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Abstract

Robotic manipulators perform tasks as humans with the potential to greatly assist
people in industry, health care, and general society services. In this thesis, a vision-
based learn from demonstration framework for a 7-degree-of-freedom robotic manipu-
lator has been proposed. This framework enables learning from multiple human hand
demonstrations to execute dexterous pick-and-place tasks. Conventional methods
for collecting demonstration data involve manually and physically moving the robot.
These methods can be cumbersome, lack dexterity, and be physically straining. The
proposed contactless and markerless approach leverages MediaPipe software, dynamic
time warping, Gaussian mixture model, and Gaussian mixture regression to capture
and regress multiple dexterous hand motions. The proposed approach results in
a more comprehensive motion representation, simplifying multiple demonstrations,
and mitigating the non-smoothness inherent in a single demonstration. Dynamic
movement primitives (DMP) with a force coupling term are employed to adaptively
assimilate human actions into trajectories executable in dynamic environments. By
considering the estimated variance from demonstration data, the path planning pa-
rameters are automatically fine-tuned and associated with the linear and nonlinear
terms to adapt the trajectories. To compensate for unknown external disturbances,
a non-singular terminal sliding mode controller (NTSMC) is applied to the Franka
Emika robot for precise trajectory tracking. Experimental studies demonstrated the
effectiveness and robustness of the proposed framework in executing human hand
demonstrations, motion planning, and control for pick-and-place tasks.
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Chapter 1

Introduction

This chapter describes the importance of manipulators for practical applications in
broad areas such as manufacturing, agriculture, and healthcare. An overview of the
motivation, contribution, and outline of this thesis is presented in this chapter.

1.1 Background

As the robotics development continues to expand, so will the range of applications
for robots in everyday life. This section introduces some industrial applications of
manipulators in manufacturing, agriculture, and healthcare.

1.1.1 Manufacturing

In modern manufacturing, robotic manipulator systems have become an integral part
of automated production. The introduction of robotic arms has not only increased
productivity but also significantly improved product quality and consistency.

Manipulators can perform a variety of complex assembly tasks on the assembly
line. Traditional manual assembly is not only time-consuming but also prone to
human error. Robotic arms are programmed to accurately take operations such as
gripping, aligning, inserting, and fixing parts. Especially in electronics manufacturing,
robots can quickly and accurately assemble tiny and precise components such as
circuit boards and micro motors. This not only improves the production speed but
also ensures the quality consistency of each product.

Welding robots are widely used in the automotive manufacturing and metal pro-
cessing industries. Their main advantage lies in their ability to perform high-precision
welding operations such as spot and arc welding. Equipped with advanced sensors
and vision systems, welding robots can monitor the welding process in real-time and
adjust the welding parameters to ensure the quality of the weld. Compared with

1
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manual welding, welding robots can work in hazardous environments such as high
temperatures and toxic gases, which reduces health risks for human workers.

Manipulators are also applied in warehousing and logistics for handling boxes and
bags. Traditional manual handling leads to worker fatigue and injury, while robotic
arms can work 24/7, significantly improving handling efficiency. The robotic arm
equipped with an intelligent gripping system can automatically recognize the shape
and weight of the items and adjust the gripping strength to ensure that the items are
not damaged during the handling process.

In the packaging industry, manipulators are used to automate packaging, seal-
ing, labeling, and other operations. Its high-speed and precise operation capability
significantly improves packaging speed and reduces labor costs. In the food and phar-
maceutical industries, robotic arms are also able to work in aseptic environments to
ensure product hygiene and safety.

Figure 1.1: A mobile manipulator used for transportation [1]
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The role of manipulator systems in smart manufacturing and Industry 4.0 is par-
ticularly important. By combining with the Internet of Things and big data analytics,
robots can achieve self-monitoring and self-optimization. This intelligent production
method greatly improves productivity and equipment utilization. Fig. 1.1 shows an
example of a mobile manipulator used for transportation.

1.1.2 Agriculture

In the field of agriculture, the application of manipulator systems is becoming more
and more widespread, significantly improving the efficiency and precision of agri-
cultural production. The main applications of robotic arms in agriculture include
picking, planting, spraying, sorting, packaging, and testing of agricultural products.

Manipulators play an important role in fruit and vegetable picking. Conventional
manual picking is not only time-consuming and laborious but also prone to damage
the fruits. Robotic arms can accurately recognize and pick fruits and vegetables by
equipping high-precision vision systems and flexible gripping devices, reducing fruit
damage and waste. As shown in Fig. 1.2, the robotic system with a gripper can pick
apples and adjust the gripping force and angle to ensure that the fruits are picked
intact.

Figure 1.2: Agricultural robots pick apples, gather strawberries, harvest lettuce and
strip away weeds [2].
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Manipulator systems can be used for precision sowing and transplanting in plant-
ing operations. It is easy for the robot to accurately plant seeds or seedlings in a given
location, ensuring uniformity of planting and consistency of depth. For example, in
the greenhouse, the robot can accurately insert the seedlings into the soil according
to the predetermined planting diagram and adjust the depth and spacing at the right
time, which improves the planting efficiency and survival rate.

Robotic systems are widely employed in pesticide spraying and fertilizer applica-
tion. Equipped with intelligent sensors and spraying systems, the robotic arm can
accurately control the spraying amount and range of pesticides and fertilizers, avoid-
ing overspray and waste. For example, the manipulator systems can accurately spray
pesticides and fertilizers according to the growth status of plants and pests and dis-
eases, which improves the effect of application and resource utilization, and at the
same time reduces environmental pollution.

1.1.3 Healthcare

The applications of manipulator systems in the medical field are wide and varied, from
surgery to rehabilitation, to laboratory automation and drug development, robotic
arms play an important role in improving the quality of healthcare services, thera-
peutic effects, and reducing medical costs.

Manipulators are most widely and maturely used in surgery, especially in min-
imally invasive surgery and complex surgery. The robotic system performs precise
cuts, sutures, and other operations through fine manipulation by the surgeon at the
console. The high precision and stability of the manipulators greatly lower the risk of
post-operative infection and shorten patient recovery time. As illustrated in Fig. 1.3,
the surgeon demonstrates the surgical operation, and the manipulator will eliminate
the shaking of the human hands.

In cardiovascular intervention, neurological intervention, and other minimally in-
vasive interventions, the robotic arm can help the doctor carry out fine operations,
such as catheter navigation and stent placement. The manipulator can provide real-
time feedback on the position of the catheter and the situation of the blood vessels,
assisting the doctor in carrying out accurate operations, reducing operational errors,
and improving the success rate of the operation.
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Figure 1.3: The surgeon is demonstrating the surgical operation of a specific task
with manipulators [3]

Robotic arms are also used in rehabilitation therapy to help patients with phys-
ical rehabilitation training. Rehabilitation robots can provide personalized training
programs according to the patient’s rehabilitation needs to help patients restore mo-
tor function. For instance, the robotic arm can simulate actions in daily life, such
as grasping and holding, to help stroke patients with hand rehabilitation training.
Through sensors and intelligent control systems, the robotic arm can adjust the train-
ing intensity and mode in real-time to ensure the rehabilitation effect.

For telemedicine, the manipulator systems can realize off-site surgery and exam-
ination through remote control. For example, in remote areas, doctors can perform
surgeries or examinations by remote control of robots, solving the problem of uneven
distribution of medical resources. Through the high-speed network connection, doc-
tors can monitor the operation of the manipulator in real-time, which improves the
feasibility and safety of telemedicine.
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Manipulators are utilized in assisted nursing to help patients complete some basic
activities in their daily lives, such as eating, dressing, and washing. The nursing
robotic arm can help patients with limited mobility to live autonomously through
voice or gesture commands, which improves their life quality.

1.2 Research Motivation

With the continued expansion of the robotics industry, the scope of robots in ev-
eryday life is poised to increase, thereby placing higher demands on the intelligent
evolution of robots. Conventional methodologies for robot learning detect the envi-
ronment through sensors, coupled with extensive computational processes executed
within simulated environments, all in the pursuit of developing logical motion plan-
ning strategies for robots during task execution. This approach, however, requires
substantial time and has high requirements on hardware performance. In stark con-
trast, human execution of analogous tasks is simple and intuitive. Therefore, one
promising way to enhance robot intelligence involves learning from human demon-
stration, wherein humans assume the role of instructors. Within this framework,
robots imitate and learn from demonstration (LfD), thereby elevating their behav-
ioral dexterity.

For capturing human demonstration data, one approach is to use physical sensors.
However, these sensors can be cumbersome, requiring individuals to wear various de-
vices. They are often expensive, require calibration, and may inhibit certain motions,
which can be especially problematic in scenarios involving multiple demonstrations.
Another common method involves dragging the robot end-effector. This approach,
while effective in capturing motions, offers limited flexibility and often struggles with
recording the rotational aspects of the end-effector, which are crucial for dexterous
tasks.

This thesis aims to propose a vision-based LfD framework to capture and process
the human demonstration data conveniently. To execute more tasks, path planning
methods and controllers are developed to make the system more adaptive and robust.
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1.3 Thesis Contributions and Outline

Compared to existing literature, this thesis has the following novelties and contribu-
tions:

1. A new framework: The proposed framework offers a new dexterous ma-
nipulation solution with human-like behaviors through multiple demonstrations and
executions of the demonstrated human motions for robotic manipulators.

2. Robust and dexterous demonstrations: Multiple demonstrations were
acquired and processed using the dexterous motion framework. By employing dy-
namic time warping (DTW), Gaussian mixture model (GMM), and Gaussian mix-
ture regression (GMR) for data processing, our approach effectively extracts common
features from multiple demonstrations with their variances. This process improves
the smoothness of the movements and reduces uncertainties associated with a single
demonstration.

3. Adaptive trajectory planning with dynamic movement primitives
(DMP): Incorporating variances from multiple demonstrations into the DMP allows
for adjustments in the influence of virtual force term on the trajectories. The feasi-
bility of integrating virtual force term into the DMP was verified in the experimental
testing with obstacle avoidance.

4. Non-singular terminal sliding mode (NTSM) controller for unknown
payload: The implementation of the controller reduces the impact of unknown ex-
ternal disturbances. This controller plays an important role in tracking error mini-
mization, thereby enhancing the system’s overall robustness against disturbances and
enabling the system to effectively complete a broader range of tasks.

The vision-based human hand dexterous motion detection system created in this
study has been utilized for teleoperation and published in the following conference
proceeding: N. Chen, L. Wan, Q.G. Chen and Y.-J. Pan, “Real Time Vision-based
Human Hand Motion Tracking and Grasping for a Robotic Manipulator with Soft
Hand”, in Proceedings of the 2023 CSME International Congress of Canadian Me-
chanical Engineering, vol. 6, 2023. Furthermore, the DMP algorithm is applied to
realize path with different start and goal points. The related work has been published
in ISIE 2024: N. Chen and Y.-J. Pan, “Vision-Based Dexterous Motion Planning
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by Dynamic Movement Primitives with Human Hand Demonstration”, in Proceed-
ings of the 33rd IEEE International Symposium on Industrial Electronics (ISIE),
Ulsan, South Korea, 2024. The overall work of this thesis, including dexterous mo-
tion capture, multiple demonstration processing, adaptive path planning, and robust
controller design, was submitted to the IEEE Transactions on Industrial Electronics
(TIE) in April 2024. Please read the Appendix A for my publication list.

The contents of this thesis are organized as follows. Chapter 1 introduces the
applications of manipulator systems in industries. Chapter 2 presents state-of-the-
art literature that proposes works in the same domain for this research. Chapter
3 describes system devices and the overview framework of this thesis. Chapter 4
proposes the vision-based human hand motion detection framework and how to learn
from multiple demonstrations. Chapter 5 introduces some modified DMP methods as
the path planning methods and some controllers applied in the experiments. Chapter
6 concludes the preceding work and shows the future research directions.



Chapter 2

Literature Review

This chapter introduces an overview of recent literature in the field of learning from
demonstrations, vision detection methods, path planning theory, and controller design
to interact with the environment. The objective of this chapter is to provide an
overview of relevant research and highlight the unique contributions of this thesis.

2.1 Learn from Demonstration

Learning from demonstration (LfD) serves as a foundational framework facilitating
communication and comprehension between humans and robots, thereby enhancing
their ability for effective collaboration. Robots building upon this framework are
intelligent robotic systems capable of learning from humans and interacting with
humans. LfD emerges as a highly promising avenue for the seamless integration
of robots into the operational fabric of factories, healthcare facilities, and broader
societal contexts.

In allowing robots to learn from human demonstrations, they can acquire a bet-
ter representation of human intentions and preferences, thus enabling more effective
collaboration on various tasks. For example, within manufacturing settings, collab-
orative robots can learn proper part assembly and specific production tasks through
learning from human demonstrations. Deng et al. [5] proposed a method wherein
manipulators imitate assembly operations by learning from human demonstration
videos. This method entails mapping from two-dimensional (2D) hand poses to the
three-dimensional (3D) assembly space based on a neural network. In the medical do-
main, collaborative robots can replicate demonstrations from a surgeon’s movements,
thereby assisting in surgical procedures and rehabilitation processes. Kim et al. [6]
developed a deep network to navigate a surgical tool inside the eye with reliability,
achieved through learning from human demonstrations. Their results evidenced high
accuracy in both physical experimentation and simulation environments.

9
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In certain tasks, learning human motion through robotic systems proves to be more
effective. One approach involves capturing human motion data, such as joint angles or
key point coordinates, and translating these data into inputs for the robot, enabling
it to replicate human movements. Some studies employed depth cameras to gather
human body information, which is subsequently processed through filtering techniques
and robotic kinematics, allowing the robot to follow human trajectories accurately
[7,8]. Another approach leverages the properties of the human body to control robotic
motion. For instance, Matthew et al. [9] presented a new humanoid robot design, an
actuator-aware kino-dynamic motion planner, and a landing controller as part of a
practical system design to optimize trajectories and realize a spinning jump in the
simulation.

To capture human demonstration data, one approach is to utilize physical sensors
such as wearable inertial sensors. Li et al. [10] employed a new type of motion capture
technology to capture human walking motion and establish the human body kinemat-
ics model, to realize the reconstruction of 3D human motion. However, these sensors
are inconvenient because they require individuals to wear various devices. They are
often expensive, demand calibration, and may constrain certain motions, which can
be especially problematic in scenarios involving multiple demonstrations. For the
manipulator demonstration, another commonly employed method involves physically
dragging the robot end-effector. Ti et al. [11] physically guided the end-effector
to execute a peg-in-hole task, enabling the manipulator to record the end-effector’s
Cartesian positions along the trajectory. Xing et al. [12] guided the Franka robot’s
end-effector to do carving tasks. A mechanism with handle separated measurement
of the user-applied interaction force from the interaction with the environment. In
2023, Chen et al. [13] detected a human hand’s 3D coordinate with two webcams,
enabling the robot to pick up an object and place it in a human hand. Trajectories
learning was applied to set trajectories of the end-effector, learned from the Franka
Emika robot’s dragging movements. Despite its effectiveness in capturing motions,
this approach exhibits limited adaptability and often encounters difficulties in ac-
curately capturing the rotational motions of the end-effector, a critical aspect for
accomplishing dexterous tasks.



11

2.2 Vision Detection

Recent advancements in computer vision have enabled researchers to adopt vision-
based methods for capturing human motion. A notable advantage of employing
cameras lies in obviating the necessity for individuals to sensors, thereby offering
a more expeditious and streamlined alternative to traditional data collection meth-
ods. In [14], Cai et al. used stereo cameras to track the position of human-driven
objects, facilitating the subsequent emulation of these trajectories by robotic systems.
In 2020, Lin et al. [15] presented a vision-based approach to avoid moving obstacles
in a dynamic environment. A depth camera was utilized to estimate the position,
velocity, and size of the obstacles, and robust collision avoidance was achieved by a
model predictive controller. Spaa et al. [16] utilized a human body motion capture
system to capture and analyze human body posture data, enabling predictive adjust-
ments in the controller to the robotic arm’s posture. This adaptive approach ensures
that the human operator can work in an optimal ergonomic position, thus reducing
effort and enhancing comfort during tasks.

In the research of human-robot interaction (HRI), the demand for human coordi-
nate detection has widely appeared, which emerged a proliferation of camera-based
skeletal detection tools. Cao et al. introduced OpenPose, a tool for the real-time ex-
traction of multiple human skeletal structures from webcam videos [17]. It enables the
real-time extraction of human skeletal structures from a webcam and is amenable to
multi-person scenarios, although it demands relatively high hardware requirements.
OpenPose is capable of detecting a total of 135 key points so it can be applied to
extract information about the key points of the human body and analyze movement
trends. Chen et al. controlled the movement of the walking-aid cane robot by deter-
mining whether there is a tendency for the human body to fall through changes in
the coordinates of key points at the head, waist, and hips [18]. In 2023, Cai et al.
detected multiple hand demonstrations using a depth camera and OpenPose to obtain
a comprehensive translational trajectory and predict the endpoint by DMP [19].

Similarly, MediaPipe, another vision-based tool, focused on extracting human
hand skeletal key points [20]. In comparison to OpenPose, MediaPipe holds the
advantage of accurately and efficiently capturing 21 2D key points of the human hand,
thus facilitating precise hand gesture acquisition. In [21], Chunduru et al. applied
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Mediapipe and detected hand gestures to manipulate a virtual globe. However, these
works did not explicitly consider the hand’s quaternions in motion planning. To
the best of the author’s knowledge, there has been no application of DMP with
both translational and rotational demonstrations captured by cameras. Incorporating
quaternions in motion planning adds a layer of dexterity, and exploring this aspect
could be a potential avenue for future research in enhancing manipulator control.

2.3 Path Planning

Once the human demonstration data is collected, the next step is to model the dis-
crete demonstration trajectory for modifications. Dynamic movement primitives is a
method used to generate and control movements based on demonstrations [22]. The
goal of DMP is to simulate the dynamic properties and flexibility of human move-
ments, enabling the generation of appropriate movements in new environments while
considering human dynamics. In [23], the integration of DMP with adaptive control
for path planning and force control was executed on curved surfaces. Additionally,
Gams et al. enhanced DMP by incorporating virtual force terms, enabling it to adapt
to new environments and realize obstacle avoidance [24]. Enhancing the robustness of
DMP can involve the introduction of probability to mitigate the influence of noise, as
shown in [25] and [19]. The adaptability of the DMP is verified by its ability to gen-
erate multiple trajectories with different starting and ending points based on a single
training demonstration [26]. To embed the confidence level of the human demonstra-
tor in the task execution and improve the system’s robustness, we have implemented
the variance from multiple demonstrations into the DMP trajectory generation. To
the best of the author’s knowledge, DMP has not been applied with variance learned
from multiple demonstrations.

In the context of HRI, effective path planning is essential for both trajectory
planning and obstacle avoidance algorithms. This is particularly crucial in complex
environments, where the uncertainties of both the robot and the HRI must be taken
into account. One study addressed this challenge by generating a tree-shaped geomet-
rically feasible plan [27]. Certain tasks require the manipulator to perform repetitive
actions, necessitating path planning that emphasizes repeatability to reduce com-
putational complexity and enhance the robot’s efficiency [28]. Additionally, path
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planning can be integrated with motion prediction of target objects. For example,
some researchers employed pedestrian prediction algorithms using convolution neural
networks to forecast object paths, thereby aiding manipulator navigation [29, 30].

When humans interact with robots, ensuring the safety and collision-free opera-
tion of the robot within its environment is significant, particularly in complex settings
where robots should adapt their movements in real-time to accommodate environmen-
tal changes. In 2022, Zhang et al. [31] devised a predictor to estimate the 3D bounding
boxes of obstacles and target objects using data from a depth camera. These pre-
dictions are integrated into a policy network alongside feature extraction, enabling
the efficient learning of obstacle avoidance strategies. Furthermore, robots must nav-
igate around humans safely. In 2021, Nascimento et al. [32] proposed the concept
of a limited safety contour around obstacles to dynamically estimate the real-time
distance between the robot and humans, even when the robot’s visibility is blocked
by obstacles. Chen et al. [33] addressed both sub-tasks by utilizing a depth camera
to capture environmental information, extracting the point cloud of the target via a
segmentation algorithm, and employing a potential field for path planning to enable
the manipulator to avoid obstacles and environmental constraints such as tabletops.

2.4 Controller Design

The previous three sections describe the high-level behavioral design of the manipu-
lator system control, that is how to obtain the input reference trajectory of the robot.
For the manipulator itself, we need to design the controller to adapt to different
working environments.

The most common control methods for manipulators are proportional-derivative
(PD) controller and impedance controller, due to their ease of implementation and
effectiveness. The impedance controller in cartesian space is the default controller for
the Franka Emika robot. In [13], Chen et al. applied an adaptive PD controller to
achieve trajectory tracking with the Franka manipulator. In [34], Heshmati et al. pro-
posed a cooperative impedance controller for multiple underwater vehicle manipulator
systems to realize object transportation. However, these two control methods may
face challenges in accurately following desired trajectories in the presence of external
disturbances, such as the weight of a grasped object. To address the limitations of
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PD and impedance controllers and enhance robustness against external disturbances,
sliding mode control (SMC) has been applied to linear and nonlinear systems [35]. In
2021, Ke et al. [36] presented an adaptive sliding mode control scheme that incorpo-
rates a super twisting algorithm, a low-pass filter, and an adaptive law to achieve free
chattering. Notably, non-singular terminal sliding mode control has been proposed to
achieve sliding surfaces and zero error in finite time while avoiding singularities [37],
whose control input does not contain the error term in the denominator, which elim-
inates the risk of zero division and encountering a singularity. In [38], Shen et al.
designed an adaptive NTSM controller to synchronize the position of nonlinear mul-
tiple manipulator systems. A group of Phantom Omni robotic devices were used to
carry out numerical simulations. In 2023, Wan et al. [39] demonstrated the effec-
tiveness of the NTSM controller in a multi-robot system, successfully reducing errors
induced by internal and external disturbances.

Similarly, reinforcement learning (RL) is also applied to sliding mode control aims
to suppress the vibration. In [40], Long et al. used sliding mode control to track the
desired trajectory and simultaneously generated a compensating torque to decrease
the chattering in the tip of a hybrid manipulator. The compensate torque was cal-
culated by an actor-critic network. Dimeas et al. [41] applied RL to impedance
controllers, facilitating adaptation to operator skills. By formulating the RL objec-
tive to minimize jerk, the proposed controller autonomously learns suitable damping
characteristics for effective collaboration without prior knowledge of target positions.
In [42], Sangiovanni et al. applied both centralized and decentralized integral slid-
ing mode controllers and designed a deep RL decision maker to generate rewards to
switch the controller. In 2023, Gong et al. [43] proposed RL-based sliding mode con-
trol and designed the reward function to optimize the value function. The output of
the controller consists of both the sliding mode part and the weighting part trained
by RL.



Chapter 3

System Description

This chapter introduces the experimental equipment used for this thesis, containing
hardware facilities as well as software systems and software toolkits. The hardware
facilities are located in the Advanced Control and Mechatronics (ACM) Laboratory
at Dalhousie University.

3.1 Hardware

This section shows the hardware to collect human demonstration and to execute the
robot movement.

3.1.1 Franka Emika Robot

Figure 3.1: Franka Emika Robot

15
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As shown in Fig. 3.1, the manipulator used in this thesis is the 7-degree-of-freedom
(DoF) Franka Emika robot, which offers a maximum 3 kg payload. The repeatability
of the Franka Emika robot is 0.1 mm so the interface for joint torque control enables
dexterous control. The joints provide a 1 kHz signal transmission frequency to ensure
a smooth control process. The above performances make it good platform at force
and torque control and human-robot interaction.

Denavit-Hartenberg (DH) parameters are the four parameters associated with a
particular convention for attaching reference frames to the links of a robot manipu-
lator. d represents offset along previous z-axis to the common normal. θ represents
angle about previous z-axis from old x-axis to new x-axis. a represents the length of
the common normal. Assuming a revolute joint, this is the radius about the previous
z-axis. α represents angle about common normal, from old z-axis to new z-axis. The
DH parameters for the manipulator’s kinematic chain are shown in Table 3.1 [44].

Table 3.1: Denavit-Hartenberg parameters of Franka Emika Robot

Joint a (m) d (m) α (rad) θ (rad)
Joint 1 0 0.333 0 θ1
Joint 2 0 0 −π/2 θ2
Joint 3 0 0.316 π/2 θ3
Joint 4 0.0825 0 π/2 θ4
Joint 5 -0.0825 0.384 −π/2 θ5
Joint 6 0 0 π/2 θ6
Joint 7 0.088 0 π/2 θ7
Flange 0 0.107 0 0

The dynamics of the manipulator in joint space are:

M(q)q̈ + C(q̇, q)q̇ + G(q) = τ + τd, (3.1)

where M(q) ∈ R7×7 represents the inertial matrix, C(q̇, q) ∈ R7×7 represents the
Coriolis and centripetal matrix, G(q) ∈ R7 is the gravity vector, τ∈ R7 is the control
torque input vector, and τd∈ R7 represents the accumulation of disturbances from
internal friction, unmodelled dynamics, and external disturbances. q, q̇, q̈∈ R7 are
the joint angle, velocity, and acceleration vectors, respectively.

Since the human demonstration data exists in the Cartesian space, the trajectory
planning should also be in the Cartesian space. The dynamic equation Eq. (3.1)
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can be transformed to Cartesian space. In Cartesian space, the end-effector pose
is denoted as xm =

[
pTm, HT

m

]T
∈ R7 where pm =

[
xm, ym, zm

]T
∈ R3 is the

translational position and Hm =
[
ηm ϵTm

]T
∈ R4 is the rotational quaternion. The

quaternion is made up of ηm = qmw , a scalar denoting the real part, and ϵm =[
qmx , qmy , qmz

]T
, a vector denoting the imaginary part. The control input is u ∈

R6.
The transformation from the joint space to the Cartesian space is[

ẋm

ẍm

]
=

[
J(q)q̇

J(q)q̈ + J̇(q)q̇

]
, (3.2)

where J(q) ∈ R6×7 is the Jacobian matrix, ẋm =
[
ṗTm, ωT

m

]T
, ẍm =

[
p̈Tm, ω̇T

m

]T
∈

R6, where ωm ∈ R3, ω̇m ∈ R3 are the angular velocity and acceleration of the end-
effector, respectively.

With Eq. (3.1) and Eq. (3.2), the dynamic equation of the manipulator in Carte-
sian space can be represented as

M̄(q)ẍm + C̄(q̇, q)ẋm + Ḡ(q) = u+ ud, (3.3)

where

M̄(q) = J(q)−TM(q)J(q)−1,

C̄(q̇, q) = J(q)−T (C(q̇, q)−M(q)J(q)−1J̇(q))J(q)−1,

Ḡ(q) = J(q)−TG(q), and u = J(q)−Tτ .

The Jacobian and dynamics in Cartesian space may be separated into translational
and rotational components as

J(q) =
[
Jp(q) JH(q)

]T
, M̄(q) =

[
M̄p(q) M̄H(q)

]T
.

3.1.2 qb-Softhand

The qb-Softhand is a soft-robotics-based anthropomorphic robotic hand designed for
safe interaction with its environment, objects, and humans. This innovative tech-
nology reduces the risk of harm to operators, product damage, and robot wear. It
boasts adaptability, effortlessly gripping various objects without requiring control ad-
justments. With its single-motor actuation, qb-Softhand is not only affordable but
also easy to use and integrate, making it a versatile and efficient grasping solution.
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(a) qb Softhand (b) Logitech Web Camera (c) RealSense Depth Camera

Figure 3.2: Hardware used in this work

3.1.3 Camera

Two types of cameras are used in the thesis: a webcam that can only acquire red-
green-blue (RGB) images and a depth camera that can acquire both RGB and depth
images.

In the web camera based detection section, two Logitech C930E HD cameras
used for the MediaPipe detection have a video resolution of 1080p and 30 frames per
second (FPS). For the depth camera based detection, the experimental setup uses the
RealSense D435i depth camera, featuring a dual-camera system capable of capturing
both light and depth information. The RGB sensor has a field of view of 69◦ × 42◦.
The depth sensor has a maximum rate of 90 FPS, and the RGB sensor has a maximum
rate of 30 FPS. In the conducted experiments, the chosen frame rate was 20 FPS,
resulting in a sampling time of 0.05 s. This choice balances capturing sufficient data
and managing computational resources. The depth accuracy is specified to be smaller
than 2% at a distance of 2 m, and all experimental data falls within this specified
range. This ensures the reliability and precision of the depth information captured
by the camera throughout the experiment.
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3.2 Software

This section presents the software toolkits to collect human hand key points and the
software system to communicate with each device.

3.2.1 Robot Operating System

Robot operating system (ROS) is an open-source robotics software platform designed
to simplify and speed up the robotics development process. It provides a range of
tool libraries to enable developers to create complex robotics applications more easily.
ROS integrates well with various simulation environments, such as Gazebo, enabling
developers to test their robotics applications in a virtual environment.

In this thesis, we have mainly used the communication function of ROS to send
motion commands as well as motion coordinates to the robot. In order to realize this
functionality, we use nodes and topics in ROS. Nodes are the basic units in ROS,
and each node performs a specific task. For example, one node may be responsible
for sensor reading and another for motion control. Topics, on the other hand, are a
way for nodes to communicate with each other, and nodes can publish or subscribe
to topics. For example, in this thesis, we use a node in a computer to publish the
desired trajectory to a topic, and the robot’s control node subscribes to the topic to
get the data of the desired trajectory to realize the robot’s control. ROS enables data
transfer between different devices on the same network.

3.2.2 MediaPipe

This thesis uses MediaPipe to collect the human hand’s information, and each palm
collects 21 points, including four joint points of each finger and wrist joint points. Me-
diaPipe is a machine learning framework developed by Google for video and image
processing tasks, including hand recognition [20]. MediaPipe hand recognition can
track the position of human hands in the view of the camera in real-time. The frame-
work uses machine learning based techniques for hand pose estimation and tracking,
enabling hand recognition in different contexts. Compared with other skeleton recog-
nition tools, it does not require high computer performance, and it also has the
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functions of human skeleton recognition and face recognition. The function of Me-
diaPipe’s hand recognition has broad application prospects in fields such as virtual
reality, games, smart homes, and medical treatment.

3.3 System Overview

The overview of this thesis is shown in Fig. 3.3. A comprehensive framework for
vision-based learning from demonstrations to generate dexterous robot motions is
proposed, which is one of the main contributions of the thesis. Vision-based detec-
tion methods are applied to extract the 3D coordinates of human hand key points.
To define the robot motion, translational Cartesian position, rotational quaternion
motion, and grasping distance of the gripper are defined. Mean filters are applied
to pre-process the single demonstration so as to ignore the noise. On the other
hand, DTW, GMM, and GMR are employed to synthesize a comprehensive trajec-
tory from multiple datasets. The variance derived from these demonstrations, along
with force coupling terms, is implemented into the DMP framework, thereby enhanc-
ing the adaptability and robustness of motion planning in dynamic environments.
Impedance controller as well as NTSM-PD controller are developed to ensure the
robustness of the manipulator tracking during different pick-and-place tasks.

Figure 3.3: Schematic diagram of the work in the thesis



Chapter 4

Vision-Based Learning from Multiple Demonstrations

This chapter introduces the framework to learn from multiple demonstrations with
vision-based detection. 3D coordinate detection methods are designed to capture the
human hand key points conveniently. With the 3D coordinates, dexterous motions
can be defined as the desired input of the robot. To improve the robustness of the
system, data processing methods with multiple demonstrations are utilized in this
chapter.

4.1 3D Coordinate Detection

This section presents two different methods to detect the 3D coordinate of the human
hand key points.

4.1.1 Web Camera Based Detection

Since webcams can only acquire RGB images, one single camera cannot acquire
enough coordinate data, so two webcams are used to provide the robot with x, y,
and z-axis position information of the hand for the manipulator to track.

(a) Side Camera Frame (b) Top Camera Frame

Figure 4.1: Mediapipe view in different camera frames

21
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First, MediaPipe is utilized to obtain the 2D pixel coordinates of the hand in the
camera frame. In this thesis, each camera captures a different angle of a single hand.
As shown in Fig. 4.1, each view of the hand can be extracted with red points and
green lines. There are 21 red points on each hand to represent the key points and
green lines form the skeleton to connect the key points. Red numbers are shown to
identify the index of key points. Number 0 denotes the wrist position, Number 4 is
the position of the thumb fingertip, and Number 20 is the little finger fingertip. Blue
numbers in the top left side represent the FPS, which is affected by the computer’s
performance.

(a) Side View (b) Top View

Figure 4.2: Top and side views to calculate distance

Second, a method of 3D localization of the key points with two cameras is devel-
oped. The two cameras are set perpendicularly and the side camera should be on the
edge of the top camera’s frame. As shown in Fig. 4.2, the depths of two cameras
d1, d3 can be concluded as Eq. (4.1) and Eq. (4.2).

d1 = H − d2, (4.1)

d3 = D − d4, (4.2)

where H and D are the distances between two cameras in x and z directions, which
are measured in advance with H = 0.60m, D = 0.35m.
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In the pixel coordinate system, the actual distance l can be calculated by Eq. (4.3).

l = d tan(
n

N
θ), (4.3)

where d is the depth, n is pixel distance, N is the pixel value of width or height of
the camera image and θ is the view angle of the camera. Term 1

N
θ is one pixel’s angle

in the picture, and d tan( 1
N
θ) is the real length of one pixel so actual distance l with

n pixels can be concluded as Eq. (4.3). So d2 and d4 can be calculated by Eq. (4.4)
and Eq. (4.5).

d2 = d3tan(
(Y
2
− yside)

Y
θy), (4.4)

d4 = d1tan(
(xtop − X

2
)

X
θx), (4.5)

where θx and θy are the view angles of the cameras, X and Y are the pixel values
of the width and height of the camera image. θx, θy, X, and Y are constant pa-
rameters related to the camera. (xtop, ytop) and (xorigin, yorigin) represents the pixel
coordinates of the hand’s point and origin point in the top camera image, (xside, yside)
represents that in the side camera. In this case, X = 640, Y = 480, θx = 66o, θy =

57o, xorigin = 520, yorigin = 130.
The depths, d1 and d3 can be calculated by Eqs. (4.1)-(4.5) as

d1 =
H −Dtan(

(Y
2
−yside)
Y

θy)

1− tan(
(xtop−X

2
)

X
θx)tan(

(Y
2
−yside)
Y

θy)
, (4.6)

d3 =
D −Htan(

(xtop−X
2
)

X
θx)

1− tan(
(xtop−X

2
)

X
θx)tan(

(Y
2
−yside)
Y

θy)
. (4.7)

With these two depths, we can calculate the 3D coordinate of each point by

ph =
[
xh, yh, zh

]T
=


d1tan(

(xorigin−xtop)
X

θx)

d1tan(
(yorigin−ytop)

Y
θy)

Htop − d1

 , (4.8)

where Htop is the height of top camera. In this thesis, Htop = 1.0m [45].
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4.1.2 Depth Camera Based Detection

The depth camera is capable of capturing both RGB and depth images simultaneously
while maintaining their alignment. To ensure consistency and facilitate precise corre-
spondence, both RGB and depth images are uniformly set to a resolution of 640×480.
This standardization enables precise correspondence between points in two images.
As shown in Fig. 4.3 (a), the first step employs MediaPipe, which identifies the
hand’s key points within the RGB image. The 2D pixel coordinates corresponding
to these key points are extracted. By associating the index of these pixels with the
depth image, the depth information for each pixel is obtained, as illustrated in Fig.
4.3 (b). The pixel coordinates do not represent real-world coordinates and therefore,
a coordinate transformation from the pixel coordinates, xp, yp to real-world spatial
coordinates, xh =

[
pTh , HT

h

]T
, is required.

Using Eq. (4.8), the 3D coordinates of the hand are represented as

ph =
[
xh, yh, zh

]T
=


d tan(

(xp−X
2
)

X
θx)

d tan(
(yp−Y

2
)

Y
θy)

H − d

 , (4.9)

where H is the height of camera, θx and θy are the view angles of camera, X and Y are
the resolution. In this thesis, H = 1.0 m, X = 640, Y = 480, θx = 69◦, θy = 42◦.
The final 3D hand is shown in Fig. 4.3 (c) with the python toolbox Plotly.

(a) RGB image with MediaPipe (b) Depth image (c) 3D hand

Figure 4.3: The proposed 3D hand coordinate generation
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4.2 Motion Definition

This section introduces the definition of translational motion, rotational motion, and
gripper distance from 3D hand coordinates. These motions define the manipulator’s
end-effector movement.

4.2.1 Translational Motion

Translational motion is the most common motion when controlling the end-effector
of a manipulator. In the previous part, we can get 3D coordinates of 21 key points of
hand. So we set the trajectory of the wrist as the translational motion as Eq. (4.10).

ph =
[
xw, yw, zw

]T
, (4.10)

where (xw, yw, zw) denotes the position of wrist.

4.2.2 Rotational Motion

In addition to controlling the 3D translational coordinates of the end-effector, equal
significance is attributed to managing the orientation of the end-effector and the
grasping of the gripper, which are easily overlooked elements of the current research,
as these movements are not conveniently collected in the demonstration. As shown
in Fig. 4.4, these motions can be calculated and corresponded through the 3D coor-
dinates of the wrist, thumb tip, and index fingertip, which correspond to points 0, 4,
and 8 in Mediapipe, respectively.

To represent the orientation of the end-effector, the Euler angles of yaw, pitch,
and roll orientations are as in Eq. (4.11).

ψh

θh

ϕh

 =


arctan(xi−xt

yt−yi )

arctan( zw−zt
xt−xw )

arctan( zi−zt
yt−yi )

 , (4.11)

where the yaw angle ψh is the rotation about the z-axis, the pitch angle θh is the rota-
tion about the y-axis and the roll angle ϕh is the rotation about the x-axis. (xi, yi, zi)
and (xt, yt, zt) denote the positions of index fingertip and thumb tip, respectively.

While Euler angles offer a straightforward and intuitive method for the orientation
representation, the Franka Emika robot uses quaternions H as its chosen represen-
tation for orientation, so the conversion from Euler angles to quaternions is needed.
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Euler angles generation. (a)-(c) are the yaw, pitch, and roll of hand and
(d)-(f) are the yaw, pitch, and roll of gripper

Prior to executing this transformation, it is imperative to understand the quater-
nion multiplication operation. Assume H1 and H2 are quaternions, which can be
represented by Eq. (4.12).

H1 = η1 + ϵ1 = qw1 + qx1i+ qy1j + qz1k,

H2 = η2 + ϵ2 = qw2 + qx2i+ qy2j + qz2k.
(4.12)

Then the multiplication of H1 and H2 can be obtained as by Eq. (4.13), which
is also called Hamilton product [46].

H1H2 = η1η2 − ϵ1 · ϵ2 + η2ϵ1 + η1ϵ2 + ϵ1 × ϵ2

=


qx1qw2 + qw1qx2 + qy1qz2 − qz1qy2

qy1qw2 + qw1qy2 + qz1qx2 − qx1qz2

qz1qw2 + qw1qz2 + qx1qy2 − qy1qx2

qw1qw2 − qx1qx2 − qy1qy2 − qz1qz2

 .
(4.13)

Through the multiplication of three axes, the transformation equation between
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quaternions and Euler angles is as:

Hh = Hx(ϕh)Hy(θh)Hz(ψh) =


Cϕh

2

Sϕh
2

0

0




C θh

2

0

S θh
2

0




Cψh

2

0

0

Sψh
2



=


Cϕh

2

C θh
2

Cψh
2

+ Sϕh
2

S θh
2

Sψh
2

Sϕh
2

C θh
2

Cψh
2

− Cϕh
2

S θh
2

Sψh
2

Cϕh
2

S θh
2

Cψh
2

+ Sϕh
2

C θh
2

Sψh
2

Cϕh
2

C θh
2

Sψh
2

− Sϕh
2

S θh
2

Cψh
2

 ,

where Cx = cos(x) and Sx = sin(x) with x = θh
2
, ψh

2
, ϕh

2
.

Given that the default configuration of the robot’s end-effector is perpendicular
to the ground, while the default hand posture in the human demonstration aligns
parallel to the ground, an essential adjustment is mandated. We rotated the end-
effector 90◦ around the y-axis, so the desired quaternion should be calculated as the
demonstration quaternion multiplying the quaternion rotated 90◦ around the y-axis
so that the end-effector will perform like the humans.

4.2.3 Gripper Distance

(a) (b)

Figure 4.5: Gripper distance generation
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For grasping, the distance between the thumb tip and the index fingertip dti can
be defined as the gripper distance in Fig. 4.5, which can be calculated as

dti =
√

(xt − xi)2 + (yt − yi)2 + (zt − zi)2. (4.14)

If dti < d̄ti, the robot considers it as a grasping motion learned. Subsequently,
the gripper will execute the grasping action, which reduces the gripper distance and
stops when the contact force of the gripper reaches 3 N. d̄ti may vary from different
tasks. In this thesis, d̄ti = 0.1 m.

4.3 Data Processing

This section presents methods to ignore the noise for single demonstration and mul-
tiple demonstrations to elevate the robustness of the system.

4.3.1 Mean Filter

After obtaining the single motion trajectory and posture from the human demonstra-
tion, a mean filter is applied to smooth the raw data. A mean filter is a linear filter
that takes the data in a window and calculates the mean and then returns the mean
value calculated in the window. The advantages of this algorithm are its efficiency
and simplicity of thought. Similarly, the disadvantages are obvious, when the length
of the window is too large, the calculation of the mean value becomes fuzzy and
many features are lost. The mean filter requires a one-dimensional vector of length
N , denoted as xh, and the output vector x∗

h after applying an average smoothing
filter with a window size of k given by Eq. (4.15).

x∗hi =
1

k

i+ k−1
2∑

j=i− k−1
2

xhj, (4.15)

where x∗hi represents the ith element in the output vector, xhj corresponds to the jth
element in the input vector and i ranges from k−1

2
to N − k−1

2
.

4.3.2 Dynamic Time Warping

The raw demonstration data, limited by the inherently non-smooth motion of the
human body and potential errors in camera calibration, requires processing. Using
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multiple demonstrations can mitigate errors and uncertainties associated with single
demonstrations.

When individuals perform various demonstrations for the same task, the move-
ments may exhibit similarities, but the time sequences are often not identical. For
instance, in a pick-and-place experiment, the duration for lifting and lowering the
object may not be exactly the same across different demonstrations. Therefore, the
initial step in learning from multiple demonstrations is regularizing the time series
associated with these diverse movements.

DTW is a method that gauges the similarity between two time series and aligns
them effectively. DTW corresponds two series in different time steps, but not by
Euclidean distance [4]. The fundamental concept is to identify the optimal match
between two series by aligning them along the time axis. Suppose time series A as
{a1, a2, ..., an}, B as {b1, b2, ..., bm}, where n and m are their respective lengths. Define
a Euclidean matrix E, where E(i, j) denotes the Euclidean distance of the ith element
of A and the jth element of B. Next, define a cumulative distance matrix C, where
C(i, j) denotes the minimum cumulative cost to reach the point (i, j) from the starting
point, which is calculated as

C(i, j) = E(i, j) +min{C(i− 1, j),C(i, j − 1),C(i− 1, j − 1)}. (4.16)

After the computation of C, the optimal matching can be determined by back-
tracking along the path. The path is selected by initiating the backtrack from the
endpoint in C and moving towards the starting point along the path with the minimum
accumulated cost. Fig. 4.10 shows the correspondence between two time series. By
selecting one time series as the reference, all other series can be aligned with the ref-
erence series using DTW. This alignment process generates new data with consistent
time steps for all series, ensuring temporal homogeneity. After applying DTW, the
multiple demonstrations, Xh =

[
xh1 , xh2 , · · · , xhN

]
, are converted to multiple

regularized demonstrations on the same time scale, X̄h =
[
x̄h1 , x̄h2 , · · · , x̄hN

]
,

where N is the number of demonstrations.
Suppose we have a series A={0.1, 0.2, 0.5, 0.5, 0.3, 0.1, 0.1, 0.1, 0.2, 0.3}, which has

10 elements, and a same length series B={0.1, 0.1, 0.2, 0.3, 0.4, 0.5, 0.3, 0.2, 0.1, 0.2},
shown in Fig. 4.6. Firstly, calculate the Euclidean distance matrix of two series,
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as shown in Fig. 4.7. Each number in grid (i, j) represents the Euclidean distance
between bi and aj. Darker colored squares represent larger distances and lighter
colored squares represent smaller distances. Secondly, find a path from the bottom
left corner of the Euclidean matrix to the top right corner such that the sum of the
elements on the path is minimized. To realize this goal, it is necessary to calculate
the cumulative matrix based on Eq. (4.16). The cumulative matrix is shown in
Fig. 4.8. Each number in grid (i, j) represents the minimum cumulative distance
from the bottom left corner to the point (i, j). Then, find the minimum cost path
starting from the top right corner. Red lines represent the minimum cost path.
Finally, corresponding elements in the path are shown in Fig. 4.10. For example, the
minimum cost path goes through the point (b4, a2) so the fourth point of series B
corresponds to the second point of series A.

Figure 4.6: DTW example
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Figure 4.7: DTW Euclidean matrix

Figure 4.8: DTW cumulative matrix
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Figure 4.9: DTW cumulative matrix with minimum cost path

Figure 4.10: DTW correspondence
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4.3.3 Gaussian Mixture Model

In scenarios where a single desired trajectory input is required by the robot, it becomes
imperative to conclude a single trajectory from multiple demonstrations. Once all
time series are regularized, the Gaussian mixture model can be applied to model the
entire dataset using multiple Gaussian functions [47].

GMM is a probabilistic model designed for classifying and clustering data, as-
suming that the observed data is a mixture of multiple Gaussian distributions. Each
Gaussian distribution is parameterized by its mean µk, covariance matrix Σk, and
mixing coefficient πk as

P(t, X̄h) ∼
∑K

k=1
πk · N (µk,Σk), (4.17)

where t is time, X̄h is the regularized pose of the hand, and πk, µk =

[
µt,k

µX̄h,k

]
,

and Σk =

[
Σtt,k ΣtX̄h,k

ΣX̄ht,k ΣX̄hX̄h,k

]
represent kth prior probability, mean, and covariance,

respectively. N (µk,Σk) is the probability density function (PDF) of multivariate
Gaussian distribution and K is the number of Gaussian functions. The parameters
of the GMM can be optimized iteratively by the expectation maximization (EM)
algorithm [48].

4.3.4 Gaussian Mixture Regression

Gaussian mixture regression (GMR), often used in conjunction with GMM, regresses
a single trajectory from the Gaussian models. This method enables the extraction
of key features from multiple demonstrations, contributing to a more refined and
consolidated representation of the desired motion [49].

After obtaining the GMM parameters, GMR can be applied to predict the condi-
tional probability distribution of the corresponding trajectory x∗

h for any new input
t∗ as in

P(x∗
h|t∗) =

∑K

k=1
hk(t

∗) · N (µk(t
∗), Σ̄k), (4.18)
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where

hk(t
∗) =

πk · N (t∗|µt,k,Σtt,k)∑K
i=1 πi · N (t∗|µt,i,Σtt,i)

,

µ̄k(t
∗) = µx̄h,k +Σx̄ht,kΣ

−1
tt,k(t

∗ − µt,k),

Σ̄k = Σx̄hx̄h,k −Σx̄ht,kΣ
−1
tt,kΣtx̄h,k.

Eq. (4.18) can be approximated to

P(x∗
h|t∗) ∼ N (µ̂, Σ̂), (4.19)

where

µ̂ =
∑K

k=1
hk(t

∗)µ̄k(t
∗),

Σ̂ =
∑K

k=1
hk(t

∗)(µ̄k(t
∗)µ̄T

k (t
∗) + Σ̄k)− µ̂µ̂T .

µ̂ is the learned trajectory from multiple demonstrations. Σ̂ is the variance of the
trajectory.

GMM and GMR can effectively learn probabilistic features for multiple demon-
strations, including temporal input and multidimensional input situations. However,
it is difficult for GMM and GMR to apply their learned trajectories to situations
different from the illustrative environment. In order to enhance the adaptability and
generalization ability of GMM and GMR, we used DMP to model the trajectories
learned by GMM and GMR and combined the environment information to change
the trajectories in Chapter 5.

4.4 Experimental Results

This section shows the result of applying previous theories to our experiments, in-
cluding position measurement with depth camera based detection, mean filter result
of a single demonstration, DTW result of two demonstrations, and GMM and GMR
result of multiple demonstrations. The pick-and-place task was chosen to validate
the effectiveness of the proposed framework. A bottle pick-and-place teleoperation
experiment is designed to verify the ability of the manipulator and qb-Softhand
to imitate human hand behavior. The video of the experiment can be seen in
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https://youtu.be/qGP230LvMZ8. In multiple demonstrations, the human demon-
stration involves picking up a sponge from the workbench with a 40◦ yaw, moving it
over a bottle, and placing the sponge back on the workbench. Six demonstrations were
conducted, resulting in six distinct trajectories that encompass position in Cartesian
space, Euler angles, and gripping distance. An example of the demonstrations can be
seen in https://www.youtube.com/watch?v=nTPQDUEkxKA.

4.4.1 3D Coordinate Measurement

This part of the experiment is dedicated to validating of the accuracy associated with
the 3D coordinate generated by MediaPipe and Eq. (4.9). Test points were set up at
different heights and in different quadrants to ensure that the method could be tested
in all areas. The measured and calculated coordinates are shown in the Table 4.1.

Table 4.1: Measurement of position

Point Measured (cm) Calculated (cm) Absolute Error (cm)
1 (2.0, 8.0, 9.0) (2.4, 8.0, 7.5) (0.4, 0.0, 1.5)
2 (-5.0, 0.0, 9.0) (-6.3, 0.7, 8.1) (1.3, 0.7, 0.9)
3 (-6.0, -9.0, 34.5) (-7.5, -8.1, 34.2) (1.5, 0.9, 0.3)
4 (-19.0, 7.0, 26.5) (-20.5, 7.4, 26.8) (1.5, 0.4, 0.3)
5 (20.0, 10.0, 26.5) (21.3, 10.1, 27.3) (1.3, 0.1, 0.8)
6 (11.0, -10.0, 12.5) (10.6, -8.6, 13.9) (0.4, 1.4, 1.4)
7 (-14.0, -8.0, 12.5) (-15.5, -6.8, 12.0) (1.5, 1.2, 0.5)
8 (27.0, -14.0, 34.5) (28.6, -12.2, 36.1) (1.6, 1.8, 1.6)

Mean (1.2, 0.8, 0.9)

As shown in Table 4.1, the maximum error observed along each axis remains
confined within the threshold of 2 cm. Some errors may be due to the measurement
and the small shaking of the hand during the demonstration.

4.4.2 Mean Filter Result

In light of the inherent noise present in the data collected from the human hand,
a pre-processing step is employed. Specifically, we undertake data pre-processing
through the application of a mean filter. Fig. 4.11 shows the comparison between
raw and filtered Euler angles. The solid line represents the unprocessed data and the

https://youtu.be/qGP230LvMZ8
https://www.youtube.com/watch?v=nTPQDUEkxKA
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dashed line represents the filtered data. As we can see from Fig. 4.11, the unprocessed
data is very noisy, and without removing these chattering, a typical controller will
have a hard time following such signals and will be harmful to the robot’s hardware.
The processed signal is not only smooth but also preserves the features of the raw
data. If the window size k is set too large, then the processed signal will lose its
characteristics, so we have to set the window size k to an appropriate value. In this
thesis, the window size k was tuned to 10.
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Figure 4.11: Yaw, pitch, and roll with mean filter

4.4.3 Teleoperation Experiment

To validate the proposed framework’s ability of teleoperation, a real-time bottle pick-
and-place experiment is designed to verify the ability of the manipulator and qb-
Softhand to imitate human hand behavior. In the experiment, human operated hand
motion in the camera view. Fig. 4.12 (A) shows the initial positions of the human
hand and the end-effector. Fig. 4.12 (B) shows the rotation of the end-effector.
Fig. 4.12 (C) shows the qb-SoftHand grasping the object. Fig. 4.12 (D) shows the
translational movement of the end-effector. Fig. 4.12 (E) shows the qb-SoftHand
opening and putting the object down. Fig. 4.12 (F) shows the manipulator finished
the task and returned to the initial position with counter rotation.
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Figure 4.12: Teleoperation experiment

4.4.4 DTW Result

We apply the DTW algorithm introduced in the previous section to the processing of
multiple demonstration data. We take the motion trajectory in the z-axis direction
as an example, and Figure 4.13 shows the correspondence between two trajectories
in different demonstrations. The dotted lines connect the corresponding points in
two time series. From the result, we can see that although the two trajectories have
different data lengths, the motion trends at different moments are well corresponded.
Then we apply the DTW algorithm to all demonstrations. As shown in Fig. 4.14, we
have six demonstrations with different lengths. By picking series 5 as the reference
series, we can get the regularized series in Fig. 4.15. From Fig. 4.15, we can see that
series lengths are regularized to the same with reference. Moreover, they keep the
features of the value. If one point corresponds to multiple points, we set the average
value as the regularized value.
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Figure 4.13: DTW result of two series. The dotted lines connect the corresponding
points in two time series

Figure 4.14: Multiple series before DTW



39

Figure 4.15: Multiple series after DTW by choosing series 5 as the reference series

4.4.5 GMM and GMR Result

Fig. 4.16 and Fig. 4.17 show the result of GMM and GMR, respectively. GMM
clusters all points in a dataset in K clusters, which are represented by green ellipses.
Here we set K = 6. With the iterations of the EM algorithm, the parameters of each
Gaussian model can be calculated. After calculating those parameters, GMR will get
the expectation of all clusters, which is the blue line in Fig. 4.17. Meanwhile, the
variance of each Gaussian model is also calculated, which is the shadow part in Fig.
4.17.

The results obtained through the multiple demonstrations with DTW, GMM, and
GMR are illustrated in Fig. 4.18. Dash lines represent the six regularized demon-
stration datasets and solid lines represent the learned trajectory µ̂. Shadow regions
denote variance Σ̂. The results demonstrate that the synthesized trajectory accu-
rately encapsulates all demonstration trajectories while mitigating the influence of
noise. These results validate the capability of the vision-based LfD framework to
robustly produce a single trajectory from multiple demonstrations without the need
for burdensome sensors or direct physical interactions with the manipulator.
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Figure 4.16: Gaussian mixture model result

Figure 4.17: Gaussian mixture regression result
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Chapter 5

Path Planning and Controller Design

This chapter introduces the dynamic movement primitives (DMP) as the path plan-
ning method, Lyapunov stability, and four controller methods. With the variance
from multiple demonstrations, a variance-avoidance DMP is developed. Three ex-
periments are designed to validate the result of the proposed DMP and the tracking
performance of controllers.

5.1 Dynamic Movement Primitives

Upon acquiring the human demonstration dataset, it is significant to represent this
data in the form of mathematical equations. The advantage of transforming the
dataset from discrete points to equations lies in the enhanced flexibility of mathe-
matical formulations. By encapsulating the human demonstrations within equations,
we have the ability to manipulate and adapt these equations to more tasks. This
approach not only facilitates a deeper understanding of the underlying dynamics but
also enables the seamless transfer of learned behaviors to diverse contexts, thus el-
evating efficiency in robotic applications. Dynamic movement primitives serve as a
methodological approach for synthesizing and regulating movements based on human
demonstrations [50]. This section shows the original dynamic movement primitives
and methods developed through it.

5.1.1 Original DMP Method

In [22], it is proposed that complex actions can be decomposed into a set of primitive
actions that are executed sequentially or in parallel. The DMP framework is intro-
duced as the mathematical formalization of these primitive actions. Each motion
primitive is characterized as a nonlinear system, with dynamic properties influenced
by a guided trajectory. This design allows the primitives to be reused and adapted
across various settings.

42
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At its core, the system model of DMP combines a PD controller with the inclusion
of the control term f , which is notably a nonlinear function. This design enables the
system not only to converge to the goal point but also allows the motion process to
emulate the original trajectory. The dynamic system is represented asδ ˙̂vh = K(gh − x̂h)−Dv̂h + (gh − x̂h0)fh,

δ ˙̂xh = v̂h,
(5.1)

where x̂h and v̂h is the position and velocity of the DMP trajectory, x̂h0 and gh

are the start and goal points of the trajectory, δ is the time duration, K > 0 and
D > 0 are the stiffness and damping parameters, respectively, and fh is the force
coupling term. To generate fh, it is imperative to first acquire fhtarget , which can be
represented by the demonstration trajectory as

fhtarget =
δ2ẍ∗

h −K(gh − x∗
h) +Dδẋ∗

h

gh − x̂h0
, (5.2)

where x∗
h, ẋ∗

h, ẍ∗
h are the position, velocity, and acceleration of the processed demon-

stration trajectory.

The work in [22] used Gaussian functions as the basis functions to represent the
nth element of fh =

[
fh1 fh2 · · · fh7

]T
. Note that for the remainder of this section,

the element subscripts for the Gaussian function parameters are omitted for clarity.
Assume that each element, fhn , has its own set of parameters. The basis functions
are:

fh =

∑N
i=1 ωiΨi(s)∑N
i=1Ψi(s)

s, (5.3)

where ṡ = −αss,Ψi(s) = exp(−hi(s − ci)
2), and s > 0 starts at one and gradually

tends toward zero, thereby ensuring that fh approaches zero when x̂h converges to
gh. αs is a constant value, Ψi is the Gaussian function, where c is the center and h

is the width. Each Gaussian function is endowed with a respective weight ω, and the
objective is to find such a set of weights that minimizes the error between fh and
fhtarget . Locally weighted regression is utilized to obtain ωi as:

ωi =
sTxΓifhtarget
sTxΓisx

, (5.4)
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where

sx =


s1(gh − x̂h0)

s2(gh − x̂h0)

· · ·
sn(gh − x̂h0)

 , Γi =


Ψi(1) 0

. . .
0 Ψi(n)

 ,

and n is the number of sampling points.

5.1.2 Modified DMP Method

In Eq. (5.1), a potential issue arises with the term (gh − x̂h0)fh when the starting
point of the demonstration closely approximates the target position. In such cases,
as (gh − x̂h0) approaches zero, the term fh tends towards nullity. Additionally, the
opposite signs of gh and x̂h0 lead to a mirroring effect in the trajectory shape. To
address this, a modified DMP is proposed in [50] wherein the system separates fh

and gh − x̂h0 so that fh remains unaffected by the initial and goal poses:δ ˙̂vh = K(gh − x̂h)−Dv̂h − (gh − x̂h0)x̂h + fh,

δ ˙̂xh = v̂h.
(5.5)

The DMP system represented by Eq. (5.5) can successfully regress the demon-
stration and the system can adapt to different initial and endpoints. However, it
has practical limitations because environmental conditions may change during the
trajectory execution. For example, for a pick-and-place task, the height of the ob-
stacles may vary. Therefore, it becomes necessary to introduce a coupling term into
the DMP system to enable adaptation to the dynamic environment. In [24], Gams
et al. introduced a virtual force coupling term F (t) in the system to facilitate the
adaptation of the DMP trajectory to the dynamic environment.

δ ˙̂vh = K(gh − x̂h)−Dv̂h − (gh − x̂h0)x̂h + fh + cḞ (t),

δ ˙̂xh = v̂h + cF (t),

F (t) = k1h(t),

(5.6)

where h is the obstacle dimensions, c and k1 are tuneable parameters.
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5.1.3 Variance-Avoidance DMP

As mentioned in Chapter 4, the variance of different demonstrations can be obtained.
Variance serves as an indicator of the confidence level in a demonstration. When the
variance is smaller, it implies higher confidence in the demonstration trajectory. This
observation inspires a method of tuning the DMP system based on the variance.

As shown in Eq. (5.1), the DMP system comprises a PD controller and a control
term fh. The control term fh is learned from demonstration to change the trajectory
and the PD controller ensures the convergence of the endpoint. In the DMP system,
when the variance of a segment is small, it means that the trajectory of this segment
is more repeatable among multiple demonstrations, so the system should trust the
demonstration data of this segment more, thus reducing the effect of virtual force term
F (t). On the contrary, when the variance of a segment is larger, it indicates that the
trajectory of this segment is more flexible in multiple demonstrations. Therefore the
system can give more influence to the virtual force term F (t). This tuning approach
introduces the variance of the multiple demonstrations part into the path planning. It
can allow the confidence level of the various demonstrations to influence the stiffness
of the path planning, which showcases the superiority of the framework proposed
in this thesis. The proposed DMP system with variance and obstacle dimensions is
proposed as


δ ˙̂vh = K(gh − x̂h)−Dv̂h − (gh − x̂h0)x̂h + fh + cḞ (t),

δ ˙̂xh = v̂h + ck2
3

√∣∣∣Σ̂∣∣∣F (t),

F (t) = k1h(t),

(5.7)

where Σ̂ is the variance from the GMR output and k2 is a tuneable parameter.

5.2 Controller

This section presents Lyapunov stability and four controllers, which are popularly
utilized in manipulators and human-robot interaction.
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5.2.1 Lyapunov Stability

Lyapunov stability is an important theory in the analysis of nonlinear systems, pro-
viding a way to determine the stability of a system without solving differential equa-
tions [51]. An equilibrium is asymptotically stable if, for any small perturbation of
the initial state near the equilibrium point, the state of the system converges to the
equilibrium point over time.

The basis of Lyapunov theory can be described as follows. Consider a nonlinear
system ẋ = f(x), the system is considered asymptotically stable if there exists a
Lyapunov function V (x) that satisfies these three conditions [52]:

1) The Lyapunov function is zero at the initial point: V (x) = 0.

2) The Lyapunov function is positive definite in the region beyond the initial point:
V (x) > 0,∀x ̸= 0.

3) The derivative of the Lyapunov function with respect to time is negative definite
in some neighborhoods near the initial point: V̇ (x) < 0,∀x ̸= 0.

Lyapunov stability theory plays an important role in the design and analysis of
controllers, especially for nonlinear control systems. By using Lyapunov theory, the
stability of the system can be ensured and controllers can be designed to meet specific
performance requirements. The negative definite condition of the Lyapunov function
is utilized to derive a control law such that the derivative of the Lyapunov function
V̇ (x) is negative for all x ̸= 0. Specifically, the control input u is designed such that
V̇ (x, u) = ∂V

∂X
f(x, u) where f(x, u) is the system state equation.

5.2.2 PD Control

Proportional-derivative control is a classical control algorithm that is widely used in
automatic control systems. The PD controller generates control signals u to stabilize
the control system by taking into account the current value of the control error e and
the rate of change of the error ė. PD controller can be represented as

u(t) = Kpe(t) +Kdė(t), (5.8)

where Kp and Kd are proportional gain and derivative gain. The PD controller is
a simple and effective control strategy to regulate the output of the control system



47

through both proportional and differential aspects, which is suitable for application
scenarios with high response speed requirements and low requirements for steady-
state error. Correctly selecting and adjusting the proportional and differential gains
is the key to realizing a good control effect.

In this thesis, we design the PD controller in Cartesian space for the rotational
motion of the manipulator end-effector by Eq. (5.9) as

τPD = JH(q)
T (−KHeH −DH ėH), (5.9)

where KH and DH are the position and velocity gains, respectively and eH = (η1η2+

ϵT1 ϵ2)(−η1ϵ2 + η2ϵ1 − S(ϵ1)ϵ2) ∈ R3, ėH = ω − ωd ∈ R3 [53], and

S(ϵ) =


0 −qz qy

qz 0 −qx
−qy qx 0

 .
5.2.3 Impedance Control

Impedance control is a type of soft control in which a joint or end-effector of a
manipulator can move along a new desired trajectory when an external force is applied
to the joint or end-effector, instead of moving along the original desired trajectory.
Compared to traditional position control, impedance control avoids damage to the
robot due to flexible stiffness. In conventional position control, when the manipulator
is subjected to an external force Fext, the error in the angle of the joints increases,
resulting in failure to obtain the correct position of the end-effector and possible
damage to the hardware. The principle of impedance control is to consider a joint
or end-effector as a mass-spring-damper system, as illustrated in Fig. 5.1, whose
equation is shown as Eq. (5.10),

Mdẍ+Ddẋ+Kdx = Fext, (5.10)

where Md is the mass value, Kd is the spring stiffness, Dd is the damper damping,
and Fext is the external force.

Mass-spring-damper system function in joint space is shown in Eq. (5.11),

Md(q̈d − q̈) +Dd(q̇d − q̇) +Kd(qd − q) = τext. (5.11)
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Figure 5.1: Mass spring damper system

The dynamic equation of manipulator in joint space with external torque τext is
as

M(q)q̈ + C(q̇, q)q̇ + G(q) = τ − τext. (5.12)

According to Eq. (5.11) and Eq. (5.12), we obtain the equation of τjs in joint
space:

τjs =M(q)q̈d + C(q̇, q)q̇ + G(q)

+M(q)M−1
d (Dd(q̇d − q̇) +Kd(qd − q)) + (I −M(q)M−1

d )τext.
(5.13)

The transformation of Eq. (5.13) from the joint space to the Cartesian space is
ẋ

ẍ

Fext

 =


J(q)q̇

J(q)q̈ + J̇(q̇, q)q̇

J(q)−Tτext

 . (5.14)

According to Eq. (5.13) and Eq. (5.14), we obtain the equation of τcs in Cartesian
space:

τcs =M(q)J−1(q)M−1
d (Mdẍd +Dd(ẋd − ẋ) +Kd(xd − x)−MdJ̇(q̇, q)q̇)

+ (JT (q)−M(q)J−1(q)M−1
d )Fext + C(q̇, q) + G(q).

(5.15)

5.2.4 Sliding Mode Control

Sliding mode control (SMC) is a robust control strategy especially suitable for non-
linear systems with large uncertainties and perturbations [54]. For instance, when
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the manipulator picks up an unknown object, the PD and impedance controllers can-
not compensate for gravity, which can lead to errors, especially in the case of heavy
objects.

A sliding mode controller achieves the desired control objective by designing a
sliding surface along which the system state slides. The core of sliding mode control
is to define a sliding surface s, which is usually some linear or nonlinear combination
of state variables. During the sliding motion, the dynamic behavior of the system
is determined by the equation for the surface. The goal of sliding mode control is
to drive the system state to the desired equilibrium point quickly and with high
robustness at the same time. Consider a nonlinear systemẋ1 = x2,

ẋ2 = f(x) + g(x) + b(x)u,
(5.16)

where x =
[
x1, x2

]T
is the state vector, f(x) and b(x) are nonlinear functions, g(x)

is the external bounder disturbance, and u is the control input. The sliding surface
is defined as s = λx1 + x2,

ṡ = λẋ1 + ẋ2,
(5.17)

where λ > 0 is a design constant.

When s = 0, the sliding surface can be represented in a coordinate system where
x1 is the x-axis and x2 is the y-axis, as illustrated in Fig. 5.2. When the point
(x1, x2) is on the sliding surface in the second quadrant, x1 < 0 and x2 > 0, resulting
in an increase in x1. Conversely, when (x1, x2) is on the sliding surface in the fourth
quadrant, x1 > 0 and x2 < 0, causing x1 to decrease. Therefore, when (x1, x2) lies
on the sliding surface, it will converge to the origin, ensuring that both the error in
joint angle and velocity become zero. This guarantees the convergence on the sliding
mode surface.

Since the point (x1, x2) is guaranteed to converge to the origin on the sliding
surface, it is significant that the point (x1, x2) reaches the sliding surface, which
makes s = 0, so we need the reaching law. The objective of reaching law is to make
the system approach the sliding surface.
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Figure 5.2: Sliding coordinate system

According to Lyapunov function:V (s) =
1

2
s2,

V̇ (s) = sṡ.

(5.18)

To make s = 0, we have to find a reaching law ṡ such that V̇ (s) < 0. The
commonly used reaching law is ṡ = −ϵsgn(s)− ps, where ϵ > 0, p > 0. According to
the reaching law and Eq. (5.18), we can get V̇ (s) as

V̇ (s) = −ϵsgn(s)s− ps2, (5.19)

where the switching function in this work is sgn(s) which demotes the sign function,
defined as

sgn(s) =


1 , s > 0

0 , s = 0

−1 , s < 0

(5.20)

Because sgn(s) and s are always greater or less than zero at the same time, so
V̇ (s) < 0. According to Lyapunov stability theory, s will converge toward zero, so as
to realize the objective of reaching the sliding surface. Lyapunov stability makes a
contribution to designing the reaching law and designing the controller.

According to the reaching law and the representation of ṡ, we can get the equation
of q̈,

q̈ = cq̇d − q̇ + q̈d + ϵsgn(s) + ps. (5.21)
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So we can get the equation of τsm for manipulator:

τsm = M(q)(cq̇d − q̇ + q̈d + ϵsgn(s) + ps) + C(q̇, q) + G(q). (5.22)

Note that this controller relies on the system model M, C, and G functions. In our
work, the Franka Emika robot provides real-time numerical models at each sampling
time of M, C, and G functions.

5.2.5 Non-Singular Terminal Sliding Mode Control

The non-singular terminal sliding mode controller is proposed in [37] to avoid the
singularity that may occur in the regular SMC. The sliding surface of NTSM controller
is defined as s = x1 + βxα2 ,

ṡ = ẋ1 + αβxα−1
2 ẋ2,

(5.23)

where β > 0, αi = p/q, p > 0 and q > 0 are adjacent odd numbers such that
1 < α < 2. The control input is then commonly designed as

u = −b−1(x)(f(x) +
β

α
x2−α2 + (G+ η)sgn(s)), (5.24)

where G is the upper bound of the disturbance and η is a constant parameter. Com-
pared with regular SMC, NTSM control input Eq. (5.24) does not contain the x1
term in the denominator, which eliminates the risk of zero division and encountering
a singularity.

In this thesis, the NTSM controller is designed in Cartesian space for the trans-
lational motion of the manipulator end-effector as

τNTSM =Jp(q)
TM̄p(q)

(−ė2−α
p

αβ
+ p̈d − |M̄p(q)|−Tλtanh(kss)− κtanh(kss)

)
,

where λ > 0 and κ > 0 are the controller gains, and ks > 0 is a design parameter that
gives a trade-off between reducing chattering and tracking performance. The contin-
uous tanh(s) = e2s−1

e2s+1
function is used in place of the discontinuous sgn() function to

mitigate chattering and lower the control effort at the expense of a slower response
near the sliding surface. The sliding surface is defined as

s = ep + βėαp , (5.25)



52

where ep = p− pd, ėp = ṗ− ṗd.
In the pick-and-place experiment to compensate for object weight, the controller

is designed as a hybrid NTSM-PD controller. NTSM control is used for translational
motion to achieve accurate tracking in the presence of internal friction, unmodelled
dynamics, and unknown object weight. A PD controller is used for the rotational
motion for simplicity and to avoid chattering. The controller is designed as

τ = τHY B + C(q̇, q)q̇ + G(q), (5.26)

where τHY B =
[
τNTSMC , τPD

]T
is the hybrid NTSM-PD controller.

5.3 Experimental Results

This section contains three experiments. A pick-and-place experiment with differ-
ent start and goal points is designed to validate the adaptability of modified DMP.
Variance-avoidance DMP will avoid obstacles in a 3D Cartesian space. An NTSM-
PD controller is utilized to compensate a 1.2kg weight object while achieving the
trajectory tracking.

5.3.1 Modified DMP

The execution of the human demonstration involves picking up a sponge from the
workbench with 40◦ yaw, moving it over a cup, and putting the sponge in a box
sloped with a pitch angle of 50◦. The experiment environment is shown in Fig. 5.3.
The trajectory and value of the task can be seen in Fig. 5.4. Fig. 5.4 (d) and (e)
show the Euler angles and gripper distance dti in the demonstration, which will be
replicated by the end-effector. Then we employ modified DMP to learn the trajectory
of X, Y , and Z, respectively, with three new starting points:

[
0.37,−0.34, 0.22

]
,[

0.50,−0.25, 0.21
]
,
[
0.55,−0.34, 0.28

]
, and three new end points:

[
0.51, 0.11, 0.31

]
,[

0.50, 0.19, 0.30
]
,
[
0.50, 0.28, 0.32

]
. The unit of the above points are meters. Three

new trajectories are shown in Fig. 5.4(a)(b)(c)(f). New trajectories change the start
and end points, but keep the shape, quaternion, and grasping motion. The result
shows that modified DMP has the ability to mimic the path and adapt to new start
and goal points. The video of the experiment can be seen on the ACM Lab YouTube
channel: https://www.youtube.com/watch?v=XP22mKGLvUI.

https://www.youtube.com/watch?v=XP22mKGLvUI.
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Figure 5.3: Environment of modified DMP experiment

5.3.2 Variance-Avoidance DMP

In the pick-and-place task, the demonstrations avoid the obstacle by moving in the
z-axis, therefore the following results mainly focus on the z-axis. Within the DMP
system, the parameters are k1 = 10, k2 = 15, K = 1, D = 1, and c = 1. Fig. 5.5
illustrates the results of the proposed variance-avoidance DMP approach. In Fig.
5.5, the obstacle z-axis dimensions are represented by the gray blocks. As the height
of the obstacle varies between 0.4 m and 0.5 m, the generated trajectories in the
z-axis exhibit suitable variations to avoid the different obstacles. Fig. 5.6 and Fig.
5.7 present two trajectories in which the obstacle exists at different intervals of the
trajectory with varying degrees of variance. This indicates that during periods of low
variance, the trajectory is less affected by obstacle avoidance, and the trajectory can
closely follow the original demonstrations. Whereas during periods of high variance,
the trajectory takes a more cautious and adaptive path to avoid the obstacle. These
findings underscore the adaptability and precision of the variance-avoidance DMP
system in navigating complex environments, validating its effectiveness in real-world
applications. The proposed method also shows the novelty of the framework which
contains LfD and path planning. Obstacle avoidances can also be realized in a 3D
space with different obstacles in x, y, and z-axis, respectively. Fig. 5.8 illustrates the
3D scenario of avoiding an obstacle during the operation.



54

0 2 4 6 8 10

Time t (s)

0

0.2

0.4

0.6

X
 (

m
)

Demonstration Trajectory 1

Trajectory 2 Trajectory 3

(a) X

0 2 4 6 8 10

Time t (s)

-0.4

-0.2

0

0.2

0.4

Y
 (

m
)

Demonstration Trajectory 1

Trajectory 2 Trajectory 3

(b) Y

0 2 4 6 8 10

Time t (s)

0.1

0.2

0.3

0.4

Z
 (

m
)

Demonstration Trajectory 1

Trajectory 2 Trajectory 3

(c) Z

0 2 4 6 8 10

Time t (s)

-60

-40

-20

0

20

E
u
le

r 
A

n
g
le

 o

Yaw Pitch Roll

(d) Yaw, Pitch and Roll

0 2 4 6 8 10

Time t (s)

0.05

0.1

0.15

D
is

ta
n
c
e
 (

m
)

d
ti

(e) Distance (f) 3D Trajectory

Figure 5.4: Human demonstration and new trajectories generated by modified DMP
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Figure 5.5: DMP trajectories exhibit varying responses to different height obstacles.
The block with diagonal lines represents a low obstacle with a height of 0.4 m while
the other block represents a high obstacle with a height of 0.5 m. DMP responses are
more pronounced when the obstacle is higher
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Figure 5.6: When facing obstacles of the same height, different variance parts exhibit
varied responses. DMP responses are more prominent when the variance is larger.
The displacement for the high variance part is 0.07m

Figure 5.7: The displacement for the low variance part is 0.03m
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(a) Avoidance in X-axis (b) 3D plot of avoidance in X-axis

(c) Avoidance in Y-axis (d) 3D plot of avoidance in Y-axis

(e) Avoidance in Z-axis (f) 3D plot of avoidance in Z-axis

Figure 5.8: Variance-avoidance DMP obstacle avoidance in 3D space
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5.3.3 NTSM-PD Controller

To show the advantages of using the NTSM-PD controller to track the variance-
avoidance DMP trajectory, it is compared to two controllers: 1) a PD controller
that is applied to both translation and rotational motion and 2) an SM controller
that is applied to translational motion and applies a PD controller for the rotational
motion. The proposed DMP trajectory to lift an object over an obstacle is trained
and executed on the Franka Emika manipulator. Two different weight objects are set
and they are unknown to the manipulator. Only the motion of the z-axis is analyzed
during the motion of the object over the obstacle as this motion is highly impacted
by the weight of the object.

The controller gains are tuned to minimize the tracking error and chattering. The
parameters for the translational PD controller are Kp = 600 and Dp = 28.3, which are
significantly higher than ‘high’ stiffness values outlined in [55]. The parameters for
both the translational NTSM controller and translational SM controller proposed in
[54] are tuned to be α = 1.66, β = 0.2, ks = 10, λ = 6, and κ = 48. These parameters
are chosen to ensure that the error is minimized while preventing chattering. The
rotational PD controller for the NTSM-PD controller, PD controller, and SM-PD
controller are KH = 30 and DH = 3.5.

The tracking accuracy is evaluated by taking the Root Mean Square Error (RMSE)
E between the desired position and the actual end-effector position for the z-axis as

E =

√∑N
i=1(z − zd)2

N
, (5.27)

where N is the number of data points that are analyzed. To show how the NTSM-
PD controller can operate with the object weight better than the PD and SM-PD
controller, the task is executed without the object, ENOB, and with the object, EOB.
The decrease in performance due to the object is calculated as

∆OB =
EOB − ENOB

ENOB
× 100%. (5.28)

The comparative performance of the NTSM-PD, PD, and SM-PD controllers, all
with and without an additional load is shown in Fig. 5.9. The three controllers
perform equally well in the absence of an object, but in the presence of an object, the
NTSM-PD controller’s trajectory is closer to the desired one. As shown in Table 5.1,
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Table 5.1: Comparison of PD, SM-PD, and NTSM-PD controllers

Weight (kg) Controller ENOB (cm) EOB (cm) ∆OB
PD [55] 1.267 2.453 93.61%

0.45 SM-PD [54] 1.626 2.245 37.45%
NTSM-PD 1.538 1.877 22.04%

PD [55] 1.267 3.210 153.35%
1.2 SM-PD [54] 1.626 2.448 50.55%

NTSM-PD 1.538 1.738 13.00%

the EOB of the NTSM-PD controller is significantly smaller than that of the other two
controllers, and the magnitude of change ∆OB is the smallest. When lifting the object,
the PD and SM-PD controller exhibited significant reductions in tracking accuracy
and when the weight increases their performance become worse. The proposed NTSM-
PD controller does not show significant errors when faced with heavier objects.

These results show the enhanced robustness of the NTSM-PD controller against
the challenges posed by heavy lifting, highlighting its superior performance in contrast
to the conventional PD and SM-PD controllers. In addition, although the EOB of the
PD and SM-PD controllers are also small, since the ∆OB of the NTSM-PD is smaller,
it is reasonable to believe that the NTSM-PD will perform significantly better than
the PD and SM-PD controllers in tasks where the industrial manipulator performs a
heavier payload.
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(a)

(b)

(c)

Figure 5.9: Experimental results for the z-axis of the manipulator’s end-effector dur-
ing the lifting phase of the task (a) without object, (b) with a 0.45kg weight object
and (c) with a 1.2kg weight object



Chapter 6

Conclusions and Future Work

This chapter summarizes the work in this thesis and some future research areas in
force control and reinforcement learning.

6.1 Conclusions

In this thesis, a novel framework integrating multiple vision-based demonstration cap-
ture, motion planning, and non-linear robot control has been introduced for LfD for
tasks in complex environments. The proposed motion capture and planning method
provides contactless, robust, and dexterous 3D translational and rotational trajecto-
ries. Through the integration of MediaPipe and depth camera, the framework enables
the precise calculation of the 3D coordinates of the human hand, with an error margin
of less than 2 cm on each axis. The processed motion accurately extracts the common
features from multiple demonstrations and eliminates noises. To augment the adap-
tiveness of the DMP system, a novel variance-avoidance DMP is developed to adapt
to dynamic environments, considering different obstacle dimensions and demonstra-
tion trajectory variances. An NTSM-PD controller is implemented to compensate for
external disturbances. The root mean square error of the proposed controller with a
1.2 kg object is 1.738 cm and the decrease in performance due to the object is 13.00%.
The above experimental results showcase superior tracking performance compared to
the conventional PD controller and SM-PD controller. This framework demonstrates
promising robotic capabilities for learning and adapting to diverse scenarios in daily
applications.

6.2 Future Work

Although this thesis captures position trajectories in the demonstrations and com-
pensates for external forces in the execution, hybrid control, which is to control both

61
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position and force, is not implemented in this thesis. Reinforcement learning has
become very popular in recent years, and it has demonstrated a strong ability for
dynamic position control, but not much research has been done on force control.
Therefore, the author is looking forward to making a breakthrough in the field of
hybrid force and position control by combining traditional controllers with reinforce-
ment learning in future research and applying this control framework to multiple
manipulator scenarios and human-robot interaction scenarios.
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