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Abstract

Background: Mnemonic discrimination (MD) involves distinguishing new stimuli

from memories of highly similar “lure” items or events, and is a putative indirect

probe of dentate gyrus functioning. MD is impaired in the elderly and in individuals

with hippocampal lesions, schizophrenia, major depressive disorder, and Alzheimer’s

disease. The gold-standard MD test, called the mnemonic similarity task (MST), is

rarely used in clinical research. We thus aimed to demonstrate convergent validity

between the MST’s MD measure and a novel analysis method that extracts informa-

tion about MD that could be used in widely clinically used recognition memory tests

that do not have categorical distinctions between “lures” and “foils.”

Methods: By fitting a logistic function to the relationship between stimulus inter-

ference and the probability of classifying a stimulus as novel, at the single participant

level, we derived participant-level indices of MD (λ) and overall recognition memory

performance (∆). We applied the novel measures to MST data from two indepen-

dent datasets (N=18; N=67), and to synthetic MST data. Using linear mixed-effects

modelling, we sought to confirm that λ predicts the MST’s lure discrimination index

(LDI), while ∆ predicts the MST’s overall recognition memory index (REC).

Results: Across all datasets, λ predicted LDI (β=0.76, 95% CI [0.62-0.91], p<0.001),

but not REC (β=0.06, 95% CI [-0.03-0.15], p=0197), while ∆ predicted REC (β=0.93,

95% CI [0.83-1.02], p<0.001), but not LDI (β=-0.06, 95% CI [-0.20-0.09], p=0.438).

The λ and ∆ indices were not correlated. Simulations suggest that λ may be more

robustly estimated in participants with stronger overall recognition performance.

Conclusion: Our novel measure accurately indexes MD, without correlating with

overall recognition memory performance. Future studies should apply it to large

clinical datasets with widely used recognition memory tests.
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Chapter 1

Introduction

Mnemonic discrimination is the ability to distinguish new stimuli from highly sim-

ilar items stored in memory. Although there are other processes that contribute

to mnemonic discrimination [1–4], successful mnemonic discrimination is thought

to be largely supported by the hippocampus, specifically the hippocampal dentate

gyrus [5–8], such that measurements of mnemonic discrimination putatively serve

as an indirect probe of dentate gyrus function. Importantly, poor mnemonic dis-

crimination is associated with aging [9,10], impaired hippocampal function [5,11–13],

cognitive impairment [9], and several psychiatric disorders, such as schizophrenia [14],

and depression [15–17]. More specifically, mnemonic discrimination impairments were

seen in patient BL whose lesions primarily involved the dentate gyrus, in spite of

BL’s intact performance on other hippocampal-dependent tasks [5,18,19]. Therefore,

mnemonic discrimination assessment is clinically relevant, and may allow us to in-

directly study dentate-gyrus-dependent disease mechanisms. However, our ability to

study mnemonic discrimination in clinical populations is currently limited by available

samples of patient data using the gold-standard measure of mnemonic discrimination,

the Mnemonic Similarity Task (MST) [20].

In research on clinical neuropsychiatric populations, memory testing is commonly

done using standard clinical batteries, including tests of memory such as the Rey

Auditory Verbal Learning Test (RAVLT), Hopkins Verbal Learning Test (HVLT),

and California Verbal Learning Test (CVLT) [21]. Indeed, in a recent collabora-

tion by the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA)

consortium, more than 10,000 verbal learning test results were pooled for analysis,

comprising healthy controls and patients with traumatic brain injury [22]. Many more

verbal learning test records are also available for analysis from other clinical popu-

lations. Other recognition memory task data are also available from existing clinical

1
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studies, such as continuous visual memory test data from patients with bipolar dis-

order [23]. If we could use these recognition memory paradigms to probe mnemonic

discrimination, then we would have access to large, clinically relevant samples to

allow us to study how mnemonic discrimination is affected by various neurological

and psychiatric disorders, with higher degrees of ecological validity. Furthermore,

clinically applicable recognition memory tests, such as those from the verbal learning

tests discussed above, are also often collected alongside clinical trials. By extract-

ing measures of mnemonic discrimination performance from these clinically common

recognition memory tests, we may enable many highly powered studies of mnemonic

discrimination as a biomarker of treatment outcomes [24,25]. Finally, since many com-

mon clinical recognition memory tests have also been provided to affected patients

and their unaffected relatives [26], enabling measurement of mnemonic discrimina-

tion from these tests could facilitate large studies of the degree to which mnemonic

discrimination impairments in clinical populations are either (A) familial and poten-

tially represent trait vulnerability markers, or (B) possibly sequelae of the disease

process itself. However, to our knowledge, there is no approach yet validated to ex-

amine mnemonic discrimination in standard recognition memory paradigms that are

commonly used in clinical populations. Prior to implementing such applications, how-

ever, a measure must be developed and (A) validated against existing gold-standard

approaches of assessing mnemonic discrimination, and (B) examined for its stability

and robustness across different assumptions and testing conditions.

Therefore, the present study aims to take an important step toward developing

a novel approach to extracting information about mnemonic discrimination perfor-

mance based on recognition memory paradigms other than the MST. The MST is a

delayed recognition memory paradigm in which participants study a set of images,

called the study list, and are subsequently presented with a test list of images that

contain (A) all of the study list images, here called “old” images, (B) images that

are highly distinct from the old images, here called “foils”, and (C) images that are

similar, but not identical, to the old images, which are here called “lures” [20]. Lure

images are designed to introduce interference by virtue of perceptual similarity. Indi-

viduals with perfect mnemonic discrimination performance would be able to identify

all lures as novel, regardless of the fact that lure images may be highly similar in
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appearance to old images on the study list. The critical difference between the MST

and most existing, clinically common, recognition memory paradigms is that the MST

has a categorical separation between old, lure, and foil stimuli, which facilitates mea-

surement of overall recognition memory performance (called REC ) and mnemonic

discrimination, via the lure discrimination index (LDI). The MST REC measure is

generally quantified as the probability that an old image is correctly classified as old,

minus the probability that a foil image is misclassified as old. The MST LDI is gener-

ally quantified as the probability that a lure image is correctly classified as “similar,”

minus the probability that a foil image is mistakenly classified as “similar”. Other

analytical methods have been proposed for the MST, but they all require clear cat-

egorical distinctions between which images in the test set are lures and foils [27, 28].

However, in clinically common memory tests, the differences between testing stimuli

may not be so significant that one group can be classified as “foils” while the others

are “lures.” Rather, these tests, such as the RAVLT [29] or the Continuous Visual

Memory Test (CVMT) [23], may have test stimuli whose degree of similarity varies

in a more continuous fashion.

To address this problem, we develop a novel approach to measuring mnemonic

discrimination that does not require a categorical distinction between “lures” and

“foils”, but rather can quantify mnemonic discrimination in relation to some con-

tinuous variation in similarity between test stimuli and those in the study list. To

accomplish this, we first develop a general mathematical formulation of mnemonic

discrimination paradigms. We then motivate the intuition behind our novel approach

to measuring recognition memory performance and mnemonic discrimination, which

relies on fitting a 5-parameter logistic function to individual trial-by-trial data. We

then show that our measures of recognition memory performance and mnemonic dis-

crimination consistently track MST REC and LDI, respectively, as computed from

two MST studies, demonstrating convergent [30] and divergent validity. Finally, we

generated simulated MST data to examine conditions that may moderate the perfor-

mance of our novel measures.



Chapter 2

Methods

2.1 Mathematical Generalization of Mnemonic Discrimination

Paradigms

In order to develop a novel set of indices for mnemonic discrimination, we first sought

to develop a generalization of mnemonic discrimination paradigms to facilitate the

extraction of the essential components necessary for mnemonic discrimination mea-

surement, in a task-agnostic fashion. Let X be a random variable defined on a

discrete space consisting of tokens {1, 2, . . . , K}, which in the recognition memory

task context are different stimuli. Let xi be the i’th realization of X, sampled with

replacement from a distribution over X.

A recognition memory experiment consists of an initial study phase in which an

agent is supplied with a sequence of N items of X, denoted X = {x1, x2, . . . , xN}. For
some index n, where 1 < n < N , we can divide the list of items X into a study and

test list, callingXS = {x1, . . . , xn} the study list, andXT = {xn+1, xn+2, . . . , xN} the
test list. Given this division, let Y ∗ = {y∗i : i ∈ 1, 2, . . . , N − n} be a vector denoting

whether item xn+i is novel: y∗i = I[xn+i /∈ XS] , which takes a value of 1 if the

argument is true, and a value of 0 otherwise. When y∗i = 1, then xn+i is known as a

“lure” or “foil” (meaning that it is novel), and when y∗i = 0, it is known as a “target.”

Let yi be the agent’s estimate of y∗i (that is, its prediction of whether xn+i /∈ XS,

which means that the test stimulus xn+i is novel). We assume that yi is generated

by a function fθ(xn+i; XS) with parameters θ. In other words, we assume that the

agent’s predictions of whether a given item is novel is a function governed by some

parameters θ that characterize the agent, as well as the list of items studied. Note

that the prediction yi can be either discrete (such as for binary yes/no recognition,

which is the case we consider here), or continuous (such as for probabilistic predictions

or expressions of confidence).

A recognition memory paradigm becomes a mnemonic discrimination paradigm

4
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when we consider how the probability of identifying test list stimulus xn+i as novel,

which here we will denote as pθ(xn+i), varies in relation to the degree of similar-

ity between xn+i and the most similar stimulus in the study list XS(n). If we let

d(xn+i, XS(n)) represent some measure of perceptual or semantic “dissimilarity” be-

tween the item xn+i and study list XS(n), such that d(xn+i, XS(n)) = 0 implies that

xn+i is an old item in the study list (no dissimilarity), then one should expect in

general that pθ(xn+i) increases monotonically with respect to d(xn+i, XS(n)). That

is, as the stimulus xn+i becomes more distinct from the stimuli in the study list, the

more likely the participant is to classify it as novel. For an individual with excel-

lent mnemonic discrimination ability, pθ(xn+i) approaches its maximal value for even

small values of d(xn+i, XS(n)), implying that the participant’s recognition memory

system is highly sensitive to even small differences between old and new stimuli.

2.2 A Novel Measure of Recognition and Mnemonic Discrimination

Performance

Consider the range of perceptually or semantically relevant dissimilarities from novel

to studied stimuli, d(xn+1, XS(n)), which we assume to be scaled from 0 (the dissimi-

larity of studied stimuli to themselves, describing a stimulus identical to one studied),

to 1 (the dissimilarity between the study list and the most distinct novel stimulus in

a test list, describing the most dissimilar stimulus). Recognition of the most distinct

novel stimuli does not depend heavily on mnemonic discrimination. As dissimilarity

to the studied stimuli declines, then successful recognition memory should be taxed

to progressively higher degrees. Poor recognition should reflect poor performance

across all similarity levels, whereas poor mnemonic discrimination should reflect poor

recognition in relation to high similarity levels (i.e., lower levels of dissimilarity) in

test stimuli. A mnemonic discrimination index should therefore capture the degree

to which recognition memory performance declines as a function of interference by

perceptual or semantic similarity of test stimuli.

These assumptions imply that the probability of classifying a stimulus as new,

pθ(xn+1), is related to stimulus dissimilarity, d(xn+1, XS(n)). In other words, the

probability of classifying a stimulus as new increases monotonically with respect to

the dissimilarity of that stimulus from those in the study list. For each participant, we
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can imagine a performance curve representing the probability of classifying stimuli as

new, PNEW (dissimilarity), as being strictly increasing with respect to dissimilarity.

Indexing recognition in such a curve would involve calculating the difference between

PNEW (1), correct identification of the most dissimilar items, and PNEW (0), incorrect

identification of OLD items as being novel. We call this the recognition index ∆ =

PNEW(1) - PNEW(0). To index mnemonic discrimination, we need to capture how far

PNEW(dissimilarity) deviates from PNEW(1), in relation to dissimilarity. For instance,

perfect mnemonic discrimination would imply that PNEW (dissimilarity) ≈ PNEW (1)

for all dissimilarity values greater than 0. The mnemonic discrimination index should

be maximal in those cases. Conversely, the mnemonic discrimination index should

be low if it only reaches its maximum value at PNEW (dissimilarity) ≈ PNEW (1) at

high values of dissimilarity. To capture mnemonic discrimination we need to capture

an index that is inversely related to PNEW (1) − PNEW (dissimilarity) across all

dissimilarities of novel stimuli in the paradigm. To obtain this index we must model

PNEW (dissimilarity) as a performance curve fit to recognition data. We modeled the

relationship PNEW (dissimilarity) using the following sigmoidal function,

PNEW(dissimilarity) = d+
a− d(︂

1 +
(︁
dissimilarity

c

)︁b)︂e (2.1)

which is graphically depicted in Figure 2.1. The parameter a adjusts the lower asymp-

tote of the curve, which will mostly influence the probability that a participant will

incorrectly classify an OLD image as NEW. The parameter b corresponds to the slope

of the curve. The parameter c shifts the curve horizontally. The parameter d alters

the upper asymptote of the curve, which will mostly influence the probability that

a maximally dissimilar image would be correctly classified as NEW. The parameter

e enables asymmetry of the sigmoidal function to add flexibility in participant-level

fits.

With a performance curve representing PNEW (dissimilarity), we can calculate its

deviation from PNEW (1) by taking the area between the performance curve and its

maximum. Since having a larger ∆ would also mean having a larger area between

the curve and its maximum, we scale the output by ∆ to reduce the colinearity of

the two measures. Our mnemonic discrimination index, denoted λ, is thus defined as
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Figure 2.1: Consequences of altering parameters on the 5-parameter logistics func-
tion. Panel A: Parameter a primarily corresponds to the lower asymptote, which
will mostly influence the probability of misclassifying an old image as new. Panel
B : Parameter b changes the steepness of the curve. Panel C : Parameter c shifts
the curve horizontally. Panel D : Parameter d primarily corresponds to the upper
asymptote, which will mostly influence the probability of classifying the most dis-
tinct new image as new. Panel E : Parameter e adjusts the asymmetry of the curve.
Panel F : Example of a fitted curve. The dashed green line shows PNEW(0), repre-
senting the probability of classifying an old image as new. The dot-dashed red line
shows PNEW(1), representing the probability of classifying the most distinct (seman-
tically dissimilar) new image as new. The difference between PNEW(1) and PNEW(0)
defines an overall measure of recognition memory performance, ∆. The λ index of
mnemonic discrimination is calculated by examining the degree to which PNEW de-
clines with increasingly similar stimuli, specifically by calculating the inverse of the
area between the curve and its upper asymptote and dividing it by ∆.

follows (Figure 2.1F):

λ = 1− A

∆
, where A = PNEW(1)−

∫︂ 1

0

PNEW(x) dx (2.2)

A is the integral defining the area between the sigmoidal function PNEW(dissimilarity)

and the maximal value of PNEW(1), the latter of which represents the correct recog-

nition rate of the most distinct novel items.
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2.3 Experimental Validation

Dataset 1: Lee & Stark 2023

The first dataset is from a study that aimed to develop new cognitive models based

on the multinomial processing tree framework to be applied to the MST [27]. We

analyzed data from 21 participants (13 female, mean age: 21, age range: 18-24) who

were given the standard 3-way classification (old-similar-new) version of the MST [20].

Participants were students recruited through the Sona Systems experimental manage-

ment system at the University of California at Irvine. The study received ethics board

approval, as noted in the original study, and their data were made freely available

online. The participants studied 128 images while tasked with judging the pictures as

either containing “indoor” or “outdoor” items, in order to elicit incidental encoding

(that is, to have participants attentively encode the pictures without knowing that

their memory of these images would be subsequently tested). Participants then were

tested on 192 images made up of 64 old images, 64 new images, and 64 lure images.

Three participants were excluded from the analysis: two due to missing responses

that exceeded two standard deviations above the mean, and the other for having

answered randomly with respect to stimulus type.

Dataset 2: Wahlheim et al. 2022

The second dataset is from a study investigating the relationship between functional

connectivity as measured using fMRI between brain areas within the default mode

network and performance on the MST [31]. It included data from 36 younger adults

(20 female, mean age: 22.21, age range: 18–32) and 36 older adults (20 female,

mean age: 69.82, age range: 61–80). Participants were recruited from the greater

Greensboro, North Carolina community. Ethics board approval for this study was

noted in the original manuscript and their data were made freely available online.

Participants were given the old-similar-new version of the MST. Participants studied

72 test images while making indoor/outdoor classification decisions on each item,

and then were tested on their recognition of 108 images (36 old, 36 new, 36 lures).

Five participants were excluded in the analysis: four due to missing responses that

exceeded two standard deviations above the mean, and one for apparent random
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responses relative to the stimulus type.

Datasets - Lure Bins

Each lure image trial in both datasets has an associated lure bin value ranging from

1 to 5 which corresponds to the image’s similarity to a test set image (a lure bin of

1 indicates highly similar lures, whereas images with lure bin 5 are the least similar

to old images). We translate lure bins to dissimilarities in our analysis, as described

below in the Statistical Analysis section. Lure bin sets are image pair groupings

empirically determined to be similarly discriminable [9, 32]. They were formed by

evaluating the rates in which participants taking the MST mistakenly identified lures

as being old for each pair of stimuli in the MST. Image pairs with similar false

alarm rates are grouped together in ordinal bins corresponding to their observed false

alarm rate. That is, real-world participants most often misclassify lures identified

as belonging to lure bin 1 as “old”, whereas they most rarely misclassify lure bin 5

images as “old”. Lure images in the test phase in the Wahlheim et al. [31] dataset

only belonged to one of the 3 most similar lure bin sets (i.e. lure bins 1-3).

Statistical Analysis

For each study, the data were pre-processed such that the ordinal lure bins were

standardized into a “dissimilarity measure” that ranged between 0 (old stimuli) and

1 (completely new stimuli; the most dissimilar possible). For the lure stimuli, this was

done as follows: (LureBin)/6, where LureBin is a given target image’s lure bin. This

facilitates the computation of pθ(x ) for some image x, representing the probability

that the participant will identify the test image as novel.

To model the influence of dissimilarity on the response metric we fit the 5-

parameter logistic function to each participant’s combination of stimulus dissimi-

larity values and old/new/similar responses (Participant responses were coded as

0 for “old” images, and 1 for “similar” and “new” responses). This was done us-

ing nonlinear least squares in the LsqFit.jl package for the Julia programming lan-

guage (https://github.com/JuliaNLSolvers/LsqFit.jl). From these fitted curves, we

extracted the λ and ∆ measures for each participant. We used the following lin-

ear mixed effects model, presented here in R syntax (for the lme4 package [33]), to

https://github.com/JuliaNLSolvers/LsqFit.jl
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determine whether λ and ∆ were colinear: λ ∼ ∆ + (1|Study).

For each dataset, we also calculated the original MST LDI and REC scores for

each participant. The MST’s LDI score is calculated by taking the proportion of lures

correctly identified as being lures and subtracting from this the proportion of foils

incorrectly identified as being lures. The MST’s REC score is similarly calculated by

taking the proportion of old items correctly identified as being old and subtracting

the proportion of foils incorrectly identified as being old items.

We sought to evaluate whether λ and ∆ could explain variation in the original

MST LDI and REC, respectively. Secondly, we sought to demonstrate that ∆ was

not associated with the original MST LDI, and that λ was not associated with the

original MST REC. To do this, we used linear mixed effects modelling, with study-

level random intercepts. The following model sets the original MST LDI as the

dependent variable, and the λ and ∆ values as independent variables: LDI ∼ λ + ∆

+ (1|Study). This model would provide convergent validity if the MST LDI associates

with λ, and would provide divergent validity if LDI does not associate with ∆. The

second model sets the original MST REC as the dependent variable, with λ and ∆

as independent variables: REC ∼ λ + ∆ + (1|Study). This model would provide

convergent validity if the MST REC associates with ∆, and would provide divergent

validity if REC does not associate with λ. The older and younger subgroups in the

Wahlheim et al. [31] study were treated as separate studies in an additional analysis.

Participants with missing responses exceeding two standard deviations above the

mean in the dataset were excluded in the analysis. One participant in dataset 1 was

short of the cutoff and was deemed an influential point in the analysis (the cutoff

was 46.55, and the participant had 43 missing responses). We thus reexamined the

relationships again after removing this participant in an additional analysis.

Sensitivity Analysis - Low Interference Tests

A concern that arises in wanting to extract information about mnemonic discrimina-

tion from tests other than the MST is that traditional tests of recognition memory

are not explicitly designed to elicit large false alarm rates by employing lures (images

specifically chosen to be perceptually similar to those in the study list), as is done in

the MST. While this issue may prevent some recognition memory tests from being
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used to index mnemonic discrimination, we sought to examine the performance of our

measures in situations when most test list items are highly dissimilar from old items

(i.e., in situations where the test set is not designed to have high interference). To do

this, we reanalyzed the Lee & Stark [27] dataset while excluding trials involving the

most similar lures. Specifically, lure trials with lure bins of 3 or below were excluded

when extracting the λ and ∆ indices.

Sensitivity Analysis - Semantic Perceptual Similarity derived from Deep

Neural Networks

We sought to trial an alternative dissimilarity measure to lure bins to address a

potential circularity induced by the fact that lure bins are used to determine discrim-

ination ability, yet are themselves derived from human participants’ discrimination

performance. Therefore, we conducted an additional analysis using the Wahlheim

et al. [31] dataset, employing deep neural networks to quantify the dissimilarity of

test items in the MST. These models enable the transformation of raw images onto

embeddings (analogous to coordinates on a map) that represent images' perceptually

salient high-level features. Much like points on a map, the embeddings of the MST

images can be compared to one another to obtain distances that can represent the

perceptual dissimilarity of the two images.

To obtain image embeddings of MST images, we leveraged a deep learning model

from the MetalHead.jl package for the Julia programming language, ResNet-152 [34].

This model was trained to recognize images from the ImageNet database. When

presenting this trained model with MST images, we used the model’s highest-level

representation of each image to compare the images with one another. Specifically,

the model transformed each MST image into a continuous vector by extracting the

model’s high-level embeddings. These embeddings can be thought of as high-level

abstract representations of the contents of an image. With a vector representation

of each MST image, we then defined the neural network-derived “perceptual dissim-

ilarity” between image pairs as the cosine distance between their respective image

vectors.

Since each participant did not study the same set of images in the study phase, we

calculated each test trial’s dissimilarity independently for each participant. A given

https://fluxml.ai/Metalhead.jl/dev/
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test trial image’s dissimilarity was thus defined as the neural network-derived “per-

ceptual distance” between that test trial image and its least “perceptually dissimilar”

studied image. A comparison between each trial image’s neural network-derived dis-

similarity measure and the trial image’s lure bin is depicted in Figure S1. With this

key difference in how dissimilarity is defined in the statistical analysis plan, the rest

of the procedure was conducted as described in the Statistical analysis.

2.4 Synthetic Data Experiments

Synthetic data generation

Since MST data from human participants may represent only a small fraction of all

possible MST task performances, we sought to generate synthetic data with multino-

mial processing tree models as per Lee & Stark [27] to further validate that our novel

measures track LDI and REC. Modeling synthetic agents that undergo the MST al-

lows for studying the conditions under which our measurement approach breaks down,

and identifying the edge cases where our novel measures may not track LDI and REC.

Additionally, we sought to establish a simulated ground truth of lure discriminability

to which we can investigate and compare how well the novel λ index and LDI can

extract its information based on the simulated agent’s behaviour.

In our model, synthetic agents respond to stimuli categorized as old, new, or lure

based on predefined probabilities (graphically depicted in Figure 2.2A). Each agent

has a probability ρ of recognizing an old stimulus. If the stimulus is not recognized,

the agent guesses its category—old, similar, or new—based on probabilities γO, γS,

and γN , respectively, where γO + γS + γN = 1.

For new stimuli, agents have a probability ψ of recognizing that the item was not

previously studied. If this recall fails, the agent again resorts to guessing among the

three categories with the probabilities γO, γS, and γN .

When encountering a lure stimulus, the agents have a probability ρ of recognizing

the related studied item. Subsequently, there is a probability δl that the agent suc-

cessfully discriminates the lure as being similar, rather than old. If recognition fails,

guessing occurs as previously described.

The agents' probability δ of discriminating lures from studied items depends on
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A B

C

Figure 2.2: Summary plots of the synthetic data experiment methodology. Panel A:
Visual depiction of the synthetic agent’s decision trees on a test trial. Each simulated
agent has set values of ρ, γ, ψ, β, and τ that dictates the decisions the agents take
when presented with either an old, new or lure stimulus. The β and τ parameters
alongside the relevant stimulus’ lure similarity, ℓ, govern the δ parameter used in
discriminating lure stimulus. Panel B : Graphical depiction of the two-parameter
logistic function with sample parameters used to characterize the relation between
lure discriminability (δ) and lure dissimilarity (ℓ) for each simulated synthetic agent.
The β parameter adjusts the steepness of the curve, while the τ parameter shifts
the curve horizontally. The shaded area beneath the red curve corresponds to that
curve’s ground truth λ. Panel C : Plate diagram summary of the synthetic data
experiment. At the participant level each agent is characterized by the parameters
ρ, γ, ψ, τ , and β. The parameters τ and β, together with the specific lure trial’s
lure similarity level ℓ, determine the agent’s lure discriminability at that trial. Given
these parameters, each agent at each trial then extracts values of θO, θS, and θN ,
where θO + θS + θN = 1. These θ values represent the probability that the agent
will determine the specific trial stimulus as being either old, new, or similar, of which
the determination itself is represented graphically as the decision node.
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the level of similarity ℓ (represented as a value between 0 and 1) of the lure stimuli to

a studied item in a manner that is unique to each agent. To this end, we implement

a hierarchical extension as per Lee & Stark [27] which specifies additional parameters

per agent, β and τ , such that each agent has a model of the relationship between

discriminability (δ) and lure dissimilarity (ℓ) for lure stimuli only (See Figure 2.2B

for a graphical depiction of the relationship):

δℓ =
1

1 + exp{−β(ℓ− τ)}
where 0 < ℓ < 1 (2.3)

This curve characterizes how discriminability increases as lure dissimilarity decreases,

the β parameter adjusts the steepness of the curve, while the τ parameter shifts the

curve horizontally. Note that the above function is also a logistic function similar

to the one used to extract our λ and ∆ indices. The key distinctions are that the

function features fewer parameters and is only applied to lure stimuli (i.e., values of

the function at similarity levels of 0 and 1 are not used anywhere). In this synthetic

experiment, the above-described participant-level relation between discriminability

and lure similarity contains the relevant information about mnemonic discrimination

that both LDI and the novel λ measure aim to extract. To validate said efforts, we

calculate each agent’s ground truth λ by taking the area under the δℓ curve.

Given the above structure, graphically summarized in Figure 2.2C, we simulated

1500 synthetic agents that were each assigned random values between 0 and 1 of ρ,

γ, ψ, and τ , and a random value between 0 and 50 for β. Each agent is then given a

simulated test list that contains 16 old, 16 new, and 16 lure stimuli (lure stimuli have

an even distribution of each possible lure similarity values) to which the agents make

discrete decisions on whether the stimuli are old, new, or similar.

Statistical analysis - Synthetic data

Each synthetic agent’s LDI and REC scores were calculated in the same manner as

with the empirical data: The LDI score is the proportion of correctly identified lures

minus the proportion of foils incorrectly identified as lures. The REC score is the

proportion of correctly identified old items minus the proportion of foils incorrectly

identified as old items.

To calculate our novel indices, we used each synthetic agent’s trial responses and
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the trials’ dissimilarities to fit the previously described 5-parameter logistic function

to the synthetic participant-level data. The fitted functions were then used to extract

each agents’ λ and ∆ indices.

We considered that poor overall recognition could impact the degree to which

the λ index could track both LDI, and the ground truth λ. To this end, we further

examined these relations by subsetting the dataset by the agents’ overall recognition.

We conducted two additional analyses of these relations where the data only included

synthetic agents with an ∆ index of at least 0.4 for one analysis and 0.6 for the other

(both are values non-excluded human participants generally exceed in the MST).



Chapter 3

Results

Empirical data

Table 3.1 and Figure 3.1C demonstrate a lack of collinearity between λ and ∆. The

fixed effects coefficient of our linear mixed model did not show a statistically signifi-

cant effect (β=0.21, 95% CI [-0.01, 0.43]; p = 0.061). The model exhibited a marginal

R2 of 0.042 and a conditional R2 of 0.099, with an ICC of 0.06, suggesting consistency

across the two studies. However, when considering the older and younger subgroups

of the Wahlheim et al. [31] study as separate studies, this association strengthened

(β=0.22, 95% CI [0.01, 0.43]; p = 0.039; Table S1 and Figure S2C). Table S2 and Fig-

ure S3C show the results of repeating these analyses after excluding one participant

due to substantial missing responses (albeit falling just below the 2 standard devia-

tion threshold we pre-specified in our methods). After excluding this participant, the

fixed effects coefficient was similar in magnitude (β=0.20, 95% CI [-0.02, 0.42]; p =

0.077).

Table 3.1 also shows the results of our mixed effects modeling approach to ver-

ifying concordance between the original MST performance indices and our novel λ

and ∆ measures. As hypothesized, our λ measure showed a statistically significant

association with the MST LDI index (fixed effects β=0.76, 95% CI [0.62-0.91], p <

0.001; Table 3.1 and Figure 3.1A), while not being significantly associated with the

MST REC (fixed effects β=0.06, 95% CI [-0.03, 0.15], p = 0.197; Table 3.1 and Figure

3.1E). Similarly, our ∆ measure showed significant association with the MST REC

(fixed effects β=0.93, 95% CI [0.83, 1.02], p < 0.001; Table 3.1 and Figure 3.1B),

while not being significantly associated with the MST LDI (fixed effects β=-0.06,

95% CI [-0.20, 0.09], p = 0.438; Table 3.1 and Figure 3.1D). The association between

λ and LDI was highly consistent across studies. The association between ∆ and

REC showed a marginal R2 of 0.830 and a conditional R2 of 0.849. The intraclass

correlation coefficient for the ∆ and REC relationship was 0.11, suggesting that the

16
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Figure 3.1: Pairwise comparisons of the original mnemonic similarity task (MST)
measures and our novel measures. Colors indicate the study the data is taken
from: Lee & Stark [27] in blue, Wahlheim et al. [31] in red. Panel A: The MST’s
lure discrimination index (LDI) and the novel λ measure. Panel B: The MST’s
recognition measure (REC) and the novel ∆ measure. Panel C: The novel ∆ and
the novel λ measure. Panel D: The MST’s LDI and the novel ∆ measure. Panel
E: The MST’s REC and the novel λ measure.

association was relatively consistent between the two studies.

Tables S3 and S4 outline our approach using mixed-effects modeling to examine

the concordance between the original MST performance indices and our λ and ∆

measures, after the exclusion of an influential participant with considerable missing

responses. For our λ measure, the results reveal a significant association with the

MST LDI index (fixed effects β=0.77, 95% CI [0.62, 0.91], p < 0.001; see Table S3

and Figure S3A). The ∆ measure is not significantly associated with the MST LDI

with a fixed effects coefficient of β=-0.08 (95% CI [-0.23, 0.07], p = 0.277; see Table

S3 and Figure S3D). The association between λ and LDI remains highly consistent

across studies, given a between-study variance of 0. Our ∆ measure exhibited a

significant association with the MST REC (fixed effects β=0.92, 95% CI [0.82, 1.01],

p < 0.001; see Table S4 and Figure S3B). The λmeasure is not significantly associated
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with the MST REC, showing a fixed effect coefficient of β=0.06 (95% CI [-0.03, 0.15],

p = 0.205; see Table S4 and Figure S3E). The association between ∆ and REC

demonstrated a marginal R2 of 0.812 and a conditional R2 of 0.836. An ICC of 0.13

suggests that this association was relatively consistent between the two studies.

The sensitivity analysis comparing linear models of LDI in the Lee & Stark [27]

dataset with and without exclusion of the most similar lures in the λ and ∆ calcu-

lations performed similarly to one another. The model without any lure exclusion

(R2 = 0.826) demonstrated a slightly stronger R2 than the model with the excluded

lures (R2 = 0.783; See Table S5). The sensitivity analysis of the Wahlheim et al [31]

dataset comparing neural network-derived dissimilarity measures with the standard

MST lure bins was similar for both approaches in the association between the λ in-

dex and the Lure Discriminability Index (LDI). When using neural network-derived

distances as the dissimilarity measure, the relationship between the λ index and LDI

demonstrated a slightly stronger explanatory power (R2 = 0.563, see Figure S4A and

Table S6) compared to using lure bin values (R2 = 0.531).

Synthetic data

Our analyses with the synthetic data confirmed a strong association between the

∆ index and REC, exhibiting an R2 of 0.923 (see Figure S5 and Table S7). The

association between the λ index and LDI was initially moderate but statistically

significant in the full dataset (β=0.55, 95% CI [0.51 – 0.59], p < 0.001). However,

this association strengthened when analyzing only synthetic participants with higher

∆ scores (∆ ≥ 0.6), where the effect size of λ on LDI increased to β=0.76 (95% CI

[0.71 – 0.81], p < 0.001), as illustrated in Figure 3.2A. The relationship between the

λ index and ground truth λ, a measure of ground truth mnemonic discrimination,

similarly improved with higher ∆ thresholds. In the subset with higher recognition

capabilities, λ's predictive power on ground truth λ markedly increased from β=0.64

(95% CI [0.60 – 0.68], p < 0.001) in the full dataset to β=0.90 (95% CI [0.87 –

0.94], p < 0.001) in the high ∆ subset, indicating that as the overall recognition

capability of the agents improved, the novel λ index's ability to track both the LDI

and the ground truth λ also improved (see Figure 3.2B). In line with the empirical

findings, the synthetic analysis additionally confirmed the lack of a significant direct
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relationship between λ and ∆ in both the full dataset and the subset with higher ∆

scores (Table S7).

A B

Figure 3.2: R2 values of the relationships between the synthetic agent’s λ index
and A) the MST’s lure discrimination index (LDI), and B) the ground truth λ
calculated from the synthetic agent’s two-parameter logistic function. Models were
subsetted to only include synthetic agents with a ∆ index above the specified ∆
thresholds.
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Table 3.1: Mixed effects model results of ∆ predicting λ scores, λ and ∆ predicting
mnemonic similarity task (MST) lure discrimination index (LDI) scores, and of λ
and ∆ predicting MST recognition index (REC) scores.

Model 1: λ ∼ ∆+ (1|study)
Predictors Estimates CI p

Intercept 0.08 -0.35 – 0.50 0.713
∆ 0.21 -0.01 – 0.43 0.061
Random Effects
σ2 0.96
τ00 (study) 0.06
ICC 0.06
N (study) 2
Observations 85
Marginal R2 / Conditional R2 0.042 / 0.099

Model 2: LDI ∼ λ+∆+ (1|study)
Predictors Estimates CI p

Intercept -0.00 -0.14 – 0.14 1.000
λ 0.76 0.62 – 0.91 <0.001
∆ -0.06 -0.20 – 0.09 0.438
Random Effects
σ2 0.44
τ00 (study) 0.00
Marginal R2 / Conditional R2 0.565 / NA

Model 3: REC ∼ λ+∆+ (1|study)
Predictors Estimates CI p

Intercept 0.05 -0.18 – 0.28 0.658
λ 0.06 -0.03 – 0.15 0.197
∆ 0.93 0.83 – 1.02 <0.001
Random Effects
σ2 0.16
τ00 (study) 0.02
ICC 0.11
N (study) 2
Observations 85
Marginal R2 / Conditional R2 0.830 / 0.849
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Discussion

Our study presents a novel measure of mnemonic discrimination, λ, which allows

the study of mnemonic discrimination in recognition memory tasks without relying

on categorical distinctions between “lures” and “foils” in test lists. A central moti-

vation for this new metric lies in the fact that data are available for analysis from

several recognition memory tests that have been administered within clinical popu-

lations [22, 35]. However, these tasks do not categorically distinguish lures and foils

in their test images, precluding the application of the traditional MST analyses that

calculate LDI and REC. Furthermore, if one were to impose categorical divisions of

lures and foils onto test lists whose stimuli vary continuously in terms of percep-

tual or semantic interference, statistical power would be lost [36–46]. By developing

a mnemonic discrimination measure that allows continuous variation among novel

items in a recognition memory test list, we may address some of these challenges and

facilitate the study of mnemonic discrimination using many readily available recog-

nition memory tasks. However, prior to applying the λ index to each candidate task,

future studies should assess the variance in the λ measure for each recognition mem-

ory test, through normative simulations such as those employed in the present study

for the MST. This variance should be evaluated to (A) inform whether the test has

the requisite number of trials to ensure sufficient power to find individual differences

of a given effect, and (B) assess how many participants are needed to find a group

difference of a given effect.

The primary finding in this study is the demonstration of both convergent and

divergent validity for our new measures [30]. Specifically, we posited that λ and

MST LDI should be strongly related, as should the ∆ and MST REC measures. Our

results reveal that λ is significantly associated with MST LDI but not with MST

REC. Similarly, ∆ is significantly associated with MST REC but not with MST LDI.

This, in combination with the fact that λ and ∆ are uncorrelated, suggests that they

21



22

provide valid and well-separated markers of mnemonic discrimination (λ), and overall

recognition memory performance (∆).

The synthetic experiments further demonstrated the strong association between

the ∆ and MST REC, and λ and MST LDI measures, respectively. Interestingly, the

strength of the relationship between λ and MST LDI was particularly high when the

synthetic agent’s ∆ index was high. These results suggest that the reliability of λ

increases with the magnitude of ∆.

While our measures offer an avenue for calculating mnemonic discrimination per-

formance from recognition memory tasks beyond the MST, there are opportunities

to test their potential further. For instance, given that clinical neuropsychiatric pop-

ulations often undergo memory tests such as the CVLT, RAVLT, and HVLT, future

investigations should consider applying our mnemonic discrimination measure λ to

large clinical datasets that contain responses from such recognition memory tests [22].

Verbal learning tests in particular are important since impairments in this domain

are common in clinical populations, such as in patients with bipolar disorder [47],

and are predictive of functional outcomes [48, 49]. Harnessing data from established

tools, such as the CVLT, could facilitate understanding mnemonic discrimination in

clinically diverse and large sample populations, improving generalizability. It may

also be useful for future studies to evaluate ways to adapt our method of analysis to

forced-choice recognition tests.

Although common recognition memory tests are not explicitly designed to elicit

high false alarm rates like the MST, variations in dissimilarity within these tests can

still reveal information about mnemonic discrimination, conditional upon an absence

of ceiling effects. We also demonstrated that our mnemonic discrimination measure-

ment approach was robust to removing the most similar lures from the test set in

MST data. Specifically, we found that despite excluding the 60% most similar lures

(i.e. those with the highest false alarm rates) in the analysis, the λ index continued

to show convergent validity with the MST’s LDI among the participants in the Lee

& Stark [27] dataset.

A limitation of our novel measures is that their performance will depend on the

stimulus dissimilarity metric. In the present study, we rescaled the MST lure bins

to reflect the dissimilarity of test items from those already viewed during encoding.
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Here, these lure bins have been determined empirically based on difficulty of discrim-

ination from old images [32]. This results in a “dissimilarity measure” that is ordinal,

rather than perfectly continuous. However, we also showed that our measurement

approach resulted in appropriate convergent and divergent validity when evaluated

under an alternative continuous measure of dissimilarity between the images in the

MST. Specifically, we calculated a “perceptual dissimilarity” between images in the

MST by extracting the high-level abstract representations of those images from a

deep-learning model pre-trained on a large corpus of natural images. Continuous

dissimilarity between image embeddings in this abstract space may be more reflec-

tive of perceptually relevant differences between images, and could provide a viable

alternative dissimilarity measure for estimating λ and ∆. When used as the rele-

vant dissimilarity measure in the extraction of λ and ∆, this alternative measure of

dissimilarity yielded similar results to the analysis using lure bins.

Continuous measures of dissimilarity may also be applied to verbal recognition

memory tasks like the CVLT using language models to reflect semantic dissimilar-

ity, but also simpler measures such as phonological and orthographic distance, or a

combination of these measures to form an overall word dissimilarity index. What

is most important in selecting a dissimilarity metric is that the metric used should

reflect the discriminability of the stimuli. This may depend on the nature of the task.

For example, in a verbal recognition memory task where the words are read aloud,

a dissimilarity measure that particularly reflects phonological dissimilarity should

be evaluated, in addition to dissimilarity measures reflective of semantic differences

between words. While the current study utilized an ordinal dissimilarity measure, fu-

ture research should prioritize continuous metrics that capture perceptually relevant

differences between stimuli, tailored to the specific nature of the task.

Another limitation of the current study is the inclusion of only two real-world

datasets, both of which had relatively small sample sizes. However, there is a paucity

of freely available MST datasets. Given this, our novel analytical approach should

enable analysis of many other existing recognition memory datasets, which although

not from the MST proper, may now be amenable to analysis of mnemonic discrimi-

nation. Despite the limited availability of MST datasets, our estimates were highly

consistent across the datasets utilized. Given this limited heterogeneity, we believe it
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is likely that our estimates would remain consistent if additional datasets were added.

Nevertheless, as a further confirmatory step, it would be useful for future studies to

evaluate our approach on additional MST data to further test the convergent and

divergent validity of λ and ∆.

To summarize, our introduction of the λ index of mnemonic discrimination of-

fers an alternative for analyzing mnemonic discrimination abilities using data from

traditional recognition memory tasks that eliminate the need for categorical distinc-

tions in participants’ responses between lures and foils. Our findings demonstrate

the λ index’s convergent and divergent validity. The λ index has the potential to be

more widely applicable, for example, to examine mnemonic discrimination using large

datasets from clinical samples for a more comprehensive understanding of mnemonic

discrimination in these populations.
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Appendix - Supplementary Materials

Spread Analysis

To examine the robustness of the measures to the number of trials, additional sim-

ulations were conducted where the number of trials was systematically altered. At

each set number of trials, 20 different sets of 50 agents with identical parameters were

generated. Then, for each set of agents in which the agents have the same parame-

ters, but through random discrete choices have variance in outcomes between them,

we examined their variance in several outcome measures in relation to the number

of trials the agents underwent. This analysis was repeated with a subsetted group of

agents who had a ∆ index of at least 0.6.

Supplementary Results

Our investigation into the associations between various simulation parameters and

the novel indices revealed the following: the ∆ index is primarily associated with the

parameters ρ (probability of recognizing old stimuli) and ψ (probability of remember-

ing that an item was not studied), showing its sensitivity to changes in recognition

memory performance (see Figure S6). The λ index showed a primary association with

the parameter τ (the threshold for discriminability in relation to lure similarity), but

it did not show a significant relationship with β (which determines the steepness of

the logistic function relating discriminability to lure similarity), suggesting that λ’s

sensitivity is more attuned to the discriminability threshold than to variations in the

steepness of discriminability across different levels of lure similarity (see Figure S7).

The spread analysis showed the variation in results that can be seen among identical

synthetic agents in relation to the number of trials the agents underwent (see Figures

S8 and S9). Without any participant exclusions, all measures except the λ index

showed similar decreases in spread with increasing number of trials (Figure S8). The

λ index in contrast demonstrated considerably less dropoff in spread with increasing

trials. Interestingly, when subsetting the agents to allow only those with moderately

high recognition (∆ index of at least 0.6; Figure S9), all measures across all number
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of trials showed less variation, and the λ index showed a similar dropoff to LDI with

increasing trials.

Supplementary Figures

Figure S1: Neural network-derived distance measure compared to the original lure
bin in the Wahlheim et al. [31] mnemonic similarity task dataset. Both measures
are scaled to be between 0 and 1.
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Figure S2: Pairwise comparisons of the original mnemonic similarity task (MST)
measures and our novel measures. Older and Younger subgroups in the Wahlheim
et al. [31] study were treated as separate studies. Colors indicate the study the
data is taken from: Lee & Stark [27] in blue, Wahlheim et al. [31] in red (Younger
cohort) and green (Older cohort). Panel A: The MST’s lure discrimination index
(LDI) and the novel λ measure. Panel B: The MST’s recognition measure (REC)
and the novel ∆ measure. Panel C: The novel ∆ and the novel λ measure. Panel
D: The MST’s LDI and the novel ∆ measure. Panel E: The MST’s REC and the
novel λ measure.
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Figure S3: Pairwise comparisons of the original mnemonic similarity task (MST)
measures and our novel measures with an additional participant excluded in the
analysis due to considerable missing responses. Colors indicate the study the data
is taken from: Lee & Stark [27] in blue, Wahlheim et al. [31] in red. Panel A: The
MST’s lure discrimination index (LDI) and the novel λ measure. Panel B: The
MST’s recognition (REC) and the novel ∆ measure. Panel C: The novel ∆ and
the novel λ measure. Panel D: The MST’s LDI and the novel ∆ measure. Panel
E: The MST’s REC and the novel λ measure.
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Figure S4: Pairwise comparisons of the original mnemonic similarity task (MST)
measures and our novel measures using the Wahlheim et al. 2021 dataset using two
different dissimilarity measures. Colors indicate the dissimilarity measure that was
used to fit the logistic function. Panel A: The MST’s lure discrimination index
(LDI) and the novel λ measure. Panel B: The MST’s recognition measure (REC)
and the novel ∆ measure. Panel C: The novel ∆ and the novel λ measure. Panel
D: The MST’s LDI and the novel ∆ measure. Panel E: The MST’s REC and the
novel λ measure.
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Figure S5: Relationship between the novel ∆ index and the mnemonic similarity
task’s recognition measure (REC) in the synthetic data experiment.
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Figure S6: Associations between the ∆ index all the synthetic agent’s parameters.
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Figure S7: Associations between the λ index all the synthetic agent’s parameters.
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Figure S8: Variance of the lure discrimination index (LDI), recognition (REC),
λ, and ∆ measures in relation to the number of test trials undergone by synthetic
agents. 50 copies of 20 unique synthetic agents underwent the simulated mnemonic
similarity task-like experiment at varying number of trials. The number of trials
ranged from 6 to 81 at increments of 3. Each plot point represents a specific agent’s
score compared to the average of its copies who underwent the same number of test
trials. Ribbons show the standard deviation among the agents who underwent the
same number of test trials.
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Figure S9: Variance of the lure discrimination index (LDI), recognition (REC),
λ, and ∆ measures in relation to the number of test trials undergone by synthetic
agents with a ∆ index of at least 0.6. 50 copies of 20 unique synthetic agents under-
went the simulated mnemonic similarity task-like experiment at varying number of
trials, with those who obtained a ∆ index below 0.6 removed. The number of trials
ranged from 6 to 81 at increments of 3. Each plot point represents a specific agent’s
score compared to the average of its copies who underwent the same number of test
trials. Ribbons show the standard deviation among the agents who underwent the
same number of test trials.
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Supplementary Tables

Table S1: Mixed effects model results of ∆ predicting λ scores, λ and ∆ predicting
mnemonic similarity task (MST) lure discrimination index (LDI) scores, and of λ
and ∆ predicting MST recognition index (REC) scores. Older and Younger sub-
groups in the Wahlheim et al. [31] study were treated as separate studies.

Model 1: λ ∼ ∆+ (1|study)
Predictors Estimates CI p

Intercept 0.03 -0.53 – 0.58 0.926
∆ 0.22 0.01 – 0.43 0.039
Random Effects
σ2 0.84
τ00 (study) 0.20
ICC 0.19
N (study) 3
Observations 85
Marginal R2 / Conditional R2 0.045 / 0.231

Model 2: LDI ∼ λ+∆+ (1|study)
Predictors Estimates CI p

Intercept 0.00 -0.19 – 0.19 0.970
λ 0.74 0.59 – 0.89 <0.001
∆ -0.05 -0.19 – 0.10 0.540
Random Effects
σ2 0.43
τ00 (study) 0.01
ICC 0.03
Marginal R2 / Conditional R2 0.548 / 0.560

Model 3: REC ∼ λ+∆+ (1|study)
Predictors Estimates CI p

Intercept 0.01 -0.14 – 0.16 0.850
λ 0.05 -0.04 – 0.15 0.273
∆ 0.92 0.83 – 1.01 <0.001
Random Effects
σ2 0.16
τ00 (study) 0.01
ICC 0.06
N (study) 3
Observations 85
Marginal R2 / Conditional R2 0.834 / 0.845
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Table S2: Mixed effects model results of ∆ predicting λ scores with an additional

participant excluded in the analysis due to considerable missing responses.

Model: λ ∼ ∆+ (1|study)
Predictors Estimates CI p

Intercept 0.08 -0.35 – 0.51 0.705

∆ 0.20 -0.02 – 0.42 0.077

Random Effects

σ2 0.97

τ00 (study) 0.06

ICC 0.06

N (study) 2

Observations 84

Marginal R2 / Conditional R2 0.037 / 0.095

Table S3: Mixed effects model results of λ and ∆ predicting original MST LDI

scores with an additional participant excluded in the analysis due to considerable

missing responses.

Model: LDI ∼ λ+∆+ (1|study)
Predictors Estimates CI p

Intercept 0.00 -0.14 – 0.15 0.996

λ 0.77 0.62 – 0.91 <0.001

∆ -0.08 -0.23 – 0.07 0.277

Random Effects

σ2 0.44

τ00 (study) 0.00

N (study) 2

Observations 84

Marginal R2 / Conditional R2 0.568 / 0.568
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Table S4: Mixed effects model results of λ and ∆ predicting original MST REC

scores with an additional participant excluded in the analysis due to considerable

missing responses.

Model: REC ∼ λ+∆+ (1|study)
Predictors Estimates CI p

Intercept 0.06 -0.19 – 0.31 0.640

λ 0.06 -0.03 – 0.15 0.205

∆ 0.92 0.82 – 1.01 <0.001

Random Effects

σ2 0.17

τ00 (study) 0.03

ICC 0.13

N (study) 2

Observations 84

Marginal R2 / Conditional R2 0.812 / 0.836

Table S5: Linear models applied to the Lee & Stark [27] dataset with the novel λ and

∆ indices derived from the dataset with and without exclusion of the most similar

lure trials (lure bins 1, 2, and 3). Note that both models use an LDI calculated

without any lure exclusions.

Model: LDI ∼ λ+∆ , All lures present

Predictors Estimates CI p

Intercept 0.00 -0.22 – 0.22 1.000

λ 0.82 0.59 – 1.06 <0.001

∆ 0.24 0.01 – 0.48 0.044

Observations 18

Marginal R2 / Conditional R2 : 0.826 / 0.803

Model: LDI ∼ λ+∆, Lurebins 1-3 removed

Intercept -0.00 -0.25 – 0.25 1.000
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λ 0.80 0.54 – 1.06 <0.001

∆ 0.27 0.00 – 0.53 0.047

Observations 18

Marginal R2 / Conditional R2 0.783 / 0.754

Table S6: Linear models applied to the Wahlheim et al [31] dataset using two dif-

ferent distance measures for lure stimulus: Lure Bin (left), Neural network-derived

embeddings (right).

Model: LDI ∼ λ+∆, Distance measure = Lure Bin

Predictors Estimates CI p

Intercept 0.00 -0.17 – 0.17 1.000

λ 0.75 0.57 – 0.92 <0.001

∆ -0.14 -0.32 – 0.03 0.111

Observations 67

Marginal R2 / Conditional R2 : 0.531 / 0.517

Model: LDI ∼ λ+∆, Distance measure: Neural Net

Intercept 0.00 -0.16 – 0.16 1.000

λ 0.75 0.59 – 0.92 <0.001

∆ -0.05 -0.21 – 0.12 0.574

Observations 67

Marginal R2 / Conditional R2 0.563 / 0.549

Table S7: Linear model results of synthetic data experiment with and without the

removal of low ∆ synthetic participants.

Model: LDI ∼ λ+∆

Predictors Estimates CI p

Intercept 0.00 -0.04 – 0.04 1.000

λ 0.55 0.51 – 0.59 <0.001

∆ 0.24 0.20 – 0.28 <0.001
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Observations 1488

Marginal R2 / Conditional R2 : 0.352 / 0.352

Model: LDI ∼ λ+∆, Subset: ∆ ≥ 0.6

Intercept 0.00 -0.04 – 0.04 1.000

λ 0.76 0.71 – 0.81 <0.001

∆ 0.12 0.07 – 0.17 <0.001

Observations 609

Marginal R2 / Conditional R2 : 0.599 / 0.597

Model: Baseline λ ∼ λ+∆

Predictors Estimates CI p

Intercept -0.00 -0.04 – 0.04 1.000

λ 0.64 0.60 – 0.68 <0.001

∆ 0.04 0.00 – 0.08 0.043

Observations 1488

Marginal R2 / Conditional R2 : 0.409 / 0.408

Model: Baseline λ ∼ λ+∆, Subset: ∆ ≥ 0.6

Intercept 0.00 -0.03 – 0.03 1.000

λ 0.90 0.87 – 0.94 <0.001

∆ 0.03 -0.01 – 0.06 0.154

Observations 609

Marginal R2 / Conditional R2 : 0.812 / 0.811

Model: REC ∼ λ+∆

Predictors Estimates CI p

Intercept -0.00 -0.01 – 0.01 1.000

λ 0.00 -0.01 – 0.02 0.805

∆ 0.96 0.95 – 0.97 <0.001

Observations 1488

Marginal R2 / Conditional R2 : 0.923 / 0.923

Model: REC ∼ λ+∆, Subset: ∆ ≥ 0.6

Intercept -0.00 -0.04 – 0.04 1.000
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λ -0.12 -0.16 – -0.08 <0.001

∆ 0.85 0.81 – 0.89 <0.001

Observations 609

Marginal R2 / Conditional R2 : 0.740 / 0.739

Model: λ ∼ ∆

Predictors Estimates CI p

Intercept -0.00 -0.05 – 0.05 1.000

∆ -0.03 -0.08 – 0.02 0.207

Observations 1488

Marginal R2 / Conditional R2 : 0.001 / 0.000

Model: λ ∼ ∆, Subset: ∆ ≥ 0.6

Intercept 0.00 -0.08 – 0.08 1.000

∆ 0.01 -0.07 – 0.09 0.845

Observations 609

Marginal R2 / Conditional R2 : 0.000 / -0.002
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