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Abstract 

Aleutian disease (AD) causes severe health issues and results in substantial economic 

losses for the mink industry. The ineffectiveness of vaccination, medication, and culling 

strategies in controlling AD has compelled mink farmers to select AD-resilient mink. 

However, as expounded in Chapter 2 of this thesis, the absence of a comprehensive 

understanding of the genetic/genomic architecture of AD resilience hinders breeders from 

incorporating this innovative trait into their breeding programs. Thus, this thesis aimed to 

provide a comprehensive view of the genetic and genomic architecture of AD resilience 

and explore the potential utilization of genomic information in the selection process for AD 

resilience. Genetic correlations elucidated in Chapter 3 delineated the genetic relationships 

among various AD tests and other AD-resilient traits. The outcomes emphasized the 

antigen-based enzyme-linked immunosorbent assay test as the most reliable and practical 

indicator trait for selecting AD-resilient mink among all AD tests. Chapter 4 delved into 

the genetic structure of farmed mink, utilizing phenotypes from the first Axiom Affymetrix 

Mink 70K single nucleotide polymorphism (SNP) panel. The updated population genomics 

information from Chapter 4 directed the genomic analyses throughout this thesis. Selection 

signatures (Chapter 5) and genome-wide association studies (GWAS, Chapter 6) were 

performed to explore the genomic architecture of AD resilience. The detected SNPs 

provided an opportunity for improving the resilience of mink to AD using marker-assisted 

selection or genomic selection in mink, and the identified genes and biological pathways 

contributed to a deeper understanding of the genomic architecture underlying the immune 

response and resilience of mink to AD. Chapter 7 examined various genomic prediction 

methods to assess their feasibility and determine the optimal strategy for leveraging 

genomic information to augment genetic gains for AD resilience in mink. The most suitable 

prediction approach was recommended for each AD-resilient trait based on prediction 

accuracies and biases of different methods for each trait. In conclusion, the studies 

conducted in this thesis not only offer practical insights and recommendations for the 

prospective implementation of genetic/genomic selection for AD resilience but also 

advance our comprehension of the genomic architecture and biological pathways 

associated with AD resilience in mink. 
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1CHAPTER 1. Introduction 

1.1 Introduction 

Aleutian disease (AD) in mink, which is caused by the Aleutian mink disease virus 

(AMDV), is one of the most severe health issues for mink farming and imposes tremendous 

financial losses to the mink industry (Henson et al. 1962; Porter et al. 1982; Farid & Ferns 

2011; Reichert & Kostro 2014; Wiggans et al. 2017). Several common disease-controlling 

approaches, including vaccination, medicine, and culling strategy, have been attempted to 

control AD, but failed. Thus, mink farmers attempt to control AD by selecting AD-resilient 

mink based on AD tests and/or AD-resilient indicator traits, such as growth, pelt quality, 

and reproductive performance (Knuuttila et al. 2009; Farid & Ferns 2011; Farid & 

Rupasinghe 2016; Farid & Ferns 2017; Farid et al. 2018). Mink farmers have conducted 

the phenotypic selection of AD-resilient mink, but the comprehensive genetic background 

and architecture of AD resilience have not been explored, which has become an obstacle 

for mink breeders to apply genetic/genomic selection for AD resilience in mink.  

A comprehensive understanding of genetic and phenotypic parameters associated with 

traits of interest is essential for implementing genetic selection (Toghiani 2012). 

Nevertheless, there is a scarcity of research focusing on the genetic parameters of AD tests 

and their correlations with other indicator traits related to AD resilience. Thus, Chapter 3 

of this thesis delved deeper into the assessment of genetic and phenotypic connections 

between AD tests and other AD resilience traits such as body weight, growth, and feed 

efficiency (Hu et al. 2022).  

Comprehending the genetic structure of the target population is imperative for conducting 

genomic investigations and formulating genomic selection programs (Groeneveld et al. 
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2010; Wellmann & Bennewitz 2019). Previous studies have scrutinized the population 

genomics of mink in Canada through the utilization of genotyping-by-sequencing (GBS) 

(Karimi et al. 2020) and whole-genome sequencing data (WGS) (Karimi et al. 2021b). 

Nevertheless, no research has explored the genetic structure of domestically farmed mink 

with diverse color variations using chromosome-based genotype data. Thus, Chapter 4 in 

this thesis endeavored to address this gap by employing genotype information derived from 

the Axiom Affymetrix Mink 70K single nucleotide polymorphism (SNP) panel with the 

aim of investigating the population structure of farm-raised American mink in Canada. 

Selection signatures and genome-wide association studies (GWAS) are the two popular 

methods for exploring the genetic architecture of the traits of interest (Saravanan et al. 

2020; Uffelmann et al. 2021). Selection signatures investigation enables the identification 

of specific loci influenced by selective pressures, revealing genes linked to the studied traits 

(Kreitman 2000; Qanbari & Simianer 2014; Ma et al. 2015). Notably, prior research by 

Karimi et al. (2021a) exclusively delved into selection signatures associated with AD using 

GBS data in black color mink under a disease challenge model. However, there is a gap in 

using genotype information to detect selection signatures concerning AD resilience in mink 

reared in an AD-positive environment. Thus, the Chapter 5 in this thesis applied the 

genotypes and phenotypes from mink raised in an AD-positive farm to detect the selection 

signatures related to immune response, general response, and female reproductive 

performance to AD. This study facilitated the identification of genes and biological 

pathways associated with AD resilience. On the other hand, GWAS serves as another 

valuable method for identifying genes and biological pathways linked to complex traits 

(Sharma et al. 2015). There is no GWAS pertaining to AD resilience in the existing 
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literature. Therefore, Chapter 6 utilized phenotypic data (immune responses and feed-

intake-related traits) and genotypic information from mink raised in an AD-positive farm 

to conduct GWAS to pinpoint SNPs and genes associated with immune response and the 

resilient ability of mink to AD. 

Genomic selection has the potential to enhance the genetic improvement of the target trait 

by reducing the generation interval and enhancing selection accuracy (Goddard & Hayes 

2007; Meuwissen et al. 2013; Miar et al. 2015; Meuwissen et al. 2016). The advent of 

highly dense SNP marker panels has facilitated the adoption of genomic selection across 

various major farm animal species (Misztal et al. 2021). The development of the first 

Axiom Affymetrix Mink 70K SNP panel provides an opportunity to apply genomic 

selection approaches to facilitate the selection of AD-resilient mink. Nonetheless, there 

have been no previous genomic prediction studies related to AD resilience in mink. Thus, 

Chapter 7 in this thesis used several genomic prediction methods, including genomic best 

linear unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP) methods, to carry 

out the inaugural prediction of genomic breeding values for indicator traits associated with 

AD resilience in mink. 

1.2 Objectives 

The overall goal of this thesis was to understand the genomic architecture of AD resilience 

and provide the most feasible and effective selection approach to improve the resilience of 

American mink to AD. As a result, the potential outcomes from this research would help 

mink farmers effectively reduce the adverse influences of AD. 

The specific objectives included: 
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1) To estimate the phenotypic and genetic relationships between AD tests and other 

important traits (e.g., feed efficiency, body growth, and feed-intake-related traits).  

2) To investigate the population genomics of American mink using genotypes derived from 

the first 70K SNP panel for mink. 

3) To detect the significant genomic regions, SNPs, quantitative trait loci, genes, and 

pathways underlying AD resilience using genomic data through GWAS and signatures of 

selection studies. 

4) To evaluate the performance of different genomic prediction methods for AD resilience 

traits. 
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2CHAPTER 2. Literature Review  

 

2.1 American Mink Farming 

American mink belongs to the weasel family and is a primarily carnivorous mammal and 

semiaquatic species native to North America (García et al. 2010). American mink is one of 

the major sources for the fur industries because of its high quality and various colours 

(Tamlin et al. 2009). The production cycle of farming mink includes four main seasons:  

1) conditioning and breeding season (December to March), where mink farmers focus on 

adjusting the feed to provide the mink with good conditions for breeding in March.  

2) whelping and weaning season (April-June), where dams will give birth at the end of 

April or early May (5-6 kits on average), and the kits will be weaned at the end of June 

(approximately 6-8 weeks old). 

3) growth and furring season (July-October), mink will be fed ad-lib to fulfill their growth 

potential in the barn. The mink will start furring in August, and their body growth will be 

completed in September, which is approximately 20 weeks after they were born (Sørensen 

et al. 2003; Do & Miar 2020).  

4) grading and harvesting (November-December), where farmers determine which mink 

will be pelted or kept as breeding stock for future season based on physical evaluation of 

mink. After pelting, the dried pelts are shipped to the auction houses for sale (Moller & 

Sorensen 2003). 

From 2014 to 2018, mink farms in Canada produced about 2.7 million pelts per year, and 

Nova Scotia was the largest mink pelt producer and contributed approximately 54% of 
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these produced pelts. The trade of 13.4 million mink pelts in these five-year periods 

contributed $482 million to the Canadian economy (Statistics_Canada 2018a, 2018b). 

However, the market downturn and the COVID-19 pandemic caused the mink industry to 

face serious challenges. In Canada, from 2015 to 2020, the number of mink farms 

dramatically dropped from 213 to 63, decreasing mink production from approximately 

three million to about one million per year (Statistics_Canada 2022). However, the mink 

industry seems to be on the upturn based on fur auction reports in recent years, as market 

demand and fur prices showed an upward tendency (Oaten 2021; sagafurs 2022). Thus, 

with the smaller number of mink farms in Canada, improving the efficiency (e.g., improved 

disease resilience, feed efficiency, reproduction performance, and pelt quality) of mink 

farming in Canada through genetic/genomic selection programs could help to meet the 

rising market demand, help mink farmers obtain more economic benefits from the rising 

pelt prices, and increase the competitiveness of mink farmed in Canada in the international 

market. 

2.2 Aleutian Disease in Mink 

2.2.1 Aleutian Disease 

Aleutian disease (AD) is a chronic and persistent viral infection caused by the Aleutian 

mink disease virus (AMDV). As one of the most severe health issues in the mink farming, 

AD brings tremendous financial losses to the mink industry and has made it difficult for 

mink farmers to maintain their farming. In Nova Scotia, AD causes multi-million-dollar 

losses to the mink industry (Rupasinghe & Farid 2017). In Denmark, AD was estimated to 

cause approximately 10 million USD in economic losses to the mink industry annually. In 
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Finland, the financial losses caused by AD were more than 2 million euros (Knuuttila et al. 

2009).  

AMDV is a non-enveloped single-stranded DNA virus in the parvovirus family (genus 

Amdoparvovirus, species Carnivore amdoparvovirus1). The AMDV genome spans 

approximately 4.8 kilobases and encompasses two structural proteins along with three non-

structural proteins (NS1, NS2, and NS3). Notably, the NS1 gene holds significance due to 

its pivotal involvement in viral replication, exhibiting notable genetic variability across 

distinct strains (Gottschalck et al. 1994; Best et al. 2003; Huang et al. 2014). AMDV 

infection causes significant pathology, including glomerulonephritis, plasmacytosis, 

hypergammaglobulinemia, and arteritis to the infected mink (Porter et al. 1969; Cho & 

Ingram 1973; Porter et al. 1973).  Macrophages are considered to be the primary locations 

for the replication of the virus (Porter et al. 1972). Consequently, the virus becomes 

concentrated in organs abundant with macrophages, such as lymph nodes, spleen, and bone 

marrow (Bloom et al. 1994). One of the significant manifestations of AMDV infection is 

plasma cell proliferation, known as plasmacytosis, which is the symbol of AD (Bloom et 

al. 1994). Plasma cells, specialized white blood cells responsible for antibody production 

and storage, signify the occurrence of a humoral immune response to an antigen when 

present in tissues (Minges Wols 2015). The infection with AMDV also alters the blood 

protein profile of mink. Infected mink exhibit a gradual increase in serum gamma-globulin 

levels throughout the infection (Bloom et al. 1994). While the specific proportion of anti-

AMDV antibodies within the elevated gamma-globulins remains unknown, it is evident 

that AMDV is responsible for the excessive production of immunoglobulins (Tabel & 

Ingram 1970). The cellular immune response of mink to AMDV infection has not been 
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precisely delineated. Best and Bloom (2006) indicated that although the level of CD4+ 

(helper) T cells remains at normal levels during the infection period, the number of CD8+ 

(cytotoxic) T cells rises. Upon recognition of their antigen and subsequent activation, 

CD8+ T cells engage in the elimination of infected or malignant cells. Furthermore, CD8+ 

T cells may contribute to an exaggerated immune response, leading to immunopathology 

or immune-mediated damage (Schäfer & Zernecke 2020; Aichele et al. 2022). AMDV 

infection also causes adverse effects on female reproductive performance, such as small 

litter size, fetal death, and abortion. Infection of dams with AMDV before pregnancy 

decreased the number of kits, and infection with AMDV in mid-pregnancy caused fetal 

death or abortion (Henson et al. 1962; Reichert & Kostro 2014). Additionally, small body 

size due to chronic progressive weight loss (Porter et al. 1982), low feed intake 

(inappetence) (Eklund et al. 1968; Jensen et al. 2016b), and poor pelt quality characterized 

by hair depigmentation (Farid & Ferns 2011) are also adverse outcomes caused by AD. 

Together, these clinical features on AMDV infection in farmed mink directly reduce the 

financial income of mink farmers. Thus, an effective, practical, and reliable management 

strategy is needed to reduce the adverse effects caused by AD.  

2.2.2 Aleutian Disease Tests 

Counterimmunoelectrophoresis (CIEP) and enzyme-linked immunosorbent assay (ELISA) 

are two common diagnosing tests for AD. CIEP could diagnose AMDV by testing mink for 

anti-AMDV antibodies (Farid et al. 2015). CIEP is highly specific to AMDV and has been 

widely used for routine detection of AMDV antibodies (Cho & Ingram 1972). Mink farms 

in Europe and North America widely applied CIEP-based culling strategies. The ELISA 

tests currently are the most common method for routine screening of AD (Ma et al. 2016). 
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ELISA diagnoses AD based on recombinant virus-like particles for identifying the AMDV 

antibodies in mink sera and quantifying the concentrations of antibodies in the samples 

(Knuuttila et al. 2009). Depending on the geographical locations, two main ELISA systems 

are commonly employed in the mink farms. The first system is the capsid protein of 

AMDV-based ELISA (ELISA-P) (Knuuttila et al. 2009), which is commonly used in the 

Netherlands and Finland (Farid & Rupasinghe 2016), and the second system is in vitro 

cultured AMDV antigen-based ELISA (ELISA-G) (Aasted & Cohn 1982), that is generally 

used in Denmark and USA (Farid & Rupasinghe 2016). In Denmark, ELISA has been 

approved by the Danish authorities for diagnosing AD in mink (Dam-Tuxen et al. 2014). 

The agreement between ELISA and CIEP results were assessed in previous studiesCIEP 

has been established as the reference standard in AD diagnostics owing to its high 

specificity and cost-effectiveness (Aasted & Bloom 1983; Andersson & Wallgren 2013). 

Andersson and Wallgren (2013) reported that ELISA-P demonstrates sensitivity and 

specificity comparable to CIEP, while ELISA-G exhibits lower sensitivity in comparison 

to CIEP. Farid and Segervall (2014) observed moderate concordance between ELISA-P 

classifications and anti-AMDV antibody titers determined by CIEP. Another study 

indicated that ELISA-G displayed higher sensitivity but lower specificity than CIEP (Dam-

Tuxen et al. 2014). In the absence of any other practical measuring method, despite lacking 

validation for antibody quantification (Farid & Segervall 2014), ELISA is recommended 

as an alternative to CIEP for ranking mink based on anti-AMDV antibody titers (Andersson 

& Wallgren 2013; Farid & Segervall 2014). 

The Iodine agglutination test (IAT) is a method for quickly but roughly diagnosing AD.  

The IAT is a non-AD-specific test used to diagnose AD by detecting unhealthy animals 
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with high amounts of serum gamma globulin, as AD is characterized in mink by marked 

hypergammaglobulinemia (Henson et al. 1962; Williams et al. 1965; Henson et al. 1976). 

The IAT test has been used as a simple field procedure to detect mink infected with AMDV 

by several ranches in North America and the Netherlands (Gunnarsson 2001). 

2.2.3 Controlling Aleutian Disease 

Several methods, including vaccination, medicine, and culling strategy, have been 

attempted to control AD, but these methods have been largely ineffective. No effective 

vaccine has been created against AMDV at this point. Several previous studies that 

attempted to produce an effective vaccine against AMDV ended with failure (Porter et al. 

1972; Aasted et al. 1998; Castelruiz et al. 2005; Markarian & Abrahamyan 2021), including 

formalin-inactivated AMDV vaccine (Porter et al. 1972). Several studies created partially 

effective protection, such as vaccinating mink AMDV capsid proteins (Aasted et al. 1998), 

and NS1 AMDV gene (Castelruiz et al. 2005). No effective treatment has been created for 

AD so far. While the immunosuppressive drug Cyclophosphamide can provide temporary 

protection against gross and microscopic lesions of AD in mink, its usage is accompanied 

by adverse effects such as necrosis and depletion of lymphoid tissues (Cheema et al. 1972). 

Culling mink with positive results of AD tests has been applied as the primary method to 

prevent/control AD (Cho & Greenfield 1978). CIEP and IAT were commonly used in the 

culling strategy, but the attempts to eradicate AMDV using these methods failed in mink 

farms (Themudo et al. 2011; Farid et al. 2012). Iceland is the only country which believed 

that successfully eradicated the AMDV virus in farmed mink over a 12-year period using 

CIEP between 1984 and 1996 (Gunnarsson 2001). Despite CIEP being utilized for viral 

eradication in Nova Scotia and Denmark since the mid-1970s, the AMDV virus persists in 
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these regions (Themudo et al. 2011; Farid et al. 2012). The failure of test-and-removal 

strategies can be attributed to various factors, including the variability of the virus genome, 

biosecurity lapses, the presence of infected wild animals in the natural environment, and 

the persistence of the virus on farms (Farid et al. 2012). Consequently, AD remains an 

enduring and challenging issue for the mink industry (Gunnarsson 2001; Christensen et al. 

2011; Themudo et al. 2011). Thus, the suggestion of selecting mink resilient to AD is 

proposed as a potential solution to mitigate the adverse effects caused by the disease 

effectively (Hu et al. 2020). 

2.2.4 Aleutian Disease Resilience 

Disease resilience is the ability of animals to minimize the adverse effects caused by 

disruptions and to maintain their production performance under pathogen exposure (Albers 

et al. 1987; Bisset & Morris 1996). Several AD-related traits have been treated as AD 

resilience indicator traits. AD has been determined to be an immune complex disease 

because the antibodies specifically generated against AMDV demonstrate an inability to 

neutralize the virus effectively. Instead, these antibodies form complexes with the 

infectious virus, leading to detrimental effects on the mink’s glomerular and arterial 

systems, as documented in previous research (Porter et al. 1969; Cho & Ingram 1973; 

Porter et al. 1973; Stolze & Kaaden 1987). Consequently, the severity of AD infection is 

positively correlated with the elevated production levels of anti-AMDV antibodies (Porter 

et al. 1972; Kanno et al. 1993; Bloom et al. 1994; Aasted et al. 1998; Bloom et al. 2001). 

Additionally, AD infection has been observed to negatively impact various traits, including 

body weight growth (Porter et al. 1982), feed intake (Elzhov et al. 2016; Jensen et al. 

2016b), pelt quality (Farid & Ferns 2011), and female reproductive performance (Henson 
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et al. 1962; Reichert & Kostro 2014). Thus, anti-AMDV antibody level, growth, feed 

efficiency, and female reproductive performance were suggested as AD-resilience indicator 

traits in previous studies (Hu et al. 2021; Hu et al. 2022). 

Phenotypic selection for mink resilient to AD has been implemented in major mink pelt-

producing regions. In Nova Scotia, several farms identified AD-resilient mink by 

evaluating production traits and IAT results (Farid & Ferns 2017). Some AD-positive mink 

farms in North America and Europe employ the ELISA test results to select AD-resilient 

mink (Knuuttila et al. 2009; Farid & Rupasinghe 2016; Farid et al. 2018). Despite some 

mink farms opting for the AD-specific test (ELISA) or non-AD-specific test (IAT) to 

choose AD-resilient mink, the practicality of utilizing AD tests as genetic selection 

indicators for AD resilience remains unvalidated. Simultaneously, the limited 

understanding of the genetic and genomic architecture associated with AD resilience poses 

a barrier for mink breeders to incorporate this novel trait into their breeding programs. 

2.3 Genetics of Aleutian Disease Resilience  

2.3.1 Heritability  

The assessment of heritabilities and genetic correlations among traits of interest constitutes 

crucial genetic population parameters for animal breeding programs (Miar et al. 2014a; 

Miar et al. 2014b; Karimi et al. 2018). Narrow sense heritability denotes the proportion of 

phenotypic variance in a trait attributable to genetic factors, signifying the strength of the 

correlation between phenotypes and breeding values (Visscher et al. 2008). High 

heritability in a trait indicates that a substantial portion of its variation in the population 

results from genetic differences, making the phenotype a reliable indicator of genetic merit 

or breeding value (Falconer & Mackay 1996; Getabalew et al. 2019). Consequently, 
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heritability estimation is an indispensable indicator for artificial selection programs, 

influencing the accuracy of breeding value estimation from phenotypic information and the 

formulation of breeding strategies. Heritabilities of AD tests were rarely estimated. 

Notably, the heritabilities of AD tests have been infrequently appraised, with estimated 

values ranging from 0.39 to 0.61 for ELISA tests and from 0.11 to 0.58 for CIEP (Farid et 

al. 2018; Farid 2020; Hu et al. 2021). The heritability of IAT was only estimated to be 0.26 

by Hu et al. (2021). 

2.3.2 Genetic Correlation 

The genetic correlation elucidates the relationship between the breeding values of two 

traits, illustrating the impact of selecting one trait on the response of other traits (Searle 

1961). The AD can cause adverse influences on reproductive performance (Henson et al. 

1962; Reichert & Kostro 2014), growth (Kowalczyk et al. 2019), feed intake (Eklund et al. 

1968; Jensen et al. 2016a), and pelt quality (Farid & Ferns 2011), which are key traits in 

mink industry and could be treated as AD-resilient traits. Thus, it is imperative to assess 

the genetic correlations between AD tests and AD-resilient traits such as growth, feed 

efficiency, reproduction, fur quality, and pelt size. This evaluation is crucial for discerning 

potential adverse influences from the selection of AD tests on AD-resilient traits and 

determining the feasibility of employing AD tests as reliable indicators for selecting 

resilient mink. The genetic correlations between AD tests with pelt quality, female 

reproductive performance, the extent of anemia, and harvest length in mink have been 

explored by Hu et al. (2021). In Hu et al. study (2021), ELISA-G was suggested as the 

most suitable indicator trait among all AD tests for genetic selection of AD-resilient mink 

in AD endemic ranches due to its moderate heritability (0.39) and repeatability (0.58) and 
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significant (P<0.05) negative genetic correlations with reproductive performance traits 

(from -0.41 to -0.49), packed-cell volume (-0.53), and harvest length (-0.45). A 

comprehensive view of the genetic and phenotypic correlations between target traits and 

other important traits are important for genetic selection. However, the genetic correlations 

between AD tests and other AD resilience traits (e.g., growth, feed efficiency, and feed-

intake-related traits) have not been investigated. 

2.4 Genomics of Aleutian Disease Resilience  

2.4.1 Population Genomics 

To establish an effective genomic selection program for domestic animals, it is imperative 

to comprehend the genetic structure of the target population (Groeneveld et al. 2010; 

Wellmann & Bennewitz 2019). Population genomics investigates the impact of 

evolutionary processes and selection on genomic and population variations, concurrently 

examining numerous loci and genome regions (Black et al. 2001; Luikart et al. 2003). The 

genetic structure of target populations is usually revealed by exploring domestication 

history, genetic diversity, genetic relationships, and genetic patterns of the studied 

populations. Two crucial parameters for revealing the genetic structure of the target 

population are linkage disequilibrium (LD) and effective population sizes (Ne). The LD is 

defined as the non-random association of alleles at two or more loci (Slatkin 2008). Various 

factors such as genetic drift, selection, epistatic combinations, population structure, and 

admixture between distinct populations could lead to LD between unlinked markers (Pfaff 

et al. 2001; Ardlie et al. 2002; Qanbari 2020). The magnitude of LD is employed to 

determine the optimal marker density for genome-wide mapping studies (Goddard & 

Hayes 2009), and both genomic selection and genome-wide association studies (GWAS) 
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depend on the presence of LD between markers and functional variants (Bush & Moore 

2012; Hay & Rekaya 2018). In the meantime, the extent of LD between unlinked loci can 

be utilized to estimate the recent and past Ne (Hill 1981; Waples & Do 2010). The Ne is 

used to measure the rate of inbreeding and loss of genetic diversity and quantify the extent 

of variability in a population and the effectiveness of selection relative to drift 

(Charlesworth 2009; Ryman et al. 2019). A population is prone to the loss of genetic 

variation when the Ne of this population is estimated to be small. Genetic diversity is a 

measurement that quantifies the magnitude of genetic variability within a population and 

is a fundamental source of biodiversity (Hughes et al. 2008; Ellegren & Galtier 2016). The 

understanding of genetic diversity in the target population is the foundation for successful 

and sustainable breeding programs, providing the raw material needed for adaptation, 

resilience, and improvement of the target population (Notter 1999; Ollivier 2009). 

American mink of different color types show different performance for some traits, such 

as susceptibility to AD (Ellis 1996) and reproductive performance (Kidd et al. 2009). Thus, 

investigating the genetic structure of American mink of various color types could also help 

explain variation in performance for traits of economic interest. 

The population genomics information of farm and feral American mink were investigated 

using information from diverse molecular markers, such as microsatellite, mitochondrial 

DNA, and single nucleotide polymorphism (SNP) markers. Microsatellite loci were 

employed to assess the genetic structures of feral American mink captured in Japan (Yukari 

et al. 2010), Sweden (Zalewski et al. 2016), and Spain (Lecis et al. 2008). The genomic 

data obtained from mitochondrial DNA and microsatellite loci were utilized to comprehend 

the genetic structure of introduced American mink in southern Chile (Mora et al. 2018). 
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The population genetic structure of farm and feral American mink in Poland and Denmark 

was explored using genotypes obtained from 194 SNPs derived from the restriction-site 

associated DNA sequencing method (Thirstrup et al. 2015). Additionally, an investigation 

into the LD and Ne of black American mink in Canada was conducted, leveraging data 

from 13,321 SNPs detected through the genotyping-by-sequencing (GBS) approach on 46 

scaffolds from 285 individuals (Karimi et al. 2020). Furthermore, the genetic structure of 

American mink in Canada was probed by randomly selecting 100,000 SNPs through 

whole-genome sequencing (WGS) across 51 scaffolds from 100 farm mink  (Karimi et al. 

2021b). Notably, there is a gap in research pertaining to the genetic structure of farmed 

American mink with diverse color types, utilizing a relatively substantial sample size 

(approximately 3,000) and genotypic data from a medium-density SNP panel. However, 

no study has investigated the genetic structure of farm mink with various color types using 

genotypic data from a medium-density SNP panel. 

2.4.2 Selection Signatures 

Selection signatures refer to the reduction, elimination or change in the genetic variation 

surrounding specific genomic regions that have undergone selection pressure (Nielsen 

2005; Jensen et al. 2016a). The regional changes/reduction in genetic variation upstream 

and downstream of the selected beneficial mutation could be triggered by the rapid fixation 

of that mutation after several generations (Nielsen 2005; Jensen et al. 2016a). The 

identification of these selection signatures is one of the main interests of animal geneticists 

due to its potential to uncover genes or advantageous mutations that confer benefits to 

particular livestock populations (Zhao et al. 2015).  
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The advancements in next-generation sequencing technologies, high-density SNP arrays, 

and bioinformatics tools have significantly enhanced the detection of selection signatures 

in livestock species (Bertolini et al. 2018). Notably, studies employing selection signatures 

have pinpointed genes linked to disease resistance/susceptibility in cattle (Li et al. 2020; 

Saravanan et al. 2021). For instance, Xu et al. (Xu et al. 2020) conducted a selection 

signature study identifying genes associated with swine susceptibility to respiratory 

disease. For AD in American mink, the GBS data and five AD-related phenotypes 

(antibody titer, mortality, AD symptoms in the kidneys, and virus clearance at two different 

times) from 225 experimental black mink, which were intranasally inoculated AMDV, were 

applied to detect the selection signatures associated with the response of mink to AD 

infection (Karimi et al. 2021a), and a total of 99 genomic regions, which harboured 63 

genes, were identified. These 63 genes were mostly related to immune response, liver 

development, and reproduction (Karimi et al. 2021a). Phenotypic selection for mink 

resilient to AD based on AD-resilient traits (e.g., production traits,  IAT results, and ELISA 

results) has been implemented in several mink farms in North America (Farid & 

Rupasinghe 2016; Farid & Ferns 2017; Farid et al. 2018) and Europe (Knuuttila et al. 

2009), but the study of selection signatures focusing on the response of mink to AD have 

not been conducted using genotype data in conjunction with AD-resilience indicator traits 

(e.g., growth, feed efficiency, pelt quality, and reproduction) for mink reared in AD-positive 

commercial farms.  

The development of the first medium-density (70K) SNP panel for mink (Do et al. 2024) 

makes it feasible to conduct a selection signatures study in mink using genotypes. Using a 

medium-density SNP panel for selection signatures offers a balanced approach by 
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providing sufficient resolution to detect selection signatures without the high costs and 

computational demands of WGS or high-density SNP panels. It allows for more efficient 

data processing and analysis compared to WGS or high-density SNP panels, while offering 

better detection power and accuracy than low-density SNP panels. This balance makes it a 

cost-effective and practical choice for large-scale studies aiming to identify genomic 

variations linked to selection pressures (Mancini et al. 2014; Brito et al. 2017; Persichilli 

et al. 2023; Sarviaho et al. 2024). 

2.4.3 Genome-wide Association Studies 

Disease traits typically manifest as quantitative traits characterized by intricate genetic 

structures (VanRaden 2008; Leach et al. 2010; Thompson-Crispi et al. 2014; Hu et al. 

2020; Doeschl-Wilson et al. 2021). In the context of disease investigation, genomic studies 

concentrate on pinpointing genetic variations that correlate with host responses to the 

disease and seek to unveil associations between genotype and phenotype by scrutinizing 

thousands to millions of genetic variants across the genomes of numerous individuals (Tam 

et al. 2019). The GWAS uses phenotypic information and sequence/genotypic variations 

to detect gene(s) associated with the target trait (Hirschhorn & Daly 2005). In such 

analyses, subjects undergo whole-genome sequencing or genotyping for a specific set of 

genetic markers, contingent upon the species and the accessibility of sequence data or 

genotyping panel. Markers exhibiting statistically significant variations in minor allele 

frequencies among individual phenotypes are regarded as indicators of association. The 

SNPs and potential genes identified through GWAS contribute to an enhanced 

comprehension of the genetic framework and biological mechanisms governing hosts’ 

responses to diseases. 
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The GWAS has been regarded as the ideal method for identifying genes associated with 

various phenotypes and biological pathways of complex traits (Sharma et al. 2015). Since 

its inception in humans (Klein et al. 2005), GWAS has gained widespread application in 

the domain of complex disease genetics, leading to the identification of numerous genetic 

variants associated with complex diseases in humans (refer to the GWAS catalog: 

https://www.ebi.ac.uk/gwas/home). In recent years, advancements in next-generation 

sequencing technologies, high-density SNP arrays, and bioinformatics tools have enhanced 

the popularity of GWAS in the identification of genetic variants and genes linked to 

immune response and disease resilience traits in livestock. For instance, in swine, GWAS 

has revealed several SNPs and genes correlated with resilience to porcine reproductive and 

respiratory syndrome (Boddicker et al. 2014; Yang et al. 2016; Hickmann et al. 2021), 

Mycoplasma hyopneumoniae (Uemoto et al. 2021), and polymicrobial disease (Cheng et 

al. 2022). In cattle, GWAS studies have identified multiple SNPs and genes associated with 

resilience to paratuberculosis (Alonso-Hearn et al. 2022) and Johne’s disease (Alpay et al. 

2014; Mallikarjunappa et al. 2020). In poultry, Psifidi et al. (Psifidi et al. 2016) conducted 

GWAS to find the SNPs and genes associated with the immune response to four infectious 

diseases (infectious bursal disease, Marek’s disease, fowl typhoid, and fowl cholera) and 

resistance to Eimeria and cestode parasitism. However, no GWAS on mink immune 

response to AD and AD-resilience indicator traits had been conducted using genotype data.  

2.4.4 Genomic Selection 

Genomic selection aims to estimate the breeding values using the genomic diversity 

captured by extensive markers distributed across the genome, all without requiring 

knowledge of the specific gene locations (Goddard & Hayes 2007). Genomic selection 

https://www.ebi.ac.uk/gwas/home
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operates under the assumption that all markers could be associated with a gene influencing 

a specific trait. It focuses on estimating the effects of these markers rather than statistically 

testing their significance. The process involves phenotyping for the trait and genotyping 

individuals in a reference population to assess SNP effects. Subsequently, selection 

candidates undergo genotyping, and their genotypic information is integrated with the 

previously estimated effects to derive genomic estimated breeding values for the selection 

candidates. The advent of dense panels of SNP markers has facilitated the widespread 

application of genomic selection in major farm animal species (Misztal et al. 2021). This 

implementation serves to expedite genetic trends by enhancing selection accuracy and 

diminishing generation intervals. The augmented accuracy in selection is particularly 

crucial for traits characterized by low heritabilities, where traditional selection processes 

tend to be sluggish (Misztal et al. 2021). Compared with the traditional pedigree-based 

genetic selection, genomic selection, which uses a genomic information-based relationship 

matrix that provides more accurate relationship coefficients among individuals, is believed 

to increase the accuracy of estimated breeding values (Goddard 2009; Atefi et al. 2018; 

Budhlakoti et al. 2022). 

The heritabilities of traits associated with diseases typically exhibit a low-to-moderate 

range. Consequently, the utilization of genomic selection is recommended to enhance these 

disease-related traits (Bishop & Woolliams 2014; Iheshiulor et al. 2017). Notably, studies 

employing genomic selection to enhance resistance to porcine reproductive and respiratory 

syndrome in pigs have been undertaken (Serão et al. 2016; Waide et al. 2018). The common 

methods used to conduct genomic prediction studies are genomic best linear unbiased 

prediction (GBLUP), single-step GBLUP (ssGBLUP), and several Bayesian approaches. 
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Machine learning methods have also been applied to genomic predictions in recent years. 

The GBLUP is a multi-step method that uses genomic information to predict genomic 

breeding values (VanRaden 2008; Hayes et al. 2009). The GBLUP process encompasses 

three key steps: 1) constructing a comprehensive response variable summarizing all 

available phenotypic information for genotyped animals, 2) utilizing genomic prediction 

to link the response variable to marker information, and 3) integrating genomic predictions 

with parental average estimated breeding values (Christensen et al. 2012). In comparison 

to GBLUP, ssGBLUP is a more streamlined single-step methodology that combines 

pedigree, phenotypic, and genomic information for the genetic evaluation of all breeding 

individuals in a unified model (Misztal et al. 2013). Meanwhile, the ssGBLUP was found 

to be simple, fast, and accurate (Misztal et al. 2013; Cardoso et al. 2015; Silva et al. 2016). 

Bayesian genomic prediction approaches (Bayes A, B, C, etc.) involve nonlinear methods 

typically implemented in genomic prediction using the Markov Chain Monte Carlo 

algorithm (Iheshiulor et al. 2017). In recent years, machine learning methods have also 

been utilized in genomic predictions (An et al. 2021). Several previous studies applied 

machine learning methods, including random forests, gradient boosting machine, and 

extreme gradient boosting, in genomic prediction for economically important traits in 

livestock species, such as milk yield in Holstein cattle (Long et al. 2011) and body weight 

in Brahman cattle (Li et al. 2018). With the development of dense panels of SNP markers, 

genomic selection has been widely adopted in major farm animal species (Misztal et al. 

2021). The chromosome-level genome assembly by Karimi et al. (Karimi et al. 2022) and 

the development of the first Axiom Affymetrix Mink 70K SNP panel for American mink 

(Do et al. 2024) have facilitated the feasibility of genomic prediction studies for AD 
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resilience in mink. However, no genomic prediction studies have been conducted for AD 

resilience in mink.  

2.5 Conclusion 

AD causes major health concerns and economic losses to the global mink industry. The 

ineffectiveness of vaccination, medicine, and culling strategy in controlling AD has urged 

mink farmers to select AD-resilient mink. However, the lack of comprehensive knowledge 

of the genetic/genomic architecture of AD resilience prevents breeders from integrating 

this novel trait into their breeding programs. A comprehensive view of genetic parameters 

for target traits is necessary for conducting genetic selection. However, studies related to 

the genetic parameters of AD-resilient traits are rare. Thus, further research in estimating 

the genetic parameters of AD-resilient traits and the genetic correlations among AD-

resilient traits is needed. The development of the first Axiom Affymetrix Mink 70K SNP 

panel makes genomic studies for AD resilience in mink feasible. Understanding the 

population genomics of the target population is essential to conducting genomic studies 

and developing genomic selection programs. However, no investigation has been made 

into the genetic structure of farmed mink with various color types using chromosome-based 

genotype data. Therefore, investigating the population genomics of farm mink using 

genotypic information from the first medium-density SNP panel for mink is needed prior 

to conducting further genomic studies on AD resilience. Selection signatures and GWAS 

are popular methods for investigating the genomic architecture of traits of interest. 

However, none of these approaches have been applied in studying the genomic architecture 

underlying AD resilience. Thus, conducting selection signatures and GWAS would provide 

a great opportunity to better understand the genomic architecture underlying mink’s 
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resilience to AD and shed light on the underlying biological mechanisms involved. 

Genomic selection is believed to expedite genetic trends through heightened selection 

accuracy and decreased generation intervals. This heightened accuracy is especially crucial 

for traits with low heritabilities, where traditional selection processes are sluggish. Disease-

related traits, such as AD resilience traits, typically exhibit low-to-moderate heritabilities, 

underscoring the potential of genomic selection to improve these traits. However, no 

genomic prediction studies have been conducted for AD resilience in mink. Hence, 

performing genomic prediction studies on AD-resilient traits presents an avenue to assess 

the viability of genomic selection for enhancing mink resilience against AD. 
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3CHAPTER 3. Genetic and Phenotypic Correlations 

between Aleutian Disease Tests with Body Weight, 

Growth, and Feed Efficiency Traits in Mink1 

 

3.1 Introduction 

As one of the most severe diseases in mink farming, Aleutian disease (AD) brings 

tremendous financial losses to the mink industry and has made it difficult for mink farmers 

to maintain their farming. Aleutian disease is caused by the Aleutian mink disease virus 

(AMDV). AMDV is a non-enveloped single-stranded DNA virus in parvovirus family 

(genus Amdoparvovirus, species Carnivore amdoparvovirus 1). AMDV infection causes 

significant pathology, including hypergammaglobulinemia, glomerulonephritis, 

plasmacytosis, and arteritis to the infected mink (Porter et al. 1969; Cho & Ingram 1973; 

Porter et al. 1973). AMDV infection also causes adverse effects on female reproductive 

performance for example small litter size, fetal death, and abortion (Henson et al. 1962; 

Reichert & Kostro 2014). Additionally, small body size due to such as chronic progressive 

weight loss (Porter et al. 1982), low feed intake (inappetence) (Eklund et al. 1968; Jensen 

et al. 2016b), and poor pelt quality characterized by hair depigmentation (Farid & Ferns 

2011) are also adverse outcomes. Together, these clinical features on AMDV infection in 

farmed mink directly reduce the financial income of mink farmers. Therefore, an effective, 

practical, and reliable approach is urgently needed by the mink farmers to minimize the 

 
1 A version of this chapter has been published in Journal of Animal Science by Hu et al. 2022. 

Genetic and phenotypic correlations between Aleutian disease tests with body weight, growth, and 

feed efficiency traits in mink. 100(12), skac346. doi: https://doi.org/10.1093/jas/skac346 
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adverse effects of AD. Unfortunately, vaccination and recovery from natural infection have 

not been identified as viable strategies of protection due to antibody disease enhancement. 

Specifically antibodies elicited toward the Aleutian mink disease virus are not capable of 

neutralizing the virus and instead the infectious virus forms complexes with pre-existing 

antibody complexes leading to lesions in the glomerulus and arteries of the mink host 

(Porter et al. 1969; Cho & Ingram 1973; Porter et al. 1973; Stolze & Kaaden 1987). 

Several methods have been attempted to control AD for farmed mink, however, at this time 

control measures have not been successful. No effective vaccine or medicine has been 

developed with the ability to protect against infection without inducing vaccine enhanced 

disease (Liu et al. 2017; Farid et al. 2018). Culling mink after testing positive for AD has 

been the primary method to control AD, however, culling does not successfully prevent 

future outbreaks (Gunnarsson 2001; Christensen et al. 2011; Themudo et al. 2011; Farid et 

al. 2012). Feeding mink, which were challenged with AMDV, with dietary kelp 

(Ascophylum nodosum) supplementation showed some benefits to the survival rate of adult 

mink and litter size, but the effects were not significant compared to the control group 

(Farid et al. 2020). In recent years, the selection of AD-resilient individuals based on AD 

tests is suggested as a potential solution to cope with the adverse effects caused by AD 

effectively (Farid et al. 2018; Hu et al. 2020).  

Several AD tests have been applied in the phenotypic selection of AD-resilient mink in a 

number of mink-producing areas, but the feasibility of employing AD tests in the genetic 

selection of AD-resilient mink has not been evaluated. Several mink farms in the province 

of Nova Scotia in Canada select for AD-resilient mink based on the productive performance 

and iodine agglutination test (IAT, measuring gamma globulin level) results (Farid & Ferns 
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2017). Some AD positive mink farms in North America and Europe (Knuuttila et al. 2009; 

Farid & Rupasinghe 2016; Farid et al. 2018)  have selected AD-resilient mink based on 

enzyme-linked immunosorbent assay tests (ELISA, measuring anti-AMDV antibody 

level). Although some mink farmers use AD tests in the phenotypic selection of AD-

resilient mink, the feasibility of this approach has not been explored due to the lack of 

comprehensive genetic background knowledge of AD tests.  

An effective genetic selection program requires a comprehensive study of genetic and 

phenotypic parameters for traits of interest (Toghiani 2012). Studies of the genetic 

parameter of AD tests and their correlations with AD-resilient or other economically 

important traits are rare. However, Hu et al (2021) estimated heritabilities (±SE) for AMDV 

antigen-based ELISA (ELISA-G), AMDV capsid protein-based ELISA (ELISA-P), 

counterimmunoelectrophoresis (CIEP), and IAT of 0.39±0.06, 0.61±0.07, 0.11±0.07, and 

0.26±0.05, respectively. The genetic and phenotypic correlations between AD tests with 

pelt quality, reproductive performance, packed-cell volume, and harvest length were also 

estimated by (Hu et al. 2021), and ELISA-G was suggested as a good indicator trait for 

selecting AD-resilient mink. A comprehensive view of the genetic and phenotypic 

correlations between target traits and other important traits are important for genetic 

selection. Here in this thesis chapter, we further investigated the genetic and phenotypic 

correlations between AD tests and other economically important or AD-resilient traits to 

provide a more comprehensive view of the genetic and phenotypic correlations between 

AD tests and other economically important traits in mink. The overall objective of this 

thesis chapter was to estimate the genetic and phenotypic correlations between AD tests 

with body weights at different ages, growth parameters obtained from the Richards growth 
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model (Do & Miar 2020), different measurements of feed efficiency, and feed-intake-

related traits 

3.2 Materials and Methods 

This study was approved by the Dalhousie University Animal Care and Use Committee 

(certification#: 2018-009 and 2019-012). All the mink were raised based on the Code of 

Practice for the Care and Handling of Farmed Mink guidelines from the Canada Mink 

Breeders Association (Turner P et al. 2013). 

3.2.1 Animals and Management 

Animals in this study were raised under standard farming conditions at the Canadian Centre 

for Fur Animal Research (CCFAR) at Dalhousie University, Faculty of Agriculture (Truro, 

Nova Scotia, Canada) from 2013 to 2021. All mink had ad libitum access to food and water. 

The annual mink production cycle in CCFAR contains four periods: 1) conditioning and 

breeding season (December-March), where mink farmers adjust the feed to provide the 

mink with good conditions for breeding in March; 2) whelping and weaning season (April-

June), where females will give birth at the end of April or early May, and the kits will be 

weaned at the end of June; 3) growth and furring season (July-October), animals will be 

fed ad-lib to fulfill their growth potential; and 4) grading and harvesting (November-

December), where farmers determine which mink will be pelted or kept as breeding stock 

for future season. An AD outbreak on CCFAR was identified in 2013. The source of this 

outbreak was not determined. AMDV-contaminated feed as well as contact with wild 

animals carrying AMDV have been considered as the most likely causes. Meanwhile, no 

persistent breeding program was employed in CCFAR during the study years (2013 to 

2021). The total of 2,488 mink (males = 832 and females = 1,656) used in this study were 
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the progeny of 444 sires and 852 dams. Pedigree information of 17 generations comprising 

24,864 individuals was used. 

3.2.2 Aleutian Disease Tests 

All AD tests were conducted using established protocols described by Hu et al. (2021). 

Briefly, blood samples of the studied mink (n=2,352) were collected using the toenail 

clipping approach at two different periods: 1) in mid-November of 2013, 2014, 2018, and 

2019 before selecting breeders; and 2) in mid-February of 2013, 2014, 2017, 2018, 2019, 

2020, and 2021 before mating. Both ELISA-G and ELISA-P systems were employed to 

quantify the anti-AMDV antibodies in the serum. The ELISA-G test was conducted at 

Middleton Veterinary Services (Nova Scotia, Canada), and the test results included eight 

categories from 0 (low) to 7 (high), with 1-point increments. The ELISA-P tests were 

conducted at Nederlandse Federatie van Edelpelsdierenhouders (Wijchen, Netherlands), 

and the test results included nine categories from 0 (low) to 8 (high), with 1-point 

increments. The CIEP tests were conducted at the Animal Health Laboratory at the 

University of Guelph (Guelph, Canada) to detect the existence of anti-AMDV antibodies 

in the blood samples, and the results were recorded as 0 (negative) and 1 (positive). The 

IAT tests were conducted at CCFAR to measure the serum gamma globulin level in the 

serum, and the results were scored into four categories from 0 (low) to 4 (high).  

3.2.3 Body Weight Measurements and Growth Parameters  

A total of 1,088 mink born in 2018 and 2019 were randomly selected for collecting body 

weight (BW) data. All BW data were collected using established protocols described by 

Do et al. (2021). Briefly, selected mink were weighed at birth, which happens between the 

end of April and early May, and at weaning around the end of June (about seven weeks of 
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age). After weaning, each selected mink was raised in a single cage and weighed every 

three weeks from 13 to 28 weeks after birth. Thus, the BW traits included BW at week 13 

(BW13), week 16 (BW16), week 19 (BW19), week 22 (BW22), week 25 (BW25), and 

week 28 (BW28). The BW of mink at harvest (HW) was measured at two different times. 

The HW of mink, which were not selected as breeders, were measured at harvest days in 

December 2018 and 2019. Additionally, HW of sires that completed their breeding tasks 

and dams that mated but failed to become pregnant were measured at harvest days in 

February 2019 and 2020. 

Growth parameters were derived from the Richards growth model (Richards & Kavanagh 

1945). This model was suggested previously to be the most suitable model to describe the 

growth of mink (Liu et al. 2011; Do & Miar 2020). The minpack.lm packages (Elzhov et 

al. 2016) in R software (R Development Core Team 2011) was used to fit individual BW 

records into the following Richards growth model, as described by Do et al. (2021):  

𝐵𝑊𝑡 =
𝛼

(1 − 𝛽 × 𝑒−𝑘𝑡)1/𝑚 
 , 

where BWt is the BW (kg) at age t (weeks), α is the asymptotic weight (kg), β is the 

parameter characterizing the first part of growth before the inflection point, k is the 

maturation rate, and m is the inflection parameter. 

The parameters, α, m, and k, derived from Richards model were then used to calculate the 

age at the inflection point (AIP) and the weight at the inflection point (WIP) as follows: 

𝐴𝐼𝑃 =
𝛼

(𝑚 + 1)1/𝑚
 , 
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𝑊𝐼𝑃 =
−𝐼𝑛(𝑚/𝛽)

𝑘
 

3.2.4 Feed Intake Measurement and Feed Efficiency  

The feed intake data were collected from August 1st to November 14th in 2018 and 2019 at 

CCFAR using the established protocols described by Davoudi et al. (2022). Briefly, 1,088 

mink had both feed intake and growth traits data. Mink were housed individually in single 

cages, and feed was distributed to each pen every day. The amounts of feed allocated to 

mink were regulated based on the leftover records to avoid unnecessary feed waste and 

meet the mink’s appetite. The difference between the amount of feed leftover and feed 

provided was recorded as daily feed intake (DFI). The average of the DFI records during 

the feeding trial was used as the average daily feed intake (ADFI).  

Feed efficiency traits were calculated using both feed intake and growth data. The BW13 

was treated as the initial BW, and the BW on the last day of the feeding trial was treated 

as the final BW. The following equation was used to calculate the average daily gain 

(ADG): 

𝐴𝐷𝐺 =
𝐹𝑖𝑛𝑎𝑙 𝐵𝑊 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐵𝑊

Number of days on the test
 , 

For calculating the feed conversion ratio (FCR), the following equation was used: 

𝐹𝐶𝑅 =
𝐴𝐷𝐹𝐼

𝐴𝐷𝐺
 , 

The Mid-test metabolic BW (BW0.75) and Kleiber ratio (KR) were calculated using the 

following equations, respectively: 

𝐵𝑊0.75 = (
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐵𝑊 + 𝐹𝑖𝑛𝑎𝑙 𝐵𝑊

2
)

0.75

 , 

𝐾𝑅 =
𝐴𝐷𝐺

𝐵𝑊0.75
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The linear regression model used to estimate the residual feed intake (RFI) was: 

𝐴𝐷𝐹𝐼 =  𝛽0 + 𝛽1𝐴𝐷𝐺 +  𝛽2𝐵𝑊0.75 +  ε , 

where β0 is the equation intercept, β1 is the partial regression coefficient of ADG, β2 is the 

partial regression coefficient of BW0.75, and ε is RFI.  

Residual gain (RG) was estimated using the following linear regression model:  

𝐴𝐷𝐺 =  𝛽0 +  𝛽1𝐴𝐷𝐹𝐼 +  𝛽2𝐵𝑊0.75 +  ε , 

where β0 is the equation intercept, β1 is the partial regression coefficient of ADFI, β2 is the 

partial regression coefficient of BW0.75, and ε is RG.  

The following equation (Berry & Crowley 2012) was used to derive the residual intake and 

gain (RIG): 

𝑅𝐼𝐺 = (−1 × (
𝑅𝐹𝐼𝑖

𝑅𝐹𝐼𝑠𝑑
)) +  (

𝑅𝐺𝑖

𝑅𝐺𝑠𝑑
) , 

where RFIi, is the RFI for individual i, RFIsd is the standard deviation of RFI for all animals, 

RGi is the residual gain for animal i, and RGsd is the standard deviation of RG for all 

animals. 

3.2.5 Feed-Intake-Related Traits 

Two feed intake traits, the day-to-day variation in feed intake (VarF) and the proportion of 

off-feed days based on feed intake (DOF), were derived from the DFI data available for 

each mink using the method described by Putz et al. (2019). The VarF was measured based 

on the root mean square error of within-individual regression of DFI on day using ordinary 

least squares linear regression. The off-feed days were identified using a 5% quantile 

regression of DFI on age across all mink. The negative residuals below the regression line 

were treated as off-feed days for each mink. The DOF was calculated as the proportion of 

off-feed days to the total recorded days of DFI. 
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3.2.6 Statistical Analyses 

A univariate animal model was used to estimate the variance components of random 

additive genetic, permanent environmental, and maternal genetic effects for individual 

traits using ASReml 4.1 software (Gilmour et al. 2018). The model was as follows: 

𝒚 = 𝑿𝒃 + 𝒁𝒂 + 𝑾𝒑𝒆 + 𝑮𝒎 + 𝒆, 

where y is the vector of phenotypes; X is the incidence matrix relating phenotypes to fixed 

effects; b is the vector of fixed effects; Z is the incidence matrix relating phenotypes to 

random additive genetic effects; a is the vector of random additive genetic effects, with 

𝒂~𝑁(0, 𝑨𝜎𝑎
2), where A is the numerator relationship matrix, and 𝝈𝒂

𝟐 is the additive genetic 

variance; W is the incidence matrix relating phenotypes to random permanent 

environmental effects; pe is the vector of random permanent environmental effects, with 

𝒑𝒆~𝑁(0, 𝑰𝜎𝑝𝑒
2 ), where I is an identity matrix, and 𝝈𝒑𝒆

𝟐  is the permanent environmental 

variance; G is the incidence matrix relating phenotypes to random maternal genetic effects; 

m is the vector of random maternal genetic effects, with 𝒎~𝑁(0, 𝑨𝜎𝑚
2 ), where  𝝈𝒎

𝟐  is the 

maternal genetic variance; and e is the vector of residual effects, with 𝒆~𝑁(0, 𝑰𝜎𝑒
2), where  

𝝈𝒆
𝟐 is the residual variance.  

The significance of fixed effects and covariates was tested using Wald statistics in the 

REML procedure of ASReml 4.1 (Gilmour et al. 2018), and only significant (P<0.05) 

effects were kept in the mixed model analyses for each trait (Table 3.1). The fixed effects 

of sex and color type were tested for all studied traits. The fixed effect of AD test year 

(2013 to 2021), which described the year that the animals were tested for AD, was tested 

for AD test traits. The fixed effect of row-by-year, which described the location of cages 

(six rows) where mink were raised in 2018 and 2019, was tested for feed efficiency and 
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feed intake traits. The fixed effects of dam age (1 to 3 years old), which described the age 

of the animals’ dams when they were born, and birth year (2018 and 2019), which described 

the year that the animals were born, were tested for growth traits. Blood collection age (in 

days) obtained for AD tests was only tested for AD traits. The age at harvest (in days) was 

tested for harvest weight only. The age at the end of feeding trial (in days) was tested for 

both feed efficiency and feed intake traits. 

The following likelihood ratio tests, which compares the full model and the reduced model, 

was used to test the significance of the random maternal genetic and permanent 

environmental effects: 

−2(𝑙𝑜𝑔𝐿𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 − 𝑙𝑜𝑔𝐿𝑓𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙) 

                                              ~𝜒𝑑𝑓 (𝑓𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙)− 𝑑𝑓 (𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑙) ,
2  

where log L and df are log-likelihood and degrees of freedom. The random maternal genetic 

effect was tested for all studied traits. The random permanent environmental effect was 

only tested for AD tests because only AD tests had repeated records in different years. 

To estimate the genetic and phenotypic correlations between traits, the bivariate models 

were conducted using ASReml 4.1 software (Gilmour et al. 2018). Relevant significant 

fixed and random effects were included in bivariate analyses for each trait (Table 3.1). The 

following bivariate model was used to analyze the traits: 

[
𝒚𝟏

𝒚𝟐
] = [

𝑿𝟏 0
0 𝑿𝟐

] [
𝒃𝟏

𝒃𝟐
] + [

𝒁𝒂𝟏 0
0 𝒁𝒂𝟐

] [
𝒂𝟏

𝒂𝟐
] + [

𝒁𝒑𝒆𝟏 0

0 𝒁𝒑𝒆𝟐
] [

𝒑𝒆𝟏

𝒑𝒆𝟐
] + [

𝒁𝒎𝟏 0
0 𝒁𝒎𝟐

] [
𝒎𝟏

𝒎𝟐
] + [

𝒆𝟏

𝒆𝟐
], 

where subscript numbers 1 and 2 refer to trait 1 and 2; y is the vector of phenotypes; X is 

the incidence matrix relating phenotypes to fixed effects; b is the vector of fixed effects; 

Za is the incidence matrix relating phenotypes to random additive genetic effects; a is the 

vector of random additive genetic effects; Zpe is the incidence matrix relating phenotypes 
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to random permanent environmental effects; pe is the vector of random permanent 

environmental effects; Zm is the incidence matrix relating phenotypes to random maternal 

genetic effects; m is the vector of random maternal genetic effects; and e is the vector of 

residual effects. The assumptions for the bivariate random effects were: 

[
𝒂𝟏

𝒂𝟐
] ~ 𝑀𝑉𝑁 (0, 𝑨 ⊗ [

𝝈𝒂𝟏
𝟐 𝝈𝒂𝟏𝒂𝟐

𝝈𝒂𝟏𝒂𝟐 𝝈𝒂𝟐
𝟐 ]),  

[
𝒑𝒆𝟏

𝒑𝒆𝟐
] ~ 𝑀𝑉𝑁 (0, 𝑰 ⊗ [

𝝈𝒑𝒆𝟏
𝟐 𝝈𝒑𝒆𝟏𝒑𝒆𝟐

𝝈𝒑𝒆𝟏𝒑𝒆𝟐 𝝈𝒑𝒆𝟐
𝟐 ]),  

[
𝒎𝟏

𝒎𝟐
] ~ 𝑀𝑉𝑁 (0, 𝑨 ⊗ [

𝝈𝒎𝟏
𝟐 𝝈𝒎𝟏𝒎𝟐

𝝈𝒎𝟏𝒎𝟐 𝝈𝒎𝟐
𝟐 ]),  and 

[
𝒆𝟏

𝒆𝟐
] ~ 𝑀𝑉𝑁 (0, 𝑰 ⊗ [

𝝈𝒆𝟏
𝟐 𝝈𝒆𝟏𝒆𝟐

𝝈𝒆𝟏𝒆𝟐 𝝈𝒆𝟐
𝟐 ]), 

where subscript numbers 1 and 2 refer to traits 1 and 2; A is the numerator relationship 

matrix; I is an identity matrix; 𝝈𝒂
𝟐 is the variance of random additive genetic effects;  𝝈𝒂𝟏𝒂𝟐 

is the covariance between random additive genetics effects for traits 1 and 2; 𝝈𝒑𝒆
𝟐  is the 

variance of random permanent environmental effects; 𝝈𝒑𝒆𝟏𝒑𝒆𝟐 is the covariance between 

random permanent environmental effects for traits 1 and 2; 𝝈𝒎
𝟐  is the variance of random 

maternal genetic effects; 𝝈𝒎𝟏𝒎𝟐 is the covariance between random maternal genetic effects 

for traits 1 and 2;  𝝈𝒆
𝟐 is the variance of random residual effects; and 𝝈𝒆𝟏𝒆𝟐 is the covariance 

between residual effects for traits 1 and 2. 

Random additive genetic effects were included in the final model for all traits. Random 

permanent environmental effect was only significant (P<0.05) for ELISA-G and IAT (Table 

3.1).  Random maternal genetic effect was included in the final models for all studied traits 
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except for IAT, DOF, and VarF, because the random maternal genetic effects were not 

significant (P>0.05) for these traits (Table 3.1).   

Phenotypic variances were calculated as 𝜎𝑝
2  = 𝜎𝑎

2 +𝜎𝑒
2  for DOF and VarF, as 𝜎𝑝

2  = 𝜎𝑎
2 + 

𝜎𝑚
2 +𝜎𝑒

2 for ELISA-P, CIEP, all growth traits, and all feed efficiency traits, as 𝜎𝑝
2 = 𝜎𝑎

2+ 

𝜎𝑝𝑒
2  + 𝜎𝑒

2  for IAT, and as 𝜎𝑝
2  = 𝜎𝑎

2 + 𝜎𝑝𝑒
2  + 𝜎𝑚

2  + 𝜎𝑒
2  for ELISA-G. Heritability (h2) was 

calculated as follows:   

ℎ2 =
𝜎𝑎

2

𝜎𝑝
2 , 

Repeatability (r) was defined as follows: 

𝑟2 =
𝜎𝑎

2 + 𝜎𝑝𝑒
2

𝜎𝑝
2

 

Phenotypic and genetic correlations among traits were calculated based on bivariate 

models’ (co)variance components. 

In this study, the binary trait of CIEP was analyzed as a continuous trait, which was not 

theoretically optimal as the suitable methodology was the threshold model (Gianola 1982). 

The generalized linear mixed models (GLMM) procedures with animal model in ASReml 

(Gilmour et al. 2018) were initially used to analyze the CIEP trait, but this method failed 

to estimate the variances caused by random additive genetic effects. The GLMM procedure 

with sire model was suggested as more appropriate method to run threshold model on the 

user guide of ASReml (Southey & Gilmour 2021). However, the sire model was not 

practical for mink breeding because the current breeding procedure in mink had more 

focused on dams than sires. In the meantime, several other studies also treated binary traits 

as continuous traits when they estimated genetic parameters for disease-related traits (Farid 
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et al. 2018; Gunia et al. 2018). Thus, CIEP was treated and analyzed as continuous trait in 

this study. 

3.3 Results and discussion 

3.3.1 Descriptive Statistics 

The number of records, mean, standard deviation (SD), range, and coefficient of variation 

(CV) for each trait are presented in Table 3.2. Among all studied traits, ELISA-G (n=2,896) 

and IAT (n=2,236) had the most data records because CCFAR started recording these traits 

from 2013 while the other traits were measured after 2018. Compared with the previous 

study (Hu et al. 2021), we collected 537 more records of ELISA-G and 531 records of IAT 

in 2021. The lowest number of records was for HW (844) because this trait was only 

recorded after 2018. The CVs of ELISA-G (125%) and IAT (150.75%) were 12.33% larger 

and 12.41% lower than our previous study (Hu et al., 2021), respectively, which may be 

due to more records being used in this study. The CVs for BW traits at different ages 

increased with animal age and ranged from 23.39 to 31.28%. Except for growth parameter 

(m), the CVs of growth parameters were less than 42%, which ranged from 16.88% to 

41.67%. The CVs ranged from 28.60% to 45.67% for feed efficiency traits. In addition, the 

distributions of all four AD test traits are presented in Figure 3.1.       

3.3.2 Random Maternal Genetic and Permanent Environmental Effects 

Estimates of variance components and genetic parameters for all studied traits are 

presented in Table 3.3. Among AD tests, the random maternal genetic effect was significant 

(P<0.05) for ELISA-G, ELISA-P, and CIEP (Table 3.1). In mink, the trans-placental 

transmission of AMDV was detected (Broll & Alexandersen 1996), and thus, the 

significance of maternal genetic effect on AD-specific tests is expected. The random 
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permanent environmental effect was significant (P<0.05) for ELISA-G and IAT (Table 

3.1). This was not the case for the latter in the previous study (Hu et al. 2021), which might 

be due to the larger sample size and more repeated IAT records on the same individuals in 

the current study.  

3.3.3 Heritability and Repeatability Estimates 

Heritability estimates (±SE) for all studied traits are presented in Table 3.3. The estimated 

heritabilities (±SE) of ELISA-G (0.26±0.05) and IAT (0.20±0.04) in the current study were 

lower than the estimates reported in the previous study (Hu et al. 2021) of 0.39±0.06 for 

ELISA-G and 0.26±0.05 for IAT. The larger sample size, more complete pedigree 

information, and more phenotypic records in this study lead to different models and 

variance components than the previous study (Hu et al. 2021), resulting in different 

estimates of heritabilities for these traits. The heritabilities of BW, growth parameters (Do 

et al. 2021), and feed efficiency traits (Davoudi et al. 2022) were previously reported in 

mink. The estimated heritabilities of BW traits (ranging from 0.23±0.13 to 0.35±0.11) and 

growth parameters (ranging from 0.17±0.08 to 0.39±0.11) in this study were moderate and 

lower than the estimates reported by Do et al. (2021). This might be due to the use of 

numerator relationship matrix for random maternal genetic effects in this study, compared 

with the identity matrix used by Do et al. (2021). The heritabilities of feed efficiency traits 

were estimated to be moderate and ranged from 0.20±0.10 to 0.24±0.11, which were 

similar to the estimates by Davoudi et al. (2022). The estimated heritabilities (±SE) were 

0.14±0.05 for DOF and 0.15±0.06 for VarF, indicating the presence of small additive 

genetic effects for both traits. The DOF and VarF traits were new traits in mink research, 

and thus, no previous estimates were available for comparison. The estimated heritabilities 
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of VarF and DOF in swine ranged from 0.08 to 0.21 and from 0.10 to 0.15, respectively, 

which were similar to our results for mink (Putz et al. 2019; Cheng et al. 2020; Cheng et 

al. 2021). 

The repeatability (±SE) of IAT was estimated to be 0.41±0.04 (Table 3.3). Repeatability 

indicates the tendency of animals to maintain their performance for a certain trait over time. 

The moderate repeatability of IAT indicated that mink with a low IAT score would likely 

remain low in subsequent tests. Most farmed commercial mink will only be kept in a barn 

for less than nine months if they are not selected as breeders for the next season. Thus, 

instead of routine tests of IAT, which could cause extra stress on farmed mink, one-time 

IAT test result would be reliable in making selection decisions. 

3.3.4 Correlations Between Aleutian Disease Tests and Body Weight   

The phenotypic and genetic correlations between AD tests and body weight traits are 

presented in Tables 3.4 and 3.5, respectively. Both ELISA-G and ELISA-P showed 

significant (P<0.05) low negative phenotypic correlations with BW22, BW25, BW28, and 

HW (ranging from -0.08±0.04 to -0.15±0.04). All the phenotypic correlations were not 

significant (P>0.05) between BWs at different ages and ELISA and CIEP tests, and the 

phenotypic correlations were slightly decreased from week 13 to week 28, which indicated 

that the influence caused by AD on individual BW were not getting severer with the 

increase of age. In the meantime, the absolute genetic correlations between AD tests and 

BWs at 13, 16, 19, and 22 weeks were all larger than their corresponding phenotypic 

correlations. The IAT showed significant (P<0.05) low phenotypic correlations with 

BW13, BW16, BW28, and HW (ranged from -0.11±0.04 to 0.08±0.03). Although a 

significant loss of body weight was observed in AD-infected mink (Eklund et al. 1968), it 
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is still unknown to what extent AD influences the BW of infected mink. Among all AD 

tests, only IAT showed significant (P<0.05) moderate positive genetic correlation 

(0.45±0.23) with BW16 and negative moderate genetic correlation (-0.47±0.12) with HW. 

These estimates indicated that the selection of mink with lower IAT scores could decrease 

the BW of mink at 16 weeks of age but increase the BW of mink at harvest. No AD-specific 

tests (ELISA-G, ELISA-P, and CIEP) showed significant (P<0.05) genetic correlations 

with body weight traits. These non-significant (P>0.05) genetic correlations indicated that 

selecting for a low ELISA test score or negative CIEP would not influence body weight 

traits. Although all the genetic correlations between BWs at different ages and AD tests 

were not significant, but all AD tests showed the highest absolute genetic correlations with 

BW at 16 weeks of age compared with BWs at other ages, which indicated BW at week 16 

might be the best BW indicator trait to select for favorable AD test results indirectly.  

Therefore, mink farmers could select mink with low anti-AMDV antibody levels based on 

ELISA or CIEP tests without adverse consequences on body weight.  

This study is the first study to estimate the phenotypic and genetic correlations between 

AD tests and body weight traits; thus, no estimates were available in the literature for direct 

comparison. The genetic correlations between disease traits and body weight traits were 

estimated in other livestock species. For example, in feedlot cattle, the bovine respiratory 

disease had a low genetic correlation (0.04) with hot carcass weight (Snowder et al. 2007). 

In dairy cattle, the genetic correlations between infectious diseases (e.g., endotoxemia, 

enteritis, foot rot, mastitis, metritis, pneumonia) and BW at different days in milk 

production ranged from -0.05 to -0.81 (Frigo et al. 2010). In sheep, the genetic correlations 

between body weight and fecal egg count (used to measure the resistance to nematode 
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parasites) were low-to-moderate negative ranging from -0.18 to -0.26 (Eady et al. 1998). 

In chicken, the antibody response against Newcastle disease virus vaccine was estimated 

to have low genetic correlations (range from -0.04 to -0.08) with BW at 8, 12, 16, and 20 

weeks of age (Lwelamira et al. 2009).  

3.3.5 Correlations Between Aleutian Disease Tests and Growth  

The phenotypic and genetic correlations between AD tests and growth traits are shown in 

Tables 3.4 and 3.5, respectively. IAT showed significant (P<0.05) low negative phenotypic 

correlation (-0.14±0.04) and non-significant (P>0.05) negative genetic correlation (-

0.24±0.18) with ADG. These results revealed that higher serum gamma globulin level 

decreases the average daily weight gain of mink, which could be mainly due to the 

environmental effects. The IAT is a non-AD-specific test and is designed to diagnose AD 

by detecting hypergammaglobulinemia, which could be caused by other environmental 

factors such as stress, temperature, and other diseases (Delves & Roitt 1998); thus, the 

phenotypic correlation between IAT and ADG mainly could be attributed to the 

environmental effects. Among all AD test traits, only ELISA-G showed significant (P<0.05) 

moderate negative phenotypic (-0.32±0.03) and genetic (-0.37±0.16) correlations with 

ADG. This indicated that selection for a low ELISA-G score would increase the ADG. 

Meanwhile, ADG could be applied as a low-stress and economic indicator to indirectly 

select mink with low ELISA-G scores. The non-significant (P>0.05) genetic correlations 

between ADG with ELISA-P, CIEP, and IAT indicated that the selection of mink with low 

ELISA-P, IAT, or negative CIEP results would not cause significant influences on mink 

growth. The genetic correlation between AD and ADG was not estimated in previous 

research in mink. The genetic correlations between disease traits and ADG were widely 
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estimated in other livestock species, and the genetic correlations were usually low or not 

significant, which were in agreement with our results. For example, several studies reported 

that cattle with bovine respiratory disease generally had lower ADG than healthy 

individuals (Bateman et al. 1990; Gardner et al. 1999; Snowder et al. 2006), but the genetic 

correlations were not significant (Snowder et al. 2007). In addition, the parasite burden 

traits in cattle, including tick infestation, gastrointestinal nematodes infection, and Eimeria 

spp. infection, were estimated to have low genetic correlations (from -0.22 to 0.12) with 

ADG (Biegelmeyer et al. 2015; Ribeiro et al. 2021). In swine, several studies reported that 

lung lesions caused by Mycoplasma pneumonia could significantly reduce ADG (Okada et 

al. 1999; Wilson et al. 2012) and had a low (0.002) genetic correlation with ADG (Okamura 

et al. 2016). In sheep, the ewe fecal egg counts, which were used to assess the severity of 

Teladorsagia circumcincta and Haemonchus contortus infection, was estimated to have a 

low genetic correlation (-0.15) with ADG (Bouix et al. 1998).  

Both ELISA-G and ELISA-P showed significant (P<0.05) moderate positive genetic 

correlations (0.38±0.19 and 0.36±0.18, respectively) with parameter k, which indicated 

that selection of mink with lower anti-AMDV antibody levels could decrease the 

maturation rate of mink. The smaller magnitude of the k parameter will lead to later mature 

growth (Do et al. 2021). The relationship between later mature growth and other 

economically important traits (such as fur size, fur quality, and reproduction) has not been 

studied, but mink with lower k tends to have larger mature body weight, and thus may lead 

to larger harvest length (Do et al. 2021). The previous study (Hu et al., 2021) estimated 

significant (P<0.05) moderate negative phenotypic (-0.30±0.06) and genetic (-0.45±0.16) 

correlations between ELISA-G and harvest length. Therefore, the significant positive 
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correlations between ELISA tests and the k growth parameter could be treated as favorable 

correlations, but further investigation is needed. Although most of the genetic correlations 

between growth parameters and AD tests were not significant, the absolute genetic 

correlations between AD tests with k, m, and WIP were larger than their corresponding 

absolute phenotypic correlations. Both ELISA-G and ELISA-P showed significant (P<0.05) 

low negative phenotypic correlations with α (-0.07±0.03 and -0.10±0.04, respectively), but 

non-significant (P>0.05) genetic correlations with α (-0.01±0.22 and 0.02±0.22, 

respectively). These estimates revealed that higher anti-AMDV antibody level might 

decrease the mature body weight of mink, which could be mainly due to non-genetic effects. 

Although it has been observed that higher immune response could cause adverse influences 

on growth in livestock, the underlying mechanism is still unclear (Doeschl-Wilson et al. 

2009; van der Most et al. 2011; Hu et al. 2020). Energy allocation could be one of the 

reasons leading to the unfavorable relationship between animal growth and immune 

response because the resources spent on immune response were no longer available for 

growth and other energy-consuming processes, such as locomotion and thermoregulation 

(van der Most et al. 2011). 

3.3.6 Correlations Between Aleutian Disease Tests and Feed Efficiency  

Phenotypic and genetic correlations between AD tests and feed efficiency traits are shown 

in Tables 3.4 and 3.5, respectively. The phenotypic correlations between AD tests and feed 

efficiency traits were either low (ranged from -0.15±0.04 to 0.09±0.04) or not significant 

(P>0.05). None of the AD test traits showed a significant (P<0.05) genetic correlation with 

feed efficiency traits. Although CIEP did not show significant genetic correlations with any 

feed efficiency traits (DFI, FCR, RFI, RG, and RIG), their magnitudes were very close or 
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consistent (ranged from 0.19±0.43 to 0.23±0.48). The genetic correlation between AD and 

feed efficiency was not estimated in previous studies in mink for direct comparison. The 

genetic correlations between disease and feed efficiency traits were rarely estimated, even 

in the main livestock species. In poultry, the ratio of the weight of right ventricle to the 

total ventricles, which is used to measure the ascites syndrome, was estimated to have low 

negative genetic correlations (-0.17 to -0.19) with feed intake between 23 and 48 days of 

age and residual feed intake (Pakdel et al. 2005). Meanwhile, a moderate positive (0.38) 

genetic correlation between total ventricles and feed efficiency, which was defined as the 

ratio between body weight gain and feed intake during the experiment, was also detected 

(Pakdel et al. 2005). In swine, osteochondrosis lesions were estimated to have low-to-

moderate genetic correlations with FCR, ranging from -0.23 to 0.40 (Kadarmideen et al. 

2004). In cattle, the mastitis incidence in Danish Friesian cattle was estimated to have a 

significant (P<0.05) low negative genetic correlation (-0.15) with feed efficiency, and the 

mastitis incidence in Danish Jersey cattle was estimated to have a significant (P<0.05) high 

negative genetic correlation (-0.79) with feed efficiency (Wassmuth et al. 2000). In addition, 

ketosis incidence in Danish Jersey cattle was estimated to have a significant (P<0.05) 

moderate negative genetic correlation (-0.37) with feed efficiency (Wassmuth et al. 2000).  

The non-significant (P>0.05) genetic correlations between AD tests and feed efficiency 

traits indicated that the selection of mink with favorable AD test results (low ELISA and 

IAT score and negative CIEP) would not cause a significant influence on the feed efficiency 

of mink. Feed is the largest cost, up to 70% of the total, in mink farming (Berg & Lohi 

1992; Sørensen et al. 2003), and AD is the most severe disease that causes tremendous 

economic losses to mink farmers. Together, these two can significantly influence the 
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financial return for mink farmers. The genetic correlations between AD test and feed 

efficiency estimated in this study indicated that mink breeders could select mink with 

higher feed efficiency and AD resilience simultaneously through genetic selection without 

adverse influences on farmers’ profitability. This would significantly contribute to 

producing efficient mink, which are resilient to AD and feed efficient, to minimize the 

economic losses caused by AD, reduce environmental impacts from mink production, and 

improve mink profitability. 

3.3.7 Correlations Between Aleutian Disease Tests and Feed Intake 

Phenotypic and genetic correlations between AD tests and feed intake traits derived from 

DFI data are shown in Tables 3.4 and 3.5, respectively. Among all AD tests, only IAT 

showed a significant (P<0.05) low positive phenotypic (0.08±0.04) correlation with DOF. 

The ELISA-P showed a significant (P<0.05) moderate positive genetic correlation 

(0.42±0.17) with DOF, and IAT showed a significant (P<0.05) high positive genetic 

correlation (0.73±0.16) with DOF. These estimates indicated that selection of mink with 

lower ELISA-P or IAT scores could reduce the off-feed days, and thus reduce the adverse 

influences caused by AD on mink appetite in AD positive farms. No significant phenotypic 

or genetic correlations between AD tests and VarF were estimated, indicating the selection 

of AD tests on mink would not cause significant influences on the consistency of feed 

intake.  

Except for this study, the genetic correlations between disease traits with DOF and VarF 

have only been estimated in swine because they are novel resilient traits recently used in 

swine (Putz et al. 2019). DOF was estimated to have moderate-to-high genetic correlations 

with the number of health treatments (range from 0.50 to 0.85) and mortality (0.30 to 0.80). 
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The VarF was estimated to have moderate-to-high genetic correlations with the number of 

health treatments (range from -0.30 to 0.60) and mortality (0.37 to 0.85) in a natural disease 

challenge swine farm (Putz et al. 2019; Cheng et al. 2020). 

3.3.8 Aleutian Disease Resilience indicator traits  

In recent years, numerous studies have suggested that selection of resilience should be used 

as a practical method to cope with diseases in livestock industries (Berghof et al. 2019a; 

Harlizius et al. 2020; Hu et al. 2020; Iung et al. 2020; Knap & Doeschl-Wilson 2020). 

Resilience is defined as an animal’s ability to maintain its performance under pathogen 

exposure (Albers et al. 1987; Bisset & Morris 1996). A reliable and practical disease 

resilience indicator trait genetically correlated with health traits is essential for the genetic 

selection of healthy animals (Mulder & Rashidi 2017; Berghof et al. 2019a). Body weight, 

growth, and feed intake traits have been suggested as indicators for specific disease 

resilience traits or general resilience traits in farm animals (Colditz & Hine 2016; Berghof 

et al. 2019a). For example, in layer chickens, the standardized body weight deviations were 

suggested as general resilience traits (Berghof et al. 2019b). In swine, growth rate was 

suggested as a disease resilience trait for porcine reproductive and respiratory syndrome 

(Hess et al. 2018; Knap & Doeschl-Wilson 2020), and traits derived from feed intake data 

were suggested as general disease resilience traits (Putz et al. 2019; Cheng et al. 2020; 

Cheng et al. 2021). In mink, AD has been reported to cause adverse influences on body 

weight, growth, and appetite (Eklund et al. 1968; Porter et al. 1982; Jensen et al. 2016b); 

thus, the studied traits of BW, growth, feed efficiency, and feed intake traits, could be 

treated as AD resilience traits in the AD positive farms.  
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Among all AD tests, ELISA-G may be the most practical and reliable test to be employed 

as an indicator for selecting AD-resilient mink. The CIEP did not show any significant 

genetic correlations with other AD resilience traits in this study, and together with its low 

heritability (0.09±0.07), it may not be a good indicator for AD resilience. Due to the low 

test price and easy test procedure of IAT, together with assessing the production traits, has 

been used by mink farms to select for AD-resilience in North America (Farid & Ferns 

2011). Although IAT was estimated to have moderate heritability (0.20±0.04) and 

repeatability (0.41±0.04) and showed significant favorable moderate genetic correlations 

with ELISA tests (Hu et al. 2021), DOF (0.73±0.16), and HW(-0.47±0.20), the potential 

adverse effects on pelt nap length (the length of the guard hair protruding from the 

underwool) caused by selecting for lower IAT scores cannot be ignored (Hu et al. 2021). 

Therefore, IAT may not be the best indicator trait for selecting AD-resilient mink. Although 

ELISA-P showed the highest heritability (0.59±0.07) among all AD test traits with 

significant favorable genetic correlations with k and DOF, the unknown repeatability may 

require mink farmers to have multiple ELISA-P tests on the same individual, which would 

increase the expense of AD tests. Meanwhile, compared with ELISA-G, ELISA-P did not 

show significant (P<0.05) favorable genetic correlations with female reproductive 

performance traits, which are important AD resilient traits (Hu et al. 2021). Thus, further 

investigation is required before using ELISA-P in selecting AD-resilient mink. The ELISA-

G was estimated to have moderate heritability (0.26±0.05) and high repeatability 

(0.52±0.04), indicating that the one-time ELISA-G test could be a reliable indicator for 

selecting mink with low anti-AMDV antibody level to reduce the formation of infectious 

virus-antibody complexes. Meanwhile, ELISA-G showed significant (P<0.05) favorable 
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genetic correlations with ADG and k growth parameter and non-significant (P>0.05) 

genetic correlations with other growth parameters, BW, feed efficiency, DOF, and VarF. All 

these estimated genetic parameters for ELISA-G indicated that selection of mink with 

lower AMDV-G ELISA could improve the average daily gain and bring benefits to mature 

weight without causing adverse influences on body weight, feed efficiency, off-feed days, 

and consistency of feed intake. Meanwhile, the previous study (Hu et al. 2021) showed 

that selection for low ELISA-G test results could also increase both female reproductive 

performance traits and harvest length and decrease the extent of anemia without 

influencing pelt quality in AD positive farms. Therefore, ELISA-G could be the most 

practical and reliable indicator in genetic selection for selecting AD-resilient mink in AD 

positive mink farms compared to other AD tests. 

3.4 Conclusions 

Finding a practical solution to control AD is one of the top priorities for the mink industry 

due to the tremendous financial losses caused by AD. Genetic selection for AD-resilient 

mink would provide a great opportunity to reduce the adverse influences caused by AD in 

mink farming. This research was a further supplement and exploration of the potential of 

AD tests in genetic selection of AD-resilient mink by involving more economically 

important or AD-resilient traits, thus providing a more reliable and comprehensive view of 

employing AD tests in AD-resilient mink selection. The estimated genetic parameters for 

AD tests in this thesis chapter further demonstrated that ELISA-G was the most reliable 

and practical indicator trait among all AD tests that could be applied in the genetic selection 

of AD-resilient mink. However, unlike genetic studies on other main livestock species such 

as cattle, swine, and poultry, which usually had larger sample sizes due to the longer data 
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collection histories, wider data collection ranges, and more complete data-sharing systems, 

the sample size used in this study was relatively smaller. Thus, further studies with larger 

sample sizes and more populations/farms are required to validate the current findings. In 

addition, future genomic studies, such as genome-wide association studies, linkage map 

and quantitative trait loci fine mapping, could be applied to better understand the biological 

mechanisms behind the correlations between AD tests and AD-resilient or other 

economically important traits in mink. In the absence of any other AD-resilient-related 

indicator trait, ELISA-G could be applied as the most useful and practical indicator trait to 

select AD-resilient mink in AD positive farms. 
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Table 3.1 Significance of fixed and random effects included in the models for analysis of Aleutian disease tests, growth, feed efficiency, 

and feed intake traits in mink. 
 

  Factors      Covariates 
 

  Random effects 

Traits1  Sex 
Color 

type 

AD test 

year 

Row-by-

year 

Dam 

age 

Birth 

year 
 

Blood 

test age 

Harvest 

age 

Feeding trial 

end age 
 

Maternal 

genetic 

Permanent 

environmental 

ELISA-G  * NS * - - -  NS - -  * * 

ELISA-P  NS NS NS - - -  NS - -  * NS 

CIEP  * NS NS - - -  * - -  * NS 

IAT  NS NS * - - -  NS - -  NS * 

BW13  * NS - - NS *  - - -  * - 

BW16  * NS - - NS *  - - -  * - 

BW19  * NS - - NS NS  - - -  * - 

BW22  * NS - - NS NS  - - -  * - 

BW25  * NS - - NS *  - - -  * - 

BW28  * NS - - NS *  - - -  * - 

HW  * * - - NS *  - NS -  * - 

ADG  * NS - NS - -  - - *  * - 

α  * NS - - NS NS  - - -  * - 

k  NS NS - - NS *  - - -  * - 

m  NS NS - - NS *  - - -  * - 

AIP  * NS - - NS *  - - -  * - 

WIP  * NS - - NS NS  - - -  * - 

DFI  * NS - * - -  - - NS  * - 

FCR  * NS - * - -  - - *  * - 

RFI  * NS - * - -  - - NS  * - 

RG  NS NS - NS - -  - - *  * - 

RIG  * NS - * - -  - - *  * - 

KR  * NS - * - -  - - *  * - 

4
9
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Table 3.1 Continuous. 
 

  Factors      Covariates 
 

  Random effects 

Traits1  Sex 
Color 

type 

AD test 

year 

Row-by-

year 

Dam 

age 

Birth 

year 
 

Blood 

test age 

Harvest 

age 

Feeding trial 

end age 
 

Maternal 

genetic 

Permanent 

environmental 

DOF  NS NS - * - -  - - *  NS - 

VarF  * NS - * - -  - - *  NS - 
1ELISA-G = AMDV-G based enzyme-linked immunosorbent assay test; ELISA-P = VP2 based enzyme-linked immunosorbent assay 

test; CIEP = Counterimmunoelectrophoresis test; IAT = Iodine agglutination test; BW (13 to 28) = Body weight at corresponding 

measurement week (13 to 28); HW = Body weight at harvest; ADG = Average daily gain; α = Asymptotic weight in kg; k = Second part 

of growth curve, in which growth rate decreases until the animal reaches the asymptotic or mature weight (α); m = shape parameter 

determining the position of curve inflection point; AIP = age at the inflection point; WIP = weight at the inflection point; DFI = Daily 

feed intake; FCR = Feed conversion ratio; RFI = Residual feed intake; RG = Residual gain; RIG = Residual intake and gain; KR = 

Kleiber ratio; DOF = the proportion of off-feed days; VarF = Variation in daily feed intake. 

* = significant (P<0.05) 

NS = not significant (P>0.05) 

- = not tested 
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Table 3.2 Descriptive statistics for Aleutian disease tests, growth, feed efficiency, and feed intake traits in mink. 

Traits1 Number of records Mean SD Range CV (%) 

ELISA-G 2896 1.92 2.40 0 to 7 125.00 

ELISA-P 1152 2.14 2.16 0 to 8 100.93 

CIEP 1127 0.82 0.38 0 to 1 46.34 

IAT 2236 0.67 1.01 0 to 4 150.75 

BW13 (kg) 1059 1.24 0.29 0.64 to 1.95 23.39 

BW16 (kg) 1056 1.54 0.41 0.66 to 2.53 26.62 

BW19 (kg) 1051 1.77 0.53 0.75 to 3.03 29.94 

BW22 (kg) 1046 1.99 0.60 0.96 to 3.4 30.15 

BW25 (kg) 1032 2.07 0.63 0.93 to 3.75 30.43 

BW28 (kg) 1026 2.11 0.66 1.00 to 3.86 31.28 

HW (kg) 844 2.09 0.64 0.94 to 3.94 30.62 

ADG (g/day) 1046 8.32 3.80 1.27 to 19.67 45.67 

α (kg) 1029 2.18 0.70 0.99 to 4.62 32.11 

k 1025 0.24 0.10 0.01 to 0.85 41.67 

m 1020 0.64 0.84 0.17×10-5 to 4.79 131.25 

AIP (week) 1018 10.90 1.84 6.40 to 17.72 16.88 

WIP (kg) 1024 0.97 0.35 0.13 to 2.20 36.08 

DFI (g/day) 1079 224.90 57.68 89.84 to 366.89 25.65 

FCR 1038 31.07 11.34 11.04 to 78.28 36.50 

RFI (g/day) 1044 -0.06 36.63 -86.57 to 169.42 - 

RG (g/day) 1042 0.01 1.37 -5.77 to 5.34 - 

RIG (g/day) 1043 -0.01 1.52 -5.61 to 5.08 - 

KR 1046 5.42 1.55 1.15 to 9.73 28.60 

DOF 1074 0.06 0.08 0.00 to 0.65 152.73 

5
1
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Table 3.2 Continuous. 

Traits1 Number of records Mean SD Range CV (%) 

VarF 1074 48.31 11.49 27.37 to 98.88 23.78 
1ELISA-G = AMDV-G based enzyme-linked immunosorbent assay test; ELISA-P = VP2 based enzyme-linked immunosorbent assay 

test; CIEP = Counterimmunoelectrophoresis test; IAT = Iodine agglutination test; BW (13 to 28) = Body weight at corresponding 

measurement week (13 to 28); HW = Body weight at harvest; ADG = Average daily gain; α = Asymptotic weight in kg; k = Second part 

of growth curve, in which growth rate decreases until the animal reaches the asymptotic or mature weight (α); m = shape parameter 

determining the position of curve inflection point; AIP = age at the inflection point; WIP = weight at the inflection point; DFI = Daily 

feed intake; FCR = Feed conversion ratio; RFI = Residual feed intake; RG = Residual gain; RIG = Residual intake and gain; KR = 

Kleiber ratio; DOF = the proportion of off-feed days; VarF = Variation in daily feed intake; SD = Standard deviation; CV = Coefficient 

of variation. 
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Table 3.3 Estimates of variance components and genetic parameters with their standard errors (SE) for Aleutian disease tests, growth, 

feed efficiency, and feed intake traits in mink. 
  Variance components                           Genetic parameters 

 

Traits1 𝜎𝑎
2±SE 𝜎𝑚

2 ±SE 𝜎𝑝𝑒
2 ±SE 𝜎𝑒

2±SE  h2±SE 𝑐𝑑
2±SE 𝑐𝑝𝑒

2 ±SE r±SE 

ELISA-G 1.148±0.245 0.585±0.141 1.137±0.168 1.501±0.088  0.26±0.05 0.13±0.03 0.26±0.40 0.52±0.04 

ELISA-P 2.950±0.473 0.402±0.204 NS 1.599±0.075  0.59±0.07 0.08±0.04 NA NA 

CIEP 0.014±0.010 0.020±0.007 NS 0.114±0.008  0.09±0.07 0.14±0.04 NA NA 

IAT 0.199±0.044 NS 0.210±0.051 0.597±0.041  0.20±0.04 NA 0.21±0.51 0.41±0.04 

BW13 0.004±0.002 0.006±0.001 - 0.008±0.001  0.23±0.13 0.35±0.07 NA NA 

BW16 0.008±0.004 0.007±0.002 - 0.017±0.002  0.26±0.12 0.23±0.06 NA NA 

BW19 0.015±0.006 0.008±0.003 - 0.025±0.003  0.31±0.11 0.17±0.05 NA NA 

BW22 0.024±0.008 0.009±0.003 - 0.036±0.005  0.35±0.11 0.13±0.05 NA NA 

BW25 0.021±0.009 0.010±0.004 - 0.039±0.005  0.30±0.11 0.15±0.05 NA NA 

BW28 0.019±0.009 0.013±0.004 - 0.044±0.005  0.25±0.11 0.17±0.05 NA NA 

HW 0.013±0.007 0.008±0.004 - 0.062±0.005  0.15±0.09 0.10±0.05 NA NA 

ADG 0.998±0.434 0.610±0.212 NS 2.645±0.261  0.24±0.10 0.14±0.05 NA NA 

α 0.016±0.008 0.015±0.005 - 0.066±0.005  0.17±0.08 0.15±0.05 NA NA 

k 0.003±0.001 0.001±0.001 - 0.007±0.001  0.25±0.10 0.10±0.05 NA NA 

m 0.277±0.094 0.071±0.036 - 0.387±0.053  0.38±0.11 0.10±0.05 NA NA 

AIP 1.107±0.356 0.550±0.164 - 1.186±0.191  0.39±0.11 0.19±0.06 NA NA 

WIP 0.019±0.006 0.010±0.003 - 0.019±0.003  0.39±0.11 0.22±0.06 NA NA 

DFI 160.835±75.157 115.647±37.186 - 419.822±44.426  0.23±0.10 0.17±0.05 NA NA 

FCR 13.207±6.506 6.534±3.111 NS 46.522±4.117  0.20±0.10 0.10±0.05 NA - 

RFI 101.495±43.006 44.271±20.687 NS 314.588±27.766  0.22±0.09 0.10±0.04 NA - 

RG 0.374±0.184 0.378±0.100 - 0.966±0.106  0.22±0.10 0.22±0.06 NA NA 

RIG 0.375±0.178 0.311±0.092 - 0.905±0.102  0.24±0.11 0.20±0.06 NA NA 

KR 0.222±0.116 0.197±0.060 - 0.675±0.069  0.20±0.10 0.18±0.05 NA NA 
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Table 3.3 Continuous. 
  Variance components                           Genetic parameters 

 

Traits1 𝜎𝑎
2±SE 𝜎𝑚

2 ±SE 𝜎𝑝𝑒
2 ±SE 𝜎𝑒

2±SE  h2±SE 𝑐𝑑
2±SE 𝑐𝑝𝑒

2 ±SE r±SE 

DOF 0.0009 ± 0.0003 𝑁𝑆 − 0.0054 ± 0.0003  0.14±0.05 𝑁𝐴 𝑁𝐴 NA 

VarF 8.865 ± 3.532 𝑁𝑆 − 51.352 ± 3.453  0.15±0.06 𝑁𝐴 𝑁𝐴 NA 
1ELISA-G = AMDV-G based enzyme-linked immunosorbent assay test; ELISA-P = VP2 based enzyme-linked immunosorbent assay 

test; CIEP = Counterimmunoelectrophoresis test; IAT = Iodine agglutination test; BW (13 to 28) = Body weight at corresponding 

measurement week (13 to 28); HW = Body weight at harvest; ADG = Average daily gain; α = Asymptotic weight in kg; k = Second part 

of growth curve, in which growth rate decreases until the animal reaches the asymptotic or mature weight (α); m = shape parameter 

determining the position of curve inflection point; AIP = age at the inflection point; WIP = weight at the inflection point; DFI = Daily 

feed intake; FCR = Feed conversion ratio; RFI = Residual feed intake; RG = Residual gain; RIG = Residual intake and gain; KR = 

Kleiber ratio; DOF = the proportion of off-feed days; VarF = Variation in daily feed intake. 

𝜎𝑎
2= additive genetic variance; 𝜎𝑚

2 = maternal genetic variance; 𝜎𝑝𝑒
2 = permanent environmental variance; 𝜎𝑒

2= residual variance. 

H2= heritability from univariate models; 𝑐𝑑
2= proportion of phenotypic variance explained by maternal genetic effects; 𝑐𝑝𝑒

2 = proportion of 

phenotypic variance explained by permanent environmental effects; r= repeatability 

NS = not significant (P>0.05) 
NA = not applicable 

- = not tested 
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Table 3.4 Estimates of phenotypic correlations with their standard errors between Aleutian disease tests with feed efficiency, growth, 

and feed intake traits in mink. 

Traits1 ELISA-G ELISA-P CIEP IAT 

BW13 -0.05±0.04 -0.03±0.04 -0.04±0.04 0.08±0.03* 

BW16 -0.06±0.04 -0.04±0.04 -0.05±0.04 0.07±0.03* 

BW19 -0.07±0.04 -0.06±0.04 -0.05±0.04 0.01±0.04 

BW22 -0.08±0.04* -0.08±0.04* -0.06±0.04 -0.02±0.04 

BW25 -0.08±0.04* -0.11±0.04* -0.07±0.04 -0.04±0.04 

BW28 -0.11±0.04* -0.15±0.04* -0.07±0.04 -0.07±0.03* 

HW -0.12±0.04* -0.14±0.04* -0.03±0.04 -0.11±0.04* 

ADG -0.32±0.03* -0.15±0.04* -0.04±0.04 -0.14±0.04* 

α -0.07±0.03* -0.10±0.04* -0.04±0.04 -0.08±0.03* 

k 0.10±0.04* 0.15±0.04* 0.01±0.04 0.13±0.03* 

m 0.05±0.04 0.09±0.04* -0.02±0.04 0.06±0.04 

AIP -0.04±0.04 -0.01±0.04 -0.03±0.04 0.02±0.04 

WIP 0.01±0.04 -0.01±0.04 -0.04±0.04 0.03±0.04 

DFI -0.08±0.04* -0.14±0.04* -0.05±0.04 -0.03±0.04 

FCR 0.09±0.04* 0.09±0.04* 0.03±0.04 0.10±0.04* 

RFI 0.02±0.03 -0.02±0.04 0.01±0.04 0.03±0.04 

RG -0.05±0.04 -0.07±0.04 0.03±0.04 -0.13±0.04* 

RIG -0.04±0.04 -0.05±0.04 0.03±0.04 -0.11±0.04* 

KR -0.10±0.04* -0.14±0.04* -0.02±0.04 -0.15±0.04* 

DOF 0.02±0.03 0.07±0.04 -0.05±0.03 0.08±0.04* 

VarF 0.01±0.03 0.06±0.04 -0.04±0.03 -0.01±0.03 
1ELISA-G = AMDV-G based enzyme-linked immunosorbent assay test; ELISA-P = VP2 based enzyme-linked immunosorbent assay test; CIEP = 

Counterimmunoelectrophoresis test; IAT = Iodine agglutination test; BW (13 to 28) = Body weight at corresponding measurement week (13 to 28); HW = Body weight at 

harvest; ADG = Average daily gain; α = Asymptotic weight in kg; k = Second part of growth curve, in which growth rate decreases until the animal reaches the asymptotic 

or mature weight (α); m = shape parameter determining the position of curve inflection point; AIP = age at the inflection point; WIP = weight at the inflection point; DFI = 

Daily feed intake; FCR = Feed conversion ratio; RFI = Residual feed intake; RG = Residual gain; RIG = Residual intake and gain; KR = Kleiber ratio; DOF = the proportion 

of off-feed days; VarF = Variation in daily feed intake. * = significant (P<0.05).  

5
5
 



 

56 

 

Table 3.5 Estimates of genetic correlations with their standard errors between Aleutian disease tests with feed efficiency, growth, and 

feed intake traits in mink. 

Traits1 ELISA-G ELISA-P CIEP IAT 

BW13 0.16±0.20 0.19±0.23 -0.17±0.42 0.42±0.27 

BW16 0.23±0.20 0.21±0.22 -0.35±0.37 0.45±0.23* 

BW19 0.14±0.18 0.13±0.18 -0.19±0.35 0.21±0.19 

BW22 0.09±0.17 0.09±0.18 -0.14±0.34 0.14±0.18 

BW25 -0.01±0.18 -0.02±0.19 -0.30±0.32 0.01±0.18 

BW28 -0.06±0.19 -0.16±0.19 0.21±0.46 -0.01±0.20 

HW 0.37±0.26 0.01±0.22 0.49±0.48 -0.47±0.20* 

ADG -0.37±0.16* -0.15±0.20 -0.02±0.40 -0.24±0.18 

α -0.01±0.22 0.02±0.22 0.14±0.45 0.02±0.22 

k 0.38±0.19* 0.36±0.18* -0.35±0.40 0.26±0.19 

m 0.12±0.17 0.11±0.16 -0.63±0.35 0.15±0.17 

AIP -0.01±0.16 0.03±0.17 -0.58±0.32 0.05±0.16 

WIP 0.15±0.17 0.05±0.17 -0.51±0.31 0.25±0.17 

DFI -0.13±0.20 0.08±0.22 0.21±0.45 -0.01±0.21 

FCR 0.15±0.25 0.09±0.22 0.23±0.48 0.03±0.21 

RFI -0.04±0.22 -0.05±0.20 0.21±0.41 0.02±0.20 

RG 0.23±0.22 -0.11±0.22 0.21±0.42 -0.17±0.21 

RIG 0.20±0.21 -0.08±0.22 0.19±0.43 -0.16±0.21 

KR -0.02±0.02 -0.21±0.22 0.02±0.48 -0.19±0.20 

DOF 0.22±0.19 0.42±0.17* -0.02±0.22 0.73±0.16* 

VarF 0.04±0.19 0.19±0.18 -0.12±0.23 0.09±0.21 
1ELISA-G = AMDV-G based enzyme-linked immunosorbent assay test; ELISA-P = VP2 based enzyme-linked immunosorbent assay test; CIEP = 

Counterimmunoelectrophoresis test; IAT = Iodine agglutination test; BW (13 to 28) = Body weight at corresponding measurement week (13 to 28); HW = Body weight at 

harvest; ADG = Average daily gain; α = Asymptotic weight in kg; k = Second part of growth curve, in which growth rate decreases until the animal reaches the asymptotic 

or mature weight (α); m = shape parameter determining the position of curve inflection point; AIP = age at the inflection point; WIP = weight at the inflection point; DFI = 

Daily feed intake; FCR = Feed conversion ratio; RFI = Residual feed intake; RG = Residual gain; RIG = Residual intake and gain; KR = Kleiber ratio; DOF = the proportion 

of off-feed days; VarF = Variation in daily feed intake. * = significant (P<0.05).  
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Figure 3.1 The distribution of Aleutian disease tests. (A) VP2 based enzyme-linked immunosorbent assay test; (B) AMDV-G based 

enzyme-linked immunosorbent assay test; (C) Counterimmunoelectrophoresis test; (D) Iodine agglutination test. 
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4CHAPTER 4. Population Genomics of American Mink 

Using Genotypes Data1
 

 

4.1 Introduction  

American mink (Neogale vison) is a semiaquatic and carnivorous mammal that belongs to 

the weasel (Mustelidae) family (García et al. 2010). It is native to North America but has 

been farmed in many countries and used as one of the primary fur sources for fur industries 

worldwide due to its high-quality fur and various colors (Anistoroaei et al. 2009; Tamlin 

et al. 2009; Thirstrup et al. 2015; Zhang et al. 2021a). With the COVID-19 (coronavirus 

disease from 2019) pandemic and the market downturn, the mink industry faces serious 

challenges. In Canada, from 2015 to 2020, the number of mink farms dropped from 213 to 

63, decreasing mink production from three million to one million per year 

(Statistics_Canada 2022). However, the mink industry appears to be on the upturn, as 

market demand and fur prices have increased, based on fur auction reports in recent years 

(Oaten 2021; sagafurs 2022). With a smaller number of mink farms, improving the 

efficiency (e.g., improved disease resilience, feed efficiency, reproduction performance, 

and pelt quality) of mink farms through advanced genomic selection programs could help 

to meet the rising market demand and help mink farmers obtain more economic benefits 

from the rising pelt prices. Genomic selection has been applied in the main livestock 

species, such as dairy cattle (Wiggans et al. 2017), swine (Miar et al. 2015; Knol et al. 

 
1 A version of this chapter has been published in Frontiers in Genetics by Hu et al. 2023. 

Population genomics of American mink using genotype data. 14:1175408. doi: 

https://doi.org/10.3389/fgene.2023.1175408 
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2016), and poultry (Wolc et al. 2016), to improve genetic merit, but this breeding strategy 

has not been utilized in the mink industry to date.  

To develop an efficient genomic selection program in domestic animals, understanding the 

genetic structure of the target population is essential (Groeneveld et al. 2010; Wellmann & 

Bennewitz 2019). American mink of different color types show different performance for 

some traits. For example, it has been known that light-colored mink are more susceptible 

to the Aleutian mink disease virus than dark color types (Ellis 1996). Meanwhile, better 

reproductive performance was observed in brown color mink compared with the other 

color types (Kidd et al. 2009). Thus, investigating the genetic structure of American mink 

of various color types could also help explain variation in performance for traits of 

economic interest. The genetic structure of target populations is usually revealed by 

exploring domestication history, genetic diversity, genetic relationship, and genetic pattern 

of the populations. Linkage disequilibrium (LD) and effective population sizes (Ne) are 

two important parameters for revealing genetic structure of target population. The LD is 

defined as the non-random association of alleles at two or more loci (Slatkin 2008). Genetic 

drift, selection, epistatic combinations, population structure, and admixture between 

distinct populations are all potential causes leading to LD between unlinked markers (Pfaff 

et al. 2001; Ardlie et al. 2002; Qanbari 2020). The magnitude of LD is used to determine 

the appropriate density of markers for genome-wide mapping studies (Goddard & Hayes 

2009), and both genomic selection and genome-wide association studies (GWAS) depend 

on the presence of LD between markers and functional variants (Bush & Moore 2012; Hay 

& Rekaya 2018). In the meantime, the extent of LD between unlinked loci can be utilized 

to estimate the recent and past Ne (Hill 1981; Waples & Do 2010). The Ne is used to 
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measure the rate of inbreeding and loss of genetic diversity and quantify the extent of 

variability in a population and the effectiveness of selection relative to drift (Charlesworth 

2009; Ryman et al. 2019). Analysis of molecular variance (AMOVA) is another popular 

method of detecting population differentiation (Excoffier et al. 1992). The AMOVA can 

explain the genetic variation patterns of studied populations by quantifying the contribution 

of various population structure levels using marker data from different genotypes 

(Fitzpatrick 2009). In addition to AMOVA, discriminant analysis of principal components 

(DAPC) (Jombart et al. 2010) and ADMIXTURE (Alexander et al. 2009) are also common 

analyses used to assess the genetic structure of a population using molecular marker 

information. In brief, DAPC is a multivariate method that can identify and describe clusters 

of individuals which are genetically related (Jombart et al. 2010; Deperi et al. 2018; Thia 

2022), and ADMIXTURE can infer the number of ancestral populations that generated the 

current population and the proportions of individual genomes derived from each ancestral 

population (Alexander et al. 2009; Alexander & Lange 2011; Liu et al. 2020a).  

The genetic structures of farm and feral American mink were previously studied using 

information from different molecular markers, including microsatellite, mitochondrial 

DNA, and single nucleotide polymorphism (SNP) markers. Microsatellite loci were used 

to investigate the genetic structures of wild-caught American mink in Japan (Yukari et al. 

2010), Sweden (Zalewski et al. 2016), and Spain (Lecis et al. 2008). The information from 

mitochondrial DNA and 11 microsatellite loci were applied to understand the genetic 

structure of introduced American mink in southern Chile (Mora et al. 2018). Genotypes 

obtained from 194 SNPs, generated from the restriction-site associated DNA sequencing 

method, were used to investigate the population genetic structure of farm and feral 
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American mink in Poland and Denmark (Thirstrup et al. 2015). Data containing 13,321 

SNPs, which were detected using the genotyping-by-sequencing (GBS) approach on 46 

scaffolds from 285 black American mink, were used to investigate LD and Ne of black 

American mink in Canada (Karimi et al. 2020). Moreover, 100,000 SNPs, which were 

randomly selected through whole-genome sequencing (WGS) across 51 scaffolds from 100 

farm mink, were used to investigate the genetic structure of American mink in Canada 

(Karimi et al. 2021b). However, there is no study investigating the genetic structure of 

farmed American mink with various color types using a relatively large sample size (about 

3,000) with genotypic data from a medium-density SNP panel. 

Investigation of the genetic structure of American mink using genotypic data from a 

medium-density SNP panel will benefit the future use of this genotyping panel for use in 

genomic selection, as well as other genomic studies, such as quantitative trait locus 

mapping, identification of signatures of selection, and GWAS. Meanwhile, one critical 

factor affecting the accuracy of estimating population genetic diversity parameters is the 

sample size (Bashalkhanov et al. 2009). The sample size in the previous studies, which 

investigated the genetic structure of American mink, were all less than 300 individuals 

(Lecis et al. 2008; Yukari et al. 2010; Thirstrup et al. 2015; Zalewski et al. 2016; Mora et 

al. 2018; Karimi et al. 2020; Karimi et al. 2021b). Small sample sizes could lead to 

significant errors in determining allelic richness and therefore influence the accuracy of the 

estimators of genetic diversity in populations (Bashalkhanov et al. 2009). Thus, the main 

purpose of this thesis chapter was to use genotypic data from the first medium-density 70K 

SNP panel for American mink with a larger sample size to 1) investigate the LD pattern 

and Ne of farm American mink in Canada, 2) explore the genetic distance and genetic 
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diversity among various color types of American mink, and 3) reveal the genetic structure 

and admixture pattern of farm American mink in Canada. 

4.2 Methods 

4.2.1 Ethics Statement 

This study was approved by the Dalhousie University Animal Care and Use Committee 

(certification#: 2018-009 and 2019-012). All the mink were raised based on the Code of 

Practice for the Care and Handling of Farmed Mink guidelines from the Canada Mink 

Breeders Association (Turner P et al. 2013).   

4.2.2 Animals and Sampling 

The individuals used in this study were from two farms, including the Canadian Center for 

Fur Animal Research (CCFAR, n=1,411) at Dalhousie University, Faculty of Agriculture 

(Nova Scotia, Canada) and Millbank Fur Farm (MFF, n=1,562) at Rockwood (Ontario, 

Canada). Mink from CCFAR included five color types: black (CBL, n = 177), demi (CDE, 

n = 542), mahogany (CMA, n = 527), pastel (CPA, n=152), and stardust (CST, n = 13). The 

colors of the studied mink were identified and assigned to them at their weaning age by 

experienced technicians at CCFAR. All individuals from MFF were Black color type 

(MBL, n = 1,562). There was no migration of mink between the two farms. There was no 

regular mating system on both farms, and breeders were selected based on their phenotypic 

performances without considering the color types. 

4.2.3 Sample Collection and Genotyping 

DNA extraction was performed on tongue tissue from animals using the Dneasy Blood and 

Tissue Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. The 

quantity and quality of DNA were measured with a NanoDrop ND-1000 spectrophotometer 
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(NanoDrop Technologies Inc., Wilmington, DE). The 260/280 nm readings for all samples 

ranged from 1.8 to 2.0. All samples were diluted to a final concentration of 500 ng, checked 

for DNA quality, and finally genotyped by Axiom Affymetrix Mink 70K panel (Neogen, 

Lincoln, Nebraska, USA) (Do et al. 2024).  

4.2.4 Animals and SNP Quality Control 

Prior to analyses of the genotyping data, animals and SNPs were excluded from the dataset 

based on the following criteria using PLINK software (Purcell et al. 2007): SNPs having a 

minor allele frequency lower than 1%, a call rate lower than 90%, an excess of 

heterozygosity higher than 15%, and Mendelian error frequency larger than 5%, SNPs that 

were out of Hardy-Weinberg equilibrium with very low probability (1 × 10−5), and 

individuals with a call rate lower than 90%. Overall, 2,973 genotyped animals with 24,161 

SNPs remained for the following analyses. 

4.2.5 Population Genetic Parameters, Linkage Disequilibrium, and 

Effective Population Size 

The average minor allele frequency (MAF) and observed heterozygosity were estimated 

for each color type and whole CCFAR population using SNP1101 software (Sargolzaei 

2014). The nucleotide diversity was conducted for each SNP and color type and whole 

CCFAR population based on the method proposed by Nei and Li (1979) using VCFtools 

software (Danecek et al. 2011). 

Linkage disequilibrium (r) was measured as proposed by Hill and Robertson (1968) and 

calculated according to the following equation using SNP1101 software (Sargolzaei 2014): 

𝑟𝑖𝑗 =
(𝑃𝑖𝑗−𝑃𝑖 ∙ 𝑃𝑗)2

𝑃𝑖 ∙(1−𝑃𝑖) ∙ 𝑃𝑗 ∙(1−𝑃𝑗)
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in which Pij is the frequency of the two-marker haplotype (I = allele I at locus 1; j = allele 

j at locus 2), and Pi and Pj are the frequencies of allele I at locus 1 and allele j at locus 2, 

respectively (Badke et al. 2012).  

The LD was calculated in four distance sets with different bin sizes, which included 100 

kb with a bin size of 10 kb, 500 kb with a bin size of 50 kb, 1,000 kb with a bin size of 100 

kb, and 10 Mb with a bin size of 1,000 kb. The average r2 of each bin was plotted against 

the median size of the bin to show the trend of LD with the increases in genome distances. 

Effective population sizes for various color types were estimated using SNP1101 software 

(Sargolzaei 2014) by the following equation (Sved 1971): 

𝑁𝑒 = (
1

4𝑐
) (

1

𝑟2
− 1) 

in which Ne is the effective population size; c is the marker distance in Morgans. 

Additionally, past effective population size at generation T was calculated by the 

approximation T = 
1

2𝑐
 (Hayes et al. 2003). Effective population size was calculated for 1, 5, 

10, 20, 50, 100, 200, and 250 generations ago. 

4.2.6 Genetic Distances and Genetic Diversity 

Pairwise genetic distances were calculated using Nei’s (Nei 1972) method (standard 

genetic distance method) under the ‘StAMPP’ package of R (Pembleton et al. 2013). 

Additionally, a dendrogram of genetic distance among all color types was produced 

through the unweighted pair group method with the arithmetic mean method in the “poppr” 

R package (Kamvar et al. 2014) based on Nei’s distance (Nei 1972). The pairwise Fst was 

calculated based on Weir and Cockerham’s procedures (Weir & Cockerham 1984) using 

the ‘StAMPP’ package of R (Pembleton et al. 2013). The Nei’s genetic distances matrix of 

the six color types was also used to construct the phylogenetic trees using the unweighted 
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pair group method in the “poppr” R package (Kamvar et al. 2014). In addition, AMOVA 

(Excoffier et al. 1992) was performed using ade4 implemented in the “poppr” R package 

(Kamvar et al. 2014) to determine the partition of genetic diversity among samples at 

different hierarchical levels. 

4.2.7 Genetic Structure and Admixture Patterns 

Population structure was analyzed by the discriminant analysis of principal components 

(DAPC) method using the “adegenet” package of R (Jombart et al. 2010). The number of 

clusters in the population was defined by using the find.clusters function under the 

“adegenet” package. This function implements a clustering procedure used in DAPC by 

running successive K-means with an increasing number of clusters (K) after transforming 

data using a principal component analysis (PCA). The most suitable number of clusters has 

the lowest associated Bayesian Information Criterion (BIC). An α-score optimization was 

used to determine the number of principal components to retain. Additionally, an 

unsupervised analysis in ADMIXTURE version 1.3.0 (Alexander et al. 2009) was applied 

to further assessing the potential admixture among the various color types. Five-fold cross-

validation (CV) procedure was performed, and the CV scores were used to determine the 

best K value. 

4.3 Results 

4.3.1 Population Genetic Parameters, Linkage Disequilibrium and 

Effective Population Size 

The MAF, observed heterozygosity, and nucleotide diversity for each SNP, color type and 

whole CCFAR population are present in Table 4.1. The average MAF ranged from 0.212 

(mahogany) to 0.246 (stardust). The lowest level of observed heterozygosity (30.6%) was 
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observed in mahogany color type of CCFAR, whereas the stardust color type of CCFAR 

had the highest percentage of observed heterozygosity (34.9%).  The overall nucleotide 

diversity ranged from 0.283 (stardust) to 0.307 (demi). Considering the whole CCFAR 

population individuals, the MAF was 0.216, the observed heterozygosity was 30.576%, 

and the overall nucleotide diversity was 0.307 (Table 4.1).   

The average r2 between adjacent SNPs on all chromosomes for six color types of American 

mink and the whole CCFAR American mink population are presented in Table 4.2. The 

average r2 between adjacent SNPs among various color types ranged from 0.373±0.402 

(CPA) to 0.406±0.408 (MBL). Compared with the MFF population (MBL), the average r2 

between adjacent SNPs for the whole CCFAR population (0.399±0.404) was lower (Table 

4.2). The LD decay measured by r2 with different inter-marker distances (up to 100 kb, 500 

kb, 1000 kb, and 10 Mb) and consecutive bins (10 kb, 50 kb, 100 kb, and 1 Mb) in six color 

types mink is presented in Figure 1. Within the 1000 kb inter-marker distance range, MBL 

and CST showed the two highest average r2 among all color types at the same inter-marker 

distance, while CDE and CPA had the two lowest average r2 among all color types. CDE 

reached an average r2 < 0.2 with the shortest inter-marker distance (around 325 kb) among 

all color types, while CST reached an average r2 < 0.2 with the longest inter-marker 

distance (around 850 kb) among all color types. Both CMA and CPA reached an average 

r2 < 0.2 at the inter-marker distance of approximately 350 kb. CBL and MBL reached an 

average r2 < 0.2 at the inter-marker distance of approximately 475 kb and 650 kb, 

respectively. The average r2 of the whole CCFAR population was < 0.2 at the inter-marker 

distance of 350 kb. The most rapid LD decays for all color types were observed when the 
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average inter-marker distances increased from 50 to 150 kb, and CDE had the most rapid 

reduction of LD in this interval (Figure 4.1). 

The Ne was evaluated based on LD estimates (r2) from five to 250 generations ago, and the 

estimates of Ne are shown in Figure 2. In general, all the color types showed a marked 

decrease over generations. The recent Ne, five generations ago, of CBL, CDE, CMA, CPA, 

CST, and MBL was 58, 76, 80, 60, 24, and 91, respectively. For the whole CCFAR 

population, the Ne was 76 at five generations ago. The maximum Ne was observed 250 

generations ago for all color types, where CDE had the highest Ne of 384 and CST had the 

lowest Ne of 276. CDE had the highest Ne, and CST had the lowest Ne from 50 to 250 

generations ago. However, in more recent generations, from five to ten generations ago, 

MBL was observed to have the highest Ne, and CST was found to have the lowest Ne. The 

decline of Ne was more rapid from 5 to 50 generations ago for all color types in CCFAR 

and from 5 to 100 generations ago for the MFF population. In the meantime, in more recent 

generations (5 to 50 generations ago), the Ne of the CCFAR population decreased more 

rapidly than the MFF population (Figure 4.2). 

4.3.2 Genetic Distances and Genetic Diversity 

Weir and Cockerham’s Fst and Nei’s genetic distances among six color types are shown in 

Table 4.3. None of the Fst values between the two color types were larger than 0.1, and 

none of the Nei’s genetic distances between the two color types were larger than 0.06. The 

lowest Fst (0.006) and Nei’s genetic distance (0.003) were found between CMA and CDE. 

The CPA and CST showed the highest Fst (0.096) and Nei’s genetic distance (0.053). To 

examine the genetic relationship among various color types, a phylogenetic tree was also 

constructed using the unweighted pair group method and Nei’s genetic distance (Figure 
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4.3). The phylogenetic tree revealed two main clusters, with CST in one cluster and CDE, 

CPA, CMA, CBL, and MBL in the second cluster. Meanwhile, CDE and CMA were 

assigned to the subgroup with the least genetic distance. 

The results from AMOVA for various color types are shown in Table 4.4. The 

differentiation within color types represented the highest proportion of total molecular 

variation in the populations (91.6%). The variation among color types was significant 

(p<0.05) but only represented 4.1% of the total molecular variation in the populations. The 

variation among farms was estimated to represent 4.3% of the total molecular variation in 

the populations but was not significant (p>0.05). 

4.3.3 Genetic Structure and Admixture Patterns 

A total of 123 principal components were retained for DAPC analysis based on the result 

of the α-score optimization analysis (Supplementary Figure 1). Sequential K-means 

clustering and the BIC indicated an optimum of 40 clusters in the studied populations 

(Supplementary Figure 2), and the DAPC showed 40 clusters in Figure 4.4. Figures 4.4(a) 

and 4.4(b) present the scatterplots of the first two linear discriminants and the first three 

linear discriminants for all samples, respectively. Figure 4.4(c) shows the distribution of 

various color types of mink in these 40 clusters in the scatterplot of the first two linear 

discriminants. The number of individuals from different color types in each cluster is 

shown in Figure 4.5. Eighteen clusters concentrated on the left side of the y-axis, and most 

MBL individuals were grouped into those clusters (Figures 4.4a and 4.4c). Twenty-two 

clusters spread on the right side of the y-axis, and most of the CCFAR individuals were 

grouped into these clusters (Figures 4.4a and 4.4c). Compared with the clusters on the right 

side of the y-axis, where most of the CCFAR individuals were located, the clusters on the 
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left side of the y-axis, where most of the MFF individuals were located, were more 

concentrated in a smaller area and more overlapped with each other. The three-dimensional 

scatterplot separated the clusters located on the right side of the y-axis of the DAPC 

scatterplot of the first two linear discriminants more widely but not the clusters located on 

the left side of the y-axis (Figure 4.4b). MBL individuals were classified into 28 clusters 

and were the dominant color type in 18 of those clusters. Individuals in CDE, CPA, CMA, 

CST, and CBL color types were classified into 28, 15, 31, 6, and 16 clusters, respectively, 

and were not the dominant color type in those clusters (Figure 4.5). Additionally, the 

individual posterior membership probabilities to different clusters are presented in Figure 

4.6. All the color types were largely admixed with several different clusters. 

A model-based maximum likelihood approach was used to infer population structure at 

different K levels (Figures 4.7 and 4.8). The CV error was markedly reduced with each 

increase in K until K = 4. Hereafter, the CV error gradually decreased with an increasing 

K, but the differences in CV error between adjacent Ks were less and less. The lowest CV 

was found when K=75 within the range of K values that we tested (Figure 4.7). The 

ADMIXTURE runs for K = 2, 3, 4, 6, 40, and 75 are shown in Figure 4.8. The results 

indicated that the most likely partition was for K = 3, based on visual inspection of the 

admixture plots. The ideal method to define the number of K should be based on the CV 

error, but the CV error in this study kept decreasing with increased K (Figure 4.7). Visual 

inspection of admixture plots was used to define the best K according to the other studies 

(Mujibi et al. 2018; Lal et al. 2021). At K = 2, a clear distinctness between MBL and CPA 

was found. The rest of the color types were admixed with two clusters. At K = 3, the study 

populations showed a relatively distinguishable distinctness between CCFAR and MFF 
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populations. Most MFF individuals were assigned to one cluster (average 85.26% on 

ancestry fractions), and the other two clusters were dominant in the CCFAR population. 

The CBL (average of 77.51% on ancestry fractions) and CPA (average of 79.13% on 

ancestry fractions) became distinct clusters within the CCFAR population and the two main 

genetic compositions in the CCFAR population. In the meantime, CDE and CMA were 

admixed with the three clusters and seemed to share a similar admixture pattern. When K 

= 4 and 6, except for the CPA color type, where one cluster seemed like the dominant 

cluster in this color type, all other color types were admixed with at least two clusters. In 

the meantime, the CCFAR population showed a higher level of admixture than the MFF 

population. When K = 40 and 75, no obvious distinction in ADMIXTURE among various 

color types was found, and all color types were admixed with several clusters (Figure 4.8).  

4.4 Discussion 

The average r2 between adjacent SNPs on all chromosomes for various color types were in 

the range of 0.373 to 0.406. The estimated average r2 between adjacent SNPs was higher 

than the estimates from previous studies (Karimi et al. 2020; Karimi et al. 2021b). The 

average r2 was estimated to be 0.30 using 13,321 SNPs extracted from 99 scaffolds with 

GBS data (Karimi et al. 2020). The average r2 was estimated to range from 0.280 to 0.366 

for various color types using 100,000 SNPs extracted from 51 scaffolds with the WGS data 

(Karimi et al. 2021b). The different SNP marker densities, sample sizes, data resources, 

using incomplete scaffold-based vs. complete chromosome-based reference genomes, and 

population structures among the studies are the potential causes leading to these 

discrepancies. The r2 > 0.2 is considered the minimum threshold value for genomic 

selection to achieve an accuracy of > 0.85 (Meuwissen et al. 2001; Hayes et al. 2009; 
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Samorè & Fontanesi 2016). In the current study, the average r2 of CCFAR and MFF 

populations decreased to <0.2 when the inter-marker interval reached larger than 350 kb 

and 650 kb, respectively. These estimates indicated that the minimum marker density for 

conducting genomic selection at acceptable accuracy for the CCFAR population is about 

7,700 SNPs (2.68 Gb/350 kb, where 2.68 Gb (Karimi et al. 2022) is the size of American 

mink genome assembly) and about 4,200 SNPs (2.68 Gb/650 kb) for the MFF population. 

For GWAS, r2 > 0.3 is commonly used as the ideal threshold LD to obtain sufficient power 

and accuracy (Ardlie et al. 2002; Wang et al. 2018; Wu et al. 2019; Zhang et al. 2021b). 

The r2 was estimated to be more than 0.3 when the marker distances were less than 125 kb 

and 225 kb for CCFAR and MFF populations, respectively, which indicated approximate 

22,000 (2.68 Gb/125 kb) and 12,000 (2.68 Gb/225kb) SNPs are necessary to conduct 

GWAS in CCFAR and MFF populations, respectively. It has been noted that more markers 

are needed to perform adequate genomic studies in admixed populations (Toosi et al. 2010; 

Thomasen et al. 2013; Brito et al. 2015; Karimi et al. 2021b). Thus, the higher level of 

admixture in the CCFAR population may be the reason for the required higher marker 

density for conducting genomic selection in this population compared to the MFF 

population. Using GBS data, Karimi et al. (2020) suggested the density of 60,000 SNPs 

and 120,000 SNPs, which were all higher than the estimates in the current study, are 

required for conducting genomic selection and GWAS in black American mink, 

respectively. Karimi et al. (2021b) suggested a larger number of SNPs to conduct genomic 

selection (120,000 for CCFAR and 24,000 for MFF) and GWAS (240,000 for both farms) 

by using WGS data of 100 American mink from the same population. The different 

estimates of r2 between the current study and previous studies (Karimi et al. 2020; Karimi 
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et al. 2021b) are the causes for the different suggested marker densities of conducting 

genomic selection and GWAS in American mink.    

In this study, the Ne at five generations ago was estimated to be 76 and 91 for CCFAR and 

MFF populations, respectively. In Spain, the Ne of American mink in six locations ranged 

from 7.2 to 34.8 using information from ten polymorphic microsatellite loci (Lecis et al. 

2008). On Swedish coasts, depending on the geographical location of the sampling, the Ne 

of American mink was estimated to be from 17.5 to 70.8 using genotypes from 21 

microsatellite markers (Zalewski et al. 2016). The Ne at five generations ago was estimated 

to be 116 for black American mink, which was also higher than the estimates in this study, 

using SNP data obtained from the GBS data (Karimi et al., 2020). Compared with this 

study, Karimi et al. (2021b) estimated a higher Ne at five generations ago (99) for CCFAR 

and a lower Ne at five generations ago (50) for MFF using SNP information extracted from 

the WGS data of 100 mink. The estimates of the current study indicated that the Ne declined 

more rapidly from 5 to 50 generations ago for the CCFAR and from 5 to 100 generations 

ago for the MFF population, which coincided with the time when the farms were 

established. The CCFAR was established about 40 years ago (1984), and the MFF was 

founded over 90 years ago (1930). These trends were different from those estimated by 

using WGS data (Karimi et al. 2021b) and GBS data (Karimi et al. 2020), where the decline 

of Ne was more rapid between 150 and 200 generations ago. The different estimations of 

LD patterns among studies are the cause leading to the different Ne estimates. The Ne of 

the CCFAR population decreased more rapidly than the MFF population in more recent 

generations (5 to 50 generations ago). This may be related to different breeding 
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managements and strategies, population genetic backgrounds, and populations sizes (MFF 

has larger population size than CCFAR) in these two farms.  

Both Fst (less than 0.1) and Nei’s genetic distances (less than 0.06) among various color 

types were low, which indicated the low genetic differentiation among various color types. 

This was in agreement with the AMOVA results, where the variation within color types 

explained 91.6% of total molecular variation, while the variation among color types only 

explained 4.1% of the total molecular variation in the populations. Compared with other 

color types, CST had the farthest genetic distances (Nei’s genetic distance values) with 

CDE, CPA, CMA, and MBL color types. This was in agreement with the result from the 

phylogenetic tree, which separated CST into a separate cluster from other color types. The 

Fst and Nei’s genetic distances among various color types were estimated in the range of 

0.015 to 0.124 and 0.013 to 0.065, respectively, using WGS data (Karimi et al. 2021b). 

They were all slightly higher than the estimates from this study (Fst ranged from 0.006 to 

0.096, and Nei’s genetic distance ranged from 0.003 to 0.053). The overall Fst among seven 

color types of American mink from 14 different geographical locations in Poland and 

Denmark was estimated to be 0.08 by Thirstrup et al. (2015) using information from 194 

SNPs generated from the restriction-site associated DNA sequencing data, which was also 

higher than the overall Fst (0.041) among six color types in the study. In southern Chile, 

the Fst among 153 mink obtained from 12 locations were estimated to be in the range from 

0.017 and 0.364, which was also higher than the estimates in this study (0.006 to 0.096), 

using genotypic data from 11 polymorphic microsatellite loci (Mora et al. 2018). 

The mink of the six color types were differentiated into 40 clusters using multivariate 

DAPC analysis in this study. Individuals within the same color type were divided into 
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clusters ranging from six to 31 (Figures 4.5 and 4.6), which indicated the existence of 

genetic differentiation among mink within the same color. These results were in agreement 

with the result from AMOVA (Table 4.4), where the variation within color types 

represented the majority of the total molecular variation in the populations, and the high 

level of nucleotide diversity within each color type (Table 4.1). In the meantime, 97% 

(1,526 individuals) of MBL individuals and 97% (1,378 individuals) of CCFAR individuals 

were grouped into the clusters located on the left and right side of the y-axis of the DAPC 

scatterplot of the first two linear discriminants (Figure 4.4c), respectively. These results 

indicated that the DAPC analysis was able to separate CCFAR and MFF populations by 

the first linear discriminant (explained 41.23% of the variance). However, DAPC analysis 

was not able to further differentiate the clusters within a farm as the clusters on the same 

side of the y-axis of the DAPC scatterplots were overlapped, and the distances between 

clusters were minimal (Figure 4.4). This may be caused by high gene flow and admixture 

events in recent generations of the studied populations because there was no regular mating 

system on both farms, and animals were mostly selected based on their phenotypic 

performances without considering their color types. Additionally, the clusters, where most 

of the CCFAR individuals were located, were more dispersed in a wider area and less 

overlapped with each other on the DAPC scatterplots compared with the clusters, where 

most of the MFF individuals were located (Figure 4.4), indicating CCFAR population may 

have a higher level of admixture than MFF population. These results were in agreement 

with the admixture patterns we observed when K = 2, 3, 4, and 6, where the CCFAR 

population showed a higher level of admixture than the MFF population (Figure 4.8). This 

may be related to the introduction of breeders from different farms within after the Aleutian 
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disease outbreak in CCFAR in 2013 (the generation interval is one year in CCFAR), as 

multiple breeder sources may result in higher levels of admixture (Verhoeven et al. 2011; 

Parker et al. 2017; Karaman et al. 2021). Most of the mink in the barn were dead or culled 

at that time when Aleutian disease occurred. Thus, within three years of the disease 

outbreak, about 150 mink (120 dams and 30 sires) from six farms were introduced and used 

as breeders in the breeding season at CCFAR, which might lead to a higher admixture level 

in the population compared with the MFF population. The populations (CCFAR and MFF) 

were clustered into only three groups in DAPC analysis using WGS data from 100 

individuals (Karimi et al. 2021b). Compared to the DAPC results from this study, the MFF 

population was not clearly differentiated from the CCFAR population, and individuals 

within the same color tended to be grouped in the same cluster instead of several different 

clusters. The marker densities (100k vs. 24k) and sample sizes (100 vs. 2,973) are the 

possible reasons leading to the differences. The DAPC analysis differentiated 205 

American mink in three different areas of Sweden into five clusters using the genotypic 

data from 21 microsatellites (Zalewski et al. 2016). The five clusters clearly differentiated 

the individuals from different study areas, indicating that geographical distribution was one 

of the critical factors in differentiating American mink. In our study, the geographical 

distribution might also play an important role in differentiating mink from two populations 

because the CCFAR and MFF populations were clearly separated by the first linear 

discriminant in the DAPC scatterplot (Figure 4.4). 

In this study, three ancestral genetic groups were considered to delineate the studied 

populations’ genetic structure based on the change of CV error against K and visual 

inspection of the admixture plots. The change in CV error against K (Figure 4.7) indicated 



 

76 

 

that the improvement in model fitness started to decrease between K = 3 and K = 5, 

suggesting that K = 3 may be the best cluster number that describes the studied populations. 

Compared to the admixture plots when K = 2, 4, 6, 40, and 75, the admixture plot when K 

= 3 seemed to describe the genetic structure of studied populations better. Similar to the 

DAPC results, when K = 3, a distinguishable distinctness between CCFAR and MFF 

populations was observed in the admixture plot, which further illustrated geographical 

distribution as a critical factor in differentiating American mink. The CCFAR population 

showed a higher level of admixture than the MFF population, which might be caused by 

the use of breeders from multiple sources in CCFAR (Introduced breeders from six 

different farms after the Aleutian disease outbreak) and a relatively single breeder source 

in MFF. Meanwhile, MBL and CBL were clearly identified with a distinct ancestral 

population suggesting that these two black color types derive from different ancestral 

populations and color type might not be a reliable indicator to differentiate American mink. 

Within the CCFAR population, CBL and CPA had their own clusters, and CDE, CMA, and 

CST showed noticeable admixtures of these two clusters. Many color types in American 

mink are exclusively line-bred because many color types are recessive to the standard 

brown color type, and the rest are blended (Shackelford 1948; Joergensen 1985; Nes et al. 

1988). For example, mahogany is achieved by breeding the black and standard brown color 

types (Joergensen 1985). This could explain the admixture patterns of CMA and CDE in 

this study since these are visually very close color types, and CPA is one of the dominant 

brown color types. In the meantime, CDE and CMA seemed to share a similar admixture 

pattern, which indicated these two color types might share a similar genetic structure. 

Several results from this study also supported the point that CDE and CMA had a similar 
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genetic structure: 1) CDE and CMA showed the closest genetic distance (lowest Nei’s and 

Fst values) among all color types (Table 4.3); 2) the phylogenetic tree grouped CDE and 

CMA into the same subgroup (Figure 4.3); 3) CDE and CMA showed a similar trend in LD 

and Ne decay (Figures 4.1 and 4.2); and 4) most of CDE and CMA individuals appeared in 

the same clusters generated from DAPC analysis (Figure 4.5). These results further 

illustrated the color type may not be a reliable indicator to differentiate American mink 

populations. The admixture patterns from this study are similar to the estimated admixture 

patterns of American mink in Canada in previous studies. The admixture patterns of farmed 

and wild American mink in Ontario, Canada, were investigated by Kidd et al. (2009) using 

the data from 10 microsatellite loci. In their studied farm populations, mink in black and 

pastel color types had their own groups, and mink in mahogany color type were mixed with 

several groups (Kidd et al. 2009), which were in the same patterns as this study. The 

admixture patterns of the current studied populations were also investigated in the small 

sample size using WGS data (Karimi et al. 2021b). Similar to the results from this study, 

when K =3, individuals in black and pastel color types had their own groups, and 

individuals in demi and mahogany color types were mixed with those three groups (Karimi 

et al. 2021b). 

Genetic structure and admixture pattern analyses conducted in this study did not detect 

clear genetic distinctions among the mink of various color types. Two potential reasons 

could lead to these results. The studied individuals were sampled from only two farms, 

which might make the samples not the ideal sample structures to reveal the population 

structures. Thus, future studies should consider including animals of various color types 

from wild and more geographically distributed farms. In the meantime, it has been noted 
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that a larger number of markers may be needed to resolve population genomics studies 

when the genetic distance (Fst) between the populations is low (Patterson et al. 2006). 

Thus, future studies could impute the SNP genotypes to WGS to obtain larger marker 

density to further investigate the genetic structure and admixture pattern of the studied 

populations.  

4.5 Conclusions 

In this thesis chapter, 2,973 animals from two farms and their genotypes obtained from the 

first developed medium-density SNP panel for American mink were used to investigate 

their LD patterns and genetic structure in various color types. The estimated LD patterns 

suggested that 7,700 and 4,200 SNPs are the minimum marker densities to conduct 

genomic selection programs in CCFAR and MFF populations, respectively. The results 

from genetic distances and diversity analyses indicated genetic differentiation among 

various color types was low, and most of the genetic variation occurred within color types 

rather than between color types. Three ancestral genetic compositions were considered the 

most appropriate number of ancestral genetic compositions to delineate the populations’ 

genetic structure. The black (both CCFAR and MFF) and pastel color types seemed to have 

their own ancestral clusters, and demi, mahogany, and stardust were admixed with the three 

ancestral genetic compositions. Additionally, mink in demi and mahogany color types 

seemed to have a similar admixture pattern, but further study is needed. The genetic 

structure and admixture pattern of mink of various color types and within the same color 

type were not clearly identified in this study. Thus, future studies with samples from wider 

geographically distributed locations and higher marker density are needed to differentiate 

the mink within the same color type.  
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This thesis chapter provided useful information for conducting genomic evaluations in the 

mink industry using genotypes from the medium-density SNP panel. The mink industry 

faces several challenges caused by the Covid-19 pandemic, industry downturn, and 

decreasing market demand. Improving production efficiency through advanced genomic 

approaches could help the mink industry meet these challenges. The LD patterns and 

genetic structures obtained from the first SNP panel for American mink would provide the 

essential information to implement the SNP panel in genomic studies of American mink. 
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Table 4.1 Average minor allele frequency (MAF), observed heterozygosity, and nucleotide diversity for five color types of American 

mink in CCFAR, whole CCFAR population, and whole MFF population. 

Color type Number of individuals Average MAF Observed heterozygosity (%) Average nucleotide diversity 

CBL1 177 0.220 31.821 0.297 

CDE 2 542 0.216 31.029 0.307 

CMA3 527 0.212 30.594 0.303 

CPA4 152 0.236 32.644 0.294 

CST5 13 0.246 34.947 0.283 

CCFAR6 1,411 0.216 30.576 0.307 

MBL7 1,562 0.226 31.938 0.288 

1 black color type mink in the Canadian Center for Fur Animal Research (CCFAR); 2 demi color type mink in CCFAR; 3 mahogany 

color type mink in CCFAR, 4 pastel color type mink in CCFAR; 5 stardust color type mink in CCFAR; 6 all mink in CCFAR; 7 black 

color type mink in Millbank Fur Farm. 
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Table 4.2 Summary of the average and standard deviation of r2 between adjacent SNPs on all chromosomes of five color types of 

American mink in CCFAR, whole CCFAR population, and whole MFF population.   

CCFAR2 
 

CBL3 
 

CDE4 
 

CMA5 
 

CPA6  CST7 
 

MBL8 

Chr1 

 

Average r2±SD 
 

Average r2±SD 
 

Average r2±SD 
 

Average r2±SD 
 

Average r2±SD  Average r2±SD 
 

Average r2±SD 

1 

 

0.444±0.451 

 

0.403±0.445 

 

0.425±0.447 

 

0.415±0.445 

 

0.415±0.441  0.408± 0.438 

 

0.419±0.451 

2 

 

0.412±0.446 

 

0.379±0.443 

 

0.395±0.440 

 

0.399±0.441 

 

0.387±0.435  0.369± 0.424 

 

0.392±0.445 

3 

 

0.354±0.440 

 

0.336±0.431 

 

0.339±0.433 

 

0.340±0.434 

 

0.335±0.425  0.346± 0.420 

 

0.341±0.429 

4 

 

0.404±0.447 

 

0.396±0.449 

 

0.385±0.443 

 

0.384±0.442 

 

0.367±0.434  0.400± 0.440 

 

0.406±0.450 

5 

 

0.369±0.365 

 

0.368±0.369 

 

0.346±0.364 

 

0.356±0.365 

 

0.336±0.366  0.368± 0.378 

 

0.388±0.379 

6 

 

0.432±0.453 

 

0.391±0.445 

 

0.418±0.448 

 

0.415±0.449 

 

0.404±0.442  0.372± 0.430 

 

0.422±0.447 

7 

 

0.396±0.377 

 

0.393±0.381 

 

0.380±0.378 

 

0.381±0.377 

 

0.375±0.380  0.396± 0.383 

 

0.407±0.385 

8 

 

0.428±0.378 

 

0.425±0.388 

 

0.412±0.381 

 

0.423±0.382 

 

0.403±0.386  0.382± 0.389 

 

0.449±0.392 

9 

 

0.345±0.351 

 

0.357±0.360 

 

0.334±0.351 

 

0.342±0.355 

 

0.331±0.355  0.361± 0.371 

 

0.357±0.362 

10 

 

0.269±0.397 

 

0.268±0.399 

 

0.261±0.390 

 

0.248±0.385 

 

0.263±0.384  0.285± 0.387 

 

0.277±0.404 

11 

 

0.558±0.386 

 

0.557±0.399 

 

0.531±0.393 

 

0.540±0.391 

 

0.502±0.406  0.533± 0.432 

 

0.597±0.397 

12 

 

0.504±0.377 

 

0.519±0.394 

 

0.470±0.378 

 

0.499±0.387 

 

0.438±0.387  0.490± 0.419 

 

0.545±0.397 

13 

 

0.384±0.382 

 

0.397±0.386 

 

0.364±0.380 

 

0.376±0.381 

 

0.368±0.381  0.416± 0.396 

 

0.427±0.396 

14 

 

0.293±0.401 

 

0.291±0.402 

 

0.266±0.390 

 

0.285±0.393 

 

0.293±0.399  0.340± 0.421 

 

0.258±0.372 

Mean  0.399±0.404  0.391±0.407  0.380±0.401  0.386±0.402  0.373±0.402  0.390± 0.409  0.406±0.408 

1 chromosome; 2 all mink from the Canadian Center for Fur Animal Research (CCFAR); 3 black color type mink in CCFAR; 4 demi 

color type mink in CCFAR; 5 mahogany color type mink in CCFAR, 6 pastel color type mink in CCFAR; 7 stardust color type mink in 

CCFAR; 8 black color type mink in Millbank Fur Farm.  

r2 = Linkage disequilibrium; SD = Standard deviation. 
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Table 4.3 Estimation of Nei’s genetic distance (upper diagonal) and Weir and Cockerham’s Fst (lower diagonal) between various color 

types of American mink. 

 CDE1 CPA2 CMA3 CST4 CBL5 MBL6 

CDE 0 0.012 0.003 0.027 0.010 0.018 

CPA 0.024 0 0.021 0.053 0.033 0.037 

CMA 0.006 0.044 0 0.023 0.005 0.012 

CST 0.042 0.096 0.033 0 0.018 0.035 

CBL 0.021 0.068 0.010 0.024 0 0.015 

MBL 0.040 0.081 0.028 0.063 0.035 0 
1 demi color type mink in the Canadian Center for Fur Animal Research (CCFAR); 2 pastel color type mink in CCFAR; 3 mahogany 

color type mink in CCFAR; 4 stardust color type mink in CCFAR;5 black color type mink in CCFAR; 6 black color type mink in 

Millbank Fur Farm. 

 

 

 

Table 4.4 Analysis of molecular variance (AMOVA) in various color types of American mink. 

Source of Variation Degrees of Freedom 

Sum of 

Squares Mean Squared Deviations 

Variance 

Components 

Percentage of 

Variation 

Among farms 1 10.720 10.720 0.004 4.291 

Among color types 4 4.425 1.106 0.004* 4.067 

Within color types 2,967 279.795 0.094 0.094* 91.642 

Total 2,972 294.940 11.920 0.102 100 

* p<0.05. 
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Figure 4.1 Linkage disequilibrium measured by r2 plotted as a function of inter-market distance (kb). (a) from 0 up to 100 kb using 

consecutive 10 kb bins, (b) up to 500 kb using consecutive 50 kb bins, (c) up to 1000 kb using consecutive 100 kb bins, and (d) up to 

10 Mb using consecutive 1000 kb bins. CCFAR = all mink from the Canadian Center for Fur Animal Research (CCFAR).  MBL= black 

color type mink in Millbank Fur Farm; CBL, CDE, CMA, CPA, and CST are black, demi, mahogany, pastel, and stardust color type 

mink in CCFAR, respectively. 
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Figure 4.2 Estimated effective population sizes for various color types of American mink from 5 to 250 generations ago. CCFAR = all 

mink from the Canadian Center for Fur Animal Research (CCFAR). MBL= black color type mink in Millbank Fur Farm; CBL, CDE, 

CMA, CPA, and CST are black, demi, mahogany, pastel, and stardust color type mink in CCFAR, respectively. 
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Figure 4.3 Unrooted consensus tree showing the genetic relationships among the six color types using the unweighted pair group method 

and the unbiased Nei’s genetic distance. The values at the nodes are the percentages of bootstrap values from 1,000 replications of 

resampling. The x-axis represents the genetic distances between color types. MBL= black color type mink in Millbank Fur Farm; CBL, 

CDE, CMA, CPA, and CST are black, demi, mahogany, pastel, and stardust color type mink in the Canadian Center for Fur Animal 

Research, respectively.   
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Figure 4.4 The scatterplots of discriminant analysis of principal components Each ellipse represents a cluster, and each dot represents an individual. Different 

clusters are separated by colors. MBL= black color type mink in Millbank Fur Farm; CBL, CDE, CMA, CPA, and CST are black, demi, mahogany, pastel, and 

stardust color type mink in CCFAR, respectively. a) The scatterplot of the first two linear discriminants (x and y-axis, respectively), which explained 41.23 and 

4.77% of the variation, respectively. Individual dot is a given color based on which cluster the individual is grouped to; b) The 3D scatterplot of the first three 

linear discriminants (x, y, and z-axis, respectively), which explained 41.23, 4.77, and 4.39% of the variation, respectively. Individual dot is a given color based on 

which cluster the individual is grouped to; and c) Scatterplot of the first two linear discriminants (x and y-axis, respectively). Different clusters are separated by 

colors and inertia ellipses labeled with a number. Individual dot is a given a color based on the individual color type. 
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Figure 4.5 The number of individuals from various color types in 40 assigned clusters inferred by discriminant analysis of principal 

components. MBL= black color type mink in Millbank Fur Farm; CBL, CDE, CMA, CPA, and CST are black, demi, mahogany, pastel, 

and stardust color type mink in the Canadian Center for Fur Animal Research, respectively. 
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Figure 4.6 The probability of membership of each sample in the 40 assigned clusters inferred by discriminant analysis of principal 

components. MBL= black color type mink in Millbank Fur Farm; CBL, CDE, CMA, CPA, and CST are black, demi, mahogany, pastel, 

and stardust color type mink in the Canadian Center for Fur Animal Research, respectively. 
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Figure 4.7 ADMIXTURE analyses of six color types American mink with cross‐validation error plot for K‐values from 2 to 75. 
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Figure 4.8 Admixture pattern of six color types American mink at K = 2, 3, 4, 6, 40, and 

75. MBL= black color type mink at Millbank Fur Farm; CBL, CDE, CMA, CPA, and CST 

are black, demi, mahogany, pastel, and stardust color type mink in the Canadian Center for 

Fur Animal Research, respectively.



 

91 

 

5CHAPTER 5. Identifying Selection Signatures for 

Immune Response and Resilience to Aleutian Disease 

in Mink Using Genotype Data1
  

 

5.1 Introduction 

Aleutian disease (AD) is one of the most severe diseases in mink farming, leading to 

significant financial losses to the mink industry due to its adverse influences on several 

economically important traits. This disease is caused by the Aleutian mink disease virus 

(AMDV) and has been determined to be an immune complex disease. Specific antibodies 

produced against AMDV fail to neutralize the virus and instead form complexes with the 

infectious virus, resulting in damage to the mink’s glomerular and arterial systems (Porter 

et al. 1969; Cho & Ingram 1973; Porter et al. 1973; Stolze & Kaaden 1987). Thus, the 

higher the levels of anti-AMDV antibodies produced, the more severe the infection caused 

by AD (Porter et al. 1972; Kanno et al. 1993; Bloom et al. 1994; Aasted et al. 1998; Bloom 

et al. 2001). Meanwhile, AD infection was also found to cause adverse influences on body 

weight growth (Porter et al. 1982), feed intake (Elzhov et al. 2016; Jensen et al. 2016b), 

pelt quality (Farid & Ferns 2011), and female reproductive performance (Henson et al. 

1962; Reichert & Kostro 2014). Thus, anti-AMDV antibody level, growth, feed efficiency, 

and female reproductive performance were suggested as AD-resilience indicator traits in 

previous studies (Hu et al. 2021; Hu et al. 2022). Several methods, including vaccination, 

 
1 A version of this Chapter will be submitted to the Frontiers in Genetics by Hu et al. 2024. Identifying 

Selection Signatures for Immune Response and Resilience to Aleutian Disease in Mink Using 

Genotype Data. 
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medicine, and culling strategy, have been attempted to control AD, but these measures have 

been largely in ineffective. Consequently, mink farmers have resorted to select AD-resilient 

mink based on AD tests and/or mink performance in AD-resilience indicator traits, such as 

body size, pelt quality, and reproductive performance to manage populations in the 

presence of AD. Several mink farms in the Canadian province of Nova Scotia select AD-

resilient mink using the iodine agglutination test and assessments of the productive 

performance (Farid & Ferns 2017). Similarly, Some AD-positive mink farms in North 

America and Europe have applied enzyme-linked immunosorbent assay tests (ELISA) to 

select AD-resilient mink (Knuuttila et al. 2009; Farid & Rupasinghe 2016; Farid et al. 

2018).  

Selection could cause changes in the patterns of genetic variation among selected loci and 

linked neutral loci. These patterns are termed selection signatures, and they can be used to 

identify loci subject to the selection (Kreitman 2000; Qanbari & Simianer 2014; Ma et al. 

2015). Therefore, identifying the signatures would be helpful for detecting genes and 

biological processes related to AD resilience. Characterizing the genomic regions 

associated with mink response to AD could aid in the development of breeding programs 

focus on improving AD-resilience in mink farms. Several statistical methods have been 

proposed for detecting selection signatures in livestock. The pairwise fixation index (Fst) 

(Weir & Cockerham 1984), nucleotide diversity (θπ) (Nei & Li 1979), and cross-population 

extended haplotype homozygosity (XP-EHH) (Sabeti et al. 2007) are the three methods 

commonly used to detect selection signatures, where the Fst and θπ are based on the genetic 

diversity and genetic differentiation, and XP-EHH is based on the frequency of extended 

haplotypes between two subpopulations. 
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Advancements in next-generation sequencing technologies, high-density single nucleotide 

polymorphism (SNP) arrays, and bioinformatics tools, have now significantly improved 

the detection of selection signatures in livestock species (Bertolini et al. 2018). For 

example, studies using selection signatures have identified several genes associated with 

disease resistance/susceptibility in cattle (Li et al. 2020; Saravanan et al. 2021). Xu et al. 

(Xu et al. 2020) conducted a signature of selection study and detected several genes related 

to susceptibility of swine to respiratory disease. For AD in American mink, Karimi et al. 

(2021a) detected 99 genomic regions associated with the response to AD infection using 

genotyping by sequencing (GBS) data and five phenotypes (anti-AMDV antibody titer, 

mortality, AD symptoms in the kidneys, and virus clearance at two different times) from 

225 experimental black American mink that were inoculated with AMDV. These regions 

encompassed 63 genes involved in immune response, liver development, and reproduction 

(Karimi et al. 2021a). However, signature of selection study focusing on the response of 

mink to AD had not been conducted using genotype data in conjunction with AD-resilience 

indicator traits (e.g., growth, feed efficiency, pelt quality, and reproduction) for mink reared 

in an AD-positive commercial farms. It has been reported that mink with darker color types 

seem to be more resilient to AMDV than lighter color types (Ellis 1996). A signature of 

selection study is a potential approach to study the performances of different color types of 

mink against AD infection. Therefore, the objectives of this thesis chapter were to use 

genotype data and different color types of American mink to 1) detect the selection 

signatures associated with immune response, general resilience, and female reproductive 

performance resilience to AD; 2) identify the genes related to immune response, general 

resilience, and female reproductive performance resilience to AD; and 3) investigate 
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whether mink of different color types exhibit distinct respond to AD, and exploring 

potential differences in AD resilience mechanisms among color variations. 

5.2 Materials and Methods 

This study was approved by the Dalhousie University Animal Care and Use Committee 

(certification#: 2018-009 and 2019-012). All the mink were farmed following the Code of 

Practice for the Care and Handling of Farmed Mink guidelines from the Canada Mink 

Breeders Association (Turner P et al. 2013).   

5.2.1 Animals and Sampling 

All the individuals (n=1,411) studied in this research were from the Canadian Centre for 

Fur Animal Research (CCFAR) at Dalhousie University, Faculty of Agriculture (Truro, 

Nova Scotia, Canada) from 2013 to 2021. In 2013, an outbreak of AD occurred at CCFAR, 

resulting in most of the mink were dead or culled in the barn. The exact source of outbreak 

was not determined definitively, but it was suspected that AMDV-contaminated feed and 

contact with wild animals carrying AMDV were the most likely causes. Thus, within three 

years of the disease outbreak, about 150 mink (120 dams and 30 sires) from six AD-positive 

farms in Nova Scotia (Canada), which were believed to be resilient to AD and have been 

phenotypically selected for AD-resilient mink for many years, were introduced and used 

as breeders at CCFAR. AD was first identified in the province of Nova Scotia in Canada in 

1941 (Agriculture_and_Marketing_of_Nova_Scotia_Government 1998), and many mink 

farms in the province started selecting for AD-resilient mink based on specific AD-resilient 

traits (Farid & Ferns 2017). The studied mink included five different color types: black (n 

= 177), demi (n = 542), mahogany (n = 527), pastel (n = 152), and stardust (n = 13). The 
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color type of each individual was identified by experienced technicians at CCFAR at 

weaning. 

5.2.2 Aleutian Disease Tests 

Counterimmunoelectrophoresis (CIEP) and antigen-based enzyme-linked immunosorbent 

assay tests (ELISA-G) were used to measure the immune response of studied mink to AD 

virus exposure. The tests were conducted using established protocols described by Hu et 

al. (2021). In brief, blood samples of the studied mink were collected in mid-November 

before selecting breeders and in mid-February before mating from 2013 to 2021. The blood 

samples were sent to the Animal Health Laboratory at the University of Guelph (Ontario, 

Canada) and Middleton Veterinary Services (Nova Scotia, Canada) for CIEP and ELISA-

G tests, respectively. The CIEP tests were used to detect the existence of anti-AMDV 

antibodies, and the results were recorded as 0 (negative: none or extremely low antibody 

level detected) or 1 (positive: detectable antibody level). The ELISA-G tests were applied 

to measure amounts of antibodies against AMDV using optical density, and the test results 

included eight categories with 1-point increments from 0 (none or extremely low level of 

antibody) to 7 (extremely high antibody level).  

5.2.3 Growth and Feed Efficiency Measurement 

Kleiber ratio (KR) and feed conversion ratio (FCR) were used to measure the growth and 

feed efficiency of the studied mink, respectively. The body weights of studied individuals 

were collected using the established protocols described by Do et al. (2021). Briefly, the 

body weight (BW) of the mink were measured at both birth and weaning (around six weeks 

after birth) and every three weeks from 13 to 28 weeks after birth. The average daily gain 
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(ADG) and Mid-test metabolic BW (BW0.75) were calculated by the following equations, 

respectively: 

𝐴𝐷𝐺 =
𝐹𝑖𝑛𝑎𝑙 𝐵𝑊 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐵𝑊

Number of days on the test
 , 

 

𝐵𝑊0.75 = (
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐵𝑊 + 𝐹𝑖𝑛𝑎𝑙 𝐵𝑊

2
)

0.75

 , 

where final BW was the BW on the last day of the feeding trial, and initial BW was the BW 

at 13 weeks of age. The Kleiber ratio (KR) was calculated using the following equation: 

𝐾𝑅 =
𝐴𝐷𝐺

𝐵𝑊0.75. 

The feed intake data of the studied mink were collected using the established protocols 

described by Davoudi et al. (2022). Briefly, mink were raised individually in separate 

cages, and feed was distributed daily to cages. The daily feed intake (DFI) of each mink 

was measured by calculating the difference between the amount of feed left over and the 

feed provided. The individual DFI records obtained during the experiment were averaged 

to obtain the individual average daily feed intake (ADFI).  The FCR was calculated using 

the following equation: 

𝐹𝐶𝑅 =
𝐴𝐷𝐹𝐼

𝐴𝐷𝐺
 . 

 

5.2.4 Pelt Quality Evaluation 

Live grading of overall pelt quality (QUA) was performed to measure the qualities of the 

mink pelt when they were alive. The gradings were conducted based on the North American 
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Fur Auctions live animal grading procedure by a skilled technician. The gradings focused 

on checking the color consistency, fur roughness, and overall gloss. The QUA was scored 

into three categories from 1 (poor) to 3 (best).  

5.2.5 Female Reproductive Performance Measurement 

Female reproductive performance was measured and recorded by the technicians in 

CCFAR during each annual reproduction cycle from 2006 to 2021. In this study, the 

number of newborn kits that survived 24 hours after birth was used to quantify the 

reproduction performance of dams under AMDV exposure.  

5.2.6 Animal Grouping 

Studied individuals were grouped into pairwise subgroups based on their immune response, 

general resilience, and female reproduction performance. Studied individuals with both 

CIEP and ELISA-G test results were grouped into low or high immune response subgroups 

based on their CIEP and ELISA-G test results. Individuals with zero ELISA-G scores and 

negative CIEP results were grouped into low immune response subgroups, and individuals 

with 5-7 ELISA-G scores and positive CIEP results were grouped into high immune 

response subgroup (Table 5.1). In this study, we not only grouped the entire populations of 

individuals into low or high immune response subgroups but also the individuals within 

the same color type, which included black, demi, mahogany, and pastel color types (Table 

5.1). For resilience indicator traits, two methods were used to group CIEP-positive 

individuals into pairwise groups (Table 5.2). Studied individuals with positive CIEP results 

that had BW, feed intake, and pelt quality records, were grouped into resilient or susceptible 

subgroups. The CIEP-positive individuals, which had bottom 20% FCR (14.38 to 22.49), 

top 20% KR (7.14 to 9.17), and score 3 (high pelt quality) for QUA were grouped into the 
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resilient subgroup, and the CIEP positive individuals, which had top 20% FCR (41.46 to 

72.28), bottom 20% KR (2.19 to 4.41), and score 1 (low pelt quality) for QUA, were 

grouped into the susceptible subgroup (Table 5.2). In the meantime, studied CIEP-positive 

dams, that had records for the number of newborn kits that survived 24 hours after birth, 

were grouped into low or high female reproductive performance subgroups. The CIEP-

positive dams with less than four newborn kits that survived 24 hours after birth were 

grouped into the low reproductive performance subgroup, and the CIEP-positive dams that 

had more than nine newborn kits that survived 24 hours after birth were grouped into the 

high reproductive performance subgroup (Table 5.2). 

5.2.7 Sample Collection and Genotyping 

Tongue tissues from studied individuals were collected before pelting. DNeasy Blood and 

Tissue Kit (Qiagen, Hilden, Germany) was used to extract the DNA from the tongue tissue 

based on the manufacturer’s instructions. NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies Inc., Wilmington, DE) was applied to measure the quantity and 

quality of extracted DNA samples. The 260/280 nm readings for all samples ranged from 

1.7 to 2.0. All samples had a final concentration of 20 ng, and finally were genotyped by 

an Axiom Affymetrix Mink 70K SNP panel (Neogen, Lincoln, Nebraska, USA) (Do et al. 

2024). 

5.2.8 Animals and SNP Quality Control 

PLINK (Purcell et al. 2007) was used to conduct animal and SNP data quality control. 

SNPs that had minor allele frequency lower than 1%, call rate lower than 90%, excess of 

heterozygosity higher than 15%, Mendelian error frequency larger than 5%, and were out 

of Hardy-Weinberg equilibrium with very low probability (1 × 10-5), were excluded from 



 

99 

 

the analyses. Meanwhile, mink, that had a call rate lower than 90%, were also removed 

from the dataset. After the quality control, 26,406 SNPs and 1,411 animals remained for 

further analyses.  

5.2.9 Methods for Detection of Selection Signatures 

Three methods, including pairwise fixation index (Fst) (Weir & Cockerham 1984), 

nucleotide diversity (θπ) (Nei & Li 1979), and cross-population extended haplotype 

homozygosity (XP-EHH) (Sabeti et al. 2007), were performed to detect the selection 

signatures. The Fst and θπ methods directly utilize the SNP genotype, while the XP-EHH 

method uses phased data. The Fst analysis was conducted for each SNP based on the 

method proposed by Weir and Cockerham (1984) using VCFtools software (Danecek et al. 

2011). The Z-transformation was performed using the scale function in the R program 

(Team 2022) to normalize the Fst values. All negative Fst values were set to zero. The Fst 

values of all SNPs were ranked, and the SNPs with the top 5% Fst values were considered 

candidate selection signatures. The θπ analysis was conducted for each SNP based on the 

method proposed by Nei and Li (1979) using VCFtools software (Danecek et al. 2011). 

The θπ ratios were computed as θπ(subgroup1)/ θπ(subgroup2) for all pairs of groups and 

were then log2-transformed (log2 (θπ ratios)). The SNPs with the top 5% θπ ratio values 

were considered candidate selection signatures. The XP-EHH approach was calculated for 

each SNP using Selscan software (Torres et al. 2018). The missing genotypes were 

removed using VCFtools software (Danecek et al. 2011), and the genotypes were phased 

using Beagle software (Browning et al. 2018) because Selscan software can only handle 

the phased genotypes without missing genotypes. The original obtained XP-EHH values 

were normalized using the norm function within the Selscan software. Then, the pnorm 
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function in the R program was applied to calculate the p-values of the normalized XP-EHH 

values. The p-values of the normalized XP-EHH values were log-transformed, and the 

SNPs with -log(p-value) more than two were considered as candidate selection signatures. 

Only the SNPs detected as candidate selection signatures by at least two methods were 

used for gene annotation, gene ontology, and functional analyses.   

5.2.10  Gene Annotation, Gene Ontology, and Functional Analysis 

The potential selection regions were defined by extending 350 kb both upstream and 

downstream of the candidate selection signatures. The regions were defined based on the 

previous study that suggested that linkage disequilibrium (r2 < 0.2) in the current studied 

American mink population did not exceed 350 kb (Hu et al. 2023). The gene annotation 

was conducted using the Bedtools software (Quinlan 2014) referring to the genome 

assembly of Neogale vison  (Karimi et al. 2022). The gene ontology (GO) terms, including 

biological process (GO:BP), cellular component (GO:CC), and molecular function 

(GO:MF), were assigned to annotated genes using PANTHER 14.1 (Thomas et al. 2003). 

The overrepresentation tests of annotated genes were conducted using Fisher’s exact test 

and adjusted by the false discovery rate (FDR) correction, and the terms with FDR adjusted 

p-value (q-value) <0.05 were considered as the overrepresented terms. Meanwhile, the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted 

using the clusterProfiler package (Yu et al. 2012) in the R program with FDR control.  
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5.3 Results 

5.3.1 Selection Signatures for Immune Response Trait 

The genome-wide distribution of selection signatures associated with the immune response 

trait was assessed using Fst, θπ ratio, and XP-EHH. The results are presented in Figure 5.1, 

displaying the distribution across all autosomal chromosomes. Additionally, Figure 5.2 

illustrates the selection signatures that overlap across the three methods. Supplementary 

dataset 1 presents the SNPs (chromosome number and location on the chromosome) 

detected as candidate selection signatures by each method, and the SNPs detected as 

candidate selection signatures by at least two methods. When considering the entire 

population of individuals, a total of 619 SNPs were detected as candidate selection 

signatures by at least two methods. Notably, 33 SNPs were detected by all three methods, 

and were considered as strongly selected candidates for immune response trait (Figure 5.2). 

Furthermore, when analyzing individuals within specific color types, 444, 512, 385, and 

335 were detected as candidate selection signatures by at least two methods for black, demi, 

mahogany, and pastel color type mink, respectively. In addition, 57, 31, 32, and 45 SNPs 

were detected by all three methods for black, demi, mahogany, and pastel color type mink, 

respectively, highlighting strong selection signature candidates specific to the immune 

response trait within each color type (Figure 5.2). 

The candidate genes annotated from the selection signatures for immune response trait in 

the whole population and different color types are listed in Supplementary dataset 1. Figure 

5.3 shows the overlapped annotated candidate genes among the whole population and 

different color types for immune response trait. A total of 1,611 candidate genes were 

annotated from the selection signatures detected from the whole population (Figure 5.3 and 
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Supplementary dataset 2). For black, demi, mahogany, and pastel color type individuals, 

1,355, 1,645, 1,436, and 1,042 candidate genes were annotated, respectively (Figure 5.3). 

Among the candidate genes annotated from the whole population and different color types, 

many genes were found to be associated with the AD-characterized phenotypes, including 

immune system process, growth, pigmentation (except for the black color type), 

reproduction, and response to stimulus (Supplementary dataset 2, Figure 5.3 and 5.4). Table 

5.3 provides a list of genes specifically related to immune response trait for all color types. 

However, no common gene was detected among all color types for immune response trait 

(Figure 5.3). 

Figure 5.4 presents the functional classifications of candidate genes related to the immune 

response trait. The genes annotated from the whole population, black, demi, mahogany, 

and pastel color type individuals were classified into 17, 18, 17, 20, and 18 GO:BP 

categories, respectively, where the top four biological processes were cellular process, 

metabolic process, biological regulation, and response to stimulus in all cases (Figure 5.4). 

The cellular anatomical entity and protein-containing complex were the two cellular 

components detected from the whole population and all color types. Regarding the GO:MF 

classifications, both analyses for whole population individuals and black color type 

individuals detected 11 GO:MF, while analyses for demi, mahogany, and pastel color type 

individuals detected 12 GO:MF. The top four GO:MF categories for the whole population 

and all color types were binding, catalytic activity, transcription regulator activity, and 

molecular transducer activity (Figure 5.4).  

Table 5.4 (GO:BP) and Table 5.5 (GO:CC and GO:MF) present the overrepresentations of 

candidate genes related to the immune response trait. A total of 27, 18, 50, 26, and 18 
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significant (q-value<0.05) overrepresented GO enrichment terms were detected from the 

whole population, black, demi, mahogany, and pastel color type individuals, respectively 

(Tables 5.4 and 5.5). Among all detected significant (q-value<0.05) overrepresented GO 

enrichment terms, some of them were commonly detected in the whole population and all 

color types (Tables 5.4 and 5.5), including two GO:BP (detection of chemical stimulus 

involved in sensory perception of smell (GO:0050911) and sensory perception of smell 

(GO:0007608)), three GO:CC (cytoplasm (GO:0005737), intracellular anatomical 

structure (GO:0005622), and organelle (GO:0043226)), and one molecular function 

(olfactory receptor activity (GO:0004984)). While some were only detected in a certain 

color type of mink or the entire population. For example, the biological process of adaptive 

immune response (GO:0002250) and system development (GO:0048731) were only 

detected for the whole population. Several metabolize-related GO:BP (e.g., heterocycle 

metabolic process (GO:0046483), macromolecule metabolic process (GO:0043170), and 

nitrogen compound metabolic process (GO:0006807)) and several GO:CC (e.g., envelope 

(GO:0031975), protein-containing complex (GO:0032991), and synapse (GO:0045202)) 

were only detected in demi color type mink. Two unique GO:MF, catalytic activity 

(GO:0003824) and hydrolase activity (GO:0016787), were only detected in mahogany 

color type mink.  

5.3.2 Selection Signatures for General Resilience and Female 

Reproductive Performance Traits  

The genome-wide distribution of selection signatures detected by Fst, θπ ratio, and XP-

EHH for general resilience and female reproductive performance traits across all 14 

chromosomes are presented in Figure 5.5, and the overlapped selection signatures are 

presented in Figure 5.6. Supplementary dataset 3 presents the SNPs detected as candidate 
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selection signatures by each method and the SNPs detected as candidate selection 

signatures by at least two methods. For general resilience trait, 569 SNPs were detected as 

candidate selection signatures by at least two methods, and 57 SNPs were detected as 

candidate selection signatures by all three methods (Figure 5.6). For female reproductive 

performance trait, 526 SNPs were detected as candidate selection signatures by at least two 

methods, and 16 SNPs were detected as candidate selection signatures by all three methods 

(Figure 5.6). 

The candidate genes annotated from the candidate selection signatures for general 

resilience and female reproductive performance traits are listed in Supplementary dataset 

3, and the functional classifications of candidate genes are shown in Figure 5.7. A total of 

1,933 genes were annotated from the selection signatures for general resilience trait 

(Supplementary dataset 2). Several annotated genes were related to AD resilient traits, 

including growth, immune system process, pigmentation, and reproduction. The functional 

classifications of the annotated genes resulted in 18 GO:BP, two GO:CC, and 11 GO:MF. 

The annotation of selection signatures related to the female reproductive performance trait 

resulted in a total of 1,538 genes (Supplementary dataset 2).  Except for ten genes related 

to reproduction, several other genes were related to some AD-resilience indicator traits, 

including growth, immune system process, and pigmentation. The annotated genes were 

classified into 18 GO:BP, two GO:CC, and 11 GO:MF. 

The overrepresentations of candidate genes related to the general resilience and female 

reproductive performance traits are presented in Table 5.6. For general resilience trait, nine 

significant (q-value<0.05) overrepresented GO:BP were detected that were involved 

primarily in development, cellular process, and sensory perception of smell. In the 
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meantime, nine GO:CC (mostly related to organelle) and three GO:MF (related to olfactory 

receptor activity or binding) were significant (q-value<0.05) in the overrepresentation tests 

of candidate genes related to the general resilience. The overrepresentation tests of 

candidate genes from female reproductive performance traits resulted in ten significant (q-

value<0.05) overrepresented GO:BP (mostly related to development and detection of 

stimulus), six significant overrepresented GO:CC (mostly related organelle), and four 

significant overrepresented GO:MF (related to olfactory receptor activity or binding). 

5.3.3 Common Genes Among Studied Traits and KEGG Pathways 

The overlapped genes among immune response, general resilience, and female 

reproductive performance traits are presented in Figure 5.8. In brief, 1,347, 1,680, and 

1,277 unique genes were annotated from the selection signatures related to immune 

response, general resilience, and female reproductive performance traits, respectively. 

Sixteen genes, including ARHGAP19 (chr2: 209,800,177-209,812,754 bp), COL14A1 

(chr4: 19,536,084-19,755,397 bp), DEPTOR (chr4: 19,803,040-19,933,557 bp), EXOSC1 

(chr2: 209,917,603-209,928,479 bp), FAM135B (chr4: 4,922,384-4,961,329 bp), FRAT1 

(chr2: 209,829,018-209,831,565 bp), FRAT2 (chr2: 209,839,939-209,842,216 bp), 

LOC122905718 (chr4: 5,215,903-5,216,010 bp), MMS19 (chr2: 209,938,058-209,971,536 

bp), MRPL13 (chr4: 19,501,767-19,518,965 bp), PGAM1 (chr2: 209,910,223-209,917,518 

bp), PTCHD4 (chr1: 94,047,590-94,230,349 bp), RRP12 (chr2: 209,866,295-209,895,940 

bp), TBX18 (chr1: 44,912,005-44,922,875 bp), UBTD1 (chr2: 209,972,082-210,024,677 

bp), and ZDHHC16 (chr2: 209,928,631-209,937,825 bp), were detected from all three 

studied traits. 
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The significant (q<0.05) KEGG pathways of candidate genes from immune response, 

general resilience, and female reproductive performance traits are listed in Table 5.7. For 

immune response trait, only one significant (q<0.05) pathway, the longevity regulating 

pathway, was detected. For female reproductive performance trait, one significant (q<0.05) 

pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, was detected. 

No significant (q<0.05) KEGG pathway was detected for general resilience trait. 

5.4 Discussion  

The failure to control AD by culling strategy, immunoprophylaxis, and medical treatment 

resulted in the selection of AD-resilient mink based on the diagnostic tests or individual 

production performances. Although the phenotypic selection of AD-resilient mink is 

conducted in many AD-positive mink farms, the genomic architecture of AD resilience is 

still unclear, which might influence the effectiveness of selecting AD-resilient mink. In this 

study, genotypes from Axiom Affymetrix Mink 70K panel and three common methods (Fst, 

θπ, and XP-EHH) were applied to detect the selection signatures related to immune 

response, general resilience, and female reproductive performance of farmed American 

mink under AMDV exposure. In brief, 1,611, 1,933, and 1,538 genes were annotated from 

the 619, 569, and 526 selection signatures detected from immune response, general 

resilience, and female reproductive performance traits, respectively.  Although more than 

a thousand genes have been annotated as potential candidates for these traits, many genes, 

such as the identified LOC122904335, LOC122905665, and LOC122904336 genes, were 

novel genes of unknown function in mink; thus, the discussions were focused on the genes 

with available information in the existing literature. Functional enrichment analyses 

revealed that some annotated genes might play an important role in the immune system 
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process, growth, reproduction, pigmentation, and sensory perception and detection of 

smell. 

5.4.1 Immune Responses 

A total of 1,611 genes were detected to be related to the immune response trait by 

considering the whole population (Supplementary dataset 2). Some of these annotated 

genes were found to be related to the immune system process (Figure 5.4, Tables 5.4 and 

5.5). A total of 23 genes, including CCL26, CD28, CGAS, DEF6, EPOR, FAS, FYB1, 

GGT1, HIC2, IL16, JAK3, MEIS1, MFAP3, PATZ1, RUNX2, SHFL, SIGLEC15, THEMIS, 

TNFRSF21, TOX, TREM2, YES1, and ZNF572, were related to immune system process, 

which might have important roles in immune-mediated responses to AMDV infection. 

Three genes, including TNFRSF21 (chr1: 93,535,621-93,549,929 bp), CCL26 (chr4: 

10,918,021-10,922,028 bp), and TREM2 (chr1: 87,946,316-87,950,960 bp), are related to 

inflammatory processes (Stubbs et al. 2010; Santer et al. 2012; Liu et al. 2020b). This may 

be due to several inflammations, which include interstitial nephritis, myocarditis, hepatitis, 

splenitis, meningoencephalitis, pneumonia, glomerulonephritis, and arteritis, caused by 

AD infection (Jepsen et al. 2009). Four genes, SIGLEC15 (chr3:151,209,875-151,221,497 

bp), JAK3 (chr6: 213,007,629-213,025,411 bp), DEF6 (ch1: 117,504,375-117,525,807 bp), 

and FAS (chr2: 164,464,382-164,489,036 bp), were found to be related to autoimmune 

disorders in humans (Hsu et al. 2012; García-Bermúdez et al. 2015; Serwas et al. 2019; 

Läubli & Varki 2020); and AD is defined as an immune complex-mediated disorder disease 

in mink (Bloom et al. 1988). Three genes, IL16 (chr13: 150,353,853-150,448,017 bp), 

THEMIS (chr1: 73,061,569-73,141,431 bp), and CD28 (chr3: 15,437,373-15,465,940 bp),  

were found to be related to T-cell proliferation (June et al. 1987; Wilson et al. 2004; Fu et 
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al. 2009), and the TOX (chr4: 75,470,800-75,728,160 bp) gene was detected to be a crucial 

transcription factor involved in the exhaustion of CD8+ T cells (Seo et al. 2019). The 

detections of those genes might be related to the proliferation of CD8+ T cells after AD 

infection, as CD8+ T cells were found to double in numbers during the development of AD 

(Aasted 1989). The EPOR (chr6: 216,150,503-216,156,409 bp) gene was discovered to be 

associated with the production of red blood cells, and severe anemia was observed in AD-

infected mink few months after infection (McGuire et al. 1979). The FYB1 (chr1: 

286,138,312-286,169,159 bp) gene was found to be related to thrombocytopenia (Levin et 

al. 2015), which is one of the typical symptoms of AD infection (Gordon et al. 1967). The 

CGAS (chr1: 114,736,330-114,760,223 bp) gene was related to the production of the type 

I interferons and activation of inflammasomes (Wang et al. 2017; Decout et al. 2021); and 

the increase of the number of type I interferons was observed in the host during AD 

infection (Jensen et al. 2003). In the meantime, the overrepresentation tests on the 

annotated genes detected one significant (q<0.05) GO:BP, adaptive immune response 

(GO:0002250), related to immune response, where eight genes (IL12B, TNFRSF21, TAP1, 

JAK3, TAP2, C7, THEMIS, and C6) were involved.  

The immune-response-related genes detected in this study were different from the genes 

detected by a previous study (Karimi et al. 2021a). Seven genes, including TRAF3IP2, 

WDR7, SWAP70, TNFRSF11A, CBFB, IGF2R, and GPR65, were detected and related to 

the immune system process by Karimi et al. (2021a), and none of these genes were detected 

in the current study. Several potential reasons could lead to these discrepancies: 1) the use 

of different types of genomic data (GBS in their study vs. genotypes in this study), 2) the 

uses of different grouping methods, where kidney lesions levels and virus loads were also 
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considered in grouping animals in their study in addition to antibody titer; 3) the different 

ways the animal contracted AMDV (intranasal inoculation in their study vs. natural 

exposure in this study); and 4) the color types of studied mink (only black in their study 

vs. multiple colors in this study). 

A total of 20, 26, 19, and 9 genes were found to be related to the immune response in black, 

demi, mahogany, and pastel color type, respectively (Table 5.3). Most of the genes detected 

from a single-color type were unique from the rest of color types. For black, demi, and 

mahogany color types, there were few genes in common between the two color types, but 

no common gene was detected among all of them. For pastel, eight of nine detected genes 

(only TNFRSF1B gene was common with black color type) were unique from the rest of 

three darker color types, which might indicate pastel color type mink has different immune 

responses to AD infection compared with the other three darker color types of mink. This 

could be a potential reason to explain the previous finding by Ellis (Ellis 1996), where the 

mink with lighter color types were observed to be more susceptible to the AMDV than 

darker mink.  

The KEGG pathway analyses of annotated genes from the whole population or different 

color types detected only one significant pathway, the longevity regulation pathway in 

mahogany color type mink. The relationship between longevity and immune response is 

complex. On the one hand, a strong and well-functioning immune system is crucial for 

protecting an organism from infections and other threats, and therefore, may contribute to 

increased longevity (Xia et al. 2019). Furthermore, chronic inflammation and 

overactivation of the immune system have been linked to aging and age-related diseases, 

which can shorten lifespan (Rea et al. 2018). AD is defined as an immune complex disease 
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and can cause persistent and chronic infection in mink (Porter & Cho 1980; Stolze & 

Kaaden 1987). Thus, the detection of the longevity regulation pathway may be related to 

chronic infection and autoimmune disorders caused by AD. 

5.4.2 General Resilience 

Since the general response trait used in this study was a combination of three AD resilient 

traits, which include growth, feeding efficiency, and pelt quality, we focused on genomic 

regions containing genes related to these traits. A total of 1,933 genes were detected to be 

related to the general resilience trait (Supplementary dataset 3). Among them, several 

annotated genes were related to body growth. For example, PRKAG3 (chr3: 29,115,382-

29,120,999 bp), a regulatory subunit of the AMP-activated protein kinase, was detected in 

this study, and found to be related to body growth in several livestock species including 

swine (Ryan et al. 2012), sheep (Ibrahim 2015), and beef cattle (Li et al. 2012). The PLAG1 

(chr1: 58,588,578-58,696,784 bp) gene was also detected in this study. This gene is a 

positive regulator of insulin-like growth factor 2 (Voz et al. 2000; Van Dyck et al. 2007) 

that is known to affect body weight in both livestock (e.g., swine (Van Laere et al. 2003) 

and beef cattle (Huang et al. 2013)) and humans (Sandhu et al. 2003). The TMEM18 (chr1: 

8,940,691-9,011,524 bp) gene detected in this study has been reported to be associated with 

growth traits and obesity in rats (Rask-Andersen et al. 2012), cattle (Ma et al. 2012), and 

humans (Almén et al. 2010; Haupt et al. 2010). In the meantime, three genes, TPRA1 (chr6: 

165,580,535-165,594,267 bp), MCM2 (chr6: 165,600,097-165,621,492 bp), and Tbx18 

(chr1: 44,894,084-44,922,875 bp), which were all found to be related to embryo 

development in mice (Aki et al. 2008; Wehn & Chapman 2010; Xu et al. 2022), were also 

detected in this study indicating that AD may influence the early stages of mink 
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development, and therefore, influence growth. Meanwhile, several genes related to feed 

efficiency were also detected, for example, MRAP2 (chr1: 45,464,087-45,513,205 bp) and 

GLP1R (chr1: 85,852,947-85,884,385 bp). MRAP2 (Berruien & Smith 2020) and GLP1R 

(Dailey & Moran 2013) were found to play important roles in regulating appetite, and AD 

has been reported to cause adverse influences on the appetite of infected mink (Jensen et 

al. 2016b). The annotated gene, HCRTR2 (chr1: 101,039,715-101,147,858 bp), is an orexin 

receptor and plays an important role in feeding behaviour and balance of energy 

metabolism (Spinazzi et al. 2006; Belkina & Denis 2012). In addition, several annotated 

genes, including ESRRG (chr10: 14,353,012-14,953,383 bp), LZTFL1 (chr6: 208,512,050-

208,525,767 bp), and ELOVL4 (chr1: 49,176,236-49,208,238 bp), were reported to have 

key roles in regulating metabolism processes (Zhang et al. 2001; Alaynick et al. 2007; Wei 

et al. 2018). Besides the genes related to growth and feed efficiency, DCT gene (chr5: 

151,495,518-151,529,776 bp), related to pigmentation (Guyonneau et al. 2004) was also 

detected in this study, and this might be related to the hair depigmentation, which causes 

single white hairs in the fur (sprinklers) impacting the pelt quality of infected mink (Farid 

& Ferns 2011). 

5.4.3 Female Reproductive Performance 

A total of 1,538 genes were detected to be found to female reproductive performance 

(Figure 5.7, Table 5.6). Among them, several genes, including SLX4 (chr14: 18,318,274-

18,338,014 bp), TDRD6 (chr1: 92,984,166-92,997,290 bp), TACR3 (chr11: 104,943,216-

105,013,153 bp), SHOC1 (chr9: 21,365,597-21,443,498 bp), FBXW11 (chr1: 255,864,225-

255,951,567 bp), EPC2 (chr3: 82,648,215- 82,734,211 bp),  GSC  (chr13: 10,120,630-

10,122,701 bp), and DICER1 (chr3: 9,803,946-9,876,750 bp) were found to be related to 
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reproduction. SLX4 (Hamer & de Rooij 2018), TDRD6 (Vasileva et al. 2009), SHOC1 

(Zhang et al. 2019b), and FBXW11 (O’Doherty et al. 2018) play important roles in the 

development of germ cells. The gene TACR3 has a key role in reproductive functions, and 

loss-of-function mutations in this gene can lead to hypogonadotropic hypogonadism and 

infertility in humans (Guran et al. 2009; Topaloglu et al. 2009; Young et al. 2010). EPC2, 

GSC, and DICER1 genes are all important for development of early embryos in animals 

and have been related to the reproduction traits (e.g., litter size) in swine and cattle 

(Kaczmarek et al. 2020; Chen et al. 2022a; Chen et al. 2022b; Wang et al. 2022). The 

reproduction-related genes detected in this study were different from the genes detected in 

the signatures selection study for response to Aleutian disease by Karimi et al. (2021a). In 

that study, the genes FBXO5, CATSPER4, GOT2, and CatSperβ were annotated from the 

candidate selection regions and related to reproductive performance, which were not 

detected in our study. The different genomic data, grouping methods, and population 

structures could be the potential reasons that lead to the differences between these studies. 

The KEGG pathway analyses of annotated genes detected only one significant (q<0.05) 

pathway, the MAPK signaling pathway. The MAPK signaling pathway is involved in 

female reproductive performance by regulating the proliferation, differentiation, and 

apoptosis of granulosa cells in the follicle, ultimately affecting folliculogenesis and oocyte 

maturation (Zhang & Liu 2002; Sun et al. 2016; Huang et al. 2022). The MAPK pathway 

also plays a role in regulating luteinizing hormone secretion, which stimulates ovulation 

and formation of the corpus luteum (Kahnamouyi et al. 2018). Additionally, MAPK 

signaling has been implicated in regulating the menstrual cycle and endometrial function 

(Zhou et al. 2010; Makieva et al. 2018). In the meantime, previous studies found that 
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abnormal MAPK signaling can cause reproductive disorders (e.g., infertility and 

embryonic death) in swine (Prochazka et al. 2012; Prochazka & Nemcova 2019) and cattle 

(Sigdel et al. 2021; Tahir et al. 2021). The detection of the MAPK signaling pathway in 

this study may indicate that AD infection may lead to the disorder of the MAPK signaling 

pathway, therefore influencing female reproductive performance. 

5.4.4 Common Genes and Ontology Terms Among All Three Traits 

A total of 16 genes, ARHGAP19, COL14A1, DEPTOR, EXOSC1, FAM135B, FRAT1, 

FRAT2, LOC122905718, MMS19, MRPL13, PGAM1, PTCHD4, RRP12, TBX18, UBTD1, 

and ZDHHC16, were common to all three studied traits. Among them, five genes were 

found to be related to growth in livestock species in previous studies. For example, the 

gene ARHGAP19 was found to be related to body weight in yak (Jiang et al. 2022), the 

gene FAM135B was related to body weight growth in cattle (Serão et al. 2013; Seabury et 

al. 2017), the genes COL14A1 (Cardoso et al. 2018) and PTCHD4 (Doyle et al. 2020) were 

found to play important roles in muscle development in cattle, in swine the gene EXOSC1 

(Ropka-Molik et al. 2018; Dall'Olio et al. 2020) has been related to muscle growth, and 

PGAM1 was found to relate to the development of adipose tissue (Xing et al. 2019). 

Meanwhile, two genes, FAM135B (Serão et al. 2013; Seabury et al. 2017) and COL14A1 

(de Lima et al. 2020), were also found to be related to feed efficiency in cattle. In addition, 

several genes were found to be related to reproduction in previous studies. UBTD1 

(Kongmanas et al. 2015), ZDHHC16 (Uzbekova et al. 2021; Caetano et al. 2023), RRP12 

(Tiensuu et al. 2019), MMS19 (Tsai et al. 2017), and PGAM1 (Zhang et al. 2015) genes 

were found to be associated with the development of germ cells. The genes FAM135B and 

FRAT1 were detected to be associated with the reproductive performance in swine (Zhang 
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et al. 2019c) and cows (Melo et al. 2017), respectively. The Tbx18 gene was related to 

mice embryo development (Wehn & Chapman 2010). 

Two GO terms, olfactory receptor activity (GO:0004984) and detection of chemical 

stimulus involved in sensory perception of smell (GO:0050911), were significant (q<0.05) 

among all three studied traits. This may indicate that AD may influence sense of smell in 

mink although the relationship between AD and smell has not been reported in the 

literature. However, reduced appetite of infected mink seems to corroborate the loss of their 

sense of smell because the smell is vital for mink feeding behavior (Saunders 1988). In 

American mink, Adney et al. (Adney et al. 2022) speculated that individuals 

experimentally infected with SARS-CoV-2 may have altered sense of smell because they 

observed neutrophilic infiltrate in the olfactory epithelium. Thus, future studies could 

assess the condition of the olfactory epithelium of AD-infected mink to determine if 

infection could influence their sense of smell. 

5.5 Conclusion 

The detection of potential signatures of selection related to the response of American mink 

to AD using three common approaches (Fst, θπ, and XP-EHH) provides valuable insights 

into the genetic factors associated with the mink's immune response. The genes annotated 

from the candidate selection signatures were involved in immune system process, growth, 

reproduction, and pigmentation, all of which were associated with previously reported 

traits influenced by AD, including body weight, female reproductive performance, and pelt 

quality. In addition, the two significant olfactory-related GO terms indicated that the AD 

infection might cause loss of smell in mink, but a future study is encouraged to validate 

this conjecture by assessing the sense of smell of AD-infected individuals. Mink of 
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different color types were found to have different immune responses to AD infection based 

on the genes detected between them. In the meantime, mink of pastel color type seemed to 

have unique immune responses to AD infection compared with the minks of other three 

darker color types based on the common genes among all of the color types studied; 

however, future studies with more equal sample size in each color type and wider ranges 

of color types are needed to further investigate the potential different immune responses 

among mink of different color types.   

The detection of numerous potential loci underlying the selection for responses to AD 

infection in this thesis chapter indicated that genomic selection could be a feasible approach 

to reduce the formation of infectious immune complexes and the adverse influence caused 

by AD on growth, reproduction, and pelt quality. By incorporating the detected loci with 

the availability of the first Axiom Affymetrix Mink 70K panel, the mink industry could 

eradicate the adverse influences caused by AD by increasing the resilience of American 

mink to AD infection through genomic selection. 
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Table 5.1 The number of individuals from different color types of each subgroup in different Aleutian disease tests and the final dataset 

for detecting selection signatures for immune response to Aleutian mink disease virus infection in American mink. 

                   ELISA-G1 (0-7)                       CIEP2                   Immune response3   

Color types  Negative (0) Positive (5-7)  Negative Positive  Low High 

Black  67 23  12 78  10 19 

Demi  264 57  87 329  70 51 

Mahogany  244 40  50 258  39 37 

Pastel  42 31  14 70  11 25 

Stardust  5 3  1 8  1* 1* 

All  622 154  164 743  131 133 
1ELISA-G = AMDV-G based enzyme-linked immunosorbent assay test; 2CIEP = Counterimmunoelectrophoresis test; 3The individuals 

were used in the final dataset for detecting selection signatures for immune response to Aleutian mink disease virus infection. 

* No independent analysis was conducted for stardust color type individuals due to the small sample size. 

 

 

 

Table 5.2 The number of individuals with positive counterimmunoelectrophoresis test results in each subgroup of feed conversion ratio, 

Kleiber ratio, live pelt quality, general resilience performance, and female reproductive performance traits. 

Feed conversion ratio 
 

Kleiber ratio 
 

Pelt quality 
 

General resilience 

performance1  

Female reproductive 

performance2 

Bottom 20% 

(14.38-22.49) 

Top 20% 

(41.46-72.28)  

Bottom 20% 

(2.19-4.41) 

Top 20% 

(7.14-9.17)  

Score 

1 

Score 

3  
Resilient Susceptible 

 

Low litter 

size (1-4) 

High litter 

size (9-11) 

78 78  78 78  83 120  19 11  20 16 

1 The evaluation of individual general resilience performance based on feed conversion ratio, Kleiber ratio, and pelt quality.  
2 The measurement of female reproduction performance resilience (dams with positive counterimmunoelectrophoresis test only) based 

on the number of kits alive 24h after birth.  

1
1
6
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Table 5.3 Immune response related genes annotated from the selection signatures detected from different color types. 

Color type Genes 

Black 
ANKRD17, CEBPA, CTSH, CXCL6, CXCL8, FYB1, GAL, HAVCR1, IL1A, IL1F10, IL1RN, IL36RN, ITK, MARCHF1, 

MTURN, PATZ1, SIGLEC15, TMEM178A, TNFRSF1B, UBASH3A 

  

Demi 
C4A, CACTIN, CCL26, CCR9, CEBPA, CGAS, CTLA4, CXCR6, DEF6, FYN, HIC2, HSPD1, MPIG6B, NFAM1, 

RUNX1, RUNX2, SH2B2, SHFL, TNFRSF21, TRAF3IP2, TYK2, VEGFA, XCR1, YES1, ZBTB12, ZBTB37 

  

Mahogany 
ANKRD17, C4A, CASP3, CXCL6, CXCL8, EPOR, FYB2, HSPD1, MEIS1, MPIG6B, NFAM1, PLA2G2D, PLA2G2F, 

PLA2G5, RAG2, REL, TNFRSF11A, TNFRSF13C, ZBTB12 

  

Pastel AKIRIN1, BANK1, BCL10, UBASH3A, FGR, LPXN, SEC14L1, THEMIS2, TNFRSF1B 

1
1
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Table 5.4 Significant (q-value<0.05) biological processes detected from overrepresentation tests of candidate genes from the whole 

studied population and different color types of mink for immune response trait. 
Biological process (GO ID) All Black Demi Mahogany Pastel 

Adaptive immune response (GO:0002250) * - - - - 

Anatomical structure development (GO:0048856) * - * * * 

Anatomical structure morphogenesis (GO:0009653) * - - * - 

Bicellular tight junction assembly (GO:0070830) - - * - - 

Cell development (GO:0048468) * - * * - 

Cell differentiation (GO:0030154) * - * * - 

Cellular aromatic compound metabolic process (GO:0006725) - - * - - 

Cellular component morphogenesis (GO:0032989) - - - * - 

Cellular component organization (GO:0016043) - - * * - 

Cellular component organization or biogenesis (GO:0071840) - - * * - 

Cellular developmental process (GO:0048869) * - * * - 

Cellular metabolic process (GO:0044237) - - * - - 

Cellular nitrogen compound metabolic process (GO:0034641) - - * - - 

Detection of chemical stimulus (GO:0009593) * * * - * 

Detection of chemical stimulus involved in sensory perception 

(GO:0050907) 

* * * - * 

Detection of chemical stimulus involved in sensory perception of smell 

(GO:0050911) 

* * * * * 

Detection of stimulus (GO:0051606) * - - - - 

Detection of stimulus involved in sensory perception (GO:0050906) * * - - - 

Developmental process (GO:0032502) * - * * - 

Heterocycle metabolic process (GO:0046483) - - * - - 

Macromolecule metabolic process (GO:0043170) - - * - - 

Metabolic process (GO:0008152) - - * - - 

Mitochondrial gene expression (GO:0140053) - - * - - 

1
1
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Table 5.4 Continuous. 
Biological process (GO ID) All Black Demi Mahogany Pastel 

Multicellular organism development (GO:0007275) * - - * * 

Multicellular organismal process (GO:0032501) * - - - - 

Nitrogen compound metabolic process (GO:0006807) - - * - - 

Nucleobase-containing compound metabolic process (GO:0006139) - - * - - 

Organelle organization (GO:0006996) - - - * - 

Organic substance metabolic process (GO:0071704) - - * * - 

Positive regulation of multicellular organismal process (GO:0051240) - - - - * 

Primary metabolic process (GO:0044238) - - * * - 

Regulation of multicellular organismal process (GO:0051239) - - - - * 

Sensory perception of chemical stimulus (GO:0007606) * * * - * 

Sensory perception of smell (GO:0007608) * * * * * 

Small molecule catabolic process (GO:0044282) - * - - - 

System development (GO:0048731) * - - - - 

Tight junction organization (GO:0120193) - - * - - 

* The biological process was detected in this color type/population.  

- The biological process was not detected in this color type/population.  
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Table 5.5 Significant (q-value<0.05) cellular components and molecular functions detected from overrepresentation tests of candidate 

genes from the whole studied population and different color types of mink for immune response trait. 
Functional enrichment items All Black Demi Mahogany Pastel 

Cellular component (GO ID) 
     

Bicellular tight junction (GO:0005923) - - * - - 

Cell junction (GO:0030054) * - * - - 

Cellular anatomical entity (GO:0110165) - * * - * 

Collagen type IV trimer (GO:0005587) - - - - * 

Cytoplasm (GO:0005737) * * * * * 

Cytosol (GO:0005829) - * * - - 

Endomembrane system (GO:0012505) - - - - * 

Envelope (GO:0031975) - - * - - 

Intracellular anatomical structure (GO:0005622) * * * * * 

Intracellular membrane-bounded organelle (GO:0043231) - * * * - 

Intracellular organelle (GO:0043229) - * * * * 

Intracellular organelle lumen (GO:0070013) - - * - - 

Membrane-bounded organelle (GO:0043227) - * * * * 

Membrane-enclosed lumen (GO:0031974) - - * - - 

Mitochondrial matrix (GO:0005759) - - * - - 

Mitochondrion (GO:0005739) - - * - - 

Organelle (GO:0043226) * * * * * 

Organelle envelope (GO:0031967) - - * - - 

Organelle lumen (GO:0043233) - - * - - 

Protein-containing complex (GO:0032991) - - * - - 

Synapse (GO:0045202) - - * - - 

1
2

0
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Table 5.5 Continuous. 
Functional enrichment items All Black Demi Mahogany Pastel 

Tight junction (GO:0070160) - - * - - 

Molecular function (GO ID) 
     

Actin binding (GO:0003779) * - - - - 

Binding (GO:0005488) * * * * - 

Catalytic activity (GO:0003824) - - - * - 

Hydrolase activity (GO:0016787) - - - * - 

Identical protein binding (GO:0042802) - - * - - 

Olfactory receptor activity (GO:0004984) * * * * * 

Protein binding (GO:0005515) * * * * - 

Protein-containing complex binding (GO:0044877) * - - - - 

RNA binding (GO:0003723) - - * - - 

RNA polymerase II-specific DNA-binding transcription factor 

binding (GO:0061629) 

* - - - - 

* The cellular component or molecular function was detected in this color type/population.  

- The cellular component or molecular function was not detected in this color type/population

1
2
1
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Table 5.6 Significant (q-value<0.05) biological processes, cellular components, and molecular functions detected from 

overrepresentation tests of candidate genes for general resilience and female reproductive performance traits. 
Trait Term (GO ID) Annotation set 

General resilience Anatomical structure morphogenesis (GO:0009653) Biological process   
Cell migration (GO:0016477) Biological process   
Cell motility (GO:0048870) Biological process   
Cellular process (GO:0009987) Biological process   
Chemotaxis (GO:0006935) Biological process   
Detection of chemical stimulus involved in sensory perception of smell 

(GO:0050911) 

Biological process  

 
Locomotion (GO:0040011) Biological process   
Sensory perception of smell (GO:0007608) Biological process   
Taxis (GO:0042330) Biological process   
Cell projection (GO:0042995) Cellular component   
Cellular anatomical entity (GO:0110165) Cellular component   
Cytoplasm (GO:0005737) Cellular component   
Intracellular anatomical structure (GO:0005622) Cellular component   
Intracellular membrane-bounded organelle (GO:0043231) Cellular component   
Intracellular organelle (GO:0043229) Cellular component   
Membrane-bounded organelle (GO:0043227) Cellular component   
Organelle (GO:0043226) Cellular component   
Plasma membrane bounded cell projection (GO:0120025) Cellular component   
Binding (GO:0005488) Molecular function   
Olfactory receptor activity (GO:0004984) Molecular function   
Protein binding (GO:0005515) Molecular function  

Female reproductive 

performance  

Adaptive immune response (GO:0002250) Biological process  

 
Anatomical structure development (GO:0048856) Biological process   
Cellular process (GO:0009987) Biological process   
Detection of chemical stimulus (GO:0009593)  Biological process  

1
2
2
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Table 5.6 Continuous. 
Trait Term (GO ID) Annotation set 

Female reproductive 

performance 

Detection of chemical stimulus involved in sensory perception (GO:0050907) Biological process  

 
Detection of chemical stimulus involved in sensory perception of smell 

(GO:0050911) 

Biological process  

 
Developmental process (GO:0032502) Biological process   
Protein metabolic process (GO:0019538) Biological process   
Sensory perception of chemical stimulus (GO:0007606) Biological process   
Sensory perception of smell (GO:0007608) Biological process   
Cellular anatomical entity (GO:0110165) Cellular component   
Cytoplasm (GO:0005737) Cellular component   
Intracellular anatomical structure (GO:0005622) Cellular component   
Intracellular membrane-bounded organelle (GO:0043231) Cellular component   
Membrane-bounded organelle (GO:0043227) Cellular component   
Organelle (GO:0043226) Cellular component   
Binding (GO:0005488) Molecular function   
Olfactory receptor activity (GO:0004984) Molecular function   
Protein binding (GO:0005515) Molecular function   
Protein-arginine deiminase activity (GO:0004668) Molecular function  

1
2
3
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Table 5.7 Significantly (q-value<0.05) presented Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways of genes detected 

from signatures selection analyses of the immune response, general resilience, and female reproductive performance traits. 

Trait Pathway Genes q-value 

Immune response 

(Mahogany color 

type mink only) 

Longevity regulating pathway AKT3, ATF6B, CAMK4, CAT, CREB5, EHMT2, IGF1R, 

IRS1, PRKAA1, PRKAA2, RPTOR, SOD2 

0.049 

    

Female 

reproductive 

performance  

MAPK signaling pathway AKT3, ATF2, BRAF, CACNB1, CACNB4, CASP3, DUSP3, 

DUSP6, EGF, ERBB4, FGF17, FGF18, FGFR2, FLNB, 

IKBKB, KIT, KITLG, MAP2K5, MAP3K11, MAP3K2, MYC, 

NFKB1, PDGFRA, PPP3CA, PPP3CC, RELA, STK3 

0.015 

 

 

1
2
4
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Figure 5.1 Genome-wide distribution of selection signatures for immune response trait detected by Fst (Z-transformed), nucleotide 

diversity (θπ ratio), and XP-EHH across all autosomes in the whole population (All) and different color types (Black, Demi, Mahogany, 

and Pastel) individuals. The red lines of Z-transformed Fst and log2(θπ ratio) plots display the threshold levels of 5%. The red lines of 

XP-EHH plots display the threshold levels of -log(p-value)>2. 
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Figure 5.2 The overlapped selection signatures detected in the whole population (All) and different color types (Black, Demi, 

Mahogany, and Pastel) individuals among pairwise fixation index (Fst, top 5%), nucleotide diversity (θπ, top 5%), and cross-population 

extended haplotype homozygosity (XP-EHH, -log(p-value)>2) tests for immune response trait. 
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Figure 5.3 The Venn diagram shows the genes overlapping among the whole population (All) and different color types (Black, Demi, 

Mahogany, and Pastel) for immune response trait.
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Figure 5.4 The pie charts of functional classifications (including biology process, cellular component, and molecular function) of 

candidate genes under selection pressure in the whole population (All) and different color types (Black, Demi, Mahogany, and Pastel) 

individuals for immune response trait. 
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Figure 5.5 Genome-wide distribution of selection signatures for general resilience and female reproductive performance traits detected 

by Fst (Z-transformed), nucleotide diversity (θπ ratio), and XP-EHH across all autosomes from the whole population. The red lines of 

Z-transformed Fst and log2(θπ ratio) plots display the threshold levels of 5%. The red lines of XP-EHH plots display the threshold levels 

of -log(p-value)>2. 
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Figure 5.6 The overlapped selection signatures detected from the whole population individuals among pairwise fixation index (Fst, top 

5%), nucleotide diversity (θπ, top 5%), and cross-population extended haplotype homozygosity (XP-EHH, -log(p-value)>2) tests for 

general resilience and female reproductive performance traits. 
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Figure 5.7 The pie charts of functional classifications (including biology process, cellular component, and molecular function) of 

candidate genes under selection pressure in the whole population individuals for general resilience and female reproductive performance 

traits. 
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Figure 5.8 The overlapped genes among immune response, general resilience, and female reproductive performance traits. The common 

16 genes among all traits were ARHGAP19, COL14A1, DEPTOR, EXOSC1, FAM135B, FRAT1, FRAT2, LOC122905718, MMS19, 

MRPL13, PGAM1, PTCHD4, RRP12, TBX18, UBTD1, ZDHHC16. 
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6CHAPTER 6. Genome-wide Association Studies for 

Immune Response and Resilience to Aleutian Disease 

in Mink1 

 

6.1 Introduction 

Aleutian disease (AD) is one of the most challenging mink diseases causing high mortality 

and affects several economically important traits, including body weight growth (Porter et 

al. 1982), feed intake (Elzhov et al. 2016; Jensen et al. 2016b), pelt quality (Farid & Ferns 

2011), and female reproductive performance (Henson et al. 1962; Reichert & Kostro 2014). 

The Aleutian mink disease virus (AMDV) was identified as the causative agent of AD, 

which has been characterized as an immune complex disease due to the inability of the 

antibodies against AMDV to neutralize the virus effectively. As a result, the antibodies 

form complexes with the virus, leading to glomerular and arterial damage in mink (Porter 

et al. 1969; Cho & Ingram 1973; Porter et al. 1973; Stolze & Kaaden 1987). Thus, the 

higher the levels of anti-AMDV antibodies produced, the more severe the infection caused 

by AD (Porter et al. 1972; Kanno et al. 1993; Bloom et al. 1994; Aasted et al. 1998; Bloom 

et al. 2001). The inability of vaccination, medication, and culling tactics to control AD has 

compelled mink farmers to manage the disease by selecting AD-resistant mink based on 

 
1 A version of this Chapter will be submitted to the BMC Genomics by Hu et al. 2024. Genome-

wide Association Studies for Immune Response and Resilience to Aleutian Disease in Mink. 
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immune response, which is measured by AD tests, and/or some AD-resilience indicator 

traits. 

Disease resilience is an ability of an animal to mitigate the effects of disruptions and to 

maintain its performance under pathogen exposure (Albers et al. 1987; Bisset & Morris 

1996). Immune response, growth, feed intake, and female reproductive performance were 

suggested as AD-resilience indicator traits (Hu et al. 2021; Hu et al. 2022). Several mink 

farms in the Canadian province of Nova Scotia select AD-resilient mink based on the 

productive performance and the iodine agglutination test (IAT), which measures the level 

of gamma globulin (Farid & Ferns 2017). More recently, some AD-positive mink farms in 

North America and Europe utilized enzyme-linked immunosorbent assay tests (ELISA), 

which quantify the antibody levels against AMDV,  to select AD-resilient mink (Knuuttila 

et al. 2009; Farid & Rupasinghe 2016; Farid et al. 2018). Although the phenotypic selection 

of AD-resilient mink is conducted by some mink farms, the genetic architecture of AD 

resilience has not been widely explored.  

Immune response and disease resilience traits are usually quantitative traits with complex 

genetic architectures (VanRaden 2008; Leach et al. 2010; Thompson-Crispi et al. 2014; Hu 

et al. 2020; Doeschl-Wilson et al. 2021). In recent years, with the development of next-

generation sequencing technologies, high-density SNP arrays, and bioinformatic tools, 

genome-wide association studies (GWAS) have become increasingly popular for detecting 

genetic variants and genes associated with immune response and disease resilience traits 

in livestock. For example, in swine, several SNPs and genes were found to be related to 

the resilience to porcine reproductive and respiratory syndrome (Boddicker et al. 2014; 

Yang et al. 2016; Hickmann et al. 2021), Mycoplasma hyopneumoniae (Uemoto et al. 
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2021), and polymicrobial disease (Cheng et al. 2022) using GWAS. In cattle, several 

studies conducted GWAS and found several SNPs and genes associated with resilience to 

paratuberculosis (Alonso-Hearn et al. 2022). In poultry, Psifidi et al. (Psifidi et al. 2016) 

conducted GWAS to find the SNPs and genes associated with the immune response to four 

infectious diseases (infectious bursal disease, Marek’s disease, fowl typhoid, and fowl 

cholera) and resistance to Eimeria and cestode parasitism. However, no GWAS on mink 

immune response to AD and AD-resilience indicator traits has been conducted using 

genotype data. Therefore, the objective of this thesis chapter was to conduct GWAS to 

identify genomic regions and genes associated with immune response and feed-intake-

related resilience to AD in mink. 

 

6.2 Materials and Methods 

6.2.1 Ethics approval 

This study was approved by the Dalhousie University Animal Care and Use Committee. 

All mink used in this study were farmed following the Code of Practice for the Care and 

Handling of Farmed Mink guidelines from the Canada Mink Breeders Association (Turner 

P et al. 2013).   

6.2.2 Animals and Phenotypes 

In total, 1,411 mink from the Canadian Centre for Fur Animal Research (CCFAR) at 

Dalhousie University, Faculty of Agriculture (Truro, Nova Scotia, Canada) from 2015 to 

2020 were used. No persistent breeding program was employed in CCFAR during the study 

years (2013 to 2021). In 2013, an AD epidemic occurred at CCFAR whose exact origin 

could not be determined with certainty. However, the contamination of feed with AMDV 
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and contact with wild animals carrying AMDV were speculated to be the most probable 

reasons for the outbreak. 

The immune response of the studied mink to AD virus exposure was evaluated using two 

types of tests: antigen-based ELISA (ELISA-G) and IAT. These tests were performed 

according to established protocols described by Hu et al. (2021). Blood samples from the 

mink were annually collected in mid-November prior to selecting breeders and in mid-

February before mating from 2015 to 2020. The blood samples were sent to Middleton 

Veterinary Services (Nova Scotia, Canada) for ELISA-G testing. The ELISA-G tests 

measured antibody levels against AMDV through optical density, with results falling into 

eight categories scored in 1-point increments from 0 (none or extremely low) to 7 

(extremely high). The IAT tests were performed at CCFAR to evaluate the serum gamma 

globulin level in the serum, and the results were classified into four categories ranging from 

0 (low) to 4 (high). 

This study utilized established procedures outlined by Davoudi et al. (2022) to obtain data 

on feed intake of the examined mink. Specifically, individuals were reared in separate 

cages, and feed was distributed daily to cages. The daily feed intake (DFI) was determined 

by subtracting the amount of feed remaining from the total provided. Two measures of feed 

intake, namely day-to-day variation in feed intake (Varf) and proportion of off-feed days 

(DOF), were computed using the DFI data for each mink according to the methodology 

detailed by Putz et al. (2019). The Varf was quantified by taking the root mean square error 

of within-individual regression of DFI on day via ordinary least squares linear regression. 

The off-feed days were identified by utilizing a 5% quantile regression of DFI on age (in 

days) for all mink, and negative residuals below the regression line were deemed off-feed 
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days for each mink. Finally, the DOF was determined as the proportion of off-feed days to 

the total number of days on which DFI was recorded. 

6.2.3 Sample Collection and Genotyping 

Tongue tissue samples were obtained from the studied animals prior to pelting. The DNA 

from the tongue tissue was extracted using the DNeasy Blood and Tissue Kit (Qiagen, 

Hilden, Germany) in accordance with the manufacturer's instructions. The quality and 

quantity of the extracted DNA were evaluated using a NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE). The 260/280 nm 

readings for all samples were between 1.7 and 2.0. The final concentration of all samples 

was 20 ng, and genotyping was performed using the Axiom Affymetrix Mink 70K panel 

(Neogen, Lincoln, Nebraska, USA) (Do et al. 2024). 

6.2.4 Estimation of Breeding Values and De-regressed Breeding Values 

The estimated breeding values (EBV) for ELISA-G, IAT, DOF, and Varf traits were 

obtained from the study by Hu et al. (2022). The study employed a univariate animal model 

utilizing ASReml 4.1 software (Gilmour et al. 2018) to estimate the variance components 

of individual traits attributable to random additive genetic effects, permanent 

environmental effects, and maternal genetic effects. The model was as follows: 

𝒚 = 𝑿𝒃 + 𝒁𝒂 + 𝑾𝒑𝒆 + 𝑮𝒎 + 𝒆, 

where y is the vector of phenotypes; X, Z, W, and G are the incidence matrices relating 

phenotypes to fixed, random additive genetic, random permanent environmental, and 

random maternal genetic effects, respectively; b is the vector of fixed effects; a is the vector 

of random additive genetic effects, with 𝒂~𝑁(0, 𝑨𝜎𝑎
2) , where A is the numerator 

relationship matrix, and 𝝈𝒂
𝟐 is the additive genetic variance; pe is the vector of random 
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permanent environmental effects, with 𝒑𝒆~𝑁(0, 𝑰𝜎𝑝𝑒
2 ), where I is an identity matrix, and 

𝝈𝒑𝒆
𝟐  is the permanent environmental variance; m is the vector of random maternal genetic 

effects, with 𝒎~𝑁(0, 𝑨𝜎𝑚
2 ), where  𝝈𝒎

𝟐  is the maternal genetic variance; and e is the vector 

of residual effects, with 𝒆~𝑁(0, 𝑰𝜎𝑒
2), where 𝝈𝒆

𝟐 is the residual variance. Subsequently, the 

de-regressed EBVs (dEBVs) were obtained with the formula:  

𝑑𝐸𝐵𝑉 =
𝑔𝑖

𝑟𝑖
2, 

where 𝑔𝑖 is the EBV of the ith individual and 𝑟𝑖
2 is the square of estimated accuracies for 

the ith individual (Garrick et al. 2009), which were calculated using the DEBV calculator 

software (Salek Ardestani 2020, https://github.com/Siavash-cloud/DEBV_calculator). 

Only the individuals, which had a reliability of dEBV more than 0.1 for at least one studied 

trait, were kept in the dataset for the following analyses. The derived dEBVs for each trait 

were utilized as pseudo-phenotypes to perform the following GWAS analyses. 

6.2.5 Animals and SNP Quality Control 

The animals (n=1,356), which had reliability of dEBV more than 0.1 for at least one studied 

trait, and SNP data were filtered using PLINK (Purcell et al. 2007) before conducting 

analyses. The SNPs, which had minor allele frequencies lower than 5%, call rates lower 

than 90%, excess of heterozygosities higher than 15%, and Mendelian error frequencies 

larger than 5% and were out of Hardy-Weinberg equilibrium with very low probability (1 

× 10-6), and the mink, which had call rates lower than 90%, were excluded from the dataset.  

6.2.6 Genome-Wide Association Studies 

A single SNP univariate mixed linear animal model was used to perform the GWAS using 

the snp1101 software (Sargolzaei 2014). The model is described as follows: 

𝒚 = 𝝁 + 𝑿𝒎 + 𝑾𝒂 + 𝒆, 
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where y is the vector of the dependent variable (dEBV); 𝝁 is the population mean, m is the 

vector of the SNP marker effects; a is the vector of the residual polygenic effects with a 

normal distribution 𝒂~𝑁(0, 𝑮𝜎𝑎
2), where G is the realized relationship matrix constructed 

with markers (VanRaden 2008), and 𝜎𝑎
2 is the additive genetic variance; e is the vector of 

residual errors with a normal distribution 𝒆~𝑁(0, 𝑰𝜎𝑒
2), where I is an identity matrix, and 

𝜎𝑒
2 is the residual variance; and X and W are the incidence matrices of y and are related to 

m and a, respectively. 

The false-discovery rate (FDR) was employed as a correction to define the significant 

threshold (Glickman et al. 2014). The threshold p-value was calculated as 𝒑 = 𝐅𝐃𝐑 ∗
𝑁

𝐌
; 

the FDR was set to 0.01, N is the number of SNPs with p-value less than 0.01, and M refers 

to the total number of SNPs after quality control. The proportion of dEBV variance 

explained by significant SNPs was calculated according to the method proposed by Shim 

et al. (Shim et al. 2015). Quantile-quantile (Q-Q) plots and genomic inflation factor (Devlin 

& Roeder 1999) were applied to compare observed distributions of -log(p-values) to its 

expected distributions under the no association model for each trait. 

6.2.7 Gene Annotation, Gene Ontology, and Functional Analysis 

The positional candidate genes within the range of the significant SNPs ± 350 kb region 

were annotated using the Bedtools software (Quinlan 2014) referring to the genome 

assembly of Neogale vison (Karimi et al. 2022). The delimitation of the regions was based 

on a previous investigation that indicated that linkage disequilibrium (r2 < 0.2) within the 

present American mink population under study did not surpass 350 kb (Hu et al. 2023). 

The process of assigning gene ontology (GO) terms, which includes biological process 

(GO:BP), cellular component (GO:CC), and molecular function (GO:MF), to annotated 
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genes was carried out using PANTHER 14.1 (Thomas et al. 2003). The evaluation of the 

overrepresentation of annotated genes was performed through Fisher's exact test, and the 

FDR correction was used for adjustment. The terms with FDR-adjusted p-value (q) <0.05 

were considered significantly overrepresented. Additionally, the metabolic pathway 

analyses were conducted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database and utilizing the clusterProfiler package (Yu et al. 2012) in the R program with a 

significant threshold of q < 0.05. 

6.3 Results 

6.3.1 Summary Information of Phenotype Data and Genotype Data  

Descriptive statistics of the dEBVs for four studied traits are presented in Table 6.1. A total 

of 1,057, 1,319, 1,269, and 996 animals were used in the final GWAS for ELISA-G, IAT, 

DOF, and Varf, respectively. The coefficient of variation (CV) of studied traits ranged from 

4.4 to 93.5%, where IAT had the lowest CV, and Varf had the highest CV (Table 6.1). The 

distributions of the dEBVs for all studied traits are shown in Figure 6.1.  

Among the 62,375 SNPs, 3,180 SNPs are located on sex chromosomes and thus were 

removed from the analysis. A total of 4,396 SNPs were removed due to genotype rate < 

0.1; 26,387 SNPs due to minor allele frequency < 0.05; and 2,223 SNPs due to Hardy-

Weinberg equilibrium with very low probability (1 × 10-6). No individual was excluded 

due to a low (<90%) call rate. Finally, 26,189 SNPs and 1,356 animals remained and were 

used for further analyses. The density distributions of the filtered SNPs across the genome 

are shown in Figure 6.2. 
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6.3.2 Genome-wide Association Studies 

The Q-Q plots of all studied traits were drawn, and the genomic inflation factors of all 

studied traits were calculated since population stratification could have an impact on 

GWAS. The Q-Q plot of each trait was shown following the Manhattan plot of the 

corresponding trait (Figure 6.3). For all studied traits, the observed -log(p-values) were 

fairly close to the expected -log(p-values) (Figure 6.3). In the meantime, the genomic 

inflation factors for all studied traits were close to 1 (ranging from 0.95 to 0.98). The Q-Q 

plots and genomic inflation factors results indicated that the influence of population 

stratification was negligible, and there were little or no residual population structure effects 

on the test statistic inflation in this study.  

The significant (q<0.01) SNPs for each studied trait are illustrated in Figure 6.3, and their 

chromosomes, physical positions, -log(p-values), frequencies, substitution effects, and 

percentage of dEBV variance explained are provided in Table 6.2. For ELISA-G, 17 SNPs, 

which were distributed on chromosomes 1, 4, 6, and 13, were detected to be significant 

(threshold p-value = 1.76 × 10-4) with substitution effects ranging from -1.523 to 1.723 

(Figure 6.3 and Table 6.2). These significant SNPs individually explained 0.048% to 

0.094% of the dEBV variance of ELISA-G, and together they explained 1.252% of the 

dEBV variance of ELISA-G (Table 6.2). Eight genome-wide SNPs with substitution effects 

ranging from -0.313 to 0.366 were detected to be significant (threshold p-value = 1.13 × 

10-4) for IAT, and these eight SNPs were distributed on chromosomes 2, 3, and 6 (Figure 

6.3 and Table 6.2). These eight significant SNPs explained 0.799% of the dEBV variance 

of IAT, and a single SNP could explain 0.084 to 0.115% of the dEBV variance of IAT (Table 

6.2). For DOF, seven SNPs, which were distributed on chromosomes 1, 4, 5, 11, and 14, 
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were detected to be significant (threshold p-value = 9.13 × 10-4). These significant SNPs 

had substitution effects ranging from 0.006 to 0.100 and could explain 0.029 to 0.084% of 

the dEBV variance of DOF individually. Together, these significant SNPs accounted for a 

total of 0.405% of the dEBV variance of DOF. No significant (q>0.01, threshold p-value = 

1.07 × 10-4) SNP was detected for Varf (Figure 6.3). 

6.3.3 Gene Annotation and Gene Ontology of Significant SNPs 

The candidate genes annotated from the significant SNPs for ELISA-G, IAT, and DOF are 

listed in Supplementary dataset 4. A total of 141, 44, and 42 unique candidate genes were 

annotated from the significant SNPs for ELISA-G, IAT, and DOF, respectively 

(Supplementary dataset 4). The annotated genes, which have available information in the 

existing literature, are listed in Table 6.3. For ELISA-G, 67, three, and five unique genes 

were detected on chromosomes 1, 6, and 13, respectively. For IAT, 20 and seven unique 

genes were annotated on chromosomes 1 and 3, respectively. Regarding DOF, the 

annotated genes were distributed on chromosomes 1, 3, 7, 10, and 11, where one, five, six, 

seven, and two unique genes were detected, respectively. 

The functional classifications of candidate genes are shown in Figure 6.4. The cellular 

anatomical entity and protein-containing complex were the two GO:CCs detected for all 

three traits, and the cellular anatomical entity was the major one (occupied more than 72% 

of the detected cellular components) in all the cases (Figure 6.4). For ELISA-G, the 

annotated genes were classified into 13 GO:BPs and eight GO:MFs. Among the 13 

GO:BPs, cellular process, metabolic process, and biological regulation were the top three 

BPs, and growth, immune system process, and reproduction, which are related to AD 

resilience indicator traits, were also included but with smaller proportions. The genes 
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annotated from IAT were classified into 11 GO:BPs, and again cellular process, metabolic 

process, and biological regulation were the top three BPs, and seven GO:MFs of binding, 

catalytic activity, and transporter activity were the top three MFs. The growth, immune 

system process, and reproduction were also included in the detected GO:BPs, but they 

occupied smaller proportions. Regarding DOF, the annotated genes were classified into 

eight GO:BPs, and cellular process, metabolic process, and biological regulation were also 

the top three BPs, and five GO:MFs, with binding, catalytic activity, and transporter 

activity were the top three MFs. 

The overrepresentation tests of annotated genes were conducted for ELISA-G, IAT, and 

DOF, but significant (q<0.05) overrepresentations were only detected in ELISA-G. The 

overrepresentations of candidate genes related to ELISA-G are presented in Table 6.4. In 

total, five significant (q-value<0.05) overrepresented GO enrichment terms, including four 

GO:CCs (TAP complex, Classical-complement-pathway C3/C5 convertase complex, 

MHC class I peptide loading complex, and Extracellular region) and one GO:MF (ABC-

type peptide transporter activity), were detected for ELISA-G (Table 6.4). No significant 

(q<0.05) KEGG pathways of candidate genes were detected for all studied traits. 

6.4 Discussion 

Immune response and disease resilience are usually quantitative traits with complex genetic 

architectures (VanRaden 2008; Leach et al. 2010; Thompson-Crispi et al. 2014; Hu et al. 

2020; Doeschl-Wilson et al. 2021). Therefore, identifying the candidate genes underlying 

immune response and disease resilience would be helpful for unlocking the genetic 

architectures and biological processes related to these traits. With the development of high-

density SNP panels for multiple livestock species, GWAS has become one of the most 
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popular methods for identifying candidate genes underlying target traits in livestock 

research (Zhang et al. 2012; Sharma et al. 2015; Schmid & Bennewitz 2017; Mkize et al. 

2021). In this study, the dEBVs of four phenotypes, including ELISA-G, IAT, DOF, and 

Varf, and genotypes from 1,411 mink raised at an AD-positive facility were used to conduct 

GWAS in order to identify SNPs and genes associated with immune response and resilience 

of mink to AD. In brief, 17, eight, and seven significant (q<0.01) SNPs were detected for 

ELISA-G, IAT, and DOF, respectively and could explain 1.252, 0.779, and 0.405% of the 

dEBV variance of the corresponding trait. A total of 141, 44, and 42 unique candidate genes 

were annotated from the significant SNPs for ELISA-G, IAT, and DOF, respectively. 

Several of the annotated genes, such as LOC122904531, LOC122911143, and 

LOC122898320, were novel genes of unknown function in mink; thus, the discussion is 

focused on the genes for which information is available in the existing literature. In the 

meantime, the results associated with Varf were not further discussed in the discussion 

section as no significant (q>0.01, threshold p-value = 1.07 × 10-4) SNP was detected for 

Varf (Figure 6.3). 

6.4.1 Candidate Genes for ELISA-G 

A total of 141 genes were found to be related with immune response measured by ELISA-

G. Among them, three genes, including MPIG6B, RUNX2, and C4A, were found to be 

related to the immune system process and might have important roles in immune-mediated 

responses to AMDV infection (Figure 6.4 and Table 6.3). The MPIG6B gene, also known 

as G6B or C6orf25, is localized in the class III region of the MHC, which is a region known 

to contain many genes associated with the immune system (de Vet et al. 2001; Geer et al. 

2018). The MPIG6B gene plays a critical role in regulating megakaryocytic function and 
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platelet production (Ribas et al. 1999; de Vet et al. 2001), and loss-of-function of MPIG6B 

can cause severe thrombocytopenia, myelofibrosis, and anemia in both humans and mice 

(Mazharian et al. 2012; Morowski et al. 2013; Melhem et al. 2017; Geer et al. 2018; Nagy 

et al. 2018; Chen et al. 2019). The detection of MPIG6B gene in this study may be related 

to the severe platelet decrease (Eklund et al. 1968) and anemia (McGuire et al. 1979) 

caused by AD. The RUNX2 gene is well-known as an important regulator of bone 

development, where it acts as an activator in the generation of osteoblasts and chondrocyte 

differentiation (Long 2012), but it also plays an important role in the immune system 

process. The RUNX2 gene was found to regulate the development and homeostasis of 

plasmacytoid dendritic cells (Sawai et al. 2013; Chopin et al. 2016), which play a crucial 

role in antiviral immunity and may implicate initiating and developing immune-mediated 

diseases (Ye et al. 2020; Kerdidani et al. 2022). In the meantime, the RUNX2 gene was 

found to play an important role in early T cell development (Vaillant et al. 2002) and the 

long-term maintenance of antiviral memory CD8+ T cells (Olesin et al. 2018). The 

identification of RUNX2 may be related to the immune-mediated nature of AD and the 

proliferation of CD8+ T cells after AD infection (Aasted 1989). The C4A is one of the two 

genes (C4A and C4B) that encode for the complement component C4, which is a key 

protein involved in the classical pathway of the complement system (Wang & Liu 2021). 

The complement system is involved in several immune functions, including the recognition 

and elimination of pathogens, the clearance of damaged cells, and the modulation of 

inflammatory responses (Dunkelberger & Song 2010). The C4A shows preferential binding 

to the targets containing free amino groups, such as immune complex (Schifferli et al. 

1985), with a role in the clearance of the immune complex (Dodds et al. 1996). The 
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deficiency of C4A has been found to cause less effective immune complex processing, 

resulting in the deposition of these complexes in tissues and subsequent damage (Pickering 

et al. 2001). AD has been defined as an immune complex disease (Stolze & Kaaden 1987); 

thus, the detection of the C4A gene in this study may relate to the characteristics of AD. 

These three genes were also detected by the selection signatures study related to immune 

response of mink to AD (Hu et al. 2024), which indicated these genes may play critical 

roles in the immune response of mink to AD. 

6.4.2 Candidate Genes for IAT 

A total of 44 genes were annotated from the significant (q<0.01) SNPs associated with IAT 

in this study. Among them, two genes, TNFRSF11A and C4A, were related to the immune 

system process (Figure 6.4 and Table 6.3). The TNFRSF11A gene, which is also known as 

the nuclear factor-κB receptor activator (Yang et al. 2004), was identified in both immune 

system and skeletal system (Anderson et al. 1997; Lacey et al. 1998). This gene was found 

to be related to the production of immunoglobulin in humans (Guerrini et al. 2008). 

Hypergammaglobulinemia is one of the typical symptoms of AD  (Henson et al. 1962; 

Williams et al. 1965), and thus may explain the detection of TNFRSF11A gene in this study. 

The TNFRSF11A gene has been determined as the cause of autosomal recessive 

osteopetrosis in humans (Guerrini et al. 2008; Palagano et al. 2018); however, whether AD 

could cause skeletal-related issues is unknown, which is worth further investigation in the 

future. The C4A was found to have a greater affinity for the immunoglobulin molecules in 

immune complexes (Law et al. 1984; Schifferli et al. 1985; Kishore et al. 1988); thus, the 

hypergammaglobulinemia caused by AD, which is the overproduction of more than one 
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class of immunoglobulins by plasma cells, could be the reason C4A gene was detected for 

IAT.  

6.4.3 Candidate Genes for DOF 

A total of 42 genes were found to be related to DOF in this study. Among them, two genes, 

ADCY7 and CNDP2, were found to be associated with feed intake in livestock or appetite 

in humans. The ADCY7 gene was found to be associated with appetite in swine in previous 

studies (Barb et al. 2010; Miao et al. 2021). In the meantime, ADCY7 was associated with 

depression in mice and humans (Lisa et al. 2006; Joeyen-Waldorf et al. 2012), which 

indicates the lower appetite of mink in AD-positive farms may be caused by a severe mood 

disorder. However, the relationship between AD and depression was not identified yet, 

which is worth further investigation. The CNDP2 gene was found to be involved in the 

production of N-lactoyl-phenylalanine (Jansen et al. 2015), which has been thought to 

suppress feeding in mice (Li et al. 2022). In addition, several annotated genes, including 

BRD7, FBXO25, ITPKB, LIN9, MIXL1, and TENT4B, were related to metabolic processes 

(Figure 6.4 and Table 6.3). Feed intake is influenced by multiple dynamic physiological 

signals that are regulated by the metabolic and physiological conditions of animals (Woods 

& Ramsay 2011; Allen 2014; Albornoz et al. 2023). Thus, AD may affect the feed intake 

frequency or appetite of mink by affecting the metabolism, which needs further studies to 

explore. 

6.4.4 Overrepresentations of Candidate Genes for ELISA-G 

A total of five significant (q-value<0.05) overrepresented GO enrichment terms, including 

four cellular components (TAP complex, Classical-complement-pathway C3/C5 

convertase complex, MHC class I peptide loading complex, and Extracellular region) and 



 

148 

 

one molecular function (ABC-type peptide transporter activity), were detected for ELISA-

G (Table 6.4). Among them, TAP (transporter associated with antigen processing) complex, 

MHC (major histocompatibility complex) class I peptide loading complex, and ABC-type 

(ATP-binding cassette) peptide transporter activity are closely correlated and play 

important roles in the adaptive immune response against virally or malignantly transformed 

cells. The TAP complex is a superfamily of ABC transporters and plays a crucial role in 

the processing and presentation of the MHC class I restricted antigens, which present their 

antigenic peptides to CD8+ cytotoxic T-lymphocytes and eventually induce the elimination 

of virally or malignantly transformed cells (Abele & Tampé 1999; Ritz & Seliger 2001; 

Lehnert & Tampé 2017; Reeves & James 2017). The cellular immune response of mink to 

AMDV infection has not been properly defined so far, and the detection of these GO terms 

may help further research into the cellular immune response to AD. The C3/C5 convertase 

is an essential component of the complement system, which is an immune defense 

mechanism present in the blood plasma to combat pathogens (Dunkelberger & Song 2010; 

Okroj et al. 2012). The classical-complement-pathway C3/C5 convertase complex pathway 

activates the proteases C3 and C5 convertase, thereby cleaving the proteins C3 and C5. 

The cleaved fragments can attract phagocytes to the site of infection and label target cells 

for elimination by phagocytosis (Dunkelberger & Song 2010; Okroj et al. 2012). The 

presence of immune complexes could activate the complement system, which plays an 

important role in clearing immune complexes (Sarma & Ward 2011; Marshall et al. 2018; 

Jia et al. 2022). The detection of the classical-complement-pathway C3/C5 convertase 

complex pathway may be related to the responses of the complement system to the 



 

149 

 

formation of immune complexes caused by AD, as the deposition C3 was detected in AD-

infected mink (Cheema et al. 1972; Porter & Cho 1980). 

 

6.5 Conclusion 

In this thesis chapter, 1,411 mink raised in an AD-positive facility were utilized to perform 

GWAS to detect potential SNPs and genes related to immune response and resilience of 

mink to AD. A total of 17, eight, and seven significant (q<0.01) SNPs were found to be 

associated with ELISA-G, IAT, and DOF, respectively. Among the 141 unique candidate 

genes annotated from the significant SNPs for ELISA-G, three genes, including MPIG6B, 

RUNX2, and C4A, might have important roles in immune-mediated responses to AMDV 

infection. Two (TNFRSF11A and C4A) of the 44 candidate genes annotated in IAT were 

also found to be involved in the immune system process. In addition, 42 candidate genes 

were annotated in DOF, and two of them, ADCY7 and CNDP2, were related to feed intake 

or appetite. The newly detected significant SNPs and identified candidate genes in this 

thesis chapter would provide a better understanding of the genetic architecture and 

biological mechanisms underlying AD resilience in mink, which offers an opportunity for 

increasing resilience of mink to AD using marker-assisted/genomic selection in mink. 
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Table 6.1 Descriptive statistics of four studied traits. 

Traits1 Number of records Mean SD Range CV 

ELISA-G 1,057 -0.167 2.296 -4.951 to 6.814 13.749 

IAT 1,319 0.122 0.532 -1.496 to 1.991 4.361 

DOF 1,269 0.002 0.018 -0.054 to 0.064 9.000 

Varf 996 -0.067 6.264 -20.26 to 19.797 93.493 
1ELISA-G = AMDV-G based enzyme-linked immunosorbent assay test; IAT = Iodine 

agglutination test; DOF = Proportion of off-feed days; Varf = Variation in daily feed intake; 

SD = Standard deviation; CV= Coefficient of variation. 
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Table 6.2 Summary information of significant (q<0.01) SNPs for enzyme-linked 

immunosorbent assay test, iodine agglutination test, and off-feed days traits. 

Traits1 

Chr
2 

Physical 

position 

(bp) 

-log10 

(p-value) 

Allele 

frequency 

Allele 

substitution effect % dEBV3 

ELISA-G 1 91,348,258 3.772 0.695 1.309 0.048  
1 91,563,695 4.068 0.708 1.400 0.055  
1 119,668,108 4.112 0.683 1.552 0.068  
1 121,737,422 3.817 0.692 1.685 0.080  
1 121,755,885 3.961 0.691 1.711 0.083  
1 121,873,249 4.045 0.683 1.658 0.078  
1 121,899,199 3.916 0.692 1.702 0.082  
1 121,970,625 3.862 0.691 1.693 0.081  
1 121,976,198 3.862 0.691 1.693 0.081  
1 122,009,542 3.983 0.693 1.723 0.084  
1 122,459,883 3.928 0.692 1.710 0.083  
4 5,758,929 4.664 0.917 -1.685 0.080  
6 39,873,751 3.895 0.914 -1.584 0.071  
6 39,952,440 3.823 0.887 -1.348 0.051  
6 39,973,150 5.030 0.912 -1.819 0.094  
6 39,976,387 5.000 0.913 -1.823 0.094  
13 149,480,595 5.670 0.733 -1.166 0.038        

IAT 2 13,247,909 4.316 0.935 0.359 0.111  
3 133,845,792 4.612 0.924 0.366 0.115  
3 133,851,626 4.563 0.924 0.363 0.113  
3 137,464,576 5.179 0.906 0.339 0.099  
3 142,608,584 4.386 0.906 0.318 0.087  
3 142,738,773 5.677 0.898 0.352 0.106  
3 142,775,506 4.348 0.906 0.316 0.086  
6 185,881,210 4.026 0.914 -0.313 0.084        

DOF 1 296,396,353 5.640 0.876 0.010 0.082  
1 296,406,380 5.722 0.878 0.010 0.084  
4 223,648,486 4.213 0.908 0.009 0.067  
5 155,691,399 4.141 0.517 0.006 0.029  
11 201,098,313 4.194 0.853 0.008 0.048  
11 201,105,005 4.223 0.835 0.007 0.044  
14 38,377,828 4.284 0.893 0.008 0.052 

1ELISA-G = AMDV-G based enzyme-linked immunosorbent assay test; IAT = Iodine 

agglutination test; DOF = Proportion of off-feed days. 
2 Chromosome. 
3 The percentage of dEBV variance explained by the SNP. 
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Table 6.3 Significant (q<0.01) SNPs and genes annotated from the significant SNPs for enzyme-linked immunosorbent assay test, iodine 

agglutination test, and off-feed days traits. 

Traits1 Chr2 

Physical 

position (bp) Start End Annotated genes 

ELISA-G 1 91,348,258  90,998,258  91,698,258  SUPT3H 
 

1 91,563,695  91,213,695  91,913,695  RUNX2, SUPT3H 
 

1 119,668,108  119,318,108  120,018,108  BRD2, COL11A2, PSMB8, PSMB9, TAP1, TAP2 
 

1 121,737,422  121,387,422  122,087,422  ABHD16A, AGPAT1, AIF1, APOM, ATF6B, ATP6V1G2, BAG6, C1H6orf47, C2, C4A, CFB, 

CLIC1, CSNK2B, DDAH2, DDX39B, DXO, EGFL8, EHMT2, FKBPL, GPANK1, LSM2, LST1, 

LTA, LTB, LY6G5B, LY6G5C, LY6G6C, LY6G6D, LY6G6F, MCCD1, MPIG6B, MSH5, NCR3, 

NELFE, NEU1, NFKBIL1, PPT2, PRRC2A, PRRT1, SAPCD1, SKIV2L, SLC44A4, STK19, TNF, 

TNXB, VARS1, VWA7, ZBTB12  
1 121,755,885  121,405,885  122,105,885  ABHD16A, AIF1, APOM, ATF6B, ATP6V1G2, BAG6, C1H6orf47, C2, C4A, CFB, CLIC1, 

CSNK2B, DDAH2, DDX39B, DXO, EHMT2, FKBPL, GPANK1, LSM2, LST1, LTA, LTB, 

LY6G5B, LY6G5C, LY6G6C, LY6G6D, LY6G6F, MCCD1, MPIG6B, MSH5, NCR3, NELFE, 

NEU1, NFKBIL1, PRRC2A, PRRT1, SAPCD1, SKIV2L, SLC44A4, STK19, TNF, TNXB, VARS1, 

VWA7, ZBTB12  
1 121,873,249  121,523,249  122,223,249  ABHD16A, AIF1, APOM, ATP6V1G2, BAG6, C1H6orf47, C2, CFB, CLIC1, CSNK2B, DDAH2, 

DDX39B, EHMT2, GPANK1, LSM2, LST1, LTA, LTB, LY6G5B, LY6G5C, LY6G6C, LY6G6D, 

LY6G6F, MCCD1, MPIG6B, MSH5, NCR3, NELFE, NEU1, NFKBIL1, PRRC2A, SAPCD1, 

SKIV2L, SLC44A4, TNF, VARS1, VWA7, ZBTB12  
1 121,899,199  121,549,199  122,249,199  ABHD16A, AIF1, APOM, ATP6V1G2, BAG6, C1H6orf47, C2, CLIC1, CSNK2B, DDAH2, 

DDX39B, EHMT2, GPANK1, LSM2, LST1, LTA, LTB, LY6G5B, LY6G5C, LY6G6C, LY6G6D, 

LY6G6F, MCCD1, MPIG6B, MSH5, NCR3, NEU1, NFKBIL1, PRRC2A, SAPCD1, SLC44A4, 

TNF, VARS1, VWA7, ZBTB12  
1 121,970,625  121,620,625  122,320,625  ABHD16A, AIF1, APOM, ATP6V1G2, BAG6, C1H6orf47, CLIC1, CSNK2B, DDAH2, DDX39B, 

GPANK1, LSM2, LST1, LTA, LTB, LY6G5B, LY6G5C, LY6G6C, LY6G6D, LY6G6F, MCCD1, 

MPIG6B, MSH5, NCR3, NEU1, NFKBIL1, PRRC2A, SAPCD1, SLC44A4, TNF, VARS1, VWA7   
1 121,976,198  121,626,198  122,326,198  ABHD16A, AIF1, APOM, ATP6V1G2, BAG6, C1H6orf47, CLIC1, CSNK2B, DDAH2, DDX39B, 

GPANK1, LSM2, LST1, LTA, LTB, LY6G5B, LY6G5C, LY6G6C, LY6G6D, LY6G6F, MCCD1, 

MPIG6B, MSH5, NCR3, NEU1, NFKBIL1, PRRC2A, SAPCD1, TNF, VARS1, VWA7  

 1 122,009,542  121,659,542  122,359,542  ABHD16A, AIF1, APOM, ATP6V1G2, BAG6, C1H6orf47, CLIC1, CSNK2B, DDAH2, 

DDX39B, GPANK1, LSM2, LST1, LTA, LTB, LY6G5B, LY6G5C, LY6G6C, LY6G6D, 

LY6G6F, MCCD1, MPIG6B, MSH5, NCR3, NFKBIL1, PRRC2A, SAPCD1, TNF, 

VARS1, VWA7  
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Table 6.3. Continuous. 

Traits1 Chr2 Physical position (bp) Start End Genes 

ELISA-G 1 122,459,883  122,109,883  122,809,883  C1H6orf15, CCHCR1, CDSN, DDR1, GTF2H4, MUC21, POU5F1, 

PSORS1C2, SFTA2, TCF19, VARS2 
 

6 39,873,751  39,523,751  40,223,751  CHMP2B, POU1F1, VGLL3 
 

6 39,952,440  39,602,440  40,302,440  CHMP2B, POU1F1, VGLL3 
 

6 39,973,150  39,623,150  40,323,150  CHMP2B, POU1F1, VGLL3 
 

6 39,976,387  39,626,387  40,326,387  CHMP2B, POU1F1, VGLL3 
 

13 149,480,595  149,130,595  149,830,595  ADAMTSL3, EFL1, MEX3B, SAXO2, SH3GL3 

IAT 1 102,821,396  102,471,396  103,171,396  BAG2, BEND6, DST, PRIM2, RAB23, ZNF451 
 

1 162,209,141  161,859,141  162,559,141  ARF1, C1H1orf35, GJC2, GUK1, IBA57, JMJD4, MRPL55, OBSCN, PRSS38, 

SNAP47, TRIM11, TRIM17, WNT3A, WNT9A 
 

3 133,845,792  133,495,792  134,195,792  CDH19 
 

3 133,851,626  133,501,626  134,201,626  CDH19, PHLPP1, PIGN, RELCH, TCF4, TNFRSF11A, ZCCHC2 
 

3 137,464,576  137,114,576  137,814,576  PHLPP1, PIGN, RELCH, TNFRSF11A, ZCCHC2 
 

3 142,738,773  142,388,773  143,088,773  TCF4 

DOF 1 272,488,827  272,138,827  272,838,827  GRIA1 
 

3 128,189,409  127,839,409  128,539,409  C3H18orf63, CNDP2, DIPK1C, FBXO15, TIMM21 
 

7 32,578,011  32,228,011  32,928,011  ADCY7, BRD7, CNEP1R1, HEATR3, NKD1, TENT4B 
 

10 59,705,959  59,355,959  60,055,959  ACBD3, ITPKB, LIN9, MIXL1, PARP1, SDE2, STUM 
 

11 207,436,868  207,086,868  207,786,868  ERICH1, FBXO25 

1ELISA-G = AMDV-G based enzyme-linked immunosorbent assay test; IAT = Iodine agglutination test; DOF = Proportion of off-feed 

days. 
2 Chromosome.  
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Table 6.4 Significant (false discovery rate adjusted p-value<0.05) functional enrichment of candidate genes detected from enzyme-

linked immunosorbent assay test trait. 

Gene ontology term GO ID Annotation set q-value 

TAP complex 0042825 Cellular component  0.002 

Classical-complement-pathway C3/C5 convertase complex  0005601 Cellular component  0.002 

MHC class I peptide loading complex  0042824 Cellular component  0.006 

Extracellular region  0005576 Cellular component  0.007 

ABC-type peptide transporter activity 0015440 Molecular function  0.014 
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Figure 6.1 Frequency distribution histogram for AMDV-G based enzyme-linked immunosorbent assay test (ELISA-G), Iodine 

agglutination test (IAT), proportion of off-feed days (DOF), and Variation in daily feed intake (Varf).  
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Figure 6.2 The filtered SNP density distributions on Nvison chromosomes. The horizontal axis (x-axis) shows the chromosome length 

(Mb). Color index indicates the number of labels. 
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Figure 6.3 Manhattan plots and Quantile-Quantile plots for four studied traits. The X-axis 

is the position of SNP on each chromosome, and the Y-axis is the significant level (−log10 

p value). The red lines indicate significant thresholds. There were 17, eight, seven, and zero 

SNPs that passed the significant thresholds for enzyme-linked immunosorbent assay test 

(ELISA-G), Iodine agglutination test (IAT), proportion of off-feed days (DOF), and 

Variation in daily feed intake (Varf) trait, respectively.
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Figure 6.4 The pie charts of functional classifications (molecular function, cellular component, and biology process) of candidate genes 

related to significant (q<0.05) SNPs for AMDV-G based enzyme-linked immunosorbent assay test (ELISA-G), iodine agglutination test 

(IAT), and the proportion of off-feed days (IAT). 
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7CHAPTER 7. Genomic Prediction of Immune 

Response and Resilience to Aleutian Disease in Mink1 

 

7.1 Introduction 

Aleutian disease (AD), caused by the Aleutian mink disease virus (AMDV), is one of the 

most severe health issues for mink farming and brings huge financial losses to the mink 

industry (Henson et al. 1962; Porter et al. 1982; Farid & Ferns 2011; Reichert & Kostro 

2014; Wiggans et al. 2017). Several methods, including vaccination, medicine, and culling 

strategy, have been attempted to control AD but ended with failure. Thus, mink farmers 

attempt to control AD by phenotypically selecting AD-resilient mink based on AD tests 

and/or AD-resilient indicator traits, such as feed intake, pelt quality, and reproductive 

performance (Knuuttila et al. 2009; Farid & Ferns 2011; Farid & Rupasinghe 2016; Farid 

& Ferns 2017; Farid et al. 2018). Phenotypic selection is the simplest form of selection, 

and it is not efficient especially for low heritable traits (Falconer & Mackay 1996; Calus et 

al. 2008; Villumsen et al. 2009). On the other hand, genomic selection has the potential to 

improve the AD resilience in mink since the AD resilience traits are difficult and expensive 

to measure and have low-to-moderate heritability (Hu et al. 2021; Hu et al. 2022). 

Genomic selection aims to estimate the breeding values using the genomic diversity 

captured by extensive markers distributed across the genome without knowing the 

 
1 A version of this chapter will be submitted to PLOS One by Hu et al. 2024. Genomic Prediction 

of Immune Response and Resilience to Aleutian Disease in Mink. 
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locations of specific genes (Goddard & Hayes 2007). With the development of dense panels 

of single nucleotide polymorphism (SNP) markers, genomic selection is now implemented 

in several livestock species (Misztal et al. 2021). Genomic selection accelerates genetic 

progress by increasing the accuracy of selection and reducing the generation intervals. The 

increase in selection accuracy is particularly important for traits with low heritabilities 

where the progress made by traditional pedigree-based selection is slow (Misztal et al. 

2021). The heritabilities of disease-related traits are usually low-to-moderate. Therefore, 

genomic selection is suggested to improve disease-related traits (Bishop & Woolliams 

2014; Iheshiulor et al. 2017). For example, genomic selection studies have been conducted 

for swine resistance to porcine reproductive and respiratory syndrome (Serão et al. 2016; 

Waide et al. 2018), and moderate genomic prediction accuracies were observed. The 

common methods used to conduct genomic prediction studies are genomic best linear 

unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP) approaches. The 

GBLUP is a multi-step method using genomic information to predict genomic breeding 

values (VanRaden 2008; Hayes et al. 2009). For this purpose, a genomic relationship 

matrix, which is created using DNA marker information instead of pedigree, is applied and 

expected to provide more accurate predictions of genetic merit than the traditional 

pedigree-based best linear unbiased prediction (BLUP) method (Clark & van der Werf 

2013). Compared with GBLUP, ssGBLUP is a single-step methodology that combines 

pedigree, phenotypic and genomic information of all breeding individuals for genetic 

evaluation in one model (Misztal et al. 2013). Meanwhile, the ssGBLUP was generally 

found to be simpler, faster, and more accurate than multistep methods  (Misztal et al. 2013; 

Cardoso et al. 2015; Miar et al. 2015; Silva et al. 2016).  
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With the development of dense panels of SNP markers, genomic selection is now 

implemented in all major farm animal species (Misztal et al. 2021). The chromosome-level 

genome assembly by Karimi et al. (2022) and the development of the first Axiom 

Affymetrix Mink 70K SNP panel for American mink (Do et al. 2024) have made the 

genomic prediction for AD resilience in mink feasible. However, no genomic prediction 

studies have been conducted for AD resilience in mink. Thus, this thesis chapter aimed to 

evaluate the accuracy of genomic prediction of AD resilience traits (three AD tests and two 

feed-intake-related resilience traits) in mink using the genomic information obtained from 

a 70K SNP panel. Three methods, including traditional pedigree-based BLUP, GBLUP, and 

ssGBLUP, were compared to determine the best method for each trait. Possible factors that 

influence the accuracy of genomic prediction were also discussed. The ultimate aim was to 

investigate the feasibility and optimal approach for using genomic information to increase 

genetic gain for AD resilience in mink. 

7.2 Materials and Methods 

7.2.1 Ethics Approval 

This study was approved by the Dalhousie University Animal Care and Use Committee 

(certification#: 2018-009 and 2019-012). All mink used in this study were farmed 

following the Code of Practice for the Care and Handling of Farmed Mink guidelines from 

the Canada Mink Breeders Association (Turner P et al. 2013).   

7.2.2 Animals and Phenotypes 

Mink (n=1,411) raised at the Canadian Centre for Fur Animal Research (CCFAR), which 

is located at Dalhousie University, Faculty of Agriculture (Truro, Nova Scotia, Canada), 

from 2015 to 2020, were used in this study. A persistent breeding program was not 
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conducted in CCFAR during the study years from 2013 to 2021. AD was initially detected 

at CCFAR in 2013, and the exact origin was not determined with certainty, where the 

consumption of AMDV-contaminated feed and unperceived contact with wild animals 

carrying AMDV were speculated to be the most possible causes for the AD outbreak. 

The phenotypes related to the immune response of the studied individuals to AMDV 

exposure were collected based on the established protocols described by Hu et al. (2021). 

The individual blood samples were annually collected in mid-November before the 

selection of breeders and mid-February prior to mating, from 2015 to 2020. Three types of 

tests, including antigen-based enzyme-linked immunosorbent assay (ELISA-G), 

counterimmunoelectrophoresis (CIEP), and iodine agglutination test (IAT), were applied 

to measure the individual level of immune response to AMDV exposure. The ELISA-G 

tests were conducted in the Middleton Veterinary Services (Nova Scotia, Canada) to 

evaluate anti-AMDV antibody levels through optical density, and the outcomes were 

grouped into eight categories with 1-point increments from 0 (none or extremely low level 

of antibody) to 7 (extremely high antibody level). The CIEP tests were performed at the 

Animal Health Laboratory (University of Guelph, Ontario, Canada) to detect the existence 

of anti-AMDV antibodies, and the results were recorded as 0, which indicated none or 

extremely low antibody level, or 1, which indicated detectable anti-AMDV antibody level. 

The IAT tests were conducted at CCFAR to measure the gamma globulin level in the serum, 

and the results were classified into four categories with 1-point increments ranging from 0 

(none or low serum gamma globulin level) to 4 (extremely high gamma globulin level). 

The feed-intake-related phenotypes were collected utilizing the established procedures 

outlined by Davoudi et al. (2022). Studied individuals were raised in separate cages, and 
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the daily feed was distributed to each individual separately. The daily feed intake (DFI) for 

each individual was calculated as: 

DFI = the total amount of feed distributed – the amount of feed leftover 

The feed-intake-related resilience of studied individuals to AMDV exposure was measured 

by two parameters, including day-to-day variation in feed intake (Varf) and proportion of 

off-feed days (DOF). The individual Varf and DOF were computed using all the available 

DFI data for each mink based on the methodology described by Putz et al. (2019). The Varf 

was measured through the calculation of the root mean square error from within-individual 

regression analysis, utilizing ordinary least squares linear regression, applied to DFI 

regressed on day. Identification of off-feed days involved a 5% quantile regression of DFI 

against age (in days) for all studied individuals, with off-feed days for each mink being 

those exhibiting negative residuals below the regression line. Ultimately, the proportion of 

off-feed days to the total recorded days of DFI determined the DOF. 

7.2.3 Tongue Sample Collection and Genotyping 

Prior to pelting, the tongue tissues were collected from the studied animals for DNA 

extraction. The DNA extractions of collected tongue tissue samples were conducted using 

the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) in accordance with the 

instructions provided by the manufacturer. The NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies Inc., Wilmington, DE) was employed to evaluate the quality and 

quantity of the extracted DNA. The 260/280 nm readings for all samples were between 1.7 

and 2.0, and the final concentrations of all samples were 20 ng. The extracted DNA samples 

were genotyped using the Axiom Affymetrix Mink 70K panel (Neogen, Lincoln, Nebraska, 

USA) (Do et al. 2024). 
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7.2.4 Animals and SNP Quality Control 

The animals and SNPs data were filtered using PLINK (Purcell et al. 2007) before 

conducting analyses. The SNPs, which had a minor allele frequency lower than 5%, a call 

rate lower than 90%, an excess of heterozygosity higher than 15%, and a Mendelian error 

frequency larger than 5% and were out of Hardy-Weinberg equilibrium with very low 

probability (1 × 10-6), were excluded. In the meantime, the mink, which had a call rate 

lower than 90%, was removed from the dataset as well. Finally, 26,189 SNPs and 1,356 

animals remained and were used for further analyses. 

7.2.5 Statistical Methods for Genetic and Genomic Predictions 

Traditional BLUP 

Model 1 was applied to estimate the breeding values of each animal utilizing ASReml 4.1 

software (Gilmour et al. 2018). The model was as follows: 

Model 1.  𝒚 = 𝟏µ + 𝑿𝒃 + 𝒁𝒂 + 𝑾𝒑𝒆 + 𝑫𝒎 + 𝒆, 

where y is the vector of phenotypes; μ is the overall mean; X, Z, W, and D are the incidence 

matrices relating phenotypes to fixed, random additive genetic, random permanent 

environmental, and random maternal genetic effects, respectively; b is the vector of fixed 

effects (year, sex, age, color types, and cage location in the farm); a is the vector of random 

additive genetic effects, with 𝒂~𝑁(0, 𝑨𝜎𝑎
2), where A is the numerator relationship matrix, 

and σa
2  is the additive genetic variance; pe is the vector of random permanent 

environmental effects, with 𝒑𝒆~𝑁(0, 𝑰𝜎𝑝𝑒
2 ), where I is an identity matrix, and σpe

2  is the 

permanent environmental variance; m is the vector of random maternal genetic effects, 

with 𝒎~𝑁(0, 𝑨𝜎𝑚
2 ), where  σm

2  is the maternal genetic variance; and e is the vector of 

residual effects, with 𝒆~𝑁(0, 𝑰𝜎𝑒
2) , where σe

2  is the residual variance. The variance 
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components of each trait (full dataset and cross-validation datasets) were estimated using 

ASReml 4.1 software (Gilmour et al. 2018) in BLUP model (Model 1). 

Phenotypic variances were calculated 𝝈𝒑
𝟐  = 𝝈𝒂

𝟐 +𝝈𝒑𝒆
𝟐  +𝝈𝒎

𝟐  +𝝈𝒆
𝟐  for ELISA-G, as 𝝈𝒑

𝟐  = 𝝈𝒂
𝟐 + 

𝝈𝒎
𝟐  +𝝈𝒆

𝟐  for CIEP, as 𝝈𝒑
𝟐  = 𝝈𝒂

𝟐 + 𝝈𝒑𝒆
𝟐  +𝝈𝒆

𝟐  for IAT, and as 𝝈𝒑
𝟐  = 𝝈𝒂

𝟐 +𝝈𝒆
𝟐  for DOF and Varf. 

Heritability (h2) was defined as follows:  

𝒉𝟐 =
𝝈𝒂

𝟐

𝝈𝒑
𝟐
 

Subsequently, the de-regressed EBVs (dEBVs) were obtained with the formula:  

𝒅𝑬𝑩𝑽 =
𝒈𝒊

𝒓𝒊
𝟐, 

where 𝒈𝒊 is the EBV of the ith individual and 𝒓𝒊
𝟐 is the square of estimated accuracies for 

the ith individual (Garrick et al. 2009), which were calculated using the DEBV_calculator 

software (Salek Ardestani 2020, https://github.com/Siavash-cloud/DEBV_calculator). 

Only the individuals with a reliability of dEBV more than 0.1 for at least one studied trait, 

were kept in the dataset for the following analyses. The dEBVs were used for the following 

genomic BLUP analyses. 

Genomic BLUP 

The computed dEBVs were used as pseudo-phenotypes in GBLUP analyses, and the 

GBLUP method was performed using Model 2 implemented in SNP1101 software 

(Sargolzaei 2014). The model was as follows: 

Model 2.  𝒚𝒄 = 𝟏µ + 𝒁𝒈 + 𝒆, 

where 𝒚𝒄  is the vector of dEBVs (training population) as pseudo-phenotypes; μ is the 

overall mean; Z is the incidence matrix relating pseudo-phenotypes (dEBVs) to GEBVs; g 

is the vector of GEBVs, with 𝒈~𝑁(0, 𝑮𝜎𝑔
2), where G is the genomic relationship matrix 
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and σg
2  is the genomic variance; and e is the vector of random residual effects, with 

𝒆~𝑁(0, 𝑾𝜎𝑒
2), where 𝑾 is a diagonal matrix of residual weights and σe

2 is the residual 

variance. The residual weights were calculated based on the reliability of dEBVs (𝒓𝒊
𝟐 )  

using the approach described by Garrick et al. (2009) as follows: 

𝒘 =
1 − 𝒓𝒊

𝟐

𝒓𝒊
𝟐

 

The G matrix was computed based on the method proposed by VanRaden (VanRaden 2008) 

as follows: 

 

𝑮 =
𝒁𝒁′

𝟐 ∑ 𝒑𝒊(𝟏 − 𝒑𝒊)
 , 

where Z is a matrix of the centered SNP genotypes;  𝒁′is a transpose matrix of Z; and 𝒑𝒊 is 

the minor allele frequency of the ith SNP. 

The variance components of each trait were obtained by applying the “aireml” procedure 

of SNP1101 software in GBLUP model (Model 2). 

Single-Step Genomic BLUP 

The ssGBLUP analysis (Legarra et al. 2009; Christensen & Lund 2010) was carried out 

using the program BLUPF90 (Aguilar et al. 2018). Model 3 was used for the single-step 

genomic evaluation of each animal: 

Model 3.  𝒚 = 𝑿𝒃 + 𝒁𝒈 + 𝑾𝒑𝒆 + 𝑫𝒎 + 𝒆, 

where y, μ, X, b, W, pe, D, m, and e were the same as parameters described in Model 1. Z 

is the incidence matrix relating phenotypes to GEBVs, and g is the vector of GEBVs, with 

𝒈~𝑁(0, 𝑯𝜎𝑔
2) , where H is the relationship matrix, and σg

2  is the variance of genomic 

effects. The matrix H is a combination of relationship matrices using both marker 
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genotypes (G matrix) and pedigree information (A matrix). The inverse of H matrix was 

obtained using the default option in BLUPF90 (Aguilar et al. 2018) as follows: 

𝑯−𝟏 = 𝑨−𝟏 + [
𝟎 𝟎
𝟎 𝛕(𝜶𝑮 + 𝜷𝑨𝟐𝟐)−𝟏 − 𝝎𝑨𝟐𝟐

−𝟏], 

where A22 is the pedigree-based relationship matrix of genotyped animals, τ and ω are the 

scaling factors, and α and β are blending factors of G and A matrices, respectively. The τ 

and ω were both set equal to one as the default option in BLUPF90 software (Aguilar et 

al. 2018). The blending factors α and β were set equal to 0.95 and 0.05 as the default option 

in BLUPF90 software (Aguilar et al. 2018), respectively. The variance components of each 

trait were estimated from ssGBLUP model (Model 3) using the program BLUPF90 

(Aguilar et al. 2018). 

7.2.6 Cross-Validation and Model Comparison 

The 5-fold cross-validation strategy was applied to different prediction models. The whole 

dataset was randomly partitioned into five subsets (folds), and each subset had 

approximately equal sample sizes (Table 7.1). Then, four subsets were used as training 

population to train the prediction model, and the remaining one subset was used for 

validation. At each repetition, cross-validation was performed in the group, which was not 

used in the training set. This scheme was repeated until each of the five subsets were used 

as the validation set. To account for sampling variation, splitting was repeated ten times. 

To evaluate the prediction accuracy obtained with different models, Pearson's correlations 

between the EBVs/GEBVs and the phenotypes adjusted for the fixed effects (aY) were 

used (Legarra et al. 2008). The phenotype adjustment was performed using the lm function 

in R (Team 2022) and the complete dataset, which contained all phenotypic and genotypic 

information was available for both validation and training subsets. This correlation is 
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known as the prediction ability (𝑟𝑦𝑦 ) of the genomic selection to estimate phenotypes; 

therefore, the prediction accuracy (acc) is given by: 

𝒂𝒄𝒄 =
𝒓𝒚𝒚

𝒉
 

where 𝒓𝒚𝒚 is Pearson's correlation between the EBV/GEBV and aY (prediction ability), 

and h is the square root of the heritability of the trait. 

To evaluate the extent of prediction bias of models, the regression of aY on the predicted 

breeding values (EBV or GEBV) was computed using simple linear regression of the 

adjusted phenotype on EBV/GEBV with an expected value of 1 for each trait.  

7.3 Results 

7.3.1 Descriptive Statistics 

The number of records, mean, standard deviation (SD), range, and coefficient of variation 

(CV) for each trait are presented in Table 7.2. Among all studied traits, ELISA-G (n=1,421) 

and IAT (n=1,409) had the most phenotypes recorded because CCFAR started recording 

these two traits in 2013, while CIEP (n=960), DOF (n=890), and Varf (n=890) were 

recorded after 2018. The CVs of ELISA-G (157%), IAT (148%), and DOF (153%) were 

all higher than 100%, while CIEP (45%) and Varf (25%) had CVs less than 50%.  

7.3.2 Estimation of Genetic Parameters 

The variance components (SE) and heritabilities of studied traits, which were estimated by 

using traditional BLUP model (Model 1) and full dataset (all available phenotypes), are 

presented in Table 7.3. The heritabilities of the five studied traits were low to moderate, 

where ELISA-G had the highest heritability (0.31) and CIEP showed the lowest heritability 

(0.08). The heritabilities of IAT, DOF, and Varf were 0.18, 0.09, and 0.16, respectively.  
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The estimations of variance components (SE) and heritabilities for all studied traits from 

three different prediction models (BLUP, GBLUP, and ssGBLUP) using the validation 

dataset are shown in Table 7.4. For ELISA-G, the BLUP model showed the highest 

estimated heritability (0.31), while the GBLUP model showed the lowest estimated 

heritability (0.17), which was lower than the heritability estimated by the ssGBLUP model 

(0.20). For CIEP, all three prediction models gave the same heritability of 0.07. For IAT, 

both BLUP and ssGBLUP models showed heritability of 0.16, which were slightly lower 

than the heritability estimated by the GBLUP model (0.15). For DOF, the estimated 

heritabilities were 0.09 for the BLUP and GBLUP models, while the ssGBLUP model 

showed a slightly lower estimation of 0.08. For Varf, the BLUP model estimated a 

heritability of 0.11, which was slightly lower than the value estimated by GBLUP (0.12) 

but higher than the value estimated by ssGBLUP (0.08). 

7.3.3 Prediction Abilities, Accuracies, and Bias 

The prediction abilities and accuracies (SE) of three different prediction models (BLUP, 

GBLUP, and ssGBLUP) for all studied traits are present in Table 7.5. For ELISA-G, the 

BLUP model showed the highest prediction ability (0.39) and accuracy (0.71), while 

GBLUP and ssGBLUP models showed slightly lower prediction abilities (0.37 and 0.38, 

respectively) and accuracies (0.66 and 0.68, respectively). For CIEP, GBLUP and 

ssGBLUP models showed the same prediction ability (0.12) and accuracy (0.40), which 

were lower than the prediction ability (0.17) and accuracy (0.58) of BLUP models. For 

IAT, ssGBLUP showed the highest prediction ability (0.22) and accuracy (0.53), while 

GBLUP model showed the lowest prediction ability (0.15) and accuracy (0.34), which was 

also lower than the prediction ability (0.18) and accuracy (0.41) of BLUP model. For DOF, 
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the ssGBLUP model showed a prediction ability of 0.05 and an accuracy of 0.17, which 

were lower than the BLUP model (0.07 and 0.22, respectively) but higher than the GBLUP 

model (0.03 and 0.11, respectively). For Varf, the ssGBLUP models showed the highest 

prediction ability of 0.11 and accuracy of 0.32, which were similar to the GBLUP model 

(0.10 and 0.30, respectively) but higher than the BLUP model (0.08 and 0.23, respectively). 

The prediction biases of all prediction models for each trait, which were measured by the 

regression of adjusted phenotypes on the predicted breeding values, are shown in Table 

7.6. For ELISA-G, the ssGBLUP and GBLUP models showed similar prediction bias (1.34 

and 1.35, respectively), which were smaller than the BLUP model (1.55). For CIEP, the 

BLUP model had the largest prediction bias (1.79), while the ssGBLUP model showed the 

smallest prediction bias (1.05), and the GBLUP model showed the second smallest 

prediction bias (1.11). For IAT, the BLUP model showed the smallest prediction bias (1.09), 

while the GBLUP model showed the largest (1.67). The ssGBLUP model was the only 

model with a prediction bias of less than one (0.84) among all prediction models for IAT. 

For DOF, the BLUP and GBLUP models had prediction biases (0.80 and 0.65, respectively) 

larger than the ssGBLUP model (1.05). For Varf, the GBLUP model had a prediction bias 

of 1.33, which was smaller than the prediction bias of the ssGBLUP model (1.66) but larger 

than the prediction bias of the BLUP model (1.07).   

7.4 Discussions 

This thesis chapter compared prediction abilities, accuracies, and biases of traditional 

BLUP, GBLUP, and ssGBLUP for three AD tests and two feed-intake-related AD resilience 

traits. Except for GBLUP model in Varf, where the estimated heritability from GBLUP was 

slightly higher than the BLUP model, all the estimated heritabilities of studied traits from 
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GBLUP and ssGBLUP models were lower or equal to the heritabilities estimated by the 

BLUP model (Table 7.4). When the estimated heritabilities from GBLUP or ssGBLUP 

model were much lower than the BLUP model (in the case of ELISA-G trait) or the 

heritability of the traits itself was very low (less than 0.1, in the cases of CIEP and DOF 

traits), the BLUP model provided the best prediction ability and accuracy among all three 

prediction models (Table 7.5). However, when the ssGBLUP model had the similar (in the 

case of IAT trait) or close (in the case of Varf trait) heritability as the BLUP model, the 

ssGBLUP model showed the highest prediction ability and accuracy (Table 7.5). The 

ssGBLUP showed higher prediction ability and accuracy than the GBLUP model for all 

traits except for CIEP, where ssGBLUP model had the same prediction ability and accuracy 

as the GBLUP model (Table 7.5). Among all prediction models, the BLUP model provided 

the most unbiased prediction for the IAT and Varf traits, the ssGBLUP model showed the 

smallest biases for the CIEP and DOF traits, and the GBLUP model had the smallest bias 

for ELISA-G (Table 7.6).    

The advantage of using genomic information (GBLUP and ssGBLUP methods) for 

breeding value prediction over using pedigree information (BLUP method) was not 

consistent across the studied traits. Compared to traditional BLUP method, using genomic 

information increased the prediction ability and accuracy for the IAT and Varf traits but not 

for the ELISA-G, CIEP, and DOF traits. The genomic predictions for all studied traits in 

the current study have not been conducted in the previous studies. Thus, no previous 

estimates are available for comparison. However, similar results were also reported in 

swine (Zhang et al. 2018), cattle (Silva et al. 2016), and sheep (Daetwyler et al. 2012) for 

the feed efficiency and growth traits and in chicken (Zhang et al. 2020) for immune 
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response traits, where the use of genomic data for genomic prediction was not beneficial 

for all traits. The usage of genomic information is generally expected to provide better 

prediction accuracy because genomic data could consider the Mendelian sampling terms 

better than pedigree information, therefore producing more accurate genetic relationships 

among animals (Christensen et al. 2012; Meuwissen et al. 2013; Knol et al. 2016). 

However, this is not always the case, as mentioned above. Several factors could affect the 

genomic prediction ability and accuracy, including the ability of markers to capture the 

total genetic variance of the traits (Goddard 2009), the accuracy of the estimates of marker 

effects (Goddard 2009), the density of makers used (Zhang et al. 2018; Zhang et al. 2019a), 

the heritability of the studied trait (Goddard 2009; Zhang et al. 2019a; Budhlakoti et al. 

2022), and the population size (Guarini et al. 2018; Hidalgo et al. 2021; Budhlakoti et al. 

2022). 

The traditional BLUP model showed higher prediction ability and accuracy than GBLUP 

and ssGBLUP models for ELISA-G, which indicated the advantage of using genomic 

information for breeding value prediction over using pedigree information was not present 

for ELISA-G. The missing heritability was considered to be one of the main reasons 

leading to these results. In the case of ELISA-G trait, the heritabilities estimated by using 

genomic information were lower than the estimates obtained from pedigree-based BLUP 

model (Table 7.4), which indicated the existence of missing heritability. Missing 

heritability has been considered an issue in both human (Yang et al. 2010; Yang et al. 2015) 

and livestock genetics (Silva et al. 2016; Zhang et al. 2018; Zhang et al. 2020). Missing 

heritability could be caused by several reasons, including the incomplete linkage 

disequilibrium between causal genomic variants and genotyped SNPs (Yang et al. 2010; 
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Yang et al. 2015), the genetic architecture of the studied trait, epistatic effects, and 

genotype-by-environment interactions (Makowsky et al. 2011). For instance, if the 

genotyped SNPs are located closely to causal variants for the traits or the SNPs themselves 

are actually the causal variants for the traits, the SNPs could capture a large proportion of 

the genetic variance and provide high genomic prediction ability and accuracy. In another 

way, if the genotyped SNPs are not able to capture an adequate proportion of the genetic 

variation for the trait, the prediction accuracy could be limited. In the case of ELISA-G 

trait, the genotyped SNPs in our study could only catch 55 to 65% of the genetic variance 

based on the pedigree-based estimate of heritability (Table 7.4). Thus, missing heritability 

could be one of the main reasons for the lower prediction ability and accuracy in the 

GBLUP and ssGBLUP models compared to the BLUP model for ELISA-G.  

Besides ELISA-G, the traditional BLUP model also showed higher prediction ability and 

accuracy than GBLUP and ssGBLUP models for the CIEP and DOF traits. Different from 

the case of ELISA-G trait, where the missing heritability issue existed, the estimated 

heritabilities from using genomic information were equal to or very close to the estimates 

from pedigree-based BLUP model (Table 7.4). However, the low level of heritability of 

these two traits themselves, small training population size, and insufficient SNP marker 

density could be the reasons leading to these results. The accuracy of genomic prediction 

could be affected by trait heritability, especially for the traits with low heritability (lower 

than 0.4) (Hayes et al. 2009). Many studies showed that the heritability of studied traits 

could strongly influence the accuracy of genomic selection because locus identification 

and effect estimation are difficult to predict in the case of low heritability quantitative traits 

(Goddard 2009; Hayes et al. 2009; Guarini et al. 2018; Zhang et al. 2018; Zhang et al. 
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2019a; Budhlakoti et al. 2022). Generally, it is assumed that the target trait with high 

heritability has good prediction accuracies and vice versa. For low heritable and complex 

traits, many previous studies showed that the performance of the traditional pedigree-based 

BLUP model seems to provide better prediction ability and accuracy compared to the 

prediction models (GBLUP and ssGBLUP) using genomic information (Silva et al. 2016; 

Guarini et al. 2018; Zhang et al. 2018; Zhang et al. 2020). The accuracy of genomic 

selection is also affected by the size of the training population because the small training 

population size could cause the model to estimate the marker effects poorly and hence the 

prediction accuracy (Budhlakoti et al. 2022). Vanraden et al. (VanRaden et al. 2009) found 

that the correlation between accuracy and the size of training population was nearly linear. 

In other words, the smaller that the training population size is, the lower accuracy of 

genomic selection could be observed (Goddard 2009; Budhlakoti et al. 2022; Gizachew 

Haile 2022). Marker density is another factor that influences the accuracy of genomic 

selection. The complete genome could be covered by a minimum number of markers based 

on the decay of linkage disequilibrium (LD), where at least one marker is expected in LD 

with each genomic region. The increase in marker density has the potential to improve the 

accuracy of genomic prediction, as more causative mutations are expected to be included 

in the increased genotype data (Meuwissen & Goddard 2010; Hayes et al. 2014). It requires 

a larger training population, a larger number of phenotypes, and a higher density of markers 

for traits with low heritability to attain a similar level of accuracy and persistence of 

accuracy as the traits with high heritability (Daetwyler et al. 2008; Hayes et al. 2009; Atefi 

et al. 2018; Hidalgo et al. 2021). However, in the cases of CIEP and DOF traits, where the 

heritabilities were lower than 0.1 (Table 7.3), the size of the training population (less than 
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750), the number of phenotypes records (less than 1,000), and marker density (around 26K 

after quality control) may not be sufficient to provide satisfactory prediction accuracy in 

genomic selection methods. 

The ssGBLUP had higher or the same prediction ability and accuracy compared to the 

GBLUP model in all scenarios (Table 7.5). The ssGBLUP model has the advantage of 

simultaneously using the phenotypes of genotyped and non-genotyped animals, pedigrees, 

and genotypes. Compared with GBLUP model, ssGBLUP model predicts how non-

genotyped individuals can benefit from genomic information by applying a blended genetic 

relationship matrix, which is computed using both genomic and pedigree relationship 

matrices (Legarra et al. 2009). The use of ssGBLUP model increased the accuracy of 

genomic selection in many contexts and species compared with GBLUP model (Chen et 

al. 2011; Carillier et al. 2014; Onogi et al. 2015; Matilainen et al. 2016). However, the 

increases in prediction accuracy from using ssGBLUP over GBLUP were not consistent 

among studied traits (Table 7.5). The inconsistency could be caused by several factors, 

including the size of the training population (Lourenco et al. 2014; Andonov et al. 2017), 

the relationship between the training and validation population (Meuwissen & Goddard 

2010; Teissier et al. 2019), the extent of LD (Zhou et al. 2018), or the genetic architecture 

of the studied trait (Goddard 2009; Carillier-Jacquin et al. 2016; Zhou et al. 2018). 

Based on the results of this study, different prediction models were suggested for different 

studied traits. Although the BLUP model showed slightly higher accuracy than the GBLUP 

and ssGBLUP models (Table 7.5) for ELISA-G, the noticeable higher prediction bias of 

the BLUP model over the GBLUP and ssGBLUP models (Table 7.6) cannot be ignored. In 

the case of ELISA-G, where the differences in prediction accuracy among different models 
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were slight, ssGBLUP, which showed the lowest prediction bias, would be the most 

appropriate prediction model for the selection of ELISA-G. For the CIEP and DOF traits, 

which had low heritabilities, although ssGBLUP showed the lowest prediction bias (Table 

7.6), the BLUP model provided the best prediction accuracy for these two traits (Table 7.5). 

This may indicate that the BLUP model would be the better prediction model for the EBV 

prediction for the CIEP and DOF traits. However, genomic prediction models have the 

potential to increase the ability and accuracy of prediction if larger training population size 

and maker density could be applied in future studies. The ssGBLUP model seemed more 

suitable to obtain genomic predictions for IAT and Varf traits on an experimental 

population as the highest prediction ability and accuracy were observed on the ssGBLUP 

model in the predictions for these two traits (Table 7.5). 

7.5 Conclusion 

This thesis chapter examined the efficiency of BLUP, GBLUP, and ssGBLUP models in 

the EBV prediction on immune response and feed-intake-related resilience to AD in mink. 

The ssGBLUP resulted in higher prediction accuracy than the other methods tested for IAT 

and Varf traits. The pedigree-based traditional BLUP outperformed all genomic methods 

and produced the highest prediction accuracies for ELISA-G, CIEP, and DOF, likely 

because the SNPs captured less genetic variance for these traits than pedigree data (ELISA-

G) or insufficient training population size and marker density for traits with low heritability 

(CIEP and DOF). In the future, as genotyping or sequencing becomes more affordable,  

people gain a deeper comprehension of genome and variant functional annotations 

(Andersson et al. 2015), along with the utilization of larger training population sizes, 
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ssGBLUP has the potential to emerge as the most effective approach for the selection of 

AD resilient mink.
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Table 7.1 Number of animals in the training and validation populations. 

Traits1 Total animals Training animals Validation animals 

ELISA-G 1,120 896 224 

CIEP 934 747 187 

IAT 1,114 891 223 

DOF 890 713 177 

Varf 890 713 177 
1ELISA-G=Aleutian mink disease virus antigen-based enzyme-linked immunosorbent 

assay test; CIEP=Counterimmunoelectrophoresis test; IAT=Iodine agglutination test; 

DOF=the proportion of off-feed days; Varf=Variation in daily feed intake. 

 

Table 7.2 Descriptive statistics of five studied traits. 

Traits1 Phenotype records Mean SD2 Range CV3 (%) 

ELISA-G 1,421 1.40 2.20 0 to 7 157% 

CIEP 960 0.83 0.38 0 to 1 45% 

IAT 1,409 0.68 1.01 0 to 4 148% 

DOF 890 5.42 8.30 0 to 65.45 153% 

Varf 890 48.31 12.06 27.37 to 136.68 25% 
1ELISA-G=Aleutian mink disease virus antigen-based enzyme-linked immunosorbent 

assay test; CIEP=Counterimmunoelectrophoresis test; IAT=Iodine agglutination test; 

DOF=the proportion of off-feed days; Varf=Variation in daily feed intake; 2SD=Standard 

deviation; 3CV=Coefficient of variation. 

 

Table 7.3 Estimates of variance components and heritabilities with their standard errors 

(SE) for all studied traits using traditional best linear unbiased prediction model and full 

dataset. 

   Variance components 

  Heritabilities 

Traits1  𝜎𝑎
2±SE2 𝜎𝑚

2 ±SE3 𝜎𝑝𝑒
2 ±SE4 𝜎𝑒

2±SE5  h2 6 

ELISA-G  1.49±0.43 0.87±0.25 1.16±0.26 1.31±0.11  0.31 

CIEP  0.01±0.02 0.02±0.01 NA 0.10±0.01  0.08 

IAT  0.18±0.05 NA7 0.18±0.06 0.63±0.05  0.18 

DOF  5.79±3.58 NA NA 60.59±4.11  0.09 

VarF  19.58±9.89 NA NA 104.50±9.54  0.16 
1ELISA-G=Aleutian mink disease virus antigen-based enzyme-linked immunosorbent 

assay test; CIEP=Counterimmunoelectrophoresis test; IAT=Iodine agglutination test; 

DOF=the proportion of off-feed days; VarF=Variation in daily feed intake. 
2 𝜎𝑎

2 = additive genetic variance; 3 𝜎𝑚
2  = maternal genetic variance; 4 𝜎𝑝𝑒

2  = permanent 

environmental variance; 5𝜎𝑒
2= residual variance; 6h2= heritability.  

7NA = not applicable. 
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Table 7.4 Estimates of variance components and heritabilities with their standard errors (SE) for all studied traits from three different 

prediction models using validation dataset. 

    BLUP1     GBLUP2     ssGBLUP3   

Traits4  𝜎𝑎
2±SE5 𝜎𝑚

2 ±SE6 𝜎𝑝𝑒
2 ±SE7 𝜎𝑒

2±SE8 h2 9  𝜎𝑎
2±SE 𝜎𝑒

2±SE h2  𝜎𝑎
2±SE 𝜎𝑚

2 ±SE 𝜎𝑝𝑒
2 ±SE 𝜎𝑒

2±SE h2 

ELISA-G  1.50±0.48 0.80±0.27 1.21±0.30 1.30±0.12 0.31  0.91±0.10 4..41±0.36 0.17  0.97±0.28 1.09±0.27 1.47±0.22 1.29±0.12 0.20 

CIEP  0.01±0.01 0.01±0.01 NA10 0.12±0.01 0.07  0.01±0.01 0.14±0.04 0.07  0.02±0.01 0.01±0.01 NA 0.11±0.01 0.07 

IAT  0.16±0.06 NA 0.19±0.07 0.63±0.06 0.16  0.04±0.04 0.22±0.07 0.15  0.16±0.05 NA 0.18±0.06 0.63±0.06 0.16 

DOF  6.26±4.21 NA NA 59.95±4.75 0.09  5.03±1.31 50.53±3.07 0.09  4.51±3.12 NA NA 55.52±4.16 0.08 

Varf  12.87±8.04 NA NA 106.82±8.72 0.11  10.59±6.77 90.65±15.27 0.12  9.98±3.88 NA NA 101.04±7.64 0.08 

1BLUP = traditional best linear unbiased prediction; 2GBLUP = muti-steps genomic best linear unbiased prediction; 3ssGBLUP = single-

step genomic best linear unbiased prediction. 
4ELISA-G = antigen-based enzyme-linked immunosorbent assay test; CIEP = Counterimmunoelectrophoresis test; IAT = Iodine 

agglutination test; DOF = the proportion of off-feed days; VarF = Variation in daily feed intake. 
5𝜎𝑎

2 = additive genetic variance; 6𝜎𝑚
2  = maternal genetic variance; 7𝜎𝑝𝑒

2  = permanent environmental variance; 8𝜎𝑒
2 = residual variance; 9h2= 

heritability. 
10NA = not applicable. 
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Table 7.5 The prediction abilities and accuracies and their SE for all studied traits from three 

different prediction models using validation dataset. 
  BLUP1   GBLUP2   ssGBLUP3  

Trait4  
Prediction 

ability 

Prediction 
accuracy 

 
Prediction 

ability 

Prediction 
accuracy 

 
Prediction 

ability 

Prediction 
accuracy 

ELISA-G  0.39 (0.03) 0.71 (0.05)  0.37 (0.02) 0.66 (0.04)  0.38 (0.02) 0.68 (0.04) 

CIEP  0.17 (0.02) 0.58 (0.07)  0.12 (0.02) 0.40 (0.06)  0.12 (0.03) 0.40 (0.09) 

IAT  0.18 (0.02) 0.41 (0.05)  0.15 (0.04) 0.34 (0.09)  0.22 (0.05) 0.53 (0.11) 

DOF  0.07 (0.03) 0.22 (0.11)  0.03 (0.01) 0.11 (0.03)  0.05 (0.02) 0.17 (0.09) 

Varf  0.08 (0.02) 0.23 (0.06)  0.10 (0.02) 0.30 (0.04)  0.11 (0.06) 0.32 (0.05) 
1BLUP = traditional best linear unbiased prediction; 2GBLUP = muti-steps genomic best linear 

unbiased prediction; 3ssGBLUP = single-step genomic best linear unbiased prediction; 4ELISA-G 

= antigen-based enzyme-linked immunosorbent assay test; CIEP = Counterimmunoelectrophoresis 

test; IAT = Iodine agglutination test; DOF = the proportion of off-feed days; VarF = Variation in 

daily feed intake. 

 

 

Table 7.6 Regression coefficient and their standard errors of adjusted phenotypes on the predicted 

breeding value (EBV or GEBV) from three different prediction models using validation dataset 

for all studied traits. 

Trait1  BLUP2  GBLUP3  ssGBLUP4 

ELISA-G  1.55 (0.22)  1.35 (0.21)  1.34 (0.22) 

CIEP  1.79 (0.62)  1.11 (0.75)  1.05 (0.47) 

IAT  1.09 (0.54)  1.67 (0.60)  0.84 (0.27) 

DOF  0.80 (0.53)  0.65 (0.30)  1.05 (0.75) 

Varf  1.07 (0.76)  1.33 (0.61)  1.66 (0.65) 
1ELISA-G = antigen-based enzyme-linked immunosorbent assay test; IAT = Iodine agglutination 

test; CIEP = Counterimmunoelectrophoresis test; DOF = the proportion of off-feed days; VarF = 

Variation in daily feed intake. 
2BLUP = traditional best linear unbiased prediction; 3GBLUP = muti-steps genomic best linear 

unbiased prediction; 4ssGBLUP = single-step genomic best linear unbiased prediction. 
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8CHAPTER 8. General Discussion and Conclusion 

 

8.1 Summary and general discussion 

Aleutian disease (AD) brings severe health issues and results in substantial economic 

setbacks for the mink industry. The inefficacy of vaccination, medicine, and culling 

strategy in managing AD has prompted mink farmers to select AD-resilient mink. 

However, as the literature review in this thesis (Chapter 2) discussed, the lack of 

comprehensive knowledge of the genetic/genomic architecture of AD resilience prevents 

breeders from integrating this novel trait into their breeding programs. Thus, this thesis 

aimed to provide a comprehensive view of the genetic and genomic architecture of AD 

resilience and assess the potential of genomic prediction methods in the selection process 

for AD resilience. The genetic parameters estimated from Chapter 3 revealed the genetic 

correlations among the studied AD-resilient traits, and the results further illustrated the 

antigen-based enzyme-linked immunosorbent assay test (ELISA-G) was the most reliable 

and practical indicator trait to select AD-resilient mink among all AD tests. In Chapter 4, 

the genetic structure of farmed mink was investigated using genotypic information from 

the first Axiom Affymetrix Mink 70K single nucleotide polymorphism (SNP) panel to 

update the population genomics information of farmed mink in Canada. Selection 

signatures (Chapter 5) and genome-wide association studies (GWAS, Chapter 6) were 

performed to explore the genomic architecture of AD resilience, and several genes and 

biological pathways related to the studied AD-resilient traits were detected in these studies. 

The outcomes from selection signatures and GWAS studies not only contributed to a better 
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understanding of the genomic architecture underlying the immune response and resilience 

of mink to AD but also provided an opportunity for improving the resilience of mink to AD 

using marker-assisted/genomic selection in mink. In Chapter 7, different genomic 

prediction methods were assessed to investigate the viability and optimal strategy for 

leveraging genomic information to enhance genetic gains for AD resilience in mink. Based 

on the prediction accuracies and biases of different prediction methods for each trait, the 

most suitable prediction approach was suggested for each AD-resilient trait 

8.1.1 Genetic Parameters 

Chapter 3 assessed the genetic and phenotypic correlations among four AD tests, seven 

body weight (BW) traits, six growth parameters derived from the Richards growth model, 

and eight feed-related traits. Notably, both the ELISA-G and virus capsid protein-based 

enzyme-linked immunosorbent assay tests (ELISA-P) demonstrated significant (p<0.05) 

moderate positive genetic correlations with maturation rate (0.36 and 0.38, respectively). 

ELISA-G exhibited a significant negative genetic correlation with average daily gain 

(ADG, -0.37), while ELISA-P displayed a significant positive moderate genetic correlation 

with off-feed days (DOF, 0.42). These results imply that selection for low ELISA scores 

could decrease the maturation rate, enhance ADG (as indicated by ELISA-G), and 

minimize DOF (as suggested by ELISA-P). Furthermore, the iodine agglutination test 

(IAT) demonstrated significant genetic correlations with DOF (0.73), BW at 16 weeks of 

age (BW16, 0.45), and BW at harvest (HW, 0.-47). Consequently, selecting for lower IAT 

scores would likely result in reduced DOF and BW16, along with increased HW. The 

estimated genetic correlations collectively suggest that choosing specific AD tests would 

not adversely affect the growth, feed efficiency, and feed intake of mink. Specifically, 
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selecting mink with low ELISA-G scores could improve average daily gain and contribute 

to mature weight without detrimental effects on body weight, feed efficiency, off-feed days, 

and feed intake consistency.  

Our previous study (Hu et al. 2021) indicated that ELISA-G had the potential to be applied 

as an indicator trait for genetic selection of AD-resilient mink in AD endemic ranches 

because ELISA-G had moderate heritability (0.39) and repeatability (0.58) and selecting 

for low ELISA-G test results could also enhance female reproductive performance traits 

and harvest length while decreasing anemia extent without compromising pelt quality. The 

findings from Chapter 3 further support the notion that ELISA-G could serve as a reliable 

and practical indicator trait in the genetic selection of AD-resilient mink within AD-

positive farms. 

8.1.2 Population Genomics 

Clarifying the genetic structure of the target populations is critically important for the 

development of efficient genomic selection programs in domestic animals. Thus, Chapter 

4 in this thesis aimed to compute a series of parameters, including linkage disequilibrium 

(LD), effective population size (Ne), genetic diversity, genetic distances, and population 

differentiation and admixture, using the genotypic data from the first SNP panel for 

American mink with a larger sample size to reveal the genetic structure of studied 

population (Canadian Centre for Fur Animal Research (CCFAR), Truro, NS and Millbank 

Fur Farm (MFF), Rockwood, ON). Based on the estimated LD patterns, the minimum 

maker densities to obtain adequate accuracy for genomic selection programs in CCFAR 

and MFF were suggested (7,700 and 4,200, respectively). The genetic distance and 

diversity analyses showed that American mink of the various color types had a close 
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genetic relationship and low genetic diversity, with most genetic variation occurring within 

rather than between color types. The results indicated that the color types of mink might 

not be a reliable indicator to differentiate American mink. The admixture analysis showed 

the genetic structure of the studied populations was composed of three ancestral genetic 

clusters, where black (in both CCFAR and MFF) and pastel color types had their own 

ancestral clusters, while demi, mahogany, and stardust color types were admixed with the 

three ancestral genetic clusters. This thesis chapter provided essential information to utilize 

the first SNP panel for American mink in genomic selection, as well as other genomic 

studies, such as quantitative trait locus mapping, identification of signatures of selection, 

and GWAS.  

8.1.3 Selection Signatures 

Many mink farms have employed phenotypic selections of AD-resilient mink based on AD 

tests and/or AD resilience indicator traits to reduce the adverse influence caused by AD. 

The utilization of these indicator traits in the selection process may have influenced the 

genetic variation patterns, potentially revealing genes subjected to selection pressures. 

Therefore, Chapter 5 in this thesis aimed to identify signatures of selection associated with 

various AD-resilient traits, such as immune response (IRE), general resilience (GRP), and 

female reproductive performance (FRP) to AD. A total of 619, 569, and 526 SNPs were 

identified as potential selection signatures for IRE, GRP, and FRP traits, respectively. The 

genes annotated from these signatures were implicated in processes like the immune 

system, growth, reproduction, and pigmentation. These annotated genes may help in better 

understanding the mechanism of AD in influencing immune response, body weight growth, 

female reproductive performance, and pelt quality. Notably, two olfactory-related gene 
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ontology (GO) terms were consistently significant across all traits, suggesting a potential 

impact of AD on the sense of smell in infected mink. This finding may explain the reduced 

feed intake observed in AD-infected mink. Variations in detected genes and GO terms 

among different color types for IRE indicated diverse immune responses to AD among 

mink of varying color types. The Kyoto Encyclopedia of Genes and Genomes pathway 

analyses for FRP highlighted the significance of the mitogen-activated protein kinase 

(MAPK) signalling pathway, implying that AD infection might disrupt MAPK signalling, 

affecting FRP. Overall, the findings from Chapter 5 advanced our understanding of the 

genomic architecture of AD resilience, shedding light on the underlying biological 

mechanisms associated with AD resilience. 

8.1.4 Genome-wide Association Studies 

In recent years, advancements in next-generation sequencing technologies, high-density 

SNP arrays, and bioinformatics tools have led to the increased popularity of GWAS for 

identifying genetic variants and genes associated with immune response and disease 

resilience traits in livestock. The introduction of the Axiom Affymetrix Mink 70K SNP 

panel has enabled GWAS investigations into the genomic architecture of resilience to AD 

using genotypic information. Chapter 6 of this thesis focuses on conducting GWAS to 

pinpoint genomic regions and genes linked to immune response and resilience to AD. The 

GWAS analysis identified 17, eight, and seven SNPs associated with ELISA-G, IAT, and 

the proportion of off-feed days (DOF), respectively. From these SNPs, 141 genes were 

annotated for ELISA-G, with MPIG6B, RUNX2, and C4A emerging as potential key genes 

in regulating immune-mediated responses to AD. Among the 44 genes annotated from 

SNPs associated with IAT, TNFRSF11A and C4A were found to be involved in the immune 
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system process. Additionally, 42 genes were annotated from SNPs associated with DOF, 

including ADCY7 and CNDP2, which are relevant to feed intake or appetite. The study 

identified five significant (q<0.05) overrepresented GO enrichment terms for ELISA-G, 

and these five GO terms play crucial roles in adaptive immune response or complement 

system. The significant SNPs, genes, and GO terms uncovered in this investigation enhance 

our understanding of the genomic basis of mink resilience to AD. This knowledge opens 

avenues for improving mink resilience to AD through marker-assisted or genomic selection 

strategies. 

8.1.5 Genomic Prediction 

The introduction of dense panels of SNP markers has greatly facilitated the widespread 

adoption of genomic selection in major farm animal species. This implementation 

expedites genetic trends by improving selection accuracy and reducing generation 

intervals. The heightened accuracy in selection is particularly important for traits with low 

heritabilities, which is often the case for traits associated with diseases that typically exhibit 

a low-to-moderate heritability range. Therefore, employing genomic selection is 

recommended to enhance disease-related traits. Chapter 7 of this thesis aimed to investigate 

the efficiency of genomic selection approaches on resilience traits related to AD. This 

investigation involved assessing the effectiveness of traditional pedigree-based Best Linear 

Unbiased Prediction (BLUP), Genomic BLUP (GBLUP), and Single-Step Genomic BLUP 

(ssGBLUP) models in predicting the estimated breeding values for immune response and 

feed-intake-related resilience to AD in mink. ssGBLUP demonstrated the highest 

prediction accuracy among all tested methods for IAT (0.53) and day-to-day variation in 

feed intake (Varf, 0.32). In comparison to genomic prediction methods, the pedigree-based 
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traditional BLUP yielded higher prediction accuracies for ELISA-G, 

counterimmunoelectrophoresis (CIEP), and DOF. This could be attributed to SNPs 

capturing less genetic variance for these traits than pedigree data (ELISA-G) or limitations 

in the training population size and marker density for traits with low heritability (CIEP and 

DOF).  

This thesis chapter suggested different prediction models for different traits. Despite 

slightly lower prediction accuracy than the BLUP model, ssGBLUP could be considered 

the most appropriate prediction model for ELISA-G due to its lower prediction bias. For 

CIEP and DOF, the BLUP model provided the best prediction accuracy, indicating its 

suitability for breeding values estimation for these traits. However, genomic prediction 

models have the potential to enhance prediction ability and accuracy with larger training 

populations and marker density in future studies. The ssGBLUP model appears more 

suitable for obtaining genomic predictions for IAT and Varf, showing the highest prediction 

ability and accuracy. As genotyping or sequencing costs decrease and our understanding of 

genome and variant functional annotations improves, coupled with larger training 

populations, ssGBLUP may emerge as the most effective approach for genomic prediction 

of AD resilience in mink. 

8.1.6 Conclusion 

In conclusion, the studies conducted in this thesis not only provide practical information 

and suggestions for future implementation of genetic/genomic selection on AD resilience, 

but also enhance our understanding of the genomic architecture and biological pathways 

underlying mink’s resilience to AD. The estimates of genetic parameters in Chapter 3 

further support the practicability and reliability of ELISA-G as an indicator trait of AD 
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resilience in the genetic selection of AD-resilient mink. The updated population genomics 

information obtained from Chapter 4 would direct the utilization of the first SNP panel for 

American mink in their genomic studies and help to better understand the genetic structure 

of mink populations. The genes and GO terms, which were estimated to be related to AD 

resilience, from Chapters 5 and 6 advanced our knowledge of the genomic architecture and 

biological pathways associated with AD resilience. Chapter 7 suggested the most suitable 

prediction model for each AD-resilient trait based on the performances of different methods 

in the prediction of EBV, which provided helpful information for future genomic selection 

of AD resilience in mink. To the best of our knowledge, this thesis offered the first 

comprehensive genomic analyses to identify genetic variants and biological mechanisms 

underlying AD resilience traits in mink. This would contribute to understanding the 

biological foundation of AD resilience in mink and directing the future breeding program 

for AD-resilient mink. 

8.1.7 General Recommendations and Future Directions 

Given the insights derived from this thesis, several enhancements and strategies could be 

implemented in subsequent studies to advance the resilience of mink to AD: 

a) Future investigations on genetic parameters of AD resilience in mink could benefit 

from the inclusion of diverse mink populations sourced from various farms and larger 

sample sizes, therefore increasing the accuracy of genetic evaluation.  

b) Using a larger sample size with whole-genome sequencing data or imputing the 

current genotypic data to the whole-genome level may help in addressing the limitations 

of SNP arrays, such as the limitation in capturing a significant portion of heritability 

(missing heritability issue), in future genomic studies of AD resilience.  
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c) The detected genomic regions and candidate genes associated with AD resilience 

traits in this thesis should be validated through various methods, such as web laboratory 

validation and fine mapping, thereby confirming the impact of these genes on AD resilience 

traits in mink. 

d) To identify more biomarkers associated with AD-resilient traits in mink, future 

research could include more omics approaches, such as transcriptomics, metabolomics, and 

microbiomics.    

e) Applying machine learning and deep learning approaches may significantly 

contribute to the future genetic and genomic studies of AD resilience by providing more 

robust statistical models for analyzing and interpreting phenotypic and genomic data.
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11APPENDIX 2.  Description of Electronic Supplements 

Supplementary dataset 1 

The dataset includes 1) significant SNPs detected from different methods, 2) SNPs detected 

as candidate selection signatures by at least two methods, and  3) the genes annotated from 

the candidate selection signatures for immune response trait from Chapter 5. 

 

Supplementary  dataset 2 

The dataset includes 1) The genes annotated from the detected significant SNPs for 

immune response, general resilience, and female reproductive performance traits, and 2) 

the common genes among the three studied traits from Chapter 5. 

 

Supplementary  dataset 3 

The dataset includes 1) significant SNPs detected from different methods, 2) SNPs detected 

as candidate selection signatures by at least two methods, and 3) the genes annotated from 

the candidate selection signatures for general resilience and female reproductive 

performance trait from Chapter 5. 

 

Supplementary  dataset 4 

The dataset of significant SNPs detected from the GWAS analyses, and the genes annotated 

from these significant SNPs for all three studied traits in Chapter 6. 
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12SUPPLEMENTARY MATERIAL 

 
Supplementary Figure 1. Optimization α-score graph. 

 

 
Supplementary Figure 2. Population genetic clustering results based on the Bayesian 

Information Criterion (BIC) in relation to the number of clusters identified by the 

find.cluster function in DAPC analysis. 
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Supplementary dataset 1. Significant SNPs detected as candidate selection signatures for 

immune response trait by each method, and the genes annotated from these candidate 

selection signatures from Chapter 5. 

 

Supplementary dataset 2. The genes annotated from the detected significant SNPs for 

immune response, general resilience, and female reproductive performance traits, and the 

common genes among the three studied traits from Chapter 5. 

 

Supplementary dataset 3. The significant SNPs detected as candidate selection signatures 

for general resilience and female reproductive performance trait by each method, and the 

genes annotated from these candidate selection signatures from Chapter 5. 

 

Supplementary dataset 4. The dataset of significant SNPs detected from the GWAS 

analyses, and the genes annotated from these significant SNPs for all three studied traits in 

Chapter 6. 

 

 


