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Abstract

Identifying different blood components such as red blood cells, different types of white

blood cells, and platelets is an important tool for health practitioners. A local com-

pany has developed a lens-less near-field microscope that can take large images of

blood samples. These images are analysed with a segmentation and classification

neural network to count the different components. One of the most challenging com-

ponents is thereby the class of platelets, which are small components in our blood that

form clots and prevents bleeding. We re-implemented the current production system

to be able to experiment with different solutions and tested recent architectures such

as SegFormer and MAResUNet.

Furthermore, in this thesis we report on the development of methods to improve

platelet counts. In the images of blood samples, platelets are either appearing as

small single entities or as aggregates where several platelets are bound together. The

approach we developed uses a two-stage process where at first we train a network to

classify single platelets and platelet aggregates as separate classes. We then tested

several methods to separately estimate the number of platelets in the aggregate state.

This included taking the number of pixels and the average size of platelets in pixel

units into account. Since platelets have a characteristic signature with higher intensity

in the center than the background, we also count the number of intensity peaks. We

find that treating singular platelets and platelet aggregates separately better captures

overall platelet counts, improving base system.
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Chapter 1

Introduction

In computer vision, identifying even the smallest objects is essential when it comes

to safety critical systems like medical image analysis and remote sensing. Accurate

identification enables applications that require precise object counts. For instance,

precise estimation of platelet counts in a complete blood count is vital for medical

professionals to diagnose patient health accurately. In this study, we explore various

segmentation techniques for labeling different cell types and methods of estimating

count of these cells [1].

Alentic Microscience is a company, based in Halifax, Nova Scotia, which has de-

veloped a portable device that carries out the complete blood count and other in-vitro

blood tests, based on lens-less microscopic imaging. Their goal is to identify blood

cells such as red blood cells (RBC), white blood cells (WBC) and platelets from im-

ages. Alentic aims to identify each cell type in an image and generate labels so that

every pixel corresponds to an object of interest. U-Net [2] is well known architecture

for semantic segmentation. As part of this research, we experimented with various

architectures, based on U-Net. These experiments were carried out by varying the

model size and studying their performance for identification of blood cells. Upon

investigation, it was observed that red and white blood cells are being identified pre-

cisely, whereas platelet identification needs further improvement. U-Net architectures

misclassified the platelets by classifying those as background instead. This was often

noticed those platelets appeared in aggregate.

In this study, we propose a method for segmentation of platelets that distinguishes

between singular and aggregate platelets, unlike the existing method that labels them

the same and introduces a background label between the platelets to specify the exis-

tence of multiple platelets. The proposed approach allows researchers to label platelet

aggregates more efficiently compared to the existing method. This improvement is

evidenced by an increase in the F-1 score for platelet detection. We also demonstrate

1
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the efficiency of this approach by labeling larger platelet aggregates and retraining the

network. This process shows that the network can effectively identify larger platelet

aggregates which were previously missed. Additionally, we investigate various meth-

ods to count the number of platelets in the aggregates and discuss the results of each

method in detail.

Proposed device, currently in the development stage, utilizes patented technology

to analyze small blood samples, offering the potential for immediate, high-quality

test results directly at the point of care. Once fully developed, this innovation aims

to enable rapid testing across a range of metrics, leading to improved patient care,

shorter wait times, cost reductions, and increased efficiency in healthcare—benefits

that have yet to be fully realized. The prototype is designed to generate precise

labels for individual blood cells, allowing for accurate counts of RBCs, WBCs and

platelets. Ongoing research is focused on ensuring the accuracy of these counts, with

repeated testing processes to refine the technology. Our research specifically targets

the development of advanced techniques for better platelet segmentation, which is

crucial for improving platelet count estimation as the device continues to evolve.

In case of platelet count, the ideal counting method, when employed for these

repeated tests on a single sample, should yield results with a coefficient of variation

of less than 6%, ensuring a high level of precision and consistency in the measure-

ments. Additionally, the method should exhibit a linear relationship between the

counts obtained from different samples and their true counts. This linearity would

indicate that, as the actual number of items in a sample increases, the measured

count should proportionally increase, thus confirming the accuracy and reliability of

the method across varying sample sizes . In terms of pixelwise F-1 scores obtained

throughout this research indicate that the proposed method can better identify the

individual platelets. But for a clinical practitioner, estimation of platelet count is

of vital importance. In this thesis, we discuss about two methods for quantification

of platelets and compared those with the existing method. With these experiments,

we were able slightly improve the R-2 score from 0.838 to 0.847, indicating that this

method provides us with better linear relationship between the predicted and true

counts. This improvement aligns precisely with Alentic’s requirements, confirming

that the platelet counts provided by the new method vary linearly with the actual
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counts, thereby ensuring both precision and accuracy in clinical applications.

In addition, we studied models based on Vision Transformer which proposed by

Google that performs comparably to Convolutional Neural Networks (CNN). Trans-

former architectures proposed in 2017 by Vaswani et al. [3] revolutionized natural

language processing domain. Authors proposed attention mechanism that captures

the context in text by dynamically assigning different weights to different parts of

the input sequence. In our dataset, we observed some patterns such as platelets tend

to appear individually or in aggregates, they often appear adjacent to RBCs but are

never found inside a WBC. We looked at this phenomenon as a context. As attention

mechanism has proved to capture the context, we experiment with vision transformer-

based models such as SegFormer, AutoFocusFormer and MAResUNet. In this study

we also discuss a two-stage approach for identification of platelet, where we train a

separate classifier to identify only the platelets. We hypothesize that doing so will

help identify the platelets that were originally misclassified.

This thesis proceeds in the following manner. In chapter 2, we discuss background,

where we develop the vocabulary and discuss background of methods used throughout

this thesis. In this chapter we also discuss about work carried out towards applying

image segmentation for detection of blood cells. In chapter 3, we discuss experiments

performed on variations of U-Net model. Here we discuss about experiments with

different number of output filters for the first convolutional layer of the U-Net. In

chapter 4, we talk experiments with various vision transformer-based models. In

chapter 5, we talk about two-stage approach we followed. Here, we first discuss a two-

stage U-Net model, where first U-Net model classifies all blood cells and the second

U-Net model specializes in finding platelets. Following that, we discuss in details the

approach we proposed, of treating singular and aggregate platelets different from one

another. We discuss various counting methods we experimented with. In the end we

discuss the conclusion.



Chapter 2

Background

2.1 Dataset

In this section we talk about the dataset used during our experiments. This dataset

consists of images and their segmentation masks. We start by discussing the creation

of this dataset where we briefly discuss how images in the dataset were captured and

how their segmentation masks are generated. To be able to discuss unique details

about this process, the device used to capture images in the dataset is also discussed in

depth. After this, we describe elements in this dataset. For this, we include different

types of cells that are present, different artifacts that appear in the images, such as

debris, bubbles and defects which are often the result of techniques used to prepare

the blood sample before capturing the image.

2.1.1 Hardware

The device used to capture images in this dataset contains a sensor chip that can

capture images and a lid that can be closed. The chip is monochromatic and consists

of 62 LEDs in grid of 8×8. This includes 60 RGB LEDs and 2 ultraviolet LEDs. The

ultraviolet LEDs are bigger than the RGB LEDs. These are arranged to illuminate

a blood sample from multiple angles. During the imaging process, a drop of blood is

placed on the sensor along with a single consumable chambertop and an insert. One

end of the chambertop is pressed against the drop of blood which gets rid of excessive

blood sample from the perimeter of sensor. This is done to create a thin monolayer

of cells ranging from 1μm to 100μm in thickness, ensuring no overlap. Spacer beads

are used to prevent cell adhesion to the chambertop. To avoid direct contact between

the sensors and blood, inserts are placed over the sample before closing the lid. The

distance between the blood sample and insert is determined by the size of spacer

bead.

Out of the 60 RGB LEDs discussed above, 12 LEDs are activated to capture images

4
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Figure 2.1: Figure showing the Prospector device used by Alentic.

from different angles, resulting in 36 frames. The data captured in these frames can

be written as 12×3×height×width. These 36 frames are then integrated to produce

a single super-resolution image, effectively quadrupling the image resolution. Which

can further be written as 3×height×2×width×2. Resulting data is then rearranged

as 3× 2× 2× height×width. Consequently, the image has now 12 channels. Finally

red, green and blue channels from the first LED from the grid of 12 LEDs are added

to the super-resolution along with the ultraviolet channel, totalling to 16 channels in

the end. Figure 2.1 shows the Prospector device used by Alentic. Permission of using

these images was granted by Alentic.

2.1.2 Images and labels

Images in the dataset consists of multiple instances of images of blood cells such as

RBCs, WBCs and platelets. RBC are disc-shaped cells essential for oxygen transport

throughout the body, facilitated by hemoglobin, an iron-rich protein responsible for

the blood’s red color. RBCs are synthesized in the bone marrow. Deviations in RBC
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count can indicate underlying health issues. For example, elevated RBC levels may

be associated with issues such as dehydration and chronic obstructive pulmonary

disease, whereas reduced RBC levels often signify anemia. While labelling RBCs,

edge and center are assigned different classes. WBCs are essential immune system

components found in the bloodstream. There are different types of WBC, each of

which is specialized in fighting infection and inflammation to defend human body.

Elevated WBC counts may indicate infection, inflammation, or certain cancers, while

low WBC counts suggest a compromised immune system, often due to medications or

immune disorders. Platelets aren’t exactly cells but rather cell fragments produced

in the bone marrow. They play a crucial role in the blood clotting process, which

is essential for preventing excessive bleeding after an injury. A high platelet count

could be a sign of the body overreacting or preparing for a potential major blood loss

event.Low platelet count suggests insufficient clotting capability, raising the risk of

excessive bleeding from minor injuries. This makes platelets an important indicator

of patient’s overall health. In the dataset, there are examples of singular platelets

and platelets appearing in aggregates. For singular platelets, that are smaller in size,

pixel at the center is labelled as platelet. In case of singular platelet bigger than

average platelet, certain pixels inside it are labelled as platelet. In case of platelets

appearing in aggregate, pixel on the edge of platelets is labelled as background. This

is done to guide the model that there are multiple platelets inside the aggregate and

that it’s not one big platelet.

Scratches on the chambertop are reflected in the captured image like a line like

structure which are dark and light in nature. On the other hand, scratches on the

sensor often get filled with stains, giving the sensor scratch a blue appearance in the

captured images. The spacer beads also vary in size. The most commonly observed

width for the beads is around 3.3 μm. Additionally, some beads are larger than the

regular ones, with several beads having a diameter of around 10 μm. The layers

captured which do not contain single layer of cell are called nomonolayer. They are

seen as a large structure which are dark in color.

For the labels, initially all pixels in the label are unlabelled. Using a graphical

user interface tool, users can click on specific pixels to assign labels, thereby pro-

gressively building the segmentation mask. Each user interaction updates the mask,
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Figure 2.2: Figure showing various classes we have in our dataset. Cell or particular
object is centered in the image.

transforming the clicked pixel from its initial unlabeled state to the assigned label.

This method allows for precise and controlled labeling. In the end, the image and

labels of the image are divided into multiple patches of height and width of 256 pixel

each. As one image is of resolution 3,072 × 4,096 and one patch is of resolution 256

× 256, 192 patches are obtained from one image.

Class Count
Background 80166
WBC 7442
Platlet 1472
RBC Edge 14506
RBC Center 2422
Bead (ca. 3μm) 749
Bead (10μm) 737

Class Count
Scratch (Sensor) 4021
Scratch (Chambertop) 1069
Nomonolayer 125054
Debris 62161
Bubble 49966
Light Artifact 26829

Table 2.1: Table showing classwise distribution of instances of pixels.

2.2 Image Segmentation

Image segmentation is one of the most critical tasks in automatic image analysis. It

consists of subdividing an image into its constituent parts and extracting these parts

of interest (objects). A great variety of segmentation algorithms have been developed

in the last few decades and this number continually increases each year [4]. The goal

of image segmentation is to simplify the representation of an image, making it easier

to analyze and extract meaningful information. One of the significant applications
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of image segmentation is in medical imaging, particularly in the field of hematology,

where it plays a crucial role in counting various cells present in blood images.

In the context of medical imaging, particularly for analyzing blood samples, image

segmentation is exceptionally useful. Blood images contain numerous cells that re-

quire to be accurately identified and counted to diagnose and monitor various health

conditions. By applying model-based image segmentation techniques, we can auto-

mate the process of counting different types of cells, such as red blood cells, white

blood cells, and platelets. This automation significantly enhances the efficiency and

accuracy of blood analysis, which is critical for timely diagnosis and treatment of

diseases such as prostate cancer [5]. Traditional manual counting is not only time-

consuming but also prone to human error, making automated methods a reliable

alternative

Semantic segmentation, a specific type of image segmentation, is particularly use-

ful in this scenario. Semantic segmentation involves classifying each pixel in an im-

age into predefined categories or classes, without differentiating between different

instances of the same class [6]. In the context of counting cells from blood images,

semantic segmentation allows for the classification of each pixel as either belonging

to a cell or to the background, without distinguishing between different types of cells.

By employing semantic segmentation in cell counting tasks, it becomes possible

to automate and streamline the process, reducing the need for manual intervention

and minimizing human error. This is especially beneficial in high-throughput en-

vironments where large volumes of blood images need to be analyzed rapidly and

accurately. Additionally, semantic segmentation provides a foundation for further

analysis and characterization of the segmented cells, such as determining their size,

shape, and distribution within the image.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent a groundbreaking advancement

in the field of deep learning, particularly in the domain of computer vision with

supervised learning [7]. CNNs are engineered to automatically and adaptively learn

hierarchical representations of data. This makes them stand out for tasks such as

image classification, object detection, and image segmentation.

Convolutional layers are core component of a CNN. These layers apply a set of
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learnable filters often known as kernels, to the input data. When convolved with

the input image, these layers produce feature maps that capture local patterns and

spatial relationships [8]. Through the process of training, the network learns to adjust

the parameters of these filters to extract relevant features from the input data.

CNN architectures typically consist of multiple layers, including convolutional

layers, pooling layers, and fully connected layers, sometimes called dense layers. Con-

volutional layers extract local features from the input data, while pooling layers down-

sample the feature maps, reducing their spatial dimensions and the computational

complexity of the network. Fully connected layers aggregate the extracted features

and perform high-level reasoning, ultimately producing the final output [9].

One of the key advantages of CNNs is their ability to automatically learn hierar-

chical representations of features. In the context of image processing, lower layers of

the network learn to detect simple patterns such as edges and textures, while higher

layers learn to detect more complex features and object representations. This hierar-

chical feature learning enables CNNs to achieve remarkable performance on various

visual recognition tasks [10].

CNNs have demonstrated state-of-the-art performance in a wide range of appli-

cations, including image classification, object detection, facial recognition, medical

image analysis, and natural language processing. Their success can be attributed to

their ability to effectively capture spatial dependencies and hierarchical structures in

data, as well as their capacity for end-to-end learning from raw input [11].

Moreover, CNNs have been instrumental in advancing the field of computer vision

by enabling the development of more accurate and efficient algorithms for tasks such

as image segmentation. Semantic segmentation, in particular, has benefited greatly

from CNN-based approaches, with architectures like U-Net and DeepLab consistently

achieving top performance on benchmark datasets [12].

2.3.1 Encoder-Decoder Architecture

Encoder-Decoder models form a category of models that acquire the capability to

translate data points from one domain to another through a dual-phase network:

The encoder, symbolized by an encoding function z = f(x), condenses the input into

a latent-space representation; the decoder, denoted by y = g(z), endeavors to forecast

the output, based on the latent space representation. The latent representation in this
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Figure 2.3: Figure depicting working on encoder decoder architecture for 4 input
features. X is the input vector and y is the output vector.

context essentially denotes a feature vector representation adept at encapsulating the

underlying semantic information of the input, which proves instrumental in output

prediction. These models enjoy widespread popularity in tasks like image-to-image

translation and sequence-to-sequence tasks in natural language processing (NLP) [13].

Figure 2.3 represents a basic encoder-decoder architecture.

2.3.2 U-Net

U-Net is a convolutional neural network (CNN) architecture, specifically designed for

the task of biomedical image segmentation. It was introduced by Ronneberger, et

al. in 2015 and has since become a cornerstone in the field due to its distinctive

and effective design [2]. The primary motivation behind U-Net’s development was

to create a model that could accurately segment medical images, such as those from

MRI or CT scans, where precise localization and boundary delineation are crucial.

The architecture is particularly adept at handling the limited availability of annotated

training data, which is a common challenge in medical imaging. Figure 2.4 depicts

the architecture that has been followed throughout our studies.

U-Net’s architecture is symmetrical, mirroring the structure of an encoder-decoder

design. The encoder is a traditional convolutional network that applies successive

convolutional and pooling layers to downsample the input image, thereby capturing

increasingly abstract and complex features at smaller spatial resolutions. This process

results in a latent-space representation that encodes the essential characteristics of

the input image. The decoder conversely, uses upsampling layers and convolutional

layers to incrementally restore the spatial dimensions of the feature maps, converting

the latent representation back into an output image of the same size as the input.

One of the key innovations of U-Net is the incorporation of skip connections, which

directly link corresponding layers in the encoder and decoder. These connections allow
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Figure 2.4: Figure depicting the architecture of U-Net model we have used for our
experiments. Conv represents convolutional block, BN represents batch normaliza-
tion and ReLU represents rectified linear unit. MaxPool represents 2 dimensional
maxpooling operation. ConvTranspose represents 2 dimensional transposed convolu-
tional block. SingleConv is the modified building block of U-Net model. This block
consists of Conv followed by BN followed by ReLU. In traditional U-Net model, this
is repeated for 2 times (Adapted from [2]).
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the model to utilize fine-grained information from the encoder, which significantly

enhances the accuracy and quality of the segmentation by preserving spatial details.

U-Net’s versatility and efficacy extend beyond biomedical applications. It has

been successfully applied in image segmentation tasks such as satellite image analysis,

where it helps in identifying geographical features. Applications can also be found in

industrial inspection, where U-Net detects defects in manufacturing processes. The

ability of U-Net to handle different types of image data and produce high-quality

segmentation results with limited training data has made it a widely adopted tool in

both academic research and industry. Its design principles have also influenced the

development of numerous subsequent models, underscoring its impact on the broader

field of computer vision.

2.4 Attention Mechanism

Attention mechanism is a fundamental concept in modern neural network architec-

tures, particularly within the domain of natural language processing (NLP) and com-

puter vision. It was designed to enhance the model’s ability to focus on relevant

parts of the input data. Vaswani et al. [3] introduced attention, originally for task

of machine translation.Attention mechanism allows a model to dynamically prioritize

different parts of the input sequence. Instead of treating all input elements equally,

the model learns to assign varying levels of importance to different parts, enabling it

to concentrate on the most relevant segments. From a given input, queries, keys and

values are constructed. Query can be looked as current point under consideration,

key and value are both contents of the input sequence. For queries, keys and values

represented as Q, K and V, attention scores are calculated as,

Attention(Q,K, V ) = softmax

(
Q×KT

√
dk

)
× V (2.1)

Where,
√
dk is the size of the key, and Q, K and V are assumed to be of the same

dimensions. Division by the factor of
√
dk is ensures that exploding and vanishing

gradient problem is not observed. It is obtained by dividing the size of embedding

dimension by the number of attention heads.

Attention scores computed by the equation above indicate the relevance of each

key relative to the query. These scores are normalized using a softmax function
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to make sure that attention weights produced by them sum to one. The attention

weights are then used to compute a weighted sum of the value vectors, effectively

producing a context vector that emphasizes the most relevant parts of the input.

One of the most powerful aspects of the self-attention mechanism is the concept

of multi-headed self attention. Instead of performing a single self attention function

with dmodel-dimensional keys, values, and queries, the model linearly projects the

queries, keys, and values h times with different, learned linear projections to dk, dk,

and dv dimensions, respectively. These projections are concatenated and once again

projected, resulting in the final values. This allows the model to jointly attend to

information from different representation sub-spaces at different positions. With a

single attention head, averaging inhibits this.

Mathematically, this can be given as

MultiHead(Q,K, V ) = Concat(head1, ..., headh)×W 0 (2.2)

2.4.1 Vision Transformer

Dosovitskiy et al. proposed Vision Transformer (ViT) as a novel architecture that

leverages the self-attention mechanism from natural language processing to process

image patches. They proposed that this approach offers a promising alternative to

traditional convolutional neural networks in the field of computer vision [14]. The

standard Transformer receives a 1D sequence of token embedding as the input. To

handle 2 dimensional images, image of shape R(H×W×C) is first transformed into a

sequence of flattened 2 dimensional patches Xp ∈ RN×(P 2·C), where (H,W ) is the

resolution of the original image, C is the number of channels, (P, P ) is the resolution

of each image patch, and number of patches N is calculated as N = H·W
p2

is the

resulting number of patches, which also serves as the effective input sequence length

for the Transformer. These patches are then flattened and mapped to D dimensions

with a linear projection given as,

Z0 = [Xclass;Xp
1E;Xp

2; ...Xp
nE] + Epos (2.3)

where E ∈ R(P 2·C)×D and Epos ∈ R(n+1)×D.

Original transformer architecture was designed for sequence to sequence networks.

As there is no decoder in ViT, length of input sequence becomes length of output
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Figure 2.5: Figure demonstrating architecture of SegFormer model (Adopted from
[15]).

sequence. For classification, a class token is appended on the sequence and classifica-

tion head is applied on it to make sure that it is not biased on a particular token. The

classification head is a Multi-layer Perceptron (MLP). The encoder part of ViT makes

use of of multi headed self attention. Layer normalization is applied before each block

and there are residual connections after every block. This model breaks the image

into patches and process them independently. While the model learns relationships

between patches later, it doesn’t have the same built-in assumptions about their lo-

cality or 2 dimensional arrangement like CNNs. This gives ViTs more flexibility but

may require more data to learn spatial reasoning.

2.4.2 SegFormer

SegFormer is a state-of-the-art model specifically designed for image segmentation

tasks, integrating advanced features to enhance performance and flexibility. Tradi-

tional segmentation models often struggle with maintaining performance across dif-

ferent resolutions and require complex architectures to handle multi-scale features.

SegFormer addresses these challenges by introducing a novel approach that combines

a hierarchical Transformer encoder and a simplified MLP decoder. Figure 2.5 shows

the architecture of SegFormer model.

Novel Hierarchical Transformer Encoder

One of the standout features of SegFormer is its novel hierarchically structured trans-

former encoder. SegFormer’s encoder does not require positional encoding, which
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often causes performance degradation when training and testing resolutions are dif-

ferent. This design choice allows SegFormer to maintain high performance across

various test resolutions, ensuring adaptability and robustness. The absence of posi-

tional encoding eliminates the need for interpolation of positional codes, which can

otherwise negatively impact performance.

The hierarchical structure of the encoder allows the generation of both high-

resolution fine features and low-resolution coarse features. This contrasts with models

like ViT, which are limited to producing single low-resolution feature maps with fixed

resolutions. The ability to produce multi-scale features enables SegFormer to capture

a richer set of information from the input images, leading to more accurate and

detailed segmentation outputs.

Lightweight MLP Decoder

In addition to the innovative encoder, SegFormer features a lightweight MLP decoder.

The key innovation here lies in its ability to leverage the diverse attention patterns

induced by the Transformer. The attention mechanisms in the lower layers of the

Transformer tend to remain local, focusing on fine-grained details, while those in the

higher layers are more global, capturing broader contextual information.

By aggregating information from these different layers, the MLP decoder success-

fully combines local and global attention, resulting in powerful and comprehensive

representations. This approach not only simplifies the decoder architecture but also

enhances the overall performance of the model. The simplicity of the MLP decoder,

in contrast to more complex decoders, contributes to the efficiency of the model while

maintaining high accuracy and robustness in segmentation tasks.

2.4.3 AutoFocusFormer

AutoFocusFormer(AFF) [16] is a local attention transformer backbone for image

recognition. It achieves adaptive downsampling by learning to preserve the most

crucial pixels for the task. Uniform downsampling is less effective for tasks that re-

quire pixel-level details, for example, segmentation. Uniform downsampling tends to

make tiny objects even smaller, which causes loss of crucial pixel-level information.

One technique that solve this is increasing the input resolution to achieve better seg-

mentation performance. While this approach intuitively helps by producing a higher



16

Figure 2.6: Figure depicting the architecture of AutoFocusFormer model (Adopted
from [16]).

resolution after downsampling, it is costly in terms of memory and computation, as

it doesn’t address the underlying issue of uniform downsampling. Figure 2.6 shows

the architecture of AutoFocusFormer.

Thus AutoFocusFormer uses adaptive downsampling instead of uniform down-

sanpling that retains maximum features from important areas and summarizes the

features from areas which do not have a specific texture. This is first end to end

segmentation network to use successive adaptive downsampling. For feature masks

with high resolution, instead of using the global attention which would be compu-

tationally expensive, local attention blocks are used. These local attention blocks

are defined using a balanced clustering algorithm which groups the irregular points

into equal sized neighborhoods using space filling curves. The adaptive downsam-

pling module also learns to calculate importance score, which is used in the process

of merging neighborhoods. The segmentation heads are also modified for irregularity

in representation space.

2.4.4 MAResUNet

Dot-product attention mechanisms are crucial for many advanced vision and language

tasks. They help capture long-distance relationships by covering the entire input in

one go. This ability is key to the success of models like transformers in NLP and non-

local modules in computer vision, allowing them to perform exceptionally well on
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Figure 2.7: Figure depicting the architecture of MAResUNet (Adopted from [17]).

many tasks. However, the computational and memory requirements of dot-product

attention increase significantly with the size of the input, making it challenging to

handle large-scale data like long video sequences, lengthy texts, or high-resolution

images. To address these issues, researchers have developed various strategies. For

instance, [18] designed sparse factorization to lower complexity to O(N
√
N) [19],

employed locality-sensitive hashing to achieveO(N logN) complexity, and others have

reformulated self-attention mechanisms to achieve linear complexity, O(N). Figure

2.7 shows the architecture of this model.

Expanding on these advancements, MAResUNet aims to reduce the complexity

of dot-product attention mechanisms to O(N) while enhancing U-Net architecture

performance. This method integrates a novel linear attention mechanism and uti-

lizes ResNet-34 as the encoder. It also replaces the traditional skip connections of

the standard U-Net with attention blocks at multiple stages, refining the multi-scale

feature maps captured by the network. Utilizing encoder decoder structure of U-Net,

where the encoder captures low level, fine grained details and the decoder recon-

structs high-level, coarse-grained semantic information, MAResUNet enhances the

connectivity between these components.

2.5 Related Works

In this section we discuss studies about applying image segmentation on cellular im-

ages. In the field of cellular biology, image segmentation plays a pivotal role by

enabling the detailed analysis of cellular structures. Accurate segmentation of cellu-

lar images is essential for various applications, such as disease diagnosis. However,
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segmenting cellular images poses unique challenges. Cellular images often exhibit

significant variability in cell shapes and sizes, overlapping and touching cells, low

contrast, and the presence of noise. These complexities necessitate robust and sophis-

ticated segmentation techniques that can accurately delineate cellular components.

This section aims to review the significant contributions and advancements in the

field of image segmentation as applied to cellular images.

2.5.1 Deep Learning Segmentation and Classification of Red Blood

Cells Using a Large Multi-Scanner Dataset

Elmanna et al. compiled a comprehensive dataset comprising 25 manually prepared

and stained peripheral blood and bone marrow smears. These smears were scanned

using four different digital pathology scanners. Each slide, divided into approximately

2,000 patches, results in over 100,000 images along with their corresponding masks.

At the first stage, images were classified into eight clinically significant RBC categories

[20].

For the segmentation stage, a U-Net model was trained on the this dataset to

develop precise segmentation masks for the RBC images. Subsequently, an Efficient-

NetB0 model was trained on the same dataset for classifying the segmented RBC

images. This two-stage approach ensures robust segmentation and accurate classifi-

cation, thereby enhancing the diagnosis and study of hematological conditions.

The research underlines the clinical importance of accurately labeling and classify-

ing RBCs, focusing on types like ovalocytes, teardrop shaped RBCs, and fragmented

RBCs, which are crucial for diagnosing various types of anemia and other severe med-

ical conditions. Authors of this paper have demonstrated the integration of advanced

deep learning models with expert-annotated large datasets to improve the precision

and dependability of RBC image analysis.

The major difference in this work and what we are doing is the blood cell which is

emphasized. [20] have extensively focused on detection of RBCs whereas in our study,

we have focused largely on identification of platelets. Similarly, instead of capturing

images from multiple sensors like Elmanna et al., we have kept the source of image

the same. Apart from the differences, this paper has discussed the implementation

of a two-stage classifier, which we have discussed in Chapter 5.
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2.5.2 Automated Complete Blood Cell Count and Malaria Pathogen

Detection Using Convolution Neural Network

The complete blood cell count, that measures the density of different blood cells in

the human body, is crucial for assessing overall health and detecting various disorders

such as anemia, infection, and leukemia. Automating this task can significantly speed

up diagnosis and reduce treatment costs. This paper presents a CNN approach for

performing CBC on blood smear images and detecting malarial pathogens if present

[21]. The images used for training, testing, and validation were sourced from four

databases:

1. Leukocyte Images for Segmentation and Classification (LISC), that contains

images of five types of WBCs with their binary masks.

2. Isfahan University of Medical Science (IUMC) database, which has labeled im-

ages of individual WBCs, except for Basophils, along with binary masks.

3. MAMIC database, containing large blood smear images with healthy RBCs,

thrombocytes (THRs), platelet clumps, and malaria-infected RBCs, though

without labeled WBCs.

4. A dataset from KAGGLE that features images of individual healthy and infected

RBCs without binary masks.

A key challenge the authors faced was the lack of a single annotated database

containing all blood cell types and malaria infected RBCs. To address this, a new

dataset was created using images from the databases mentioned above as building

blocks. The creation process involved cropping individual cells and creating binary

masks for them. The dataset included a wide variety of blood cell combinations to

ensure robust CNN training.

The resultant dataset consisted of images of resolution 224 × 224, with various

combinations of different cell types. The training set includes images with different

combinations. All WBC types were combined into a Partial WBC class to avoid

CNN bias towards specific types. For example, if the image contains an Eosinophil

or Basophil they are all labeled simply as Partial WBC without specifying the WBC
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type. Some images contain multiple cell types, such as Eosinophils and Platelet

clumps.

Additionally, there are 4,000 images with a mix of infected and healthy RBC. The

testing and validation sets are each about one-tenth the size of the training set but

maintain the same distribution of image types. The total number of images is 65,350

for training, 6,560 for testing, and 6,560 for validation. Basophil images are fewer

because the LISC database lacked Basophil images. Despite this, Basophil detection

performs well, as demonstrated in the experimental results.

The CNN was trained to detect and classify these cells, achieving a mean average

precision exceeding 0.95 when compared to the ground truth. The system exhib-

ited perfect accuracy, detecting all malaria-infected images. The segmentation stage

used the U-Net architecture for its proven efficiency in medical image segmentation.

U-Net’s contracting and expansive paths handle the complexities of cellular image

data efficiently. The EfficientNetB0 model was employed for classification, leveraging

transfer learning from the ImageNet dataset.

In conclusion, the authors proposed extensive dataset and the sophisticated image

processing pipeline that demonstrated high accuracy and efficiency in diagnostics in

automated CBC and malaria detection from blood smear images. This study used

images of resolution 1000×1000 that only contained examples of RBCs. Authors then

discuss about using crops of dimension 224× 224 for training, testing and validation.

This study has discussed implementation of YOLO9000 model [22] for performing

object detection on blood cells. Goal of our study is use image segmentation to label

every cell in the given blood cell image. For this the image resolution being used

is 3072 × 4096, which is bigger than 1000 × 1000 pixels. In our study, we are also

interested in identifying the count of platelets which are 1 × 1 pixels in dimension

at the smallest. Similarly, in the images of dimension 3072 × 4096, there are tens

of thousands of RBCs. Therefore using object detection for this purpose becomes a

tedious task. Therefore, in our research we have extensively experimented with image

segmentation.



Chapter 3

Exploring Experimental Setups with U-Net Variants for

Blood Cell Segmentation

In this chapter, we discuss the U-Net architecture developed by Alentic for labeling

blood cells. Building on their implementation, we conducted various experiments on

the provided dataset by altering architectural parameters to optimize the model’s

performance. We begin by discussing the building blocks of this model, which are the

basis for U-Net variations using which the experiments were performed. Following

that we discuss the training for each of these architectures. We discuss hyperparam-

eter tuning such as learning rate, weight decay and optimizer functions. The loss

function we used throughout our experiment is also discussed in this section.

3.1 Architecture of U-Net model

A block of convolutional layer followed by batch normalization layer followed by recti-

fied linear unit (ReLU) is a core block of U-Net architecture. This convolutional layer

uses the kernel size of 3 with padding of 1. Conventional U-Net architecture repeats

this block for 2 times. For all our experiments, the number of input channel used is

always 16. Throughout the experiments, number of downsampling and upsampling

layers used is 4. Downsampling layers reduce the dimensions of the input image and

increase the number of output filters. Downsampling layer starts with MaxPooling

layer with kernel size of 2. Upsampling on the other hand increases the dimension

of input and reduce the number of output filters using 2D- transposed convolution.

To make sure that the features learned by downsampling layers are preserved, up-

sampling layer concatenates the outputs produced by each downsampling with the

output of corresponding output of upsampling layer. Downsampling factor of 2 is

used for all the experiments. To change the number of trainable parameters, number

of output filters are changed from the very first layer.

21
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3.2 Experiments

Convnetional U-Net architecture has the number of output filters set to 64. The first

layer of U-Net takes 16 input channels and outputs 64 output channels using 64 filters.

[23] discussed the effects of increasing filters in improving model performance. First

downsampling layer increases the number of output channels from 64 to 128, second

does the same from 128 to 256, third layer goes from 256 to 512 and the fourth one

increases the number of output channels to 1024. To maintain the features learned by

each of these downsampling layers, residual connections are used. Upsampling layer

increases the dimension and at the same time reducing number of filters.

Based on number of output filters of the first convolutional layers, model archi-

tectures are named. U-Net16, U-Net32, U-Net64 and U-Net128 corresponds to the

U-Net architectures with 16, 32, 64 and 128 output channels by the first convolutional

layers respectively. Another experiment was performed with U-Net architecture in

which the core block was repeated only once instead of twice. In this model, the

first convolutional layer outputs 64 channels. This model is named U64-SL and it

is the architecture that was trained by Alentic to label blood cells. We proceed by

first discussing about U64-SL, followed by U-Net16, U-Net32, U-Net64 and finally

U-Net128. All the models discussed in this section were trained and evaluated on the

same training and validation dataset. As we are dealing with tiny objects and class

imbalance, weighted focal loss is used. Number of epochs the model has been trained

for is 40. Table 3.1 discusses the hyperparameters used for training of these models.

Hyperparameters U64-SL U-Net16 U-Net32 U-Net64 U-Net128
paramters(Count) 15,336,144 1,944,704 7,767,280 31,046,096 124,138,384
Optimizer SGD RMSProp RMSProp RMSProp SGD
Learning rate 1e-02 1e-04 1e-04 1e-04 1e-02
Weight decay 1e-03 1e-06 1e-06 1e-05 1e-03
momentum 0.0 0.9 0.9 0.9 0.9

Table 3.1: Table describing hyperparamters used for training different U-Net archi-
tectures.

3.3 Results of experiments on base dataset

For purpose of testing models trained on various datasets we evaluate them on an

image captured by the device which is of resolution 3,072 × 4,096. As this resolution is
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larger than what GPU can handle, image was split in four sub-parts: upper left, upper

right, bottom left and bottom right. For a model to generate precise segmentation

we make sure that these sub-parts are overlapping. After the model generates output

segmentation maps, we get rid of the extra padding. This makes sure that even after

evaluating on sub-parts the model does not lose context over the edges.

In the realm of machine learning and artificial intelligence, the performance of

models is paramount. Various metrics are employed to evaluate and compare the

effectiveness of these models, among which the F-1 score stands out as a crucial

indicator. The F-1 score, which is the harmonic mean of precision and recall, provides

a balanced measure of a model’s accuracy. This metric is particularly valuable in

scenarios where the classes are imbalanced, ensuring that both false positives and

false negatives are accounted for effectively. We discuss the performance of various

models by presenting their F-1 scores. Doing so offers a comprehensive comparison

that highlights the strengths and weaknesses of each model in handling different

datasets and tasks. The F-1 score serves not only as a benchmark for evaluating

model performance but also as a guide for selecting the most suitable model for

specific applications. Through this analysis, the goal is to provide insights to identify

which of the blood cells or artifacts require improvement in identification. Table 3.2

shows the comparison of classwise F-1 scores computed for each of the models we have

experimented with. We calculated standard deviation using cross validation across

5 folds. Looking at the F-1 scores computed we can say all the models including

U-Net16, U-Net32, U-Net64, U-Net128 and U64 − SL1,2 are statistically similar in

the performance for identification of RBCs and WBCs. This table also shows the

F-1 scores U64 − SL3 and U64 − SL4, which correspond to our proposed method

of treating singular and aggregate platelets differently. This is further explained in

Chapter 5. Looking at F-1 scores, it can also be inferred that F-1 scores are always

lowest for platelets. It can be observed in the table that in models U-Net16, U-Net32,

U-Net64 and U-Net128, with increasing model complexity, F-1 scores tend to increase.

U64-SL model having lesser computational complexity than U-Net64 and U-Net128

models have better F-1 scores for identification of platelets.

Below the table, figures 3.1 and 3.2 show sample segmentation masks generated by

U-Net16, U-Net32, U-Net64, U-Net128 and U64− SL2 are shown. To put emphasis
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on platelet detection, segmentation masks generated for platelets are also shown.

Class U-Net16 U-Net32 U-Net64 U-Net128
Platelet 0.332 ± 0.158 0.304 ± 0.152 0.655 ± 0.187 0.745 ± 0.043
RBC Edge 0.757 ± 0.211 0.721 ± 0.218 0.896 ± 0.152 0.949 ± 0.007
RBC Center 0.631 ± 0.137 0.527 ± 0.222 0.867 ± 0.083 0.900 ± 0.015
WBC 0.805 ± 0.104 0.821 ± 0.079 0.862 ± 0.092 0.939 ± 0.017
Bead (ca. 3μm) 0.624 ± 0.150 0.543 ± 0.177 0.877 ± 0.068 0.880 ± 0.039
Background 0.819 ± 0.178 0.745 ± 0.284 0.744 ± 0.256 0.962 ± 0.010
Scratch (Sensor) 0.506 ± 0.277 0.475 ± 0.246 0.597 ± 0.238 0.906 ± 0.095
Nomonolayer 0.984 ± 0.039 0.986 ± 0.022 0.987 ± 0.021 0.998 ± 0.001
Debris 0.917 ± 0.084 0.919 ± 0.061 0.893 ± 0.114 0.981 ± 0.011
Bubble 0.793 ± 0.263 0.855 ± 0.239 0.802 ± 0.271 0.999 ± 0.001
Light Artifact 0.748 ± 0.192 0.732 ± 0.240 0.704 ± 0.245 0.949 ± 0.023

Class U64-SL U64-SL2 U64-SL3 U64-SL4

Platelet 0.889 0.874 ± 0.027 0.909 ±0.031 0.969 ± 0.010
RBC Edge 0.975 0.968 ± 0.004 0.971 ±0.007 0.977 ± 0.005
RBC Center 0.946 0.918 ± 0.009 0.936 ±0.019 0.950 ± 0.015
WBC 0.974 0.968 ± 0.006 0.968 ±0.009 0.977 ± 0.008
Bead (ca. 3μm) 0.917 0.944 ± 0.007 0.920 ±0.038 0.957 ± 0.030
Background 0.986 0.974 ± 0.014 0.979 ±0.007 0.981 ± 0.002
Sensor Scratch 0.984 0.916 ± 0.051 0.911 ±0.061 0.958 ± 0.017
Nomonolayer 0.998 0.999 ± 0.001 0.999 ±0.001 0.999 ± 0.000
Debris 0.996 0.993 ± 0.002 0.993 ±0.004 0.996 ± 0.003
Bubble 0.999 0.999 ± 0.001 0.997 ±0.002 0.997 ± 0.001
Light Artifact 0.983 0.946 ± 0.041 0.977 ±0.016 0.979 ± 0.012

Table 3.2: Table showing classwise F-1 scores of U-Net models with varying filter
sizes. Values in platelet aggregate class are all 0 because for these models we did not
have any examples for it. U64-SL refferes to the U-Net models with starting number
of filters are 64 and the layer containing Conv, BN, ReLU is repeated one time. U64-
SL is the model currently being used by Alentic, which was considered as baseline
model and thus does not have standard deviations in the table. U64 − SL2 is the
re-implementation of the U64-SL model. U64 − SL3 is the U-Net model trained on
the dataset in which we differentiate single platelet and platelet aggregates. U64 −
SL4 represents the F-1 scores computed after expanding dataset used for training
U64− SL3 by labelling more platelets appearing in aggregates.

3.4 Conclusion

In this chapter, we experimented with various U-Net architectures with the primary

goal of matching the performance of the existing system used at Alentic. We tested



25

(a) Figure showing segmentation map generated by 5 different models.

(b) Figure showing platelets in segmentation generated by 5 different models.

Figure 3.1: Figure showing example 1 of segmentation map for all cells showing in
Figure a and for all classes in Figure b for platelets.
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(a) Figure showing segmentation map generated by U-Net model specialized in identifying
platelets.

(b) Figure showing platelets in segmentation generated by 5 different models.

Figure 3.2: Figure showing example 2 of segmentation map for all cells showing in
Figure a and for all classes in Figure b for platelets.
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different configurations, specifically U-Net64, U-Net128, and U64-SL models. Based

on our experiments, we concluded that these models performed similarly in terms

of overall effectiveness. As shown in Table 3.2, these models efficiently detect blood

cells such as RBCs and WBCs. Additionally, they can differentiate artifacts such as

beads, debris, bubbles, and light artifacts from the blood cells.

However, while the U-Net64, U-Net128, and U64-SL models excelled in RBC and

WBC detection, there remains a need for further improvement in platelet detection.

Platelets are smaller and less distinct than other blood cells, posing a greater challenge

for accurate identification. Enhancing the ability of model to detect platelets is

essential as it is often used as indicator of human health. In next chapters we discuss

step taken towards improving platelet detection and different counting techniques for

counting number of platelets.



Chapter 4

Experiments with transformer-based architectures

In the blood images, platelets often occur individually or stuck together in an ag-

gregate. But they are never found to be inside another blood cell. We looked at

this phenomenon as a context. Transformer models are good in capturing context.

Thus, we hypothesized that transformer-based models would be a better fit for la-

belling various types of blood cells. In this section, we discuss experiments on various

transformer-based architectures. For this we discuss models like SegFormer, AutoFo-

cusFormer and MAResUNet. For each of these models, we first discuss model-based

hyperparameters that were used. We also discuss training related hyperparameters

such as optimizer and learning rate. Then we discuss the results and our findings in

results section. For all experiments in this chapter, focal loss has been used, with

the weights calculated as square root of inverse frequency of number of instances per

class in order to treat class imbalance.

4.1 SegFormer

Architecture of SegFormer consists of two modules. First module is a hierarchical

transformer encoder that generates high resolution coarse features and low resolution

fine features, and an MLP decoder that merges the encoded features to generate

fine resolution segmentation map. Given an image, SegFormer divides it in multiple

patches of 7×7, whereas [3] uses patches of 16×16. Authors hypothesize that smaller

patch size is beneficial for dense prediction task. On these patches, hierarchical

transformer encoder obtains multilevel features at [1
4
, 1
8
, 1
16
, 1
32
]. MLP decoder predicts

segmentation mask with resolution H
4

× W
4

with channels equaling to number of

classes.

4.1.1 Hierarchical Transformer Encoder

SegFormer uses hierarchical feature representation to generate multi level features like

a CNN. Given An image of resolution H × W × C, it generates features of resolution

28
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H
2i+1 × W

2i+1 × Ci, where i = {1, 2, 3, 4}. For our experiments with SegFormer, we con-

figured the model with specific parameters to optimize performance. The reduction

ratios of the self-attentions were set to 8, 4, 2, and 1 for each successive stage, re-

spectively. Correspondingly, the head numbers of the self-attentions were configured

to 1, 2, 5, and 8. The feed-forward network expansion ratios were adjusted to 8, 8,

4, and 4 for each stage. Furthermore, the number of encoder layers was consistently

set to 2 for all four stages. This configuration is aimed to balance the computational

efficiency and the model’s capability to capture hierarchical features across different

scales.

4.1.2 Decoder

SegFormer proposed a lightweight decoder that only consists of MLP layers. Larger

receptive field of SegFormer encoder enables this. Multi-level features Fi from encoder

goes through MLP. This unifies channel dimensions. These unified features are then

up-sampled to 1
4

th
and then concatenated. These are then fused to F. Finally, another

MLP uses these fused features to predict segmentation mask.

4.1.3 Training

We used hidden dimensions as [32, 64, 160, 256]. Number of attention heads were

[1, 2, 5, 8]. We use 2 layers of encoder. Decoder dimension is 256. Sequence reduction

ratio is [8, 4, 2, 1]. Patch size we use is [7, 3, 3, 3], with strides [4, 2, 2, 2] and padding

of [3, 1, 1, 1]. The batch size of 16 is used throughout the experiments. To study if

the model performance improves with increasing number of iterations we experiment

with number of epochs to be 100, 200 and 500. As the SegFormer outputs masks that

are downsampled by the factor of 4, to evaluate predictions, bilinear interpolation

was used to restore the dimensions of segmentation mask.

4.1.4 Results

With the patch size of 7× 7, SegFormer model outputs the segmentation masks that

are downsampled when compared with input resolution. In our experiments, the input

images were of dimension 256×256, the output segmentation masks were of dimension

64× 64. To produce segmentation masks of dimension 256× 256, interpolation with

factor of 4 was used.
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(a) Figure showing segmentation map generated by SegFormer model.

(b) Figure showing segmentation map generated by SegFormer model.

Figure 4.1: Figure showing segmentation map generated by SegFormer model.

Figure 4.1a shows a sample image and the output segmentation produced by

the SegFormer model. The image indicates that the model is largely misclassifying

background as platelet. It can be also seen that model is identifying some of the RBC

edge and RBC center. As for beads, model identified the beads but also misclassified

some of RBCs as beads. In Figure 4.1b it can be seen that model has identified

the WBC. In case of RBCs the model did not identify RBC edge and RBC center

separately. It can also be seen in this figure that background is being misclassified as

platelets.

SegFormer model processes in four stages before the classification head. In the
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first stage it uses the patch size of 7 × 7. For blood cell images, where a tiny cell

might be 2 × 2 in dimension. Thus, we hypothesize that changing the patch size of

SegFormer model from 7× 7 to a smaller patch size would be beneficial. Throughout

our experiments with U-Net, kernel size of 3× 3 was used. Thus to keep consistency,

patch size of 3× 3 was used for SegFormer, which increased the computational com-

plexity of the process. Therefore batch size of 4 was used for training. This model

was trained with Adam optimizer with initial learning rate of 1e − 04 with learning

rate decay by the factor of 0.98 per epoch. This model was trained for 40 epochs.

Table 4.1 shows the F-1 scores obtained from SegFormer model compared with U-Net

variants. Below the table, we also discuss sample segmentation maps generated by

this model. Upon analyzing the masks generated by the SegFormer model with a

3×3 patch size, the results appeared to be comparable to the performance of U64-SL

model, indicating the effective segmentation. However, when examining the masks

produced by the SegFormer model with a 7 × 7 patch size, it was evident that the

model’s performance was suboptimal, demonstrating a significant decline in segmen-

tation accuracy and quality. Thus we only show F-1 scores calculated for SegFormer

model with patch size 3× 3.

Class U64-SL SegFormer
Platelet 0.889 0.444 ±0.068
RBC Edge 0.975 0.889 ±0.028
RBC Center 0.946 0.670 ±0.131
WBC 0.974 0.827 ±0.011
Bead (ca. 3μm) 0.917 0.706 ±0.060
Background 0.986 0.915 ±0.011
Sensor Scratch 0.984 0.627 ±0.047
Nomonolayer 0.998 0.985 ±0.004
Debris 0.996 0.996 ±0.003
Bubble 0.999 0.964 ±0.023
Light Artifact 0.983 0.858 ±0.038

Table 4.1: Table showing classwise F-1 scores of U-Net models compared with Seg-
Former. U64-SL refers to the results of U-Net model being used by Alentic, which
was used as a baseline for our experiments. U64-SL refers to the re-implementation of
U64-SL model. SegFormer refers to SegFormer model which was trained with patch
size of 3× 3.

Figure 4.2 discusses the segmentation mask produced by this model. Compared



32

segmentation masks generated by SegFormer model trained with patch of 7 × 7 as

showed in Figure 4.1, these segmentation masks show better detection of RBCs,

WBCs and platelets. It is evident from 4.1 that SegFormer model performs similarly

to the U64-SL model in the identification of RBCs and WBCs. However, the U64-

SL model demonstrates superior performance. For detection of RBC edge U64-SL

has F-1 score of 0.975 whereas SegFormer scores average F-1 score of 0.889 with a

standard deviation of 0.028. For RBC center, F-1 score of U64-SL was 0.946, whereas

for SegFormer it was 0.670 with a standard deviation of 0.131. As for WBCs, U64-

SL had F-1 score of 0.974 and SegFormer has F-1 score of 0.827 with a standard

deviation of 0.011. For identification of platelets, U64-SL achieves the F-1 score of

0.889 whereas SegFormer attains a significantly lower mean F-1 score of 0.444 with a

standard deviation of 0.068.

4.2 AutoFocusFormer

Transformer-based architectures start with dividing the input image in patches. For

this these architectures often downsampled by factor of 4, 8, 16 and so on. For

tiny images this turns out to be harmful. AutoFocusFormer is the very first model

that proposes adaptive down-sampling. In their words, they want to retain the more

2 dimensional image locations of informative areas(areas where there are cluttered

objects) and find unimportant areas.

Architecture of AutoFocusFormer begins with a patch embedding layer imple-

mented by 2 layers of 3 × 3 convolution with stride of 2. Then they have several

stages, each stage consists of balanced clustering algorithm followed by attention

module followed by adaptive down-sampling layer. Output of each stage is input to

the next stage. In the end, they have task specific head, which performs tasks such

as classification, instance and semantic segmentation.

The balanced clustering algorithm is used to find local neighborhood. First the

image is divided into number of patches. This number of patches is supposed to be

similar to number of clusters to be found in the image. Center of each patch is called

an anchor point. For all points in the patch, they compute a ratio r, which they use

to order the tokens. This ratio ri is calculated as

Based on this ratio, they implement curve filling algorithm that converts 2-D grid

into 1-D sequence. Significance of doing this is that, for a point closer to the anchor
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(a) Figure showing segmentation map generated by SegFormer model trained with patch
size of 3× 3.

(b) Figure showing segmentation map generated by SegFormer model trained with patch
size of 3× 3

Figure 4.2: Figure showing segmentation map generated by SegFormer model for
RBC, WBC and platelets.
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this ratio will be smaller than the ratio of distance between anchor and point far

from the anchor. This helps them the spatial consistency of image. To obtain groups,

this 1-D sequence is divided into equal size groups. To make sure that contextual

information stays intact, they allow each token to attend from nearby clusters. This

size of neighborhood is multiple of cluster size.

Adaptive down-sampling algorithm has two components, first is learnable score

component that identifies most important tokens and second component is neigh-

borhood merging step. Learnable score is then used for selecting merging tokens as

merging centers is a weighted sum between score si and grid prior gi with α. Out of

these features, they select top x% features which are then input to next stage.

4.2.1 Training

AutoFocusFormer is implemented in detectron2. Backbone of AutoFocusFormer

has depths of [3, 4, 18, 2], embedding of size [96, 192, 384, 768] with number of heads

[3, 6, 12, 24]. We have used scaling factor of 1e-05 to the output of layers. Cluster size

of 8 and neighborhood size of 48 are used. This model has 46.8M parameters. For

this model base learning rate used was 2e-04 and it was trained for 5,000 iterations.

Figure 4.3 shows the sample segmentation map generated by AutoFocusFormer

model. Figure 4.3 shows sample image and the output segmentation produced by

the AutoFocusFormer model.Figure 4.3a shows a that the model identified some of

the RBC in the center, but it was not able to differentiate edge and center Similarly,

in Figure 4.3b it can be seen that the model majorly misclassified background as

nomonolyaer. In this example as well model identified RBC in the center.

4.2.2 Results

Authors of AutoFocusFormer [16] experimented with datasets such as ADE20K [24]

for semantic segmentation. Key difference between these dataset and the blood cell

dataset is the size and appearance of object of interest. In datasets like ADE20K,

objects of interest cover a huge portion of image, whereas in blood cell dataset the

objects are tiny. Similarly, considering the density of objects per patch, blood cells

like RBC are much dense, which affects the efficiency of balanced clustering algorithm

of AFF.
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(a) Figure showing segmentation map generated by AutoFocusFormer model.

(b) Figure showing segmentation map generated by AutoFocusFormer model.

Figure 4.3: Figure showing segmentation map generated by AutoFocusFormer model.
This figure shows the segmentation for RBCs.
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4.3 Multistage Attention ResUNet

UNet model we utilized used raw-skip connections meaning that they are not pro-

cessed. MAResUNet model also proposes linear attention mechanism which results

in efficient utilization of skip connections. As this method reduces the complexity of

attention mechanism, it enables us to use attention blocks on larger feature maps,

resulting in a better feature representation for these blocks.

4.3.1 Dot Product Attention

For an image with height H, width W, a input sequence X ∈ RN×C . dot product

attention utilizes weight matrices for query(Q), key(K) and value(V) matrices namely

Wq, Wk and Wv. Wq and Wk are of shape N ×Dk and Wv is of shape N ×Dv where

N = H ×W . A normalization function ρ is used to calculate similarity between ith

query from qit and jth query from vector kt
j as ρ(qTi × kj) which is not a symmetric

function. Dot product attention modulde applied on Q, K, V can be obtained as

D(Q,K, V ) = ρ(QT ×K)× V (4.1)

Where ρ is a weighted summation function. For normalization, softmax is applied on

each row of the resultant matrix.

4.3.2 Training

The MAResUNet architecture is a fusion of the U0Net and ResNet34 architectures,

tailored for semantic segmentation tasks. It begins with an encoder section inherited

from ResNet34, utilizing its deep convolutional layers for feature extraction at mul-

tiple scales. As the default ResNet34 is designed to have 3 input channels and we

had 16 input channels, the first convolutional layer is updated to incorporate the 16

input channels. This convolutional layer uses kernel of size 7, strides of size 2 and

padding of size 3. The integration of attention mechanisms, namely Position Atten-

tion Module (PAM) and Channel Attention Module (CAM), enhances the model’s

capacity to focus on crucial image regions during feature re-calibration. The decoder

component follows, employing a series of decoder blocks to up-sample feature maps

and concatenate them with corresponding encoder features, facilitating precise seg-

mentation. Finally, transposed convolutions and convolutional layers are utilized in

tandem to generate the final segmentation mask with the desired number of output
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classes. This design enables MAResUNet to effectively capture spatial information

while maintaining contextual understanding, making it a robust choice for various

segmentation tasks.

SGD is used as optimizer function with initial learning rate of 1e-02 with weight

decay of 1e-03 to prevent over-fitting. StepLR scheduler is used that decays the

learning after each step by a factor of 0.98. Initially the model was trained for 40

epochs and to see it the performance improves with increasing number of epochs, it

was trained for 100 epochs.

4.3.3 Results

Figure 4.4 shows a sample image and corresponding segmentation map generated by

MAResUNet. Figure 4.4a indicate that the model miss-classifies most of the pixels

as RBC edge. In the figure on left, there is no presence of nomonolayer but model

seems to have misclassified some pixels as nomonolayer. Similarly, Figure 4.4b shows

that the model has not been able detect the nomonolayer, although the model seems

to identify the structure.

4.4 Conclusion

Looking at the results of SegFormer, AutoFocusFormer, and MAResUNet, we can

conclude that these models are not a good fit for the segmentation of blood cells if

used with default patch size of 16 × 16. SegFormer model, when trained with patch

size of 3×3 performed much better than the same model when trained with patch size

of 7× 7 as shown in figures 4.1 and 4.2. AutoFocusFormer and MAResUNet models

although robust in nature, did not work for detecting blood cells. This suggests that

further customization or entirely different model architectures may be required to

achieve the desired accuracy and reliability for identification of blood cells.
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(a) Figure showing image and segmentation map generated by MAResUNet model.

(b) Figure showing image and segmentation map generated by MAResUNet model.

Figure 4.4: Figure showing image and segmentation map generated by MAResUNet
model.



Chapter 5

Improving platelet detection: Two stage approach

In this chapter, we discuss two different approaches for using a two-stage classifier

to identify platelets. First, we explore a method where one network identifies all

cells, and a second network specifically identifies platelets missed by the first model.

We hypothesize that this will improve the identification of initially missed platelets.

Next, we examine an approach that treats singular and aggregate platelets differently.

Following that, we discuss another approach where we discuss about treating singular

and aggregate platelets different from one another.

5.1 Two stage classifier

We begin with the two-stage classifier approach, where one classifier detects all blood

cells, and a second classifier focuses solely on platelets. The second classifier, trained

only on platelets, cannot detect any other blood cells. We first discuss the dataset

used, noting its differences from the one discussed in the previous section, and the

tools used to prepare it. Then, we outline our proposed methodology, detailing the

algorithm for the two-stage classification process. Finally, we discuss the training

process for this approach.

5.1.1 Modified dataset for two stage approach

The base dataset has examples of blood cells such as RBC, WBC and platelets. Along

with that, there are other artifacts including but not limited to bead, scratches and

debris. In order to create a secondary dataset that has examples only of platelets and

background. For this, we used U64-SL model to generate masks for all images in the

dataset. From the generated mask, we masked the labels that correspond to any class

other than platelet and background. We went through these masks one by one, and

labelled as many platelets as we could. For this we developed a tool as showed in the

Figure 5.1. We input the index of an image and click load image. After the image

was loaded, we labelled the platelets from the image. For this, we simply clicked on

39
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Figure 5.1: Figure representing the labelling tool developed for labelling platelets.
Before using this U64-SL model was used to evaluate all images in the dataset and
generate their corresponding segmentation masks. Files containing images and their
segmentation masks were input to this tool. User needs to input index of image that
needs to be annotated for platelets and click on load image button.
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Figure 5.2: Figure representing sample data point from dataset used for stage 2 UNet.
Image on left shows the blood cell image, image on the right is the segmentation mask
for the image. Background pixels are represented by black color, whereas pixels cor-
responding to platelets are represented in blue color. Pixels that were kept unlabelled
are represented in gray color.

the pixels we found inside the platelet. Due to the detailed examination needed for

each image, only 400 images were labeled using this method. This process resulted

in 7,210 pixels labelled as platelets and 9,140,488 pixels labelled as background. A

sample image in the dataset is represented in Figure 5.2.

5.1.2 Methods

The motivation behind the two stage approach is to be able to identify all the platelets.

This is called a two-stage approach because it makes use of two UNet models. First

UNet model is trained to identify all the blood cells and the second model is trained

only to identify platelets. In this we discuss the proposed algorithm for two-stage

UNet approach.

• Use the U64-SLB model that is already trained on the base dataset with all

classes to generate segmentation masks.

• In the segmentation masks generated, set all pixels that do not correspond to

background class as unlabelled. Then using the tool described in Figure 5.1,
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label all the platelets in images. This is necessary to make task of segmentation

simple by allowing training to be done only for identification of platelets.

• Train another U64-SL model on this newly created dataset. We call this model

U64-SL2.

• For evaluation, first use U64-SLB model to generate the masks. Then use U64-

SL2 model to generate the masks.

• Collect indices where the U64-SLB model has predicted background. From

masks generated by U64-SL2 model collect indices that correspond to platelet

class. Take their intersection, and update the masks at those indices to platelets.

Taking intersection of these indices would mean collecting indices where the U64-

SLB model missed the platelet and U64-SL2 model caught the platelet. If U64-SLB

is calling a certain pixel as background, and U64-SL2 calls it a platelet then only we

will update the mask produced by U64-SLB. This is because, model-1 knows what

cells like RBC and WBC look like and U64-SL2 doesn’t. If U64-SLB calls a pixel

RBC or WBC, and U64-SL2 calls it a platelet, it most likely is actually either a RBC

or a WBC. In that case calling that a platelet would be wrong.

5.1.3 Training

We used first 90% images in the dataset for training and tested the model on rest

10% images. Thus, for training we had 7,885,616 samples of background and 8,349

samples of platelets. Weighted focal loss is used as a loss function. SGD optimizer is

used with initial learning rate of 0.15 and weight decay of 0.01 are used. This model

was trained for 50 epochs with learning rate decay by the factor of 0.98 every epoch.

As there is clear class imbalance, class weights were used, which were computed by

taking square root of inverse class frequency.

5.1.4 Results of stage-2 U-Net

Figure 5.3 shows platelets being detected by stage-2 U-Net model. As this model was

only trained on platelets, it does not classify any other class.
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(a) Stage-2 model identifying platelets in test image 1.

(b) Stage-2 model identifying platelets in test image 2.

Figure 5.3: Figure showing image and corresponding segmentation mask produced
by stage 2 U-Net model that specializes in identifying platelets.
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(a) Segmentation mask generated by two-stage model.

(b) Comparing the masks produced by U64-SL and two-stage model

Figure 5.4: Figures showing stage-2 model identifying platelets in test images.

5.1.5 Results of two-stage approach

Figures 5.4 and 5.5 show the segmentation mask generated using two-stage approach

and how they compare with U64-SL model. In these figures 5.4a and 5.5a show the

masks generated by two-stage approach and 5.4b and 5.5b shows the comparison.

Idea behind Two-Stage approach was to be able to identify the platelets that were

missed by the U64-SL model. In this section, we first discuss the second model in

proposed two stage U-Net model that specialized in identifying platelets from the

background. A variation of this approach was followed by Elmanna et al. [20].

In their work they utilized a two-stage approach where they used U-Net model for
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(a) Segmentation mask generated by merged two-stage model.

(b) Comparing the masks produced by U64-SL and two-stage model

Figure 5.5: Figures showing stage-2 model identifying platelets in test images.
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segmentation and EfficientNetB0 model was used for classification of RBCs . Instead

of using another architecture for identification of platelets, U-Net was itself trained

for identification of platelets. In this section, we first discuss how the second U-Net

model performs in identifying platelets and then we discuss the result of combining

the outputs of both U-Net models we used in our two-stage approach.

5.2 Differentiating single platelet and platelet aggregates

In this section we discuss the method we propose of treating singular platelets and

platelets that are stuck together, further referred to as platelet aggregates, different

from one another as opposed to the original work that treats them the same. Appear-

ance of a single platelet is considerably different from the appearance of platelets that

are stuck together. Looking at this from convolution point of view, features learned

for a single platelet are different than the features learned for the platelet aggregate.

Thus using the same features would result in model missing on such platelets. We

begin by discussing the changes we propose for the dataset. Then we discuss the

details about training U64-SL model on the proposed dataset. With the proposed

change, the method used for counting the platelets need to be changed as well. After

discussing training, we discuss about different experiments performed to count the

platelets.

5.2.1 Dataset

Certain examples in the base dataset consist of singular and aggregate platelets.

While labelling platelets, if they are tiny, center pixel was labelled as platelet, in

case of platelets that are bigger than the average size, several pixels were labelled.

In case of platelet aggregates, an additional pixel on the edge of platelet is labelled

as background pixel. This was done to guide the model in identifying that those are

multiple platelets and not just one big platelet. In the dataset we propose, two classes

correspond to platelet. Singular platelets are labelled as a platelet, platelets that are

stuck together, weather two, three or more, are labelled as platelet aggregates. While

labelling these, all the pixels corresponding to those platelets are labelled as aggre-

gates. Figure 5.6 depicts the variations in single platelets and platelet aggregates.

Table 5.1 shows the distribution of various classes.
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Figure 5.6: Figure showing singular platelet versus platelet aggregates.

Class Count
Background 80,069
WBC 7,442
Platlet 2,993
RBC Edge 14,506
Platelet Aggregate 3,364
RBC Center 2,422
Bead (ca. 3μm) 749
Bead (10μm) 737

Class Count
Scratch (Sensor) 4,021
Scratch (Chambertop) 1,069
Fibre 0
Nomonolayer 125,054
Debris 62,161
Incompressable Debris 0
Bubble 49,967
Light Artifact 26,829

Table 5.1: Table showing classwise distribution of instances of pixels.

5.2.2 Training

Before passing this dataset to the U-Net model, to normalize the images, we divide

those by 255. As we are dealing with class imbalance and very small objects, we are

using focal loss as our loss function. For training this model as well, we are using

learning rate scheduler that will decay the learning rate by the factor of 0.98. We

trained this model with batch size of 32 for 40 epochs. We used Stochastic Gradient

Decent optimizer with initial learning rate of 0.01. To treat the class imbalance we

use square root of inverse class frequency.
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5.2.3 Methods for counting the number of platelets

As discussed above, for a aggregate of platelets, we labelled all pixels corresponding

to that aggregate. This causes a bunch of pixels adjacent to each other to be labelled

as platelet aggregate. The segmentation masks for platelet aggregate generated by

the trained model follows the same pattern. This causes segmentation mask corre-

sponding to platelet aggregate resemble a clusters. Thus we use density-based spatial

clustering application with noise (DBSCAN) algorithm to access these clusters. This

algorithm gives us all the coordinates for a particular cluster. From these coordinates

we use minimum and maximum values to identify top left and bottom right corner of

a rectangle. Now that we have coordinates in a cluster and coordinates of a bounding

box, we evaluate two strategies to estimate number of platelets.

For counting the number of platelets, we experimented with two different ap-

proaches. The first approach we used involved counting total number of pixels corre-

sponding to a particular cluster. As the aggregate consists multiple platelets dividing

this number of pixels by size of average platelet, which we assumed to be 3 pixels

on average. We call this naive counting. One observed characteristic of platelet is

that a platelet has highest brightness near its center which makes it stands out from

the background. For the second approach, we propose that counting the number of

highest intensity pixels from the cluster containing the platelet aggregate will pro-

vide us the estimate of number of platelets in that particular aggregate. It is often

observed that segmentation mask corresponding a platelet aggregate does not cover

all the pixels in that aggregate. To solve this problem, we make sure that the image

patch that we compute the number of peaks is larger than or equal to size of 5 × 5

pixels. Increasing the patch size does not affect the pixel intensities, therefore this

approach does not lead to increase in number of peaks.

5.3 Results of experiments with treating singular platelets and platelet

aggregates differently

U64−SL3 and U64−SL4 from Table 3.2 indicate improvement in platelet detection

as compared to U64-SL and U64−SL2. Mean F-1 score for platelets in U64−SL2 is

0.874 with a standard deviation of 0.027, whereas mean F-1 score in U64−SL4 is 0.969

with standard deviation of 0.010. This shows significant improvement for detection
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of platelets, which shows that differentiating singular and aggregate platelets help in

detection of platelets.

(a) Figure showing a sample image and the output segmentation produced by the U64-SL
model model trained on dataset that differentiates singular and aggregate platelets.

(b) Figure showing comparison between U64-SL models trained before and after differenti-
ating singular and aggregate platelets.

Figure 5.7: Figure showing segmentation map generated by U64-SL model after dif-
ferentiating singular and aggregate platelets and how the segmentation map compares
with the same generated without differentiating.
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(a) Figure showing a sample image and the output segmentation produced by the U64-SL
model model trained on dataset that differentiates singular and aggregate platelets.

(b) Sample image and the output segmentation produced by the U64-SL model model
trained on dataset that differentiates singular and aggregate platelets.

Figure 5.8: Figure showing segmentation map generated by U64-SL model after dif-
ferentiating singular and aggregate platelets and how the segmentation map compares
with the same generated without differentiating.

Figures 5.7 and 5.8 represent sample images and their segmentation masks gener-

ated before and after differentiating singular and aggregate platelets in the dataset.

In Figure 5.7a, in the segmentation mask, it can be seen that the model has cap-

tured the platelet aggregate in yellow color. In Figure 5.7b, it can be clearly seen

that without differentiating singular and aggregate platelets the area captured by the

model does not include all the area where there are platelets. Chowdhury et al. [21]
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talk about treating single and aggregate platelets differently. Inspired from this, we

separated singular and aggregate platelets from our dataset.

(a) Figure showing a sample image and the output segmentation produced by the U64-SL
model model trained on dataset that differentiates singular and aggregate platelets.

(b) Sample image and the output segmentation produced by the U64-SL model trained
after adding bigger platelet aggregates to the dataset.

Figure 5.9: Figure showing segmentation map generated by U64-SL model after dif-
ferentiating singular and aggregate platelets and how the segmentation map compares
with the same generated without differentiating.

Figures 5.9 and 5.10 show the segmentation masks produced by U64-SL model

after adding platelet aggregates containing large number of platelets. 5.9a and 5.10a

show the U64-SL model either missing the platelets completely or detecting very few

platelets from the platelet aggregates. The reason for this was that the model was
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(a) Figure showing a sample image and the output segmentation produced by the U64-SL
model model trained on dataset that differentiates singular and aggregate platelets.

(b) Sample image and the output segmentation produced by the U64-SL model trained
after adding bigger platelet aggregates to the dataset.

Figure 5.10: Figure showing segmentation map generated by U64-SL model after dif-
ferentiating singular and aggregate platelets and how the segmentation map compares
with the same generated without differentiating.
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never trained on bigger number of platelets in the aggregate. Whereas 5.9b and 5.10b

show the same model identifying those platelets after being trained to identify large

platelet aggregates.

5.3.1 Counting platelets

Table below shows counting of platelets across 48 different examples. For this, platelet

aggregates of varying sizes. We started with singular platelets and extended our

study upto aggregate consisting of 16 platelets. Table 5.2 shows the platelet counts

for Figure 5.11.

Actual Naive Peaks U64-SL
3 2 1 4
2 6 1 2
4 10 5 3
6 13 5 6
4 13 3 4
3 4 4 4
5 4 4 3
2 4 3 4
2 3 1 3
3 9 3 4
6 6 3 5
4 5 2 4
3 5 4 3
3 8 2 3
8 4 5 4
6 13 8 6
3 2 4 2
9 7 5 3
4 4 1 4
16 24 17 10

continued ...
Actual Naive Peaks U64-SL
2 6 4 3
3 4 2 3
3 9 2 3
2 3 3 2
4 2 4 1
2 8 4 2
1 4 1 1
1 4 2 1
4 8 4 3
2 2 1 2
11 25 8 11
3 5 3 3
2 6 3 2
3 7 1 3
1 2 3 1
3 2 2 4
1 3 1 1
1 2 1 1
1 3 2 1
2 4 4 2

Table 5.2: Table showing comparison of platelet count estimation using various meth-
ods with the actual platelet count. In this table, actual represent actual count of
platelets. Naive represents platelet count as per naive counting approach. Peaks
represent platelet count estimated by counting the number of peaks in the region of
platelet aggregate. U64-SL represent platelet count estimated by U64-SL model.
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Figure 5.11: Figure showing the clumps identified by U64-SL model trained after
differentiating singular and aggregate platelets. Each sub-figure indicates a patch of
platelets aggregate captured by the model. On top of each figure, figure on the left
indicates count obtained by counting the number of peaks for patch and figure on the
right indicates count obtained by naively counting the number of pixels corresponding
to one aggregate and dividing the number by average size of a platelet.
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Statistics U64-SL Counting peaks Naive counting
σΔ computed on predicted
versus actual count

1.481 0.954 2.898

Standard Error computed
on predicted counts

0.063 0.081 0.183

σ computed on predicted
counts

1.145 1.473 3.308

Slope of line of regression 0.599 0.800 1.346

Table 5.3: Table showing the comparison of various counting methods. U64-SL repre-
sents platelet count estimated by U64-SL model. This table used the values in Table
5.2 and Figure 5.11. Counting peaks represents platelet count estimated by count-
ing number of peaks in region corresponding to platelet aggregate. Naive counting
represents platelet count estimated by naively counting number of pixel in platelet
aggregate mask.

The platelet count estimated by the naive approach often exceeds the actual count.

This is because it is a direct function of number pixels in segmentation map that

correspond to platelet aggregates. This often includes some of the background pixels

as well, which causes the count to be higher. Counting the number of peaks on

the other hand utilizes both the image and the segmentation map. It utilizes the

characteristic of platelet to have a high pixel intensity. Thus even if the segmentation

mask contains background pixels, their intensity would be lower than the platelet

intensity, resulting in a stable platelet count. Figure 5.11 shows the comparison

between counts obtained using these methods.

To evaluate and compare performance of different methods of counting platelets we

calculate the difference between actual and predicted counts. Let predicted counts be

represented as P = [p1, p2, ...pn] and actual count be represented as A = [a1, a2, ...an].

We define δi = |pi − ai|. This is repeated for 40 examples, which gives us 40 δ values.

Thus, for baseline method, we have

Δbaseline = [δbaseline1, δbaseline2...δbaseline40]

Δpeaks = [δpeaks1, δpeaks2...δpeaks40]

Δnaive = [δnaive1, δnaive2...δnaive40] (5.1)
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where Δbaseline corresponds to δ calculated on platelet counts obtained by the baseline

method, Δpeaks corresponds to δ calculated on platelet counts obtained by counting

number of peaks in the image patch obtained from platelet aggregate and Δnaive

corresponds to δ calculated on platelet counts obtained by naively counting number

of pixels in platelet aggregate mask and then dividing that number by average size

of a platelet. We define σ as standard deviation. In the Table 5.3 we define σΔ as

standard deviation computed on Δs.

Figure 5.12 is showing comparison of lines of linear regression with line of best

fit. Line of best fit represents line of regression where predicted count of platelets

are equal to the actual counts. From the figure it can be seen that line of regression

for counting peaks is closer to the line of best fit than line of regression for U64-SL.

Similarly, looking at Table 5.3 it can be seen that slope of naive counting is much

closer to line of best fit than other approaches.

5.4 Conclusion

Results of U64 − SL3 from Table 3.2 shows us that differentiating singular and ag-

gregate platelets help improving platelet detection. Looking at Table 5.3 and Figure

5.12, it can be observed that estimating platelet count using the number of peaks

yields the platelet counts that are much closer to the line of best fit. Apart from

this, the labelling approach that differentiates singular and aggregate platelets pro-

vide much easier and efficient way of labelling large platelet aggregates that contain

more than about 15 platelets, which otherwise would be a tedious task. This also

enables labelling of varying size platelet aggregates that contributes by adding di-

verse examples of platelet aggregates, reducing the probability of encountering out of

distribution problem for platelets.

The architecture of U-Net model, with its contracting and expanding paths, is

designed to capture fine details and contextual information in images. This capability

is crucial for differentiating between single platelets and platelet aggregates. The

model’s ability to focus on local features while preserving spatial context allows it

to identify individual platelets even when they are part of a larger cluster. The

skip connections in U-Net help retain detail from earlier layers, which is essential for

distinguishing small, closely packed platelets from one another.

The normal platelet count ranges from approximately 150,000 to 450,000 platelets
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Figure 5.12: Figure showing comparison between regression lines for multiple models
with line of best fit. Counting peaks represent platelet count estimated by counting
number of peaks in region of platelet aggregate. Naive counting represents platelet
count estimated by naively counting number of pixels corresponding to platelet aggre-
gate and dividing that number of average size of platelet. U64-SL represents platelet
count estimated by U64-SL model.
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per microliter of blood. In cases of Thrombocytosis, this count is abnormally higher

than the normal range. In this case, the model might face challenges in accurately

identifying and counting abnormally larger platelet aggregates. These dense clusters

can complicate the counting process, potentially leading to over-counting or merging

adjacent platelets into a single count. The ability of model to capture and distinguish

fine details is crucial in such scenarios. If the model has not been sufficiently trained on

these dense configurations, it may struggle to identify those aggregates and potentially

misclassify them as a different class as seen in Figure 5.9b, where the platelet aggregate

was initially misclassified as debris, before being trained with examples of larger

platelet aggregates.

Thrombocytopenia is another condition where platelets are sparse and lower in

count than the normal platelet range. As the dataset used throughout this research

consists of multiple examples of singular platelets and platelet aggregates, the devel-

oped method should be able to identify and count the platelets in this case. Future

experiments are still required to confirm if this is the case.

In addition to the challenges, future work is required to assess the model’s per-

formance on images that are significantly different from those seen during training.

All images are captured using lensless microscopy, where a drop of blood is placed

under a closed lid and LEDs are used to capture the images. This unique imaging

setup can lead to variations in image quality, such as differences in lighting, shadows,

and resolution, which might affect the appearance of platelets and other blood com-

ponents. For instance, the LED lighting might create reflections or artifacts that can

obscure details or alter the appearance of platelets. Moreover, the new inserts used

by the company have textures that resemble platelets, which could lead to confusion

between actual platelets and these textures in the images.

The model’s robustness needs to be evaluated against such scenarios, including

cases with abnormally large platelet aggregates or textures that mimic platelets. Ad-

ditionally, the model should be tested on blurry images and out of distribution sam-

ples situations where the images deviate significantly from the training data. These

variations could lead to misidentification or inaccurate platelet counts, highlighting

the need for extensive testing and potential model adjustments to ensure reliable

performance across the diverse conditions.
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Conclusion

Based on the experiments with various U-Net architectures, it is clear that different

starting numbers of filters (16, 32, 64, 128) significantly impact the model’s perfor-

mance and resource requirements. From the experiments it was clear that U64-SL

U-Net model with a single repetition of convolution followed by batch normalization

followed by ReLU with starting filters equal to 64 provided us with the best results.

Smaller filters, while requiring less computational power, may struggle with capturing

complex features, whereas larger filters can capture more details but at an increased

computational cost. U64-SL balances this trade-off as it is not computationally ex-

pensive, yet is able to capture the important features.

During experiments with the transformer-based models such as SegFormer, it was

noticed that patch size plays a crucial role. The default patch size for SegFormer,

which was 7 × 7 did not work for segmentation of blood cell. This was because the

blood cells are much smaller than that patch size. Looking at the segmentation masks

generated by this model, it was clear that the model was not able to identify RBCs,

WBCs and platelets. When we experimented with patch size of 3×3, it was seen that

the model was able to identify those blood cells except for platelets. This indicates

that further study is required to analyze effects of various patch sizes.

In our experiments, use of two-stage approach proved to be beneficial after dif-

ferentiating singular and aggregate platelets from one another. Another approach we

experimented was to use a separate classifier that specialized in detection of platelets.

This approach showed significant improvement in F-1 score for platelets. Based on

this approach we also experimented with different techniques for counting of platelets

in aggregates, out of which counting the number of peaks yielded the best results.

To determine which method estimates platelet count closest to the actual count we

calculated the difference between estimated count and actual count and computed

standard deviation on the difference. The standard deviation on platelet estimated
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by counting the number of peaks was lowest, indicating closeness to the actual count.

We conclude that treating singular and aggregate platelets differently not only im-

proves the platelet detection, but can reduce the efforts required for labelling the

platelets allowing larger platelet aggregates to be efficiently labelled.
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