alignment 

positions using the standard tests formulated at the codon and amino acid levels.      

 

 

Figure 4.2.  Maximum likelihood phylogeny of Prochlorococcus cpeB 
gene.  Branch lengths are measured under a non-stationary nucleotide 
model and multiplied by three to approximate substitutions per codon 
site.  Note the very long branch length between HL and LL lineages for 
this gene. 

 
 
 
 Figure 4.2 shows the maximum likelihood phylogeny for the cpeB gene with 

branch lengths estimated under a non-stationary nucleotide model.  Notice that the branch 

between ecotypes is substantially longer than any other branch in the phylogeny, even 

when estimated under a model that accounts for non-stationary composition.  Table 4.1 

shows estimates for this branch length under a variety of nucleotide and codon models.  

When the phylogeny is estimated using LogDet distances, which are less sensitive to 

compositional shifts, this branch length is found to be much shorter than under any other 
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model (1.6 subst./codon site).  On the other hand, under codon models, which do not take 

into account non-stationary codon bias, the estimation for this branch length is extremely 

high (11.7-50 subst./codon site).  These results indicate that models that do not account 

for compositional heterogeneity tend to yield larger estimates of this branch length when 

there is a shift in the evolutionary process.  Moreover, it is very unlikely that the larger 

estimates in Table 4.1 are reliable. 

 
 
Table 4.1.  Estimates for the internal branch between ecotypes for the cpeB gene under a 
variety of models.   
Estimation method Branch Length 
LogDet 1.6 
baseml (Non-Stationary) 5.5 
HKY85 6.42 
M1 11.7 
Model A 50 

Note: Branch length is in substitutions per codon site.  Estimates from nucleotide models 
(LogDet, baseml, and HKY85) are multiplied by three to approximate 
substitutions/codon site. 
 
 
 
 The cpeB dataset is fitted to sites models M1a and M3 as well as branch-sites 

Model A and Model B.  In addition, the HL and LL strains are separately fit to model M3 

in order to obtain parameters for use in the simulation studies.  Based on parameter 

estimates from the entire tree under M3, Model A, and Model B, there is no evidence for 

a fraction of sites under positive selection (Table 4.2).  A signal for positive selection 

does occur under M3 when HL strains are analyzed separately.  The separate analysis of 

HL strains yield strong signal with ω2=4.95.  However, the fraction of sites having 

evolved under ω2 is not large (2%).  Based on parameter estimates alone, the signal for 

positive selection in the cpeB gene is only marginal. 
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Table 4.2  Parameter estimates for cpeB gene under codon models. 
Model Parameter Estimates Log Likelihood 
M1a ω0=0.03635, p0=0.96753 

ω1=1.00000, p1=0.03247 
-3159.803856 

M3 (k=2) ω0=0.00780, p0=0.61206 
ω1=0.09493, p1=0.38794 

-3119.948037 

Model A ω0=0.00927, p0=0.74503 
ω1=1.00000, p1=0.00510 
ω2FG=1.00000, p2=0.24987 

-3092.832398 

Model B ω0=0.00067, p0=0.27947 
ω1=0.02593, p1=0.11729 
ω2FG=0.19787, p2=0.60324 

-3071.174536 
 

HL: M3 (k=3) ω0=0.01770, p0=0.73560 
ω1=0.39141, p1=0.24266 
ω2=4.94987, p2=0.02174 

-1340.177146 

LL: M3 (k=3) ω0=0.00067, p0=0.71127 
ω1=0.02048, p1=0.07322 
ω2=0.02066, p2=0.21551 

-1915.765556 

Note: Likelihood scores for separate HL and LL analyses are not comparable with the 
other likelihood scores in the table because the sample of sequences is not the same. 
 
 
 

Evidence for historical changes in selection pressures can be formally assessed 

using LRTs.  I have applied three such tests at the codon level.  In addition, I have 

applied an amino acid level test for a shift in functional constraint.  At the codon level, 

Tests 1 and 3 are significant whereas Test 2, the only defensible test for positive selection 

in the foreground clade, is not significant (Table 4.3).  I argued in Chapter 3 that Tests 1 

and 3 are better interpreted as tests for functional divergence.  Hence, these results 

suggest a signal for functional divergence among HL and LL cpeB gene sequences.  

However, even that interpretation is not immune to errors arising from the presence of 

non-stationary codon usage (Chapter 3).  Furthermore, the single test applied at the amino 
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acid level (Bivar) is not significant (p=0.15).  Given that Bivar is also a formal test for 

functional divergence, and that it appears to be less sensitive to non-stationary codon 

usage (see Chapter 3), the significant results for Tests 1 and 3 must be examined more 

closely. 

Further evaluation of the empirical results for cpeB is carried out using 

simulation, presented in the next section, based on parameter values derived from the 

cpeB gene.  The benefits of this approach are twofold.  First, by using simulation studies 

based on the values derived from this specific gene I can investigate the possibility that 

the results for Tests 1 and 3 may have been negatively impacted by non-stationary codon 

frequencies in this particular case.  Second, Zhao and Qin (2007) also found a significant 

result for Test 1 for cpeB gene sequences, but they interpreted the results as significant 

evidence for positive selection.  A directed simulation study can address the question of 

whether such an interpretation could be valid in this particular case.  While simulations in 

Chapter 3 suggest otherwise, those simulations are more general, with no direct 

connection to the parameter values characteristic of these cpeB gene sequences. 

 

Table 4.3.  Results of likelihood ratio tests for cpeB gene. 
Null Alternate 2*ΔlnL d.f. p-value 
M1a Model A 133.94 2 0 
Model A (ω2=1) Model A 0.00 1 1 
M3 Model B 97.5 2 0 
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4.3.2  The Impact of Non-Stationary Codon Usage on Inferences About 
Selection Pressure 
 
 The goal of this simulation study is to determine whether the degree of non-

stationarity present in the cpeB gene could have negatively impacted the inference of 

selection pressure using codon models.  Parameter values used for simulations are 

estimated independently for HL and LL ecotypes (Table 4.4).  Because the simulation 

software requires site categories with equal proportions across the phylogeny, the 

proportions estimated from the HL strains are used in this simulation study for all parts of 

the tree. In addition, because ω2 for the HL data is estimated to be greater than one, this 

value is scaled back to ω2=0.9 for simulations.  This ensures that no sites are simulated 

under positive selection, so I can measure false positive rates for the likelihood ratio tests. 

 

Table 4.4.  Parameter values used in simulations based on the cpeB gene.   
  HL LL 
Omega distribution p0 = 0.76356 ω0 = 0.0177 ω0 = 0.00067 
 p1 = 0.24266 ω1 = 0.39141 ω1 = 0.02066 
 p2 = 0.02174 ω2 = 0.9 ω2 = 0.02048 
GC content  28% 44% 
Note: HL and LL empirical codon frequencies are used in the simulations; %GC is 
presented here as a summary statistic. 
 
 
 

Test 1 was originally proposed as an explicit test for positive selection and has 

been interpreted as such by Zhao and Qin (2007) in their analysis of the cpeB gene.  

However, general simulations conducted in Chapter 3 suggest that this LRT is better 

interpreted as a test for relaxed constraint.  The results from this simulation show that the 

latter interpretation is true in the case of the cpeB gene as well.  The majority of replicates 

yield significant results when there is a shift in the ω distribution, but no positive 
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selection (Table 4.5).  This is consistent with the findings from Chapter 3, as well as with 

previous studies (Zhang et al. 2005). 

If instead we view Test 1 as a test for altered selective pressures (regardless of the 

presence of positive selection) then Test 1 has high power, with 94% of cases detected 

(Table 4.5).  This value increases to 100% when non-stationary selection pressure is 

combined with a shift in codon bias.  However, as seen in Chapter 3, this indicates a 

systematic error in the direction of the alternative, which should not be relied upon to 

provide power.  It is noteworthy that under homogeneous selection pressure the shift in 

codon bias present in the cpeB gene causes a 32% false positive rate.  This is in contrast 

to my results in Chapter 3 (which found no effect from non-stationary codon bias alone), 

and is likely because in this case more sites are evolving near neutrality, and thus are 

more likely to yield a false signal for the alternative model than sites under strong 

purifying selection.  These results therefore indicate that a false positive for a shift in 

selection pressure for the cpeB gene cannot be ruled out. 

 
 
Table 4.5.  Percent replicates (n=100) for Simulation 1 with significant results (p≤0.05) 
for likelihood ratio test M1a vs. Model A. 
 Same ω values Δ ω values 
Same GC 1 94 
Δ GC 32 100 

 
 

 In Chapter 3, the LRT for Test 2 (Model A (ω2=1) vs. Model A) is found to be the 

only defensible test for positive selection in part of the phylogeny.  Note that while Zhao 

and Qin (2007) did not apply this test in their study, my application of Test 2 to cpeB 

finds no evidence of positive selection based on this LRT.  Here, none of the simulated 
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conditions yield a significant number of false positives for Test 2, indicating that the 

degree of heterogeneity present in cpeB is not enough to cause false positives for this 

more conservative test.  However, it is important to remember that the simulation studies 

in Chapter 3 revealed that Test 2 has extremely low power. 

 

4.3.3  The Impact of Non-Stationary Codon Usage on the Estimation of 
Branch Lengths 
 
 Non-stationary codon bias may cause errors not only for likelihood ratio test 

results, but also for estimation of branch lengths.  The cpeB gene, like many 

Prochlorococcus genes, has an especially long branch between ecotypes (see Figure 4.2).  

My analysis of those gene sequences reveals that estimations of that branch length are 

very sensitive to model formulation (Table 4.1).  It is possible that under non-stationary 

evolution, variation associated with a shift in codon bias may be accounted for through an 

inflated branch length estimate.  Therefore, I conduct a simulation to explore the effects 

of a shift in the evolutionary process on branch length estimation using codon models. 

 Here, models M1a and Model A are used to estimate the branch length between 

simulated ecotypes for each of the 16 conditions presented in the methods (Table 4.6).  

When selective pressures are stationary across the phylogeny, the mean estimated branch 

lengths for both models are close to the true simulated branch lengths, and errors (2 

standard deviations) are consistently less than half of the mean.  Surprisingly, the 

presence of a shift in codon usage alone does not seem to have much effect on the 

estimation of branch lengths.  However, when a shift in ω distribution is present, branch 

length estimates become inflated as well as increasingly variable.  It is interesting to note 

that under model M1a, estimates are more accurate and less variable when obtained under 
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the combined effects of non-stationary codon bias and selection pressure than under non-

stationary selection pressure alone.  Estimates of branch lengths under Model A are more 

inflated than under M1a, with the worst estimate (both with respect to mean and standard 

deviation) obtained under the combined effects of non-stationary codon bias and 

selection pressure (e.g., mean=37.8 subst./codon site when simulated length is 10). 

 

Table 4.6. Average branch lengths (in substitutions per codon site) for Simulation 2 
estimated under models M1a and Model A. 
  Same ω values  Δ ω values 
  M1a  Model A  M1a  Model A 

 BL mean 2stdv  mean 2stdv  mean 2stdv  mean 2stdv 
2 2.3 1.0  2.3 1.0  3.4 2.0  4.0 4.3 
3 2.2 1.3  2.2 1.3  5.7 3.3  6.8 4.2 
5 5.5 2.4  5.5 2.4  9.1 5.0  11.5 7.0 

Sa
m

e 
G

C
 

10 10.7 4.4  10.8 4.4  18.2 8.6  23.0 11.7 
2 2.1 0.9  2.1 0.9  3.3 1.5  3.3 5.3 
3 3.3 1.6  3.2 1.5  4.5 6.1  7.3 8.3 
5 5.7 2.6  5.7 2.7  6.7 2.8  16.5 14.5 Δ 

G
C

 

10 9.8 4.8  10.0 4.9  10.0 4.0  37.8 20.2 
Note: For each set of parameters, 100 replicates are analyzed. 
 
 
 
 Branch length estimation becomes increasingly inaccurate as the true length of the 

branch increases (Table 4.6).  Here I use estimates under Model A in the condition 

simulated with both non-stationary codon bias and selection pressure as an example.  As 

a percentage of the actual branch length, longer branches are, on average, more inflated 

under Model A than shorter branches (65% larger when branch length is 2 subst./codon 

site compared with 278% larger when 10 subst./codon site). The uncertainty of the 

estimate is also larger for longer branches.  A positive relationship between branch length 
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and estimation error is expected because information relevant to the true length of the 

branch is lost as sequences become saturated with multiple substitutions at a site. 

 Analyses of the real Prochlorococcus cpeB gene suggest both a shift in selection 

pressures and a relatively long branch.  Results from this simulation help explain the 

extremely large branch lengths estimated under codon models (Table 4.1).  In addition, 

inaccurate branch length estimation is expected to be associated with problems estimating 

other parameter values from the data.  Indeed, parameter estimates from this simulation 

indicate that, under non-stationary evolution, estimates of the proportion of sites having a 

shift in selection pressure becomes heavily inflated (Model A estimates 25% of sites with 

an ω2=1 in foreground when simulated condition is 2% of sites having ω2=0.9) (see 

Appendix I).  These results support those found in Simulation 1 for Test 1 in suggesting 

that model misspecification due to non-stationary evolution leads to a false signal for the 

alternative model due to problems with the estimates of model parameter values.  It 

seems likely that Test 2 is impacted by this as well, but because the test has such low 

power under ideal conditions, the impact due to the model misspecification investigated 

here is small. 

 

4.4  CONCLUSIONS 

 Previous studies have examined functional constraint in the cpeB gene.  Ting and 

colleagues (2001) used pairwise comparisons of dN/dS ratios to investigate selection 

pressure in the cpeB gene, finding that these ratios are consistently greater than one.  In 

contrast, the gene encoding the other phycoerythrin subunit, cpeA, has dN/dS ratios 

consistently lower than one.  This finding suggests that the cpeB gene has evolved under 
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positive selective pressures.  However, pairwise comparisons oversimplify the 

substitution process and have no way of accounting for a shift in codon bias, which can 

negatively impact estimates of dN and dS.  Another study, conducted by Zhao and Qin 

(2007), used maximum likelihood branch-site models to carry out Test 1, concluding that 

the HL cpeB branch has experienced positive selection. However, their application of 

codon models violates the assumption that codon frequencies are homogeneous in all 

lineages, making this conclusion unfounded.  Although Zhao and Qin used a different 

dataset (environmental rather than genomic sequences), the same patterns of non-

stationary evolution exist.  In addition, my genomic sequences are more complete, 

resulting in a more reliable alignment.  I found no statistical support for a history of 

positive selection, and although my results indicate the there is a signal for a simple shift 

in selection pressure, simulations suggest a false positive cannot be ruled out for this 

hypothesis.  Furthermore, results from amino acid level analysis provide no additional 

evidence for a shift in functional constraint in the cpeB gene of Prochlorococcus.  Taking 

together both simulation and real data analysis, I conclude that previous accounts of 

positive selection in cpeB are not as strongly supported by the data as have been 

suggested. 

 Chapter 3 highlights the potential negative effects of model misspecification.  The 

simulations carried out in this chapter differ in that they focus on parameters relevant to 

the cpeB gene.  These gene-specific simulations provide an understanding of the limits of 

model-based tests that the more general simulations in Chapters 2 and 3 cannot.  While 

the true gap between the generating model for cpeB and the analytical models must be 

larger than investigated here, this approach reveals how un-modeled variation may be 
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“absorbed” into an inflated branch length estimate.  Because codon frequencies are 

averaged over the entire alignment, when there is a large shift in both codon usage and 

selection pressures in one part of the phylogeny, there may be systematic error in the 

estimation of model parameters such as the proportion of sites for each class in the 

mixture models and the values of ω.  These findings highlight the need for users of codon 

models to carefully examine all parameter estimates for signs of model misspecification. 
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CHAPTER 5: CONCLUSION 
 
 
 

 Prochlorococcus provides an interesting example of ecological divergence and is 

therefore an attractive organism for studying genomic divergence.  However, 

characteristics of the Prochlorococcus genome, including non-stationary evolution and 

recombination, may violate underlying assumptions of models commonly used in 

evolutionary analysis.  In this thesis I separately explored the two main evolutionary 

forces acting upon Prochlorococcus genomes: functional divergence (via substitution) 

and recombination.  This thesis provides preliminary information about the role of these 

forces in the divergence of HL and LL Prochlorococcus ecotypes as well as the 

performance of commonly used statistical methods on Prochlorococcus gene sequences.  

The specific conclusions for each study are discussed in the last section of each analysis 

chapter.  In fulfillment of the Dalhousie University Faculty of Graduate Studies 

requirement for a conclusion chapter, I provide a short summary of the main findings 

from Chapters 2, 3, and 4 in this section of the thesis.  The reader is referred to each 

chapter for in-depth discussion of the involved issues. 

 In Chapter 2, I evaluated methods for recombination detection under a variety of 

scenarios that are relevant to functional divergence.  I found that tree shape (more 

specifically asymmetric topology) has the largest impact on false positive rates.  

However, the extent of this effect differs among the different methods.  In addition, non-

stationary evolution was found to have a minor effect on some methods.  Because the 

methods measure parameter values from entire alignments, some types of evolutionary 

heterogeneity among sites may result in false conclusions.  Based on the results of my 
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simulations I was able to construct a set of general guidelines for those wishing to use 

statistical methods for detecting within-gene recombination.  These guidelines are 

presented at the end of Chapter 2. 

 Because Prochlorococcus has diverged into two separate ecotypes, and there are 

several complete genomes from members of each ecotype, it is an attractive candidate to 

study shifts in functional constraint at the molecular level.  However, current methods 

designed to detect these shifts do not account for the non-stationary evolution that is 

characteristic of Prochlorococcus.  In Chapter 3, I conducted a series of simulations to 

explore the effects of non-stationary evolution on the inference of selection pressure.  I 

found that under extreme shifts in selection pressure and non-stationary codon bias, even 

a very conservative codon model might yield false results, leading to false biological 

conclusions.  I used my extensive simulation study to make general recommendations for 

the use of model-based tests for divergence in the distribution of selection pressures.  

These recommendations are provided at the end of Chapter 3. 

 Because current codon models are not robust to non-stationary evolution, they are 

not appropriate for use on Prochlorococcus genes.  Despite this fact, studies have 

appeared in which these models were used to make claims for positive selection.  In 

Chapter 4, I revisit one such case (the cpeB gene) and employ simulations based on 

parameter values estimated from that particular gene.  I find that previous claims for 

positive selection cannot be verified because the amount of heterogeneity present in the 

cpeB gene may cause a false positive for the test used.  This analysis provides a specific 

example of the issues associated with the analysis of real data that is subject to non-

stationary evolution, such as Prochlorococcus data. 
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APPENDIX A:  Sites Models 
 
 
Table A1.  Codon models for among site variation in selection pressures (sites models) as 
implemented in the codeml package of PAML. 
Model Parameters for ω distribution 
M0 ω 
M1a p0 (p1 = 1 – p0) 

ω0<1, ω1=1 
M2a p0, p1 (p2 = 1 – p0 – p1) 

ω0<1, ω1=1, ω2>1 
M3 p0, p1 (p2 = 1 – p0 – p1) 

ω0, ω1, ω2 
M4 p0, p1, p2, p3, p4 

ω0=0, ω1=⅓, ω2=⅔, ω3=1, ω4=3 
M5 α, β 
M6 p0 (p1 = 1 – p0) 

α0, β0, α1 
M7 p, q 
M8 p0 (p1 = 1 – p0) 

p, q, ωS>1 
M9 p0 (p1 = 1 – p0) 

p, q, α, β 
M10 p0 (p1 = 1 – p0) 

p, q, α, β 
M11 p0 (p1 = 1 – p0) 

p, q, µ, σ 
M12 p0, p1 (p2 = 1 – p0 – p1) 

ω0=0, µ2, σ1, σ2 

M13 p0, p1 (p2 = 1 – p0 – p1) 
σ0, σ1, σ2 

Notes: Parameters in parentheses are not free parameters.  The three distributions used 
are the beta distribution (p, q), the gamma distribution (α, β), and the normal distribution 
(µ, σ). 
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APPENDIX A:  continued 
 
 
 
 

                     

Figure A1.  Graphical representation of sites models M1a and M3.  Each bar 
represents a category of sites in the model under different selective pressures, 
while the height of the bar represents a hypothetical proportion of sites in that 
category.  These proportions (pi in Table A1) are free parameters in the model, 
whose values are estimated by maximizing the likelihood of the data.  The 
selection pressure for each category (ωi) may be an unconstrained parameter, a 
constrained parameter, or it may be fixed to a pre-specified value, depending 
on the model.  Note that under M1a, site categories are constrained to ω0<1 and 
ω1=1 while under model M3, all site category ω values are unconstrained. 
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APPENDIX B:  Branch-Sites Models 
 
 
Table B1.  Overview of branch-sites Model A. 
  Model A  Modified Model A 
Site 
Class Proportion  BG ω FG ω  BG ω FG ω 
0 p0  ω0 < 1 ω0 < 1  ω0 < 1 ω0 < 1 
1 p1  ω1 = 1 ω1 = 1  ω1 = 1 ω1 = 1 
2a (1 – p0 – p1) p0/(p0 + p1)  ω0 < 1 ω2 ≥ 1  ω0 < 1 ω2 = 1 
2b (1 – p0 – p1) p0/(p0 + p1)  ω1 = 1 ω2 ≥ 1  ω1 = 1 ω2 = 1 
Notes:  Model A is designed to test for a shift to positive selection from background (BG) 
to foreground (FG) branches.  Modified Model A is used in “Test 2” as a null.  For a full 
description of Model A, see Yang and Nielsen (2002) and Zhang et al. (2005) 
 
 
 
Table B2.  Overview of branch-sites Model B. 
   Model B 
Site Class Proportion  BG ω FG ω 
0 p0  ω0 ω0 
1 p1  ω1 ω1 
2a (1 – p0 – p1) p0/(p0 + p1)  ω0 ω2  
2b (1 – p0 – p1) p0/(p0 + p1)  ω1 ω2 

Notes:  Model B is designed to test for any shift in selective pressures between BG and 
FG branches.  For a full description of Model B, see Yang and Nielsen (2002) 
 
 
 
Table B3.  Overview of branch-sites Models C and D. 
  Model C  Model D 
Site 
Class Proportion  Clade 1 Clade 2  Clade 1 Clade 2 
0 p0  ω0 < 1 ω0 < 1  ω0 ω0 
1 p0  ω1 = 1 ω1 = 1  ω1 ω1 
2 p2 = 1-p0-p1  ω2A ω2B  ω2A ω2B 
Notes:  Models C and D are clade models designed to detect shifts in selective pressures 
between two clades.  For a full description of Models C and D, see Bielawski and Yang 
(2004). 
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APPENDIX B:  continued 
 
 

 
 
 

    
 

  
Figure B1.  Graphical representation of branch-sites Model A and Model B.  Each bar 
represents a model category under different selective constraints. Bar height represents a 
hypothetical proportion of sites in that category.  These proportions (pi in Tables B1 and 
B2) are free parameters in the model, whose values are estimated by maximizing the 
likelihood of the data.  The selection pressure for each category (ωi) may be an 
unconstrained parameter, a constrained parameter, or it may be fixed to a pre-specified 
value depending on the model. Black bars represent site categories in BG and FG 
branches (i.e., ωi homogeneous over all branches of the phylogeny).  Red bars represent 
categories with unique levels of selection pressure (independent ωi parameters) in FG 
branches (see phylogeny).  Note that Model A has the following constraints: ω0<1, ω1=1, 
and ω2>1.  However, for Model B, ω values for site categories are not constrained. 
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APPENDIX C:  Amino Acid Models 
 
 
Table C1.  Summary of main methods for detecting functional divergence on the amino 
acid level. 
Reference Name Types Sites Gene 
Gu 1999 DIVERGE I Empirical 

Bayes 
LRT 

 
Gaucher et al. 2001 -- I Substitution 

Distribution 
10% of sites 

Knudsen & Miyamoto 2001 -- I LRT NA 
 

Lopez et al. 2002 -- I Substitution 
Distribution 

NA 

Susko et al. 2002 Bivar I Substitution 
Distribution 

Parametric 
Bootstrapping 

Pupko & Galtier 2002 -- I Substitution 
Distribution 

n% of sites (from 
binomial) 

Gu 2006 DIVERGE II Empirical 
Bayes 

LRT 
 

Gaston unpublished FunDi I & II Empirical 
Bayes 

**LRT 
 

Notes: “Name” column is the name given to either the program or the software (in the 
case of DIVERGE), if applicable.  “Types” indicates which type of functional divergence 
the method is designed to detect.  “Sites” and “Gene” columns indicate the methods used 
for inferences at the site and gene levels. 
 
**Not developed by the authors, but tested in this thesis 
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APPENDIX D:  Positive Selection Simulation 
 
 
 It is known that recombination events can cause false signals for positive 
selection.  However, it is not known if the reverse is true.  Although the results from 
Chapter 2 indicate that recombination detection methods do not yield excess false 
positives when positive selection is present in a part of the tree, positive selection present 
in the entire alignment may more closely resemble a signal for recombination more 
closely.  Here, I test whether recombination detection methods are negatively impacted 
when positive selection is present in the whole phylogeny. 
 
Methods 
 Sequence alignments are simulated in which a fraction of sites are under positive 
selection throughout the entire phylogeny.  I simulate datasets under both asymmetric and 
symmetric phylogenies (See Figure 2.1).  Here, the entire phylogeny is simulated under 
the same evolutionary model.  A U-shaped beta function (p=0.5, q=0.5) is used to model 
those sites under purifying selection.  An additional discrete site category (10%) under 
positive selection (ω=5) is added.  For both asymmetric and symmetric trees, 50 replicate 
datasets are simulated.  These are then compared to the null case (Case 1a), in which 
there is no positive selection. 
 
Results 
 None of the methods tested yield higher rates of false positives when positive 
selection is present throughout the phylogeny (Table D1).  These results indicate that, 
methods for recombination detection are generally robust to this form of positive 
selection. 
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APPENDIX D:  continued 
 
 
 
Table D1.  Percent replicates (n=50) with signals for recombination for simulation with 
sites under positive selection in whole phylogeny. 
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Null 0 2 2 2 14 16 
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Positive 
Selection 0 2 2 0 10 4 

Null 0 58 10 0 32 36 

A
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ric

 

Positive 
Selection 0 46 4 2 20 18 

Note: For both symmetric and asymmetric trees, the internal branch length is equal to 0.3 
subst./codon site.  This results in root-to-tip lengths of 1.2 subst./codon (symmetric) and 
2.7 subst./codon (asymmetric). 
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APPENDIX E:  Recombination Results from Non-Stationary 
Simulations 

 
 
Table E1.  Percent false positives (n=50) for Simulation 3 under a symmetric tree with a) 
homogeneous codon bias or b) a shift in codon bias (η2 = 0.1) using different methods of 
the detection of recombination events.   
a) 
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M
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1a 0 4 10 0 12 14 

1b 0 0 2 0 12 20 

1c 0 2 2 0 14 16 

2a 0 2 2 2 10 16 

2b 0 0 0 2 8 8 

2c 0 2 4 2 8 12 
 
b) 
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1a 0 6 6 0 10 14 

1b 0 6 6 2 16 20 

1c 0 2 2 0 2 10 

2a 0 10 10 0 20 28 

2b 0 2 2 0 10 14 

2c 0 16 16 2 8 14 
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APPENDIX E:  continued 
 
 

Table E2.  Percent false positives (n=50) for Simulation 3 under an asymmetric tree with 
a) homogeneous codon bias or b) a shift in codon bias (η2 = 0.1) using different methods 
of the detection of recombination events. 
a) 
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1a 0 58 10 0 32 36 

1b 0 92 8 4 20 32 

1c 2 80 10 0 28 40 

2a 0 80 20 4 44 48 

2b 0 78 4 0 32 42 

2c 0 88 10 2 34 36 
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1a 2 58 18 2 38 44 

1b 0 90 8 0 34 42 

1c 0 72 6 2 14 38 

2a 0 78 18 6 46 48 

2b 0 66 12 0 40 44 

2c 0 64 18 2 40 46 
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Appendix F:  Codon Level Analysis of Non-Stationary Simulations 
 
 

Table F1: Percent replicates (n=50) with significant likelihood ratio tests (p<0.05) based 
on branch-site codon models when a) no shift in codon bias is simulated and b) when a 
large shift in codon bias is simulated (η1=0.5, η2=0.1). 
a) 

 M1 vs. ModelA ModelA(w=1) vs. 
ModelA M3 vs. ModelB 

Case1a 4 0 8 

Case1b 6 2 78 

Case1c 52 0 68 

Case2a 98 0 92 

Case2b 88 0 78 

Case2c 96 0 86 

Case3a 96 0 96 

Case3b 90 0 94 

Case3c 94 6 98 
 
b) 

 M1 vs. ModelA ModelA(w=1) vs. 
ModelA M3 vs. ModelB 

Case1a 4 0 18 

Case1b 24 0 76 

Case1c 82 0 98 

Case2a 98 0 100 

Case2b 94 4 98 

Case2c 92 24 96 

Case3a 98 10 100 

Case3b 98 8 100 

Case3c 86 52 100 
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Appendix G:  Amino Acid Level Analysis of Non-Stationary 
Simulations 

 
 

Table G1.  Percent replicates (n=50) with signals for functional divergence (p≤0.05) 
under Bivar and FunDi with different shifts in selection pressure and with a) homogenous 
codon bias and b) a shift in codon bias. 
a) 
  Bivar  FunDi 
  arsum alrsum abrsum  2ΔlnL 
Case 1a  36 4 2  14 
Case 1b  38 56 54  14 
Case 1c  68 62 62  44 
Case 2a  80 64 68  48 
Case 2b  76 30 30  34 
Case 2c  80 64 66  46 
Case 3a  74 50 50  38 
Case 3b  60 10 12  18 
Case 3c  72 24 30  48 

 
b) 
  Bivar  FunDi 
  arsum alrsum abrsum  2ΔlnL 
Case 1a  64 18 16  36 
Case 1b  80 74 78  10 
Case 1c  92 86 84  36 
Case 2a  96 94 94  70 
Case 2b  96 34 32  50 
Case 2c  94 62 66  66 
Case 3a  78 52 52  40 
Case 3b  88 36 34  52 
Case 3c  96 22 26  48 
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APPENDIX H:  Amino Acid Level Simulation 
 

 
The sensitivity of amino acid models to non-stationary codon bias may be due to 

the discrepancy between the simulating model and the analyzing model.  Because 
sequences are simulated on the codon level, evolutionary rate is simulated in terms of the 
ratio of nonsynonymous to synonymous substitutions.  However, at the amino acid level, 
the sequences are analyzed based on a substitution matrix, which takes into account 
differences in replacement frequencies between amino acids.  To see if this difference in 
models accounts for the impact of non-stationary codon on amino acid models observed 
in Chapter 3, I conduct a small simulation at the amino acid level. 
 
Methods 

Fifty replicate datasets are simulated with non-stationary amino acid frequencies, 
but stationary evolutionary rate.  The same asymmetric tree used for the codon level 
simulations, with two types of evolution, is used here as well.  Amino acid frequencies 
are measured from the codon level simulations so that the shift in frequencies is 
comparable to that in the non-stationary codon simulations.  Sequences are simulated 
under a WAG model with the proportion of invariable sites set to 0.24 and the alpha 
parameter for among-site rate distribution set to 0.7.  These are the average values 
estimated from the simulated replicates for Case 1a.  Each replicate data set is analyzed 
with both FunDi and Bivar as described in Chapter 3.  Parametric bootstrapping is used to 
determine a p-value for each dataset. 
 
Results 
 My results indicate that neither method is significantly impacted by a shift in 
amino acid composition.  FunDi yielded 6% false positives while Bivar yielded only 2%.  
This indicates that the increase in false positives associated with a shift in codon bias 
observed in Chapter 3 is likely due to a discrepancy between generating and analytical 
models rather than sensitivity of the models to non-stationary composition. 
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APPENDIX I: Parameter Estimates for cpeB Simulations 
 

 
Table I1.  Parameter estimates under Model A for simulations based on cpeB gene. 
  Same ω  Δω 
 BL pFG ω2  pFG ω2 

Same GC 2 0.001 1.15  0.02 1.15 
 3 0.001 1.14  0.03 1.2 
 5 0.001 1.08  0.03 1.16 
 10 0.001 1.01  0.03 1.1 
Δ GC 2 0.03 1.13  0.24 1 
 3 0.03 1.02  0.24 1 
 5 0.03 1.15  0.24 1 
 10 0.03 1.11  0.25 1 

Notes:  Values are averaged over 100 replicates.  The parameter pFG indicates the sum of 
site categories with a shift to ω2 in foreground branches. 


