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Abstract

For many years, engineers have designed foundations, avallsulverts for highway and
other geotechnical applications using allowable stresgydg ASD) methods. In ASD, all
uncertainties in the load and resistance are combined igtolal factor of safety which,
unfortunately, leads to uncertain safety margins in thégtlesr he determination of system
failure probability requires a coherent method of desigrtlie geotechnical system. The
Load and Resistance Factor Design (LRFD) approach allowmae to be targeted to
acceptable failure probability levels, which depend onlitng state being avoided.

This research proposes Load and Resistance Factor Desigripns for the ultimate limit
state punching shear failure of deep foundations. The laatbifs currently used are as
specified by the National Building Code of Canada. The géwtieal resistance factors
required to achieve a certain acceptable failure prolighite estimated as a function of the
spatial variability of the soil and of the degree of site uistEnding. A mathematical theory
is developed to analytically estimate the failure probgbdf deep foundations in which
the spatially random soil field is modeled using random fie&bty. The analytical results
are validated by simulation and then used to estimate &puvsbabilities and geotechnical
resistance factors required for design.
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Chapter 1: Introduction

1.1 General

Deep foundations will be hereafter collectively referredas piles for simplicity in this
thesis. Piles are designed to transfer load to the surragrsdiil and/or to a firmer stratum,
thereby providing vertical and lateral load bearing cajyaim a supported structure. In
this thesis, the random behavior of a pile subjected to acattbad and supported by a
spatially variable soil is investigated.

The geotechnical resistance, or bearing capacity, of agpides as a combination of side
friction, where load is transmitted to the soil through tioa along the sides of the pile,
and end bearing, where load is transmitted to the soil (d)rbcough the tip of the pile.
If soil-boring records establish the presence of bedroakcklike material at a site within
a reasonable depth, piles can be extended to the rock surfadtis case, the ultimate
capacity of the piles depends primarily on the load bearimgacity of the underlying
material; these piles are calleshd bearing piles When piles become very long, they
are referred to as friction piles because most of the resistes drived from skin friction
(Fenton and Griffiths, 2008).

The required length of a friction pile depends on the soikabteristics, the applied load,
and the pile size. To determine the necessary length of fhié=® an engineer needs a
good understanding of soil-pile interaction, good judgtmend experience. Theoretical
procedures for calculating the load-bearing capacity l&fspior soils under effective and
total stress conditions are presented in Chapters 2 and 3.

Pile foundations are needed in a variety of circumstancks fdllowing are some situations
in which piles may be considered for the construction of anttation.

1) When the upper soil layers are highly compressible andveak to support the load
transmitted by the superstructure, piles are used to triankmload to underlying
bedrock or a stronger soil layer. When bedrock is not en@yadtat a reasonable depth
below the ground surface, piles are used to transmit thetstial load to the soil. The
resistance to the applied structural load is derived mdiniy the effective and/or total
stress resistance developed at the soil-pile interface.
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2) When subjected to horizontal forces, pile foundatiorssteby bending while still
supporting the vertical load transmitted by the superstinec This situationis generally
encountered in the design and construction of earth re@structures and foundations
of tall structures that are subjected to strong wind anddathguake forces.

3) In many cases, the soils at the site of a proposed structayde expansive and col-
lapsible. These soils may extend to a great depth below thendgrsurface. Expansive
soils swell and shrink as the moisture content increaseslanrkases, respectively,
and the swelling pressure of such soils can be considerabthe extreme case, soils
such as loess are collapsible. When the moisture contehesétsoils increases, their
structures may break down. In such cases, pile foundatiayda@used, in which piles
are extended into stable soil layers beyond the zone oflglessioisture change.

4) The foundations of some structures, such as transmigsiers, offshore platforms,
and basement mats below the water table, may be subjectqiiftong forces. Piles
are sometimes used for these foundations to resist uplifiirces.

5) Bridge abutments and piers are usually constructed aleefqundations to avoid the
possible loss of bearing capacity that a shallow foundataht suffer because of soill
erosion at the ground surface (Fenton and Griffiths, 2008).

1.2 Reliability-Based Design

Before talking about reliability-based design in geotachlengineering, it is worth inves-

tigating the levels of risk that a reliability-based desigiaiming to achieve. In many areas
of design, particularly in Civil Engineering, the desigreismluated strictly in terms of the

probability of failure, rather than by assessing both thabpbility of failure and the cost

or consequences of failure. This is probably mostly due éddalst that the value of human
life is largely undefined and a subject of considerable paliand social controversy.

Most civil engineering structures are currently desigrethat individual elements making
up the structure have a “nominal” probability of failure dfcat one in one thousand and
the same might be said about an individual geotechnicalexi¢such as a footing or pile.
More specifically, we say that for a random lodd,on an element with resistance, we
design such that

P[F > R] ~ 1000

In fact, building codes are a bit vague on the issue of acbéptask, partly because of

2



the difficulty in assessing overall failure probabilities fsystems as complex as entire
buildings. The above failure probability is based on the lokload carrying capacity of a

single building element, such as a beam or pile, but the caldesstrive to achieve a much

lower probability of collapse by

1) ensuring that the system has many redundancies (if omealdails, its load is picked
up by other elements),

2) erring on the safe side in parameter estimates enterengrbability estimate,

So, in general, the number of failures resulting in lossfefis a good deal less than one
in a thousand (perhaps ignoring those failures caused liyedate sabotage or acts of war
which buildings are not generally designed against).

1.2.1 Background to Design Methodologies

For over 100 yearsworking stress desigfWSD), also referred to aallowable stress
design(ASD), has been the traditional basis for geotechnicalgpeslating to settlements
or failure conditions. Essentially, WSD ensures that¢haracteristic loadacting on a
foundation or structure does not exceed some allowablé. li@haracteristic values of
either loads or soil properties are also commonly refemmeshominal working, or design
values. The word “characteristic” will be used to avoid aibn.

In WSD, the allowable limit is often based on serviceabilityit state. Uncertainty in
loads, soil strength, construction quality, and model eacyis taken into account through
anominal global factor of safefy,, defined as the ratio of the characteristic resistance to
the characteristic load,

_ characteristic resistance
characteristic load

3| =

(1.1)

s

In general, theharacteristic resistance?, is computed by geotechnical relationships using
conservative estimates of the soil properties whilectieracteristic load £, is the sum of
conservative unfactored estimates of characteristic émidns, 7}, acting on the system.
F' is sometimes taken as an upper percentile (i.e. a load ocleeled by a certain small
percentage of loads in any one year), as illustrated in Eiduit, while? is sometimes
taken as a cautious estimate of the mean resistance.
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Figure 1.1 Load and resistance distributions.

A geotechnical design proceeds by solving Eq. (1.1) for izeacteristic resistance, leading
to the following design requirement,

R=F,> F (1.2)

where £} is thei characteristic load effect. For examp}é, might be the characteristic
dead loadf? might be the characteristic live loatl; might be the characteristic earthquake
load, and so on. Although Eq. (1.1) is the formal definitionFof F, is typically selected
using engineering judgment and experience and then used.iflER) to determine the
required characteristic resistance.

Although WSD is simple and useful, it is also accompaniedifficdlties and ambiguities.

First, the traditional argument made against the use of glesifactor of safety is that
two soils with the same characteristic strength and chamatt load will have the same
F, value regardless of the actual variabilities in load andrgjth. This is true when the
characteristic values are equal to the means, i.e. wheathar fof safety is defined in terms

of the means, e.g.
_ mean resistance

mean load
4

(1.3)

S



as it commonly is. The meah, was illustrated in Figure 1.1. Figure 1.2 shows how
different geotechnical systems, having the same meanrfa€tsafety, can have vastly
different probabilities of failure. In other words, the metactor of safety does not
adequately reflect the actual design safety. The probalififailure, p,, is computed
as the probability that load exceeds resistance,

pf=P[F > R]=P[R/F <1 =P[INR —InF < (] (1.4)

where, if it is assumed thak and F' are lognormally distributed, then (iR — In F) is
normally distributed. If we lef\/ = R/F, where)M is called thesafety margin(} is less
than one if the load exceeds the resistance so that faila@ ) then

NM=InR—InF (1.5)

which is normally distributed with parameters

Hindvr = Hinr — HinF (1.6a)

UI%MZUIZnR*‘UIZnF (1.6b)

where it is assumef and F' are independent. Now we find that

0_
P[F>R]:P[|nM<O]:P[Z<ﬂ

OlnM

=P|Z <

/ 2 2
UInR+UInF

=d <_M> (1.7)
VIR + Ohr

whereZ = (InM — n )/ on e has a standard normal distribution, abds the standard
normal cumulative distribution function. We can now defihereliability index (3, to be

0 (tnr — ,UInF)]

6= M (1.8)

A% i rT i p
which represents the number of standard deviations thdt (Inin F') is away from the

"failure” region (i.e. 0). Asg becomes smaller, the probability of failure increases.
Typically, a value of 3.0 to 3.5 is aimed for in structural engineering.

Another key problem with WSD is that it does not explicithffdrentiate between the
behavior of the structure under ultimate and servicegHiliit states. However, as will
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be discussed follows, when we combine Limit States Desi@@D(Lwith Load and Resis-
tance Factor Design (LRFD), we can both consider differemdi@s of failure and achieve
appropriate levels of safety for each failure mode.

It should be noted that the evolution from WSD to more advdmegability-based design
methodologies is entirely natural. For at least the firsf bélthe 20" century little
was understood about geotechnical loads and resistangeséheir most important
characteristics; their means. So it was appropriate to elefimlesign code largely in
terms of means and some single global factor of safety. Inemecent years, as our
understanding of the load and resistance distributionsan® it makes sense to turn our
attention to somewhat more sophisticated design methgekslavhich incorporate these
distributions.

The working stress approach to geotechnical design hasthelass been quite successful
and has led to many years of empirical experience. The pyingretus to moving away
from working stress design towards reliability-based giess to allow a better feel for
the actual reliability of a system and to harmonize with ¢incal codes which have been
reliability-based for some time now.

Most current reliability-based design codes start with gpraach called.imit States
Design The ‘Limit States’ are those conditions in which the systwaases to fulfill the
function for which it was designed. Those states concersafgty are calledltimate limit

stateswhich include exceeding the load carrying capacity (&earing failure),
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overturning, sliding, and loss of stability. Those statdsch restrict the intended use
of the system are callesgerviceability limit stateswhich include deflection, permanent
deformation, and cracking.

1.2.2 Load and Resistance Factor Design

Once the limit states have been defined for a particular pmpthe next step is to develop
design relationships for each of the limit states. The $etkrelationships should yield a
constructed system having a target reliability or, corsgrsan acceptably low probability
of failure. A methodology which at least approximately aogtishes this goal and which
has gained acceptance amongst the engineering commuritg ioad and Resistance
Factor Design(LRFD) approach. In its simplest form, the load and resis¢dactor design
for any limit state can be expressed as follows: design terysuch that its characteristic
resistancep, satisfies the following inequality

© R >aF (1.9)
9

wherey,, is a geotechnical resistance factor acting on the (geotealrcharacteristic
resistance R, anda is a load factor acting on the characteristic load, Typically the
resistance factorp,,, is less than 1.0 — it acts to reduce the characteristictaggis to a
less likelyfactored resistangehaving a suitably small probability of occurrence. Since,
due to uncertainty, this smaller resistance may nevedbealecur in some small fraction
of all similar design situations, it is the resistance assuito exist in the design process.
Similarly, the load factorg, is typically greater than 1.0 (unless the load acts in fafor
the resistance). It increases the characteristic loadfaatared loadwhich may occur in
some (very) small fraction of similar design situationgs khis higher, albeit unlikely, load
which must be designed against.

A somewhat more general form for the LRFD relationship appaa follows;
90gu1:2 > Z [iaiﬁ;’ (1.10)
=1

where we apply separate load factarg, to each ofm types of characteristic loads$;.
For example /; might be the sustained oleadload, 7, might be the maximum lifetime
dynamic oflive load, £ might be a load due to thermal expansion, and so on. Eachs# the
load types will have their own distribution, and so theirresponding load factors can be
adjusted to match their variability. The parametas an importance factor corresponding
to each load which is greater than 1.0 for important strest(e.g. structures which provide
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essential services after a disaster, such as hospitaldgssithan 1.0 for structures whose
failure is unlikely to threaten safety (eg. storage shed&yst typical structures have an
importance factor of 1.0. Some building codes, such as theid Building Code of
Canada (National Research Council, 2005) adjust the loatdriaindividually to reflect
building importance, rather than use a single global inguare factor.

LRFD is currently being used in many structural design caales reports, such as the
National Building Code of Canada (NBCC, 2005), Americandesation of State Highway
and Transportation Officials (AASHTO, 2007), Canadian kiigi Bridge Design Code
(CHBDC, 2006), the National Cooperative Highway Reseamdgfm (NCHRP) Report
343 (Barker et al., 1991) and the Federal Highway Adminigtna(FHWA) Load and
Resistance Factor Design (LRFD) for Highway Bridge Sulzstmes (FHWA, 2001).

In general, LRFD replaces single factor of safety on th@maitiotal resistance to total load
with a set of partial safety factors on individual comporseott resistance and load, and
uses limit states as the checking points for design. Thgydésads are typically increased
and design resistances are reduced through multiplicagigrartial safety factors that are
greater than one and less than one, respectively, as discabsve. There are advantages
and disadvantages associated with use of LRFD for geoteshaspects of foundation
design, the advantages are as follow;

1) The use of separate load and resistance factors is l@gidakalistic because loads and
resistance have separate and unrelated sources of untertdsing separate factors is
a convenient and rational way of accounting for the souré¢emoertainty in design.
In addition, soil can act either as a load or as a resistanietbr For example, the soil
behind a retaining wall acts as a load while soil in front @& thtaining wall may act
as a resistance. It would be better to factor these actigpesately.

2) The application of LRFD to geotechnical design helps lwarize with the structural
community and minimize any incompatibility between stuwat and foundation en-
gineers. This leads to a consistent design approach/ppihgysorchestrated by the
structural and geotechnical engineers.

3) Finally, the fact that all components of the structurateyn, including the foundation,
are designed to a consistent and appropriate level of safegliability leads to a more
economical design.

The disadvantage of using LRFD can be stated as follow;

1) The random characteristics of loads and strength (eesie) in structural engineering
are fairly well known and reasonably well established (AJl#975, MacGregor, 1976).
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This is because, for structural material such as concrtetel, &nd wood, representative
testing can easily be performed so that distributions aagively easily estimated.

Because structural materials are typically quality cdtedy their distributions remain

relatively constant at any building site. Thus, it is typiganly necessary to take a
few samples of the building material at the site to ensuredbaign criteria are met.

The difficulty with geotechnical engineering in terms of LIRks that geotechnical

materials, e.g. soil or rocks, are not manufactured to §pdatriteria, as is the case
for most structural materials. In order to have a reasonabburate estimation of

soil variability we must conduct intensive site investigas. It is also hard to deliver

undisturbed soil samples to test facilities to accuratefyednine their properties. In

other words, to capture the variability of soil accuratelgny carefully taken samples
would be required to estimate both mean and variance valiesh adds expense and
difficulties to foundation design.

2) Another difficulty with geotechnical engineering is thetefmination of spatial ran-
domness of soil and its effect on the design reliability. | ooperties often vary
dramatically from point to point within the same site and artlugh awareness of this
inherent variability can be vital to the success of the desigecause soil properties
vary from point to point soils should be modeled using randieid theory (Vanmarcke,
1984).

Even though the evolution from WSD to Load and ResistanctoF&esign (LRFD) in the
geotechnical engineering community is entirely naturahwhe development of the public
awareness of the benefits, there is some concerns abousitiepof engineering judgment
and experience. It should be pointed out that engineeridgment and experience are,
and always will be, an essential part of geotechnical emging, especially for the design
aspects that are beyond the scope of mathematical analysisexample, the selection
of characteristic values for any given limit state will irve engineering judgment and
experience.

1.3 Research Objectives

Early use of LSD for geotechnical applications was examinethe Danish Geotechnical
Institute (Hansen 1953, 1956) and later formulated inteeddthnsen, 1966). Independent
load and resistance factors were used, with the resistant@$ applied directly to the soil
properties rather than to the characteristic resistance.

Considerable effort has been directed over the past deoatie application of LRFD in
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geotechnical engineering. LRFD approaches have beenagegein offshore engineering
(e.g., Tang, 1993; Hamilton and Murff, 1992), general faatiwh design (e.g., Kulhawy
and Phoon, 1996), and pile design for transportation strast(Barker et al., 1991; ONeill,
1995).

In geotechnical practice, uncertainties concerning t&sce principally manifest them-
selves in design methodology, site characterization jgibvior, and construction quality.
The uncertainties have to do with the formulation of the pdaisproblem, interpreting
site conditions, understanding soil behavior (e.g., sesentation in property values), and
accounting for construction effects. Uncertainties ireexal loads are small compared with
uncertainties in soil and the strength-deformation bedravof soils. The applied loads,
however, are traditionally based on superstructure aisalbereas actual load transfer to
substructures is poorly researched.

This research considers an individual pile placed in a afpatvarying random soil. In
general, the soil will vary in three dimensions, but therbtike advantage in considering
the 3rd dimension since piles are essentially one-dimeasend only the 2nd dimension
is needed to provide distance from the pile location. Hetlus,study considers a two-
dimensional random field in which the pile is place vertigadt a certain position and
soil samples are take vertically at some possibly diffepaogition (as in a CPT or STP
sounding).

Arandom fieldX (¢) is a collection of random variable&; = X(¢,), X, = X(¢,), ..., whose
values are mapped onto a space (of n dimensions), one fopeattin the field. Values in
a random field are usually spatially correlated in one waynotlzer.

In the present study three parameters are considered talsesite random soil model,
the mean,u, the standard deviatior;, and the correlation length,. Frequently, it is
more convenient to express standard deviation (or var)aeca coefficient of variation,
defined as the ratio of standard deviationto the meany, v = o/ .

A convenient measure of the variability of a random field esdbrrelation length 6, also
sometimes referred to as theale of fluctuationLoosely speaking] is the distance within
which points are significantly correlated. Conversely, paints separated by a distance
more thard will be largely uncorrelated. Mathematicalbyis defined here as the area under
the correlation function (Vanmarcke, 1984),

o0

0 = / p(t) dt (1.11)

[e.o]

Fields with smallf tend to be ‘rough’, while fields with larget are usually smoother.
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Figure 1.3 shows two random field realizations. The field ereft has a small correlation
length ¢ = 0.04) and can be seen to be quite rough. The field on the right haga
correlation lengthd = 2) and can be seen to be more slowly varying. (Fenton et@03)

Figure 1.3 Sample realizations oX (¢) for two different correlation lengths.

In random fields a correlation coefficient can be used to cbarae the spatial dependence
of the fields. The correlation coefficient will be given by eation function parameterized
by the correlation lengttf). There are several commonly used correlation functiornisn
research the Markov correlation functigi(?), is used. It is because of its simplicity and
because, in one-dimension, itis a memoryless process.nidass for a stochastic process
the future of the random process only directly depends optégent and not on the past.
The Markov correlation function has the form

p(t) = exp(—%) (1.12)

wheret = z; — z, is the distance between two points ahid the correlation length (Fenton
and Griffiths, 2008).

This study proposes a reliability-based design methodofog piles, with the aim of
reducing cost without compromising safety. For deep fotindadesign, this will be
accomplished by assessing the probability of failure dgpunder effective stress and total
stress conditions.

The final goal is to investigate the effect of a soil’'s spataiiability and site investigation
intensity on the resistance factors via theory and via satiah, the latter using Monte
Carlo simulation.

It seems reasonable to assume that if the spatial cornelstiiocture of a soil is caused by
changes in the constitutive nature of the soil over spa@ both cohesion and friction
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angle would have similar correlation lengths. Thus, faotangle is assumed to have the
same correlation structure as cohesiomnge., p(t). Both correlation lengths will be referred
to generically from now on simply a& and both correlation functions a¢).

The two random fields; and ¢, are assumed to be independent. Non-zero correlations
between: and¢ were found by Fenton and Griffiths (2003) to have only a minduence

on the estimated probabilities of bearing capacity failusance the general consensus is
thatc and¢ are negatively correlated (Cherubini, 2000) and the mearnitogcapacity for
independent and¢ was slightly lower than for the negatively correlated cdsnfon and
Griffiths, 2003), the assumption of independence betweerd¢ is slightly conservative.

1.4 Scope of Work

This study concentrates on the determination of geoteahngsistance factors for use
in the design of a pile in soils under effective stress andltstress conditions, using
reliability-based design methodology. An introductiordeep foundations and the history
of geotechnical designs are outlined in Chapter 1.

Chapter 2 presents an analytical solution to estimatingfailere probability of deep
foundation in soils under total stress condition. Chaptals® describes the Monte Carlo
simulations used in this thesis to validate the analytioaltson.

The results of the simulation are then compared to the doalyesults. Recommended
resistance factors for four different maximum acceptaaiere probabilities are shown in
Chapter 2 and a comparison is made between these recommealded and the values
recommended in existing LRFD codes.

Chapter 3 is similar to Chapter 2, except to determine thaired resistance factors for
piles founded in effective stress soils.

Finally, the limitations of overall results and recommetmatas are discussed, and conclu-
sions are drawn in Chapter 4. Suggestions for future relseaiecalso provided.
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Chapter 2: Geotechnical Resistance Factors for Total Stress
Limit State Design of Deep Foundations

2.1 General

Deep foundations, or piles, may fail through a punching sfe&ure, an ultimate limit
state (ULS), where the load applied to the pile exceeds tharsdtrength of the surrounding
soil (Fenton and Griffiths, 2007). The soil supports the gieugh a combination of
end-bearing and friction and/or cohesion between the sditlae pile sides. In this chapter,
only total stress resistance is considered, as would tipisa found in a soil under total
stress condition, and end-bearing is ignored.

As the load on the pile is increased, the bond between theandilthe pile surface will
break down and the pile will slip through the surroundingd.sAt this point, the ultimate
geotechnical resistance of the pile has been reached. Tihmtd geotechnical resistance
of a pile due to cohesionr, between the pile surface and its surrounding soil is giwven b

H
R, = '/o pr(2) dz (2.2)

wherep is the effective perimeter length of the pile section afid) is the ultimate shear
stress acting on the surface of the pile at depth

The ultimate shear stress acting between the soil and theupder total stress condition
can be obtained by several methods. One commonly accepteddure, thex method,
is described briefly by Das (2000). According to themethod, the unit surface shear
resistance in soils under total stress condition can besepted by the equation,

7(2) = ac(z) (2.2)

wherec(z) is the average soil cohesion around the pile perimeter @hde anda is an
empirical adhesion factor, typically in the range 08 @ 1, as specified by the Canadian
Foundation Engineering Manual (CFEM, 2006). For a normetigsolidated clay with
cohesiong, less than about 33 kPa, the adhesion factor suggested {2O@&3) is 1.0. The
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adhesion coefficient can be also written as a function of dieesion over the pile length
as (CFEM, 2006),

0.21+026% jf ;> 33kPa
a= e (2.3)

1 if u. < 33 kPa
whereP, is the standard atmosphere (1825 kPa).

In this research the average cohesjonjs assumed to be 50 kPa and so its corresponding
adhesion coefficienty, by using Eqg. (2.3) can be estimated tabe 0.74. The simulations
and analytical results presented in this research are lmasaderage values of cohesion,
1. = 50kPa, and adhesion factoy, = 0.74. With this information, the true ultimate total
stress resistance of a pile with lengthand perimetep, can be estimated to be,

H
R, = ' /0 pac(z) dz (2.4)

In the design of a pile, geotechnical engineers must find tleeteve perimeterp, and
length, H, required to avoid a total stress resistance failure. mrsearch, it is assumed
that the pile type is already known, so tipas known and the design involves determining
H. To find H, ultimate limit state (ULS) conditions are checked usingasate factors
on loads and on ultimate geotechnical resistance. Thisleadhe load and resistance
factor design (LRFD) methodology, collectively referredais Limit States Design (LSD)
in Canada, which requires that the factored geotechnisadtesnce exceed the factored load
at each limit state. At the ultimate limit state, the desigguirement is

Pgult, > Z Loy B (2.5)

wheregy,, is the ultimate geotechnical resistance facfoy,is the characteristic (design)
ultimate geotechnical resistandejs an importance factor corresponding to thike char-
acteristic load effectFZ-, ando; is thei'th load factor.

The importance factoy;, reflects the severity of the failure consequences and miaydper
than 1.0 for important structures, such as hospitals, wfakge consequences are severe
and whose target probabilities of failure are less thandliostypical structures. Typical
structures are usually designed using 1, which will be assumed in this research. Struc-
tures with low failure consequences (minimal risk of losdifef, injury, and/or economic
impact) may havéd; < 1.

Only one load combination will be considered in this reskarc

A

G F=a,F, +a,F, (2.6)
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whereq’, is the total load factori is combination of characteristic live and dead Iozﬂs,
is the characteristic live IoaaﬁD is the characteristic dead load, amgdanda, are the live
and dead load factors, respectively. The load factors ustdd study will be as specified
by the National Building Code of Canada (NBCC; NRC, 2005);= 1.5 anda, = 1.25.
The theory presented here, however, is easily extendedhtr tdad combinations and
factors, as long as their (possibly time-dependent) distions are known.

In any reliability-based design, uncertain quantitieshsas load and resistance are repre-
sented by random variables having some distribution. Digions are usually character-
ized by their mean, standard deviation, and some shapea(@rgal or lognormal). In some
cases, the characteristic load values used in design anededi be the means, but they can
be more generally defined in terms of the means as

Fyo=kop, (2.7a)

A

Fp =kppp (2.7b)

wherep, andu,, are the means of the live and dead loads, aph@nd k,, are live and
dead load bias factors, respectively (Fenton and GriffRB88). For typical multi-storey
office buildings, Allen (1975) estimatds = 1.41, based on a 30 year lifetime. Becker
(1996) estimates,, to be 1.18. The characteristic Ioad%, andFD, are thus obtained as:
F, =141, andF,, = 1.18u, (Fenton et al., 2008).

The characteristic ultimate geotechnical resistalﬁi;te,is determined using characteristic
soil properties, in this case characteristic values of tksscohesion,c. To obtain the
characteristic soil properties, the soil is assumed to lepkad over a single column
somewhere in the vicinity of the pile, for example by a sinGRT sounding near or field
vane test taken the pile. The sample is assumed to yield @segqofn observed cohesion

valuescy, ¢s, ..., ¢,,. The characteristic value of the cohesionis'defined in this chapter

as an arithmetic average of the sampled observatipnghich, can be computed as,
=1y @9
c= m 2 C; .

The characteristic ultimate geotechnical resistafgecan now be obtained from Eq. (2.4)
to be

A

R, =pHac (2.9)

In order to determine the geotechnical resistance fagigt,required to achieve a certain
acceptable reliability, the failure probability of the@iinust be estimated. This probability
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will depend on the load distribution, the load factors seddcand the resistance distribution.
The resistance distribution is discussed in SectioRsi@d the load distribution is discussed
in Section 23. Sections 24 and 25 develop the analytical framework and simulation
algorithm for the failure probability estimate, and illcege how the theoretical estimates
agree with simulation.

The Load and Resistance Factor Design (LRFD) approachvesdelecting a maximum
acceptable failure probability leved,,. The choice ofy,, derives from a consideration of
acceptable risk and directly influences the valuepgf. Different levels ofp,, may be
considered to reflect the “importance” of the supportedccsime —p,,, may be much smaller
for a hospital than for an uninhabited storage warehouse.

The choice of a maximum acceptable failure probability, should consider the margin
of safety implicit in current foundation designs and theele\wof reliability for geotechnical
design as reported in the literature. The valuas,dior foundation designs should be nearly
the same or somewhat less than that of the supported seumtgause of the difficulties
and high expense of foundation repairs. A literature revoévihe suggested maximum
acceptable failure probability for foundations is listedlable 2.1.

Table 2.1 Literature review of lifetime probabilities of failure obéindations.

Source DPm
Meyerhof (1970, 1993, 1995) 102 — 10
Simpson et al. (1981) 1073
NCHRP (1991) 10210
Becker (1996) 103 -10"*

Meyerhof (1995) suggests that a typical lifetime failurekmability for a foundation is
around 10* and so the numbers in Table 2.1, range on the high side of tiggested by
Meyerhof. However, foundations are normally supported loyenthan a single pile, and
multiple piles provide at least some degree of system reglurydwhich serves to reduce
the system failure probability. If it is assumed that Mey#it 1995 estimate is for the
entire foundation system, then the required failure praitalior a single pile would be
greater than the system failure probability of #0Although more research is required to
determine the failure levels appropriate for redundaetgystems, the National Cooperative
Highway Research Program (NCHRP) reports (Barker et a@1,18nd Paikowsky, 2004)
are based on a lifetime failure probability of about-3Gor an individual pile which
suggests that NCHRP is considering pile redundancy. Inréggsarch, four maximum
acceptable failure probabilities, 19103, 10~* and 10°°, will be considered. The failure
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probabilities, 102, 1074, and 10°°, might be appropriate for designs involving low (e.g.
storage facilities), medium (typical structures), andhhig.g. hospitals and schools)
failure consequence structures, respectively. The geoteal resistance factors required
to achieve these maximum acceptable failure probabiltid$e recommended in Section

2.6.

2.2 The Random Soil Model

The soil cohesiong, is assumed to be lognormally distributed with meap, standard
deviation,o.., and some spatial correlation structure (Fenton et al.8200he lognormal
distribution is selected because itis commonly used teesat non-negative soil properties
and has a simple relationship with the normal. A lognormdisfributed random field can
be obtained from a normally distributed random fiefd, .(z), having zero mean, unit
variance, and spatial correlation lengththrough the transformation

C(Z) = exp{ﬂln c + Oln cGln c(z)} (210)

wherez is the spatial position at whichis desired. The mean and variance ot lare
obtained from the specified mean and variance of cohesiog tise transformations

1
ohe = (1+02).  pne=IG1) = 500 (211)
whereu, is the coefficient of variation of the cohesion, definedvby o../ ...

The correlation coefficient between the log-cohesion atiatpg and a second poind,
is specified by a correlation functiop, In this study, a simple exponentially decaying
(Markovian) correlation function will be assumed, havihg form

p(t) = exp(—%) (2.12)

wheret = 2z, — 2, Is the distance between the two points.

The spatial correlation length, appearing in Eq. (2.12), is loosely defined as the separatio
distance within which two values of tnare significantly correlated. Mathematicalyis
defined as the area under the correlation functpgrn), (Vanmarcke,1984). The spatial
correlation functionp(t), has a corresponding variance reduction functigit/), which
specifies how the variance is reduced upon local averagitrgeadver some lengtli/ and

is defined by,

1 H H
WH) = /0 /O Pt — z2) dey dzp (2.13)
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It should be noted that the correlation function selectealalacts between values ofdn
This is because Inis normally distributed, and a normally distributed randbetd is
simply defined by its mean and covariance structure. In eathe correlation length
can be estimated by evaluating spatial statistics of thectdgesion data directly (see, e.g.,
Fenton 1999).

2.3 The Random Load Model

The load acting on a foundation is typically composed of deads, which are largely
static, and live loads, which are largely dynamic. Dead $oack relatively well defined
and can be computed by multiplying volumes by characteristit weights. The mean
and variance of dead loads are reasonably well known. Onttier band, live loads are
more difficult to characterize probabilistically. A typlodefinition of a live load is the
extreme dynamic load (e.g., wind load, vehicle loads, bbek&s etc.) that a structure
will experience during its design life. In other words, thstdbution of live load really
depends on the design life. Dead and live loads will be dehade, andF, , respectively.
Assuming that the total load is equal to the sum of the maximum lifetime live lodd,
and the static dead load),, i.e,

F=F +F, (2.14)

then mean and variance 61, assuming dead and live loads are independent, are given by,

Hp = pp ¥ fp (2.1%q)
2 _

o2 =02+ (2.1%0)

The total load,F' = F, + F},, is assumed to be lognormally distributed. This assumption
was found to be reasonable by Fenton et al. (2008).

The total load distribution has parameters,

Hin e = 1N y) — %UI%F (2.16a)
02

o2, =1In <1 + —§> (2.16h)
%

The design problem considered in this study involves a pipgerting loads having means
and standard deviations shown in Table 2.2. The values ifeTaB used for mean loads
to ensure that the designed pile length,doesn’t exceed simulation depth, but results are
scalable so the detailed means have little or no influencenahrgsults.
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Table 2.2 Load distribution parameters.

Parameters e Up (o Op Hr Op Hinr | Oinr
Values 20kN | 60kN | 6kN | 9KkN | 80kN | 10.82kN | 44 | 0.14

Assuming bias factorg, = 1.18 (Becker, 1996) and;, = 1.41 (Allen, 1975) and im-
portance factor,/; = 1.0, gives the characteristic live load;, = 141, = 282KkN,
dead load /', = 1.18u,, = 70.8kN, and characteristic total design load, £}, + o, [, =
1.5F, +1.25F, = (1.5 x 28.2) + (125 x 70.8) = 1308 kN.

2.4 Analytical Approach to Estimating the Probability of Failure

In order to estimate the probability of failure of a pile, thal should first be modeled as

a spatially varying random field. In general, cohesion watyin all three dimensions,
but there is little advantage in considering thé @imension since piles are essentially
one-dimensional and only thé*2dimension is needed to consider distance between a
sample and the pile location. Hence, this study considem®aiimensional random field

in which the pile is placed vertically at a certain positiordaoil samples, as in CPT or
SPT sounding, are taken vertically at some, possibly differposition. The analytical
approximation to the probability of pile failure in soilsder total stress condition will be
explained as follows.

When the soil properties are spatially variable, as theyrareality, then, Eq. (2.9) can be
replaced by
R, =pHac (2.17)

wherec is the equivalent cohesion, defined as the uniform cohesibrewvhich leads to
the same ultimate strength as observed in the spatiallyngspoil over a pile of length,
H. ltis hypothesized here thats the arithmetic average of the spatially variable cohesio
over the pile length,

_—1/H()d Iy (2.18)
C_H'o c(z Z_n;Ci .

wherec(z) is interpreted as an average cohesion around the pile penirat depth. If the

pile is broken up into a series afelements (as will be done in the simulation), the average
is determined using the sum at the right of Eq. (2.18), wheirgthe local average af 2)
over the:'" element, fori = 1, ..., n.

The required minimum design pile lengtH, can be obtained by substituting Eq. (2.9) into
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Eq. (2.5) (takingl/;, = 1.0),
. . E, +a,F
ogpHac=o, F, +a,F,, — H= %L—O?D (2.19)
PguPC

By further substituting Eqg. (2.19) into Eq. (2.17), the miéte resistanceR,, can be
estimated as,
Ru — (aLﬁL +&DFA’D) (
Pgu

The reliability-based design goal in this study is to find tbquired length/ such that
the probability of the actual load;, exceeding the actual resistanég, is less than some
maximum acceptable failure probabiliy,,. The actual failure probability, is

(2.20)

pr=P[F > R,)] (2.21)

and a successful design methodology will haye< p,,. Substituting Eq. (2.20) into
Eqg. (2.21) leads to

p=P|F> (—QLFL +%ﬁD> (%] =P £e > —aLﬁL * ok (2.22)
()Ogu c c (;Ogu
Letting
I
=2° (2.23q)
C
q=a,Fp+apky (2.23)
means that
p;=P [W > i] (2.24)
Pgu

The computation of the probability in Eq. (2.24) involves tihetermination of the distri-
bution of W. If the random load/F, and cohesion valueg,&ndc, are all assumed to
be lognormally distributed, which is a reasonable asswngfrenton and Griffiths, 2008,
and Fenton et al., 2008), then the teri#i, will also be lognormally distributed and its
parameters can be determined by considering the individis&ibutions of ', In¢ , and
Inc.

If W is lognormally distributed, then

INW =InF+Inc—Inc (2.25)
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is normally distributed ang; can be found from

pr= P[W > q/cpgu] = P[InW > In (q/cpgu)]
—1_ & <In (Q/Qogu) - MInw) (226)

Olnw

where® is the standard normal cumulative distribution function.

The failure probabilityp, in Eq. (2.26) can be estimated once the mean and variance of
In W are determined. The mean and variance é¥lare

Hinw = finp * fine — Hing (2.27a)
olw = 0h g +obstois— 2Cov[Ing, In¢] (2.27b)
where the total loadF’, and cohesiong, are assumed to be independent. By applying

first-order Taylor series approximations to the meansawags and covariance ofdand
In ¢, the components of Eq. (2.27) can be computed as follows ;

1) As discussed in section? the total loadF), is equal to the sum of the live load;,
and the static dead load,,, i.e. I' = I, + F,,, and the mean and variance ofArcan
be evaluated using EQ’s. (2.15) and (2.16).

2) With reference to Eq. (2.8),

Mlne:E[m@]:E[ (%i )]fvln(uc) (2.280)
2

mm

(2.28h)

=1 j=1

In EqQ. (2.28Db)z? is the spatial location of the center of tih soil sample{(=1,2,...,m)
andpisthe correlation function defined by Eq. (2.12). Both etpret make use of first-order
Taylor series approximations (see Appendix A for more d&taA further approximation
occurs in the variance (Eqg. (2.28b)) because of the facttraglation coefficients between
the local averages associated with observations are appated by correlation coefficients
between the local average centers. Assuming thaattudally represents a local average of
In ¢ over the sample domain of sizB, theno?, - is probably more accurately computed as

Tinz = oinc (D) (2.29)

where~v(D), is the variance reduction function that measures thectemiuin variance due
to local averaging over the sample domdingiven by Eq. (2.13). In this research the
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sample domairD, is assumed to b&) = Az x m, wherem is the number of observations
over sample domaib andAz is the vertical dimention of a soil sample.

3) With reference to Eq. (2.18) and using many of the samenaegts as in previous item,
(see Appendix A for details)

H
wne=E [In <%/o c(2) dz)] ~ In (u.) (2.30a)
Ot oV (H) (2.30)

where(H) is defined by eq (2.13).

4) The covariance between the arithmetic average of thenadxdeohesion values over
sample domain) = Az x m, and the equivalent cohesion along the pile lengthin
Eq. (2.27) is obtained as follows (see Appendix A for dejails

Cov[ine,Iné] ~ Iinc Z/ V2 + (2 — 29 )2)

- aln ¢Tup (231)

where~,,, is the average correlation coefficient between the cohesaomples over
domainD and the cohesion along the pile of lendfhandp is the correlation function
between Ire(z?) and Inc(2). In detail,~,,, is defined by,

Yo = m—lel:/OHp (m) dz (2.32)

wherer is the horizontal distance between the pile centerline hadénterline of the

soil sample column as shown in Figure 2.1. The approximati¢ime covariance arises
both because the first-order Taylor series approximatiahscause of correlation
coefficients between local averages associated with cds@ng are approximated by
correlation coefficients between the local average centers
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Figure 2.1 Relative locations of pile and soil sample.

Substituting EQ’s (2.16), (2.28), (2.29), (2.30) and (21810 Eq. (2.27), leads to

Hinw = Hinp (2.33a)
Tinw = T+ 0in e [Y(D) +7(H) — 274] (2.3%)

which allows the probability of failure to be expressed as

In -
py=1—0 ( (Q/Qp&qlu) ﬂlnw) (2.34)
nw
The argument t@ is the reliability index,
Ing —In —
6 - q Pgu Hinw (235)

Olnw

If the reliability index is specified through knowledgemf, for example, then the geotech-
nical resistance factor is determined by

©gu = XP (NG — tunw — BOnw) - (2.36)
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2.5 Simulation Results and Comparison with Predictions

In this section, probabilistic analyses of piles using Mo@Garlo simulation are performed.
The objective is to investigate the failure probability opige in soil under total stress

condition with spatially varying cohesion field, via simulation in order to validate the

theory developed in the previous section. Simulation eésgnproceeds by carrying out a

series of hypothetical designs on a series of simulatedistuls and checking to see what
fraction of the designs fail.

In practice, the accuracy of the Monte Carlo method dependsowv well the assumed

probability distribution fits the real stochastic procdéshe fit is reasonable, the accuracy
increases with the number of simulation runs, i.e., bew@sults will be obtained as the
number of simulation realizations increases. In deta#, steps involved in the Monte

Carlo simulation are as follows;

1) The cohesion; of a soil mass is simulated as a spatially variable randdohds&ng the
Local Average Subdivision (LAS) method (Fenton and Vanikard990). Cohesion
is assumed to be lognormally distributed with mean 50 kPacagfficient of variation,
v,, ranging from 0L to 05. The correlation length is varied from 0 to 50 m.

2) The simulated soil is sampled along a vertical line thtotlge soil at some distance,
from the pile. These virtually sampled soil properties aecuto estimate the charac-
teristic cohesiong, according to Eq. (2.8). Three sampling distances are deresil:
the first is at- = 0 m which means that the samples are taken at the pile localto
this case, uncertainty about the pile resistance onlysiigbe pile extends below the
sampling depth. Typically, probabilities of failure wherr 0 m are very small. The
other two sample distances consideredrare4.5 m andr = 9.0 m, corresponding to
reducing understanding of the soil conditions at the pitatmn. These rather arbi-
trary distances were based on preliminary random field sitranls, which happened
to involve fields 9 m in width. However, it is really the ratio/f, which governs the
failure probability.

3) The required design pile lengtH, is calculated using Eq. (2.19).

4) Dead and live loadd;, and F,, are simulated as independent lognormally distributed
random variables and then added to produce the actualdathbh the pilef’ = F, +F,.
The means and standard deviations of the dead and live laadassumed to be
1p = 60KkN,o, = 9kN andyu, = 20kN, o, = 6kN, respectively.

5) The true ultimate pile resistanck,, is computed using Eq. (2.4).
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6) The ultimate resistance,,, and total loadF’ are compared. If' > R,, then the pile,
as designed, is assumed to have failed.

7) The entire process from step 1 to step 6 is repeatgdtimes {,,;,, = 10000 in the
present study). If.; of these repetitions result in a pile failure, then an estinoé the
probability of failure isp; = n /1.

8) Repeating steps 1 through 7 using various valugs pfn the design step allows plots
of failure probability vs. geotechnical resistance fa¢tobe produced for the various
sampling distances, coefficient of variation of the cohesamd correlation length.

The analytically estimated failure probabilities can b@esumposed on the simulation-
based failure probability plots, allowing a direct compan of the methods. Figure 2.2
illustrates the agreement between failure probabilitetsreated via simulation and those
computed analytically using Eg. (2.34). Given all the apprations made in the theory,
the agreement is considered to be excellent, allowing tbeeghnical resistance factors to
be computed analytically with reasonable confidence ev@nadiability levels which the
simulation cannot estimate — the simulation involved o900 realizations and so cannot
properly resolve probabilities to less than about10

Itisimmediately clear from Figure 2.2 that the probabibtfyfailure,p, increases with soil
variability, v. which is to be expected. Also, as expected, the probalsildgfefailure are
smaller when the soil is sampled directly at the pile thanmdempled some distance away
from the pile centerline. This means that considerabletcoci$on savings can be achieved
by improving the sampling scheme, especially when sigmitisail variability exists.

The failure probabilities are well predicted by the analgtitechnique when the sam-
pling point is at the pile locationr(= 0 m). There are some discrepancies for very
small probabilities, but this maybe largely due to estimatwor in the simulations. For
example, if a simulation has 17 failures out of 10000, as & hiighest point in Fig-
ure 2.2 a, the estimated probability of failurepis = 0.0017, which has standard error,
Oy, = 1/(0.0017)(09983)10000~ 0.0004. and the 95% confidence interval ppis
0.0017+1.96(0.0004) = [Q0009 0.0025] which is quite wide. In fact, if only 5 failures are
observed, then the 95% confidence intervapeis [0.0001, 0.0009]. In the other words,
the simulation results cannot be trustedgpvalues less than aboutdD1.

The good agreement between simulation and theory implegstitie theory can be used
to reliably estimate the pile failure probabilities. Thedony will be used in the following
section to provide recommendations regarding requiretegbaical resistance factors for
certain target probabilities of failure.
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g4, = 0.8, and three sampling locations.
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2.6 Geotechnical Resistance Factors

In this section, the geotechnical resistance factpgg, required to achieve four maxi-
mum acceptable failure probability levels (£0 103, 10* and 10°) are theoretically
investigated. The corresponding reliability indices ol four target probabilities are
approximately 23, 31, 3.7, and 43, respectively.

Figures 2.3, 2.4, and 2.5 show the geotechnical resistauters required for the cases
where the soil is sampled at the pile location, at a distafideSom and at a distance of 9
m from the pile centerline, respectively.

Figure 2.3 corresponds to sampling at the pile location wiige design conditions are so
well understood that the geotechnical resistance facweens 1.0 whep,, > 1073 (these
cases are not shown).

The worse case geotechnical resistance factors occurs thiberorrelation lengthg is
between about 1 and 10 m. This worst case is important, sirecedrrelation length is
very hard to estimate and will be unknown for most sites. hreotvords, in the absence of
knowledge about the correlation length, the lowest geotieahresistance factor in these
plots, at the worst case correlation length, should be used.

To explain why a worst case exists, the nature of the coroaeléngth must be considered.
The correlation lengtl#), measures the distance within which soil properties arefasgntly
correlated. Low values df lead to soil properties which vary rapidly in space, whilghi
values mean that the soil properties vary only slowly witlsipon. A large correlation
length, of sayy = 50 m, means that soil samples taken well within 50 m from tite p
location (e.g. at 10 m) will be quite representative of thémmperties at the pile location.
In other words, lower failure probabilities are expecte@wthe soil is sampled well within
the distancé from the pile (see Appendix B for more details).

Interestingly, wherd is very small (say, @1 m), then the soil sample will consist of an
large number of independent ‘observations’ whose averagastto be equal to the true
mean. Since the pile also averages the soil properties,ilthéspes’ the same true mean
value predicted by the soil sample. Therefore, the samplaeaurately reflect the average
conditions along the pile and in this case the failure prdiis again low.

At intermediate correlation lengths, soil samples beconperfect estimators of conditions
along the pile, and so the probability of failure increasasconversely, the required
geotechnical resistance factor decreases. Thus, the ommnequired resistance factor will
occur at some correlation length betweed @nd infinity.
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It is expected that the worst case correlation length wituwovhend is approximately
equal to the distance from the pile to the sampling locatidatice in Figures 2.3, 2.4, and
2.5 that the worst case correlation length does show somease as the distance to the
sample locationy, increases.

As shown in Figure 2.5, the smallest geotechnical resistdactors correspond to the
smallest acceptable failure probability shown, = 107>, when the soil is sampled 9 m
away from the pile centerline. When the cohesion coeffimémriation is relatively large,
v. = 0.5 the worst case values gf,,, dip down to 015 in order to achieve,, = 10°°.

In other words, there will be a significant construction qoanalty if a highly reliability
pile is to be designed using a site investigation which isfiiient to reduce the residual
variability to less than,. = 0.5.
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Figure 2.3 Geotechnical resistance factors when the soil has beenlsadmip
the pile location{ = 0 m) (note the reduced vertical scale).
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The worst case geotechnical resistance factors requirachieve the indicated maximum
acceptable failure probabilities, as seen in Figures 2d&itih 2.5, are summarized in Table
2.3. Some of the geotechnical resistance factors recommendeid study forp,, = 102
are greater than.Q, which may be because the load factors provide too much stfettye
larger acceptable failure probabilities when the site il wederstood.

Due to redundancy it is reasonable to use a lower relialfléngerp,,) for a single pile in
pile groups. For example, if a single pile in a group has thellest resistance and begins
to fail, the load is transferred to other piles in the grouphvwgreater resistance and the
overall foundation is less likely to fail. A reasonable \alf maximum acceptable failure
probability for single driven piles within a redundant gpomay be in the range of 18
and 103 (FHWA, 2005).

Table 2.3 Worst case geotechnical resistance factors for variouficeats
of variation, v., distance to sampling locatiom, and acceptable
failure probabilitiesp,,.

r(m) | o, Geotechnical Resistance Factor
pm =102 | p,=10"2 | p,=10* | p, =10"°

0.0 0.1 1.20 1.08 0.99 0.92
0.0 0.2 1.17 1.05 0.95 0.88
0.0 0.3 1.13 1.00 0.91 0.83
0.0 0.5 1.04 0.90 0.79 0.71
4.5 0.1 1.15 0.98 0.88 0.80
4.5 0.2 0.94 0.78 0.66 0.58
4.5 0.3 0.78 0.60 0.49 041
4.5 0.5 0.51 0.35 0.25 0.20
9.0 0.1 1.09 0.95 0.85 0.77
9.0 0.2 0.89 0.73 0.61 0.53
9.0 0.3 0.70 0.53 0.42 0.36
9.0 0.5 0.43 0.29 0.20 0.15

Table 24 compares the resistance factors recommended in this stildythose recom-
mended by other sources. The resistance factors recomah@éntiee current study (first
three rows of Table 2.4), correspond to the case where0.5 andr = 4.5 m for maximum

acceptable failure probabilities,, = 10~3,10~* and 10°°.

To compare the recommended resistance factqys, with values in other codes and the
literature, the total load factory,; and the ratio of the resistance factor to the total load
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factor , ¢, /d., which is the real measure of the overall "safety factor'tiisgeach code,
must be considered. According to Eqg. (2.5), by increasiey#iue of the total load factor,
ar, the required resistance facter,, increases. The dead load factey, = 1.25, and live
load factor,«;, = 1.5, are used in this study, as specified by the National Bugl@ode

of Canada (2005). The bias factorsiof = 1.18 (Becker,1996)k, = 1.41 (Allen, 1975)
and the ratio of dead to live load, /., = 3.0 are chosen in this rsearch. Using these
assumptions the characteristic dead to live load rdﬁg)/m, and the total load factoty,,
can be approximated by

. Fook 1.18 1.18(3
RD/L — A_D - kD,uD - 1 4(‘?#LL) - ( ): 25 (237&)
F, ko A1y, 1.41
A = aLﬁL +aDﬁD _ aLﬁL +aDﬁD
’ 2 F+F,
+a,(F,/F;) 15+125(25
- ranp/Fy) 29) _ 13 (237)
1+ (F,/FL) 1+25

The total load factors used in CFEM (2006), CHBDC (2006), &R{CC(2005) are all
very close to the total load factor used in the current stutty differ only because of a
slight difference in the characteristic dead to live raﬁg,/, The recommended ratios of
the resistance factor to the total load factgy, /&, in CFEM(2006), CHBDC (2006), and
NBCC (2005) are all very close to the recommended value smgtudy forr = 9 m and
P, = 1074,

As can be seen in Table 2.4, the total load factor used in Alisstr Standard, AS5100.3
(2004) is very close to the total load factor used in the curstudy. The recommended
value for the ratio of the resistance factor to the total I&aor, ¢, /&, by Australian
Standard, AS5100.3 (2004) is also very close to the recordetemalues in the current
study for the maximum acceptable failure probabitity= 102 and both sample locations
r=45mandr=9m.

The ratios of the resistance factor to the total load factcsommended by NCHRP 343
(Barker et al., 1991) and NCHRP 507 (Paikowsky, 2004) aredbas a reliability index
of 3.0 (p,, = 0.0013). The total load factory,.,” considered in NCHRP 507 is close to
the value used in this research and the recommended ratiee oEsistance factor to the
total load factor by NCHRP 507 is very close to the recommednadue forr = 9 m and
pm = 1073 The recommended ratio of the resistance factor to theltaelfactor ,p,,, /i,

by NCHRP343 tend to be in the range suggested in this reséaraiaximum accaptable
failure probabiliesp,, = 10~* and 10°, despite its larger total load factor. Similarly,
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recommended ratios of the resistance factor to the total faetor in ASSHTO (2002,
2004, and 2007) are very close to the range suggested iresi@anch fop,, = 10-°, which
might be becasue of the larger total load factors used in AKSidodes.

An explanation that the ratio of resistance factors to thal foad factors proposed in the
current study may be higher than the values from the codeabte®.4, is that the current
study neglects measurement and model errors and so shoulez as upper bounds to
the resistance factors.

However, the code values correspond very well to those rewamded in this research when
samples are taken some distance away from the pile cemtenihich may also be what the
codes are assuming.

Table 2.4 Comparison of geotechnical resistance factors recomnaandieis
study (first 6 lines) to those recommended by other sourcesrev
R/, is the characteristic dead to live load ratio.

Source Load Factors Gr | Qgu | Qgu/Or
r=45m,p,, =103 | R,,, =25,a, =150,a, =1.25| 1.32 | 0.60 | 0.45
r=45m,p, =10* | R,,, =25,a, =150,a, = 1.25| 1.32| 049 | 0.37
r=45m,p,, =10° | R,, =25,a, =150,a, =1.25| 1.32| 041 | 0.31
r=90m,p, =102 | R,,, =25,a, =150 a, =1.25| 1.32| 053 | 0.40
r=9.0m,p,, =10* | R,,, =25,a, =150,a, =1.25| 1.32 | 0.42 | 0.32
r=90m,p, =10° | R,,, =25,a, =150,a, =1.25| 1.32| 0.36 | 0.27

CFEM (2006) R,;, =30,a, =150,a,=125|131]040| 031
NBCC (2005) R, =30,a, =150,a, =1.25| 1.31| 040 | 0.31

~

CHBDC (2006)
AS 5100.3 (2004)
AASHTO (2004)
NCHRP 507(2004)

=y

., =30,a,=170,a, =120 1.33] 0.40| 0.30
.. =300, =180,a, =120| 1.35| 055 | 0.41
o, =37,a,=175a,=125| 136|039 | 029
. =300, =170,a, =125| 1.36 | 050 | 0.37

AASHTO (2007) .. =300, =175a,=125]1.38|040| 0.29

AASHTO (2002) . =37,a,=217,a,=130| 1.49 | 0.48| 0.32
NCHRP 343 (1991) | R,,, =2.0,0, =2.17,a, =130 | 1.59| 055 | 0.31

~

=y

~

=y

~

=y

~

=y

~

oy
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Chapter 3: Geotechnical Resistance Factors for Effectivet8ss
Limit State Design of Deep Foundations

3.1 General

The soil supports the pile through a combination of endibgaand side friction and/or
cohesion between the soil and pile. This chapter only exasngffective stress resistance
of piles (i.e. end-bearing is ignored). A mathematical tigas developed to analytically
estimate the failure probability of deep foundations insander effective stress condi-
tion. The theoretical results are validated by simulatiod then used to estimate failure
probabilities and resistance factors required for design.

The ultimate geotechnical resistance of a pilg, due to effective stress resistance,
between the pile and its surrounding soil is approximated by

R, = /o B pr(2) dz (3.1)

wherep is the effective perimeter length of the pile sectio(y;) is the average ultimate
shear stress acting on the perimeter of the pile at degpahd H is the embedded depth of
the pile. The unit surface shear resistance in soils undectefe stress condition can be
represented by the equation,

7(2) = K(2)o,(2) tand(z) (3.2

where K (z) is the coefficient of lateral earth pressure at depth/(z) is the effective
vertical stress at depthandd(z) is the average interface friction angle between the sail an
the pile perimeter at depth The effective vertical stresg (z) and friction anglej(z) can

be written as,

ol (2) =~z (3.3a)
0(2) = bo(2) (3.3b)

where~ is the effective unit weight of soily is a reduction factor which from various
investigations appears to be in the range .6ftd 0.8 (Das, 2000), and(z) is the average
effective angle of internal friction of the soil around theperimeter at depth.
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The value ofK(z) is influenced by the friction angle, the method of pile ifiatéon, the
compressibility and the degree of over consolidation as asthe material, size and shape
of the pile. The value of{(z) has been found to be approximately equal to the Rankine
passive earth pressure coefficieft,(z), at the top of the pile and may be less than the
at-rest earth pressure coefficieit,(z), at the pile tip (Das, 2000).

For coarse-grained soils, the coefficient of earth presatirest can be estimated by the
empirical relationship (Jaky, 1994)

K,(2) =1 siné(z) (3.4)

Based on presently available results, the following avexadues of< () are recommended
by Das (2000) for use in Eq. (3.2),

Table 3.1 Lateral earth pressure recommendations

Pile type K(?)
Bored or jetted ~ K,(2) =1 sing(z)
Low-displacement driven ~ K, (z) = 1—sin¢(z) to 14K,(z) = 1.4(1— sing(z))
High-displacement driven ~ K, (z) =1—sing(z) to 18K,(z) = 1.8(1— sin¢(z))

In this research the earth pressure coefficient is assuntszl to
K(2) = a(l— sing(z)) (3.5)

wherea is in the range of k a < 1.8. According to Table 1, in this study three different
values ofa, namelya = 1.0, 1.2 and 14, are considered for bored, low-displacement and
high-displacement driven piles, respectively (which de midpoints of the ranges given
in the Table 3.1).

Using the above information, the true ultimate effectiveess resistance of a pile with
length H and perimetep, can be estimated to be,

H
R, = / pyza (1 — sing(z)) tanbgp(z) dz (3.6)
0

The Limit Sate Design (LSD) framework basically involveemdifying possible failure
modes (e.g. punching shear failure, and excessive setit¢ed then ensuring that the
factored geotechnical resistance at each limit state eixtedactored load. At the ultimate
limit state, the design requirement is

Pgult, > Z Loy B (3.7)
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wherep,, is the ultimate geotechnical resistance facfor,is the characteristic (design)
ultimate geotechnical resistandejs an importance factor corresponding to thie char-
acteristic load effectFZ», andq; is thei’th load factor.

The characteristic ultimate geotechnical resistaite,is determined using characteristic
soil properties, in this case characteristic values of thksdriction angle,¢. To obtain
the characteristic soil properties, the soil is assumedetedmpled over a single column
somewhere in the vicinity of the pile, for example by a CPT &TSounding near the
pile. The sample is assumed to yield a sequence: abserved friction angle values,
431, qu, o ,qgm. The characteristic value of the friction angzie,is defined in this research
as an arithmetic average of the sampled observatti&)nmhich, can be computed as,

A~ 1N
¢—E;¢i (38)

The characteristic ultimate geotechnical resistait;ejs obtained by using the character-
istic friction angle in Eq. (3.6),

R, = %pmﬂz(l — sing) tanpa) (3.9)

In order to determine the geotechnical resistance fagigt,required to achieve a certain

acceptable reliability, the failure probability of theginust be estimated. This probability
will depend on the load distribution, the load and resistafactors selected, and the

resistance distribution. The resistance and load digtabs are discussed in Sections 3.2
and 2.3.

Section 3.3 develops the analytical framework and simutaéilgorithm for the failure
probability estimate, and illustrates how the theoretestimates agree with simulation.

The Load and Resistance Factor Design (LRFD) approachves@electing a one or more
maximum acceptable failure probability levels,. The choice of,, derives from a con-
sideration of acceptable risk and directly influences the sf ¢ ,. In this research, four
maximum acceptable failure probabilities, 2010~ 10~* and 10°, will be considered,
as discussed in chapter 2. Some of these failure probabilite 102 1074, and 10°,
might be appropriate for designs involving low (e.g. sterdacilities), medium (typical
structures), and high (e.g. hospitals and schools) fadoresequence structures, respec-
tively. The geotechnical resistance factors required toeaze these maximum acceptable
failure probabilities will be recommended in Sectiod.3
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3.2 The Random Soil Model

The friction angleg, is assumed to be bounded both above and belgyy, = 0.7 radians
ando,,;,, = 0.175radians, so that neither normal nor lognormal distitimsgtare appropriate.
While a beta distribution is often used for bounded randonmtes, a beta distributed
random field has a complex joint distribution and simulatsxsumbersome and numerically
difficult. To keep things simple, a bounded distributionatested which resembles a beta
distribution but which arises as a simple transformatioa sfandard normal random field,
G4(2), according to

) = G+ Hmar — ) {1+t 2 )} (310)
whereg,,;,, andg,,,, are the minimum and maximum friction angles in radians @esyely,
ands is a scale factor which governs the friction angle vari&ptietween its two bounds
(see Fenton and Griffiths, 2008, for more details). FiguBesBows how the distribution
of ¢ changes as changes, going from an almost uniform distributiorsat 5 to a very
normal looking distribution for smaller. Thus, varyings between about 0.1 and 5.0 leads
to a wide range in the stochastic behavioupotn all cases, the distribution is assumed to
be symmetric so that the midpoint betwegp,, ando,,.. is the mean. Values afgreater
than about 5 lead to a U-shaped distributions (higher atdhdbaries), which are deemed
to be unrealistic.
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Figure 3.1 Bounded distribution of friction angle far,,;,, = 10°(0.175 radians)
ando,,,.. = 40°(0.70 radians)
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The following relationship betweerand the variance af derives from a third-order Taylor
series approximation to tanh and a first-order approximatidhe final expectation (Fenton

and Griffiths, 2008),
046(¢mam - ¢mzn)8

VA2 + 52
where ¢,,;,, and ¢,,,. are in radians. Equation (3.11) can be generalized to yhed t
covariance betweef(z;) and¢(z;), for any two spatial points; andz; as follows,

quﬁ

(3.11)

2
COV[0(2). 6(2)] ~ (467G~ b2
wherep is the correlation function between the friction angle abapG,(2;) and a second
point G4(z;). In this study, a simple exponentially decaying (Markoyi@orrelation
function will be assumed, of the form

p(t) = exp < %) (3.13)

wheret = z; — z; is the distance between the two points. Note that the caoiwaléunction
reflects the correlation between points in the underlyingnadly distributed random field,
G 4(2), and not directly between points in the friction field (altiyh the correlation lengths
in the different spaces are quite similar).

~ sz,p(zi — zj) (3.12)

Two other results needed in the next section are as follows:

First, the variance reduction function(H), which specifies how the variance is reduced
upon local averaging af over some deptl#/, is defined by,

H H
0= [ o i (31)

Second, the relationship between the coefficient of vamatf the friction angle p, =
o,/ L4, @nds can be obtained by using Eq. (3.11) (see Appendix C for dgtail

N 2TV g
RV 152 RPN, T
By using Eq. (3.15) the friction angle coefficient of varmaitsv, and their corresponding
values, forg,,,;, = 0.175 radians and,,,, = 0.70 radians, are given in Table 3.2.

(3.15)

Table 3.2 Coefficient of variations of friction angle and correspargls val-
ues, forg,,;, = 0.175 radians ang,,,,., = 0.70 radians.

vy | 01 ] 02 | 03 | 0.344
s | 1.16 | 244 | 4.07 5
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3.3 Analytical Estimation of Failure Probability

In order to estimate the probability of failure of a pile, #wl is first modeled as a spatially
varying random field. This study considers a two-dimendicaadom field in which the
pile is placed vertically at a certain position and soil skeaps in a CPT or SPT sounding,
are taken vertically at some, possibly different, positidine analytical approximation to
estimate the failure probability of a pile in soils undereetive stress condition can be
explained as follows. When the soil properties are spgtiatiable, as they are in reality,
then, Eqg. (3.6) can be replaced by

R, = %pcsz(l — sing) tan(o) (3.16)

where¢ is the equivalent friction angle of the soil, defined as th#aum (constant) soll
parameter which leads to the same resistance as obsenfexispdtially varying soil over
the entire pile lengthi{. Itis assumed here tha_tis the arithmetic average of the spatially
variable friction angle over the pile lengti,

— 1 H 12 —
¢_ﬁ/o ¢(z)dz~E;¢i (3.17)

where¢(z) is interpreted as an average friction angle of the soil adaihhe perimeter of
the pile at depth. If the pile is broken up into a series of elements (as will bealin the

simulation),d;is determined using the sum at the right of Eq. (3.17), in w&ds the local

average ofs(z) over thei'* element, fori = 1, ..., n.

The required minimum design pile lengtH, can be obtained by substituting Eq. (3.9) into
Eqg. (3.7) (takingl; = 1.0),

1 ~ ~ ~ A~
Pgu <§pa7H2(1 - Sin¢) tan(b¢)> = aLLL + aDLD (318)
therefore
2(a, L, +a, L
o = \/ (e Ly e v) (3.19)
ngqu")/(l o S|n¢) tan(b¢)

By substituting Eq. (3.19) into Eq. (3.16), the ultimate g@bnical resistancd?,,, can be
written as,

(3.20)

P o, L, +a,L,\ (1 sing)tan(o)
v P (1 — singd) tan(o)
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The reliability-based design goal in this study is to find thquired length/{ such that
the probability that the actual load], exceeds the actual resistané, is less than some
small acceptable failure probability,,. The actual failure probability;;, is

pr=P[F > R,)] (3.21)

and a successful design methodology will haye< p,,. Substituting Eq. (3.20) into
Eq. (3.21) leads to

by =P|F> o, L, +ay L, ((1 - s?n%)tan(b%))]
I Pgu (1 — sing) tan(po)
__[Fa-sind)tanpd) o, L, +a,l,
=P @ sindtand) | e (3:22)
Letting
X = (1 - sing)tanp) (3.230)
X = (1 - sing) tan(o) (3.23)
q= aLFA’L + &DFD (3.23¢)
FX
y="2 (3.23d)
X
means that,
Py =PlY > q/p4] (3.24)

The computation of the probability in Eq. (3.24) involves thetermination of the distribu-
tion of Y. Assuming that” is lognormally distributed (an assumption that is suppbtte
some extent by the central limit theorem) then

INY =InF+InX —InX (3.25)

is normally distributed ang; can be found from

pr= P[Y > q/gogu} = P[lnY > In (q/cpgu)]
-1_& <|n (Q/ngu) - MIny) (326)

Oy

where® is the standard normal cumulative distribution function.
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The failure probabilityp; in Eq. (3.26) can be estimated once the mean and variance of
InY are determined. These are

Biny = finre Y ng — Minx (3.27@)
oby = o p+ 0ol ¢ +0f 5 — 2Cov[In X, In X] (3.27)

where the total loadk’, and friction angle¢g, are assumed to be independent. By applying
third-order Taylor series approximations to the meansawaes and covariance of I
and InX, the components of Eq. (3.27) can be computed as follows ;

1) Assuming that the total loa#l is equal to the sum of the maximum live lodd,, acting
over the lifetime of the structure and the static dead I¢&dlj.e. I’ = F, + F,,, both of
which are random, then

Hinp = In(MF) 2J|n F (328@)
2
o =In (1 + u_> (3.28h)

wherep, = j1, + 1, is the sum of the mean live and dead loads, @hés the variance
of the total load defined by
o2 =0’ +0? (3.29)

assuming dead and live loads to be independent.

2) With reference to Eq. (3.8) and the fact that the frictingla is assumed to be stationary,
Eli“ —1i = (3.30)
= mi=1¢i _mizlu¢_ud) :

The mean and variance of }, can be obtained by using Eq. (3.30) and a third-order
Taylor series approximation to the expectation of Eq. (8)23 follows (see Appendix
E for details)

2d2

fn % = 1N (1 — sinp,) tan@yu,)) + d’z (3.31a)
d2 5d308
02 o~ d2o (52 + d1d3> oh+ 5 (3.311)

whered,, d, andd; are given in Eq. (C.2). The variance&tan be obtained from,

2 m m
A ~ % Z Z p(z — z7) (3.32)

=1 j=1
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3)

4)

whereo, is given by Eq. (3.11);7 is the spatial location of the center of tiith soil
sample {=1,2,...,m) andp is the correlation function defined by Eq. (3.13). The
approximation in eq (3.32) arises because correlationficeafts between the local
averages associated with observations are approximatembroglation coefficients
between the local average centers. Assumingq}rmﬂually represents a local average
of ¢ over a sample length of sizé, = Az x m, whereD is the depth over which the
samples are takem; is the number of observations over sample dép#ndAz is the
vertical dimension of the soil sample th@ri,is probably more accurately computed as

0% = a4y(D) (3.33)

wherev(D), is the variance reduction function that measures thectemtuin variance
due to local averaging over the sample lengthas given by Eq. (3.14). All angles are
measured in radians, including those used in Eq’s (3.11)3ui@).

With reference to Eq. (3.17),

1 1
<E/o qb(z)dz)]Zﬁ/o o dz = g (3.34)

By applying Eq’s (3.34) and (3.23b), the mean and variande &f can be obtained in
the same fashion as for ki (in fact, they only differ due to differing local averaging
in the variance calculation).

pg=E

, U?jdz

nx =~ 1n ((1 — sin,) tan(b%)) + —5 (3.35q)
d> 5d20%

oz~ diok+ (52 + d1d3> o+ 132“’ (3.35))

05; ~ sz,”y(H) (3.35¢)
wheredy, d,, d3 and~y(H) are defined by eq’s (C.2) and (3.14), respectively.

The covariance between .} over sample depth) = Az x m, and InX along the pile
length,H, in Eq. (3.27) is approximated by

. dids d3
Cov[InX,In X ~ di05y,p + 05 7up <T(U§3 + 0’57) + 23053057)

2 2
dz 2 2 d3

3
T (057up)" + 6 (ool (3:36)

where~,,, is the average correlation coefficient between the sampigheD and pile
lengthH. In detail,v,, is defined by,

1 M. H
Yip = ;/0 p (m) dz (3.37)
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wherer is the horizontal distance between the pile centerline &edcenterline of
the soil sample column andis the correlation coefficient betweexiz) and¢(z), as
illustrated in Figure 3.3.

pile location 2°| T Az
™ |_~Zi
t sample location
e
dZI 4 /
VA

Figure 3.2 Correlation between local averages is approximated bydhela-
tion function,p(t), between centers.

The approximation in the covariance (Eq. (3.36)) arised bmcause of the use of a
third-order Taylor series approximation and because laimoa coefficients between local

averages associated with observations are approximatsatitgtation coefficients between
the local average centers.

Substituting EQ’s (3.28), (3.31), (3.35) and (3.36) inta E27), leads to

d
Hiny = pin s + = (05 — 02) (3.380)

d2
oty = oh + diod+od)+ (5 +duds) (o + o

d5 6. o T
+ §(0‘5+ 3) —2Cov([In X, In X]| (3.38h)
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which allows the probability of failure to be expressed as

In (¢/¢gu) — mny>

Oy

Py = 1—<I>< (3.39)
where® is the standard normal cumulative distribution functiohergument t@ is the
reliability index,
= Ing —Inyg, — piny
Ony
If the reliability index is specified through knowledgempf, for example, then the geotech-
nical resistance factor is determined by

(3.40)

Pgu = EXP (Ing — puny — Bomny). (3.41)

3.4 Comparison of Analytical Estimation of Failure Probability with
Simulation

To test the proposed analytical results, a series,gf = 10000 realizations of a pile are

simulated for each of a range of soil variability parameterd sampling distances. The
resulting Monte Carlo simulation-based failure probapiistimates are then compared to
the analytical results presented in section 3.3.

In detail the Monte Carlo simulation proceeds as follows;

1) The friction angle, of a soil mass is simulated as a spatially variable randola fie
using the Local Average Subdivision (LAS) method (Fentod ¥anmarcke, 1990).
The number of soil cells in X and Y directions are assumed th28x 128 and each
cell size dimentions are taken to bd & 0.1. The correlation length is varied from O
to 50 m, and two coefficients of variation of friction anglg, are considered:, = 0.2
(s = 2.44) andv, = 0.3 (s = 4.07). The friction angle is assumed to range from
Omin = 0.175 radians (19 and¢,,,, = 0.70 radians (49.

2) The simulated soil is sampled along a vertical line thiotlge soil at some distance,
r, from the pile. These virtually sampled soil properties ased to estimate the
characteristic friction angle[b, according to Eq. (3.8). Three sampling distances are
considered: the first is at = 0 m which means that the samples are taken at the
pile location. In this case, uncertainty about the pilestsice only arises if the pile
extends below the sampling depth. Typically, probabgitéfailure when- = 0 m are
very small. The other two sample distances considered ard.5 m andr = 9.0 m,
corresponding to reduced understanding of the soil canditat the pile location (see
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Figure 3.4). These rather arbitrary distances were basguedminary random field
simulations, which happened to involve fields 9 m in width.wewer, it is really the
ratio, /0, which governs the failure probability. No attempt is maeeehto include
the effects of measurement error nor of errors in mappingahabservations, e.g.
CPT values, to engineering properties such as frictioneanghus the predicted failure
probability (either from theory or simulation) will be somieat unconservative (failure
probability increases as measurement error increasesyveVwo both the analytical
technique and the simulation treat measurement errorseirsédme way, allowing a
consistent comparison between the two.

F(kN)

ground level
| /

3
H -+
D
s
soil sample
\ pile

| |
| ' !

Figure 3.3 Relative locations of pile and soil sample.

3) The required design pile lengtH,, is calculated using Eq. (3.19).

4) Dead and live loadd;, and F,, are simulated as independent lognormally distributed
random variables and then added to produce the actualdathbh the pilef’ = F, +F,.
The means and standard deviations of the dead and live laadasaumed to be
1y = 60kN,o, = 9kN andy, = 20kN,o, = 6KkN, respectively.

5) The true ultimate pile resistanc®,,, is computed using Eq. (3.6).

6) The ultimate resistance,,, and total loadF’ are compared. If' > R,, then the pile,
as designed, is assumed to have failed.
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7) The entire process from step 1 to step 6 is repeatgdtimes (;,, = 10000 in the
present study). If.; of these repetitions result in a pile failure, then an estinoé the
probability of failure isp; >~ n; /1.

8) Repeating steps 1 through 7 using various values pfn the design step allows plots
of failure probability vs. geotechnical resistance fadtobe produced for the various
sampling distances, coefficients of variation of the fantangle, and correlation length.

The comparison between the probabilistic analyses of pgasy Monte Carlo simulation
based on 10000 realizations with those computed analytisaEq. (3.39) for the values of
the pile interface friction angle coefficiert= 0.8 and coefficient of earth pressure= 1.2,
are illustrated in Figure 3.5 (see Appendix F for more figures

It can be seen from Figure 3.5 that the agreement betweerythed simulations, is good
and theory can be used to produce the required geotechagatance factors to achieve
the maximum acceptable failure probabilities 100~ 10~ and 10°.

It is immediately clear in Figure 3.5 that the probabilityfaflure, p, increases with soil
variability, v, which is to be expected. Also, as expected, the probalsildfefailure are
smaller when the soil is sampled directly at the pile thanmdempled some distance away
from the pile centerline. This means that considerabletcoctson savings can be achieved
by improving the sampling scheme, especially when sigmifisail variability exists.

As seen in Appendix F (Figures F.1, F.2 and F.3) , when theissimpled at = 4.5 m
andr = 9 m, the probability of failure slightly increases withgihterface friction angle
coefficient,b, and earth pressure coefficient, According to Eq. (3.19), The design pile
length, H, depends on the values &nda, and decreases with increasing values anhd

a. By decreasing théf, covariance functions(H) and~,, increase (Eq’s. (3.37) and
(3.14)). Also, first, second and third order derivativés,d, andds increase by. This
implies thatr, ., also increases withanda, which means increasing probability of failure
in EQ. (3.39).

When the samples are taken at the pile locatior O m), v(H) ~ v, (EQ. (3.37)). By
increasing the values afandb, both~(H) and-,,, increase buy(H) ~ ~,,. Thisimplies
thato? ¢ ~ Cov[InX,In )?] (Eg’s (3.35) and (3.36)) which means that by increasing
andb the variance of IY” and therefore failure probability;, decreases.

The failure probabilities are well predicted by the analgtitechnique when the sampling
point is at the pile locationr(= 0 m). There are some discrepancies for very small
probabilities, but this maybe largely due to estimator reimdhe simulations. In fact, for
those simulations having 1 failures out of 10000, the edech@robability of failure is
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py = 107%, which has standard errar,;, = /(10-4)(0.9999)/10000~ 10 “. This means
that the simulation cannot be used to validate small praitiabij i.e. probabilities less than
about 10%, so the location of the points with failure probability lessn 104 is highly
uncertain. The potential for large estimator error is sedmoith Figure 3.5 (a) where most
failure probability estimates are zero, except for thosersy/ cases where 1 in 10000
realizations failed.

Overall, however, the agreement between simulation anorghis good, implying that
the theory can be used to reliably estimate the pile failuohabilities. The analytical
results will be used in the following section to provide nesoendations regarding required
geotechnical resistance factors for certain target pritibab of failure.
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Figure 3.4 Comparison of failure probabilities estimated by simaat{10000
realizations) and analytical results for geotechnicastasce factor,
04, =0.9,0=0.8,a =12 and three sampling locations.

49



3.5 Geotechnical Resistance Factors

In this section, the geotechnical resistance fagtgy, required to achieve four maximum
acceptable failure probability levels (18 1073, 10~* and 10°°) will be investigated. The
corresponding reliability indices of these four targethabilities are approximately.2,
3.1, 37, and 43, respectively.

Figures 3.7 through 3.9 show the geotechnical resistaraterfarequired for the cases
where the soil is sampled at the pile location, at a distafiee=04.5 m and at a distance
of » = 9 m from the pile centerline for the pile interface frictiangle coefficient) = 0.8
and earth pressure coefficient 1.2. Four coefficient of variations,, = 0.1 (s = 1.16),

vy =0.2 (s =244),v, =0.3 (s =4.07 ) andv,, = 0.344 (s = 5) are considered for the three
sampling locations.

In the cases where the samples are taken at the pile locattbtha design conditions are
well understood, the geotechnical resistance factor elscée® wherp,, > 10°3. In the
cases where the samples are takénm and 9 m from pile centerline, the geotechnical
resistance factor exceeds 1.0 when> 1072, The cases wherg,,, > 1.0 are not shown.

The worse case geotechnical resistance factors occurs thkecorrelation lengthd is
between about 1 and 10 m. This worst case is important, Swecedtrrelation length is very
hard to estimate and will be unknown for most sites, as wasidied in Chapter 2.

As seenin Figure 3.9, the smallest geotechnical resistantsg's correspond to the smallest
acceptable failure probability considered, = 10~°, when the soil is sampled 9 m away
from the pile centerline, as expected. When the frictionl@egefficient of variationy,,
are relatively largew(, = 0.344) the worst case values @f,, dip down to 057 in order to
achievep,, = 107°. In other words, there will be a significant constructiontquenalty if

a highly reliability pile is to be designed using a site inugation which is insufficient to
reduce the residual variability to less than= 0.344
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Figure 3.5 Geotechnical resistance factors when the soil has beenlsadmip
the pile location{ = 0 m) (note the reduced vertical scale).
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Figure 3.7 Geotechnical resistance factors when the soil has beenlsamp
r =9 m from the pile centerline

The worst case geotechnical resistance factors requirachieve the indicated maximum
acceptable failure probabilities, as seen in Figure 3.Gutpn 3.9, is summarized in Table
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3.3. Some of the geotechnical resistance factors recomedendhis study fop,, = 102
andp,, = 102 are greater than.Q, which may be because the load factors provide too
much safety for the larger acceptable failure probabditinen the site is well understood.
A reasonable value of maximum acceptable failure proligithdr single driven piles within

a redundant group may be in the range of 4 10~ (FHWA, 2005).

Table 3.3 Worst case geotechnical resistance factors for pile isterfriction
angle coefficient) = 0.8, earth pressure coefficient 1.2, various
coefficients of variationy,, distance to sampling location, and
acceptable failure probabilities,,.

r(m) | v, Geotechnical Resistance Factor
pm =102 | p,=102 | p,=10* | p,=10"°

0.0 0.1 1.21 1.09 1.00 0.93
0.0 0.2 1.20 1.08 0.99 0.93
0.0 0.3 1.19 1.06 0.99 0.92
0.0 0.344 1.17 1.04 0.98 091
4.5 0.1 1.19 1.08 0.98 091
4.5 0.2 1.15 1.02 0.92 0.84
4.5 0.3 1.06 0.90 0.80 0.71
4.5 0.344 1.00 0.85 0.72 0.64
9.0 0.1 1.19 1.07 0.98 0.90
9.0 0.2 1.13 0.99 0.89 0.81
9.0 0.3 1.02 0.85 0.74 0.65
9.0 0.344 0.93 0.77 0.65 0.57

Table 3.4 compares the geotechnical resistance factoosnraended in this study with
those recommended by other sources. The geotechnicabressdactors recommended in
the current study occupy the first six rows of Table 3.4 andespond to the cases where
v, = 0.344 and samples are takerb4m and 9 m from the pile centerline for maximum
acceptable failure probabilities,, = 103,10~* and 10°.

To compare the recommended geotechnical resistance dagigr with values in other
codes and the literature, the total load factqr, &and the ratio of the geotechnical resistance
factor to the total load factor y,, /&, which is the real measure of the overall "safety
factor" used by each code, must be considered. According|t¢37), by increasing the
value of the total load factoty,, the required geotechnical resistance factgy, increases.
The dead load factory, = 1.25, and live load factory, = 1.5, are used in this study, as

54



specified by the National Building Code of Canada (2005). toke load factorsy,. given
in Table 3.4, are computed by using Eq. (2.37).

It can be seen from Table 3.4 that the ratio of the geotechrésastance factor to the total
load factor,y,,/&,, recommended in this research when the soil is sampled 9 m fro
the pile centerline fop,, = 1074, 0.49, is close to those given by AASHTO (2004). The
recommendeg,, /&, ratio given by AASHTO (2004) is reasonably close the recomuheel
ratios in this research wher= 4.5 m andp,, = 10~* and also when = 9 m andp,, = 103

The reason that the geotechnical resistance factors prdposhe current study are gener-
ally higher than the values from the other codes in Table 3ghtie because measurement
and model errors have been included in the other codes wiiemaéisg the geotechnical
resistance factors. For example, CPT tests were used festhmation of the geotechnical
resistance factors suggested by the Australian StandatddBbDesign Code (2004), which
presumably include measurement errors as part of the destahation process.

Table 3.4 Comparison of geotechnical resistance factors recomnaendieis
study (first six lines) to those recommended by other souiames
pile interface friction angle coefficienty, = 0.8, earth pressure
coefficienta = 1.2 and characteristic dead to live load raftg,, .

Source Load Factors Ar | Qou | Pou/Cr
r=45myp,, =102 | R,,, =25,a, =150,a, =125| 1.32| 0.85| 0.64

~

r=45mp, =10 | R,, =25,a, =150,a, =125| 1.32 | 0.72] 055

~

r=45myp,, =105 | R,,, =25,a, = 150,a, =1.25| 1.32 | 0.64 | 0.48
r=90mp, =103 | R,,, =25,a, =150,a, =1.25| 1.32| 0.77| 0.58
r=90mp, =10%| R,, =25a, =150a,=125| 1.32] 0.65| 0.49
r=90mp,=10°| R,, =25a, =150a,=125| 1.32] 057 | 043
CFEM (2006) =300, =150,a, =125| 1.31| 040 | 0.31
NBCC (2005) . =300, =150,a,=125] 1.31| 040| 031
CHBDC (2006) | R,,, =3.0,a, =170,a,, =1.20 | 1.33| 0.40 | 0.30

~

AS51003 (2004) | R,;, =3.0,a, =1.80,a,, =120 | 1.35| 055| 041

~

AASHTO (2004) | R,,, =3.7,a, =175a, =1.25| 1.36| 0.70 | 0.50
NCHRP507 (2004)| R,,, =30,a, =1.70,a, =1.25| 1.36 | 0.50 | 0.37
AASHTO (2007) | R,,, =3.0,a, =175 a, =1.25| 1.38| 0.40 | 0.29

~

AASHTO (2002) | R,,, =37,a, =217,a,, =130 | 1.49 | 0.48| 0.32

~

NCHRP343 (1991)| R,,, =20,a, =2.17,0, =130 | 1.59| 0.55| 0.35

=y

~

|

~

=y

~

=y

=y
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Chapter 4. Conclusion

4.1 Summary and Conclusions

This study proposes reliability-based design provisi@nghe Load and Resistance Factor
Design (LRFD) of ultimate limit state design of deep founoias under axial compression
loading in soils under effective stress and total stresslitioms. The load factors are as
used in the National Building Code of Canada (NRC, 2005). Ahmaatical theory was
developed to analytically estimate the probability of gédure. The analytical model
assumes a statistically random soil with lognormally dsited cohesiong, for soils
under total stress condition and tanh distributed fricaogle,¢, for soils under effective
stress condition. The effect of the soil's spatial varigpiand site underestanding on
the geotechnical resistance factor has been investigatedimulation and theory, by
considering various soil statistics and sampling locationhe simulation involved 10000
realizations for each set of parameters and the resultseoMbnte Carlo simulation
were compared to the proposed theory. Optimal geotechnésadtance factors were
recommended for the design of deep foundations for fouretgpgobability of failures
(1072,10°3,10~* and 10°).

The suggested design procedure using the proposal Load esdtéce Factor De-
sign(LRFD) method is summarized as follows:

1) decide on a maximum acceptable failure probabitityfor the pile. The choice of
. depends on the severity of failure consequences;

2) sample the soil and estimate the characteristic soilgtgpising Eq’s (2.8) or (3.8).
The characteristic ultimate resistance is calculatedgusiys (2.9) or (3.9);

3) determine load factors from structural design codes seried in section .3;

4) select an upper bound geotechnical resistance factéhédomaximum acceptable
failure probability,p,,,, and sampling location from Table 2.3. The actual geotech-
nical resistance factor used in design maybe reduced soateddpending on the
magnitude of model and measurement errors;
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5) estimate the required pile length given load factarsand«,,, geotechnical resis-
tance factory,, and the effective pile perimetep, using LRFD as described in
Eqg’s (2.19) and (3.19).

No attempt is made here to include the effects of measureereot nor of errors in
mapping actual observations, e.g. CPT values, to engitgeerioperties such as friction
angle. Thus the predicted failure probability (either frameory or simulation) will be
somewhat unconservative (failure probability increasesn@aasurement error increases).
However both the analytical technique and the simulatieattmeasurement errors in the
same way, allowing a consistent comparison between twa, Altés can be accomodated
to some extent by usingef or v, value larger than the actual value.

The recommended geotechnical resistance factors foratiidimit state design of deep
foundations should be considered to be upper bounds bettaiseeasurement and model
errors are not considered in this study. The statistics @smement errors are very difficult
to determine, since the true values need to be known. Sigitaodel errors, which relate
both the errors associated with translating measured sygkig. CPT measurements to
friction angle values) and the errors associated with ptewj effective stress and total
stress resistance by equations, such as Eq’s (2.2) andtBtAg actual effective stress and
total stress resistance are extremely difficult to measunplg because the true effective
stress - total stress resistance along with the true sqilgsties, are rarely, if ever, known.
When confidence in the measured soil properties or in the el is low, the results
presented here can still be employed by assuming that theasoples were taken further
away from the the pile centerline than they actually werg. (d.low-quality soil samples
are taken at the pile location,= 0, the geotechnical resistance factor corresponding to a
larger value of-, sayr = 4.5 m should be used), or by using a larger variance.

The evaluation of geotechnical resistance factors for gisign involves the soil field’s
uncertainty level (e.g. coefficient of variations of coleesiv. and friction angley,), the
pile interface friction angle coefficients,(soils under effective stress condition) correlation
level (e.g. correlation lengtt) and sampling locations. Since coefficients of variatign,
andvy, the pile interface friction angle coefficiertt,and correlation lengtts, are usually
unknown for a given site, various values fqt v, andb are considered in this study for
deep foundation limit state design, along with a worse cate\of6, i.e. the intermediate
value ofé corresponding to the higher probabilities of failure.

Three sampling schemes have been considered in this stethgr Bstimates of conditions
atthe pile can be obtained when samples are taken at thegalgdn ¢ = 0 m). Specifically,
lower probability of failures and larger geotechnical sémnce factor values are obtained
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by sampling at the pile location.

Both the theory and the simulation demonstrates that a wasst correlation length exists.
The good agreement between the geotechnical resistartoesf@ased on this worst case,
shown in Tables 2.4 and 3.4, and current literature and LR&&e aecommendations,
suggests that the theory is in reasonable agreement witlex@erience.

The overall agreement between the analytically derivedegpbmical resistance factors
proposed in this study and those currently used in others;@deshown in Tables 2.4 and
3.4, is encouraging. The current study now provides a rigotasis for the determination
of upper bound geotechnical resistance factors in pil@desisoils under effective and total
stress conditions and the theory provides a framework teneiktode provisions beyond
calibration with the past.

4.2 Future Work

Additional areas in need of additional research are asvistio

1) This research concentrates on reliability-based desfignsingle pile. Similar re-
searchis also needed on the reliability-based designe§paups taking redundancy
into account.

2) In this research interpretation and model errors are mduded. Further study
should be carried out to consider these errors and alscdethe assesment of load
tests on full scale productive piles.

3) There are two soil parameters considered random in teearehc and¢. They
were studied separately, additional study are requiretidariore general case of
¢ — ¢. The unit weight of soily, also needed to be considered as random field for
future work.
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Appendix A

Estimation of Means, Variances and Covariance oh¢ and Inc¢
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If Y is an arbitrary function of several variablés,= ¢(X, X5, ..., X,,), then the corre-
sponding first order Taylor’s series Bfexpansion is

Y = gty g oo b, + ) (K0 = ) 57 . (A1)
i=1 !

Assuming thatc"and ¢ represent the local averages obver the sample length of size,
D = Az x m and pile lengthH = Az x n, respectively, the first-order Taylor series
approximations of Ie and Inc can be written as

" dIné
Iné=lnp +> @ - MC)( ¢ ) (A.24)
i=1 de; lue
_ " dInc
Inc~Inp, + & . A.2b
ONC () (A2)

Sincepunz = fune = He, then

|
u.ncfZ(c] /%)(dncu
~ fnz ~ Z(c m)(dlnc

) (A.30)

MC) (A.3b)

Z

By applying Eg's (A.2) and (A.3), the variance and covaramd Iné and Inc, using
first-order Taylor series approximation, can be determasefbllows;

oime=Var[Inél = E[(IN¢ — fun2)°]

e (S (12 C))Z

iX; <d|nc ) (dIE\c

=1 j
) (dlnc

ii( diné
( >2Z§;j:1C0v i J

R

R

#c) E [(éz - :uc)(éj - :uc)]

R

) Cov[¢;, ]

=1 j fre

R
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1 2 1 m m o
~ (,u_> p— ZZCOV [cl,cj}
¢ i=1 j=1
o, 21 o o
() (S )
¢ i=1 j=1
2 m m
~ U—cz Z Z p(z — z7) (A.4)
=1 j=1

In the same fashion?, , can be obtained by

2 n n
v
o2z=Var[lnd ~ n—‘; ZZp(zZ — Zj)

=1 j=1

w2 [H H
~ = / (21 — 20) dzy dz (A.5)
o Jo

The covariance of In and Inc, by applying Eq. (A.3) is
Cov[ine,Inc] = E[(Inc — puna)(INC — fun2)]

" In¢c L Inc
~EKZ(@-MC> 4 )) (Z(cjuc)(dd;
i=1 He j=1 J

d
diné . _
( dré],» MC) E [(Ci — [he) (Cj - Mc)]

C;

)

1\2
- (i) (@)L
~ 9c ’ 1 —\ 2 4 0)2
(E) %>;;P< r (Zjizz))
12 N .
:mn;jzlp< 7‘2+(zj—zi)2)
~ ﬂ:i{ ” /OHp< r2+(z — Zf)z) dz (A.6)
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The Taylor series expression of the variance af¢an be expressed in the form

4
o2.=In(L+v%) ~ v+ E +O0(P) (A.6)

Substituting Eq. (A.6) in EqQ’s. (A.4), (A.5) and (A.6) pralas

= T i Y ) (4.60)

=1 j=1

oo "'“C/ / p(er — 22) der dzs (A.60)

Cov[InzInd] =~ ;’3{ Z/ p «/7‘2+(z - zg)z) dz (A.60)
i=1 /0




Appendix B

Probability of Failure for ¢ — 0andd — ~

The analysis of accuracy of the theory developed by estimaii the failure probability of
deep foundations for zero and infinity scale of fluctuatianad follows;

The variance reduction functiong H), v(D) and ~,,, using first-order Taylor series
approximation, can be estimated as

1 [H H 0
WH) = 7 /0 /0 per — ) ey g~ (5.10)
1 & & 0
WD) == ) med -2~ 5 (B.1b)
=1 j=1
Verp HZ/ o(z,2{)dz ~ |H D] (B.10)

when the scale of fluctuatioth — 0, the variance reduction of any local average goes to
zero. The variance and covariance terms also become zetire bther words, aé — 0,

o:;—0 (B.2a)
otz—0 (B.2b)
Cov[In¢,Inc] — 0 (B.2¢)
In this case, Eq. (2.28) turns out to be
Hinw = HinF (B.3CL)
Onw = OhF (B“?’b)

and the failure probability of Eq. (2.28) for zero corredatiength becomes

Ing —In —
pf:1@< q Pgu, umF> (B.4)

Ohr
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This implies that for zero correlation length the probapibf failure of deep foundations
only depends on the load and resistance factors and the istaithation. This is obviously
true because of the fact that if there is no effective valitghin the averaged soil properties,
the failure of the pile involves only load variability.

When the scale of fluctuatigh— oo, all soil points in the field become perfectly correlated.
The field becomes a uniform field. The analysis becomes depérh a single random
variable. This means all correlation coefficient terms aadance reduction functions are
one, and sinceZ ¢ =c.

Oine = Oing = Oine (B.5a)
Cov[Iné,Ind] = o2, (B.5b)
and
Hinw = Hin (B.6a)
Onw = O F (B.6b)
Ing —In —
plecb( q—Ingp,, umF> (B.60)
Onr

This means that the same probability of failure can be estichéor zero and infinity
correlation length, involving only load and resistancddes.



Appendix C
Relationship betweens and the Friction angle’s Coefficient of Variation

The following relationship betweenand the friction angle’s coefficient of variation can be
obtained from

—— & ~ 2(046) (¢ma$ o ¢mzn) S
’ He - v 471'2 + 52 (¢ma:c + ¢mm)

4(046)2 (¢maa: - ¢mzn)2 32
(472 + 52) (Gmaa + Gmin)”

(C.1)

- v~

Therefore

2 4720 (Pmaz + Omin)’
4046 (S ymar — rmin)? — Vi Prar + Donin)?
167rzv§,ué
40 46R(Grar — domin)? — A2

S

(C.2)

and

2
5~ /ol (C.3)

\/(046)2(¢ma93 - ¢m2n)2 - U;Mé
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Appendix D

The Multivariate Gaussian Distribution
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The joint characteristic function of random variables(;, X5, ..., X,,, is defined as,

Wip o = B (X1 — 1)) (X2 — fi,) (Ko — fxpn,)] (D.1)

All central moments of odd orders are zero (Vanmarcke, 1984) central moments of
even orders can be evaluated using the following procedissume we have/® random
variablesX,, X5, ..., X,,, jointly distributed and bounded. According to the transfation,

Xi = ¢min+%(¢max ¢mm){1+tanh<sziz> } ’ (7/ = 1a 2772M) (Dz)

sinceG; is standard normal (having zero mean and unit variance) then
Hx; = E[Xz] = (¢mm + ¢max)/27 (Z = 17 27 T ZM) (D3)

and this provides,

Xi o :uxi = %(¢max o ¢mm) {tanh<$26j_:> } ) (7/ = 1a 27 sty ZM) (D4)

From a third-order Taylor series approximation to tanh afids&order approximation to
the expectation, and applying Eq. (D.4) the moment of onglean be expressed as follows,

Vi, on =E [(Xl - ,uxl)(XZ - MXg)m(XzM - ,UXZM)]
2M G
= (05" (mar — Gumin) ™' E [H tanh( o> )
2M SGi
(O8G0 E e
~ (L. max min 1+(l/2){zl / [2671;1]2}

2M SG,
L=
1+ @2 {x2E[(£)]}

(£)*" E[G1Ga...Ganl]
1+M ()

= (05)2M(¢ma:c - ¢mm)2M

= (046)2M(¢ma$ o ¢min)2M X

(D.5)
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where the moment of orden2 of G4, G, ..., G,,, (2M random variables which are jointly
normally distributed having zero mean and unit variance) loa expressed as a sum of
products of covariances (Vanmarcke, 1984),

E[G1G2..Go] =Y E[G1,Ghy) E [GiyGhy] - E [Grgns G (D.6)
where the summation is over all possible arrangements ointihexes 12, ...,2M into
exactlyM pairs. The number of such arrangements33L..(2M — 1). Applying Eq. (D.6)
leads immediately to the following results for the secoond/fand sixth order joint central
moments of;’s:

E[G,G,] = B; (D.7a)
E[GiG;GxGy] = Bi;Bjy + By By + Bin By, (D.7b)
E [GiGijGhGle] = B,jBypBis + B;; By Bis + B;j Brs By
+ By BjpBis + B B By + By, Bjs By
+ By, B Bis + By Bj Bys + By, Bjs By
+ By BBy + By BBy + By Bjs By,

+ B BBy, + Bis B, By + BisBjs By, (D.7c)
whereB,,;, = Cov[G}, G;] = py;- Letting,
qugkh - [(Xz — e )X — ,UX]')(Xk — i, ) (X — ,Uxh)] (D.8b)

lIl;‘)gf'k:hls = [(Xz - ,Uxi)(Xj - ,ij)(Xk - ka)(Xh - ,Uxh)(Xl - ,qu)(XS - ,UXS)] (D.8c)
and

s\2
0)2( = (046)2(¢ma$ - quin)ZL) (D9a)

(i)6
O-?( = (046)6(¢ma$ ¢mm) o \2 (Dgc)

the second, forth and sixth order joint central momenthsz, ..., X, DY UsSing EQ’s
(D.5) through (D.9) can be written as,

‘I’z)g( i J)Z(pij (D.10a)

VX, ~ 0tE[G,G,GiGy) (D.10h)
VX s ~ 0SE [GiG,GLGLGiG] (D.100)
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Estimation of Means, Variances and Covariance oh X and In X
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E.1 Third Order Taylor Series Approximation

If Y is an arbitrary function of several variablés,= ¢(X,, X5, ..., X,,), then the corre-
sponding Taylor’s series expansion is

Y = g(:uXp Hxoyeny an) + Z(Xz - MXJW
i=1 ¢

m

*5 Z Z(Xi = px )X ij)m

=1 j=1 "

d3g

1 n n n
+EZZZ(XZ 7MX¢)(XJ' *ij)(Xk */ﬁxi)m u+... (E.1)

i=1 j=1 k=1

Assuming thatqg andqgrepresent the local averages@bver the sample length of size,
D = Az x m and pile lengthH = Az x n, respectively, and letting,

din X din X
= —‘ = ‘ (E.2q)
de He de He
InX PIin X
2= = = (EZb)
de? e dg? lus
BinX BIinX
3= = = (EZC)
de®  lue dg®  lus
means that,
din X d din X d
. ‘ = =2 (E.3a)
dp; ne ™M do; lny n
d?In X d d?In X d
alieg ‘ =2 = (E.3b)
dp;dp; 'ns M doidd; Iy 1
cIn X d BIn X d
do;dg;doyns M do;dg;doylp, 1
where,
COSs() 2b
= + .
1= @) 1) | sin@d) (E-4a)
1 4h? cos(D
(29) (E.4b)

%= G =1)  Sebo)
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= — cos(p) .\ 8y® +2C0§(2b¢)
37 (@ sin@)?  sin(@¢)  sim(2be)

(E.4c)

By using the information in Eq’s (E.1) through (E.4), therthorder Taylor series approxi-
mations of InX and InX are

A A dy <N -
IanInX‘ + = —

2m2 Z Z(¢z M¢>)(¢] :U¢)

=1 j=1

m m m

d - N N
tam D DD (G 1)@~ ue)dk — o) (E.50)
i=1 j=1 k=1
— — dy e —
In X ~ InX‘ + gZ(@ — 1g)
2n2 Z Z(sz ,%)(ng 1)

=1 j=1

S DS IR IR A (12.50)

i=1 j=1 k=1

E.2 MeansoflnX andIn X

The means of third-order Taylor series approximations of and InX then, can be written
as

A N dy
g =E[INX] ~InX| + 52 [(@ %)]
Ko =1
55> > E (6= 1)@ — 1)
=1 j5=1
d m m m R . .
=030 D) BI CENBCIEHI GRS (E.6a)
=1 j=1 k=1

fin X = E[In)ﬂ ~InX

+BSEG )
=1

Ho

n n

d _
+ 277,2 [(¢z Md))(qu - ,ng)]

=1 j=1



76

=D IP DD DI CEYTI EyTICE] (E.60)

By using Eq’s (D.8) through (D.10), the means offrand InX, can be describe by

dy [ 1 & 5
% (wEL)

=1 j=1
R d 0_2 m m
~InX +§2 %ZZpG(zZ" 2]
He =1 j=1
d
+ 5 (03(D))
s
. dzO'(%
~ In ((1 - sinu,)tanppu,)) + —5 (E.7a)
,LL|n)Z:E[|nX]Z|nX +E —ZZZ\PZ]
Ko [
InX‘ y &2 (Jd’ Zch(z 2 ))
=1 j=1
~ In )f‘ + @(aéy(H))
no 2
. dzO';_
~ In ((1 — sinu,) tan@u,)) — (E.7b)

E.3 \Variances and covariance ofn X andIn X

In order to estimate the third-order Taylor series apprcmtmms of variances and covariance
of In X and InX, the expressions , IN — i, 5 and InX — tin x, by using Eq. (E.7), can
be obtained by

InX — puy, 5 ~ Z(¢’ ) + Z Z(ng - M¢>)(<gj = Hg)
=1 j=1

2

da I I R . dro2
H S NS G 1) - p )G - ) - 5 (B8)

— do o — —
(0= 15) + 53 D D _(0s = 1)@ — 10)

i=1 =1 j=1
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d n n n _ _ _
t o (0 — 16)(5 — 16)(@ — 115) —

— £ 2
=1 j=1 k=1

2
d20'¢

(E.8b)

and applying Eq’s (D.5) through (D.10) into Eq. (E.9) leanls t
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In the fashion, the third-order Taylor series approximatad variance of InX can be
estimated to be

— d2 5d30%
op g =Var[InX] =~ dio%+ % (52 + d1d3> + 132¢’ (E.11)
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The covariance of IX and InX, by using Eq. (E.8) is
Cov[InX,InX] =E[(INX — 1, 2)IN X — pup )] =

(WZZQ)—{W22w)
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didg [ 1 m 5
M <—m3n 2000 Qz’jkh)

=1 k=1 h=1

2 n
JA (1
36 \ m3n3
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whereV?: and Wy’ are according to Eg. (D.9) and,
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[
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Wy = E |G = 1)B; — 116) e — 1) (00 — 110) (P.13)
Uy = E[Gi— 105 — 1) — 1)Gn — 1) (5.13)
Wy = E (B = 1)(Bs — 160k — 1) (00 — 110) (7.13)
U= E [~ 16, — 1B — 1)n — 1)~ p )G, — )| (BA3)
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by making a use of Eq. (D.10), the covariance oklrand InX, can be written as

Cov[InX,InX] ~
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Failure Probability and Resistance Factors Figures and Tales
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Table F.1 Worst case resistance factors for pile interface frictiogla coeffi-
cient,b = 0.5, earth pressure coefficiant 1.2, various coefficients
of variation, v, distance to sampling location, and acceptable
failure probabilitiesp,,.

r(m) | vy Resistance Factor
pm =102 | p, =102 | p,=10" | p, =107

0.0 0.1 1.20 1.09 1.00 0.93
0.0 0.2 1.19 1.07 0.99 0.92
0.0 0.3 1.17 1.04 0.97 0.90
0.0 0.344 1.15 1.02 0.95 0.88
4.5 0.1 1.20 1.07 0.99 0.92
4.5 0.2 1.16 1.03 0.94 0.86
4.5 0.3 1.09 0.93 0.83 0.75
4.5 0.344 1.04 0.87 0.77 0.68
9.0 0.1 1.19 1.07 0.98 0.91
9.0 0.2 1.14 1.01 0.91 0.84
9.0 0.3 1.03 0.88 0.78 0.69
9.0 0.344 0.97 0.81 0.70 0.61
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Table F.2 Worst case resistance factors for pile interface frictiogla coeffi-
cient,b = 0.7, earth pressure coefficiant 1.2, various coefficients
of variation, v, distance to sampling location, and acceptable
failure probabilitiesp,,.

r(m) | vy Resistance Factor
P =102 | p, =102 | p,=10"% | p, =107°

0.0 0.1 121 1.09 1.00 0.93
0.0 0.2 1.20 1.08 0.99 0.92
0.0 0.3 1.19 1.06 0.98 0.91
0.0 0.344 1.17 1.04 0.97 0.90
4.5 0.1 1.19 1.08 0.98 0.92
4.5 0.2 1.15 1.02 0.93 0.86
4.5 0.3 1.06 0.92 0.81 0.74
4.5 0.344 1.00 0.86 0.74 0.67
9.0 0.1 1.19 1.07 0.98 0.91
9.0 0.2 1.13 1.00 0.90 0.82
9.0 0.3 1.02 0.86 0.75 0.67
9.0 0.344 0.94 0.78 0.67 0.59




