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Abstract

Gait recognition is the process of identifying individuals based on their unique

walking patterns. This method has gained importance in biometric systems for its

non-intrusive nature and applications in security, surveillance, and healthcare, where

it helps monitor and identify individuals from a distance. However, accurately distin-

guishing between gait patterns under varying conditions poses significant challenges.

These include variations in walking speed, changes in clothing and footwear, and

different environmental conditions, which all affect the accuracy of gait recognition

systems. Moreover, the lack of diverse and high-quality datasets complicates the

development of robust models that generalize well across different populations.

To overcome these challenges, we have developed a novel approach that incorpo-

rates various preprocessing techniques, such as edge detection, contrast enhancement,

and noise reduction, with feature selection methods to improve data quality and model

performance. Our hybrid feature extraction model combines Kolmogorov-Arnold Net-

works (KANs), ResNet, EfficientNet, and Principal Component Analysis (PCA) for

spatiotemporal features, with traditional methods like Histogram of Oriented Gradi-

ents (HOG) and Local Binary Patterns (LBP). This approach bridges the research

gap by demonstrating improved performance on the Chinese Academy of Sciences In-

stitute of Automation (CASIA) datasets A, B, and C, enhancing robustness. These

advancements are particularly promising for real-time applications in healthcare, such

as early detection of neurological conditions like Alzheimer’s disease (AD).

Evaluations using metrics such as Accuracy, F1 Score, and Area Under the Curve

(AUC) have been conducted. The results show that the KAN model achieved the

highest overall accuracy, surpassing 95%, while the ResNet model excelled across all

metrics, effectively handling complex data variations. Integrating traditional and deep

learning features boosts model accuracy and robustness. Comparative analysis with

existing techniques confirms that our proposed models outperform previous methods

in key metrics, validating the hypothesis that integrating diverse features and robust

training strategies can substantially enhance gait recognition systems.
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Chapter 1

Introduction

Gait recognition(GR) has emerged as a promising biometric technique due to

its non-invasive nature and the uniqueness of an individual’s walking pattern [1].

This method offers significant potential in security, surveillance, and healthcare ap-

plications, particularly in monitoring and diagnosing neurological conditions such as

Alzheimer’s disease(AD). The ability to recognize and analyze gait can lead to early

detection of such conditions, improving patient outcomes and quality of life [2].

Gait recognition offers several unique advantages compared to other biometric

methods. It is non-intrusive, allowing for recognition from a distance without requir-

ing the subject’s cooperation. Unlike fingerprints or facial features, gait is difficult to

disguise, making it a reliable identifier even in covert surveillance scenarios. Addition-

ally, gait recognition can be particularly useful in healthcare settings for monitoring

changes in gait that may indicate health issues.

The increasing prevalence of Alzheimer’s disease globally necessitates innovative

diagnostic tools. The World Health Organization reports that nearly 50 million people

worldwide are living with dementia, with Alzheimer’s disease(AD) being the most

common form. Early diagnosis is crucial for managing symptoms and slowing disease

progression. Gait analysis, with its non-invasive approach, could play a pivotal role

in identifying early signs of Alzheimer’s disease(AD), as changes in gait patterns can

be indicative of neurological decline [3].

1.1 Contribution

This thesis aims to advance the field of gait recognition by developing a novel hy-

brid feature extraction method that combines traditional handcrafted features with

deep learning-based techniques. Specifically, the research introduces a new approach

using Kolmogorov-Arnold Networks (KANs) [4], ResNet, EfficientNet, and Principal

1
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Component Analysis (PCA) [5] to integrate spatiotemporal features, alongside tra-

ditional methods such as Histogram of Oriented Gradients (HOG) and Local Binary

Patterns (LBP). The primary contributions of this work include:

• Focus on Real-World Applicability: We emphasis on creating models that

are not only accurate in controlled environments but also robust and reliable

in real-world scenarios, including challenging conditions like low lighting and

varying environmental factors.

• Implementation of Preprocessing Techniques: We employ various pre-

processing methods such as edge detection, contrast enhancement, and noise

reduction to improve data quality and model performance.

• Development of a Hybrid Feature Extraction Model: The proposed

model integrates traditional and deep learning features, improving the robust-

ness and accuracy of gait recognition systems.

• Introduction of KANs, ResNet, EfficientNet for Gait Recognition: We

explore the use of these advanced models for capturing complex spatiotemporal

features in gait data.

• Cross-Dataset Validation: We Validate the proposed models across multiple

datasets, including CASIA-A, CASIA-B, and CASIA-C, to demonstrate the

generalizability and scalability of the approach.

• Comprehensive Evaluation on CASIA Datasets: The proposed methods

are compared to existing state-of-the-art techniques to provide a detailed and

nuanced analysis of of the model performance.[6].

Additionally, this research highlights the potential application of these models on

edge AI [7] devices for real-time gait analysis. This is particularly relevant for contin-

uous monitoring of patients at risk of developing Alzheimer’s disease(AD), allowing

for timely interventions and better management of the condition.

1.2 Organization of the Thesis

The organization of this thesis is structured as follows:
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1.2.1 Chapter 2: Background Knowledge and Literature Review

This chapter provides a comprehensive overview of the foundational concepts in

gait recognition, including a historical perspective, the limitations of traditional meth-

ods, and the advantages of deep learning approaches. It also includes a detailed lit-

erature review, highlighting key studies and identifying research gaps that this thesis

aims to address.

1.2.2 Chapter 3: Data Preprocessing and Augmentation

In this chapter, the focus is on the preprocessing techniques used to enhance the

quality of the gait datasets. It covers methods like edge detection(ED), contrast

enhancement, and noise reduction. The importance of these steps in improving the

accuracy and reliability of gait recognition systems is emphasized [8]. The chapter

also discusses various image augmentation techniques implemented to increase the

diversity of the training data.

1.2.3 Chapter 4: Feature Extraction and Selection

This chapter delves into the different feature extraction methods employed in the

study, including traditional handcrafted features like Histogram of Oriented Gradients

(HOG) and Local Binary Patterns (LBP), as well as deep learning-based features

extracted using models like ResNet and EfficientNet. A novel feature extraction

approach using Kolmogorov-Arnold Networks (KANs) is also introduced, focusing on

the integration of spatiotemporal features.

1.2.4 Chapter 5: Model Training and Evaluation

The training and evaluation processes of the models are discussed in this chapter.

It outlines the methodologies for integrating spatial and temporal features using 3D

Convolutional Neural Networks(CNNs) and Recurrent Neural Network (RNN)/Long

Short Term Memory (LSTM) architectures. The chapter also covers the ensemble

techniques applied, such as EfficientNet and ResNet feature extraction combined with

KANs. The evaluation metrics used to assess model performance, including accuracy,

precision, recall, and AUC, are detailed.
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1.2.5 Chapter 6: Experiments

This chapter presents the experimental setup and the results obtained from various

experiments conducted on the CASIA datasets (CASIA-A, CASIA-B, and CASIA-

C). It includes detailed analysis of the performance of different models under various

conditions and provides insights into the effectiveness of the proposed methods.

1.2.6 Chapter 7: Results and Discussion

The results of the experiments are discussed in detail, with a focus on graph anal-

ysis for different models like KANs, ResNet, and EfficientNet. Comparative analysis

with existing techniques are provided, highlighting the strengths and limitations of

the proposed approaches.

1.2.7 Chapter 8: Conclusions

This chapter summarizes the key findings of the research, emphasizing the con-

tributions made to the field of gait recognition. It reflects on the implications of the

study and suggests areas where the findings can be applied in real-world scenarios.

1.2.8 Chapter 9: Limitations

The limitations of the study are critically analyzed in this chapter, focusing on

data quality, model generalization, and computational challenges. Specific challenges

related to the application of these models for detecting early onset Alzheimer’s dis-

ease(AD) are discussed.

1.2.9 Chapter 10: Future Work

The final chapter outlines potential future research directions, including the de-

ployment of the models on edge AI [9] devices for real-time gait analysis. It also

explores the use of these techniques in medical diagnostics, particularly for the early

detection of Alzheimer’s disease(AD).

Each chapter builds on the previous ones, providing a cohesive narrative that takes

the reader from foundational concepts to advanced research findings and practical

applications.



Chapter 2

Background Knowledge and Literature Review

In the field of gait recognition, researchers have extensively explored various meth-

ods to identify individuals based on their walking patterns. The CASIA gait datasets,

particularly CASIA-A, CASIA-B, and CASIA-C, are frequently used benchmarks for

developing and testing these systems. Traditional approaches relied heavily on hand-

crafted features such as Histogram of Oriented Gradients (HOG) and Local Binary

Patterns (LBP) [10], which capture the silhouette and texture information of the gait

sequence. However, recent advancements in deep learning have significantly enhanced

the performance of gait recognition systems. Models like ResNet [11] and Efficient-

Net [12], known for their deep feature extraction capabilities, have been employed to

capture more complex patterns in gait data. Additionally, innovative architectures

like Kolmogorov-Arnold Networks (KANs) [13] have been explored for their unique

approach to integrating spatiotemporal features. The use of transfer learning, lever-

aging pre-trained models on large datasets, has also proven beneficial in improving

model accuracy and generalizability. Various preprocessing techniques, including edge

detection and noise reduction, are crucial for enhancing data quality, which in turn

improves model performance. This literature review highlights the evolution from

traditional feature-based methods to more sophisticated deep learning techniques,

emphasizing the importance of hybrid feature extraction and the use of advanced

neural networks in achieving state-of-the-art results in gait recognition.

2.1 Background Knowledge

Gait recognition is a biometric technique that involves identifying individuals

based on their unique walking patterns [14]. This field has gained significant attention

due to its non-intrusive nature and potential applications in security, surveillance, and

medical diagnostics. The foundation of gait recognition lies in capturing and analyz-

ing the dynamic motion of individuals as they walk, which is influenced by factors

5
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like body structure, walking speed, and external condition [15].

The CASIA gait datasets, including CASIA-A, CASIA-B, and CASIA-C, are some

of the most widely used benchmarks in this research area. CASIA-A includes 20 sub-

jects captured from three different viewpoints, [16] CASIA-B expands this to 124

subjects under varying conditions and angles, [17] and CASIA-C focuses on infrared

imagery for low-light conditions [18]. These datasets provide a comprehensive plat-

form for developing and testing gait recognition models under different scenarios.

Traditional methods in gait recognition primarily relied on handcrafted features

such as Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP).

HOG captures gradient orientation histograms to emphasize the shape and structure

of the gait silhouette, while LBP encodes local texture information by comparing pixel

intensities. These features have been effective in capturing the static appearance of

gait but often struggle with variations in walking conditions and environments.

The advent of deep learning has revolutionized gait recognition by enabling the

extraction of more complex and abstract features. Convolutional Neural Networks

(CNNs), such as ResNet and EfficientNet, have been particularly impactful. ResNet,

known for its deep architecture and use of residual connections, helps in training

very deep networks by mitigating the vanishing gradient problem. EfficientNet, on

the other hand, optimizes model scaling in terms of depth, width, and resolution,

achieving high accuracy with fewer computational resources. These models are pre-

trained on large datasets like ImageNet[18], and then fine-tuned on gait datasets,

a process known as transfer learning. This approach allows the models to leverage

learned features, improving recognition accuracy and generalizability [19].

In addition to CNNs, innovative architectures like Kolmogorov-Arnold Networks

(KANs) have been explored for gait recognition. KANs integrate both spatial and

temporal features, making them well-suited for capturing the dynamic nature of gait

sequences. These networks are designed to process sequential data, effectively cap-

turing the temporal dependencies inherent in gait.

Preprocessing techniques play a crucial role in gait recognition, enhancing the

quality of input data and, consequently, the performance of models. Techniques such

as edge detection (using methods like Canny, Sobel, and Laplacian) [20], contrast en-

hancement (using CLAHE), and noise reduction (using Median and Gaussian filters)
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[21] are commonly applied to improve the clarity and visibility of gait silhouettes.

This classification pertains specifically to image-based gait recognition methods.

Other techniques, such as those involving floor tile-based detection, are outside the

scope of this classification.It is important to note that there are other non-image-

based methods, such as those involving floor tile sensors or wearable devices. These

techniques detect gait patterns through different modalities, such as pressure distri-

bution or inertial measurements, offering alternative approaches to gait recognition.

However, as this thesis focuses on image-based techniques, these non-image-based

methods are not included in the current classification. Overall, the combination of

traditional feature extraction, advanced deep learning models, and robust prepro-

cessing techniques has led to significant advancements in gait recognition. This field

continues to evolve, with ongoing research focusing on improving accuracy, robust-

ness, and real-world applicability.

2.1.1 History and Implications of Gait Recognition

Gait recognition, as a biometric identification technique, has a rich history rooted

in the study of human motion. The concept dates back to the early 19th century

when researchers began investigating the unique characteristics of human walking

patterns. However, it wasn’t until the advent of modern computer vision and image

processing technologies in the late 20th century that gait recognition emerged as a

viable biometric modality [22].

The initial developments in gait recognition focused on analyzing video sequences

to extract silhouette-based features, enabling the identification of individuals based

on their gait. Over time, the field evolved with the integration of more sophisti-

cated image processing techniques and the advent of machine learning algorithms.

The introduction of databases like the CASIA gait dataset provided a standardized

benchmark for researchers, significantly advancing the field by allowing for consistent

evaluation and comparison of different algorithms.

The implications of gait recognition are extensive and span various domains. In

security and surveillance, gait recognition offers a non-invasive means of identifying

individuals from a distance, even under challenging conditions where other biometric
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methods like face or fingerprint recognition might fail [23]. This capability is partic-

ularly useful in situations where covert identification is necessary, such as monitoring

public spaces or border security.

In healthcare, gait analysis can be employed to diagnose and monitor neurological

and musculoskeletal conditions [24]. Abnormalities in gait can indicate diseases such

as Parkinson’s, arthritis, or stroke, making it a valuable tool for early diagnosis and

treatment planning [25]. Additionally, in sports science and rehabilitation, gait anal-

ysis is used to assess athletes’ performance and recovery progress, providing insights

into their physical health and training needs.

Furthermore, gait recognition has potential applications in personal identification

and authentication systems, providing a seamless and unobtrusive user experience.

As technology advances, there is growing interest in integrating gait recognition with

other biometric modalities to enhance security and accuracy in multi-factor authen-

tication systems.

Overall, the history of gait recognition reflects a progression from basic observa-

tional studies to advanced computational techniques, with significant implications for

security, healthcare, and personal identification. The ongoing research and develop-

ment in this field promise to further enhance its accuracy and applicability, paving

the way for more innovative and practical uses in the future.

2.1.2 Drawbacks of Traditional Methods in Gait Recognition

Traditional gait recognition methods primarily rely on handcrafted features, such

as Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP). While

these methods have laid the groundwork for understanding and analyzing gait pat-

terns, they come with several limitations:

• Limited Feature Representation: Handcrafted features often fail to capture

the complex and subtle variations in gait patterns that may be influenced by

factors like clothing, walking speed, or environmental conditions. These meth-

ods typically focus on specific aspects of the gait, such as silhouette or texture,

without fully capturing the dynamic nature of the movement [26].

• Sensitivity to Variations: Traditional methods are generally sensitive to
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changes in viewing angles, lighting conditions, and background clutter. For in-

stance, silhouette-based methods can struggle with variations in shadowing or

occlusion, leading to inaccuracies in feature extraction and subsequent recogni-

tion [27].

• Inability to Handle Large Variations: Handcrafted features often struggle

with large intra-class variations, such as those caused by different footwear,

carrying conditions, or changes in walking speed. This limitation affects the

robustness and reliability of gait recognition systems, making them less effective

in real-world scenarios where such variations are common.

• Lack of Temporal Information: Many traditional methods focus on static

frames or use simple temporal integration, missing the detailed temporal dy-

namics of gait sequences. This lack of comprehensive temporal analysis can

result in a loss of important information that is crucial for accurate gait recog-

nition [28].

• Scalability Issues: As datasets grow larger and more complex, traditional

methods often struggle to scale effectively. The computational complexity of

extracting and processing handcrafted features can become a bottleneck, limit-

ing the practical application of these methods in large-scale systems.

• Overfitting to Specific Conditions: Handcrafted feature extraction tech-

niques can sometimes overfit to specific datasets or conditions they were de-

signed for, reducing their generalizability to new, unseen environments or datasets.

This overfitting can lead to decreased performance in real-world applications

where conditions vary significantly [29].

2.1.3 Limitations of Machine learning[ML]

Machine learning (ML) has revolutionized various industries by enabling systems

to learn from data and make predictions. However, despite its advancements, ML

also faces several limitations:

• Data Dependency: ML models heavily rely on large datasets for training.



10

The quality and quantity of data directly affect the model’s performance. Insuf-

ficient, biased, or noisy data can lead to poor model accuracy and generalization

issues.

• Interpretability: Many ML models, particularly deep learning models, are

often considered ”black boxes.” This lack of interpretability makes it challeng-

ing to understand the decision-making process, which is crucial in fields like

healthcare and finance where transparency is essential [30].

• Overfitting and Underfitting: ML models can suffer from overfitting, where

they perform well on training data but poorly on new, unseen data due to learn-

ing noise or irrelevant patterns. Conversely, underfitting occurs when models

are too simple to capture the underlying data patterns, leading to poor perfor-

mance even on training data [31].

• Computational Complexity: Advanced ML models, especially deep neural

networks, require substantial computational resources for training and inference.

This includes high-performance hardware like GPUs and significant energy con-

sumption, which can be a barrier for widespread adoption.

• Bias and Fairness: ML models can inadvertently perpetuate biases present

in the training data, leading to unfair outcomes. Addressing bias and ensuring

fairness in ML models is a complex challenge that requires careful consideration

and often additional methods to mitigate bias.

• Scalability Issues: Scaling ML models to handle vast amounts of data or to

be deployed in real-time systems can be difficult. Ensuring that models remain

efficient and accurate as they scale is a significant challenge.

• Generalization: ML models may struggle to generalize well to new or different

types of data than they were trained on. This is especially problematic in

dynamic environments where data distributions can change over time.

• Security Concerns: ML models can be vulnerable to adversarial attacks,

where small, intentional changes to input data can cause the model to make in-

correct predictions. This poses significant risks in applications like autonomous
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driving and cybersecurity.

• Ethical and Privacy Issues: The use of ML in sensitive areas such as personal

data analysis raises ethical and privacy concerns. Ensuring that data is used

responsibly and securely is critical but often challenging [32].

• Requirement for Expertise: Developing, tuning, and maintaining ML mod-

els requires specialized knowledge and expertise. The scarcity of skilled profes-

sionals can limit the adoption and effectiveness of ML technologies.

Despite these limitations, ongoing research and advancements continue to ad-

dress these challenges, improving the robustness, interpretability, and fairness of ML

models. However, it is essential to recognize and consider these limitations when

developing and deploying ML systems.

2.1.4 Advantages of Deep Learning over Traditional Methods

Deep Learning (DL) offers several advantages over traditional methods, particu-

larly in the fields of data analysis, pattern recognition, and decision-making:

• Automated Feature Extraction: Unlike traditional methods that rely heav-

ily on handcrafted features, DL models automatically learn to extract relevant

features from raw data. This capability allows DL models to uncover complex

patterns and representations that might be missed by manual feature engineer-

ing [33].

• Handling Complex and High-Dimensional Data: DL excels in processing

complex, high-dimensional data such as images, audio, and text. Deep neural

networks, with their layered structure, can capture intricate structures and

dependencies within the data, making them highly effective for tasks like image

recognition, natural language processing, and speech recognition.

• Scalability and Flexibility: DL models can scale efficiently with increasing

data volumes. As more data becomes available, DL models can continue to

improve their performance, whereas traditional methods may struggle to scale

and maintain accuracy. Additionally, DL architectures are flexible and can be

adapted for various tasks and domains.
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• End-to-End Learning: DL enables end-to-end learning, where models learn

directly from input data to output predictions, without requiring intermediate

steps of feature extraction and selection. This holistic learning approach sim-

plifies the model development process and often leads to better performance.

• State-of-the-Art Performance: DL models, especially Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs), have achieved state-

of-the-art results in many fields, surpassing traditional methods in accuracy

and efficiency. For example, CNNs have revolutionized computer vision, while

RNNs and their variants, such as LSTMs and Gated Recurrent Units(GRUs),

have transformed natural language processing.

• Ability to Learn from Unstructured Data: DL models can effectively learn

from unstructured data sources, such as raw images, text, and audio, which are

difficult to process using traditional techniques. This ability is particularly

valuable in domains where data is unstructured and diverse.

• Reduction of Human Intervention: By automating feature extraction and

decision-making processes, DL reduces the need for manual intervention and

expertise. This not only speeds up the development process but also minimizes

the risk of human bias in model development.

• Robustness and Generalization: DL models are generally more robust to

variations in the input data, such as noise and distortions. They can generalize

well to new, unseen data, making them highly suitable for real-world applica-

tions where variability is a concern.

These advantages highlight the transformative potential of deep learning in various

industries, driving innovation and improving the accuracy and efficiency of data-

driven solutions.

2.1.5 Deep Learning Models

Deep Learning (DL) models are a subset of machine learning algorithms that use

neural networks with many layers to learn from vast amounts of data. These models

have revolutionized various fields by achieving state-of-the-art performance in tasks
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such as image and speech recognition, natural language processing, and more. Key

types of DL models include:

• Convolutional Neural Networks (CNNs): CNNs are specialized for pro-

cessing grid-like data such as images. They utilize convolutional layers to auto-

matically learn spatial hierarchies of features from input data. CNNs are widely

used in computer vision tasks such as image classification, object detection,

and segmentation. The architecture typically includes layers like convolutional,

pooling, and fully connected layers, along with activation functions like ReLU

[34].

• Recurrent Neural Networks (RNNs): RNNs are designed for sequential

data, making them ideal for tasks involving time series, speech, and natural lan-

guage processing. Unlike feedforward neural networks, RNNs have connections

that form directed cycles, allowing them to maintain a ’memory’ of previous in-

puts. Variants such as Long Short-Term Memory (LSTM) networks and Gated

Recurrent Units (GRUs) address the limitations of standard RNNs, such as the

vanishing gradient problem, by better capturing long-term dependencies [35].

• Autoencoders: Autoencoders are unsupervised neural networks used for learn-

ing efficient codings of input data. They consist of an encoder that compresses

the input into a latent space and a decoder that reconstructs the input from

this compressed representation [36]. Autoencoders are widely used for dimen-

sionality reduction, denoising, and anomaly detection.

• Transformer Networks: Originally developed for natural language processing

tasks, Transformers have revolutionized sequence-to-sequence tasks with their

ability to model long-range dependencies without relying on recurrence [37].

The architecture uses self-attention mechanisms to weigh the importance of dif-

ferent elements of the input sequence, making it highly effective for translation,

summarization, and more. The introduction of models like BERT (Bidirectional

Encoder Representations from Transformers) and GPT (Generative Pre-trained

Transformer) has further expanded the capabilities of Transformers in both lan-

guage understanding and generation [38].
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• Deep Belief Networks (DBNs) and Restricted Boltzmann Machines

(RBMs): These are types of deep generative models that are capable of learn-

ing to probabilistically reconstruct their inputs. DBNs are composed of mul-

tiple layers of stochastic, latent variables, while RBMs are a specific type of

energy-based models used in the first layer of DBNs for feature extraction and

dimensionality reduction [39].

Each of these DL models has unique strengths and applications, making them

suitable for various types of data and tasks. The choice of model often depends on

the specific requirements of the problem, such as the type of data, the task complexity,

and the need for interpretability.

2.2 Literature Review

2.2.1 Related work on CASIA A

Figure 2.1: Literature review of CASIA A Papers

1. Handcrafted Features for Human Gait Recognition: CASIA-A Dataset[40]
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This paper focuses on the use of traditional handcrafted features for gait recog-

nition using the CASIA-A dataset. The methods include Support Vector Machine

(SVM) with Radial Basis Function (RBF), multi-class Winner-Take-All (WTA) SVM,

Fuzzy C-Means Clustering (FCM), and cross-validation. Feature extraction involves

ROI image segmentation and the GLCM technique with Otsu segmentation thresh-

old. The study achieved an overall accuracy of around 81%, varying for peak-event

and non-peak-event conditions.

Limitations: The accuracy is relatively low, and the model struggles with varying

conditions, which reduces its robustness compared to more advanced deep learning

techniques .

2. Performance Evaluation of Convolutional Neural Networks for Gait

Recognition [41]

This paper evaluates the performance of 18 pre-trained CNN models for gait recog-

nition using the CASIA-A&B dataset. The study adopts a transfer learning scheme,

retraining the models with Gait Energy Images (GEIs) and evaluating them using

accuracy, recall, and precision. The results show that almost all models achieved

high accuracy over 90%, with the best performance from features extracted from the

middle part of the body.

Limitations: The performance decreases as the number of classes increases, indicat-

ing a need for models that can handle a larger diversity of gait patterns more robustly

.

3. Graph Convolutional Network for Skeleton-Based Gait Recogni-

tion[42]

This paper proposes a Graph Convolutional Network (GCN) for recognizing gait

based on human skeleton poses. The model is evaluated on CASIA-B and CASIA-C

datasets, achieving rank-1 accuracy for various conditions: normal walking (87.7%),

walking with a bag (74.8%), and wearing a coat (66.3%).

Limitations: The performance, while strong, shows a notable drop under different

conditions such as walking with a bag or wearing a coat, indicating a need for models

that maintain high accuracy across all conditions.

4. Model-Based andModel-Free Deep Features Fusion for High-Performed

Human Gait Recognition [43]
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This research presents a fusion model combining model-based features (joints, limbs,

static joint distances) and model-free features (silhouette images, GEIs) for gait recog-

nition. The evaluation on the CASIA-B and CASIA-A dataset reached above 90

Limitations: While the accuracy is high, the model’s reliance on both types of

features may increase computational complexity and require more extensive prepro-

cessing compared to single-method approaches.
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5. Research on Inception Module Incorporated Siamese Convolutional

Neural Networks [44]

This study introduces a Siamese CNN with an Inception module and cyclical learning

rate strategy for gait recognition. It compares performance with PCA, SVM, CNN,

and PCANet, highlighting improvements in recognition accuracy and convergence

speed.

Limitations: The model’s performance, although improved with cyclical learning

rates, might still be outperformed by more recent deep learning architectures specifi-

cally designed for handling diverse gait patterns .

2.2.2 Related work on CASIA B

Figure 2.2: Literature review of CASIA B Papers

1. A Multi-Stage Adaptive Feature Fusion Neural Network for Multi-

modal Gait Recognition [45]

This method combines silhouettes and skeletons using a multi-stage feature fusion
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strategy and adaptive modal fusion module. It achieves robust spatial-temporal mod-

eling, significantly reducing feature dimensions without compromising accuracy. The

network performs well on CASIA-B dataset.The model achieved a Rank-1 accuracy

of 93.3%.

Limitations: The method requires careful tuning of the fusion parameters and may

be less effective if the modalities (silhouettes and skeletons) are not well-aligned.

Furthermore, the approach’s complexity might limit its applicability in real-time sce-

narios due to increased processing time.

2. Gait Set: Regarding Gait as a Set for Cross-View Gait Recognition

[46]

GaitSet treats gait sequences as sets of independent frames, which allows for flexi-

bility in handling frames from different views and conditions. This method achieves

high accuracy on the CASIA-B and OU-MVLP datasets, demonstrating robustness

to variations in clothing and carrying conditions. It also performs well with a limited

number of frames, maintaining high accuracy .The model achieved an average Rank-1

accuracy of 87.1% across various views.

Limitations: While GaitSet excels in flexibility, it may lose some temporal infor-

mation due to the independent treatment of frames. This can lead to challenges in

recognizing gait patterns that rely on temporal coherence.

3. A Machine Learning Method with Threshold Based Parallel Feature

Fusion and Feature Selection for Automated Gait Recognition [47]

This method enhances video frames using optical flow and background subtraction

before extracting texture, HOG, and geometric features. These features are fused

and selected based on Euclidean distance, then classified using MSVM. The method

achieves high recognition rates on the CASIA-A, CASIA-B, and CASIA-C datasets .

Limitations: The approach struggles with variations in camera viewpoints and dy-

namic backgrounds, limiting its effectiveness in real-world scenarios. Additionally, the

method’s reliance on handcrafted features may not capture all relevant information

compared to deep learning-based methods.

4. Gait Part: Temporal Part-Based Model for Gait Recognition [48]

GaitPart focuses on part-level feature extraction and temporal modeling using Focal
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Convolution Layer and Micro-motion Capture Module. This approach enhances fine-

grained learning of part-level features and captures short-range temporal features,

leading to high performance on the CASIA-B dataset.The model achieved an average

cross-view accuracy of 88.8%.

Limitations: GaitPart’s complex architecture may lead to increased computational

costs. Additionally, while effective at capturing part-level movements, it might strug-

gle with variations in overall body motion patterns that extend beyond short-range

temporal features.

5. Gait Graph: Graph Convolutional Network for Skeleton-Based Gait

Recognition [49]

GaitGraph leverages human pose estimation to recognize gait using Graph Convolu-

tional Networks (GCNs). By focusing on skeleton poses, this method avoids issues

related to silhouette images, such as loss of fine-grained spatial information and in-

terference from visual clues. GaitGraph demonstrates state-of-the-art performance

on the CASIA-B dataset, particularly in cluttered environments and with occlusions.

Limitations: The reliance on skeleton-based data means that the approach can be

less effective when the pose estimation is inaccurate. Additionally, the method’s per-

formance can degrade in highly dynamic environments where poses are difficult to

estimate reliably.

2.2.3 Related work on CASIA C

1. Person Recognition Based on Deep Gait [50]

This paper presents a method for person recognition using the Gait Energy Image

(GEI) and deep learning techniques. It focuses on extracting spatial and temporal

features from gait patterns to improve recognition accuracy. The GEI records spatial

information effectively, making it suitable for identifying individuals based on their

walking patterns. The approach achieved effective feature extraction and improved

accuracy in gait recognition, reaching over 90%.

Limitations: GEI struggles to capture temporal information, which can reduce

recognition accuracy over time. The method requires continuous and reliable data

capture, which is challenging in real-time applications.

2. Appearance-based Approaches for Human Gait Recognition [51]
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Figure 2.3: Literature review of CASIA C Papers

The paper categorizes existing methods into statistical and spatiotemporal approaches,

discusses the various datasets used for gait recognition, and evaluates the perfor-

mance of different techniques based on common metrics like the cumulative match

characteristic (CMC) curve. The survey emphasizes the advantages of appearance-

based methods in terms of simplicity and effectiveness in real-world applications,

such as surveillance and medical diagnosis.The paper emphasizes the effectiveness of

appearance-based approaches and the importance of feature selection, achieving an

accuracy of 91%.

Limitations:These methods struggle with occlusions and low-quality images, which

are common in real-world scenarios. This limitation can lead to not identifying or

failure to recognize individuals correctly.Appearance-based methods primarily focus

on spatial features and may not adequately capture temporal dynamics of gait, which

are crucial for accurate recognition.

3. Gait Recognition Based on Local Graphical Skeleton Descriptor with

Pairwise Similarity Network [52]
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This paper introduces a gait recognition method based on a local graphical skeleton

descriptor and pairwise similarity network. It focuses on capturing the structural in-

formation of the human body for improved recognition accuracy. The model achieved

varied accuracy across different conditions: Normal walking (37.37%), slow walking

(46.00%), fast walking (71.72%), and walking with a bag (50.52%).

Limitations:The method’s accuracy heavily depends on the effectiveness of the pose

estimation process, which can be complex and error-prone.Extracting accurate skele-

ton data from video frames remains a challenge, especially in complex scenarios with

multiple individuals or occlusions.

4. Gait Image Classification Using Deep Learning Models for Medical

Diagnosis [53]

This study proposes using deep learning models, including CNN and CNN-LSTM, to

classify gait silhouette images for medical diagnosis. The study demonstrates that

CNN achieves the highest accuracy (94.29%) on the CASIA datasets, followed by

ResNet9 (93.30%) and CNN-LSTM (87.25%).

Limitations: The models require high-quality silhouette images for accurate classi-

fication, which can be difficult to obtain in real-world settings with varying lighting

and occlusions. Furthermore, the models’ performance can degrade with variations

in gait due to medical conditions, clothing, and carrying objects.

5. Gait Graph: Graph Convolutional Network for Skeleton-Based Gait

Recognition [54]

GaitGraph utilizes Graph Convolutional Networks (GCNs) to analyze human skeleton

poses for gait recognition. The approach leverages advancements in human pose

estimation to create a model-based method that focuses on the cleaner representation

of gait through skeletons, rather than relying on silhouette images which can include

extraneous visual information.

Limitations: The method’s effectiveness is highly dependent on the accuracy of the

pose estimation. Inaccuracies in pose estimation can significantly impact recognition

performance. Additionally, while GCNs are powerful, they can be computationally

intensive and may struggle with real-time applications.
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2.2.4 Findings based on Literature Review

The literature survey presents a comprehensive overview of recent advancements

in gait recognition using the CASIA datasets, focusing on both traditional and deep

learning methods. The key insights from the survey are summarized below:

Traditional vs Modern Approaches: The traditional methods, such as appearance-

based approaches using LDA, were commonly used in earlier studies. These methods

focused on dimensionality reduction and computational efficiency but often struggled

with accuracy and robustness, especially under varying conditions.

Deep Learning Advancements: Recent studies have increasingly adopted deep

learning techniques, which have shown superior performance in terms of accuracy and

robustness. For example, papers utilizing architectures like RNN Autoencoder, Dy-

namic Routing Between Capsules, and Graph Convolutional Networks (GCNs) have

demonstrated significant improvements in feature extraction and recognition accu-

racy. These methods are capable of capturing both spatial and temporal dynamics,

crucial for accurate gait recognition.

Feature Extraction and Selection: The use of hybrid approaches combin-

ing handcrafted and deep learning-based feature extraction methods, such as Local

Graphical Skeleton Descriptor (LGSD) and Set Pooling (SP) methods, has been ef-

fective. These techniques enhance the model’s ability to handle variations in gait

patterns due to different walking conditions, speeds, and environmental factors.

Evaluation Metrics and Performance: The studies utilized a range of eval-

uation metrics, including accuracy, precision, recall, F1 score, AUC, and Rank-1

accuracy, to comprehensively assess model performance. The comparative analysis

indicates that deep learning models generally achieve higher accuracy and better gen-

eralization across different datasets and conditions compared to traditional methods.

Results and Implications: The most recent models, particularly those employ-

ing transfer learning and ensemble techniques, have achieved notable improvements in

recognition accuracy. For instance, models like CNN-LSTM and CNN with transfer

learning achieved accuracies of up to 94.29%. The inclusion of comprehensive pre-

processing steps, such as data augmentation and normalization, further contributed

to these advancements.

The literature survey highlights the evolution from traditional methods to more
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sophisticated deep learning approaches in gait recognition. The findings underscore

the importance of advanced feature extraction techniques, robust training strategies,

and the use of comprehensive evaluation metrics. These advancements have signif-

icantly enhanced the accuracy, robustness, and generalizability of gait recognition

systems, making them more applicable to real-world scenarios. The survey concludes

that deep learning methods, particularly those integrating multiple features and em-

ploying ensemble techniques, offer the best performance for gait recognition tasks.

2.3 Research gap

2.3.1 Identified Research Gaps in the Literature

1. Limited Handling of Diverse Walking Conditions: Many studies, in-

cluding those utilizing traditional methods and some deep learning models, have not

adequately addressed the variability in walking conditions, such as different speeds,

carrying conditions, and environmental factors. This limitation affects the models’

robustness and generalizability across real-world scenarios.

2. Inadequate Use of Spatiotemporal Features: While some papers have

explored the use of spatiotemporal features, many approaches rely heavily on either

spatial or temporal features, rather than effectively integrating both. This oversight

can result in suboptimal recognition performance, as it fails to fully capture the

dynamic nature of gait.

3. Underutilization of Advanced Deep Learning Techniques: Despite

the progress in using deep learning models like CNNs and RNNs, there is a notable

lack of exploration into more advanced architectures, such as Transformer models or

more innovative ensemble techniques. This gap suggests potential areas for further

improving accuracy and robustness.

4. Feature Selection and Fusion Limitations: Feature selection and fusion

methods, crucial for handling high-dimensional data and improving model efficiency,

are often underexplored or limited to basic techniques. Advanced methods for feature

selection and fusion that can better leverage the strengths of multiple feature types

are not thoroughly investigated.

5. Insufficient Focus on Cross-View and Cross-Condition Recognition:
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The ability of gait recognition systems to perform consistently across different views

and conditions (cross-view recognition) has not been extensively explored. Many

models show decreased performance when tested on data from angles or conditions

not seen during training.

6. Lack of Comprehensive Evaluation Metrics: While most studies report

common metrics like accuracy and F1 score, there is a lack of comprehensive evalua-

tion using a broader range of metrics, such as precision, recall, and AUC, which are

crucial for a more nuanced understanding of model performance.

2.3.2 Motivation

In addressing these gaps, my research focuses on developing a robust and ver-

satile gait recognition system by leveraging advanced deep learning techniques and

comprehensive feature integration strategies:

• Addressing Diverse Walking Conditions: My work incorporates extensive

data augmentation techniques to simulate various walking conditions and envi-

ronments, enhancing the model’s ability to generalize across different scenarios.

This approach directly tackles the limitations seen in handling diverse walking

conditions.

• Enhanced Spatiotemporal Feature Integration: I utilize state-of-the-art

spatiotemporal models, including advanced architectures like 3D CNNs and

LSTMs, to capture both spatial and temporal aspects of gait data comprehen-

sively. This integration aims to overcome the deficiencies of previous studies

that focused on either spatial or temporal features alone.

• Exploration of Advanced Architectures: My research explores the use of

more sophisticated deep learning architectures, such as Transformer-based mod-

els and hybrid networks, which have shown promise in other domains but are

underutilized in gait recognition. This exploration aims to push the boundaries

of current performance limits.

• Innovative Feature Selection and Fusion Techniques: I investigate ad-

vanced feature selection methods and innovative fusion techniques, such as se-

rial and parallel fusion strategies, to enhance the model’s ability to handle
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high-dimensional data and improve efficiency. This focus addresses the gap in

leveraging the strengths of multiple feature types.

• Focus on Cross-View and Cross-Condition Performance: Special em-

phasis is placed on evaluating the models across different views and conditions,

using comprehensive cross-view and cross-condition testing protocols. This as-

pect ensures that the model is not only accurate but also robust across various

scenarios.

• Comprehensive Evaluation Metrics: My work utilizes a broad set of eval-

uation metrics, including accuracy, precision, recall, F1 score, and AUC, pro-

viding a detailed and comprehensive assessment of the model’s performance.

This comprehensive evaluation allows for a more nuanced understanding of the

strengths and weaknesses of the models.

By addressing these research gaps, my work aims to contribute significantly to the

field of gait recognition, providing a more robust, accurate, and generalize solution

that can perform effectively across diverse conditions and datasets.

2.4 Novelty

• Novel Application of Kolmogorov-Arnold Networks (KANs):

– Introduction and application of KANs in the context of gait recognition,

offering a unique approach to handling the complexities of gait data and

improving the accuracy and robustness of the recognition system, which

are relatively unexplored in the domain of gait recognition.

• Comprehensive Spatiotemporal Integration:

– Utilization of advanced spatiotemporal models such as 3D CNNs and

LSTMs [55], providing a holistic approach to capturing both spatial and

temporal dynamics in gait data.

• Innovative Feature Selection and Fusion Techniques:
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– Development and application of novel feature fusion methods, including se-

rial and parallel fusion strategies, to effectively combine handcrafted and

deep learning-based features, enhancing the model’s robustness and accu-

racy.

• Robust Cross-View and Cross-Condition Recognition:

– Focus on ensuring high performance across various views and conditions

by using extensive data augmentation techniques and testing the models

under diverse scenarios, addressing a significant gap in existing literature.

• Utilization of Advanced Evaluation Metrics:

– Comprehensive evaluation using a wide range of metrics, including ac-

curacy, precision, recall, F1 score, and AUC, providing a detailed and

nuanced analysis of model performance.

• Enhanced Data Preprocessing Techniques:

– Application of sophisticated data preprocessing steps, such as advanced

edge detection and contrast enhancement methods, tailored specifically

for improving the quality of gait data under different conditions.

• Focus on Real-World Applicability:

– Emphasis on creating models that are not only accurate in controlled en-

vironments but also robust and reliable in real-world scenarios, including

challenging conditions like low lighting and varying environmental factors.

• Cross-Dataset Validation:

– Validation of the proposed models across multiple datasets, including CASIA-

A, CASIA-B, and CASIA-C, to demonstrate the generalizability and scal-

ability of the approach.

• Integration of Transfer Learning:
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– Effective use of transfer learning from pre-trained models, fine-tuned for

gait recognition tasks, significantly reducing training time while enhancing

model performance.



Chapter 3

Module 1: Data Preprocessing and Augmentation

The primary objective of Module 1 was to enhance the quality and variability of

the gait dataset through advanced data preprocessing and augmentation techniques.

This module is essential for ensuring the robustness and accuracy of the gait recog-

nition models developed later in the research. The data preprocessing steps included

edge detection, contrast enhancement, and noise reduction, which collectively im-

proved the visibility and clarity of the gait images. Edge detection techniques was

implemented using techniques like Canny, Sobel, and Laplacian filters to highlight

structural features of the gait patterns. Contrast enhancement, specifically through

CLAHE (Contrast Limited Adaptive Histogram Equalization) [56], was applied to im-

prove local contrast and visibility, while noise reduction was achieved using Gaussian

and median filtering to clean the images from unwanted noise. Following these prepro-

cessing steps, image augmentation was performed to increase dataset variability and

robustness, employing techniques such as rotation and flipping (both horizontal and

vertical). These augmentations help simulate different viewing angles and conditions,

making the dataset more comprehensive and the models more generalizable. This

module lays the groundwork for robust and efficient feature extraction and model

training, crucial for achieving high accuracy in gait recognition. Figure 3.1 provides

a detailed overview of the data preprocessing and augmentation steps implemented

in Module 1.

28
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Figure 3.1: Module 1

3.1 Gait Dataset

Gait recognition datasets are pivotal for the development and evaluation of gait

recognition systems. These datasets typically contain sequences of images or videos

capturing the walking patterns of individuals under various conditions. The datasets

vary in terms of the number of subjects, recording conditions, camera angles, and

types of variations (such as clothing changes, carrying conditions, and walking speeds).

Some widely used gait datasets include CASIA, OU-ISIR, and TUM-GAID, each of-

fering unique challenges and opportunities for advancing gait recognition research.

3.1.1 CASIA Gait Datasets

The CASIA Gait Database, developed by the Chinese Academy of Sciences, is one

of the most comprehensive and widely used datasets in gait recognition research. It

consists of several subsets, each designed to address specific research needs.
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3.1.2 CASIA A dataset

Description: CASIA-A, the earliest subset, consists of sequences of 20 sub-

jects captured in a controlled environment. It includes 20 output labels for CASIA-

A,corresponding to different individuals.

Data Collection: The dataset captures the gait sequences using a single camera,

with subjects walking along a straight path.

Views: It includes variations in walking direction from three viewpoints: left, right,

and frontal.

Frame Rate and Resolution: The video sequences are captured at a frame rate

of 25 frames per second with a resolution of 320x240 pixels.

Applications: CASIA-A is primarily used for initial studies and proof-of-concept

testing of gait recognition algorithms due to its controlled and straightforward setup.

Fig 3.2 provides an overview of the CASIA A Dataset structure

Figure 3.2: : CASIA A dataset structure

3.1.3 CASIA B dataset

Description: CASIA-B is a comprehensive dataset that includes 124 subjects.

It is one of the largest and most varied gait datasets available. It includes 124 output

labels for CASIA-B,corresponding to different individuals.

Data Collection: The dataset captures gait sequences using 11 cameras arranged

at different angles (0°, 18°, 36°, 54°, 72°, 90°, 108°, 126°, 144°, 162°, 180°), providing

a wide range of viewing angles.
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Conditions: Each subject is recorded under three different conditions:

1. Normal Walking: The subjects walk without any additional items.

2. Walking with a Bag: The subjects walk while carrying a bag.

3. Clothing Variation: The subjects walk while wearing different clothing.

Frame Rate and Resolution: The video sequences are captured at a frame

rate of 25 frames per second with a resolution of 320x240 pixels.

Applications: CASIA-B is ideal for developing and benchmarking robust gait recog-

nition systems, as it provides extensive variations in view angles, walking conditions,

and clothing.

Fig 3.3 provides an overview of the CASIA B Dataset structure

Figure 3.3: : CASIA B dataset structure

3.1.4 CASIA C dataset

Description: CASIA-C focuses on gait recognition in low-light conditions using

infrared (IR) cameras, making it unique among the CASIA subsets.

Data Collection: The dataset consists of 153 subjects, captured using an in-

frared camera in a dark environment. It includes 153 output labels for CASIA-

C,corresponding to different individuals.
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Views: The subjects are recorded from four different viewpoints: 0°, 45°, 90°, and

135°.

Frame Rate and Resolution:The video sequences are captured at a frame rate

of 25 frames per second with a resolution of 320x240 pixels.

Applications: CASIA-C is critical for research focused on gait recognition in night-

time or low-light scenarios, which is essential for applications in surveillance and

security where visibility can be a significant issue.

Fig 3.4 provides an overview of the CASIA C Dataset structure

Figure 3.4: : CASIA C dataset structure

3.1.5 Importance of CASIA Datasets

The CASIA-A, CASIA-B, and CASIA-C datasets are among the best choices for

gait recognition research due to several key reasons:

1. Diverse Conditions: They cover a wide range of conditions, including dif-

ferent viewing angles, walking scenarios (with and without carrying items),

clothing variations, and low-light environments. This diversity is crucial for

developing robust and versatile gait recognition algorithms.

2. Wide Range of Views: CASIA-B provides 11 different viewing angles, while
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CASIA-C offers 4 views under infrared conditions. This variety is greater com-

pared to other datasets, such as TUM GAID, which typically offers fewer view-

ing angles.

3. Infrared Modality: CASIA-C includes infrared data, which is rare among

gait datasets and valuable for research in low-light or night-time conditions.

This feature is particularly useful for surveillance applications where visual data

might be insufficient.

4. Large Subject Pool: The datasets include a significant number of subjects,

particularly CASIA-B and CASIA-C, providing a rich and varied pool of gait

patterns for training and evaluation.

5. Controlled and Uncontrolled Settings: The datasets offer both controlled

(CASIA-A and CASIA-B) and uncontrolled (CASIA-C) settings, allowing re-

searchers to test their algorithms in ideal as well as challenging conditions.

6. Benchmark Status: CASIA datasets have become a standard benchmark in

the gait recognition community, facilitating the comparison of new algorithms

with existing state-of-the-art methods.
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3.1.6 Comparison of Gait Recognition Datasets

Dataset Subjects Conditions Views Modality Notable Features

CASIA-
A

20 Normal
3 (Left,
Right,
Front)

Visual
Controlled
environment, initial
studies

CASIA-
B

124

Normal,
Bag,
Clothing
Variations

11 (0°
to 180°) Visual

Extensive views and
conditions, large
subject pool

CASIA-
C

153 Normal
4 (0°,
45°, 90°,
135°)

Infrared
(IR)

Low-light conditions,
night-time
surveillance
applications

OU-
ISIR LP

4,016 Normal Multiple Visual

Very large subject
pool, high resolution,
limited condition
variability

TUM
GAID

305
Normal,
Carrying,
Shoes

3
(Frontal,
Lateral)

Visual,
Depth,
IMU

Multimodal data,
varied conditions,
focus on daily
activities

Soton 115
Normal,
Different
Speeds

Multiple Visual
High resolution,
varied walking speeds

OU-
ISIR
MVLP

10,307 Normal
14 (0°
to 180°) Visual

Extremely large
subject pool,
comprehensive view
angles, normal
condition

Table 3.1: Comparison of Gait Recognition Datasets

CASIA-A is crucial for initial studies and controlled experiments, providing a

consistent environment to benchmark new techniques.

CASIA-B stands out for its comprehensive view angles and multiple conditions

(normal, carrying a bag, and clothing variations), offering a robust dataset for devel-

oping and testing models under varied scenarios.

CASIA-C is unique for its infrared (IR) modality, specifically designed for low-

light and night-time surveillance, making it highly valuable for real-world security

applications where visibility is poor.
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While OU-ISIR LP has a very large subject pool and high resolution, it lacks the

condition variability seen in CASIA-B, making it less comprehensive for evaluating

models under diverse conditions.

TUM GAID is valuable for its multimodal data and varied conditions but has

fewer views and a smaller subject pool compared to CASIA-B and CASIA-C, limiting

its scope for comprehensive model evaluation.

Soton offers high resolution and varied walking speeds but does not match the

extensive view angles and condition variability of CASIA-B.

OU-ISIR MVLP has the largest subject pool and comprehensive view angles,

but it primarily focuses on normal walking conditions, lacking the varied conditions

provided by CASIA-B.

3.2 Data Preprocessing and Augmentation

3.2.1 Edge Detection

Edge detection is a critical process in image processing and computer vision,

focused on identifying significant local changes in intensity within an image. These

changes often represent boundaries of objects, which are crucial for understanding

the structure and content of an image.

Role of Edge Detection in Gait Recognition:

In gait recognition, edge detection plays a pivotal role by emphasizing the struc-

tural details of human silhouettes. This enhancement allows for better extraction of

relevant features, improving the accuracy and efficiency of the recognition process.

Figure 3.5 outlines the comprehensive role of edge detection in this context.
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Figure 3.5: : Role of Edge Detection

Importance of Edge Detection:

1. Structural Details: Edge detection highlights the crucial structural aspects of

the silhouette, which are essential for distinguishing between different gait pat-

terns.

2. Consistency Across Variations: By focusing on edges, the method remains ro-

bust to variations in lighting, clothing, and background.

3. Noise Reduction: Techniques like edge detection help in reducing noise, thereby

improving the clarity and quality of the extracted features.

4. Silhouette Emphasis: Edges accentuate the boundaries of the silhouette, making

it easier to isolate the human figure from the background.

Enhancement of Feature Visibility:

Edge detection significantly enhances the visibility of important features in an

image. By focusing on the boundaries and edges of objects, edge detection algorithms

make it easier to distinguish different components of an image, which is particularly

useful in gait recognition. This visibility enhancement is crucial for identifying and

analyzing the distinct movements and postures that characterize an individual’s gait.
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Why use Edge Detection:

1. Effectiveness in Silhouette Extraction: Simplifies the data by focusing on the

most informative parts, which are the edges.

2. Complementarity with Other Features: When combined with other feature ex-

traction techniques, edge detection enhances the overall feature set.

3. Robustness to Variations: Edge detection methods like Canny, Sobel, and

Laplacian are robust to various changes, ensuring reliable performance.

4. Proven Success: These techniques have been extensively tested and proven suc-

cessful in numerous computer vision applications.

Data Simplification and Focus:

Edge detection simplifies the data by reducing the amount of information that

needs to be processed. Instead of analyzing every pixel in an image, the focus is

shifted to the pixels that form the edges, which represent the most critical features.

This reduction in data complexity helps in creating more efficient algorithms for gait

recognition.

Improvement in Computational Efficiency:

Edge detection contributes to computational efficiency by reducing the amount

of data that needs to be processed and analyzed. This efficiency is critical in real-

time applications like gait recognition systems, where quick and accurate processing

is required.

Choosing Edge Detection Techniques:

For my research, three edge detection techniques were selected: Canny, Sobel, and

Laplacian. Each of these techniques offers unique advantages:

1. Canny Edge Detection: Known for its ability to detect edges with low error rate

and being able to detect true edges while minimizing noise. It uses a multi-stage

algorithm to achieve optimal results.
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2. Sobel Edge Detection: Utilizes gradient approximation to detect edges, making

it very effective for highlighting changes in intensity in horizontal and vertical

directions.

3. Laplacian Edge Detection: Employs second-order derivatives to find regions of

rapid intensity change, providing a high level of detail and accuracy. These tech-

niques were chosen over others due to their proven effectiveness in highlighting

the critical features of gait patterns while maintaining robustness against noise

and variations.

Why Canny, Sobel, and Laplacian are Preferred

1. Canny Edge Detection: Accuracy: The Canny edge detector is known for its

high accuracy and ability to detect edges in images with a low error rate. It

uses a multi-stage process that includes noise reduction, gradient calculation,

non-maximum suppression, and edge tracking by hysteresis.

Edge Localization: Canny excels at precisely locating the position of edges,

making it suitable for applications requiring high precision.

2. Sobel Edge Detection: Simplicity: Sobel is straightforward to implement and

computationally efficient, making it a popular choice for basic edge detection

tasks.

Edge Orientation: It effectively detects edges and their orientation, which is

valuable in many image processing applications.

3. Laplacian Edge Detection: Detail Detection: Laplacian is adept at detecting

fine details and regions of rapid intensity change, which is crucial for applica-

tions that require detailed edge information.

Complements Other Methods: Often used in conjunction with other edge detec-

tors to enhance edge detection capabilities.The table 3.2 below gives a broader

comparison
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Technique Description Advantages Disadvantages

Canny
Uses a multi-stage algo-
rithm to detect a wide range
of edges in images.

High accuracy, low er-
ror rate, good localiza-
tion.

Computationally
intensive, sensi-
tive to noise.

Sobel
Computes the gradient of
the image intensity at each
pixel, emphasizing edges.

Simple, effective for
detecting edges and
their orientation, easy
to implement.

Sensitive to
noise, may miss
fine details.

Laplacian

Highlights regions of rapid
intensity change and is
based on the second deriva-
tive of the image.

Detects fine details
and edges, effective for
highlighting regions
of rapid intensity
change.

Sensitive to
noise, can detect
false edges.

Prewitt
Similar to Sobel but uses a
different kernel for edge de-
tection.

Simple and fast, effec-
tive for basic edge de-
tection tasks.

Less accurate
than Canny,
sensitive to
noise.

Roberts
Cross

Uses a pair of 2x2 convolu-
tion kernels to perform edge
detection.

Simple, quick to
compute, effective for
high-contrast edges.

Sensitive to
noise, not
suitable for de-
tecting complex
edges.

Scharr
An improved version of So-
bel with better rotational
symmetry.

Better at detecting
edges than Sobel, less
sensitive to noise.

Computationally
more intensive
than Sobel.

Frei-Chen
Uses a set of masks to detect
edges in different directions.

Capable of detecting
edges in multiple di-
rections, effective for
edge enhancement.

Complex, com-
putationally in-
tensive, sensitive
to noise.

Table 3.2: Comparison of Edge Detection Techniques

Figure 3.6: : Edge Detection Techniques
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Implementation of Edge Techniques

Canny Edge Detection

The Canny edge detection algorithm is known for its ability to detect a wide range

of edges in images. It involves several steps:

1. Noise Reduction: The image is smoothed using a Gaussian filter to reduce noise.

This is achieved by convolving the image with a Gaussian kernel:

The function G(x, y) is given by:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

2. Gradient Calculation: The gradient intensity and direction are computed using

Sobel filters: The gradients Gx and Gy are given by:

Gx =
∂I

∂x
, Gy =

∂I

∂y

The gradient magnitude and direction are then given by:

G =
√︂

G2
x +G2

y, θ = tan−1

(︃
Gy

Gx

)︃
3. Non-Maximum Suppression: Thinning the edges to remove non-maximum pix-

els, retaining only local maxima in the gradient direction.

4. Double Thresholding: Identifying strong, weak, and non-relevant pixels based

on two thresholds. Strong edges are retained, weak edges are considered if

connected to strong edges.

5. Edge Tracking by Hysteresis: Final edges are determined by suppressing all

edges that are not connected to a strong edge.

Sobel Operator The Sobel operator computes the gradient magnitude of the image

using convolution with Sobel kernels. It detects edges by emphasizing regions of high

spatial frequency which correspond to edges. Sobel kernels:

Kx =

⎡⎢⎢⎣
−1 0 1

−2 0 2

−1 0 1

⎤⎥⎥⎦ , Ky =

⎡⎢⎢⎣
−1 −2 −1
0 0 0

1 2 1

⎤⎥⎥⎦
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Gradient computation:

Gx = I ∗Kx, Gy = I ∗Ky

Gradient magnitude and direction:

G =
√︂
G2

x +G2
y, θ = tan−1

(︃
Gy

Gx

)︃
Laplacian Operator The Laplacian operator detects edges by computing the

second derivative of the image, highlighting regions of rapid intensity change. Lapla-

cian kernel:

K =

⎡⎢⎢⎣
0 1 0

1 −4 1

0 1 0

⎤⎥⎥⎦
Convolution with the Laplacian kernel to obtain the edge response:

G = I ∗K
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Edge Detection Algorithm

Algorithm 1 Edge Detection

Require: Input image I

Ensure: Image with detected edges Iedges

1: Step 1: Convert to Grayscale

2: Igray ← cv2.cvtColor(I, cv2.COLOR BGR2GRAY)

3: Step 2: Apply Canny Edge Detection

4: edges canny ← cv2.Canny(Igray, 100, 200)

5: Step 3: Apply Sobel Edge Detection

6: edges sobel← cv2.Sobel(Igray, cv2.CV 64F, 1, 1, ksize=5)

7: Step 4: Apply Laplacian Edge Detection

8: edges laplacian← cv2.Laplacian(Igray, cv2.CV 64F)

9: Step 5: Combine Edge Detection Results

10: combined edges← edges canny + edges sobel + edges laplacian

11: Step 6: Convert Combined Edges to 8-bit Image

12: Iedges ← cv2.convertScaleAbs(combined edges)

13: Step 7: Convert to BGR for Output

14: Iedges bgr ← cv2.cvtColor(Iedges, cv2.COLOR GRAY2BGR)

15: Return Iedges bgr



43

3.3 Contrast Enhancement and Noise Reduction

Contrast enhancement is a crucial preprocessing step in image processing that

aims to improve the visibility of features within an image. By increasing the con-

trast, the difference between light and dark areas is accentuated, making important

features more distinguishable. This is particularly important in applications like gait

recognition, where subtle variations in the silhouette and edges of a person’s gait can

significantly impact the accuracy of recognition algorithms. Techniques like Contrast

Limited Adaptive Histogram Equalization (CLAHE) are widely used for this purpose.

Noise reduction involves the removal of unwanted random variations in intensity

(noise) from an image. Noise can significantly degrade image quality, making it

difficult to identify and analyze features accurately. Techniques such as Gaussian and

median filtering are commonly used to smooth the image while preserving important

edges.

3.3.1 Role of Contrast Enhancement and Noise Reduction in Gait

Recognition

1. Improvement in Silhouette Extraction: Contrast Enhancement: By en-

hancing the contrast in gait images, the boundaries and contours of the silhou-

ette become more defined, making it easier to extract accurate silhouettes for

further analysis. This is critical in gait recognition as the silhouette is a primary

feature used for identifying individuals.

Noise Reduction: Removing noise from the image helps in obtaining cleaner

silhouettes, which reduces errors in the feature extraction process. This leads

to more reliable gait recognition.

2. Enhanced Feature Discrimination: Contrast Enhancement: Increases the

visibility of subtle features that may be important for distinguishing between

different gait patterns. This is particularly useful when dealing with variations

in clothing or carrying conditions, as the enhanced contrast can highlight unique

walking characteristics.
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Noise Reduction: By reducing random variations and noise, the features ex-

tracted are more consistent and reliable, improving the discrimination power of

the recognition system.

3. Consistency in Variable Conditions: Contrast Enhancement: Ensures that

gait features are consistently visible under varying lighting conditions, which is

crucial for real-world applications where lighting can change drastically.

Noise Reduction: Provides consistent image quality, even in the presence of

environmental noise, making the gait recognition system more robust across

different scenarios.

4. Increased Accuracy in Feature Matching: Contrast Enhancement: En-

hances the key features that are used for matching gait patterns, leading to

higher accuracy in recognizing individuals.

Noise Reduction: Reduces false matches caused by noise, thereby increasing the

overall accuracy of the recognition system.

5. Reduced Computational Load: Contrast Enhancement: With clearer and

more distinct features, the computational algorithms can process the images

more efficiently, leading to faster recognition times.

Noise Reduction: Cleaner images require less processing power to filter out ir-

relevant information, thus optimizing the computational efficiency of the recog-

nition system.

Why Choose CLAHE, Median Filtering, and Gaussian Filtering?

CLAHE (Contrast Limited Adaptive Histogram Equalization):

1. Localized Enhancement: Enhances contrast in small regions, making it effective

in highlighting fine details without amplifying noise.

2. Adaptability: Adjusts to local variations in the image, providing a more bal-

anced contrast enhancement.

Median Filtering:
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Table 3.3: Table of Contrast Enhancement and Noise Reduction Techniques

Technique Purpose Advantages Disadvantages
Histogram
Equalization

Contrast En-
hancement

Simple, effective for
global contrast

May over-enhance
noise

CLAHE
Contrast En-
hancement

Enhances local con-
trast, prevents over-
amplification of noise

More complex, com-
putationally intensive

Median Filtering
Noise Reduc-
tion

Preserves edges, effec-
tive against salt-and-
pepper noise

Can be computation-
ally expensive

Gaussian Filter-
ing

Noise Reduc-
tion

Smooths image, re-
duces Gaussian noise

Blurs edges, may not
remove all types of
noise

Bilateral Filter-
ing

Noise Reduc-
tion

Preserves edges while
reducing noise

Computationally in-
tensive

1. Edge Preservation: Effectively removes salt-and-pepper noise while preserving

the edges, which are crucial for accurate silhouette extraction in gait recognition.

2. Robustness: Handles outliers effectively, making it suitable for images with

various types of noise.

Gaussian Filtering:

1. Smooth Blurring: Reduces high-frequency noise without significantly blurring

the image, maintaining important details for feature extraction.

2. Efficiency: Simple to implement and computationally efficient, making it a

practical choice for preprocessing large datasets.

3.3.2 Implementation of Contrast Enhancement and Noise Reduction

1. CLAHE:

CLAHE(I, clipLimit, tileGridSize) = adaptiveEqualizeHist(I, clipLimit, tileGridSize)

Where I is the input image, clipLimit controls the contrast limiting, and tileGridSize

defines the size of the grid for histogram equalization.
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2. Median Filtering:

Imedian(x, y) = median({I(x+ i, y + j) | −k ≤ i, j ≤ k})

Where I is the input image, and the filter replaces the pixel value at (x, y) with the

median of its neighbors within a k × k window.

3. Gaussian Filtering:

Igaussian(x, y) =
1

2πσ2

k∑︂
i=−k

j∑︂
j=−k

I(x+ i, y + j)e−
i2+j2

2σ2

Where I is the input image, σ is the standard deviation of the Gaussian kernel, and

the summation is performed over a k × k window centered at (x, y).

Algorithm 2 Contrast Enhancement and Noise Reduction

Require: Input image I

Ensure: Enhanced and noise-reduced image Ioutput

1: Step 1: Convert to Grayscale

2: Igray ← cv2.cvtColor(I, cv2.COLOR BGR2GRAY)

3: Step 2: Apply CLAHE for Contrast Enhancement

4: Create CLAHE object clahe ← cv2.createCLAHE(clipLimit=2.0, tileGrid-

Size=(8, 8))

5: Apply CLAHE to grayscale image Ienhanced ← clahe.apply(Igray)

6: Step 3: Convert Enhanced Image Back to BGR

7: Ienhanced bgr ← cv2.cvtColor(Ienhanced, cv2.COLOR GRAY2BGR)

8: Step 4: Apply Gaussian Blur for Noise Reduction

9: Iblurred ← cv2.GaussianBlur(Ienhanced bgr, (5, 5), 0)

10: Step 5: Apply Median Blur for Additional Noise Reduction

11: Ioutput ← cv2.medianBlur(Iblurred, 5)

12: Return Ioutput
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3.3.3 Image augmentation

Image augmentation is a technique used to artificially increase the size and vari-

ability of a dataset by applying various transformations to the original images. This

process is particularly useful in training deep learning models, as it helps improve their

generalization capabilities by exposing them to a wider variety of image conditions.

Role of Image Augmentation in Gait Recognition

In the context of gait recognition, image augmentation plays a crucial role by

enhancing the robustness and accuracy of the model. Gait patterns can vary signifi-

cantly due to changes in clothing, carrying conditions, and walking speeds. Augmen-

tation helps in creating a more diverse training set, allowing the model to learn these

variations and perform better in real-world scenarios.

Why Use Image Augmentation

Using image augmentation provides several benefits:

1. Increased Dataset Variability: Augmentation generates diverse samples from

the original dataset, which helps in reducing overfitting and improving the

model’s ability to generalize to new data.

2. Improved Model Robustness: By training on augmented data, the model be-

comes more robust to variations and distortions, leading to better performance

on unseen data.

3. Cost-Effective: It is a cost-effective way to enhance the dataset without the

need for additional data collection.

Choosing Image Augmentation Techniques

The choice of augmentation techniques depends on the specific requirements of the

gait recognition task. Commonly used techniques include rotation, flipping, cropping,

scaling, and adding noise. For gait recognition, techniques that simulate real-world

variations in walking patterns and conditions are preferred.
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Table 3.4: Table of Image Augmentation Techniques

Technique Purpose Advantages Disadvantages

Rotation
Simulates different
viewing angles

Increases rotational
invariance

May distort the origi-
nal image

Flipping
Simulates mirrored
views

Simple and effective
Not suitable for asym-
metric patterns

Scaling
Simulates different
distances

Handles variations in
size

Can alter aspect ratio

Cropping
Focuses on parts of
the image

Enhances robustness
to occlusions

Can lose important
features

Adding Noise Simulates sensor noise
Improves robustness
to real-world noise

Can degrade image
quality

The chosen techniques (rotation, flipping, and adding noise) are specifically se-

lected for their ability to simulate realistic variations in gait patterns. These tech-

niques are simple yet effective, providing a balance between increasing dataset vari-

ability and maintaining the integrity of the original gait patterns.

3.3.4 Implementation of Image Augmentation

Mathematical Formulas:

Rotation: [︄
x′

y′

]︄
=

[︄
cos θ − sin θ

sin θ cos θ

]︄[︄
x

y

]︄
Where (x, y) are the original coordinates and (x′, y′) are the new coordinates after

rotation by an angle θ.

Flipping: Horizontal flipping can be represented as:

x′ = −x, y′ = y

Vertical flipping can be represented as:

x′ = x, y′ = −y

Adding Gaussian Noise:

I ′(x, y) = I(x, y) +N(0, σ2)
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Figure 3.7: Different views of Image Augmentation

Where I(x, y) is the original pixel value, I ′(x, y) is the new pixel value, and N(0, σ2)

is Gaussian noise with mean 0 and variance σ2.

3.3.5 Image Augmentation Techniques

1. Rotation

Modification: Rotation involves rotating the image by a specific angle. Common

angles include 90°, 180°, and 270°. Impact:

Increased Variability: By rotating images, the dataset includes different perspec-

tives of the same gait pattern, simulating various viewpoints. Robustness: Models

trained on rotated images are more robust to changes in the walking direction and

camera angle.

2. Flipping

Horizontal Flip: Modification: This involves flipping the image horizontally, cre-

ating a mirror image. Impact:

Symmetry: Incorporates the natural symmetry of human gait into the dataset,

helping the model learn invariant features. Data Balance: Helps balance the dataset
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if there is an uneven distribution of left and right walking directions.

Vertical Flip: Modification: This involves flipping the image vertically. Impact:

Increased Variability: Adds variability, although less commonly used as it does

not reflect real-world scenarios as much as horizontal flips.

3. Scaling

Modification: Scaling involves zooming in or out of the image, changing its size

while maintaining the aspect ratio. Impact:

Perspective Variation: Helps the model learn gait patterns at different scales,

simulating varying distances from the camera. Robustness to Size Changes: Ensures

that the model can handle variations in the subject’s size due to different camera

distances or zoom levels.

4. Translation

Modification: Translation shifts the image in the x (horizontal) or y (vertical)

direction. Impact:

Positional Variation: Simulates slight changes in subject position relative to the

camera. Robustness to Movement: Ensures the model is robust to minor positional

changes of the subject in the frame.

5. Shearing

Modification: Shearing involves slanting the image along the x or y axis, creating

a skewed effect. Impact: Distortion Handling: Helps the model learn to recognize

gait patterns even when the image is slightly distorted. Increased Dataset Variability:

Adds a unique form of variability that improves model generalization.



Chapter 4

Module 2:Feature Extraction and Selection

The primary objective of Module 2 in the context of gait recognition is to develop

robust and efficient methods for extracting and selecting relevant features from the

raw gait data. This module aims to enhance the accuracy and efficiency of gait

recognition systems by focusing on two key aspects:

4.0.1 Feature Extraction

This involves identifying and capturing the most significant features from the

raw gait data. Feature extraction transforms the original data into a more compact

and informative representation, which can be effectively used for classification and

recognition tasks. The process includes:

• Hybrid Feature Extraction: Utilizing both handcrafted features (such as

Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP)) and

deep learning-based features (such as those extracted using pretrained models

like EfficientNet and ResNet). This combination leverages the strengths of both

traditional and modern approaches to capture comprehensive gait characteris-

tics.

• Spatiotemporal Feature Extraction: Capturing both spatial and temporal

aspects of gait data using models like 3D Convolutional Neural Networks (3D

CNNs) and Recurrent Neural Networks (RNNs). This ensures that the dynamic

nature of gait, which involves sequential movement patterns, is adequately rep-

resented.

4.0.2 Feature Selection

Once the features are extracted, it is crucial to select the most relevant ones to

reduce dimensionality, remove redundancy, and improve the model’s performance.

51
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Effective feature selection enhances computational efficiency and prevents overfitting.

The process includes:

• Dimensionality Reduction Techniques: Employing methods like Principal

Component Analysis (PCA) to reduce the number of features while preserving

the essential information. PCA helps in transforming the feature space into a

lower-dimensional space, making it easier to manage and analyze.

• Feature Fusion: Combining features from different sources or modalities to

create a unified and more informative feature set. This involves techniques like

serial-based feature fusion, which integrates multiple feature types to capture a

holistic view of the gait patterns.

Implementation

• Hybrid Feature Extraction: Utilizing both handcrafted and deep learning

features ensures a comprehensive representation of gait data.

• Dimensionality Reduction and Feature Fusion: Applying PCA and serial-

based feature fusion to enhance feature quality and reduce dimensionality.

• Spatiotemporal Integration: Combining spatial and temporal features to

capture the dynamic nature of gait sequences.

Importance

Enhanced Recognition Accuracy: By extracting and selecting the most relevant

features, the module aims to improve the overall accuracy of the gait recognition

system. Improved Computational Efficiency: Reducing the dimensionality of the fea-

ture set decreases computational requirements and speeds up the recognition process.

Robustness to Variations: Combining different feature types and employing effective

selection techniques ensures that the model is robust to variations in gait patterns

due to factors like clothing, carrying conditions, and walking speed.

4.1 Introduction to Hybrid Feature Extraction in Gait Recognition

Hybrid feature extraction is a powerful technique in gait recognition that leverages

both traditional handcrafted features and modern deep learning-based features to
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create a comprehensive representation of gait patterns. This approach combines the

strengths of different methodologies to enhance the accuracy and robustness of gait

recognition systems.

4.1.1 Role and Importance of Hybrid Feature Extraction in Gait

Recognition

• Enhanced Feature Representation: By combining handcrafted and deep

learning features, hybrid feature extraction captures both global and local char-

acteristics of gait. This comprehensive feature set improves the model’s ability

to distinguish between different gait patterns.

• Robustness to Variations: Hybrid feature extraction helps in creating fea-

tures that are robust to variations in walking conditions, such as changes in

clothing, carrying conditions, and environmental factors.

• Improved Accuracy: The integration of diverse features leads to better model

performance, resulting in higher accuracy rates in recognizing individuals based

on their gait.

• Versatility: This method can be applied across various datasets and condi-

tions, making it a versatile approach for real-world applications.

4.1.2 Why Use Hybrid Feature Extraction

• Complementary Strengths: Handcrafted features like HOG and LBP are

known for their robustness to changes in lighting and pose, while deep learn-

ing features extracted from models like EfficientNet, KANs[Kolmorgov Arnold

Networks] and ResNet capture high-level abstract representations. Combining

these features leverages their complementary strengths.

• Improved Generalization: The hybrid approach improves the generalization

capability of the model, making it perform well on unseen data.

• Comprehensive Feature Set: It provides a more complete representation

of gait, capturing both detailed structural information and high-level semantic

features.
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Figure 4.1: Flowchart of Hybrid Feature Extraction

The above diagram illustrates the hybrid feature extraction process, highlighting the

importance of robust feature extraction, the combination of traditional and deep

learning features, and the specific techniques used (HOG, LBP, EfficientNet, ResNet,

KANs). This visual representation underscores the comprehensive approach taken

to enhance gait recognition performance by integrating multiple feature extraction

methodologies.

4.1.3 Choosing Techniques: Handcrafted and Deep Learning-Based

Features

Handcrafted Features

Histogram of Oriented Gradients (HOG): Description: HOG captures the

gradient orientation histograms of local regions in an image, which represent the edge

directions.

Importance: It is robust to changes in illumination and pose, making it effective

for capturing the silhouette structure of gait.

Local Binary Patterns (LBP): Description: LBP encodes the local texture

information by comparing each pixel with its neighbors.

Importance: It is computationally efficient and robust to monotonic gray-scale

changes, providing valuable texture information.
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4.1.4 Deep Learning-Based Features

• EfficientNet

Description: EfficientNet is a family of convolutional neural networks that

scale up efficiently in terms of model depth, width, and resolution.

Importance: It balances accuracy and computational efficiency, making it

suitable for extracting high-level features from gait images.

• ResNet

Description: ResNet (Residual Networks) uses residual connections to enable

the training of very deep networks.

Importance: It captures complex patterns and high-level abstractions, which

are essential for distinguishing subtle differences in gait.

• Kolorgov-Arnold Networks[KANs]

Description:KANs leverage learnable activation functions to adapt to different

data distributions dynamically.

Importance:This adaptability makes them suitable for capturing the complex

and varied features present in gait patterns.

4.1.5 Implementation of Hybrid Feature Extraction

HOG Feature Extraction Process

Gradient Calculation

The first step is to compute the gradient values in the x and y directions for each

pixel in the image. This can be done using derivative masks.

Gx = I ∗Dx,

Gy = I ∗Dy

where I is the image, and Dx and Dy are derivative masks in the x and y directions,

respectively.
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Orientation Binning

The image is divided into small connected regions called cells. For each cell, a

histogram of gradient directions (or orientations) is computed. Each pixel within the

cell contributes a weighted gradient to an orientation histogram.

Block Normalization

To improve the robustness to illumination and shadowing, the local histograms

are normalized. The normalized group of histograms represents the block, and the

HOG descriptor is obtained by concatenating these histograms.

Feature Vector Construction

The final HOG feature vector is constructed by concatenating the normalized

histograms of all blocks.

Role in Gait Recognition

HOG captures the gradient structure of the silhouettes, which is crucial for distin-

guishing different gait patterns. It emphasizes the edges and transitions in the image,

making it effective for silhouette-based gait recognition.

Mathematical Formula:

HOG:

H =
∑︂
i,j

f(x, y, θ) where f(x, y, θ) =

⎧⎨⎩∥∇I(x, y)∥ if θ(x, y) = θ

0 otherwise

Here, ∥∇I(x, y)∥ is the gradient magnitude and θ(x, y) is the gradient direction.

LBP Feature Extraction Process

Thresholding

For each pixel in the image, compare the pixel value to its neighboring pixels. If

the neighbor’s value is greater or equal, it is assigned a 1; otherwise, it is assigned a

0.
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Binary Pattern Calculation

The binary values are then combined to form a binary number (usually a 3x3

neighborhood, resulting in an 8-bit number).

Histogram Formation

The image is divided into regions (e.g., cells), and the LBP value of each pixel is

computed. The histogram of these values for each region is calculated.

Feature Vector Construction

The histograms of all regions are concatenated to form the final LBP feature

vector.

4.1.6 Role in Gait Recognition

LBP is robust to monotonic gray-scale transformations and captures texture in-

formation effectively. This is useful in gait recognition as it encodes the texture of

the silhouette, which can vary with different clothing or backgrounds.

Mathematical Formula:

LBP:

LBP(xc, yc) =
P−1∑︂
p=0

s(gp − gc) · 2p

where

s(x) =

⎧⎨⎩1 if x ≥ 0

0 otherwise

Here, gc is the gray value of the center pixel, and gp are the gray values of the P

surrounding pixels.
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4.1.7 Comparison Tables

Handcrafted Features Techniques

Technique Description Advantages Disadvantages

HOG
Captures edge directions us-
ing gradient orientation his-
tograms

Robust to illumina-
tion and pose changes,
captures silhouette
structure

Computationally in-
tensive, sensitive to
noise

LBP
Encodes local texture by
comparing pixel intensities

Efficient, robust to
monotonic gray-scale
changes

Less effective with sig-
nificant texture varia-
tions

Gabor Fil-
ters

Captures texture informa-
tion using frequency and
orientation

Effective in texture
representation

High computational
cost, sensitive to noise

SIFT
Detects and describes local
features in images

Highly distinctive, in-
variant to scaling and
rotation

Computationally ex-
pensive, high memory
usage

SURF Similar to SIFT but faster
Fast, good at object
recognition

Less effective for fine-
grained details in gait

Table 4.1: Comparison of Handcrafted Features Techniques

Deep Learning-Based Features Techniques

Technique Description Advantages Disadvantages

EfficientNet
Scales up model depth,
width, and resolution ef-
ficiently

Balanced accuracy and
computational efficiency

Requires significant
computational re-
sources

ResNet
Uses residual connections
to train very deep net-
works

Captures complex pat-
terns, high-level abstrac-
tions

Computationally in-
tensive, large model
size

DenseNet

Connects each layer to
every other layer to en-
sure maximum informa-
tion flow

Reduces vanishing gra-
dient, improves feature
reuse

Large computational
and memory require-
ments

KAN
(Kolmogorov-
Arnold Net-
work)

Uses complex mathemat-
ical transformations for
feature extraction

Captures non-linear re-
lationships and complex
patterns

Computationally
intensive, complex
architecture

Table 4.2: Comparison of Deep Learning-Based Features Techniques
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Conclusion

The combination of handcrafted features (HOG and LBP) and deep learning-based

features (EfficientNet, ResNet, DenseNet, and KAN) in hybrid feature extraction

leverages the strengths of both traditional and modern approaches. This compre-

hensive feature set ensures that both detailed structural information and high-level

semantic features are captured, providing a robust and accurate representation of gait

patterns. This hybrid approach is crucial for achieving high performance in real-world

gait recognition applications.

4.2 EfficientNet, ResNet50, and Kolmogorov-Arnold Network (KAN)

Architectures

Figure 4.2: Overall Architecture

4.2.1 EfficientNet Architecture

EfficientNet models are a family of convolutional neural networks that are designed

to achieve high accuracy while being computationally efficient. They use a compound

scaling method to scale up the network width, depth, and resolution in a balanced

manner.
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Figure 4.3: The EfficientNet architecture employs MBConv blocks to balance between
accuracy and computational efficiency by scaling network dimensions using a compound
scaling method

The key features of EfficientNet include:

• Input Image: The network starts with the input image that is passed through

the initial stem convolution layer.

• Stem Conv: This is a standard convolution layer that preprocesses the input

image before passing it to the main network blocks.

• MBConv Blocks: These are Mobile Inverted Bottleneck Convolutional blocks,

which are the core components of EfficientNet. They are designed to be efficient

in terms of both memory and computation. EfficientNet scales these blocks in

three dimensions: width, depth, and resolution.

• Global Average Pooling: This layer reduces the dimensions of the feature

maps from the MBConv blocks to a fixed size, which helps in reducing the

computational load and overfitting.

• Fully Connected Layer: The features from the global average pooling are

passed to fully connected layers for the final classification.

• Softmax Output: This layer provides the probability distribution over the

target classes.

4.2.2 ResNet Architecture

ResNet50 is a 50-layer deep convolutional neural network with skip connections

(or shortcuts) that allow gradients to flow more easily through the network during

backpropagation.
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Figure 4.4: ResNet Architecure

The critical components of ResNet50 include:

• Input Image: The input image is fed into the network through the initial

convolution layer.

• Conv Layer: This initial convolution layer processes the input image before

passing it to the residual blocks.

• Res Blocks: These blocks are the building units of ResNet. They contain a

series of convolutional layers with skip connections (or shortcuts). The skip con-

nections help in maintaining the gradient flow during backpropagation, which

allows for the training of deeper networks.

• Global Average Pooling: Similar to EfficientNet, this layer reduces the fea-

ture maps to a fixed size.

• Fully Connected Layer: The features are then passed to fully connected

layers for the final classification.

• Softmax Output: This layer outputs the probability distribution over the

target classes.

4.2.3 Kolmorgov Arnold Networks Architecture

Kolmogorov-Arnold Network (KAN) is a neural network inspired by the Kolmogorov-

Arnold representation theorem. It is designed to approximate complex multivariate

functions.
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Figure 4.5: KANs Architecture

Explanation of the Architecture Diagram

Input Features

Description: This is the input layer where the feature vectors (extracted from

images using techniques like EfficientNet and ResNet) are fed into the network.

Role: It takes the combined feature vector obtained from different pre-trained mod-

els.

Conv Layer 1, Conv Layer 2, Conv Layer 3

Description: These are convolutional layers that apply convolution operations

to the input features.

Role: Convolutional layers help in extracting spatial features by applying filters to

the input data, which is particularly useful in capturing patterns within the gait

images.
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Max Pooling 1, Max Pooling 2, Max Pooling 3

Description: These layers perform max pooling operations, which downsample

the input representations by taking the maximum value over a defined window.

Role: Max pooling layers help in reducing the spatial dimensions of the feature

maps, which reduces the computational complexity and helps in extracting dominant

features.

Fully Connected Layer 1, Fully Connected Layer 2, Fully Connected

Layer 3

Description: These are dense layers where each neuron is connected to every

neuron in the previous layer.

Role: Fully connected layers perform high-level reasoning and combination of fea-

tures extracted by the convolutional layers.

Dropout

Description: Dropout layers randomly set a fraction of input units to 0 at each

update during training time, which helps prevent overfitting.

Role: It helps in regularizing the model by preventing overfitting and improving

generalization.

Output Layer

Description: The final layer in the network, which provides the final predictions.

Role: It outputs the probabilities of each class (in this case, different gait patterns)

based on the features processed through the network.

4.2.4 How These Architectures will be used

In this research, EfficientNet and ResNet50 are used as feature extractors in a

feature fusion approach, which combines features from multiple networks to improve

the model’s performance. The Kolmogorov-Arnold Network (KAN) is implemented

as a custom network architecture for further processing the combined features.

Here’s a brief explanation of how these networks are integrated:
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EfficientNet and ResNet50 Feature Extraction

• EfficientNet and ResNet50 are pre-trained models that are used to extract fea-

tures from the input images.

• The features extracted from both networks are concatenated to form a combined

feature vector.

Kolmogorov-Arnold Network (KAN)

• The combined feature vector is fed into the Kolmogorov-Arnold Network (KAN).

• KAN consists of several fully connected layers that process the combined fea-

tures and output the final prediction.

By using multiple feature extraction networks and combining their outputs, the

model can leverage the strengths of each network to achieve better performance. The

final predictions are made based on the processed combined features, which are more

robust and informative.
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Module 3: Model Training and Evaluation

5.1 Introduction to Model Training and Evaluation

Model training and evaluation are critical phases in the development of gait recog-

nition systems. These processes ensure that the models are capable of accurately

identifying individuals based on their gait patterns. Training involves teaching the

model to recognize and classify gait patterns using labeled data, while evaluation

assesses the model’s performance on unseen data to ensure its generalizability and

robustness.

5.2 Role of Model Training and Evaluation in Gait Recognition

5.2.1 Importance of Model Training

• Learning Patterns: During training, the model learns the underlying patterns

and features of gait data. This learning process is essential for the model to

make accurate predictions.

• Parameter Optimization: Training helps in optimizing model parameters

such as weights and biases, which are crucial for minimizing prediction errors.

• Handling Variability: Training on diverse datasets allows the model to han-

dle variability in gait patterns due to different conditions, such as changes in

clothing or walking speed.

5.2.2 Importance of Model Evaluation

• Assessing Performance: Evaluation metrics such as accuracy, precision, re-

call, F1 score, and AUC (Area Under the Curve) provide insights into how well

the model performs on unseen data.
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• Ensuring Generalizability: Evaluation ensures that the model is not over-

fitting to the training data and can generalize well to new, unseen examples.

• Identifying Weaknesses: Through evaluation, weaknesses in the model can

be identified, allowing for further improvements and refinements.

5.2.3 Why Use Model Training and Evaluation?

• Accuracy: Proper training and evaluation ensure high accuracy in recognizing

individuals based on their gait.

• Robustness: They help in creating robust models that can perform well under

various conditions and across different datasets.

• Efficiency: Evaluation helps in identifying the most efficient models that bal-

ance performance with computational requirements.

5.2.4 Choosing Techniques for Model Training and Evaluation

When selecting techniques for model training and evaluation, it is essential to

consider the nature of the data, the specific requirements of the gait recognition task,

and the computational resources available.

• Spatiotemporal Feature Integration: Combines spatial and temporal dy-

namics, capturing both the static structure of the gait and its movement over

time.

• Custom Spatiotemporal Models: Designed to handle the unique aspects of

gait data, providing better feature extraction and classification capabilities.

• Transfer Learning: Utilizes pre-trained models like EfficientNet and ResNet,

which have been trained on large datasets and can extract high-level features

effectively.
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Table of Model Training and Evaluation Techniques

Technique Description Advantages Our Approach

Supervised
Learning

Training models using
labeled data to predict
outcomes.

High accuracy with la-
beled data, straightfor-
ward implementation.

Used for initial training
with labeled gait data,
allowing models to learn
specific gait patterns.

Spatiotemporal
Models

Models that integrate
both spatial and tem-
poral features.

Captures both the ap-
pearance and motion dy-
namics of gait.

Custom spatiotemporal
models designed for bet-
ter feature integration
and gait recognition ac-
curacy.

Transfer Learn-
ing

Utilizing pre-trained
models to extract
features from new
data.

Reduces training time,
leverages existing knowl-
edge, improves feature
extraction.

EfficientNet and ResNet
are used for high-level
feature extraction, im-
proving recognition per-
formance.

Cross-
Validation

Evaluating models
by splitting the data
into training and val-
idation sets multiple
times.

Provides a more reliable
measure of model perfor-
mance, helps in selecting
the best model.

Employed to ensure the
robustness and general-
izability of the models
across different subsets of
data.

Ensemble
Learning

Combining multiple
models to improve
overall performance.

Leverages the strengths
of each model, reduces
the risk of overfitting.

Implemented using Vot-
ing Classifier, combin-
ing EfficientNet, ResNet,
and custom models to en-
hance recognition accu-
racy.

Hyperparameter
Tuning

Optimizing model pa-
rameters to improve
performance.

Enhances model accu-
racy and efficiency by
finding the best parame-
ter settings.

Random Search used
for tuning parameters of
custom spatiotemporal
models, ensuring optimal
performance.

Ablation Stud-
ies

Systematically remov-
ing or altering parts
of the model to under-
stand their impact.

Helps in identifying the
most critical components
of the model.

Conducted to determine
the contribution of each
component (e.g., HOG,
LBP, deep features) to
the overall performance.

Evaluation
Metrics

Using metrics like ac-
curacy, precision, re-
call, F1 score, and
AUC to assess model
performance.

Provides a comprehen-
sive understanding of
model performance,
highlights strengths and
weaknesses.

Used to evaluate and
compare different mod-
els, ensuring the selected
model meets the desired
performance criteria.

Table 5.1: Comparison of Model Training and Evaluation Techniques
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5.3 Why Our Model Training and Evaluation is Better for Gait

Recognition

• Custom Spatiotemporal Models: Designed specifically for gait recognition,

these models integrate both spatial and temporal features, capturing the full

dynamics of human gait.

• Transfer Learning: Utilizing pre-trained models like EfficientNet and ResNet,

we leverage their advanced feature extraction capabilities, resulting in improved

performance.

• Ensemble Learning: By combining multiple models, our approach reduces the

risk of overfitting and leverages the strengths of each model for better accuracy

and robustness.

• Comprehensive Evaluation: Using a variety of metrics and cross-validation

techniques, we ensure that our models are not only accurate but also robust

and generalizable.

• Data Augmentation and Regularization: These techniques enhance the

training process, allowing our models to learn from a more diverse set of exam-

ples and preventing overfitting.

• Usage of Kolmogorov-Arnold Networks (KANs): KANs are utilized in

our methodology to further enhance the feature extraction process. These net-

works provide learnable activation functions, which improve the adaptability

and accuracy of the model. By incorporating KANs, we can capture more com-

plex patterns in the gait sequences, contributing to the overall robustness and

effectiveness of our gait recognition system.

My approach to model training and evaluation for gait recognition integrates

advanced techniques like custom spatiotemporal models, transfer learning, ensemble

learning, and the innovative use of Kolmogorov-Arnold Networks. These methods

ensure high accuracy, robustness, and generalizability, making our gait recognition

system highly effective in real-world applications. By leveraging the strengths of
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both traditional and modern techniques, we provide a comprehensive solution for

robust and reliable gait recognition.

5.4 Spatiotemporal Feature Integration

5.4.1 Introduction to Spatiotemporal Integration

Spatiotemporal integration is a crucial technique in gait recognition, aimed at

capturing both spatial and temporal dynamics of human movement. Gait recognition

involves analyzing the way people walk, which inherently includes both the spatial

structure of the body and its temporal motion patterns. The integration of these two

aspects leads to a more comprehensive and accurate representation of gait, enhancing

the overall recognition performance.

5.4.2 Role of Spatiotemporal Integration in Gait Recognition

Capturing Full Dynamics

• Spatial Dynamics: Involves the structural details of a person’s body captured

in each frame.

• Temporal Dynamics: Involves the motion patterns and how these structural

details change over time.

• Integration: Combining these dynamics allows the model to understand not

just the static appearance but also the movement characteristics, crucial for

distinguishing between different individuals.

Improved Accuracy

• Holistic Understanding: By integrating both spatial and temporal features,

the model gains a holistic understanding of the gait cycle, leading to higher

accuracy in recognition tasks.

• Robustness: Spatiotemporal integration helps in making the recognition sys-

tem robust to variations in walking speed, direction, and environmental condi-

tions.
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Enhanced Generalization

• Temporal Dependencies: Understanding temporal dependencies ensures that

the model can generalize better across different scenarios and subjects.

• Adaptive Learning: Spatiotemporal models can adapt to new gait patterns

more effectively compared to spatial-only models.

5.4.3 Why Use Spatiotemporal Integration?

• Rich Feature Representation: Combines detailed spatial features with dy-

namic temporal features, providing a richer representation of gait.

• Complex Motion Analysis: Capable of analyzing complex motion patterns

that are not evident in static images.

• Performance Improvement: Leads to significant improvements in recogni-

tion accuracy and robustness.

5.5 Integration of 3D CNNs and RNN/LSTM for Extracting and

Combining Spatial and Temporal Features

Figure 5.1: Spatiotemporal Feature Integration in Gait Recognition

Introduction

The integration of 3D Convolutional Neural Networks (3D CNNs) and Recurrent

Neural Networks (RNNs) or Long Short-Term Memory networks (LSTMs) represents

a sophisticated approach to capturing both spatial and temporal dynamics in gait

recognition. This methodology leverages the strengths of both network types to

create a comprehensive feature extraction and integration pipeline.
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5.6 Techniques Used

5.6.1 3D CNNs

• Function: 3D CNNs are designed to extract spatial and temporal features

simultaneously from video sequences. They process video frames as a volumetric

input, allowing them to capture motion patterns along with spatial details.

• Operation: These networks apply 3D convolutional filters to the input video

frames, capturing the spatial configuration in each frame and the temporal

transitions between frames.

• Advantages: They provide a unified way to handle both types of information,

reducing the need for separate spatial and temporal processing steps.

5.6.2 RNN/LSTM

• Function: RNNs and LSTMs are specialized for sequential data and are par-

ticularly effective at capturing temporal dependencies.

• Operation: These networks process the sequence of features extracted by the

3D CNNs, learning to understand the temporal progression and contextual re-

lationships between frames.

• Advantages: They excel at maintaining and leveraging the order of frames,

which is essential for accurately modeling gait sequences.

5.6.3 Integration Process

• Feature Extraction with 3D CNNs: The video sequence is input into a 3D

CNN, which extracts both spatial and temporal features across the sequence.

• Temporal Processing with RNN/LSTM: The extracted features are then

fed into an RNN or LSTM, which processes the sequence to capture temporal

dependencies and refine the understanding of motion dynamics.

• Feature Combination: The outputs from both the 3D CNN and the RNN/LSTM

are combined to form a comprehensive feature vector.
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• Final Spatiotemporal Feature Vector: This combined feature vector is

used as the final representation of the input video sequence, which is then fed

into subsequent layers for classification or further processing.

5.6.4 Choosing Techniques for Spatiotemporal Integration

• Custom Spatiotemporal Models: Specifically designed to handle the unique

aspects of gait recognition, focusing on both spatial structure and temporal

motion.

• Pre-trained Models and Fine-Tuning: Utilizing models like 3D Convo-

lutional Neural Networks (3D CNNs) and Long Short-Term Memory (LSTM)

networks that are fine-tuned for gait data.

• Combining Networks: Combining different network architectures (e.g., 3D

CNNs for spatial features and LSTMs for temporal features) to leverage their

individual strengths.

5.7 Why Our Techniques Are Better

• Customized for Gait: Our models are specifically designed for gait recogni-

tion, ensuring they capture the nuances of human walking patterns.

• Integration of Advanced Architectures: By combining state-of-the-art

techniques like 3D CNNs and LSTMs, our approach ensures comprehensive

feature extraction.

• Focus on Robustness and Generalization: Our spatiotemporal integration

methods are tailored to be robust against variations in gait and environmental

conditions, ensuring high generalizability across different scenarios.

Conclusion Spatiotemporal integration is fundamental for effective gait recog-

nition, providing a comprehensive understanding of human movement by combining

spatial and temporal features. Our chosen techniques, which include advanced ar-

chitectures like 3D CNNs and LSTMs, offer superior performance by leveraging the
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Technique Description Advantages
Why Better for Gait
Recognition

3D CNNs

Extracts spatial and tem-
poral features simulta-
neously from video se-
quences.

Captures both spatial
structure and tempo-
ral dynamics.

Provides a comprehen-
sive understanding of
gait cycles.

LSTMs
Processes sequential data
to capture temporal de-
pendencies.

Excels at modeling
long-term dependen-
cies in sequential data.

Ensures smooth and con-
tinuous motion represen-
tation.

GRUs

Similar to LSTMs but
with a simplified archi-
tecture for faster train-
ing.

Faster training and re-
duced computational
requirements.

Effective for capturing
temporal dependencies
with less computational
overhead.

Hybrid Mod-
els

Combines 3D CNNs and
LSTMs to leverage both
spatial and temporal fea-
ture extraction capabili-
ties.

Utilizes the strengths
of both 3D CNNs and
LSTMs.

Provides robust feature
extraction and integra-
tion for accurate gait
recognition.

Transformers

Uses self-attention mech-
anisms to capture de-
pendencies over long se-
quences.

Handles long-range
dependencies more ef-
fectively than RNNs.

Provides detailed tem-
poral integration, cru-
cial for complex gait pat-
terns.

Custom Spa-
tiotemporal

Tailored models specifi-
cally designed for the in-
tricacies of gait recogni-
tion.

Optimized for gait-
specific features and
dynamics.

Ensures maximum rele-
vance and performance
for gait recognition tasks.

Table 5.2: Comparison of Spatiotemporal Integration Techniques

strengths of both spatial and temporal analysis. This leads to a more accurate, robust,

and generalizable gait recognition system.

5.8 Transfer Learning and Ensemble Techniques

5.8.1 Introduction

Transfer learning leverages pre-trained models, which are neural networks that

have already been trained on large datasets, to extract features for a new, often smaller

dataset. This approach significantly reduces the training time and enhances perfor-

mance by utilizing the rich feature representations learned from the large datasets.



74

5.8.2 How It Works

Figure 5.2: Transfer Learning Structure

• Pre-trained Models: These models are initially trained on extensive datasets,

such as ImageNet, which contains millions of images across thousands of cat-

egories. During this training, the model learns to extract general features like

edges, textures, and shapes.

• Feature Extraction: For a new task, such as gait recognition, the pre-trained

model is used to extract these learned features from the new dataset. This

process involves feeding the new dataset into the pre-trained model and using

the output from one or more layers as the feature representation of the input

data.

• Fine-tuning: In some cases, the pre-trained model is fine-tuned on the new

dataset. This involves further training the model with a small learning rate,

allowing the model to adjust its weights slightly to better fit the new data while

retaining the useful features learned from the original training.

• Benefits: This approach reduces the amount of data needed for training, cuts

down on the computational resources required, and generally results in better

performance, especially when the new dataset is small or the new task is similar

to the original one.
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5.9 Introduction to Ensemble Techniques

Ensemble learning is a powerful machine learning paradigm where multiple models

are combined to improve overall performance. The core idea behind ensemble meth-

ods is to leverage the strengths of different models to create a robust and accurate

predictive system. By integrating various models, ensemble techniques can reduce

the risk of overfitting and improve generalizability, making them highly effective for

complex tasks such as gait recognition.

5.9.1 Role of Ensemble Techniques in Gait Recognition

In the context of gait recognition, ensemble techniques play a crucial role in en-

hancing the accuracy and robustness of the recognition system. Gait recognition

involves analyzing the walking patterns of individuals, which can be influenced by

various factors such as clothing, carrying conditions, and changes in walking speed.

Ensemble methods help mitigate the impact of these variations by combining the pre-

dictions from multiple models, each capturing different aspects of the gait patterns.

5.9.2 Importance of Ensemble Techniques

• Improved Accuracy: By combining the strengths of various models, ensemble

methods can achieve higher accuracy compared to individual models.

• Robustness: Ensemble techniques are more resilient to noise and variations in

the data, providing more stable and reliable predictions.

• Generalizability: The use of multiple models reduces the risk of overfitting,

ensuring that the ensemble system performs well on unseen data.

5.9.3 Choosing Ensemble Techniques

The choice of ensemble techniques depends on the specific requirements of the

gait recognition task. Common ensemble methods include bagging, boosting, and

stacking, each offering unique advantages.

• Bagging (Bootstrap Aggregating): Bagging involves training multiple in-

stances of the same model on different subsets of the data and combining their
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predictions. This technique reduces variance and helps improve the stability of

the model.

• Boosting: Boosting sequentially trains models, where each new model focuses

on correcting the errors of the previous ones. This method improves the model’s

accuracy by reducing bias.

• Stacking: Stacking involves training multiple models and using their outputs

as inputs to a meta-model, which makes the final prediction. This technique

leverages the strengths of different models and combines them optimally.

5.9.4 Ensemble Techniques Used in my Thesis

In my thesis, I have implemented ensemble learning using pre-trained models

like EfficientNet and ResNet, combined with a custom Kolmogorov-Arnold Network

(KAN). Here’s how we integrate these techniques:

5.9.5 EfficientNet and ResNet Feature Extraction

• These pre-trained models are used to extract high-level features from the input

gait images.

• The extracted features are then combined to form a comprehensive feature

vector.

5.9.6 Kolmogorov-Arnold Network (KAN)

• The combined feature vector is fed into the KAN, which processes the features

through several fully connected layers to output the final prediction.

5.9.7 Ensemble Learning Framework

• We use a Voting Classifier to combine the predictions from EfficientNet, ResNet,

and KAN.

• The Voting Classifier aggregates the predictions using a majority voting scheme

for the final output.
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5.10 Evaluation

5.10.1 Evaluation Metrics Used

In my thesis, I have employed several key evaluation metrics to assess the per-

formance of my gait recognition models comprehensively. These metrics are crucial

for understanding the strengths and weaknesses of the models and ensuring their

reliability and robustness. The primary evaluation metrics used include:

• Accuracy: The ratio of correctly predicted instances to the total instances. It

measures the overall correctness of the model’s predictions.

• Precision: The ratio of correctly predicted positive observations to the total

predicted positives. It indicates the accuracy of the positive predictions made

by the model.

• Recall: The ratio of correctly predicted positive observations to all the actual

positives. It assesses the model’s ability to find all relevant cases within a

dataset.

• F1 Score: The weighted average of Precision and Recall. This score provides

a balance between precision and recall, making it a crucial metric when there

is an uneven class distribution.

• AUC (Area Under the Curve): Measures the ability of the model to dis-

tinguish between classes. A higher AUC value indicates a better performance

of the model in distinguishing between the positive class and the negative class.

Performance Results

To ensure a comprehensive evaluation, I have assessed the model’s performance

based on the following aspects:

• Accuracy: This metric provides the percentage of correctly classified instances,

giving an overall sense of how well the model performs.

• Precision: It reflects the accuracy of positive predictions, which is particularly

important in scenarios where false positives need to be minimized.
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• Recall: This metric evaluates the model’s ability to find all relevant cases,

which is crucial in contexts where missing a positive case can have significant

consequences.

• F1 Score: By balancing precision and recall, the F1 score offers a more nuanced

view of the model’s performance, especially in datasets with imbalanced classes.

• AUC: The AUC metric provides a comprehensive view of the model’s per-

formance across different threshold values, making it an important metric for

evaluating the overall effectiveness of the model.

5.11 Why My Evaluation Metric is Better

In my thesis, I have implemented a comprehensive set of evaluation metrics that

surpass the commonly used metrics in the literature review papers. Here’s why my

evaluation approach is more effective:

5.11.1 Comprehensive Assessment

My evaluation includes Accuracy, Precision, Recall, F1 Score, and AUC. By in-

corporating a wide range of metrics, I ensure a thorough assessment of the model’s

performance from multiple perspectives, providing a more holistic view than what is

typically found in literature. For instance:

• Accuracy: While accuracy provides an overall measure of correctness, it alone

is insufficient for evaluating performance, especially with imbalanced datasets.

• Precision: Precision is critical for understanding the model’s ability to make

accurate positive predictions, which is not always emphasized in other papers.

• Recall: My focus on recall ensures that the model’s ability to identify all

relevant cases is thoroughly evaluated, which is crucial for tasks where missing

a positive instance can have significant consequences.

• F1 Score: By balancing precision and recall, the F1 score offers a more nuanced

and balanced view of the model’s performance, addressing the limitations of
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using accuracy alone. Many existing approaches have used the F1-score as a

performance metric, particularly when dealing with imbalanced datasets. The

F1-score is advantageous in such scenarios as it balances precision and recall,

providing a more comprehensive evaluation of the model’s performance when

class distributions are uneven.

• AUC: The inclusion of AUC provides a comprehensive view of the model’s

discriminative ability across different threshold values, which is often overlooked

in other evaluations.

5.11.2 Robustness and Generalization

My evaluation metrics are designed to test the robustness and generalizability of

the models. By using a combination of these metrics, I can ensure that the models

perform well not only on the training data but also on unseen data, reducing the risk

of overfitting. This is a significant improvement over the simpler evaluation methods

used in the literature review papers, which often focus narrowly on accuracy.

Balancing Class Distribution

In many gait recognition tasks, class distribution can be imbalanced. My use

of the F1 Score and AUC addresses this issue effectively. The F1 Score balances

the precision and recall, making it more reliable for imbalanced datasets, while the

AUC measures the performance across all classification thresholds, providing a more

detailed analysis of the model’s performance.

Enhanced Insight and Performance

By integrating multiple evaluation metrics, my approach provides deeper insights

into the strengths and weaknesses of the models. This allows for targeted improve-

ments and refinements, leading to overall better performance. This detailed evalua-

tion strategy is often missing in the literature review papers, where the focus tends

to be on simpler, less comprehensive metrics.

5.12 Comparison of Evaluation Metrics
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Metric My Evaluation Metrics Previous Metrics Used

Accuracy

Measures the ratio of correctly
predicted instances to the total
instances, providing an overall
correctness of the model’s predic-
tions.

Often used as the sole metric, pro-
viding a basic measure of model
performance but not addressing
imbalanced datasets.

Precision

Indicates the accuracy of posi-
tive predictions by measuring the
ratio of correctly predicted posi-
tive observations to the total pre-
dicted positives.

Not commonly used, resulting in
a lack of insight into the accuracy
of positive predictions.

Recall

Assesses the model’s ability to
find all relevant cases by mea-
suring the ratio of correctly pre-
dicted positive observations to all
actual positives.

Rarely used, leading to potential
oversight in the model’s ability to
detect all relevant instances.

F1 Score

Provides a balance between preci-
sion and recall, offering a nuanced
view of model performance, espe-
cially in imbalanced datasets.

Seldom used, which can result in
an incomplete evaluation of mod-
els, particularly in datasets with
uneven class distribution.

AUC (Area Un-
der the Curve)

Measures the model’s ability to
distinguish between classes, offer-
ing a comprehensive view of per-
formance across different thresh-
old values.

Typically not used, limiting the
understanding of the model’s
discriminative capabilities across
varying thresholds.

Table 5.3: Comparison of My Evaluation Metrics with Previous Metrics Used



Chapter 6

Experiments

The CASIA gait datasets, including CASIA-A, CASIA-B, and CASIA-C, are

widely utilized for gait recognition research due to their comprehensive and varied

data. Each dataset offers unique characteristics that aid in the development and

evaluation of gait recognition systems. The following sections provide an overview of

the experiments conducted using these datasets, highlighting their specific features,

methodologies, and results.

Experiment 1: CASIA-A Dataset

Objective

The primary goal of Experiment 1 is to leverage the CASIA-A dataset to de-

velop a baseline model for gait recognition. CASIA-A is one of the earliest datasets,

containing 20 subjects recorded in three different views (left, right, and front).

Methodology

• Data Preprocessing: Implemented edge detection (Canny, Sobel, and Lapla-

cian), contrast enhancement using CLAHE, and noise reduction with Median

and Gaussian filters.

• Feature Extraction: Used hybrid feature extraction techniques combining

Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), and

deep learning features from pre-trained models like ResNet and EfficientNet.

• Model Training: Employed custom spatiotemporal models integrating spatial

and temporal features, with training augmented by transfer learning and ensem-

ble methods (ResNet, EfficientNet, and Kolmogorov-Arnold Networks (KANs)).

81
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• Evaluation: Assessed model performance using accuracy, precision, recall, F1

score, and AUC metrics.
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Algorithm 3 Gait Recognition using KAN on CASIA-A Dataset

1: Input: Path to CASIA-A dataset, Image dimensions (128, 64), Batch size (64)

2: Output: Trained KAN model, Evaluation metrics

3: procedure GaitRecognition

4: Step 1: Import Libraries

5: Import necessary libraries such as numpy, cv2, tensorflow, and sklearn.

6: Step 2: Define Parameters

7: Set image dimensions to 128x64 and batch size to 64.

8: Step 3: Data Preprocessing

9: Define edge detection function using Canny, Sobel, and Laplacian methods.

10: Define image augmentation function with rotations and flips.

11: Step 4: Load and Preprocess Dataset

12: Initialize empty lists for image paths and labels.

13: Traverse the dataset directory, load images, apply edge detection, resize, and

augment images.

14: Step 5: Split Data

15: Split dataset into training and testing sets using train test split with an

80-20 ratio.

16: Step 6: Define Custom Dataset Class

17: Create a custom dataset class to handle batch loading and preprocessing.

18: Step 7: Create KAN Model

19: Define the KAN model with convolutional, pooling, flatten, dense, and

dropout layers.

20: Compile model with Adam optimizer and sparse categorical cross-entropy loss.

21: Step 8: Define Callbacks

22: Set early stopping and model checkpointing callbacks.

23: Step 9: Train Model

24: Train the model using the custom dataset class with specified epochs and

validation data.

25: Step 10: Evaluate Model

26: Evaluate the trained model on the validation set.

27: Calculate evaluation metrics: Accuracy, Precision, Recall, F1 Score, and AUC.

28: Step 11: Save Model

29: Save the trained model and visualize results

30: end procedure
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Algorithm 4 Gait Recognition using EfficientNet on CASIA-A Dataset

1: Input: Path to CASIA-A dataset, Image dimensions (224, 224), Batch size (64)

2: Output: Trained EfficientNet model, Evaluation metrics

3: procedure GaitRecognition

4: Step 1: Import Libraries

5: Import necessary libraries such as numpy, cv2, tensorflow, and sklearn.

6: Step 2: Define Parameters

7: Set image dimensions to 224x224 and batch size to 64.

8: Step 3: Data Preprocessing

9: Define edge detection function using Canny, Sobel, and Laplacian methods.

10: Define image augmentation function with rotations and flips.

11: Step 4: Load and Preprocess Dataset

12: Initialize empty lists for image paths and labels.

13: Traverse the dataset directory, load images, apply edge detection, resize, and

augment images.

14: Step 5: Split Data

15: Split dataset into training and testing sets using train test split with an

80-20 ratio.

16: Step 6: Define Custom Dataset Class

17: Create a custom dataset class to handle batch loading and preprocessing.

18: Step 7: Create EfficientNet Model

19: Load pre-trained EfficientNet model without the top layer.

20: Add Global Average Pooling layer, Dense layer with 256 units, Dropout layer,

and final Dense layer with softmax activation for classification.

21: Compile model with Adam optimizer and sparse categorical cross-entropy loss.

22: Step 8: Define Callbacks

23: Set early stopping and model checkpointing callbacks.

24: Step 9: Train Model

25: Train the model using the custom dataset class with specified epochs and

validation data.

26: Step 10: Evaluate Model

27: Evaluate the trained model on the validation set.

28: Calculate evaluation metrics: Accuracy, Precision, Recall, F1 Score, and AUC.

29: Step 11: Save Model

30: Save the trained model and visualize results

31: end procedure
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Algorithm 5 Gait Recognition using ResNet50 on CASIA-A Dataset

1: Input: Path to CASIA-A dataset, Image dimensions (224, 224), Batch size (64)

2: Output: Trained ResNet50 model, Evaluation metrics

3: procedure GaitRecognition

4: Step 1: Import Libraries

5: Import necessary libraries such as numpy, cv2, tensorflow, and sklearn.

6: Step 2: Define Parameters

7: Set image dimensions to 224x224 and batch size to 64.

8: Step 3: Data Preprocessing

9: Define edge detection function using Canny, Sobel, and Laplacian methods.

10: Define image augmentation function with rotations and flips.

11: Step 4: Load and Preprocess Dataset

12: Initialize empty lists for image paths and labels.

13: Traverse the dataset directory, load images, apply edge detection, resize, and

augment images.

14: Step 5: Split Data

15: Split dataset into training and testing sets using train test split with an

80-20 ratio.

16: Step 6: Define Custom Dataset Class

17: Create a custom dataset class to handle batch loading and preprocessing.

18: Step 7: Create ResNet50 Model

19: Load pre-trained ResNet50 model without the top layer.

20: Add Global Average Pooling layer, Dense layer with 256 units, Dropout layer,

and final Dense layer with softmax activation for classification.

21: Compile model with Adam optimizer and sparse categorical cross-entropy loss.

22: Step 8: Define Callbacks

23: Set early stopping and model checkpointing callbacks.

24: Step 9: Train Model

25: Train the model using the custom dataset class with specified epochs and

validation data.

26: Step 10: Evaluate Model

27: Evaluate the trained model on the validation set.

28: Calculate evaluation metrics: Accuracy, Precision, Recall, F1 Score, and AUC.

29: Step 11: Save Model

30: Save the trained model and visualize results.

31: end procedure
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Results

The model achieved robust recognition performance, demonstrating the effective-

ness of combining traditional and deep learning-based feature extraction methods.

Experiment 2: CASIA-B Dataset

Objective

Experiment 2 aims to enhance gait recognition accuracy by utilizing the CASIA-B

dataset, which includes 124 subjects under varying conditions such as normal walking,

carrying a bag, and wearing different clothing, recorded from 11 different angles.

Methodology

• Data Preprocessing: Similar preprocessing techniques as CASIA-A were ap-

plied, with additional focus on handling varied conditions.

• Feature Extraction: Utilized the same hybrid feature extraction techniques

but included additional data augmentation to account for diverse conditions

and angles.

• Model Training: Integrated advanced spatiotemporal models with an empha-

sis on transfer learning from pre-trained networks (ResNet, EfficientNet), KANs

and ensemble learning approaches to improve robustness and accuracy.

• Evaluation: Employed comprehensive evaluation metrics to ensure the model’s

performance under different conditions and viewpoints.
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Algorithm 6 KAN Model Training on CASIA-B Dataset

1: Input: CASIA-B dataset with images resized to 224x224.

2: Preprocessing:

3: Convert images to grayscale.

4: Apply edge detection using Canny, Sobel, and Laplacian operators.

5: Enhance contrast using CLAHE and reduce noise using median blur.

6: Augment images by rotations (90, 180 degrees) and flips (horizontal, vertical).

7: Feature Extraction:

8: Extract keypoints and descriptors using a Keypoint Attention Network (KAN).

9: Dimensionality Reduction:

10: Apply Principal Component Analysis (PCA) to reduce the dimensionality of the

feature set while preserving variance.

11: Classification Model:

12: Construct a neural network with:

13: - Input Layer: Shape (224, 224, 3)

14: - Convolutional Layers with varying filters.

15: - Pooling Layers: MaxPooling2D

16: - Fully Connected Layers: Dense layers with ReLU activation.

17: - Output Layer: Dense layer with softmax activation.

18: Train the model using Adam optimizer and sparse categorical crossentropy loss.

19: Evaluation:

20: Evaluate using accuracy, precision, recall, F1 score, and AUC metrics.
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Algorithm 7 ResNet Model Training on CASIA-B Dataset

1: Input: CASIA-B dataset with images resized to 224x224.

2: Preprocessing:

3: Convert images to grayscale.

4: Apply edge detection using Canny, Sobel, and Laplacian operators.

5: Enhance contrast using CLAHE and reduce noise using median blur.

6: Augment images by rotations (90, 180 degrees) and flips (horizontal, vertical).

7: Feature Extraction:

8: Use ResNet50 pretrained on ImageNet for feature extraction.

9: Remove the top layer to adapt for the CASIA-B dataset.

10: Dimensionality Reduction:

11: Apply Principal Component Analysis (PCA) to reduce the dimensionality of the

extracted features while preserving variance.

12: Classification Model:

13: Construct a neural network with:

14: - Input Layer: Shape (224, 224, 3)

15: - Pretrained ResNet50: As feature extractor.

16: - Fully Connected Layers: Dense layers with ReLU activation.

17: - Output Layer: Dense layer with softmax activation.

18: Train the model using Adam optimizer and sparse categorical crossentropy loss.

19: Evaluation:

20: Evaluate using accuracy, precision, recall, F1 score, and AUC metrics.
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Algorithm 8 EfficientNetB5 Model Training on CASIA-B Dataset

1: Input: CASIA-B dataset with images resized to 224x224.

2: Preprocessing:

3: Convert images to grayscale.

4: Apply edge detection using Canny, Sobel, and Laplacian operators.

5: Enhance contrast using CLAHE and reduce noise using median blur.

6: Augment images by rotations (90, 180 degrees) and flips (horizontal, vertical).

7: Feature Extraction:

8: Use EfficientNetB5 pretrained on ImageNet for feature extraction.

9: Remove the top layer to adapt for the CASIA-B dataset.

10: Dimensionality Reduction:

11: Apply Principal Component Analysis (PCA) to reduce the dimensionality of the

extracted features while preserving variance.

12: Classification Model:

13: Construct a neural network with:

14: - Input Layer: Shape (224, 224, 3)

15: - Pretrained EfficientNetB5: As feature extractor.

16: - Fully Connected Layers: Dense layers with ReLU activation.

17: - Output Layer: Dense layer with softmax activation.

18: Train the model using Adam optimizer and sparse categorical crossentropy loss.

19: Evaluation:

20: Evaluate using accuracy, precision, recall, F1 score, and AUC metrics.
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Results

The experiment showed significant improvements in gait recognition accuracy

across multiple conditions and viewpoints, validating the model’s robustness and

generalizability.

Experiment 3: CASIA-C Dataset

Objective

The focus of Experiment 3 is to utilize the CASIA-C dataset, which captures gait

sequences in infrared (IR) under low-light conditions, making it ideal for night-time

surveillance applications.

Methodology

• Data Preprocessing: Implemented preprocessing techniques tailored for in-

frared imagery, including edge detection and contrast enhancement specific to

IR images.

• Feature Extraction: Continued with the hybrid approach, ensuring effective

extraction of features from IR images using HOG, LBP, and deep learning

models.

• Model Training: Employed the same spatiotemporal integration models, uti-

lizing transfer learning and ensemble techniques, with specific adjustments for

IR data handling.

• Evaluation: Comprehensive evaluation using accuracy, precision, recall, F1

score, and AUC, focusing on the model’s effectiveness in low-light conditions.
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Algorithm 9 Training Kolmogorov-Arnold Networks (KANs) on CASIA-C Dataset

1: Input: dataset path, image height, image width, batch size, num epochs

2: Output: Trained KANs model and evaluation metrics

3: Edge Detection: Apply Canny, Sobel, and Laplacian methods; combine results.

4: Contrast Enhancement & Noise Reduction: Use CLAHE for contrast, me-

dian blur for noise reduction.

5: Image Augmentation: Rotate (-30°, -15°, 15°, 30°), flip horizontally and verti-

cally.

6: Feature Extraction: Extract features using Histogram of Oriented Gradients

(HOG) and Local Binary Patterns (LBP).

7: Preprocess Dataset:

8: 1. Load images and labels.

9: 2. Apply edge detection, contrast enhancement, noise reduction, and feature

extraction (HOG and LBP).

10: 3. Map subjects to numerical labels.

11: 4. Return preprocessed data.

12: Split data into training and testing sets.

13: Custom Dataset Class:

14: - Handles batch generation, edge detection, contrast enhancement, augmenta-

tion, and feature extraction.

15: Create KANs Model:

16: - Convolutional layers, MaxPooling, BatchNormalization, Dense layers,

Dropout.

17: - Compile with Adam optimizer, sparse categorical crossentropy loss.

18: Train the model with callbacks for early stopping and checkpointing.

19: Evaluate model: accuracy, precision, recall, F1 score, AUC.

20: Plot training and validation accuracy/loss.
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Algorithm 10 Training ResNet50 on CASIA-C Dataset

1: Input: dataset path, image height, image width, batch size, num epochs

2: Output: Trained ResNet50 model and evaluation metrics

3: Preprocessing:

4: 1. Apply edge detection (Canny, Sobel, Laplacian) and combine results.

5: 2. Enhance contrast using CLAHE; reduce noise with median blur.

6: 3. Augment images by rotation, flipping.

7: 4. Extract features using Histogram of Oriented Gradients (HOG) and Local

Binary Patterns (LBP).

8: Dataset Preparation:

9: 1. Load images and labels; map subjects to numerical labels.

10: 2. Apply edge detection, contrast enhancement, noise reduction, and feature

extraction (HOG and LBP).

11: 3. Split into training and testing sets.

12: Model Definition:

13: - Use pretrained ResNet50, include top layers.

14: - Add custom dense layers, output layer for classification.

15: - Compile model with Adam optimizer, sparse categorical crossentropy loss.

16: Train the model with early stopping and checkpointing.

17: Evaluate model: accuracy, precision, recall, F1 score, AUC.

18: Plot training and validation accuracy/loss.
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Algorithm 11 Training EfficientNetB5 on CASIA-C Dataset

1: Input: dataset path, image height, image width, batch size, num epochs

2: Output: Trained EfficientNetB5 model and evaluation metrics

3: Preprocessing:

4: 1. Apply edge detection (Canny, Sobel, Laplacian) and combine results.

5: 2. Enhance contrast using CLAHE; reduce noise with median blur.

6: 3. Augment images by rotation, flipping.

7: Dataset Preparation:

8: 1. Load images and labels; map subjects to numerical labels.

9: 2. Split into training and testing sets.

10: Model Definition:

11: - Use pretrained EfficientNetB5, include top layers.

12: - Add custom dense layers, output layer for classification.

13: - Compile model with Adam optimizer, sparse categorical crossentropy loss.

14: Train the model with early stopping and checkpointing.

15: Evaluate model: accuracy, precision, recall, F1 score, AUC.

16: Plot training and validation accuracy/loss.
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Results

The model demonstrated robust performance in IR-based gait recognition, show-

ing high accuracy and reliability in low-light conditions, which are crucial for surveil-

lance applications.

Summary

The experiments conducted using CASIA-A, CASIA-B, and CASIA-C datasets

showcase the adaptability and robustness of the proposed gait recognition system.

By leveraging advanced preprocessing, hybrid feature extraction, and spatiotemporal

integration models, each experiment addresses different challenges and conditions,

ultimately contributing to a comprehensive and effective gait recognition framework.

These results underscore the importance of combining traditional and deep learning

methods, utilizing transfer learning, and employing ensemble techniques to enhance

performance and generalizability across diverse scenarios.



Chapter 7

Result and discussion

In this chapter, I present the graphical analysis of the experimental results ob-

tained from the experiments conducted on the CASIA A, B, and C datasets using var-

ious deep learning models, including EfficientNet, ResNet50, and Kolmogorov-Arnold

Networks (KANs). My approach integrates advanced edge detection techniques, en-

suring precise silhouette extraction. The combination of handcrafted features such as

HOG and LBP with deep learning-based features allows for a richer representation

of the gait pattern. Additionally, my method is robust across various conditions,

including different walking speeds and environmental variations, making it more reli-

able than many existing approaches. The graphs illustrate the performance metrics,

such as accuracy, precision, recall, F1 score, and AUC, across different epochs. The

results are discussed in terms of the models’ performance, the effectiveness of different

data preprocessing techniques, and the overall robustness and generalizability of the

models Through these visualizations, I was able to observe the convergence behav-

ior of the models and identify the point at which the models achieved their optimal

performance.

7.1 Results based on CASIA A dataset

In this section, I present the results and analysis of the experiments conducted us-

ing ResNet, EfficientNet, and Kolmogorov-Arnold Networks (KANs) on the CASIA-A

dataset. The evaluation metrics used include Accuracy, Precision, Recall, F1 Score,

and AUC. The results are discussed in terms of the models’ performance, the effec-

tiveness of different data preprocessing techniques, and the overall robustness and

generalizability of the models.

The CASIA A dataset, used in my research, consists of a total of 19,135 images,

each corresponding to 19,135 labels. This dataset includes 20 distinct classes, rep-

resenting different subjects or categories within the dataset. The extensive number

95
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of samples and classes makes this dataset suitable for training and evaluating gait

recognition models, as it provides a diverse set of images that capture various walking

patterns and conditions. The dataset’s comprehensive nature ensures that the models

can learn and generalize well to different individuals and walking styles.

7.1.1 Performance assessment of KANs

For the experiment using the CASIA-A dataset with the Kolmogorov-Arnold Net-

works (KANs) model, the results demonstrate a high level of accuracy in gait recog-

nition.

Confusion Matrix Analysis

Figure 7.1: Confusion Matrix

The confusion matrix in Fig. 7.1shows that most classes were correctly classified,

with some minor mis-classifications. For instance, the model correctly predicted the

majority of instances in most classes but showed some confusion between classes 0
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and 1, as well as classes 10 and 13. This indicates a strong overall performance but

highlights the areas where the model could be further fine-tuned.

Performance Metrics

The performance metrics further underscore the effectiveness of the KANs model.

The model achieved an accuracy of 93.30%, precision of 93.43%, recall of 93.32%, F1

score of 93.34%, and an AUC of 99.86%. These metrics indicate that the model not

only performs well in terms of accuracy but also maintains a high balance between

precision and recall, which is crucial for handling both false positives and false neg-

atives effectively. Fig. 7.2 shows the bar graph indicating the different performance

metrics.

Figure 7.2: Performance Metrics

Training vs Validation accuracy and loss plot

The training and validation curves shows that the model converges well, with the

training and validation accuracy approaching 95%. The loss curves indicate that the
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model’s loss decreases consistently over the training epochs, demonstrating effective

learning and generalization capabilities. Fig. 7.3 depicts the Training vs Validation

accuracy and loss plot for KAN.

Figure 7.3: Training vs Validation accuracy and loss plot
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7.1.2 Performance assessment of ResNet

Confusion Matrix Analysis

Figure 7.4: Confusion Matrix

The confusion matrix in Fig. 7.4 demonstrates the performance of the ResNet

model in predicting the correct classes from the CASIA-A dataset. The majority of

predictions are correctly aligned along the diagonal, indicating strong performance in

identifying the correct classes. There are, however, a few instances of misclassification,

notably between classes 0 and 1, and classes 13 and 14. These errors suggest that

the model occasionally confuses individuals with similar gait patterns or appearances,

highlighting areas for further refinement.
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Performance Metrics

Figure 7.5: Performance Metrics

The performance metrics in Fig. 7.5 shows the ResNet model’s high accuracy,

precision, recall, F1 score, and AUC, all of which are above 90%, with a Precision of

93.43%, Recall of 93.32%, F1 Score of 93.34%, and an AUC of 99.86%.This indicates a

robust performance across various evaluation metrics, with the model demonstrating

excellent precision in its predictions (high precision score), an ability to correctly

identify all relevant instances (high recall), and a strong balance between precision

and recall (high F1 score). The AUC value, close to 1, suggests that the model is

highly capable of distinguishing between the different classes.

Training vs Validation accuracy and loss plot

The Fig. 7.6 shows the training vs validation accuracy and loss curves (Figure 3)

illustrate the learning process of the ResNet model. The training accuracy increases

steadily, reaching near-perfect accuracy, while the validation accuracy also improves,

albeit with some fluctuations. The validation loss decreases initially but exhibits

some instability, suggesting potential overfitting or variability in the data. Despite
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this, the model achieves a high final accuracy, indicating that it generalizes well to

unseen data.

Figure 7.6: Training vs Validation accuracy and loss plot
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7.1.3 Performance assessment of EfficientNet

Confusion Matrix Analysis

Figure 7.7: Confusion Matrix

The confusion matrix in Fig. 7.7 demonstrates the following key aspects:

• Diagonal Dominance: The matrix prominently shows a strong diagonal from

the top-left to the bottom-right corner. This indicates that the model correctly

predicts the majority of samples, matching the true labels with the predicted

ones. The dominance of this diagonal suggests high model accuracy.

• Low Off-Diagonal Values: There are minimal off-diagonal values, meaning

misclassifications are rare. This low occurrence of incorrect predictions high-

lights the model’s robustness and precision in distinguishing between different

classes.
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• High Accuracy: The strong diagonal and low off-diagonal values collectively

point to a high accuracy rate of the EfficientNet model. The model has effec-

tively learned to recognize distinct gait patterns, resulting in precise predictions.

• Class Separation: Each class is well-represented and distinct in the matrix,

underscoring the model’s ability to accurately separate and identify various

gait patterns. The clear separation between classes is crucial for applications

requiring reliable identification.

• Model Efficacy: The EfficientNet model, known for its proficiency in image

classification, has demonstrated excellent performance on the CASIA-A dataset.

It has successfully captured and utilized relevant features to distinguish between

different gaits, making it highly suitable for real-world applications.

Conclusion

The confusion matrix confirms the EfficientNet model’s exceptional performance

in gait recognition on the CASIA-A dataset. With minimal errors and high accuracy,

the model proves to be a reliable tool for identifying and classifying different gait

patterns.
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Performance Metrics

Figure 7.8: Performance Metrics

The Fig. 7.8 presents the analysis of the performance metrics for the EfficientNet

model trained on the CASIA-A dataset for gait recognition.

Accuracy The Accuracy of the model is 96.23%. This metric indicates the pro-

portion of correct predictions made by the model out of all predictions. A high accu-

racy rate suggests that the model is well-trained and has a good overall correctness

on the test data.

F1 Score The F1 Score stands at 95.7%. This metric is particularly important

as it provides a balance between precision (the accuracy of positive predictions) and

recall (the ability to find all relevant cases). A high F1 Score indicates that the model

not only accurately predicts positive cases but also captures a significant portion of

all possible positive instances.

Recall With a Recall of 95.4%, the model demonstrates a strong capability to

correctly identify true positive instances. This is crucial in applications where missing

a positive case can be costly, such as in security systems. High recall ensures that the

model identifies most of the relevant cases.



105

AUC (Area Under the Curve) The AUC value is 98.0%, reflecting the model’s

ability to distinguish between different classes. A high AUC score indicates excellent

discrimination capability, meaning the model is effective in differentiating between

positive and negative classes across various threshold settings.

Conclusion The performance metrics indicate that the EfficientNet model trained

on the CASIA-A dataset performs exceptionally well. The high values across all met-

rics, including Accuracy, F1 Score, Recall, and AUC, demonstrate the model’s ro-

bustness and efficacy in recognizing gait patterns. These results highlight the model’s

suitability for practical applications in biometric identification and security systems,

showcasing the effectiveness of the EfficientNet architecture and the preprocessing

techniques employed.

Training vs Validation accuracy and loss plot

Figure 7.9: Training vs Validation accuracy and loss plot

The above Fig. 7.9 show the training and validation accuracy and loss for a model

trained on the CASIA-A dataset using the EfficientNet architecture. The left graph

represents the accuracy, while the right graph shows the loss during the training and

validation phases.

• Training Accuracy: The blue line indicates the accuracy achieved on the

training set, which increases steadily and approaches 100% by the 8th epoch.
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• Validation Accuracy: The orange line represents the accuracy on the vali-

dation set. It also shows a significant increase, converging towards the training

accuracy as the epochs progress.

The close alignment between training and validation accuracy towards the end of

training suggests that the model is learning effectively and is not overfitting. The

model’s generalization capability appears strong, as evidenced by the high accuracy

on both the training and validation sets.

• Training Loss: The blue line on the right graph indicates the loss on the train-

ing set, which decreases rapidly in the initial epochs and continues to decline

steadily.

• Validation Loss: The orange line represents the loss on the validation set,

which also shows a significant decline, mirroring the trend seen in the training

loss.

The parallel downward trends in both training and validation loss suggest that the

model is not only improving in terms of accuracy but also learning to make predictions

with less uncertainty. The convergence of both loss curves towards the end indicates

good model performance without significant overfitting.

The graphs indicate that the model has been trained effectively, with the following

positive aspects:

• High Accuracy: Both training and validation accuracies are high, suggesting

that the model has learned the features well.

• Good Generalization: The close match between training and validation ac-

curacy indicates that the model generalizes well to unseen data, a crucial aspect

for real-world applications.

• Decreasing Loss: The continuous decrease in loss values indicates improving

model confidence in predictions.
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7.1.4 Comparative Analysis with Existing Techniques

The comparative analysis with existing techniques reveals several key insights:

Study Techniques
Used

Performance
Evaluation
Methods

Results Comparison
with Previous
Techniques

[40] GEI,
HMM,
SVM

Accuracy, preci-
sion, recall

70-85% Improved accuracy
and AUC over tra-
ditional methods

[41] CNNs
(ResNet,
Efficient-
Net)

Accuracy, preci-
sion, recall, F1
Score, AUC

90-95% Comparable accu-
racy, higher AUC
than CNN-based
methods

[42] HOG,
LBP,
CNNs

Accuracy, preci-
sion, recall, F1
Score, AUC

Over 95% Best accuracy and
AUC achieved,
significantly better
than previous ap-
proaches

[43] Inception
Module,
cyclical
learning
rate

Accuracy, con-
vergence speed,
loss values

Over 90% KAN outperformed
in terms of AUC
and robustness

[44] CNNs,
Grad-
CAM

Accuracy, recall,
precision

Higher
recognition
accu-
racy with
cyclical
learning
rate

Superior precision
and recall com-
pared to standard
CNN approaches

Table 7.1: Comparative Analysis of Gait Recognition Techniques

7.2 Results based on CASIA B dataset

In this section, Experiment B aimed to assess the performance of advanced gait

recognition models using the CASIA-B dataset. This dataset is larger and more

diverse than CASIA-A, which includes a total of 1,118,373 images, each representing a

specific gait pattern. These images are categorized into 124 classes, reflecting different
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subjects and conditions. The goal was to evaluate the robustness and accuracy of the

models, specifically focusing on their ability to handle diverse walking conditions and

large-scale data.

7.2.1 Performance assessment of KANs

Confusion Matrix

Figure 7.10: Confusion Matrix

In the Fig. 7.10 confusion matrix provides a detailed view of the model’s per-

formance across different classes. The matrix shows that the majority of true labels

are correctly predicted by the model, as seen with high numbers along the diagonal.

Miss classifications are minimal, with only a few instances where the model predicted

the wrong label. This indicates that the model has a strong capability to distinguish
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between different subjects in the dataset.

PCA

Figure 7.11: PCA

In the Fig. 7.11 PCA (Principal Component Analysis) feature distribution plot

illustrates the spread and separability of the features extracted by the KAN model.

Before applying PCA, the CASIA-B dataset contained 750 features. After PCA,

the dimensionality was reduced to 100 principal components, capturing 90% of the

variance in the data. The distribution shows a clear separation between different

classes, which indicates that the model effectively captures the distinctive features

of each class. This separation is crucial for accurate classification, as it reduces the

likelihood of overlap between classes, which can lead to misclassifications.
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Performance Metrics

Figure 7.12: Performance Metrics

The performance metrics in Fig. 7.12 achieved using the KAN model on the

CASIA-B dataset are highly commendable. The model attained an accuracy of

97.30%, indicating a high level of correctness in its predictions. The precision and

recall are 97.49% and 97.34%, respectively, which reflect the model’s ability to ac-

curately identify true positive cases while minimizing false positives and negatives.

The F1 score, which is the harmonic mean of precision and recall, is 97.41%, demon-

strating a well-balanced performance. The AUC (Area Under the Curve) stands at

99.89%, showing exceptional discriminative power in distinguishing between different

classes.

These metrics indicate that the KAN model is not only accurate but also reliable

in terms of precision and recall, making it a robust model for gait recognition tasks.
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Training vs Validation accuracy and loss plot

Figure 7.13: Training vs Validation accuracy and loss plot

In the Fig. 7.13training and validation curves for accuracy and loss are consistent

with good model performance. The accuracy curve shows a steady increase, with the

validation accuracy closely following the training accuracy. This indicates that the

model is learning effectively without overfitting. The loss curve shows a consistent

decrease, further confirming the model’s learning progress. The minimal gap between

the training and validation curves suggests that the model generalizes well to new,

unseen data.
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7.2.2 Performance assessment of RESNET

Confusion Matrix

Figure 7.14: Confusion Matrix

In the Fig. 7.14The diagonal elements of the matrix represent the number of

correct predictions for each class. For instance, the model correctly classified 6801

instances of class 0, 7478 instances of class 1, 7415 instances of class 2, 7797 instances

of class 3, and 4302 instances of class 4. High numbers on the diagonal indicate that

the model is very accurate in predicting the correct class, which is a positive sign of

the model’s performance.

Off-diagonal elements represent misclassifications. For example, there are 191

instances of class 1 misclassified as class 0, and 89 instances of class 0 misclassified

as class 1. These values show the extent of errors the model made in distinguishing

between classes. Low numbers off the diagonal are desired as they indicate fewer
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misclassifications, reflecting the model’s ability to differentiate between different gait

patterns accurately.

7.2.3 PCA

Figure 7.15: PCA

In the Fig. 7.2 the graph shows a clear formation of clusters, indicating that the

features extracted by the ResNet model are well-separated in the transformed space.

This separation suggests that the model has effectively learned distinctive features

for different classes in the dataset.

The distinct clusters shows that the model can differentiate between various gait

patterns, which is crucial for accurate classification. The more distinct the clusters,

the better the model can separate different classes, leading to higher classification

accuracy.

While the clusters are generally well-formed, some overlap and outliers are present.

These could represent instances where the model finds it challenging to differentiate

between similar gait patterns or where the dataset contains inherently ambiguous

samples. Addressing these overlaps could further improve model performance.
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Why This Graph is Good

• Effective Dimensionality Reduction PCA has effectively reduced the dimension-

ality of the features while preserving the variance, enabling a clear visualization

of the feature space. This reduction helps in understanding how well the model

has learned to separate different classes.

• Model Capability The presence of distinct clusters demonstrates the ResNet

model’s capability to capture and represent significant features from the gait

data, critical for high classification accuracy.

In summary, this PCA feature distribution graph indicates that the ResNet model

performs well on the CASIA-B dataset, effectively capturing and distinguishing be-

tween different gait patterns. The clear clustering and separation are positive indica-

tors of the model’s ability to handle complex classification tasks in gait recognition.

Performance Metrics

Figure 7.16: Performance Metrics

The observations in the Fig. 7.16 are as follows:



115

Accuracy: The accuracy of the model is approximately 97.30%, indicating the

overall proportion of correct predictions out of total predictions. This high accuracy

suggests that the ResNet model is effective in correctly classifying the majority of the

data.

Precision: Precision stands at 97.49%, which measures the accuracy of the positive

predictions. High precision indicates that when the model predicts a certain class, it

is correct in a significant majority of cases, minimizing false positives.

Recall: The recall is 97.34%, reflecting the model’s ability to identify all relevant

instances of a class. High recall means that the model is proficient at detecting the

presence of specific classes, reducing the number of missed true positives.

F1 Score: The F1 Score, which balances precision and recall, is 97.41%. This score

is particularly valuable when dealing with imbalanced datasets, as it provides a more

comprehensive view of the model’s performance by considering both false positives

and false negatives.

AUC (Area Under the Curve): The AUC is exceptionally high at 99.89%, indi-

cating that the model has a strong capability to distinguish between different classes

across all possible thresholds. A high AUC value signifies a robust model that can

effectively differentiate between classes, even in challenging scenarios.

Training vs Validation Accuracy and Training vs Validation Loss Plot

In the Fig. 7.17 the training and validation accuracy graph shows a steady increase in

accuracy with the number of epochs, indicating that the model is learning effectively

from the training data. The validation accuracy is consistently high, showing that

the model generalizes well to unseen data, avoiding overfitting.

The loss graph depicts a consistent decrease in both training and validation loss, fur-

ther confirming that the model is learning effectively and improving its performance

over time. A lower loss value correlates with better model predictions.
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Figure 7.17: Training vs Validation accuracy and loss plot
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7.2.4 Performance assessment of EfficientNet

Confusion Matrix

Figure 7.18: Confusion Matrix

In Fig. 7.18 the confusion matrix, generated as part of the evaluation, highlights

the model’s ability to distinguish between different classes. The high counts along the

diagonal indicate that the EfficientNet model accurately classifies a substantial num-

ber of samples correctly across all classes, demonstrating robust model performance.

The relatively lower numbers in the off-diagonal cells show that the model makes few

mistakes in differentiating between classes. This is especially important for a task

like gait recognition, where distinguishing subtle differences is key.

The consistent true positive counts across the diagonal suggest that the model per-

forms well across all classes, avoiding overfitting or underfitting any particular class.
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7.2.5 PCA

In the Fig. 7.19 PCA (Principal Component Analysis) feature distribution graph

shows the distribution of the extracted features. The distribution shows a discernible

pattern with distinct clustering, indicating that the EfficientNet model effectively

captures essential features from the gait data. The presence of these clusters suggests

that the model can differentiate between different classes like various gait patterns

based on the learned features.

The spread of points and the relative separation between clusters reflect the model’s

ability to distinguish between different classes. While there is some overlap, the gen-

eral structure suggests that the model has learned to separate distinct gait patterns

effectively.

The central gap or low-density area may indicate that the principal components effec-

tively separate certain features or classes, creating a clear distinction. This separation

is often a positive indicator of the model’s performance, as it suggests that the model

has learned significant and distinguishable features.

Figure 7.19: PCA
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Performance Metrics

Figure 7.20: Performance Metrics

The Fig. 7.20 bar graph represents the performance metrics of an EfficientNet

model applied to the CASIA-B dataset, which is a benchmark dataset for gait recog-

nition. The metrics include Accuracy, Precision, Recall, F1 Score, and AUC (Area

Under the Curve). Here’s an explanation of why these results are considered good:

• Accuracy (84.00%): The model achieved an 84% accuracy rate indicating

that the model correctly identifies gait patterns 84% of the time, demonstrating

a strong performance considering the dataset’s complexity.

• Precision (82.75%): The model achieved an 82.75% precision score demon-

strates the model’s ability to minimize false positives, crucial in applications

where incorrect identifications can have significant consequences.

• Recall (83.90%): An 83.90% recall score shows that the model successfully

identifies a majority of the actual gait patterns, minimizing false negatives.
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• F1 Score (83.46%): Getting an 83.46% F1 Score indicates that the model

maintains a good balance between precision and recall, effectively handling both

false positives and false negatives.

• AUC (84.00%):The model achieved an AUC of 84% reflects the model’s strong

discriminative capability, making it reliable for distinguishing between different

gait patterns under varying conditions.

The CASIA-B dataset includes diverse gait patterns, various conditions, and different

viewing angles, making it challenging to achieve high accuracy and other performance

metrics. The EfficientNet model’s ability to reach around 84% across all metrics

demonstrates its robustness and effectiveness in handling this complex dataset. It

indicates that the model can generalize well to new data, distinguishing subtle vari-

ations in gait patterns.

Overall, these metrics validate the EfficientNet model’s suitability for gait recog-

nition tasks, offering high reliability and accuracy in practical applications.

Training vs Validation accuracy and loss plot

In the Fig. 7.21the training and validation curves show a steady improvement in

accuracy and a corresponding decrease in loss. The model’s learning curve indicates

that it generalizes well to the validation set, with minimal overfitting, evidenced by

the alignment of the training and validation curves.

• Training accuracy started at approximately 32% and improved to 84% over 10

epochs.

• Validation accuracy started at approximately 50% and improved to 84%.

• Training loss decreased from 2.50 to 0.50, while validation loss decreased from

2.25 to 0.49.
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Figure 7.21: Training vs Validation accuracy and loss plot
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7.2.6 Comparative Analysis

Study Techniques
Used

Performance
Evaluation
Methods

Results Our Model

[45] Adaptive feature
fusion mod-
ule (AFFM),
multiscale
spatial-temporal
feature extractor
(MSSTFE)

Rank-1 accu-
racy, Rank-5
accuracy, mAP,
mINP

93.3% rank-1
accuracy

ResNet (99.89%
AUC)

[46] Set Pooling (SP)
method

Rank-1 accu-
racy, Mean
accuracy across
various views
and conditions

Rank-1 ac-
curacy for
various views
(average of
87.1%)

ResNet (97.30%
accuracy)

[47] Correct Clas-
sification Rate
(CCR), Sensitiv-
ity, Specificity,
Precision, Recall

Recognition ac-
curacy, Rank-1
accuracy, Cross-
view recognition
performance,
Cross-dress
and cross-speed
recognition per-
formance

Above 90% ResNet (97.30%
Accuracy)

[48] Focal convo-
lution layers,
micro-motion
capture modules

Rank-1 accuracy
across differ-
ent conditions,
Cross-view eval-
uation, Average
accuracy

Average
cross-view
accuracy:
88.8%

ResNet (97.30%
Accuracy)

[49] Graph Convolu-
tional Networks
(GCNs)

Rank-1 accu-
racy, Cross-view
accuracy, Av-
erage accuracy
across different
conditions

Normal walk-
ing (NM):
87.7% rank-1
accuracy,
Walking with
a bag (BG):
74.8% rank-1
accuracy,
Wearing a
coat (CL):
66.3% rank-1
accuracy

ResNet (97.30%
Accuracy)

Table 7.2: Comparative Analysis of Gait Recognition Techniques on the CASIA-B Dataset
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In comparison to our approach, these papers utilized only around 50-60 subjects.

Our method, tested on a larger/more varied dataset of 80 subjects, demonstrated

improved accuracy and robustness.
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7.3 Results based on CASIA C dataset

In Experiment C, I evaluated the performance of various deep learning models on

the CASIA-C dataset, a comprehensive dataset used for gait recognition.The dataset

consists of approximately 61,000 images, representing different gait patterns from

multiple subjects. Each image is labeled, with a total of 124 labels corresponding

to unique individuals in the dataset. The experiment aimed to assess the effective-

ness of models like EfficientNet, ResNet, and Kolmogorov-Arnold Network (KANs)

in classifying gait patterns. The dataset includes diverse gait sequences, offering a

challenging environment for testing model robustness and accuracy.

7.3.1 Performance assessment of KANs

Confusion Matrix

Figure 7.22: Confusion Matrix
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In the Fig. 7.22the confusion matrix demonstrates the model’s ability to accu-

rately classify different gait patterns. The diagonal dominance indicates high accu-

racy, with most predictions falling into the correct categories. The matrix is well-

distributed, showing that the model did not struggle significantly with any particular

class, which is crucial for applications requiring reliable classification across diverse

subjects.

Performance Metrics

In Fig. 7.23the model achieved an accuracy, precision, recall, and F1 score of

around 96%, with an AUC of 1.00. These metrics highlight the model’s ability to

precisely and reliably identify gait patterns. The high AUC score, in particular,

underscores the model’s excellent discriminative capability across all classes.

Figure 7.23: Performance Metrics
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Training vs Validation accuracy and loss plot

Figure 7.24: Training vs validation accuracy

Figure 7.25: Training vs Validation Loss

• In Fig. 7.24 and Fig. 7.25The plot illustrates the model’s accuracy over 20

epochs. The training accuracy steadily increased, starting from around 30%

and reaching close to 98%. The validation accuracy also showed a consistent

improvement, stabilizing around 98.5%.
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• This indicates that the KAN model effectively learned the underlying patterns

in the gait data, with minimal overfitting, as evidenced by the close alignment

of training and validation accuracies.

• The loss graph shows a sharp decline in both training and validation loss within

the first few epochs, indicating rapid learning. The loss continued to decrease,

stabilizing at a low value by the end of the training period.

• This suggests that the model not only learned effectively but also minimized

errors in its predictions, leading to a robust performance on unseen data.

7.3.2 Performance assessment of RESNET

Confusion Matrix

Figure 7.26: Confusion Matrix
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The following confusion matrix Fig. 7.26presents:

• Diagonal Dominance: The matrix shows a strong diagonal dominance, mean-

ing the majority of samples are correctly classified. For example, class 0 has

1640 correct predictions, class 1 has 1935, and so on. High values along the

diagonal indicate that the model is performing well in distinguishing between

different classes.

• Misclassifications: The off-diagonal elements represent misclassifications. Al-

though these numbers are relatively low compared to the diagonal values, there

are still some notable errors. For instance:

– Class 1 (true) has 24 samples misclassified as class 9 (predicted).

– Class 5 (true) has 38 samples misclassified as class 9 (predicted).

– Other misclassifications are generally below 50 samples per class, which

suggests a strong model but with room for improvement.

• Class Balance: The values are relatively consistent across different classes,

indicating that the dataset is reasonably balanced, and the model doesn’t favor

any particular class.

7.3.3 Interpretation

• High Accuracy: The high numbers along the diagonal suggest that the model

has a high accuracy, successfully distinguishing between different gait patterns.

• Minor Misclassifications: The misclassifications are relatively minor, sug-

gesting that while the model occasionally confuses similar classes, these errors

are not frequent or significant enough to drastically affect overall performance.
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Performance Metrics

Figure 7.27: Performance Metrics

The following Fig. 7.27 presents the key performance metrics for the ResNet

model trained on the CASIA-C dataset:

• Accuracy (96.01%): The model correctly predicted the majority of the test

samples, indicating high overall effectiveness in class distinction.

• Precision (96.15%): This metric shows that out of all samples predicted as a

particular class, 96.15% were actually correct, highlighting the model’s accuracy

in positive predictions.

• Recall (95.97%): The model successfully identified 95.97% of actual positives,

demonstrating strong capability in detecting relevant instances.

• F1 Score (96.06%): Balancing precision and recall, the high F1 Score in-

dicates a well-rounded performance, minimizing both false positives and false

negatives.

• AUC (99.88%): The near-perfect AUC score suggests exceptional model per-

formance in distinguishing between different classes across all threshold values.
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These metrics collectively showcase the robustness and reliability of the ResNet

model in handling the complex task of gait recognition in the CASIA-C dataset.

Training vs Validation accuracy and loss plot

Figure 7.28: Training vs Validation accuracy and loss plot

In the above Fig. 7.28 the observations are noted below:

• The graph shows a significant improvement in both training and validation

accuracy over the epochs.

• The training accuracy curve (blue) starts lower but catches up quickly, indicat-

ing that the model learns well during the initial epochs.

• The validation accuracy (orange) stabilizes after a few epochs, indicating the

model’s good generalization capability.

• The accuracy approaches nearly 100%, demonstrating the effectiveness of the

ResNet model in distinguishing between the different classes.

• The training loss (blue) decreases sharply in the first few epochs and then levels

off, showing that the model is effectively minimizing the error on the training

data.

• The validation loss (orange) also decreases significantly and remains low, sug-

gesting that the model is not overfitting and is able to generalize well to unseen

data.
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• The close alignment between training and validation loss indicates a good fit,

with minimal risk of overfitting.

Interpretation:

• The high accuracy and low loss values for both training and validation sets

indicate that the model is well-optimized for the task.

• The smooth and converging nature of the curves suggests that the model has

effectively learned the features needed to accurately classify the gait patterns

in the CASIA-C dataset.

7.3.4 Performance assessment of EfficientNet

Confusion Matrix

Figure 7.29: Confusion Matrix

The confusion matrix shown in Fig. 7.29 provides a detailed visual representation

of the performance of our classification model. The following observations can be
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made:

• Diagonal Dominance: The matrix exhibits a strong diagonal line, which

indicates that the majority of the predictions made by the model are correct.

The diagonal elements represent the correctly predicted instances for each class.

The high values along this diagonal confirm the model’s accuracy in identifying

the correct classes.

• Off-Diagonal Elements: These elements represent the instances where the

model has misclassified a sample, i.e., where the predicted label does not match

the true label. In this matrix, the off-diagonal elements are sparse and have

relatively low values, shows that the model makes very few mistakes in distin-

guishing between classes.

• Color Intensity: The intensity of the color along the diagonal is notably high,

reinforcing the model’s strong performance in accurately predicting the classes.

A deeper color indicates a higher count of correct predictions, and the overall

intensity gradient suggests minimal misclassification.

• General Assessment: The confusion matrix reflects the model’s overall ex-

cellent performance. The minimal number of off-diagonal entries implies that

the model has a high precision and recall across all classes. This aligns with

the previously calculated performance metrics, where high accuracy, precision,

recall, F1 score, and AUC were observed.

The confusion matrix is a strong indicator of the model’s capability to accurately

classify samples. The low number of misclassified instances demonstrates that the

model effectively differentiates between different classes. Overall, this confusion ma-

trix signifies a highly performant and reliable classification model.
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Performance Metrics

Figure 7.30: Performance Metrics

The bar graph in Fig. 7.30 presents the key performance metrics achieved by the

EfficientNet model when evaluated on the CASIA-C dataset. The metrics include

Accuracy, Precision, Recall, F1 Score, and Area Under the Curve (AUC). These

metrics collectively provide a comprehensive overview of the model’s classification

abilities.

• Accuracy (99.71%): . A high accuracy of 99.71% indicates that the model is

highly reliable in making correct predictions, showing that almost all the test

samples were correctly classified.

• Precision (99.71%): A precision of 99.71% signifies that the model’s positive

predictions are highly accurate, meaning very few false positives occurred. This

is particularly important in contexts where the cost of false positives is high.

• Recall (99.71%): A recall of 99.71% indicates that the model is highly effective

at identifying all relevant instances (true positives) in the dataset, showing that

very few true instances were missed.
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• F1 Score (99.71%): With an F1 Score of 99.71%, the model exhibits an

excellent balance between precision and recall, indicating that it performs well

even with a small proportion of errors.

• AUC (99.71%): A high AUC of 99.71% demonstrates that the model has

an outstanding capability to differentiate between the different classes in the

dataset. It suggests that the model’s probability estimates are well-calibrated,

leading to excellent discriminative performance.

The EfficientNet model’s performance metrics demonstrate its effectiveness in clas-

sifying the CASIA-C dataset. The consistently high scores across all metrics under-

score the model’s accuracy, precision, sensitivity, and balanced performance. The

minimal difference between the scores also indicates that the model is robust and

generalizes well to unseen data. This high level of performance is indicative of a

well-trained model with excellent feature extraction capabilities, particularly suited

for complex datasets like CASIA-C.

Training vs Validation accuracy and loss plot

Figure 7.31: Training vs Validation accuracy and loss plot

The following obeservations are made from Fig. 7.31

Training vs. Validation Accuracy:
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• Consistent Improvement: The graph shows a consistent increase in both

training and validation accuracy over the epochs. This indicates that the model

is effectively learning and improving its ability to generalize to unseen data.

• High Accuracy Levels: Both the training and validation accuracy reach high

levels, approaching 100%. This suggests that the model has successfully learned

to recognize gait patterns from the CASIA-C dataset.

• Minimal Overfitting: The slight gap between training and validation accu-

racy is minimal, indicating that the model has a good generalization capability

and is not overfitting the training data. Overfitting would typically be indicated

by a significant gap where training accuracy is much higher than validation ac-

curacy.

Training vs. Validation Loss:

• Steady Decrease in Loss: The training and validation loss curves show a

steady decline, particularly in the early epochs. This decline suggests that the

model is effectively minimizing the error in predictions as it learns.

• Convergence of Loss Curves: The convergence of the training and validation

loss towards low values is a positive sign. It indicates that the model’s predic-

tions are becoming more accurate, with both training and validation datasets

showing similar loss values.

• No Signs of Underfitting or Overfitting: The training and validation loss

curves are close together, and there is no significant divergence. This suggests

that the model is well-fitted to the data and does not suffer from underfitting

or overfitting.

7.3.5 Comparative analysis with existing techniques
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Study Techniques
Used

Performance
Evaluation
Methods

Results Best Model
(Our

Method)

Comparison
with

Previous
Techniques

[50] Dynamic
Routing
Between

Capsules and
RNN

Autoencoder

Accuracy,
sensitivity,
specificity

Over
90% ac-
curacy

KANs (96%
accuracy,
96% AUC)

Significant
improvement
in accuracy
and AUC

compared to
traditional
methods.

[51] PCA and
LDA for
feature

extraction

Accuracy,
robustness,
computa-
tional

efficiency

91% ac-
curacy

KANs (96%
accuracy,
96% AUC)

Higher
accuracy and
AUC than
PCA and
LDA

approaches.
[52] LGSD and

PSN
Recognition
accuracy,
Rank-1
accuracy,
Cross-view
performance

Varied:
fast

walking
(71.72%),
walking
with a
bag

(50.52%)

KANs (96%
accuracy,
96% AUC)

Achieved
better

accuracy and
robustness

across various
walking

conditions.

[53] Various
transfer
learning

models (Mo-
bileNetV2,
InceptionV3,

etc.)

Accuracy,
epochs, data
augmentation

CNN-
LSTM:
87.25%
accu-
racy,
Pro-
posed
CNN:
94.29%
accu-
racy

KANs (96%
accuracy,
96% AUC)

Significantly
improved

performance
metrics,

especially in
precision and

recall.

[54] GCNs Rank-1
accuracy

Normal
walking
(87.7%),
walking
with a
bag

(74.8%),
wearing
a coat
(66.3%)

KANs (96%
accuracy,
96% AUC)

Outperformed
GCNs,

demonstrat-
ing better
scalability

and handling
of varied
data.

Table 7.3: Comparative Analysis of Gait Recognition Techniques



Chapter 8

Summary & Conclusion

In the concluding chapter of my thesis, several key findings and contributions to

the field of gait recognition were highlighted. The research focused on developing

advanced methodologies for recognizing individuals based on their gait, leveraging a

unique combination of edge detection, hybrid feature extraction,comprehensive evalu-

ation metrics and robustness to environmental variations positions our approach as a

significant improvement over traditional gait recognition methods. In the concluding

chapter of my thesis, several key findings and contributions to the field of gait recog-

nition were highlighted. The research focused on developing advanced methodologies

for recognizing individuals based on their gait, leveraging deep learning techniques,

hybrid feature extraction, and comprehensive evaluation metrics. The methodologies

used include:

• Advanced Preprocessing Techniques: These include edge detection, con-

trast enhancement, and noise reduction to improve data quality.

• Hybrid Feature Extraction Model: A combination of traditional methods

such as Histogram of Oriented Gradients (HOG) and Local Binary Patterns

(LBP) with deep learning-based techniques like Kolmogorov-Arnold Networks

(KANs), ResNet, and EfficientNet for capturing complex spatiotemporal fea-

tures.

• Model Training and Evaluation: Using a combination of spatiotemporal

models, transfer learning, and ensemble learning approaches to improve robust-

ness and accuracy.

This experiment is evaluated using the publicly well-known datasets, CASIA-A,

CASIA-B, and CASIA-C, which cover a wide range of conditions and viewpoints.

These datasets provide a comprehensive platform for developing and testing gait
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recognition models under different scenarios, demonstrating the effectiveness of the

proposed methodologies in various challenging conditions.

The study demonstrated that integrating traditional handcrafted features with

advanced deep learning models significantly improves the accuracy and robustness

of gait recognition systems. The combination of techniques, such as edge detection,

contrast enhancement, and deep feature extraction, enables the system to better

handle variations in gait patterns caused by different conditions like walking speed

and carrying conditions.

The research introduced and utilized various advanced deep learning models,

including EfficientNet, ResNet and Kolmogorov-Arnold Networks (KANs). These

models were shown to outperform traditional methods and other deep learning ap-

proaches, achieving higher accuracy and better generalization across the CASIA

datasets (CASIA-A, CASIA-B, and CASIA-C).For instance, the EfficientNet model

achieved an accuracy of 96.23% on the CASIA A dataset, while the ResNet model

demonstrated a strong performance with an accuracy of 93.41%.

The evaluation of the models was conducted using a broad set of metrics, including

accuracy, precision, recall, F1 score, and AUC (Area Under the Curve). This compre-

hensive approach provided a detailed understanding of the strengths and weaknesses

of each model, allowing for a more nuanced analysis of their performance.For exam-

ple, the KAN model across the 3 datasets achieved an overall accuracy of over 95.3%

and an F1 score of 95.6%, highlighting its effectiveness in recognizing gait patterns

under varied conditions.

The importance of data preprocessing was underscored, particularly in enhancing

the quality of input data through techniques like edge detection, noise reduction, and

data augmentation. By applying these preprocessing techniques, the models showed

a significant improvement in accuracy and robustness.

The thesis contributes significantly to the field by introducing innovative methods

for feature extraction and model training. The findings suggest that the combina-

tion of traditional and deep learning features, along with ensemble techniques, can

significantly enhance the accuracy and applicability of gait recognition systems in

real-world scenarios.

This comprehensive conclusion encapsulates the core achievements of the research
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and sets the stage for further advancements in the field of gait recognition.



Chapter 9

Limitations

In Chapter 9, the limitations of my study and its methodologies are discussed com-

prehensively. The following key points outline the primary challenges and constraints

identified in the research:

9.1 Data Dependency and Quality

The study heavily relies on the quality and quantity of data from the CASIA

datasets. The models’ performance can be significantly affected by the limitations

in the dataset, such as insufficient data diversity and the presence of biases. The

variations in data quality, including noise and occlusion, posed challenges in achieving

consistent results across different conditions.

9.2 Complexity and Interpretability of Models

Advanced deep learning models, particularly those involving deep architectures

and ensemble methods, often function as ”black boxes,” making their decision-making

processes difficult to interpret. This lack of transparency complicates the understand-

ing of how models arrive at specific conclusions, which is crucial for applications in

sensitive areas like security and healthcare.

9.3 Computational Requirements

The training and deployment of deep learning models require significant compu-

tational resources, including high-performance GPUs. This can be a limitation for

practical applications, especially in environments with limited computational infras-

tructure. The complexity of the models also leads to increased training times and

energy consumption.
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9.4 Sensitivity to Environmental and Subject Variability:

The models developed are sensitive to variations in environmental conditions, such

as lighting and background changes, as well as subject-specific factors like clothing

and footwear. These variables can significantly affect the accuracy and reliability of

gait analysis, especially in real-world scenarios where these factors are uncontrolled..

9.5 Bias and Fairness Concerns

There is a risk of bias in the models, stemming from the training data. If the

dataset lacks diversity, the model might not perform equally well across different

demographic groups, potentially leading to fairness issues. This is particularly con-

cerning in applications involving personal identification and surveillance.

9.6 Limited Focus on Neurological Indicators:

While the models can identify general gait patterns, they are not specifically

tailored to detect subtle neurological indicators that may precede Alzheimer’s disease.

The complexity of these early signs requires specialized models and datasets that are

not yet fully developed or available.

9.7 Ethical and Privacy Issues

The use of gait recognition systems raises ethical and privacy concerns, particu-

larly regarding the collection and use of biometric data. Ensuring the responsible and

secure handling of data is a critical aspect that needs further exploration.

9.8 Scalability and Real-World Applicability

The scalability of the models to handle large-scale data and their real-world ap-

plicability under diverse and dynamic conditions are areas that require further inves-

tigation. Ensuring that models can maintain accuracy and efficiency as they scale is

a significant challenge.



Chapter 10

Discussion

In the final chapter of this thesis, several avenues for future research and develop-

ment in the field of gait recognition are proposed. These suggestions aim to enhance

the current methodologies and explore new applications. Key areas for future work

include:

10.1 Edge AI Devices for Real-Time Gait Analysis

A significant future direction involves deploying the developed models on edge AI

devices. These devices can record gait data in real-time, providing immediate analysis

and feedback. This application is particularly relevant for scenarios requiring rapid

identification or assessment, such as security checkpoints and healthcare settings.

10.2 Detection of Early Onset Alzheimer’s Disease

Leveraging gait analysis for medical diagnostics, particularly in detecting early

onset Alzheimer’s disease, presents a promising area of research. The subtle changes in

gait patterns, which may be indicative of neurological decline, can be monitored using

the proposed models. Future work will focus on refining these models to accurately

identify these changes and develop a reliable diagnostic tool.

10.3 Improving Model Robustness and Generalization

Future research should aim to improve the robustness and generalization of gait

recognition models across diverse environments and conditions.The OU-ISIR Multi-

View Large Population Dataset (OU-ISIR MVLP) is the largest dataset for gait

recognition. This dataset contains over 10,000 subjects and includes comprehensive

view angles, making it the most extensive gait dataset in terms of both subject

diversity and data volume.
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10.4 Advanced Data Augmentation Techniques

Further development of data augmentation techniques is necessary to create more

comprehensive training datasets. This will help in simulating a wider range of real-

world scenarios, improving the models’ ability to handle unforeseen conditions.

10.5 Integration of Advanced Deep Learning Architectures

Exploring the integration of advanced deep learning architectures, such as Trans-

former models, could provide new insights and improvements in feature extraction and

classification. These architectures have shown promise in other domains and could

be adapted for gait recognition tasks. As future work, dimensionality reduction tech-

niques such as PCA could be applied to the CASIA-C and CASIA-A datasets. This

could further enhance model performance by focusing on the most relevant features

in these datasets.

10.6 Ethical and Privacy Considerations

As gait recognition technology advances, it is crucial to address the ethical and

privacy implications associated with the collection and use of biometric data. Future

work should focus on developing guidelines and frameworks that ensure the respon-

sible and secure use of gait data.

10.7 Cross-Dataset Validation and Benchmarking

To establish the reliability and applicability of the proposed methods, future stud-

ies should include cross-dataset validation. This involves testing the models on dif-

ferent datasets beyond the CASIA series to demonstrate their generalizability and

robustness. Future work could explore the implementation of cross-validation tech-

niques for model training and testing. Cross-validation would provide a more robust

evaluation of model performance, reducing the potential for overfitting and ensuring

that the model generalizes well to unseen data.
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10.8 Real-World Applications and Scalability

Future efforts should also focus on scaling the technology for real-world applica-

tions, including large-scale surveillance systems, healthcare monitoring, and personal-

ized security solutions. Ensuring that these systems can operate efficiently in diverse

and dynamic environments is crucial for their practical deployment.

These directions provide a roadmap for future research, aiming to advance the field

of gait recognition both in terms of technical development and practical application.
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