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ABSTRACT 

Decision support tools (DSTs) and a framework for incorporating estimates of 
growing season nitrogen (N) mineralization (GSN) in soil, using analysis of total soil N 
(TN) to quantify the stable N pool, and biological nitrogen availability (BNA) to quantify 
the labile N pool in a zero- plus first-order kinetic function, were developed to inform N 
fertilizer recommendations. Pedotransfer functions (PTFs) were trained for TN, BNA, 
and GSN (N response variables), which showed important predictor variables, intrinsic 
controls on N dynamics, and that high accuracy predictions could be obtained from 
surrogate soil data. Using machine learning (ML) and interpretation metrics, soil organic 
matter for the stable N pool and soil respiration for the labile N pool were shown to be 
both cost-effective and highly correlated predictors of GSN. Provincial scale digital soil 
maps (DSMs) were then developed with ML to create spatial estimates of N response 
variables where direct soil data is not available. Multi-year crop inventory covariates 
were generated to improve predictive strength and incorporate the influence of soil 
management on N response variables. Climate appeared to influence the stable N pool, 
whereas plant cover had a greater influence on the labile N pool. DSTs, both PTFs and 
DSMs, were then tested on six-separate producer fields that had been sampled to reflect 
infield variability. DSTs captured the differences between fields at a coarse-scale (30m) 
resolution. The higher quality soils used to train DST models provided a useful 
benchmark to identify poor quality fields, and inform N management decisions. To 
capture infield variability, infield maps (5m resolution) were developed and the results 
showed an increase in accuracy and decrease in the uncertainty of predictions. Overall, 
DSTs for biological processes as related to soil N dynamics were achieved using novel 
techniques and ML. From these results, a tiered approach to N fertilizer management was 
proposed. The DSM, as tier 1, provides estimates of GSN to producers who do not have 
point data; the PTF, as tier 2, is applied for producers who have surrogate data; and 
subsequent tiers are for producers with direct measures for N response variables.
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CHAPTER 1:  INTRODUCTION 
 

There has been an ongoing effort by industry, researchers, and government 

agencies to improve Nitrogen (N) management in Eastern Canada (Bowles et al., 2018; 

He et al., 2012; Zebarth et al., 2009). This is particularly true in Prince Edward Island 

(PEI) where humid climatic conditions and permeable soil properties, combined with 

high N fertilizer rates associated with potato production, increase N loss potential to 

environmental receptors (Zebarth et al., 2015). A principal risk in PEI, and key driver of 

this thesis, was focused on minimizing the N remaining post-harvest, which is almost 

completely lost overwinter due to leaching or gaseous losses from denitrification 

(Nyiraneza et al., 2017; Sharifi et al., 2008; Zebarth et al., 2008). In alignment with the 

4R nutrient stewardship (4R) initiative, where the “right” nutrient source, time, rate, and 

placement seek to improve fertilizer management (Bruulsema et al., 2016), this study 

focuses on the contributions from soil N mineralization (Nmin) potential as an important 

source in order to inform right-rate N fertilizer recommendations. 

The problems addressed in this thesis were twofold. The first relates to the 

existing N credit system in PEI, which estimates N contributions (N credits) from various 

sources (e.g., manure, legume crops, and soil Nmin) against the proposed crop N 

requirement in order to obtain a recommended N fertilizer rate (Zebarth et al., 2008). The 

current system assigns a soil-based N credit (soil Nmin) of 15 kg N/ha credit only for soils 

with a soil organic matter (OM) percentage above 3.5%. The average OM level in PEI is 

approximately 3% and therefore soil N credits are seldom assigned despite documented 

levels of Nmin well in excess of this number in most soils (Nyiraneza et al., 2017; Zebarth 
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et al., 2008). Secondly, there is currently no soil N test in PEI wherein a crop producer 

can adjust N fertilizer rates based on direct measures of soil Nmin. Due to the high degree 

of residual soil N loss over the fall to spring period, the Fall N test typically used in 

prairie Canada is not applicable and is therefore not offered by local laboratories (Zebarth 

et al., 2009).  

Chapter 2 thus provides an introduction and background into the nature of this 

two-fold problem, and includes a literature review for the quantification and prediction of 

soil N mineralization for supporting right-rate nutrient stewardship. The thesis 

objectives, based on the literature review and outlined in Section 2.6, were to build from 

the predictive function presented by Dessureault-Rompre et al. (2015) in order to develop 

N decision support tools (DSTs) using machine learning. The DSTs, developed and tested 

in the following chapters, include pedotransfer functions and digital soil maps of N 

parameters for the purpose of enhancing the existing N credit system and providing an 

improved approach for informing N management strategies in PEI.  
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CHAPTER 2:  LITERATURE REVIEW - QUANTIFICATION AND 
PREDICTION OF SOIL NITROGEN MINERALIZATION FOR SUPPORTING 

RIGHT-RATE NUTRIENT STEWARDSHIP 
 

 INTRODUCTION 

To accurately quantify the cumulative nitrogen (N) mineralization of soil organic 

N over a given time (Nmin), and prior to fertilization so that a producer’s N rate can be 

adjusted accordingly, is one of the key objectives of N research (Bassanino et al., 2007; 

Fowler et al., 2013). In developing a standard measure of nitrogen mineralization 

potential (N0), Stanford and Smith (1972) followed by Curtin and Campbell (2008) 

confirmed that substantial contributions of greater than 200 kg N/ha were indeed possible 

in many agricultural soils. However, quantifying Nmin in soil at a particular location is 

only one aspect of the goal. As a biologically mediated process, there is more to consider 

when attempting to extrapolate these measures both temporally, and spatially. Being 

affected by climate, management practices, soil organic matter (OM) quality, etc., 

quantifying Nmin temporally and spatially has required a multitude of studies to try and 

understand these relationships (Dessureault-Rompre et al., 2015; Goovaerts and Chiang, 

1993; Heuvelink and Webster, 2001). As such, at the producer level, there has been no 

clear approach as to how an estimate of Nmin could be applied throughout their fields and 

into their N rate recommendations. Further confusion arose with debates centered on soil 

carbon (C) storage and cycling, and how these might affect our understanding of N pool 

dynamics (Derrien et al., 2023; Janzen, 2019; Kleber and Lehmann, 2019; Olk et al., 

2019). While much work has been done to allay these concerns, until a clear framework 

is proposed, a crop producer is more likely to forego the benefits of Nmin, and leave these 

estimates out of their N rate recommendations altogether. Thus, with this hesitancy in 
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producers, decades of research can often be frustrated by a failure to provide accessible 

measures of soil Nmin. 

The thesis of this study is that the means for making reliable estimates of Nmin 

currently exist. However, they require commentary, qualification, and development in 

order to be incorporated by practitioners into their N rate fertilizer recommendations. As 

such, and using an approach similar to Derrien et al. (2023) who addressed controversies 

related to soil carbon, the purpose of this chapter is to review the state of knowledge 

associated with the principal steps towards a practical system for incorporating Nmin 

estimates into fertilizer recommendations, identify possible impediments, and suggest 

applications for the purpose of overcoming producer hesitancy. In order to explore these 

challenges, predictive functions (Section 2.2), N pool indices (Section 2.3), and field 

scale approaches (Section 2.4) will be considered. A chapter summary including research 

gaps is given in Section 2.5, and a statement of objectives and outline of the thesis are in 

Section 2.6. 

 PREDICTIVE FUNCTIONS 

With N mineralization as a process occurring over time and under the influence of 

climate, one of the initial decisions the practitioner must make is the choice of predictive 

function. The standard function used in Curtin and Campbell (2008) is shown (Eq. 2.1) in 

order to demonstrate the principal components of a an estimate of Nmin including, the 

predictive function itself (in this case, depicting a first-order kinetic model), potentially 

mineralizable N (N0) here representing a single compartment N pool estimate, and the 

kinetic rate coefficient (k), reflecting the role of soil climate over a given time (t). 

                                                     𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑁𝑁0�1 − 𝑒𝑒(−𝑘𝑘𝑘𝑘)�                      [2.1] 
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Benbi and Richter (2002) and Manzoni and Porporato (2009) outline multiple kinetic 

models with varying levels of complexity. These complexities are inherent with 

biologically driven processes in general, but are also due to the various aspects of 

temporal predictions. Each of the aspects of predictive functions including, the number of 

measurable N pools to consider, the means of explaining the breakdown relationship in 

the associated kinetic function (between a zero-, first-order, or mixed kinetic approach), 

the rate of breakdown understood in the rate coefficients (k), and the temporal scale (t) 

will be examined. 

 N Pool Divisions 

An N pool is a theoretical or measurable division of the total and/or available 

organic-N in OM (Sharifi et al., 2007a; von Lützow et al., 2007). Characterized by the 

related breakdown kinetics (Section 2.2.2) and the method of extraction (Section 2.3), the 

decision on the number of N pools for estimating Nmin is not only a function of what is 

biologically available, but in a practical sense, what is measurable. Generally, 

considering one kinetically uniform N pool to approximate Nmin in soil (Eq. 2.1) was 

standard; but with the understanding that additional pools could be delineated based on 

incubation time and/or soil conditions (Curtin and Campbell, 2008; Stanford and Smith, 

1972). Alternatively, Heumann et al. (2011) and Dessureault-Rompre et al. (2015) were 

among those who characterized organic N into two major divisions including a slowly 

(relatively stable) and quickly (relatively labile) mineralizing pool. While multiple 

theoretical divisions are possible, a total of three N pools were defined by Sharifi et al. 

(2007a) including Pool I (gross nitrogen mineralization in the first two-week incubation 

period representing the labile N pool), Pool II (gross nitrogen mineralization between the 
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two- and 24-week incubation period), and Pool III, which was derived based on curve-

fitting as a theoretical pool extrapolated beyond the incubation period. The larger and 

more stable Pools II and III taken together, are used to estimate the variable N0 (Sharifi et 

al., 2007a; Sharifi et al., 2007c). In some cases, additional pools emerged as statistical 

curve fitting approaches evolved. The goal was to increase the “goodness of fit”, 

regardless of whether the pools could be measured or not. With divisions of one, two, 

three plus pools available in order to account for mineralizable N, the decision on the 

optimum relationship and their interactions provides practical complications.  

 Gillis and Price (2016) in comparing model scenarios for carbon mineralization 

from soil amended with organic residues found that a one-pool approach, with the 

addition of a logistic function to explain intrinsic competition dynamics, were 

significantly higher than two-pool models. Alternatively, and citing reasons of pool size 

and availability differences of organic-N content, a two-pool model wherein a larger and 

more slowly mineralizing stable pool, and a smaller and more quickly mineralizing labile 

pool was found superior to the one pool approach (Benbi and Richter, 2002; Cabrera and 

Kissel, 1988; Dessureault-Rompre et al., 2015; Heumann et al., 2013; Heumann et al., 

2011). With respect to including a third pool (Pool III), its consideration as an 

extrapolated pool is important conceptually, but not practically.  

The literature is relatively silent with applied examples of using a third N pool on 

its own in a model to quantify Nmin in soil. As a theoretical pool, it provides an estimate 

of what could be potentially mineralizable beyond the 24-week incubation but was not 

measurable (Sharifi et al., 2008; Sharifi et al., 2007a). Practically speaking, the inclusion 

of pools and parameters that are measurable is of the utmost importance. Using a logistic 
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function or theoretical pool, not being measurable per se, renders it difficult to use in 

practice – especially if these aspects could be considered implicitly through other models 

or indices. Pool II and III, which considered together as the larger and more slowly 

mineralizing “stable” pool, has either been measured solely with Total N (TN) analysis, 

(Dessureault-Rompre et al., 2015; Mallory and Griffin, 2007), or with TN and additional 

parameters such as clay content (Heumann et al., 2013). Pool I as the more labile N pool, 

determined and derived from the first two weeks of aerobic incubation, is based on 

measurable indices relating to biological activity of the soil community, and is more 

feasible for practical use (Curtin and Campbell, 2008; Sharifi et al., 2008; Sharifi et al., 

2007a).  

Thus, using a model with parameters that are measurable and easy to parameterize 

is one of the main considerations in overcoming the obstacle of N pool divisions (Benbi 

and Richter, 2002). Also, while using two N pools is considered essential for estimating 

Nmin in agricultural soils (Heumann et al., 2011), the data that is available to a practitioner 

can, and should, dictate the method of incorporation; namely, that if a bulk N measure of 

N0 via TN is all that is available, than a one-pool approach should be attempted, rather 

than foregoing the advantage estimating Nmin altogether. In practical circumstances, the 

selection of pools should be a decision based primarily on what is representative of the 

target field conditions (what is happening on the ground), and how a soils breakdown 

kinetics are understood.  

 N pool Kinetics 

Estimating Nmin for incorporation into N fertilizer recommendations requires that 

a kinetic relationship be applied to describe the mineralization process for the N pool(s) 
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selected. Kinetic models attempt to capture intrinsic and extrinsic soil dynamics affecting 

mineralization of N pools over time, which is influenced by such factors as soil 

properties, temperature, moisture, soil management, crop residues, organic amendments, 

etc. (Griffin et al., 2007). Adding to this complexity, the literature has provided many 

scenarios of single compartment (e.g., one model), dual-compartment (e.g., two models 

of the same order), or mixed-compartment (e.g., two models of a different order) 

scenarios (Benbi and Richter, 2002). Typically, the kinetic models used for estimating 

Nmin are either a first-order model, zero-order model, or combination thereof. In first-

order kinetics, the breakdown rate is linearly proportional to the concentration of the 

depleting substrate being degraded (i.e., OM), whereas in a zero-order model the 

breakdown relationship is independent of the substrate concentration. In higher order 

kinetic models, the relationship between rate and substrate concentration is non-linear. 

Applying a single, dual, or mixed-compartment arrangement, and deciding on the kinetic 

model(s) to include therein, is another point of confusion for the practitioner.  

 Stanford and Smith (1972) used a single compartment (first-order) model to 

describe net mineralization over a 30-week incubation period (Eq. 2.1). This approach 

has been adopted at various incubation intervals (e.g., 24-weeks) and in multiple field and 

laboratory studies as the optimum model for determining Nmin (Curtin and Campbell, 

2008; Heumann et al., 2013; Sharifi et al., 2007c). However, based on the understanding 

of soil organic carbon (SOC) cycling and the varying degrees of availability and 

recalcitrance (Lehmann and Kleber, 2015), the case for implementing two compartments, 

a quickly and a more slowly mineralizing N pool, is widely recognized over a wide range 

of cropping systems and seasonal variations (Benbi and Richter, 2002; Bonde and 
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Rosswall, 1987). The next question to emerge then is, if these pools should be described 

separately, do they breakdown according to similar or different kinetics? As such, a dual- 

or mixed-compartment kinetic description becomes necessary.  

Two first-order equations (i.e., dual-compartment scenario assuming the fast and 

the slow pools both follow a first-order breakdown) were used under field conditions by 

Cabrera and Kissel (1988) and Heumann et al. (2013) with mixed results. Both studies 

saw deviations in predictive accuracy with some of the error being attributed to 

methodology (in particular, to wetting or sieving the soils for incubation). Their findings 

saw that fallow fields, where N mineralization is accelerated due to tillage practices, had 

lower average errors ranging from ~ 3.5 to 193% as compared with cropped plots where 

the average error ranged from 114 to 343% being overpredicted (Cabrera and Kissel, 

1988). For both studies, it is conjectured that while first-order kinetics are representative 

of the smaller labile N pool, which is potentially consumed within a growing season, the 

larger slowly mineralizing pool, which may continue to mineralize over an entire 

growing season, is not being properly represented.  

 Dessureault-Rompre et al. (2013) showed that the slowly mineralizable stable 

organic N pool followed a zero-order, non-diminishing, relationship due to N cycling 

replenishment during the growing season. In this same study, multiple models (single-, 

dual- and mixed-compartment scenarios) including first-order alone, first- plus first- and 

zero- plus first-order combinations were examined. In that study, and in Dessureault-

Rompre et al. (2015), results showed that a zero- plus first-order relationship, 

parameterized using TN for the stable, and Pool I (or N Flush via the 2-week aerobic 

incubation test) for the labile, respectively, best predicted the mineralizable N pools in 
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agricultural soils using regression analysis from soil properties (R2 = 0.41 @ 15 cm). 

Since these parameters for the stable and labile fractions might be difficult to obtain in 

practice, when this optimal scenario is not achievable, a one pool model can generate 

usable estimations and is preferable to no estimate at all.  

 Mineralization Rate Coefficients 

The mineralization rate coefficient (𝑘𝑘) reflects the combined effects of the soil 

biological community and soil climate on the rate of N mineralization. Whether the rate 

coefficient depicts that the substrate is being diminished (-𝑘𝑘) or is being replaced (𝑘𝑘), it is 

an integral and potentially confounding aspect of estimating Nmin. Estimating the rate 

of -𝑘𝑘𝑘𝑘 as with N0 (Eq. 2.1) is determined by regression technique and influenced by 

incubation time (t), temperature, and moisture (Curtin and Campbell, 2008). In addition, 

𝑘𝑘 is also associated with substrate (OM) quality and pool size, and must be calibrated 

(adjusted) to reflect local environmental factors (Benbi and Richter, 2002). For soil N 

mineralization applications, 𝑘𝑘 is typically reported in units of per week (w-1) or per day 

(d-1) with increasing numbers depicting higher decay rates. Since deriving soil specific 

rates is not practical for the practitioner, reliance on published data is necessary, but 

should be qualified accordingly. 

 Sharifi et al. (2008) established mineralization rate coefficients using the first-

order procedure described by Curtin and Campbell (2008) at 25°C for 24 weeks from 

field trials with various tillage practices. This was also completed across four geographic 

and climatic regions including British Columbia (BC), Saskatchewan (SK), Ontario (ON) 

and Quebec (QC). Comparing conventional tillage practices for consistency, 𝑘𝑘 values 

ranged from 0.0093 d-1 (reported as 0.065 w-1 with N0 = 170 kg N/ha) to a low of 0.0044 
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d-1 (reported as 0.031 w-1 with N0 = 206 kg N/ha) which, highlights the variations 

between climatic regions (Sharifi et al., 2008).  Heumann et al. (2013) also used first-

order relationships, but implemented a dual-compartment approach (accounting for two 

pools) and generated specific k values for each pool with 𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 for the quickly (labile) 

and 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 for the larger and more slowly (stable) mineralizable organic N pools. 

Dessureault-Rompre et al. (2015), in both dual- and mixed-compartment approaches, 

reported the differences between the specific 𝑘𝑘 values for the labile (𝑘𝑘𝐿𝐿) and stable (𝑘𝑘𝑆𝑆) 

pools from a variety of fields and geographic locations across New Brunswick, Canada. 

Considering the first-order 𝑘𝑘 value alone at a rate of 0.0084 d-1 (with N0 = 124 mg N/kg), 

compared to the derived rate constants of 𝑘𝑘𝑆𝑆 (0.492 d-1) and 𝑘𝑘𝐿𝐿 (0.074 d-1), we see the 

need to account separately for the slow and fast pools, respectively. This difference in 𝑘𝑘 

value for both the labile and stable pools was also found by Bonde et al. (1988) and 

Benbi and Richter (2002) with the difference in range (from high to low) seemingly 

attributed to differences in soil management and location. As such, it is strongly 

encouraged by various authors to correct/calibrate 𝑘𝑘 values for temperature, and or soil 

water content (Cabrera and Kissel, 1988; Dessureault-Rompre et al., 2015; Heumann et 

al., 2011). As an example, Dessureault-Rompre et al. (2015) corrected the 𝑘𝑘 value using a 

biophysical water function on a daily time step (Dessureault-Rompre et al., 2011; 

Georgallas et al., 2012). 

The variations observed in 𝑘𝑘 values between climatic zones, management zones, 

and between single-, dual-, or mixed-compartment approaches is perhaps the most 

challenging aspect of predicting Nmin from an applied perspective. Where possible, it is 

first recommended that 𝑘𝑘 values derived from single compartment studies should only be 
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used if applied to make single-compartment predictions. For example, if a practitioner 

has a surrogate measure of N0, the k value used in the single compartment (first-order) 

formula should have been derived from a single-compartment study. However, if the 

preferred approach of a mixed-compartment (zero- plus first order) relationship is put 

into practice, then a similarly derived 𝑘𝑘𝐿𝐿 coefficient for the labile pool (e.g., aerobic 

incubation test) and a different 𝑘𝑘𝑆𝑆 coefficient for the stable pool (e.g., total N) should be 

used, respectively. In addition, for both single-, dual-, or mixed-compartment functions, 𝑘𝑘 

values from similar climatic regions and/or management types should be sought. For 

example in humid climates and for both single- and multi-compartment scenarios, the 

results for 𝑘𝑘 values taken from Dessureault-Rompre et al. (2015) are preferred since this 

is where, and how they were derived. Sharifi et al. (2008) has results from various 

locations across Canada, but for use in single compartment (zero-order) relationships; as 

such, they should only be used accordingly. Lastly, in applying these functions, a 

reasonable estimate of the temporal scale (t) is also recommended. 

 Considerations for the Temporal Scale 

With respect to the temporal scale, the literature infers estimates of Nmin can be 

made with any type compartment model, but with little reference to preferred durations. 

With 𝑘𝑘 values per day or per week, the duration seems to be at the discretion of the 

practitioner and thus offers some points for consideration. An estimate of N per day or 

per week gives little help to a practitioner since N recommendations are usually made 

with the entire growing season in mind. Growing season length can be defined as the 

duration of time between the first and last occurrences of critical temperatures that occur 

when average soil temperatures (in the top 0.5m) are above biologic zero, which is 5°C 
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(Brinkmann, 1979). In terms of estimating N mineralization, biological activity and its 

duration is a key consideration. In Canada, the mean growing season in agriculturally 

prominent ecozones are approximately 130 d in the Atlantic Maritime, 110 d in the 

Boreal Shield, 120 d in the Prairies, and 100 d in the Boreal Plain (Gordon and Bootsma, 

1993; Pedlar et al., 2015).   

Using average growing season days specific to the practitioners ecozone, where 

the soil temperature is above biologic zero (5°C), is recommended for estimating Nmin in 

order to account for biological activity in soil. Secondly, inclusion of the complete 

growing season accounts for the steady introduction of N into the agricultural system, and 

generates values more easily included into fertilizer recommendations (kg N/ha vs. mg 

N/kg). It should also be noted that considering a longer duration (such as a growing 

season), will result in larger estimates of Nmin coming from the non-diminishing stable 

pool (𝑘𝑘𝑆𝑆) since the average labile pool size (using 𝑘𝑘𝐿𝐿= 0.074 d-1) can be consumed within 

the first 80 days (inferred from Soil Health Database in Chapter 3 using the average 

biological nitrogen availability (BNA) value of 41.5 mg N/kg). Finally, yearly 

fluctuations in growing season duration due to cold or wet springs for example, require 

careful consideration prior to incorporation. For example, if spring applications of N 

fertilizer must be delayed due to cold or wet conditions, modification of t may be altered 

accordingly. For potato crops, Dessureault-Rompre et al. (2013) noted that May to 

August delineates the most activity for both soil mineralization and plant N uptake. As 

such, a 90-day “effective” growing season might be considered or a 30% reduction from 

a 130-day estimate. Alteration of time (t), depending on producer application practices 
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(e.g., split N applications), may assist the practitioner in making final allotments of Nmin 

estimates into their fertilizer recommendations. 

 COMMON INDICES FOR QUANTIFYING N POOLS 

For the purpose of estimating Nmin via the predictive function over a growing 

season, parameterization of the necessary rates of decomposition is required. If the 

preferred model is a mixed compartment function, (zero- plus first-order), measures of 

the stable pool (NS) and labile pool (NL) are appropriate. If a single-compartment function 

is used (first-order alone), then a bulk-measure of N0 is required for considering both 

Pool II and III together. Besides the predictive function, a measured value for the kinetic 

pools is the next major point of consideration and of possible confusion for the 

practitioner. Much of the confusion arises as to the predictive power, and efficacy of 

various methods for estimating the size of plant available N pools. There is much 

divergence in the literature as to the best method, not to mention the appropriate pool-

specific test among them. As we know, N mineralization itself is a catabolic reaction and 

conversion of microbial N (i.e., microbial decomposition of organic N) to inorganic 

ammonium – NH4
+ (Paul, 2015). Being a microbially driven process, what any N test 

hopes to accomplish is to quantify the potential amount of organic N that can be 

converted into inorganic (mineral) N over a given period time. In turn, this will make soil 

N supply predictions possible and N management decisions more informed. The principal 

approaches, including biological and chemical methods, will be discussed along with 

their effectiveness in estimating respective pool sizes.  
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 Biological Methods  

It is important to reiterate that the N test is a measure of potential N 

mineralization, and not the actual N mineralized in the field during a particular growing 

season. While a lab-based measurement, at optimal conditions and using ex-situ soil can 

never precisely predict edaphic, climatic, or geographic conditions, or how much N will 

be mineralized or reach a crop at a given moment, the Mineralizable Nitrogen method is 

considered the industry standard for estimating N mineralization potential (St Luce et al., 

2011). The aerobic incubation method (Stanford and Smith, 1972), the updated 

Mineralizable Nitrogen method (Curtin and Campbell, 2008) and its applications in 

practice (Dessureault-Rompre et al., 2015; Sharifi et al., 2007a; Sharifi et al., 2007c) 

involve a soil sample being mixed with sand and placed in leaching tubes where it is 

wetted, and the initial (inherent, or residual) leached mineral N is discarded prior to 

incubation. The leaching tubes with wetted soil are placed in an incubator at a set 

temperature (e.g., 25°C) where it is periodically aerated. The sample is leached with a 

CaCl2 and N free nutrient solution every two weeks for the first 12 weeks, and then every 

following four weeks for the desired remaining incubation time > 20 weeks (e.g., 24-, 

28-, or 32-weeks). The leachate, or mineral-N enriched leaching solution, is collected, 

and analyzed for concentrations of ammonium (NH4
+) and nitrate (NO3

-) using 

colorimetry techniques. With respect to limitations, aerobic incubation does not measure 

growing season mineralization, but mineralization potential, as this method is conducted 

under optimal conditions (e.g., no rainfall, controlled temperature, etc.). Also, being a 

laboratory method, ex-situ soil handling, drying/sieving, rewetting, and set climatic 

conditions are all factors that can influence the results.  
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As such, the experimental design is the criterion for delineating N pools, much 

like certain extraction methods define our understanding of humic substances (Janzen, 

2019; Lehmann and Kleber, 2015). With aerobic incubation methods, important 

definitions and distinctions are made; namely, the N flush from the first two weeks of 

incubation is considered the labile organic N pool, and has been termed Pool I (Sharifi et 

al., 2007a). Further, Pool I is excluded from the estimation of N0, which is defined as a 

bulk measure of potentially mineralizable N and includes Pool II (an intermediate pool) 

and the extrapolated more recalcitrant Pool III (Dessureault-Rompre et al., 2015; 

Dessureault-Rompre et al., 2013). In this understanding then, N0 is representative of a 

comparatively slow mineralizing pool which is relatively stable and takes greater than 2-

weeks to mineralize (Dessureault-Rompré et al., 2010). In humid temperate soils and in 

terms of estimating Nmin over a growing season, this method provides the major N pool 

indices with the 2-week N flush (Pool I) as the preferred index for NL to be included in 

the first-order relationship and N0 (Pool II and II) for as the index for NS to be included in 

the zero-order relationship. 

However, while the biological method is the preferred approach, and with the goal 

of overcoming impediments with indices that are accessible, due to its completion time 

and involvement, it may be prohibitive at commercial scales and costly for the producer. 

Considering both the labile and stable parameters, the two-week N flush estimating Pool I 

(NL) is more practical, but long-term incubations (>20 weeks) to capture N0 or Pool II and 

III (NS) requires surrogate measures. Total soil N (TN) as a surrogate, was most strongly 

correlated to N0 (R2 = 0.40), N0 + Pool I (R2 = 0.39), and Pool II alone (R2 = 0.40) and is 

of practical value as it can be determined simultaneously with total soil organic Carbon 
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(TC) via dry combustion techniques (Dessureault-Rompré et al., 2010). Thus, within 

mixed-compartment functions, soil TN results have been used as the index for NS in the 

zero-order compartment, and the 2-week (Pool I) N flush as the index for NL in the first-

order compartment (Dessureault-Rompre et al., 2015). Soil TN was also found by 

Heumann et al. (2011) to be significantly correlated to the stable pool NS (0.54) using 

long-term incubations (~ 28 weeks) for validation. This correlation was also used 

successfully in pedotransfer functions using soil TN as a surrogate measure for NS in 

estimating nitrate leaching in agricultural fields (Heumann et al., 2013). TN has shown 

poor correlation in field trials where organic N leaching was prevalent, but explained 

91% of the variation in gross N mineralization in comparison to aerobic incubation 

methods (Wang et al., 2001).  

Much of the literature cited deals with the comparison of various methodologies 

and the interpretation of their respective outcomes (i.e., incubation times, temperatures, 

etc., yielding less, or more inorganic N); consequently, a focus on these finer points may 

distract from the overarching conclusion that sizeable quantities of mineralized N are 

possible. For example, the “best methodology” may estimate 190 kg N/ha, while a “good 

methodology” from the same soil may estimate 110 kg N/ha. This may be a significant 

difference, but to the producer, the fact is that >100 kg N/ha is potentially available 

during a growing season. As such, while biological methods are the standard by which 

Nmin potential can be measured, opportunities for alternative measures that will assist the 

practitioner should be pursued. Surrogate measures such as chemical methods (Section 

2.3.2), or pedotransfer functions (Section 2.4.1) that translate data you have into data you 
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need, provide some of the tools to help utilize this potential, and inform N fertilizer 

recommendations. 

 Chemical Methods 

The studies around which chemical method is the best surrogate measure for 

aerobic incubation, and under which circumstances, soil types, or environmental 

conditions, has itself filled tomes. Gerard Ros examined the subject at length regarding 

chemical extraction methods for estimating Nmin and how methodologies influence 

concentration, for the purpose of informing and improving N fertilizer management 

(Ros, 2011). It was found that chemically extractable organic N (EON) from 20 available 

extraction techniques provided the significant ability to quantify Nmin potential, but 

showed differences in pool size and composition due to variations in duration or 

temperature of extraction  (Ros et al., 2011a; Ros et al., 2009; Ros et al., 2011b). Overall, 

these studies concluded that chemically EON was a reliable measure of the stable N pool 

(N0), but attention to methodology, spatial, temporal, and cropping implications, was 

highly recommended (Ros, 2011; Ros, 2012). In order to provide clarity and resolution to 

practitioners, as well as assistance on a chemical index for predicting growing season N, 

we will focus on three fundamental questions, namely, which index will give a 

reasonable estimate of plant available N pools (NS/N0, or NL) for usage in a chosen 

kinetic function, which index is available commercially, and what N pool does it 

represent. 

The practicality of a surrogate for biological methods cannot be contested. Early 

on and in the context of their Mineralizable Nitrogen method, Curtin and Campbell 

(2008) noted the relative ease and speed with which chemical methods could estimate 
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Nmin capacity. However, they also noted issues of an inability to factor in immobilization 

and, extract chemically what N would be considered biologically accessible. With 

aerobic incubation still required as the reference (St Luce et al., 2011), chemical methods 

attempt to estimate the component of OM that is biologically available by adding 

electrolyte solution to a given soil sample, water or acids, then incubated at a given 

temperature (e.g. 100°C) for a set time (e.g. 4 hours) in order to extract organic N from 

OM as NH4-N (Ros, 2011).  

The practitioner must pay close attention to which N pool is being identified via 

specific chemical methods. Recalling that N0 is primarily made up of the larger and more 

slowly mineralizable stable pool (Pools II and III) or NS, St Luce et al. (2011) reviewed 

multiple studies comparing extraction methods to estimate N0. The best three methods 

included hot KCl extractable N (HKC; R2 = 0.78), ultraviolet (UV) absorbance of 

NaHCO3 extract at 260 nm (R2 = 0.74), and direct steam distillation of phosphate-borate 

buffer (pH 11.2) extract (R2 = 0.73) (St Luce et al., 2011). In another review, Ros et al. 

(2011b) found EON (comparable to N0) was best predicted with hot CaCl2, acid KMnO4, 

acid K2Cr2O7, hot water or hot KCl (57% < R2 < 74%). In these manuscripts, the results 

show a conflict as to the optimum: is it hot KCL, or hot CaCl2?  

Looking at standalone studies, Schomberg et al. (2009) identified TN (R2 = 0.64), 

hot KCl (R2 = 0.62), and Hydrolysable N (R2 = 0.60) among the best three predictors of 

N0 in soils under different management systems in the southern United States. Nyiraneza 

et al. (2012), comparing both biological and chemical indices against field-based soil N 

supply (plant bioassay) as estimated by corn N uptake and corrected for starter N 

fertilizer, also found UV absorbance of NaHCO3 extract at 205 nm (r = 0.41), hot KCl 
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extractable NH4-N (r = 0.39), and Pool I plus the concentration of NO3-N extracted using 

CaCl2 solution prior to incubation (r = 0.44) as promising surrogates of soil N supply 

(interestingly and perhaps a testimony to the need for inclusion of Pool I, since N0 alone 

was not as strongly correlated to soil N supply). With few studies focusing on surrogates 

for the more labile pool, Sharifi et al. (2007a) looked at soils across multiple different 

climatic conditions and management practices and concluded that CaCl2 extractable N 

and hot KCL extractable (NH4 and NO3), while good measures of Pool II and III, were 

also highly correlated to Pool I. As is seen with all these studies, there is divergence, but 

also underlying agreement.  

For the purpose of incorporating Nmin estimates into fertilizer recommendations, 

what must be avoided is a tendency to allow the pursuit of the ideal method hinder its 

application. In particular, the study by Nyiraneza et al. (2012) confirms and proposes two 

main points that are important for moving forward amidst uncertainty. Firstly, that in 

order to correct for lab-based biases, using plant uptake in unfertilized crops is a suitable 

reference standard (Nyiraneza et al., 2012; Zebarth et al., 2005). This method would be 

ideal and is potentially reproducible by the practitioner at their own field level using test 

strips of zero, or reduced N applications for comparison. Secondly, and confirming Ros 

(2011), the measure of N0 may not be an adequate sole estimator due to the poor 

agreement with soil N supply (Nyiraneza et al., 2012). Another takeaway, is that while 

there might be differences as to the “best” index, there is underlying agreement that all 

extraction methods perform well and, at the very least, provide some indication of 

mineralized N contribution.  
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From a practical perspective, the “best test” may be the one that is available. From 

an informal survey of agricultural soil labs, hot KCl appeared as the chemical method 

most commonly available. But unavailability of the “optimum” test should not hinder a 

practitioner from utilizing some estimation of Nmin in their respective soil. The caveat, is 

that calibration is required to qualify chemical method results, and if this calibration is 

not performed by the lab itself, it is recommended that local field supply measurements 

(e.g., test strips of zero- or reduced-N), where possible, become standard practice. 

 TOOLS FOR INCORPORATING NMIN ESTIMATES 

Having addressed quantifying estimates of N pools within a soil sample, and 

using that measure to estimate N mineralization over time through predictive functions, 

the next step for the practitioner is scaling these specific point estimates across a 

landscape. As such, overcoming challenges and impediments to quantifying Nmin may 

also involve the use of pedometric tools and support systems. A common finding in the 

literature for making estimates of Nmin, has been the need to incorporate texture, moisture, 

soil management, climate, or other intrinsic and extrinsic factors that mediate soil N 

mineralization processes (Derrien et al., 2023; Dessureault-Rompre et al., 2015; 

Heumann et al., 2013; Nyiraneza et al., 2012; Zebarth et al., 2009). These factors step 

beyond the standard predictive function or laboratory measures, and attempt to account 

for the stochastic variability of Nmin predictions, which can be confounding factors for 

mechanistic or empirical approaches. Besides this difficulty of accounting for outside 

controls to mineralization in the soil data, there is the added impediment of having no 

direct soil measures. From the perspective of practitioners attempting to incorporate Nmin 

predictions on their farms, three main challenges exist, namely accounting for a lack of 
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data or for controls of Nmin: at a given point (non-spatial), across their respective field 

(spatial), and utilizing those predictions to develop fertilizer recommendations. In 

response, this section will explore the potential for pedotransfer functions (PTFs), digital 

soil mapping (DSM), and the application of soil-based N credits. 

 Pedotransfer Functions for Estimating Nmin 

PTFs are a means of quantifying, via an empirical and/or qualitative function, 

what the relationship is between a parameter of interest (or response variable) and 

selected predictor variables. PTFs are derived by modelling the relationships between 

predictor and response variables using statistical techniques that range from simple 

regression to machine learning (McBratney et al., 2002; McBratney et al., 2000). Feature 

selection is typically performed by first addressing multicollinearity amongst predictor 

variables through variance inflation factor (VIF) analysis (Marquaridt, 1970), followed 

by recursive feature elimination (RFE), in order to identify the most important predictors 

for a simplified, parsimonious predictive function (Perreault et al., 2022; Román 

Dobarco et al., 2019b). What this means in practice, is that once the relationship between 

response and predictor variables are established, and obtained with the fewest and most 

relevant predictors, a practitioner can then use the data they have to get the data they 

need (Bouma, 1989). Thus, for the purpose of estimating growing season Nmin, PTFs can 

then be used to establish the relationship between variables such as Pool I, N0, etc., and 

available parameters in order to make predictions. As a tool, PTFs may be helpful to 

replace the need for lengthy incubation methods, understand what controls contribute to 

Nmin, and/or overcome data gaps whenever direct measures are absent. 
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PTFs have been used for understanding the intrinsic controls in N mineralization 

for decades. Rasiah (1995) focused on the concept that N0 was influenced by more than 

oxidized N released during incubation analysis, and compared PTFs using texture, SOC, 

TN, and cation exchange capacity (CEC) in order to predict variables in one and two-

pool models. In his study, it was observed that the concentration of the labile pool 

increased with higher TN and pH and was reduced with higher clay contents (as opposed 

to the stable pool, which increased with higher clay content). As such, intrinsic properties 

such as the physical protection, afforded by the mineral component, were seen to have 

significant influence on N0. Other studies have shown that PTFs can be derived 

successfully for measures of the stable pool (R2 as high as 0.64) and the labile pool (R2 

as high as 0.42) using parameters such as clay content, temperature, humus class etc. 

(Glendining et al., 2011; Heumann et al., 2003; Heumann et al., 2011). Laurence et al. 

(2023) successfully derived PTFs for TN as an estimate of the stable pool (concordance 

= 0.80) with parameters such as texture, OM, soil respiration; BNA as an estimate of the 

labile pool (concordance = 0.78) using aggregate stability, active carbon, soil respiration, 

and TN; and an estimate of (130-day) growing season Nmin (concordance = 0.82) using 

aggregate stability, active carbon, soil respiration, OM, and pH (Chapter 3). 

Although PTFs provide the possibility of reliable predictions, some cautionary 

findings should be considered. Since PTFs are usually empirical in character, the 

intrinsic mechanisms influencing Nmin can be inferred, but are not expressly evident; as 

such, with important drivers potentially not being accounted for, using PTFs outside their 

geomorphological origins can be problematic. McBratney et al. (2002) recommended 

that PTFs are best suited for locally derived applications, so for the practitioner, while a 
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PTF might be available, it should be used with caution if it was developed outside their 

source geographic region. In addition, PTFs derived with complicated sets of parameters 

should be avoided since their reproduction or usefulness is less likely. For example, 

PTFs designed for larger scale or global applications can include predictors such as 

latitude, mean C:N ratio of the soil classification group, etc., and may be difficult to 

populate (Glendining et al., 2011). It should also be noted that PTFs derived using 

certain machine learning models (e.g., cubist decision tree), sometimes referred to as 

“black box” models (Molnar et al., 2018), do not produce regression equations that are 

transferable outside the seed database. Where possible, researchers deriving PTFs using 

machine learning should include multiple-linear regression analysis in order to provide 

regression model coefficients for practical use applications (Chapter 3).  

For the practitioner, the PTF is a useful tool for estimating Nmin at a given point; 

however, extrapolation from that point, spatially across a field or region, is difficult since 

the controls may not be understood at each spatial location. Scale plays an important 

factor, and utilizing soil predictors (intrinsic properties) as did Dessureault-Rompre et al. 

(2015) may be sufficient to estimate Nmin locally (proximal scale); however, 

extrapolation across a landscape may require more climate or geographic related inputs 

to increase accuracy (distal scales). Notably, PTFs that are derived from non-

georeferenced data points will typically not include geospatial and/or climatic predictor’s 

and, as a result, may reduce the potential to incorporate extrinsic controls. This is where 

DSM techniques are useful in order to fill in spatial gaps, extrapolate via continuous 

coverage of climatic/geographic information, and provide predictions where point data is 

not available (thus alleviating another impediment).  
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 Digital Soil Maps for Estimating Nmin 

  In order to adjust N fertilizer rates across a landscape, the prediction of Nmin must 

be quantified spatially (Simard et al., 2001; Zebarth et al., 2009). DSM techniques are an 

appropriate tool to answer this need both regionally, and infield. DSM is a process by 

which soil sample points, obtained at a known location, are extrapolated spatially using 

predictive models. With these models, point data is used in conjunction with 

environmental covariate data layers to learn the relationships, make predictions in pixels 

or polygons across the landscape, and “fill in the gaps” where direct soil information is 

lacking (McBratney et al., 2003). Just as with PTF development, DSMs predict for a 

response variable of interest (e.g., Pool I, or N0), but with the exception that the predictor 

variables are spatial layers that provide a means to take advantage of non-spatial (point) 

information over a broader range. The DSM process, including the use of machine 

learning, has been outlined extensively by McBratney et al. (2003), Minasny and 

McBratney (2016) and Heung et al. (2016). With respect to our goal of predicting 

growing season N mineralization across a landscape, a key element of DSMs is that 

environmental covariates spatially quantify the soil forming factors (Jenny, 1941) 

including climate (c), organisms (o), relief (r), parent material (p) and age/time (a), plus 

soil properties (s), and spatial position (n), in what is collectively known as the scorpan 

model (McBratney et al., 2003). By incorporating scorpan, and with spatial variation 

inherent in biologically driven processes such as Nmin, DSM techniques lend themselves 

well to predicting Nmin across a landscape. 

 Examples in the literature do include DSMs for Total N (Mponela et al., 2020; 

Uygur et al., 2010; Wang et al., 2013; Wang et al., 2018; Wang et al., 2017; Zhang et al., 
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2019; Zhou et al., 2019; Zhou et al., 2020), but spatial predictions of biologically labile N 

(Pool I) are rare. Based on these regional studies, TN was best predicted with vegetation 

reflectance indices (e.g., normalized difference vegetation index, NDVI) from Sentinel 2 

satellite data, especially band-3 – red (0.63 to 0.69 µm) as well as topographic variables, 

followed by climatic variables such as mean-annual precipitation and temperature (Wang 

et al., 2018). In addition to climatic variables, Zhou et al. (2020) found that separating for 

land-use types within climatic zones also had a strong prediction influence. With respect 

to maps based on aerobic incubation methods, the literature is relatively silent; however, 

infield mapping of N0 has been done using predictors such as clay content and OM 

grouped according to yield, response curves, and residual soil N (Simard et al., 2001). 

While the infield map was useful for delineating spatial variations of N0, the issue of 

extrapolation beyond field boundaries is impossible unless this data is available. Thus, if 

the aim of the DSM is to provide predictions for practitioners on a broader scale, regional 

studies should be investigated in the future. 

The findings above are corroborated by Robertson and Groffman (2015) who note 

the differences between distal and proximal scales in addressing the controls of N 

mineralization. Distally, or regionally, climate, disturbance (soil management), soil type, 

and plant community structure are noted as the primary controls; whereas, proximally 

(field scale) the controls relate more to plant uptake (crop yield), moisture, structure, and 

CEC. Regionally, this is promising for mapping Nmin because the covariates required are 

publicly available via satellite imagery; locally, this provides a practical insight for the 

practitioner in that proximal data collection across the field (e.g., drone imagery at a finer 

scale) is valuable for incorporating infield variability estimations. 
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 Application of Soil Based N credits 

The adoption, or implementation of Nmin estimates is where research results can be 

applied in practice. With respect to the 4R nutrient stewardship system (right: source, 

rate, time, place), a practical approach to fertilizer management used by practitioners, 

estimates of Nmin align with the determination of the right “rate” (Johnston and 

Bruulsema, 2014). Zebarth et al. (2009) discussed various strategies for predicting 

fertilizer N rates. These strategies attempt to consider the various N inputs that can be 

applied as credits to a standard fertilizer prescription in order to minimize 

overapplication, and potential losses to the environment. In order to determine a 

recommended fertilizer rate (𝐹𝐹𝑁𝑁) as in Eq. 2.2, N credit systems first apply a general crop 

N requirement (𝑅𝑅) based on field N response trials for standard crop types. Next, 

contributions from various N sources are subtracted from 𝑅𝑅 which may include: a NH4
+ 

credit from manure or compost (𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴), organic N credits from manure or compost 

(𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂), credits for a previous year’s crop growth such as legumes (𝐶𝐶), and finally soil 

based credits from OM content (𝑆𝑆) via N mineralization (Zebarth et al., 2008). 

                                         𝐹𝐹𝑁𝑁 = 𝑅𝑅 −𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 −  𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂 − 𝐶𝐶 − 𝑆𝑆                                       [2.2] 

N credit systems may take on different scales such as a global approach (Gu et al., 2021), 

but a standard feature is the need for reliable estimates of each input parameter. For the 

scope of this chapter, factors 𝑅𝑅 and 𝑆𝑆 will be considered. 

Estimates of 𝑅𝑅 are typically a tabularized base value of what a particular crop 

type, or varieties N requirement (output) would be for a growing season (kg N/ha). Being 

a generic value, there is not always reference to how this output requirement might differ 
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based on higher efficiency N sources, or differences in crop yield. Besides a generic 

value for 𝑅𝑅, there is a possibility to derive the crop requirement using a yield goal 

approach (Machet et al., 2017; Oglesby et al., 2023; Tamagno et al., 2022; Zebarth et al., 

2009). With this approach, the producer chooses a target yield, and based on crop N 

uptake/removal estimates, calculates the total crop N requirement (𝑅𝑅). The primary 

limitations of this approach relate to actual vs. predicted growing season, as well as 

setting a realistic target yield (Tamagno et al., 2022; Zebarth et al., 2009). Oglesby et al. 

(2023) found that basing calculations on unrealistic yield goals alone can often over-

estimate N recommendations above what would be the agronomic optimum N rate (the 

maximum N rate to maximize yield). Studies suggest that considering the economic 

optimum N rate (i.e., the maximum N rate without monetary loss), coupled to the delta 

yield (i.e., optimum N rate minus the control yield without N fertilizer) provide more 

realistic yield estimates (Lory and Scharf, 2003). With the appropriate 𝑅𝑅 value selected, 

N credits can then be applied. 

With respect to the 𝑆𝑆 credit, and the focus of this review, the inherent difficulty of 

these estimates may lead to an overly cautious approach in applying them. Prince Edward 

Islands (PEI) N credit system for example, applies a generic credit of 15 kg N/ha if the 

OM level is above 3.5% and a zero credit if OM is less than 3.5% (Zebarth et al., 2008). 

It is notable that in PEI, the mean OM levels ranged from 2.7% to 3.6% (Laurence et al., 

2023; Nyiraneza et al., 2017). With most soils falling below the threshold value of 3.5%, 

soil-based credits (𝑆𝑆) are effectively nil. As a result, soil based contributions, which have 

been found to average 106 kg N/ha across trials using a plant bioassay approach in potato 

crops (Nyiraneza et al., 2022), are being overlooked. Greater attention to the site-specific 
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estimates of 𝑆𝑆 via Nmin potential over a growing season are therefore highly 

recommended (Priesack et al., 2006). 

The implementation of Nmin estimates into recommended fertilizer rates (𝐹𝐹𝑁𝑁), and 

standard practices for doing so, is an area in need of development. Overcoming the 

impediments and areas of confusion in applying Nmin estimates opens an opportunity for 

decision support systems, or N credit systems, based on newly available technologies.  

 SUMMARY AND RESEARCH GAPS 

The two N pool, zero- plus first-order mixed-compartment, predictive function 

was found to be the optimum device for recognizing the more slowly mineralizing, plus 

the more quickly mineralizing, compartments of organic N in OM. Mineralization rate 

coefficients (k), as an influential component of the predictive function, must be 

implemented within the same models from which they were derived (using first-order 

rate coefficients within first-order equations, for example), under similar climatic regions 

where possible, and applied for logical durations (t) such as a growing season. 

Conflicting opinion as to the optimum function(s) are warranted, as many show strong 

correlation and promise in making Nmin predictions under various circumstances. While 

the above function is recommended, the practitioner should use prudential judgement, 

and opt to apply what is most suitable for their specific soil/climatic conditions.  

Regarding indices for the desired N pool, it is suggested that aerobic-incubation, 

as a biological index, is preferred for determining the smaller, more labile, and quickly 

mineralizing N pool (Pool I). Hot KCl appeared as the most appropriate chemical 

extraction technique based on evidence in studies and consumer availability at 

commercial labs. In order to quantify what N pool is being represented via chemical 
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extraction techniques, calibration with biological indices or local field trials was 

recommended. Soil TN, a dry combustion technique, is recommended based on multiple 

studies for estimating the stable N pool.  

 In situations where direct soil data is unavailable for use, or in order to 

understand the controls related to Nmin, the PTF was identified as a useful tool in 

overcoming these challenges. Applicable for predictions at a given soil sample location 

(i.e., non-spatial predictions), PTFs for soil TN (estimating the stable N pool) were more 

common in the literature showing a strong correlation with related properties such as 

OM. Studies that derived PTFs for estimating the labile pool (Pool I) are rare and are 

recommended. Also recommended are spatial applications (DSM techniques), which 

have the potential to incorporate climate, management, and other extrinsic controls. 

Digital maps have been produced primarily for TN but there was no evidence of a DSM 

for the aerobic incubation test (e.g., Pool I) or estimate of Nmin over a growing season at a 

regional scale. DSMs are useful for identifying controls for Nmin, and supplying 

predictions for N parameters in areas without direct soil information. Estimates from 

DSTs can then be incorporated into existing N credit systems.  

Ultimately, and in order to overcome producer hesitancy with soil-based N 

credits, the field of N research must build on available predictive functions and indices, 

and transition these methods into applications via support tools such as PTFs and DSMs. 

In the following chapters of this thesis, a cohesive approach is developed wherein a 

practitioner can use indices for the stable and labile N pools in predictive functions, 

PTFs, and/or DSMs for informing N credit systems and soil-based estimates of growing 

season N mineralization. 
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 THESIS OBJECTIVES AND OUTLINE 

From research gaps identified in the literature review, the thesis objective is to 

build from the mixed-compartment (zero- plus first-order) predictive function from 

Dessureault-Rompre et al. (2015) to develop DSTs of N parameters for improving N 

management in PEI. Specific objectives included: 1) Developing a framework and PTFs 

for N parameters using surrogate data for circumstances where producers do not have 

direct soil measures of the stable (TN) or labile (Pool I) N pools for use in the predictive 

function; 2) the development of DSMs for spatial estimates of N parameters where direct 

soil information is not available; and 3) application and assessment of soil-based DSTs 

(PTFs and DSMs) of N parameters at the field-scale to build a system of use that can 

complement existing N management systems in PEI. 

Chapter 3 addressed the problem of transforming the data a producer has, into the 

data a producer needs (Bouma, 1989), via a cost-effective framework for estimating soil 

nitrogen pools using pedotransfer functions and machine learning. Next, to address 

situations where field specific data does not exist, Chapter 4 considered integrating multi-

year crop inventories as a proxy for soil management practices within a digital soil 

mapping framework for predicting nitrogen indices at the provincial scale. Resulting 

from PTF and DSM development, intrinsic and extrinsic factors influencing N dynamics 

were also explored. Chapter 5 focused on applying provincially derived pedotransfer 

function and spatial estimates of nitrogen indices at the field scale in order to examine 

how novel DSTs might be interpreted, and implemented. The conclusion (Chapter 6), 

synthesized the findings and proposed practical suggestions for amending the existing N 

credit system, and supplying estimates of growing season Nmin to producers. 
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CHAPTER 3:  TOWARDS A COST-EFFECTIVE FRAMEWORK FOR 
ESTIMATING SOIL NITROGEN POOLS USING PEDOTRANSFER 
FUNCTIONS AND MACHINE LEARNING 1 

 
 
3.1 ABSTRACT 

Globally, the strategic use of nitrogen (N) is important in optimizing economic 

returns and reducing soil nitrogen losses to the environment. Incorporating reliable 

estimates of nitrogen (N) mineralized over a growing season (GSN) into N fertilizer rate 

recommendations is critical, but may often lack a direct measurement. For this purpose, 

Pedotransfer functions (PTFs) of total nitrogen (TN) – representing the stable pool from 

which N is mineralized, and biological nitrogen availability (BNA) – representing the 

labile pool of N mineralization, were used to estimate GSN. GSN was calculated based 

on TN and BNA results from a soil health database (SHD), which also includes a suite of 

related soil health parameters (n = 2,222). Using a process of recursive feature 

elimination (RFE) and cost-benefit feature elimination (CBFE), the best predictors of TN, 

BNA, and GSN were identified using a suite of machine learners (MLs) and regression 

analysis. For TN, RFE revealed that BNA, active carbon (AC), sand (Sa), and soil 

organic matter (OM) were the best predictors yielding a Lin’s concordance correlation 

coefficient (CCC) of 0.80 and a reduction in theoretical cost of 41% compared to the 

control. CBFE resulted in AC, soil respiration (SR), clay, Sa, and OM as the most cost-

 
1 Chapter 3 is a version of a manuscript that was submitted to Geoderma (open source) on May 31, 2023, 
revised on September 13th, 2023, accepted on October 16, 2023 and available online on November 20, 
2023. This publication has multiple authors, in which the concept, design, data processing, and writing was 
done by the PhD Candidate with the assistance of all co-authors. The publication can be obtained using the 
following citation: 
 
Laurence, L., Heung, B., Strom, H., Stiles, K. and Burton, D., 2023. Towards a cost-effective framework 
for estimating soil nitrogen pools using pedotransfer functions and machine learning. Geoderma, 440, 
p.116692.  https://doi.org/10.1016/j.geoderma.2023.116692 
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effective predictors of TN with a CCC of 0.79 and a theoretical cost savings 49% below 

the cost of using all appropriate soil health parameters in the SHD. With respect to BNA, 

the best predictors from RFE were aggregate stability (AS), AC, SR, and TN with a CCC 

of 0.78 and a theoretical cost reduction of 23%. CBFE retained AC, SR, S, TN, OM, and 

pH as predictors of BNA with a CCC of 0.78 and reduction of 29% in theoretical cost.  

Finally, GSN results from RFE identified AS, AC, SR, OM, and pH as the best predictors 

with a 0.82 CCC and 17% reduction in theoretical cost.  CBFE, on the other hand, 

identified AC, SR, sand, OM, and pH as the most cost-efficient predictors while 

maintaining a CCC of 0.82 and theoretical cost reduction of 29%. Of the MLs used for 

pattern recognition (i.e., cubist, random forest, support vector machine, and stochastic 

gradient boosting), cubist model outperformed the others for the majority of iterations of 

the RFE and CBFE processes. The cost-effective framework, and the N related PTFs 

developed in this study will greatly enhance our ability to predict soil N pool dynamics 

and the ability to incorporate GSN estimates into N fertilizer recommendations for 

producers worldwide. Improvements in predictive strength could be achieved by 

incorporating climate and soil management practices into PTF development. Another 

area for improvement and future study would include addition of spatial and landscape 

variability related to N measures via digital soil mapping applications. 

3.2 INTRODUCTION 

The global need to manage anthropogenic nitrogen (N) inputs to provide plant 

available N while minimizing nitrogen losses and residual soil nitrogen (RSN) remaining 

after harvest has reached a critical point (Chataut et al., 2023; Golden et al., 2023). With 

nitrogen use efficiencies often <50% in major crops (Tamagno et al., 2022), the transfer 
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of nitrate (NO3
-) to ground- and surface-water systems or its transformation into ammonia 

(NH3) or nitrous oxide (N2O) emissions to the atmosphere necessitate the need for 

concrete solutions. With a view for optimizing the global N cycle and managing the N 

budget (Fowler et al., 2013; Heumann et al., 2013), practical strategies aimed at N 

management are emerging; including, sustainable nutrient policies, digital crop nutrition 

solutions, nutrient recovery and recycling, climate-smart fertilizers, and accelerated 

innovation (Dobermann et al., 2022).  

The fertilizer industry is promoting 4R Nutrient Stewardship (4R) approach, 

wherein nutrients supplied from the right source, at the right rate, time and place to 

support more sustainable agricultural practices (Bruulsema et al., 2016). A crucial 

element of the 4R approach, as with earlier examples of conducting N balances 

(Bassanino et al., 2007; Stanford, 1973), is the quantification of all nutrient sources in 

determining ‘right rate’ fertilizer applications. This method is used to calculate fertilizer 

input rates (e.g., kg N/ha), and attempts to estimate the N demand for a given crop, 

relative to the N supply available from the soil (Frerichs et al., 2022; Morvan et al., 

2022). The former is based on plant uptake requirement as a function of estimated crop 

yield, while the latter is the sum of all N sources including synthetic fertilizer, organic 

amendments, RSN, crop residues, and the N produced through soil N mineralization—a 

biologically mediated process. Of the variables required to complete an N balance 

correctly, an estimate for soil N mineralization (Nmin), is perhaps the most crucial as it can 

account for approximately 50% of plant N uptake (Valenzuela, 2023). Zebarth et al. 

(2009) recommends a balance sheet or N budget approach as a solution to N management 
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and emphasized the need for reliable and practical methods to estimate Nmin over the 

growing season.  

In response to this need, and for the purpose of generating soil Nmin estimates in a 

usable format for fertilizer recommendations (i.e., kg N/ha), here we develop a 

pedotransfer function (PTF) to support predictions of soil Nmin over a growing season. 

Building on early aerobic incubation work from Stanford and Smith (1972), and using 

soils sampled from New Brunswick arable cropping systems, Dessureault-Rompre et al. 

(2015) found that a two pool (i.e., zero- plus first-order) regression equation best 

described soil Nmin and resulted in R2 values ranging from 0.41-0.49. Accounting for a 

stable, non-diminishing, zero-order N pool plus a labile, diminishing, first-order N pool, 

the regression equation formed the basis of a prediction function that can be used to 

estimate soil Nmin supply (Dessureault-Rompre et al., 2012, 2015; Sharifi et al., 2007b). 

Applying this prediction function over a growing season requires a set timeframe (t) for 

prediction purposes (Zebarth et al., 2009). In Atlantic Canada, 130 days represents the 

duration of a standard growing season. In addition to a set timeframe, calculating the 

cumulative N concentration of soil Nmin over a 130-day growing season also requires 

direct soil measures for both the stable and the labile N pools. In previous studies, the 

stable pool has been represented by total nitrogen (TN) analysis, and the labile pool via 2-

week soil incubation methods, such as biological nitrogen availability (BNA) analysis 

(Dessureault-Rompre et al., 2015; Sharifi et al., 2007a; Heumann et al., 2003, 2011; 

Rasiah, 1995).  

While the ability to make 130-day growing season N (GSN) predictions is possible 

with prediction functions, their implementation is hindered when direct measures for TN 
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(stable N pool) and BNA (labile N pool) are not available. Under current methodologies, 

TN is a relatively simple measurement to make and available in select databases; 

however, it is not always included in standard soil analytical suites at commercial 

laboratories. The BNA test (Pool I or N Flush test), determined by 2-week aerobic 

incubation and extraction of mineral-N generated, is based on the mineralizable nitrogen 

method (Curtin and Campbell, 2008). This measure of N mineralization potential can 

then be contextualized to reflect soil climate considerations (Dessureault-Rompre et al., 

2015; Sharifi et al., 2007b) resulting in an estimate of GSN. BNA is a relatively novel 

test that is time consuming, costly, and, as such, absent from most datasets. As a result, 

when direct soil measures of TN and BNA are not feasible or unavailable, the 

opportunity to make GSN estimates is greatly reduced; and with it, the ability to use an 

estimate of GSN to inform N fertilizer recommendations, optimize N use, and minimize 

N losses. 

In circumstances where data is difficult to obtain and/or non-existent, PTFs provide 

extremely useful approximations. In the absence of direct measures, PTFs are a means of 

obtaining an estimate for a soil parameter by quantifying the relationships between the 

parameter of interest (i.e., response or dependent variable) and other pedologically related 

parameters (i.e., predictor or independent variables; Bouma, 1989). In practice, this 

means using available data in order to predict costly, or unavailable data (McBratney et 

al., 2000, 2002). Once determined, the learned relationship can be used to make 

predictions in datasets where the response variable is absent. In the soil science literature, 

PTFs have been applied to mineralogical or soil hydraulic parameters (response 

variables), such as bulk density or available water holding capacity—estimates that are 
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time consuming to measure, and therefore difficult to obtain (Benites et al., 2007; 

Glendining et al., 2011; Román Dobarco et al., 2019b; Van Looy et al., 2017). 

Traditional approaches use linear regression, but machine learning (ML) techniques have 

been increasingly used (Amanabadi et al., 2019; Benke et al., 2020; Cisty and Cyprich, 

2020; Heung et al., 2016; Khlosi et al., 2016; Schillaci et al., 2021; Wang et al., 2019; 

Xiao et al., 2022). There is good reason to believe that predicting biological properties 

like soil respiration and N mineralization will be highly correlated with fundamental soil 

properties. Soil respiration is the result of the soil biological community metabolizing soil 

organic matter, as influenced by the soil environment (e.g., aeration, water content, pH, 

clay content). The mineralization of N is one of the outcomes of soil biological activity 

and is influenced by the ratio of carbon to nitrogen in the soil organic matter. Aggregate 

stability is an outcome of the combined influence of soil biological activity and the 

mineral composition of the soil. Thus, it is reasonable to use ML to determine the extent 

these factors are correlated with these more difficult to measure parameters, and whether 

they can be used to develop a PTF. 

To develop a PTF, the primary considerations include both a decision on the 

response variable, and a decision on the predictors needed (Van Looy et al., 2017). 

Firstly, choosing the desired output parameter is decided both by need and by 

practicality. While the requirement for a PTF is predicated by need, and becomes 

somewhat self-evident, the concept of ‘practicality’ is more nuanced. Practicality 

includes factors, such as time, cost of analysis, and the principal that the effort in 

obtaining predictors should not exceed the effort in obtaining the response variable itself 

(McBratney et al., 2002). The second consideration, that of selecting soil parameters for 
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making predictions, takes into account the correlation, availability, time/cost of analysis, 

and the total number of predictors — all of which have implications on computational 

demands and model complexity (Pachepsky and Rawls, 2004). The underlying goal of a 

PTF is that it will be used; and as such, one that is accurate, achieved with the fewest, and 

most cost-effective set of predictors would be considered the optimum. Also, while a 

direct relationship may not exist between response and predictor variables, a 

complimentary aspect of PTFs is their ability to provide insight into intrinsic soil 

relationships (McBratney et al., 2002; Van Looy et al., 2017). With respect to TN, BNA, 

and GSN, wherein physical, chemical, and biological relationships are difficult to 

interpret, methods of developing PTFs with machine learning may provide a unique 

opportunity to increase our understanding of soil N pool dynamics and associated factors. 

Practicality in a PTF is of high importance and relates primarily to achieving a 

parsimonious model with as few predictors as possible (McBratney et al., 2002). As an 

added benefit, a parsimonious model reduces the potential for model overfitting (Shahabi 

et al., 2022). While multiple parameters may be available to develop a PTF, the 

likelihood of it being used elsewhere, and for other datasets, is increased with fewer 

predictor variables. This process of feature selection, or eliminating predictor variables, is 

begun by addressing multicollinearity by means of variable inflation factor (VIF) analysis 

(Perreault et al., 2022; Román Dobarco et al., 2019b; Xiao et al., 2022). Secondly, to 

identify and remove irrelevant predictors, a process of recursive feature elimination 

(RFE) is conducted (Miranda et al., 2022; Xiao et al., 2022). Once the correlated and 

irrelevant predictors have been removed, the remaining variables, via the best performing 

pattern recognition method (e.g., ML), were included in the final PTF. It is notable that 
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the analytical cost and/or practicality of obtaining independent variables were not 

considered in VIF or RFE procedures. It may occur that some of the final predictors 

were, in whole or in part, more expensive or time consuming to produce than the 

predictor variable itself. PTFs must not only include data we have (Bouma, 1989), but 

also result in predictors that are available, practical, and cost effective.  

The obstacles that hinder our ability to calculate and predict soil Nmin over a 

growing season (GSN) are inextricably tied to the difficulty in obtaining TN and BNA as 

input parameters. The absence or difficulty of obtaining one, or both, of these required 

inputs impair the calculation of GSN. Thus, the development of a PTF becomes 

necessary to make these estimates accessible. Previously developed PTFs for stable, and 

labile N pool size can be found; Rasiah (1995), Glendining et al. (2011), and Heumann et 

al. (2003, 2011) for example, but ‘commonsensically’ speaking, locally applied PTFs 

derived from geomorphically similar data are preferred (McBratney et al., 2002). While 

TN is now a relatively easy parameter to analyze, the fact that it is seldom available in 

datasets makes it a suitable candidate for a new PTF. BNA is also suited for PTF 

development since the analysis is time consuming, labor intensive, and rarely found in 

most datasets. Finally, in situations where neither TN or BNA data are available, a PTF 

for the calculated GSN output itself should be considered. PTFs are commonly developed 

for directly measurable soil parameters only; however, because of the pressing need for 

GSN estimates, the opportunity to test the possibility does exist.  

In this study, to improve our understanding of soil N pool dynamics and for the 

purpose of making GSN estimates available to inform “right rate” N fertilizer 

recommendations, a framework for predicting TN, BNA and GSN using ML and 
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regression techniques is proposed. Specific objectives will include identifying what are 

the most important predictors of TN, BNA and GSN using (i) RFE, and (ii) identifying 

what are the most cost-effective predictors and arguments using a Cost-Benefit feature 

elimination (CBFE) approach. This study used data acquired from Prince Edward Island 

(PEI), Canada, to calibrate and validate the PTFs as a case study. 

3.3 MATERIALS & METHODS 

The methodological framework used in this study is shown and summarized in 

Figure 3.1. Summary statistics and modelling activities were performed with version 

4.2.0 of the R statistical software (R Core Team, 2018).  

3.3.1 Study Area 

The study area includes soils collected throughout the province of PEI with a total 

land area of approximately 5,620 km2, an undulating relief with the majority (~75%) of 

the land base between 45 m above mean sea level, and a maximum elevation of 139 m 

above mean sea level (MacDougall et al., 1988). With a cool, humid climate, the growing 

season extends between May and October with a frost-free period of 100 to 160 days, a 

mean temperature range of -7°C (January) to 19°C (July), and an annual precipitation, 

ranging from 900 to 1000 mm per year, including snowfall (MacDougall et al., 1988). 

Podzolic soils dominate the landscape followed by Luvisols, Brunisols and Gleysols, 

which were developed on medium to coarse textured glacial till derived predominantly 

from sandstone bedrock (MacDougall et al., 1988). Agricultural production consists 

mainly in potatoes, cereals, and legumes, with grain, pasture and forage production also 

supporting mixed operations, dairy and/or non-ruminant livestock production 

(MacDougall et al., 1988). 
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Figure 3.1 The methodological framework used in this study. From the soil health database 
(SHD), total nitrogen (TN), biological nitrogen availability (BNA), and growing season nitrogen 
(GSN*: calculated value) was selected as the dependent variables and then applied to predictor 
variables in respective conceptual models. Control PTFs for TN (TNC), BNA (BNAC) and GSN 
(GSNC) were then developed by comparison of four machine learners (CU = cubist, RF = random 
forest, SVM = support vector machine, SGB = stochastic gradient boosting) and regression 
analysis (MLR = multiple linear regression) using validation techniques and accuracy metrics. 
Using recursive feature elimination (RFE), and cost benefit feature elimination (CBFE) 
incorporated with learner comparison and validation and accuracy metrics, reduced PTFs were 
developed for TN (TNRFE & CBFE), BNA (BNARFE & CBFE) and GSN (GSNRFE & CBFE).  
 

3.3.2 Soil Health Database 

The Soil Health Database (SHD) used for this study consisted of agricultural soil 

samples (n = 2,222) collected throughout the province of Prince Edward Island (PEI). 
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PEI producers selected sample locations based on their respective need as part of a 

provincially subsidized soil testing program. As a voluntary program, sampling density 

varied with the density of agricultural land. Soil samples were collected between the 

years of 2019 and 2022 by landowners, or their designates, and submitted to PEI 

Analytical Laboratory (PEIAL) for analysis. Soil samples were collected either from 0 to 

18 or 20 cm or presumed rooting depth using PEIALs Standard Operating Procedures for 

collection and preservation (PEI Analytical Laboratories, 2019).  

 The database includes soil parameters that were considered critical “soil health 

indicators” as described in Cornell’s Comprehensive Assessment of Soil Health (CASH) 

framework (Moebius-Clune, 2016) and, as such, were appropriate and relevant for this 

study. PEIALs SHD, including results from their “Soil Health Test” analytical suite, is 

organized in terms of: biologically related parameters sensitive to management including 

aggregate stability, biological nitrogen availability, permanganate oxidizable carbon (or 

active carbon), soil respiration, total nitrogen, and soil organic matter calculated from a 

measure of total carbon; physical parameters that are not changed by management 

including particle size fractions (i.e., sand, silt, and clay percentages); and standard 

chemical parameters, such as pH, soil macro- and micro-nutrients. It should be noted that 

soil nutrients influenced by annual fertilization are unstable predictors and thus were not 

considered. Table 3.1 includes a summary of the parameters used in this study with the 

inclusion of the calculated output value for GSN (explained in Section 3.3.3 and based on 

TN and BNA results). PEIAL’s procedures of soil analysis for the parameters in the SHD 

(Table 3.1) were taken from the CASH by Moebius-Clune (2016), and are also described 

in Marshall et al. (2021).  
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Table 3.1 Summary of soil health database parameters, sample size (n), and summary statistics 
including the minimum (Min) value, 1st (25%) quartile, Median, Mean, 3rd (75%) quartile and 
the maximum (Max) value. 
 

 
 

Aggregate stability (AS) analysis followed the CASH framework using the 

method adapted from Schindelbeck et al. (2016). The AS method employs a rainfall 

simulator to assess the proportion of soil aggregates remaining after a simulated rainfall 

event. Soils were air-dried and aggregates were separated using 2 mm and 0.25 mm 

sieves. Dried soil aggregates were then placed on a 0.25 mm sieve and subject to rainfall 

simulation. AS is measured by percentage weight of stable soil aggregates (retained in the 

sieve after broken down aggregates and stones have been removed) divided by the initial 

(total) weight of the sample. The average AS reported in the SHD (n =2,219) showed that 

the mean amount of aggregate remaining was 42% (Table 3.1). 

Biological nitrogen availability (BNA) as explained in Marshall et al. (2021) is 

performed using a two-week aerobic incubation adapted from Sharifi et al. (2007a). In 

this method, the mixed soil (50%) and inert Ottawa sand (50%) sample is prepared in a 

Buchner funnel and, after initial leaching of readily available mineral RSN (NH4
+ and 

NO3
-) with a 0.01 M CaCl2 solution, the sand and soil mixture were incubated aerobically 

for 14 days and leached again using the same method. After the 14-day incubation, the 

Units n  = Min 1st Median Mean 3rd Max
Aggregate Stability % 2,219 5.10 25.1 37.1 41.5 53.5 96.5
Biological Nitrogen Availability mg/kg 2,222 0.700 17.3 23.0 26.9 32.3 104
Permanganate Oxidizable Carbon ug/g 2,158 121 347 410 421 482 799
Soil Respiration mg/g 2,219 0.020 0.370 0.490 0.583 0.710 2.00
Total Nitrogen % 2,180 0.0130 0.110 0.135 0.142 0.168 0.481
Organic Matter % 2,038 0.500 2.20 2.60 2.71 3.10 6.50
Clay % 2,182 1.40 10.3 11.7 11.8 13.3 35.7
Silt % 2,182 1.00 26.8 29.8 30.7 33.8 76.0
Sand % 2,182 2.90 53.5 58.5 57.4 62.3 81.3
pH NA 2,037 4.40 5.80 6.00 6.04 6.30 7.40
Growing Season Nitrogen Kg N/ha 2,180 42 102 125 136 157 448
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concentration of mineral N analyzed from the recovered leachate is measured as the BNA 

and used as an estimate of N mineralization potential from biological processes (Sharifi 

et al., 2007a). In the SHD, the mean BNA value (n = 2,222) was 26.9 mg N/kg soil 

(Table 3.1). 

Permanganate oxidizable carbon (POXC), utilizing colorimetric methods from the 

CASH framework, is referred to as active carbon (AC) by PEIAL and is adapted from 

Weil et al. (2003). In this process, soil is air-dried, sieved to 2 mm, mixed with a 

potassium permanganate solution, shaken, extracted, and then measured 

spectroscopically for POXC (Marshall et al., 2021). POXC is a measure of readily 

oxidizable organic matter (Moebius-Clune, 2016) and is an indicator of the labile soil N 

pool. In the SHD, POXC analysis (n = 2,158) had a mean value of 420.9 ug C/g soil 

(Table 3.1).  

Soil respiration (SR) measures CO2 released after a four day aerobic incubation 

and is described in the CASH framework adapted from Zibilske (1994). In this 

procedure, a sample of soil is air-dried, sieved to 2 mm, weighed, and placed in a sealed 

jar along with a separate beaker filled with alkaline CO2 trapping solution. The soil is 

slowly re-wetted and the jar is sealed and incubated for four days. Conductivity is 

measured against the original and known carbonate content trapping solution. The 

conductivity of the trapping solution declines in a linear relationship with increasing 

respiration (CO2 adsorption) and is quantified by comparison with the conductivities of 

calibration solutions. The mean SR (n = 2,219) results were 0.6 mg CO2/kg soil (Table 

3.1). 
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Total nitrogen (TN) and soil organic matter (OM) are considered a multi-

parameter analysis wherein both parameters are determined at the same time and with the 

same instrument. Analyses were done in accordance with the LECO Method Report: 

Plants and Soils 10cc Loop, 4/16/2019, CN 828 S/N:20014 combustion procedure. TN 

and total soil carbon (TC) were first determined by the combustion at 900 °C of 

previously oven dried and ground soil (Marshall et al., 2021). TN measures were 

recorded as-is and TC is converted to estimate OM, which was calculated by PEIAL 

using the conventional conversion formula of OM = TC * 1.72. While this conversion 

factor is of debatable origin and accuracy (Pribyl, 2010), OM is the reported value in the 

SHD and was therefore retained. The value average TN (n = 2,180) is 0.14% and the 

average OM (n = 2,038) is 2.7% (Table 3.1).  

Soil texture analysis procedures (also a multi-parameter test) determining clay 

(Cl), silt (Si), and sand (Sa) percentages was taken from the CASH framework, which 

uses a “rapid texture” protocol adapted from Kettler et al. (2001). In this method soil is 

air-dried, sieved to 2 mm and, with the addition of a 3% sodium hexametaphosphate 

solution to act as a dispersant, is shaken for 2 hours and sieved again at 0.053 mm to 

remove Sa. The remaining soil in solution (Si and Cl) sits for a minimum of 2 hours and 

is decanted in order to remove Si so that the Sa and Si separates can be dried and 

weighed. The proportion of Cl is determined from the difference as calculated from total 

dry weight minus %Sa and %Si. In the SHD, the average (mean) proportions (n = 2,182) 

were 57% S, 31% Si, and 12% Cl (Table 3.1). 
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Soil pH (n = 2,037) used the 1:1 (soil:water) method found in PEIAL’s Modified 

Laboratory Manual of Methods, Standards and Equipment (PEI Analytical Laboratories, 

1996) and had a mean value of pH 6.  

3.3.3 Growing Season N Mineralization Estimates 

GSN estimates for PTF training were calculated values, based on direct soil data, 

using the two-pool regression equation (Eq. 3.1) cited in Dessureault-Rompre et al. 

(2015). Due to the relative climatic homogeneity of the study area, variation in soil 

climate was not considered. 

                  𝑁𝑁min =  𝑘𝑘𝑆𝑆𝑡𝑡 + 𝑁𝑁𝐿𝐿�1 − 𝑒𝑒(−𝑘𝑘𝐿𝐿𝑡𝑡)�                                     [3.1] 

In Eq. (3.1), cumulative N mineralization (𝑁𝑁min) was estimated over a 130-day growing 

period (𝑡𝑡) based on the sum of a non-depleting zero-order function describing the stable 

N pool and a first-order function describing the labile N pool. The stable fraction (𝑘𝑘𝑠𝑠𝑡𝑡) 

was calculated by estimating 𝑘𝑘𝑠𝑠 (d-1) as described in Dessureault-Rompré et al. (2015) 

using the following relationship (Eq. 3.2):  

                 𝑘𝑘𝑠𝑠 = 0.123 (𝑇𝑇𝑇𝑇) + 0.00312 (𝐵𝐵𝐵𝐵𝐵𝐵) + 0.0685                        [3.2] 

where TN is in mg N/kg soil and BNA is in mg N/kg soil. The labile component 

𝑁𝑁𝐿𝐿(1 − 𝑒𝑒−𝑘𝑘𝐿𝐿𝑡𝑡) was estimated as a first order relationship where BNA was used as an 

estimate of 𝑁𝑁𝐿𝐿 and a fixed value for 𝑘𝑘𝐿𝐿 of 0.074 d-1 as suggested in Dessureault-Rompre 

et al. (2015) for sandy loam textured soils. As calculated from the TN and BNA results in 

the SHD, the mean GSN value (n = 2,180) was 136 kg N/ha. 
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3.3.4 Learner Approaches 

Four ML approaches, including cubist, random forest, support vector machines 

with radial basis function, and stochastic gradient boosting were used in addition to 

multiple linear regression, and compared to determine the best learner for predicting TN, 

BNA, GSN. The caret package (Kuhn, 2020) and the iml package (Molnar et al., 2018) 

within the R statistical software (R Core Team, 2020) were used for all modeling 

procedures, and for interpretation, respectively.  

Cubist (CU), a rule-based regression tree model (Kuhn and Johnson, 2013; 

Quinlan, 1992), is further described in Landré et al. (2018) and Deragon et al. (2023). 

The CU modelling approach, also called the model tree or M5, has been used for both 

PTF and digital soil mapping production (Deragon et al., 2023; Mello et al., 2022; 

Solomatine and Dulal, 2003; Xiao et al., 2022). CU consists of two hyperparameters that 

are required to optimize the model including the number of committees and neighbors. 

Committees are a boosting strategy to address over- and under-predictions; whereas, 

neighbors relate to the number of observations that are closest to the predicted values that 

will be averaged and compared (Deragon et al., 2023). For this study, a matrix of 

combinations was generated for the committees (i.e., 1, 10, 20, 30, 40, 50) and neighbors 

(i.e., 0, 2, 4, 6, 8) hyperparameters. 

Random forest (RF) is a tree-based learner that utilizes, and trains a number of 

decision trees in order to generate predictions that have been compared and tested against 

an ensemble of uncorrelated trees (Breiman, 2001; Heung et al., 2016). RF has 

applications in PTF, predictive digital soil mapping, water resource, and spatial imaging 

applications (Deragon et al., 2023; Heung et al., 2016; Paul et al., 2022; Tyralis et al., 
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2019). The main hyperparameter for optimizing the accuracy of predictions is mtry (Kuhn, 

2020), which is the number of predictors that were randomly selected to be tested for 

each node-splitting rule. Given that mtry is dependent on n number of predictors available, 

the values tested for this hyperparameter were mtry = 1, …, n. 

Support vector machine (SVM), as discussed in Qin et al. (2022) is based on a 

statistical theory and method for reducing structural risk by optimizing the boundaries 

between classes, while enhancing generalization and prediction ability (Vapnik and 

Chapelle, 2000; Vapnik, 1999). The method has been used for PTF development and 

digital soil mapping applications relating to soil or land classification as well as soil 

moisture and related soil properties (Gill et al., 2006; Huang et al., 2002; Priori et al., 

2014; Qin et al., 2022; Sedaghat et al., 2022). Further described in Boser et al. (1992); 

Hastie et al. (2009) and Heung et al. (2016), the kernel, or mathematical function, used in 

this study included the radial basis function (RBF) in the caret package using sigma (i.e., 

0.0001, 0.001, 0.01, 0.1, 1) and cost (i.e., 0.1, 1, 10, 100, 1000) hyperparameters 

(Kovačević et al., 2010; Kuhn, 2020; Priori et al., 2014). 

Stochastic gradient boosting (SGB), introduced by Freund and Schapire (1997) 

and modified by Friedman (2001, 2002), is an ensemble technique and adaptation of 

classification tree analysis. SGB is a mixture of blending and bagging procedures 

wherein the residuals from previous trees are built into smaller trees with each step of the 

boosting procedure (Lawrence et al., 2004; Rossel and Behrens, 2010).  Perhaps due to its 

resilience to inaccurate training data, outliers, and a resistance to overfitting, SGB has 

been used in various PTF and digital soil mapping applications (Chen et al., 2018; 

Gebauer et al., 2020; Govil et al., 2022; Jalabert et al., 2010; Lawrence et al., 2004; 
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Szabó et al., 2019) For this study, parameter values included number of trees (i.e., n.trees 

= 500), interaction depth (i.e., 1, 3, 5, 7, 9), shrinkage (i.e., 0.1, 0.2, 0.3), and minimum 

terminal node size (i.e. 1, 5, 10, 15, 20).  

Multiple linear regression (MLR), as described in Minasny et al. (1999) and 

Botula et al. (2015), is a regression technique that is common for analyzing relationships 

between dependent and independent variables for generating PTFs. In this multi-

parameter method, a stepwise, forward, or backward selection technique removes, or 

adds variables in order to fit a straight line in dimensional space equal to the number (n) 

of predictors (Padarian et al., 2018). A stepwise approach to MLR was included, in 

addition to the suite of MLs, in order to obtain equation based PTFs that are more 

transferable than complex ML approaches. Based on preliminary examination of 

distributions of parameters in the SHD, using probability density functions, the data did 

not require transformation as in other related studies (Schillaci et al., 2021; Wösten et al., 

1999). 

3.3.5 Accuracy Assessment 

Repeated 10-fold cross-validation, which measures the prediction error based on 

the predicted versus actual values within the dataset, was performed with 50 repeats to 

test each model’s prediction accuracy (Ballabio et al., 2019). The repeats were used to 

ensure reliable and stable estimates of model accuracy. 

Final predictions were assessed for accuracy using the coefficient of 

determination (R2), Lin’s concordance correlation coefficient (CCC), and the root mean 

square of error (RMSE) metrics (Donatelli et al., 2004; Román Dobarco et al., 2019b; 

Van Looy et al., 2017). CCC is a reproducibility index assessing both the closeness of 
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data to the line of best fit and the distance of the line of best fit from the 45° (1:1) line 

through the origin, and thereby accounting for systematic under- or over-prediction (Lin, 

1989). With a range between 1 and -1, higher CCC values demonstrate higher correlation 

between the observed values and model prediction (Román Dobarco et al., 2019b).  

To account for variance in prediction results, the 95% confidence interval (CI) 

was calculated using the standard deviation (SD) of the CCC. The 95% CI was selected 

in preference to a narrower (90%) CI to allow for a greater variance as is inherent with 

biological processes. The upper and lower bounds of the CI was taken as the prediction 

range, or margin, for feature elimination processes.  

3.3.6 Feature Elimination 

Feature (or parameter) elimination began by addressing multicollinearity and 

reviewing correlations (Figure 3.2) between predictors. The process for eliminating 

predictor variables was performed to obtain a parsimonious model while maintaining a 

similar model accuracy. Based on preliminary trials of model performance, PTFs tended 

to show the highest CCC’s when all SHD were included as predictor variables. As such, 

the following approach was used to judge PTF success wherein a PTF including all SHD 

predictors was trialed with all MLs to identify the best scoring model (CCC) and thus the 

Control-PTF. Next, the 95% CI upper and lower CCC boundaries were determined for 

the Control-PTF, and finally, subsequent PTFs were considered successful if their 

respective CI’s remained within the interval of the Control-PTF. The 95% CI upper and 

lower bounds of the Control-PTF was termed the Control-CI. Here, the upper and lower 

limits of the 95% CI were generated using the accuracy metrics from the 50 repeats of the 

10-fold cross-validation procedure. 
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Figure 3.2 Correlations between soil health database variables (AS = aggregate stability, BNA = 
biological nitrogen availability, POXC = permanganate oxidizable carbon, SR = soil respiration, 
TN = total nitrogen, OM = organic matter, Cl = clay, Si = silt, Sa = sand, pH) and the calculated 
growing season nitrogen (GSN) prediction (n = 2,222). 
 

To incorporate cost into PTF selection, a total theoretical cost was determined for 

all control and final PTFs. Standard monetary rates for each individual parameter were 

obtained from PEIAL, ranked in order of cost, and secondarily, where one analysis 

renders multiple parameters (e.g., soil texture, TN/OM), in terms of processing time from 

high to low (Table 3.2). Standard rates for various analytical packages, or bulk pricing, 

was not considered in this study. Implementing these rationale, RFE and CBFE 

approaches were carried out. MLR results were reported for RFE and CBFE, regardless 

of performance, to provide model coefficients. 
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Table 3.2 Ranking and total cost (Canadian Dollars; CAD) of single parameter analysis and 
multi-parameter analysis in the soil health database. 
 

 
 

3.3.6.1 Recursive feature elimination 

The process of RFE, proposed by Guyon et al. (2002) is described in Xiao et al. 

(2022) as a backward feature elimination method for choosing the optimal and most 

relevant predictor variables. RFE works by: Step 1: including all predictors in a 

conceptual model (model) argument (Control PTF), Step 2: testing the model and 

determining the performance for each ML; Step 3: for each ML, variable importance 

metrics were generated and the least important predictor is removed; Step 4: Steps 2 and 

3 were repeated iteratively until one predictor remains (Poggio et al., 2021; Xiao et al., 

2022). The optimal PTF for each of the dependent variables (TN, BNA, GSN) was 

determined by comparing the results of all MLs tested, and choosing the best performing 

ML and model with the least predictors who’s (95% CI) upper bound was within the 

Control-CI. This process was carried out in determining PTFs for TN, BNA, and GSN. It 

should be noted that TN and BNA were not included in the GSN model as these 

parameters were used in its derivation. 

Rank Single Parameter Analysis Multi-Parameter Analysis Cost (CAD)
1 Aggregate Stability $31.34
2 Biological Nitrogen Availability $31.09
3 Permanganate Oxidizable Carbon $23.32
4 Soil Respiration $19.10
5 Clay
6 Silt
7 Sand
8 Total Nitrogen
9 Organic Matter
10 pH $6.00

$18.26

$9.50
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3.3.6.2 Cost-benefit feature elimination 

Given the principle that PTFs should use ‘easy’ to get data to derive ‘difficult’ to 

get data, a cost-benefit approach (CBFE) was developed using sample cost as the metric 

for difficulty (i.e., effort of analysis). In theory, if costly soil parameters can be removed 

without sacrificing overall accuracy, then the opportunity exists to render an accurate 

PTF with an optimized theoretical cost. In terms of surrogate measures for N 

mineralization, the goal of CBFE would be obtaining a surrogate measure as cost-

effectively as possible. As an example application, commercial laboratories may consider 

CBFE to determine which parameters may more easily predict difficult parameters such 

as aerobic incubation analysis (e.g., BNA), and package these into routine analytical 

suites. For this purpose, the following iterative and incremental CBFE process was 

developed and followed for each dependent variable (TN, BNA, and GSN):  Step 1: To 

establish the Control-PTF, all available variables were ordered in sequence according to 

the ranking in Table 3.2, from high to low, where x is the dependent variable and 𝑛𝑛1 to 𝑛𝑛4 

are the ranked independent variables: 

Model 1: (𝑥𝑥) = 𝑓𝑓(𝑛𝑛1,𝑛𝑛2,𝑛𝑛3, 𝑛𝑛4, … ) 

For multi-parameter analyses, such as soil texture and TN/OM analysis, soil parameters 

were regarded individually for elimination purposes. Step 2: The Control model was 

tested with the MLs and the performance was determined based on CCC. Step 3: Taking 

the best CCC result of the Control Model, the upper and lower 95% CI was calculated. 

Step 4: Removing the most expensive parameter from Model 1 (i.e., AS), the simplified 

model (Model 2) was tested. 

Model 2: (𝑥𝑥) = 𝑓𝑓(𝑛𝑛2,𝑛𝑛3,𝑛𝑛4, … ) 
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Step 5: Based on the accuracy metrics from Model 2, the best performing model was 

identified and observed to see if the bounds of the 95% CI were within the Control-CI. 

The following two scenarios would result from each iteration. In Scenario A, if the CI of 

the best model CCC dropped below the Control-CI, then parameter (𝑛𝑛1) was considered 

necessary and retained, and the next incremental parameter (𝑛𝑛2) was removed yielding an 

argument as follows:  

Scenario A: (𝑥𝑥) = 𝑓𝑓(𝑛𝑛3,𝑛𝑛4, … ,𝑛𝑛1) 

In Scenario B, if the CI of the best model CCC remained within the Control-CI, then 

parameter (𝑛𝑛1) was left out and the next incremental parameter (𝑛𝑛2) was removed 

yielding an argument as follows: 

Scenario B: (𝑥𝑥) = 𝑓𝑓(𝑛𝑛3,𝑛𝑛4, … ). 

Step 6: This process was continued until all parameters were tested. The resulting model 

was considered the optimum and most cost-effective PTF.  

 Using price per parameter from Table 3.2, the cost of the final PTF was 

calculated. For comparison purposes, costs were also calculated for Control-PTFs and 

RFE-PTFs. This process was carried out for TN, BNA and GSN.  

3.4 RESULTS AND DISCUSSION 

3.4.1 Control PTFs 

The Control PTF results for TN, BNA and GSN (Figure 3.3) were not subject to 

RFE or CBFE as they were developed using all relevant parameters in the SHD. 

Notwithstanding, GSN is a calculated value derived from TN and BNA results and as 

such, these parameters were not included in the PTFs for GSN. In some cases, there are 
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concerns with multicollinearity among parameters (Menard, 1995); however, VIF 

analysis was conducted and no parameters were removed prior to RFE and CBFE 

procedures. 

3.4.1.1 Total Nitrogen 

The Control-PTF for TN (TNC) yielded a range of 2% in CCC from 0.79 to 0.81 

based on 1,984 observations and trial of five MLs (Figure 3.3, Table 3.3).  

 
 
Figure 3.3 Chart of concordance (CCC) results of control pedotransfer functions for total 
nitrogen (TN), biological nitrogen availability (BNA), and growing season nitrogen (GSN) using 
all relevant predictor variables with cubist (CU), random forest (RF), support vector machine 
(SVM), stochastic gradient boosting (SGB), and multiple linear regression (MLR).  
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Table 3.3 Comparison of control, recursive feature elimination (RFE), and cost-benefit feature elimination (CBFE) results with the learner (cubist 
(CU); and multiple linear regression (MLR)), conceptual models (AS = aggregate stability, POXC = permanganate oxidizable carbon, SR = soil 
respiration, OM = organic matter, Cl = clay, Si = silt, Sa = sand) with multi-parameter analysis shown in brackets, number of variables, sample 
number (n), coefficient of determination (R2), root mean square error (RMSE), concordance (CCC), and the theoretical cost (Canadian dollars; 
CAD) for total nitrogen (TN), biological nitrogen availability (BNA) and growing season nitrogen (GSN). 
 
Parameter Method Learner Conceptual Models Variables n  = R2 RMSE CCC SD of CCC 95% CI Cost (CAD)

TN Control CU AS + BNA + POXC + SR + (Cl + Si + Sa) + (OM) + pH 9 1,984 0.686 0.0250 0.814 0.0339 0.00938 $139
RFE CU BNA + POXC + (Sa) + (OM) 4 1,986 0.665 0.0260 0.800 0.0361 0.0100 $82
CBFE CU POXC + SR + (Cl + Sa) + (OM) 5 1,985 0.655 0.0267 0.794 0.0402 0.0111 $70
Control MLR AS + BNA + POXC + SR + (Cl + Si + Sa) + (OM) + pH 9 1,984 0.659 0.0260 0.788 0.0369 0.0108 $139
RFE MLR BNA + POXC + (OM) 3 1,986 0.636 0.0270 0.771 0.0402 0.0111 $64
CBFE MLR POXC + (Sa) + (OM) 3 1,986 0.633 0.0275 0.769 0.0394 0.0109 $51

BNA Control CU AS + POXC + SR + (Cl + Si + Sa) + (TN + OM) +  pH 9 1,984 0.657 7.98 0.798 0.0336 0.00930 $108
RFE CU AS + POXC + SR + (TN) 4 1,984 0.637 8.18 0.780 0.0330 0.00914 $83
CBFE CU POXC + SR + (Sa) + (TN + OM) +  pH 6 1,984 0.639 8.14 0.781 0.0379 0.0105 $76
Control MLR AS + POXC + SR + (Cl + Si + Sa) + (TN + OM) +  pH 9 1,984 0.602 8.51 0.745 0.0374 0.0104 $108
RFE MLR AS + SR + (TN + OM) 4 1,996 0.581 8.79 0.727 0.0408 0.0113 $69
CBFE MLR POXC + SR + (TN) + pH 4 1,984 0.582 8.73 0.729 0.0398 0.0110 $58

GSN Control CU AS + POXC + SR + (Cl + Si + Sa) + (OM) +  pH 8 1,984 0.715 24.9 0.834 0.0284 0.00788 $108
RFE CU AS + POXC + SR + (OM) + pH 5 1,984 0.692 25.9 0.818 0.0326 0.00903 $89
CBFE CU POXC + SR + (Sa) + (OM) + pH 5 1,984 0.690 26.0 0.817 0.0321 0.00890 $76
Control MLR AS + POXC + SR + (Cl + Si + Sa) + (OM) +  pH 8 1,984 0.676 26.4 0.800 0.0337 0.00934 $108
RFE MLR AS + POXC+ SR + (OM) 4 1,985 0.654 27.3 0.784 0.0325 0.00901 $83
CBFE MLR SR + (Sa) + (OM) + pH 4 1,995 0.657 27.4 0.786 0.0325 0.00901 $53
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Apart from the MLR and the CU models, there was no significant difference between ML 

performance. For TNC, the top performing ML was the CU model with an R2 of 0.69, 

RMSE of 0.025 and CCC of 0.81. For benchmarking purposes, the Control-CI was 

calculated from the SD of the CCC (Table 3.3). The upper and lower bounds of the 

Control-CI was 0.82 and 0.80 respectively. The CI for CU-TNC was used to judge the 

success or failure of subsequent conceptual TN models that were trialed using both RFE 

and CBFE procedures. The theoretical cost of analysis for TNC was $139 (Table 3.3). 

The MLR results were significantly different to CU-TNC but within significant range of 

the remaining MLs (Figure 3.3). The CCC for MLR was 0.79, with a SD of CCC (0.039) 

and a 95% CI of 0.01 (Table 3.3). The CI was 0.80 (upper) and 0.78 (lower). This CI was 

exclusively used to evaluate subsequent MLR conceptual model results for RFE and 

CBFE. Coefficient results for the MLR method are presented in Table 3.4. 

3.4.1.2 Biological Nitrogen Availability 

For BNA, the Control-PTF (BNAC) showed a drop in CCC compared to TN 

results (Figure 3.3, Table 3.3). The span in CCC between all MLs tested was 5%, ranging 

between 0.75 and 0.80 based on 1,984 observations. MLR performed significantly lower 

than all other MLs, while CU, RF, SVM and SGB showed no significant differences. The 

best performance, and selected as the control, was with the CU model. Accuracy metrics 

for CU-BNAC were 0.66 for R2, 8.0 for RMSE, and 0.80 for CCC. The Control-CI for 

CU-BNAC was used for benchmarking throughout the RFE and CBFE processes. The 

theoretical cost of analysis was $108 (Table 3.3). MLR coefficient results for control 

parameters are given in Table 3.4. With a CCC of 0.75, the CI for the MLR-TN control 

was 0.010 (Table 3.3) and was used to evaluate RFE and CBFE for the MLR results only.  
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Table 3.4 Multiple linear regression coefficient results from control, recursive feature elimination (RFE), and cost-benefit feature elimination 
(CBFE) for total nitrogen (TN), biological nitrogen availability (BNA), and growing season nitrogen (GSN) and soil health database variables (AS 
= aggregate stability, POXC = permanganate oxidizable carbon, SR = soil respiration, OM = organic matter, Cl = clay, Si = silt, Sa = sand) with 
multi-parameter analysis shown in brackets.  
 

 
 
Notes: Formula for PTF estimating TN, BNA, or GSN = a + b (AS) + c (BNA) + d (POXC) + e (SR) + f (Cl) + g (Si) + h (Sa) + i (TN) + j (OM) + 
k (pH); NCG = variable included in conceptual model, but no coefficient generated; ‘ - - ‘  = variable not included in conceptual model 
 

 

 

Parameter Method Conceptual Model a b c d e f g h i j k
TN Control AS + BNA + POXC + SR + (Cl + Si + Sa) + (OM) + pH 0.0205 0.000108 0.000517 0.000106 NCG 0.00160 NCG -0.00058 - - 0.0260 NCG

RFE BNA + POXC + (OM) -0.00383 - - 0.000611 0.000100 - - - - - - - - - - 0.0312 - -
CBFE POXC + (Sa) + (OM) 0.0545 - - - - 0.000102 - - - - - - -0.00087 - - 0.034031 - -

BNA Control AS + POXC + SR + (Cl + Si + Sa) + (TN + OM) +  pH 13.7 0.120 - - -0.00920 23.8 0.377 NCG NCG 55.7 1.29 -2.85
RFE AS + SR + (TN + OM) 0.169 0.146 - - - - 21.9 - - - - - - 58.5 NCG - -
CBFE POXC + SR + (TN) + pH 27.5 - - - - -0.00449 28.5 - - - - - - 81.5 - - -4.40

GSN Control AS + POXC + SR + (Cl + Si + Sa) + (OM) + pH 76.5 0.416 - - 0.0254 70.3 1.79 NCG -0.333 - - 16.05 -9.16
RFE AS + POXC + SR + (OM) 19.6 0.349 - - NCG 71.5 - - - - - - - - 21.9 - -
CBFE SR + (Sa) + (OM) +  pH 132 - - - - - - 82.4 - - - - -0.529 - - 22.8 -12.7
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The decrease in CCC observed between CU-TNC and CU-BNAC (Figure 3.3) was 

understandable based on their respective measures. TN, as a surrogate measure for the 

stable N pool, had a 2.9% higher R2 and a 1.6% higher CCC when compared with BNA - 

the measure for the labile N pool. In addition, the variance between MLs increased with 

BNA trials (5%) versus TN trials (2%), which may reflect the biological variability 

inherent with BNA.  

3.4.1.3 Growing Season Nitrogen 

The Control-PTF for GSN (GSNC) resulted in a 3% difference between MLs with 

the CU model (highest) at 0.83 and the MLR model (lowest) at 0.80 CCC (Figure 3.3, 

Table 3.3). As such, CU model results were selected for GSNC, which had an R2 of 0.72, 

an RMSE of 24.9, and a CCC of 0.83. The Control-CI was calculated from the SD of 

CCC (Table 3.3) and used as the principal metric for RFE and CBFE procedures. MLR 

and SGB underperformed CU comparatively, and there was no significant difference 

between CU-GSNC and RF and SVM results (Figure 3.3). The theoretical analytical cost 

to obtain GSNC parameters is $108. PTF coefficients from MLR results are shown in 

Table 3.4. The CI for MLR was used to assess MLR model results during RFE and CBFE 

for GSN (Figure 3.3, Table 3.3). 

Interestingly, CU-GSNC had the highest CCC as compared to CU-TNC and CU-

BNAC (Figure 3.3). In fact, the GSN results for each ML outperformed their respective 

counterparts for TN and BNA, suggesting the higher CCC with the CU model was not an 

anomaly. Without a precedence for comparison in the literature, it is likely that the 

combination of the two parameters in the regression equation (Eq. 3.1) adds a predictive 

stability not found with the parameters taken individually. It may also be construed that 
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the high relative CCC of GSN lends a tacit endorsement of the relationship depicted in 

Eq. 3.1; in that, if the relationship were not sound, a consistent predictive pattern with 

related soil properties (independent variables) could not be learned.  

3.4.2 Recursive Feature Elimination 

3.4.2.1 Total Nitrogen 

A reduced PTF with four predictors for TN (TNRFE) was developed using RFE 

(Table 3.3). Over a series of nine iterations (Iter.), predictor variables were removed to 

identify a parsimonious conceptual model within the control range (Figure 3.4). The best 

PTF for TNRFE was obtained with the CU model (Figure 3.4-Iter. 6) and the top 

predictors included BNA, POXC, Sa, and OM (Table 3.3). Accumulated local effects 

(ALE) of TNRFE (= y) for the CU model, showing how predictions change based on 

variance in the top predictors, is included in Figure 3.5. Calculated from 1,986 

observations, the R2 was 0.67, the RMSE was 0.026, the CCC was 0.80, and the 

theoretical cost was $82 (Table 3.3). PTF coefficients generated using MLR are listed in 

Table 3.4. The optimum MLR model result (Figure 3.4-Iter. 7) included BNA, POXC, 

and OM as the most important predictors and a theoretical cost of $64. MLR accuracy 

metrics, based on 1,986 observations, included the R2 at 0.64, RMSE at 0.027, and CCC 

at 0.77 (Table 3.3). 

BNA, POXC, Sa, and OM as the top predictors for CU-TNRFE was consistent with 

correlation results (Figure 3.2), which showed BNA (0.60), OM (0.76) and POXC (0.67) 

among the top correlated parameters. ALE of TN also shows positive correlations with 

BNA, POXC, and OM (Figure 3.5). Figures 3.2 and 3.5 also show Sa negatively 

correlated with TN (-0.46) suggesting that TN increases with decreasing Sa content; a  
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Figure 3.4 Chart of total nitrogen (TN) concordance (CCC) results from cubist (CU), random forest (RF), support vector machine (SVM), 
stochastic gradient boosting (SGB), and multiple linear regression (MLR) for each iteration (Iter.) of recursive feature elimination and showing the 
control interval from Iter. 1 for CU and MLR. 
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Figure 3.5 Accumulated local effects (ALE) of total nitrogen (TN = .y) for the cubist model 
depicting how biological nitrogen availability (BNA), permanganate oxidizable carbon (POXC), 
organic matter (OM), and sand (Sa), the top predictors identified through the recursive feature 
elimination process, are influenced by variances in respective soil concentrations. 
 

tenable conclusion based on Matus (2021) who found that Si and Cl content were the 

fundamental drivers of C and N storage in soil. The fact that neither Si nor Cl were 

retained as predictors, given their importance in accumulating TN, is likely a function of 

the study areas textural class, which is dominated by Sa (mean = 57%) versus Si (mean = 

31%) and Cl (mean = 12%) percentages (Table 3.1). Comparing other PTFs for TN in the 

literature, soil organic carbon (SOC) was used as the sole predictor for Rashidi and 

Seilsepour (2009) and Mesele and Ajiboye (2020) who used regression analysis in order 

to yield R2 values of 0.83. RMSE nor CCC were reported in their studies. With respect to 

SOC, the SHD reports SOC (or TC) converted to OM. OM as a single predictor for TN 

was tried in this study, but underperformed with the highest R2 = 0.59 and a CCC of 0.74 

from the SVM learner (Figure 3.4-Iter. 9). Similar R2 results, as found in Rashidi and 
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Seilsepour (2009) and Mesele and Ajiboye (2020), were not achieved in this study where 

the highest R2 for TN was 0.69 for CU-TNC (Table 3.3). Using R2 as the primary 

accuracy metric is problematic however, given the potential for systematic bias wherein 

predictions may adhere to the line of best fit but be skewed from the origin, or 1:1 line. 

Correcting for this bias, CCC as the preferred metric was comparatively strong at 0.80 

and arguably a more reliable representation. CCC results were not reported in the 

aforementioned studies so could not be compared. Glendining et al. (2011), who 

developed a PTF for TN at a global scale, incorporated latitude as a predictor along with 

OC, the soil classification group’s mean C:N ratios, and soil textural class identified 

based on Cl or Sa content. Due to the global scale for use, and the relative size and 

climatic homogeneity of the study area, this PTF was not tested for comparison.  

In addition to yielding a simper model, RFE provided a more cost-efficient PTF 

and maintained a high level of accuracy. The theoretical cost was reduced by 41% 

without a significant drop in CCC (1.4%) when comparing CU-TNC and CU-TNRFE 

(Table 3.3). RFE’s retention of BNA, as a relatively novel and costly two-week 

incubation analysis, lends a certain impracticality to CU-TNRFE in terms of transferability 

with other users worldwide. In addition, the use of the CU learner for deriving TNRFE 

complicates the ability to transfer model learnings; in that, a potential user would require 

a substantial database equipped with both dependent and independent variables for 

training purposes. MLR-TNRFE results were statistically below CU-TNC (Figure 3.4); 

however, with a CCC of 0.77, a 54% reduction in theoretical cost (Table 3.3), and the 

generation of model coefficients (Table 3.4), MLR-TNRFE may be an appropriate PTF for 

a variety of circumstances such as ad hoc or small-scale applications. 
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3.4.2.2 Biological Nitrogen Availability 

The simplified PTF for BNA using RFE (BNARFE) was obtained after six 

iterations with four predictors required to accurately predict BNA using the CU model 

(Figure 3.6, Table 3.3). The predictors selected, and their correlations (Figure 3.2), 

included AS (0.59), POXC (0.46), SR (0.74), and TN (0.60). Accumulated local effects 

(ALE) of BNARFE (= y) for the CU model is included in Figure 3.7. CU-BNARFE had an 

R2 of 0.64, RMSE of 8.2, and a CCC of 0.78 based on 1,984 observations. The theoretical 

cost to analyze the predictor variables was $83. Using MLR, four predictors were also 

required with the difference that OM (0.59) was selected in place of POXC. For MLR-

BNARFE (n = 1,996), the R2 was 0.58, the RMSE was 8.8, the CCC was 0.73, and the 

theoretical cost was $69 (Table 3.3). Model coefficients from MLR are presented in 

Table 3.4.  

Correlations (Figure 3.2) were consistent with the predictor variables selected by 

RFE. Interestingly, OM was not retained by the best model (CU) yet showed an equal or 

better correlation with AS and POXC, respectively. AS analysis measures the strength of 

a soil’s structure in relation to “destabilizing stressors” via simulated rainfall (Angers and 

Carter, 2020; Moebius-Clune, 2016). Soil structure is formed via biological breakdown 

processes where decomposed organics are transformed into agents for binding soil 

minerals (Rieke et al., 2022). Aggregate stability also influences the biological 

environment in which N mineralization occurs. In the CU interpretation, AS proved a 

stronger indicator of active biological processes than OM and was thus retained. 

However, the ALE plot of BNA (Figure 3.7) showed a relatively horizontal relationship 

with AS in a majority of samples which suggests that, while a useful predictor, it is not as  
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Figure 3.6 Chart of biological nitrogen availability concordance (CCC) results cubist (CU), random forest (RF), support vector machine (SVM), 
stochastic gradient boosting (SGB), and multiple linear regression (MLR) for each iteration (Iter.) of recursive feature elimination also showing 
the control interval from Iter. 1 for CU and MLR. 
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Figure 3.7 Accumulated local effects (ALE) of biological nitrogen availability (BNA = .y) for 
the cubist model depicting how aggregate stability (AS), permanganate oxidizable carbon 
(POXC), soil respiration (SR), and total nitrogen (TN), the top predictors identified through the 
recursive feature elimination process, are influenced by variances in respective soil 
concentrations. 
 

strongly associated to BNA as the other important predictors. RFE’s selection of TN and 

POXC is understood given that TN includes in its measure the total organic and inorganic 

N present in soil (including biologically available N), and given that POXC measures the 

component of OM that is readily available for decomposition (Moebius-Clune, 2016). 

The most important predictor was SR, showing a strong correlation (Figure 3.2) that is 

positively correlated for most samples, and negatively correlated beyond the 3rd quartile 

of samples (Figure 3.7; Table 3.1). SR, like BNA, is an aerobic respiration test that 

measures metabolic activity in soils over a given time (Moebius-Clune, 2016). PTFs 

specifically using the BNA test could not be found in the literature; however, Rasiah 

(1995) developed PTFs for Nmin parameters for both one and two N pool models using 
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the incubation method proposed by Stanford and Smith (1972). Representing the labile N 

pool (Nl), their PTF for potentially mineralizable N included TN, a residue removed 

factor (0 = yes, 1 = no), pH, and Cl content as the predictors with an R2 of 0.94 (RMSE 

or CCC were not reported). A related study by Heumann et al. (2011) who used a similar 

incubation method, found that PTFs for the fast (labile) mineralizing pool included Cl 

and/or mean Cl content of textural class, humus class, and mean fall temperature were 

more successful when grouped by former land-use (R2 = 0.34 to 0.42). In comparison 

with our study, related parameters were retained except for pH and Cl content. However, 

the inclusion of AS is perhaps a ‘catch all’ parameter in terms of the multiple processes 

(e.g., residue breakdown, biological activity) and structural factors (e.g., moisture holding 

capacity and aeration as a function of texture and matrix architecture) that are intrinsic to 

aggregation. Biological activity as influenced by cropping or soil management practices 

related to land-use were important factors for both Rasiah (1995) and Heumann et al. 

(2003) but were not present in the SHD so could not be considered as factors.  

The theoretical cost of CU-BNARFE was 23% lower and had a minor drop in CCC 

of 1.8% when compared with the control (Table 3.3). RFE reduced the variables from 

nine to four and retained AS which is the highest cost analytical method in the SHD 

(Table 3.2). MLR-BNARFE resulted in a 46% reduction in theoretical cost as compared to 

the control and had a CCC that was satisfactory, yet significantly below CU-BNARFE 

(Figure 3.6, Table 3.3). The cost savings between the CU and MLR models is primarily 

due to the inclusion of the multiparameter analysis (TN and OM) with MLR in exchange 

for the need for POXC in the CU model. This observation highlights the practicality of 

multiparameter analysis when factoring cost into PTF development. 
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3.4.2.3 Growing Season Nitrogen 

Using the process of RFE, a simplified PTF for GSN (GSNRFE) was successfully 

developed. Five predictors with the CU learner yielded the best results (Figure 3.8-Iter. 4) 

and the top predictors with their correlations included AS (0.62), POXC (0.57), SR (0.75), 

OM (0.69), and pH (0.01) (Figure 3.2, Table 3.3). Accumulated local effects (ALE) of 

GSNRFE (= y) for the CU model is included in Figure 3.9. Calculated from 1,984 

observations, the R2 was 0.69, the RMSE was 26, the CCC was 0.82, and the theoretical 

cost totaled $89. Using MLR, four predictors including AS, POXC, SR, and OM were 

selected (Figure 3.8-Iter. 5, Table 3.3) and their respective coefficients are reported in 

Table 3.4. MLR-GSNRFE was determined based on 1,985 observations with an R2 of 0.65, 

a RMSE of 27, a CCC of 0.78, and a theoretical cost of $83 (Table 3.3).  

GSN, as a calculated output from TN and BNA, retained similar predictors 

variables. ALE of GSN showed a relatively horizontal relationship with AS in most 

samples, which may indicate a weaker pedogenic association than the other GSN 

predictors (Figure 3.9). Recalling that GSN is an output of a two-pool regression 

calculation (Eq. 3.1), it is somewhat expected that the predictor variables would mirror 

both the stable N pool (TN) and the biologically active, labile N pool (BNA). GSNRFE 

retained POXC and OM which were required to predict TN (TNRFE), as well as AS and 

SR, which were instrumental in BNA predictions (BNARFE). Uniquely, pH, which was 

not selected for TNRFE or BNARFE, was selected as a predictor for GSN estimates. Fierer 

and Jackson (2006) described a similar phenomenon in their study that showed pH as a 

driver in differentiating microbial communities in soil at the continental scale. With 

respect to prediction accuracy, Figure 3.10 highlights a comparison of results and how  
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Figure 3.8 Chart of growing season nitrogen concordance (CCC) results from cubist (CU), random forest (RF), support vector machine (SVM), 
stochastic gradient boosting (SGB), and multiple linear regression (MLR) for each iteration (Iter.) of recursive feature elimination and showing the 
control interval from Iter. 1 for CU and MLR. 
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Figure 3.9 Accumulated local effects (ALE) of growing season nitrogen (BNA = .y) for the 
cubist model depicting how aggregate stability (AS), permanganate oxidizable carbon (POXC), 
soil respiration (SR), organic matter (OM), and pH, the top predictors identified through the 
recursive feature elimination process, are influenced by variances in respective soil 
concentrations. 
 

 
 
Figure 3.10 Comparison of cubist (CU) and multiple linear regression (MLR) concordance 
(CCC) results using recursive feature elimination (RFE) and cost-benefit feature elimination 
(CBFE) methods for total nitrogen (TN), biological nitrogen availability (BNA), and growing 
season nitrogen (GSN) pedotransfer functions. 
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CU-GSNRFE showed a higher CCC (0.82) when compared with the respective TN (0.80) 

and BNA (0.78) counterparts. While this result is not significantly higher than TN, the 

CCC is significantly higher than BNA and shows that combining TN with BNA via Eq. 

3.1 adds a predictive strength not found with these parameters alone. 

The process of RFE was successful at reducing the theoretical cost by 17% as 

compared with the control (Table 3.3). In comparison, CU-TNRFE achieved a 41% 

reduction, and CU-BNARFE had a 23% reduction, showing GSNRFE to have the smallest 

theoretical cost savings. This higher overall cost may be explained in that CU-GSNRFE is 

a more complex relationship requiring five predictors as opposed to CU-TNRFE and CU-

BNARFE (both with four predictors). MLR-GSNRFE had a 23% cost reduction compared 

with the control and maintained a reasonable CCC at 0.78 (Table 3.3). Recalling that the 

GSN output value can be directly applied to fertilizer recommendation calculations, the 

theoretical savings of the MLR results combined with the ability to apply model 

coefficients to other datasets (or individual analysis), may render the MLR result more 

practical, albeit significantly lower in CCC than CU results. 

3.4.3 Cost-Benefit Feature Elimination 

3.4.3.1 Total Nitrogen 

As an alternative to the RFE approach, CBFE was used to select parameters for 

predicting TN (TNCBFE). Five predictors were required with the CU learner giving the 

best results (Figure 3.11-Iter. 10). The most cost-effective predictors for CU-TNCBFE 

included POXC, SR, Cl, Sa, and OM (Table 3.3). Calculated from 1,985 observations, the 

R2 was 0.65, RMSE was 0.027, a CCC of 0.79 and a cost of $70. MLR-TNCBFE required 

three predictors (POXC, Sa, OM) based on 1,986 observations (Figure 3.11-Iter. 10, Table 
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Figure 3.11 Chart of total nitrogen concordance (CCC) results from cubist (CU), random forest (RF), support vector machine (SVM), stochastic 
gradient boosting (SGB), and multiple linear regression (MLR) for each iteration (Iter.) of cost-benefit feature elimination and showing the control 
interval from Iter. 1 for CU and MLR. 
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3.3). The R2 was 0.64, the RMSE was 0.027, the CCC was 0.77, and the cost was $51. 

MLR-TNCBFE model coefficients are in Table 3.4. 

Using the CBFE approach, the theoretical cost savings were 49% when compared 

to the control. In this approach, BNA as a high-cost predictor was able to be removed 

(Figure 3.11-Iter. 3) without a significant drop in CCC. BNA was retained by CU-TNRFE, 

which contributed to its higher theoretical cost. As such, the CBFE process enables a 

more cost-efficient set of predictors without losing accuracy. Another observation relates 

to parameters that were dropped by RFE (due to a lesser importance) but retained by 

CBFE because of a higher cost-benefit. The parameters SR vs. BNA are an example of 

this. Considering the conceptual model for CU-TNRFE in Table 3.3, BNA was evidently 

retained because the inclusion of a labile-N parameter is important when predicting TN. 

However, CBFE showed that BNA could be replaced with another incubation test and 

surrogate measure of the labile N pool (i.e., SR) with similar predictive benefit, but at a 

reduced cost. MLR-TNCBFE results, requiring only three parameters, were able to make a 

good prediction of TN (CCC = 0.77) without the inclusion of BNA or SR (Table 3.3). 

While MLR is significantly below CU results, the practicality of this PTF with its 63% 

cost savings compared to the control, and its fewer predictors, may render it useful for 

field-based applications. 

3.4.3.2 Biological Nitrogen Availability 

A reduced PTF for BNA with six predictors via the CU model was developed 

using CBFE (CU-BNACBFE). Figure 3.12-Iter. 11 and Table 3.3 display the results as 

calculated from 1,984 observations and accuracy metrics showing an R2 of 0.64, an 

RMSE of 8.1, a CCC of 0.78 and a cost of $76. The final predictors of the CBFE process  
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Figure 3.12 Chart of biological nitrogen availability concordance (CCC) results from cubist (CU), random forest (RF), support vector machine 
(SVM), stochastic gradient boosting (SGB), and multiple linear regression (MLR) for each iteration (Iter.) of cost-benefit feature elimination and 
showing the control interval from Iter. 1 for CU and MLR
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included POXC, SR, Sa, TN, OM, and pH for a 29% reduction in theoretical cost 

compared to the control. Comparing RFE (CU-BNARFE) vs CBFE (CU-BNACBFE) results 

in Table 3.3, the RFE process yielded a simpler PTF with four vs six predictors, but did 

so at a 6% higher cost. RFE retained AS as an important predictor (the highest priced 

predictor), while instead, CBFE retained Sa, OM, and pH (the lowest priced predictors) 

as necessary measures for aggregation. This substitution gives credence to the importance 

of soil structure when predicting BNA; a premise supported by Rasiah (1995) who found 

that decreasing structure, as with higher Sa content, allowed for higher Nl (labile N pool) 

biological activity due to accessibility of the substrate (e.g. aggregate). An example of an 

important predictor common to both the RFE and CBFE methods is SR, which is not 

surprising given its similarity to the BNA analysis. A clear impact of the SR parameter 

can be seen in Figure 3.12, with the 14% drop in CCC due its removal in Iter. 4, and its 

replacement in Iter. 5.  

MLR-BNACBFE required four predictors (Figure 3.12-Iter. 11) including POXC, 

SR, TN, and pH (Table 3.3). From 1,984 observations, the calculated R2 was 0.58. the 

RMSE was 8.7, the CCC was 0.73, and the cost was $58. MLR model coefficients for 

BNACBFE are in Table 3.4. Comparing MLR-BNA results for both RFE and CBFE, the 

CBFE process yielded an 11% greater theoretical savings and retained the same CCC at 

0.73 (Table 3.3). These results were significantly below CU-BNA results; however, given 

that the BNA analysis may be difficult to obtain, and yet given its practical importance 

for estimating the labile N pool, the MLR model may be a useful function under correct 

conditions. 
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3.4.3.3 Growing Season Nitrogen 

Using the CBFE process, a simplified PTF for GSN was created using the CU 

model (CU-GSNCBFE). The results showed that five predictors were necessary to achieve 

the best results (Figure 3.13-Iter. 10) and the top predictors included POXC, SR, Sa, OM, 

and pH (Table 3.3). This result was calculated from 1,984 observations, where the R2 was 

0.69, the RMSE was 26, the CCC was 0.82 and the theoretical cost was $76. Like RFE 

results, GSNCBFE had relatively higher CCC values compared to TN and BNA (Figure 

3.10). The CBFE process, while maintaining a significant CCC, obtained a 29% 

reduction in theoretical cost compared to CU-GSNC, and a 12% reduction over RFE. The 

main predictor eliminated by this process, but retained by RFE, was the AS parameter. In 

its place, Sa was selected with a similar benefit and in order to account for the influence 

of soil structure (Table 3.3). Similarly, with BNARFE (Figure 3.12-Iter. 4), Figure 3.13-

Iter. 4 also showed a dramatic reduction in CCC following the elimination of SR; but 

with a smaller reduction (12%) as compared to BNA (14%). This smaller reduction can 

likely be attributed to the stability of GSN’s inclusion of TN.  

MLR-GSNCBFE results identified four predictors including SR, Sa, OM, and pH 

(Table 3.3). Based on 1,995 observations, the calculated R2 was 0.66 the RMSE was 27, 

the CCC was 0.79, and the cost was $53. Model coefficients generated from MLR are in 

Table 3.4. CBFE resulted in a 51% reduction in theoretical cost in comparison to the 

control (MLR-GSNC), and a 28% reduction in comparison with RFE (MLR-GSNRFE). AS 

and POXC were eliminated in the CBFE process but retained in the RFE process. Instead, 

soil pH for its influence on biological activity (Fierer and Jackson, 2006), and Sa for its 

impact on aggregation and microbial access to substrate (Rasiah, 1995), was retained as  
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Figure 3.13 Chart of growing season nitrogen concordance (CCC) results from cubist (CU), random forest (RF), support vector machine (SVM), 
stochastic gradient boosting (SGB), and multiple linear regression (MLR) for each iteration (Iter.) of cost-benefit feature elimination and showing 
the control interval from Iter. 1 for CU and MLR.
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important parameters. MLR results, while significantly different to CU results, produced 

a reliable PTF (CCC = 0.79) for GSN that requires fewer parameters than the CU model. 

3.4.4 General Discussion 

3.4.4.1 Pedotransfer function evaluation 

Creation of a standard by which simplified PTFs could be evaluated was 

improved by establishing Control-PTFs for TN, BNA, and GSN. Control-PTFs provided 

a database specific, or internal benchmark for comparing accuracy metrics and a cut-off 

point for the feature elimination process. This process was able to augment sole reliance 

on comparing PTFs for N in the literature, which were sparse. The SHD used for this 

study was unique in that the parameters included in the database were specifically 

selected to capture not only standard soil quality parameters, but also biologically driven 

properties as recommended by Moebius-Clune (2016). While not all the desired 

parameters were included, available water holding capacity for example, the SHD 

provided the opportunity to develop a PTF with appropriate parameters in order to obtain 

a ‘best case’, benchmark, or control scenario. In general, obtaining a Control-PTF, and 

establishing the Control-CI for TN, BNA, and GSN were seen to be a valuable process 

and recommended when related parameters are available.  

3.4.4.2 Comparison of machine learners 

The use of multiple MLs for comparison purposes has become a relatively 

standard practice in recent years. While some studies still employ only one method for 

PTF development, comparison between two or three learners appeared more common in 

studies published after the year 2020. A cursory look at Figures 3.4 through 3.10 will 

show that while there is variation between the learners tested it is seldom a significant 
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variation. Except for MLR, the majority of MLs were within the same confidence range 

for each iteration. As such, even though the CU model was chosen consistently for the 

control model, it should not be considered a significantly better model than RF, SVM, or 

SGB for predicting TN, BNA, and/or GSN. MLR was significantly below the other MLs 

tested for most iterations; however, from a practical perspective, it was advantageous to 

include to provide parameter coefficients (Table 3.4). These coefficients are extremely 

useful for ad hoc applications such as supporting N fertilizer recommendations. 

3.4.4.3 Feature elimination 

Similar to testing multiple MLs, evaluation of different feature elimination 

approaches proved useful and is recommended for parameter selection. The process of 

RFE was used successfully and yielded final predictors with the highest variable 

importance, irrespective of cost. CBFE on the other hand appeared to achieve both a set 

of relevant predictors, and ones that were optimized for cost. With respect to CBFE, this 

typically meant that the reduced model may not have contained features with the highest 

variable importance, but with an equivalent importance at a lower theoretical cost. 

McBratney et al. (2002) noted that one of the principles for “useful or efficient PTFs” 

related to the quality, or cost of the information. And again, Odeh and McBratney (2005) 

mentioned cost when defining PTFs as the prediction of a soil property from other 

“easily, routinely, or cheaply measured properties”. As an example, the CU-BNARFE 

relationship (Table 3.3) where 𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑓𝑓(𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑆𝑆 + 𝑇𝑇𝑇𝑇). The cited principle 

suggests that one should not measure AS, POXC, SR, and TN for the strict purpose of 

predicting BNA, since their combined cost is above the cost of BNA itself (Table 3.2). 

Cost, in this study, is used mainly as a surrogate measure for ease, or effort in obtaining a 
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soil measure. Based on the results, CBFE was able to obtain predictions of a similar 

strength to RFE, at a consistently lower theoretical cost. As such, the factoring of cost 

into feature elimination is useful, but since selected features may not have the highest 

variable importance, it is recommended as a complimentary process to RFE. Another 

recommendation with the cost-benefit approach is that, since variable importance isn’t 

driving feature elimination, all control parameters (prior to feature elimination) must be 

pedogenically related to the dependent variable. And lastly, that reference to a Control-CI 

is imperative to maintain a standard accuracy of prediction.  

3.4.4.4 Nitrogen pool dynamics 

RFE and CBFE, coupled with ML model capabilities, provided notable insights 

for interpreting soil N pool dynamics. The importance of particle size fractions (Sa, Si, 

Cl) or AS in predicting TN, BNA, and GSN revealed the importance of soil architecture 

and microbial accessibility of the substrate to Cl and N storage (Matus, 2021; Rasiah, 

1995). Furthermore, the predictive stability observed with PTFs for GSN suggests that 

purely mechanistic relationships with TN and BNA, taken in isolation, may not reflect 

the full diversity of factors at play when determining N pool dynamics. As such, directed 

ML approaches may grant a more robust approach for predicting complex relationships 

such as GSN. 

3.5 CONCLUSION 

The intent of this study was to improve our understanding of soil N pool 

dynamics and generate GSN estimates to support “right rate” N fertilizer 

recommendations in order to reduce RSN losses via leaching to groundwater and/or 

volatilization to atmosphere. The PTFs presented here could be incorporated into (two-



 

81 
 

pool) regression equations that account for the labile N pool, and the stable N pool, to 

make duration-based Nmin estimates. The framework, as demonstrated, identified 

important predictors for TN, BNA, and GSN using a variable-importance approach 

(RFE), and a cost-based approach (CBFE). Resultantly, a novel method for incorporating 

practicality, effort, or cost, was able to maintain high prediction standards through a suite 

of MLs and select important and cost-effective predictors. Testing multiple MLs was 

helpful to identify the best model; however, given the practical intent of this study, PTF 

regression coefficients may be the best suited for ad hoc predictions transforming the 

data a crop producer might have, into the data a crop producer might need. Unfortunately, 

and as a recommendation for further study, influences of climate and soil management 

practices could not be, but should be considered for Nmin and N related PTFs. Fate and 

transport dynamics of N pools and Nmin is greatly influenced by landscape, moisture, crop 

rotations, tillage, and residue management. These factors likely influenced some of the 

variance observed, and may greatly enhance further studies. Also, given climate and 

landscape influence on Nmin, the findings of this study would be well suited for predictive 

soil mapping applications. Future maps of Nmin parameters might allow more crop 

producers to access GSN predictions and provide greater support for informed “right-

rate” N fertilizer applications worldwide. 
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CHAPTER 4:  INTEGRATING MULTI-YEAR CROP INVENTORIES AS A 
PROXY FOR SOIL MANAGEMENT PRACTICES WITHIN A DIGITAL SOIL 

MAPPING FRAMEWORK FOR PREDICTING NITROGEN INDICES 2                                                              
 

4.1 ABSTRACT 

 For the international digital soil mapping (DSM) community, adequate spatial 

estimates of nitrogen (N) mineralization have been difficult to generate. This is due, in 

part, to an inability to capture critical N controls at the regional and provincial scales. 

While the influence of climate, vegetation, and relief are accessible predictors in DSM, 

the effect of soil management, or crop rotation, is known for its important influence on N 

dynamics, but has hitherto been elusive for soil mappers. To help inform N fertilizer 

management, the intention of this study was to determine the importance of novel crop 

frequency/soil management layers as well as top predictors and controls through the 

development of provincial scale DSMs of total nitrogen (TN), biological nitrogen 

availability (BNA), representing the stable and labile N pools, respectively; and in 

addition, the calculated estimate of N mineralization over a growing season (GSN). 

DSMs were developed using a provincial soil quality monitoring database (SQMD), 

consisting of georeferenced sample points (n = 675) containing direct measures of TN 

and BNA for training data, and covariates at a 30 m spatial resolution representing 

climate, vegetation/organisms, and relief as predictor layers. In addition, novel crop and 

soil management layers were developed that estimate the number of times a particular 

crop type was planted over a 10-year period, thus capturing tillage intensity via cropping 

 
2 Chapter 4 is a version of a manuscript that was submitted to Geoderma (open source) on February 29, 
2024, and conditionally accepted pending moderate revision on April 8, 2024. This was a multi-authored 
manuscript (Laurence, L., Heung, B., Zhang, J., Pennell, T., Nyiraneza, J., Strom, H., Stiles, K., and 
Burton, D.L.), in which the concept, design, data processing, and writing was done by the PhD Candidate 
with the assistance of all co-authors. 
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frequency. Results for TN were 27% higher with the use of novel soil management layers 

achieving a final CCC of 0.45 using SVM. BNA predictions increased by 24% using 

novel layers and had a CCC of 0.45 with the SGB learner. GSN showed the least 

improvement using novel layers (6%) but showed the highest CCC of the study (0.47) 

using novel soil management layers with SGB. Prediction maps, and related uncertainty 

maps, of TN, BNA, and GSN were developed showing higher uncertainty with N 

parameters in areas of intensive tillage, and increased erosion potential. The stable N 

pool, represented by TN, showed climate with the highest importance; whereas, the labile 

pool, based on BNA measures was best predicted and controlled by organisms, or plant 

cover. The successful inclusion of soil management layers into DSMs of N parameters 

indicated that the number of times in forages and potatoes over a 10-year period was of 

the greatest importance. As tillage intensity is most pronounced in potatoes, and as 

forages contribute to increased biomass and building OM levels, the results showed that 

increasing the number of years in forages had a positive correlation with GSN and the 

stable and labile N pools. 

4.2 INTRODUCTION 

The importance of reducing nitrogen (N) loss through informed N fertilizer 

management is well documented (Cassity‐Duffey et al., 2020; Nyiraneza et al., 2010; 

Zebarth et al., 2009). Various studies have pointed to the need for quantifying both the 

stable and labile N pools in order to accurately predict N mineralization; and ultimately, 

to use this prediction for informing N fertilizer recommendations (Dessureault-Rompre et 

al., 2015; Heumann et al., 2013). The stable (i.e., slowly mineralizing) N pool is 

considered the larger pool consisting of mature, more recalcitrant, soil organic matter 
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(OM) stocks (Dessureault-Rompre et al., 2016). This pool has been observed to degrade 

according to a non-diminishing, zero-order kinetic relationship that can be parameterized 

using total soil nitrogen (TN) analysis (Dessureault-Rompre et al., 2013). The labile, or 

more quickly mineralizing, N pool is made up of more reactive portions of OM that can 

be parameterized using a two-week aerobic incubation method known as the N flush 

(Pool I), or commercially as the Biological Nitrogen Availability (BNA) test (Sharifi et 

al., 2008; Sharifi et al., 2007c). The labile N pool is small, relative to the stable pool and 

may be consumed within a growing season following a first-order kinetic relationship 

(Curtin and Campbell, 2008; Stanford and Smith, 1972). Direct soil measures of both TN 

(representing the stable N pool) and BNA (representing the labile N pool) may be used to 

parameterize a two-compartment kinetic model to predict the extent of soil N 

mineralization over a growing season (i.e., growing season N; GSN). Once complete, the 

point-prediction of mineralized N can be used to construct an N balance as a means of 

determining the need for supplemental N fertilizer addition, referred to as “right-rate” in 

4R Nutrient Stewardship; an international program with the goal of improving N use 

efficiency (Johnston and Bruulsema, 2014).  

Using indices of the stable and labile N pools for estimating N mineralization 

rates have various obstacles for producers including, the absence of data to make point 

predictions, spatially extrapolating these point-predictions throughout a landscape, and 

interpreting these relationships to assist soil management decisions. An absence of data is 

perhaps the most foundational since without it, a producer must rely on regional data, 

which may or may not be representative of site-specific soil conditions. With respect to 

spatially interpolating N mineralization within a landscape, due to the variability and 
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complexities of biological communities, extrapolating these point predictions can be a 

challenge (Zebarth et al., 2009). Biological communities are influenced by many soil 

factors (e.g., OM levels, texture, etc.), climate (e.g., temperature and moisture), 

vegetation or residues (e.g., crop selection, tillage, etc.), and topography (e.g., aspect, 

slope, etc.). As such, predictions of N mineralization between sample points requires an 

understanding of the relationships learned from temporal and spatial patterns in 

controlling variables. The spatial prediction of GSN mineralization represents an 

opportunity to apply these learnings toward more sustainable soil management practices. 

For the pedologist or agronomist, insight into whether distinct N pools (stable and labile) 

are more influenced by pedogenic processes, or by cropping decisions, could assist with 

crop selection and/or tillage practices that influence soil health over the long-term 

(Zebarth et al., 2009). 

Soil management practices, including choice of crop rotation and tillage intensity, 

have a notable influence on N dynamics. Griffin (2008) stated that among the factors 

controlling N fraction sizes, management practices are ranked equally with other factors 

such as climate, biotic and abiotic factors (Dessureault-Rompre et al., 2015). Whittaker et 

al. (2023), studying the effects of forage mixes on yield, N cycling, and soil properties, 

found that the inclusion of forage legumes in crop rotations increased both soil quality 

and N supply but increased nitrate leaching compared to forage grasses. Forage legumes, 

in comparison to forage grasses, reduced the C:N ratio, which in turn increases both the 

quantity and quality of OM supply (Whittaker et al., 2023). Alternatively, the effects of 

tillage intensity inherent with potato production, have been found to reduce OM supply 

overall (Nyiraneza et al., 2017). As tillage practices increase in intensity, from zero-till, 
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no-till, minimum-till and conventional systems, there is a greater effect on mycorrhizae in 

soils, potentially mineralizable N, and soil structure (Kabir, 2005; Sharifi et al., 2008; 

Tivet et al., 2013). Therefore, it is important to quantitatively reflect the impact of soil 

management practices on N mineralization when making N management decisions.  

Digital soil mapping (DSM), along with machine learning (ML) techniques, 

present an opportunity to address these challenges. DSM is a process by which direct soil 

data for a given soil attribute, or response variable of interest (e.g., TN, BNA, or GSN), 

are then coupled with environmental data (predictor variables) at the same spatial 

location, in order to recognize patterns and build numerical models (Heung et al., 2016; 

McBratney et al., 2003; Minasny and McBratney, 2016). Expanded from Jenny’s five soil 

forming factors (Jenny, 1941), environmental predictor variables seek to quantify soil (s), 

climate (c), organisms (o), relief (r), parent material (p), age (a), and spatial position (n) 

plus autocorrelated residuals in what is collectively known as the scorpan factors 

(McBratney et al., 2003). Once the relationships between a soil attribute (e.g., BNA) and 

associated scorpan data (e.g., % slope, or mean average rainfall) have been modeled and 

learned, predictions can then be made in areas/pixels where direct soil data are absent.  

The DSM process begins by assembling covariates with complete coverage over the 

study area and that are representative of the scorpan factors. The number of covariate 

layers is simplified first with a process of variance inflation factor (VIF) analysis, which 

addresses multicollinearity among predictor variables (Craney and Surles, 2002; Deragon 

et al., 2024; Deragon et al., 2023; Paul et al., 2022; Saurette et al., 2023); and next, by a 

process of recursive feature elimination (RFE) where the most important predictors are 

identified in reference to the response variable (Deragon et al., 2023; Guyon et al., 2002; 
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Paul et al., 2022). Using model training and validation techniques to identify the best 

model, a prediction map can then be made of the study area. In some cases, where direct 

soil data is limited, pedotransfer functions (PTFs) can be used to fill in data gaps (Arbor 

et al., 2023; Laurence et al., 2023), thereby increasing the number of training data points, 

stabilize the DSM model, and potentially improve model accuracy and reduce uncertainty 

(Purushothaman et al., 2022; Reddy and Das, 2023). Another important aspect of the 

DSM and ML process, is the ability to interpret models in order to identify important 

predictors of response variables (Molnar et al., 2018).  As such, with the tools unique to 

DSM procedures, the opportunity exists to make estimates of TN, BNA and GSN to 

inform N fertilizer recommendations, as well as provide insight into intrinsic or extrinsic 

controls for assisting soil management. 

Zebarth et al. (2009) noted over a decade ago that spatial predictions of N 

parameters were indeed an opportunity for improving N fertilizer management. The 

literature provides multiple examples of spatial predictions of TN (representing the stable 

N pool) using DSM techniques (Mponela et al., 2020; Uygur et al., 2010; Zhou et al., 

2019; Zhou et al., 2020); in particular, as relating to soil carbon coupled with TN to 

derive C:N ratios over a landscape (van der Westhuizen et al., 2023). On the other hand, 

seldom have there been DSMs of labile N pools such as Pool I (N flush) or BNA. This is 

likely due to a lack of direct soil information based on the relative expense of the 2-week 

aerobic incubation analysis. Also scarce in the literature, are DSMs that properly 

incorporate soil management practices into covariate layers for predicting spatial 

variation in N parameters.  
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While the influence of soil management on the supply of N is of great importance 

(Nyiraneza et al., 2022; Nyiraneza et al., 2012; Whittaker et al., 2023), its inclusion into a 

DSM framework, to the best of our knowledge, has yet to be accomplished. For mapping 

applications, covariate layers with complete coverage across the whole of the study area 

are necessary; and to date, a covariate layer depicting soil management in a definitive 

way has been elusive. Indicators of N cycling or plant N uptake, such as NDVI (Wang et 

al., 2018) or land use types per climatic zone (Zhou et al., 2020), have been attempted 

with predictive strength. Paul et al. (2022) used annual crop inventory (ACI) layers 

produced by Agriculture and Agri-Food Canada (AAFC) to generate a crop rotation map. 

In order to do this, ACI layers were grouped into four categories including annual crops, 

pasture-grassland-forage, perennial crops, and non-agricultural (Paul et al., 2022). While 

these layers showed importance, the use of broad categories (e.g., annual crops) did not 

provide a nuanced representation of soil management practices between categories. For 

example, tillage practices between potato when compared to cereal crops are markedly 

different in terms of tillage intensity but were included in the same category, both as 

annual crops.  

The use of multi-year crop inventory (ACI) data has the potential to provide a 

more detailed assessment of the influence of cropping system by quantifying the 

frequency of a particular crop type over a particular span of years. The number of times a 

particular crop was planted at a given spatial location has both the potential to reflect the 

diversity of the crop rotation, and by assuming the typical soil management practices 

associated with each crop, the tillage intensity associated with the rotation. The ability to 
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incorporate soil management into a soil model or mapping framework represents a 

significant knowledge gap in the field of pedometrics.  

For this study, DSM techniques were applied to the agricultural soils of PEI, 

Canada to understand the importance of soil and crop management in a mapping 

framework of soil N parameters and for the purpose of improving N fertilizer 

recommendations and soil management decisions. Included in this research, multi-year 

ACI crop frequency covariates were developed in order to predict N parameters, in 

particular growing season N mineralization and provide insight into cropping practices 

that promote sustainable soil management.  Specific objectives included (i) determining 

the best scorpan factors for predicting N Pools (TN and BNA) and GSN while assessing 

the usefulness of novel crop frequency (ACI) management layers; (ii) developing DSMs 

of TN, BNA, and GSN; and (iii) interpreting the dominant controls for the stable and 

labile N pools to increase understanding of the impact of soil and crop management. 

4.3 METHODOLOGY 

4.3.1 Study Area 

The study area focused on the 2,405 km2 of soils classified as agricultural land 

use located throughout the 5,665 km2 area of the province of PEI (PEI Department of 

Agriculture and Land, 2020). With respect to climate, the study area is classified as cool 

and humid with mean monthly temperatures ranging between -7°C and 19°C, and annual 

precipitation rates of 900 to 1000 mm (MacDougall et al., 1988). Vegetation is mixed 

with approximately 46% of the land base in forest/shrub and 51% in agricultural 

production with pasture/hay/grass, potatoes, and grains as the dominant crops. The 

remaining 3% of the study area consists of urban/bare soil and water (Jiang et al., 2015). 
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Landscape relief ranges from primarily gentle slopes (0 to 2%) dominating in the west, 

moderate slopes (2 to 4%) in the central to eastern regions, and hilly to hummocky 

surface expressions (4 to 8% and over) in the central and southeastern portions of the 

island (MacDougall et al., 1988). Parent materials consist of medium to coarse textured 

glacial till overlying sandstone bedrock. Dominant soils consist of the Podzolic, 

Luvisolic, Gleysolic, and Brunisolic soil orders in accordance with the Canadian System 

of Soil Classification (MacDougall et al., 1988; Nyiraneza et al., 2017; Soil Classification 

Working Group, 1998). 

4.3.2 Soil Quality Monitoring Database 

The PEI Soil Quality Monitoring database (SQMD), consisting of 675 

georeferenced sample points at approximately 143 geographic regions (Figure 4.1A), was 

used for training and validation. The SQMD sample locations are based on a national 

forest inventory (4 km x 4 km) grid system with the potential for sample collection in a 

cluster pattern at the intersecting point on the grid (node) and the locations 100 meters 

north, south, east, and west of that point (Douglas et al., 2000). Soil samples were 

collected on agricultural fields only (n = 675). For reasons of access and land use, not all 

nodes were sampled at the centroid and four cardinal points but varied in sample intensity 

from one sample point to a maximum of five sample points collected per geographic 

cluster (Figure 4.1B). While the SQMD consisted of historical data from 1998 to present, 

the data used in this study were collected over a three-year cycle with the first set of 

samples collected in 2020 (n = 230), the second set in 2021 (n = 216), and the third set in 

2022 (n = 229). At each location, samples were taken with an Edelman soil auger to a 
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maximum depth of 17 cm (Douglas et al., 2000; Nyiraneza et al., 2017) and submitted to 

the PEI Analytical Laboratory (PEIAL) for analysis.  

 
 
Figure 4.1 Maps of the study are showing clustered sample locations (A), and the variation in 
sample density within clusters (B). 
 

Soil analytical parameters for this study included TN and BNA. TN (%) was 

determined using the LECO Method Report: Plants and Soils 10cc Loop, 4/16/2019, CN 

828 S/N:20014 combustion procedure at 900°C (Marshall et al., 2021). BNA analysis, an 

aerobic incubation test adapted from Sharifi et al. (2007a) and detailed in Marshall et al. 

(2021), was conducted by first leaching initial concentrations of available ammonium 

(NH4
+) and nitrate (NO3

-) nitrogen with 200 mL of a 0.01 M CaCl2 solution. Samples 

were then incubated for 14 days, and mineral N was leached again using 200 mL of a 

0.01M CaCl2 solution with results indicating the BNA (mg N/kg soil) and an estimate of 

N mineralization potential (Sharifi et al., 2007a). Summary statistics are presented in 

Table 4.1.  

4.3.3 Growing Season N Mineralization Estimates 

GSN was calculated using the regression equation (Eq. 4.1) from Dessureault-

Rompre et al. (2015).  

(A) (B)(B)
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                                           𝑁𝑁min =  𝑘𝑘𝑆𝑆𝑡𝑡 + 𝑁𝑁𝐿𝐿�1 − 𝑒𝑒(−𝑘𝑘𝐿𝐿𝑡𝑡)�                                          [4.1] 

The convention of a 130-day growing season was used for the cumulative N 

mineralization (𝑁𝑁min) at time (𝑡𝑡) based on climate data for the Atlantic maritime ecozone 

(Gordon and Bootsma, 1993; Pedlar et al., 2015). The non-depleting (zero-order) stable 

fraction of the two-pool regression equation (𝑘𝑘𝑆𝑆𝑡𝑡) was calculated by estimating 𝑘𝑘𝑠𝑠 (d-1) 

from the relationship in Eq. 4.2 and SQMD results for TN (%) and BNA in mg N/kg soil 

(Dessureault-Rompre et al., 2015). 

                       𝑘𝑘𝑠𝑠 = 0.123 (𝑇𝑇𝑇𝑇) + 0.00312 (𝐵𝐵𝐵𝐵𝐵𝐵) + 0.0685                                     [4.2] 

The depleting (first-order) labile N pool, as 𝑁𝑁𝐿𝐿(1 − 𝑒𝑒−𝑘𝑘𝐿𝐿𝑡𝑡) was calculated using 

BNA (𝑁𝑁𝐿𝐿) and a constant value of 0.074 d-1 (𝑘𝑘𝐿𝐿), as suggested by Dessureault-Rompre et 

al. (2015) for sandy loam textured soils. Summary statistics on GSN (kg N/ha) 

calculations are presented in Table 4.1. 

Table 4.1 Summary of soil quality monitoring database parameters (n = 445) and summary 
statistics including the minimum (Min) value, 1st (25%) quartile, Median, Mean, 3rd (75%) 
quartile and the maximum (Max) value. 
 

 
 

4.3.4 Pedotransfer Functions 

Since SQMD locations sampled in 2020 did not include TN or BNA analysis, 

PTFs were developed for the 2020 sample locations. OM and pH were selected as the 

predictor variables for development of PTFs for TN, BNA, and GSN, as these were the 

only appropriate parameters common between 2020 results, and the 2021 and 2022 

Parameter Units Min 1st Median Mean 3rd Max
Total Nitrogen % 0.052 0.11 0.14 0.14 0.17 0.32
Biological Nitrogen Availability mg N/kg 0.00 27.7 35.6 38.3 45.9 120.2
Growing Season Nitrogen Kg N/ha 54.2 130.2 157.6 167.0 193.7 440.3
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SQMD datasets. In addition to using the SQMD 2021 and 2022 data (n = 445) for PTF 

development, to improve PTF model accuracy, the Soil Health Database (n = 2,222) from 

PEIAL was incorporated for a total of 2,667 samples available for model training 

(Chapter 3). 

With two predictor variables available for PTF development, model simplification 

methods, such as recursive feature elimination were unnecessary. A suite of MLs were 

used to select the best model for predicting TN, BNA, and GSN. In order to select the 

best model, Lin’s concordance correlation coefficient (CCC) was used as the primary 

accuracy metric (Lin, 1989). For PTFs of TN, support vector machines with radial basis 

function were selected (CCC = 0.76), while stochastic gradient boosting was selected for 

both BNA (CCC = 0.54) and GSN (CCC = 0.66) (Figure 4.2). The MLs are described in 

Section 4.3.7. PTF predictions for TN, BNA, and GSN were incorporated into the 2020 

sample locations (n = 230) and used for model training purposes, but not validation due 

to the error associated with the PTFs. 

 
 
Figure 4.2 Concordance (CCC) results of pedotransfer functions (n = 2,667) for total nitrogen 
(TN), biological nitrogen availability (BNA), and growing season nitrogen (GSN) using the 
cubist (CU), stochastic gradient boosting (SGB), and support vector machine (SVM) models. 
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4.3.5 Environmental Covariates 

Derived and processed from several sources, environmental covariates spanned 

the extent of the study area using a 30 m spatial resolution. A total of 85 covariates were 

considered for their potential applicability for predicting N pools and to reflect the 

appropriate scorpan factors including climate, organisms, and relief (Table 4.2). The 

scorpan layer for parent material (p) was not considered necessary for the study area due 

to its homogeneity across the study area. The spatial reference projection used for this 

study was the North American datum (NAD) 1983, Canadian spatial reference system 

(CSRS) universal transverse mercator (UTM) Zone 20N, European petroleum survey 

group (EPSG) spatial reference code 2961. 

4.3.5.1 Climate variables 

A set of 19 bioclimatic variables were obtained from the WorldClim dataset (Fick 

and Hijmans, 2017) in order to reflect bioclimatic processes related to soil N 

mineralization (Table 4.2). Each variable was derived from a 30-year average (1970-

2000) representing major climatic factors such as temperature and precipitation trends, 

ranges, and seasonal extremes. Climate variables were resampled from the source spatial 

resolution of 30 arcseconds (approximately 643 m) to 30 m. Table 4.3 shows climate 

covariates retained after feature elimination procedures. 

4.3.5.2 Organisms/vegetation variables 

Four separate normalized difference vegetation index (NDVI) variables calculated 

from moderate resolution imaging spectroradiometer (MODIS; Didan, 2021) were 

included as a vegetation greenness indicator (Table 4.2). NDVI layers, obtained at a 

spatial resolution of 250 m and resampled to 30 m, consisted of median data over a span 
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of 10 years (2012-2021) collected throughout the growing season ranging from May to 

October. Covariate layers used for this study included NDVI maximum, mean, minimum, 

and range values over the 10-year period (Table 4.3). 

Table 4.2 Environmental covariates considered for modelling N parameters and showing retained 
variables after variance inflation factor (VIF) analysis (threshold = 10). 
 

 
 

Climate variables VIF < 10 Relief/topographic variables (cont'd) VIF < 10
Annual mean temperature (Celsius) Difference from Mean Elevation, filter 3 m
Annual precipitation Difference from Mean Elevation, filter 150 m2

Isothermality  Difference from Mean Elevation, filter 800 m2

Max temp of warmest month Difference from Mean Elevation, filter 2000 m2

Mean diurnal temperature range Eastness (Aspect) 

Mean temp of coldest quarter Elevation Percentile, filter 3 m2 

Mean temp of driest quarter  Elevation Percentile, filter 150 m2 

Mean temp of warmest quarter  Elevation Percentile, filter 800 m2

Mean temp of wettest quarter  Elevation Percentile, filter 2000 m2

Min temp of coldest month  General Curvature 

Precipitation of coldest quarter  Maximum difference from mean elevation scaled, filter 150 m2 

Precipitation of driest month  Maximum difference from mean elevation scaled, filter 800 m2 

Precipitation of driest quarter Maximum difference from mean elevation scaled, filter 2000 m2 

Precipitation of warmest quarter  Maximum difference from mean elevation, filter 150 m2 

Precipitation of wettest month Maximum difference from mean elevation, filter 800 m2

Precipitation of wettest quarter Maximum difference from mean elevation, filter 2000 m2 

Precipitation seasonality (coefficient of variation)  Maximum Elevation Deviation scaled, filter 150 m2 

Temperature annual range Maximum Elevation Deviation scaled, filter 800 m2 

Temperature seasonality (standard deviation x100) Maximum Elevation Deviation scaled, filter 2000 m2 

Maximum Elevation Deviation, filter 150 m2

Organisms/vegetation variables Maximum Elevation Deviation, filter 800 m2 

Maximum NDVI value over a 10 year period (2012 - 2021)  Maximum Elevation Deviation, filter 2000 m2

Mean NDVI value over a 10 year period (2012 - 2021) Mean Flooded Depth 
Minimum NDVI value over a 10 year period (2012 - 2021) Mid-Slope Position 
Range of NDVI values over a 10 year period (2012 - 2021)  Multiresolution Index of Ridge Top Flatness 

Multiresolution Index of Valley Bottom Flatness 
Crop and soil management variables Multi-Scale Topographic Position Index
Berries  Northness (Aspect) 
Cereals  Plan Curvature 
Corn  Profile Curvature 
Fallow  Sky View Factor 
Grassland/Pasture/Forages  Slope 
N-fixing  Slope Height 
Oilseeds  Slope Length 
Potatoes  Slope Length Factor 
Vegetables (other)  Standardized Height

Stream Power Index 
Relief/topographic variables Terrain Roughness Index
Catchment Area  Topographic Position Index
Convergence Index  Topographic Wetness Index 
Dam Height  Total Curvature 

Deviation from Mean Elevation, filter 3 m 2  Valley Depth 

Deviation form Mean Elevation, filter 150 m2 Visibility
Deviation from Mean Elevation, filter 800 m2 Wetness Index 

Deviation from Mean Elevation, filter 2000 m2
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Table 4.3 Accuracy metrics, selected covariates for scorpan factors, correlations for total nitrogen, biological nitrogen availability, and growing 
season nitrogen, and identifying top machine learners (CU = cubist; SGB = stochastic gradient boosting; SVM = support vector machines) and 
best model (*) for each response variable. 

 

Description Abbreviation Correlation CU SGB SVM* Correlation CU SGB* SVM Correlation CU SGB* SVM
Metrics Lin's concordance correlation coefficient CCC 0.435 0.439 0.447 0.402 0.450 0.400 0.449 0.470 0.439

Coefficient of determination R2 0.208 0.236 0.269 0.189 0.220 0.240 0.231 0.236 0.244
Root mean square error RMSE 0.035 0.034 0.033 13.7 14.6 12.9 43.9 44.0 43.0

Climate Isothermality (mean diurnal range/temperature annual range) (X100) C.iso 0.11   -0.04 -0.01
Mean temp of driest quarter C.avgt.dq 0.07  0.08  0.08 

Mean temp of warmest quarter C.avgt.waq 0.22    -0.03 0.03 

Mean temp of wettest quarter C.avgt.weq 0.06    0.17    0.16   

Min temp of coldest month C.mint.cm 0.11  0.17 0.17 

Precipitation of coldest quarter C.pcq -0.01   0.12  0.10
Precipitation of driest month C.pdm -0.21  0.04 -0.02 

Precipitation of warmest quarter C.pwq -0.33    -0.08  -0.15 

Precipitation seasonality (coefficient of variation) C.ps -0.22    0.03   -0.03  

Climate percentage of total covariates 39% 40% 50% 29% 17% 40% 31% 25% 31%

Organisms Annual Crop Inventory - number of times in cereals from 2013 - 2022 O.ACI.ce -0.21  -0.20 -0.21 

Annual Crop Inventory - number of times in grassland/pasture/forages from 2013 - 2022 O.ACI.gr 0.35    0.40    0.42   

Annual Crop Inventory - number of times in potatoes from 2013 - 2022 O.ACI.po -0.26    -0.36   -0.36  

Maximum NDVI value from 2012 - 2021 O.NDVI.ma 0.12 0.25   0.24  

Range of NDVI values from 2012 - 2021 O.NDVI.ra -0.09  -0.22   -0.21  

Organisms percentage of total covariates 17% 15% 25% 21% 25% 60% 23% 25% 38%

Relief Dam Height R.dh 0.07  0.02 0.03
Difference from Mean Elevation, filter 3 m2 R.dme3 -0.02  0.07 0.05
Deviation form Mean Elevation, filter 150 m2 R.dme150 0.02  0.16  0.14 

Deviation form Mean Elevation, filter 2000 m2 R.dme2000 0.10    0.15   0.15   

Eastness (Aspect) R.aspe 0.09  0.11  0.12 

Elevation Percentile, filter 150 m2 R.ep150 -0.03 0.14  0.11
General Curvature R.gcurv -0.02   0.06 0.05
Maximum Elevation Deviation, filter 150 m2 R.med150 -0.03   0.14   0.11  

Maximum Elevation Deviation, filter 800 m2 R.med800 0.01 0.14  0.12 

Maximum Elevation Deviation, filter 2000 m2 R.med2000 0.19 0.21  0.22  

Mid-Slope Position R.msp -0.04  -0.03 -0.03
Multiresolution Index of Valley Bottom Flatness R.mivbf -0.02  -0.14 -0.12
Profile Curvature R.pcurv 0.00  0.11  0.09 

Slope Height R.sh -0.04  0.08 0.05
Slope Length Factor R.slf 0.09  0.08  0.08
Topographic Wetness Index R.twi -0.08 -0.12  -0.12
Total Curvature R.tc 0.09  0.03 0.05 

Valley Depth R.vd 0.14   0.05   0.07 

Wetness Index R.wi -0.08 -0.17 -0.16 

Relief percentage of total covariates 44% 45% 25% 50% 58% 0% 46% 50% 31%

Total coavariates required 18 20 8 14 12 5 13 8 13

Total Nitrogen (TN) Biological Nitrogen Availability (BNA) Growing Season Nitrogen (GSN)
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4.3.5.3 Annual crop inventory and soil management variables 

 In order to capture soil management resulting from cropping practices, cropping 

history was characterized utilizing nine covariates extracted from the Annual Crop 

Inventory (ACI) produced by Agriculture and Agri-Food Canada (AAFC) at a 30 m 

spatial resolution (Table 4.2). The ACI data consisted of 72 possible classes including 

waterbodies, urban, and forested, as well as specific crop types at a target accuracy of 

85% or greater (Fisette et al., 2014; Fisette et al., 2013). Using both optical and radar- 

based satellite imagery, ACI classification layers covering a 10-year span total (2013 to 

2022) of the study area were grouped and re-classified into nine major cropping 

categories based on crop type and tillage intensity (Table 4.2). For example, cereal crops 

were considered separately from potato crops due to the differences in rooting biomass 

and tillage practices. All non-agricultural classifications (e.g., waterbodies or urban) were 

omitted because the SQMD includes only agricultural sample data. Once reclassified, 

raster layers representing the frequency for each cropping category for a 10-year period 

were generated for the study area. From this, a continuous covariate layer quantifying the 

frequency of each of the particular cropping categories was generated. ACI frequency 

covariates retained after feature elimination procedures are listed in Table 4.3. Figure 4.3 

and 4.4 provide an example of novel ACI soil management covariates including the 

frequency in forages and potatoes, respectively.  

4.3.5.4 Relief/topographic variables 

 Topographical metrics were generated using a 1 m spatial resolution digital 

elevation model (DEM) derived from light detection and ranging (LiDAR) data in 2020, 

which was provided by PEI’s Department of Environment, Energy and Climate Change. 
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Figure 4.3 Multi-year annual crop inventory (ACI), frequency and soil management map 
showing the number of years that grassland/pasture/forages (O.ACI.gr) were recorded over a ten-
year period (including 2013 to 2022). 
 
 
 

 
 
Figure 4.4 Multi-year annual crop inventory (ACI), frequency and soil management map 
showing the number of years that potatoes (O.ACI.po) were recorded over a ten-year period 
(including 2013 to 2022). 
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After smoothing with a mean filter window of 5 m x 5 m, and aggregating to a 30 m 

spatial resolution, the RSAGA (Brenning et al., 2018) and whitebox (Wu, 2021) packages 

were used within the R statistical software (R-CoreTeam, 2022) to generate 53 distinct 

covariates (Table 4.2). In addition to typical morphometry indicators such as slope or 

aspect etc., hydrological characteristics such as total curvature, valley depth, and 

topographic wetness indices were applied to the study area. Table 4.3 lists remaining 

relief covariates after feature elimination procedures. 

4.3.6 Variance Inflation Factor Analysis 

Feature elimination procedures began with consideration of multicollinearity 

among predictors; in particular, topographical covariates generated from a single DEM. 

Multicollinearity was addressed using variance inflation factor (VIF) analysis via the 

equation by Marquaridt (1970) and a value of 10 as the stopping threshold (James et al., 

2013; O’brien, 2007). Using the onsoilsurvey package (Saurette, 2021) within the R 

statistical software (R-CoreTeam, 2022), ordinary least squares regression was performed 

starting with one predictor fitted against the other predictors without reference to 

dependent variables (e.g., TN or BNA). The VIF is calculated and the highest VIF score 

is removed, the VIF is recalculated, and the process goes on iteratively until all VIF < 

threshold. Those variables above the threshold value were removed. This process was 

performed until all variables were below VIF = 10 (Menard, 1995). Since no categorical 

covariates were included in this study, VIF was conducted for all predictors. After VIF 

analysis, 85 covariates were reduced to 54, with 31 being removed due to 

multicollinearity (Table 4.2). 
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4.3.7 Machine Learning 

Initially, and to select the best three MLs for use in this study, five ML 

approaches were trialed including cubist (CU), random forest (RF), stochastic gradient 

boosting (SGB), support vector machines with radial basis function (SVM), and K-

nearest neighbors (kNN). While many MLs can be used, these were selected for initial 

trials based on previous applications related to DSM and/or mapping of N based 

parameters (Deragon et al., 2023; Morellos et al., 2016; Parsaie et al., 2021; Shahbazi et 

al., 2019). All five MLs were used to model the relationships between each dependent 

variable (i.e., TN, BNA, and GSN) and the 54 remaining covariates (after VIF) for the 

2021 and 2022 sample locations of the study area. The caret package (Kuhn, 2020) was 

used for all modeling procedures within the R statistical software (R Core Team, 2022). 

Based on the trial results, the top three MLs for all response variables were CU, SGB, 

and SVM. 

The CU model has been used in various studies related to PTFs and DSM 

applications (Deragon et al., 2023; Mello et al., 2022; Paul et al., 2022). CU is a rule-

based regression tree model that requires two hyperparameters for model optimization 

including the number of committees and neighbors. Further explanation of the CU model 

is found in Landré et al. (2018), Deragon et al. (2023), and in Chapter 3. In this study, a 

matrix of combinations was generated for both the committees (i.e., 1, 10, 50, 100) and 

neighbors (i.e., 0, 1, 5, 9) hyperparameters. The SGB model, described by Freund and 

Schapire (1997), Friedman (2002), and summarized in Chapter 3, is an ensemble 

technique based from classification tree analysis that has had multiple applications 

related to classification, PTFs, and DSM (Gebauer et al., 2020; Govil et al., 2022; 
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Hitziger and Ließ, 2014; Lamichhane et al., 2019). Parameter values used in this study 

included the interaction depth (i.e., 1, 3, 5, 7, 9), number of trees (i.e., 500), shrinkage 

(i.e., 0.1, 0.2, 0.3), and the minimum terminal node size (i.e., 10). Lastly, SVM works by 

optimizing the boundaries between data structures and variable classes in order to 

increase prediction abilities (Vapnik and Chapelle, 2000; Vapnik, 1999). The model is 

further described in Boser et al. (1992), Hastie et al. (2009), Heung et al. (2016) and in 

Chapter 3, with applications in both PTFs and DSMs (Gill et al., 2006; Lamichhane et al., 

2019; Priori et al., 2014; Sedaghat et al., 2022). The radial basis function in the caret 

package was used (Kovačević et al., 2010; Kuhn, 2020) with sigma (i.e., 0.0001, 0.001, 

0.01, 0.1, 1) and cost (i.e., 0.1, 1, 10, 100, 1000) as the hyperparameters. Selected MLs 

were used for PTF development and DSM modelling. 

4.3.8 Mapping N pools and Growing Season Nitrogen 

 A methodological framework similar to Deragon et al. (2023) was used for this 

study. Summary statistics and modelling activities were performed with version 4.2.2 of 

the R statistical software (R Core Team, 2022). 

4.3.8.1 Spatial cross-validation procedures 

Due to the presence of clustered sample points in the SQMD (Figure 4.1), there 

was a likelihood of increased bias due to spatial auto-correlation (Pohjankukka et al., 

2017). Preliminary trials confirmed this likelihood; thus, to generate realistic predictions, 

a leave-one-block-out (spatial) cross-validation (LOBOCV) procedure was performed 

(Deragon et al., 2023; Roberts et al., 2017). In addition, due to the inclusion of PTF 

predicted values for the 2020 locations, PTF predicted locations were not used for 

validation/testing but for model training purposes only (Román Dobarco et al., 2019a). 
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As such, training data included PTF and direct observations from 2020 to 2022 data (n = 

675), while validation data included direct 2021 and 2022 sample results only (n = 445). 

For LOBOCV, the number of folds was determined by the number of clusters in the study 

area, which totaled 143. At each iteration, one block (i.e., cluster) was removed for 

testing from the validation data while the model was trained from the remaining training 

data (i.e., inner training loop) of 142 clusters. For the inner training loop, repeated 10-

fold cross-validation was used with 20 repeats to optimize model hyperparameters 

(Ballabio et al., 2019). The model was then tested on the validation block, and prediction 

accuracy metrics were recorded (outer-loop). At the completion of each inner-loop, a new 

block was used for validation until each fold had been tested. Because the outer-loop 

generates an average CCC from the observed versus predicted values for each of the 143 

folds, a standard-deviation of CCC could not be calculated as it was a pseudo-statistic. 

Spatial cross-validation was performed for TN, BNA, and GSN and for each ML. 

4.3.8.2 Accuracy metrics 

The primary model performance metric used for this study was Lin’s concordance 

correlation coefficient (CCC). Preferred to the coefficient of determination (R2) because 

it accounts for systematic under or over predictions, CCC can range between 1 and -1 

with higher values showing better correlation between the observed values and the model 

predictions (Lin, 1989; Román Dobarco et al., 2019b). Secondarily, the root mean square 

error (RMSE) was used to demonstrate the average differences between the observed 

values and the model predictions. 
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4.3.8.3 Recursive feature elimination 

 Model simplification was done using recursive feature elimination (RFE), a 

backwards feature elimination process that is used to obtain a parsimonious model with 

the fewest, most relevant predictors, and with the highest CCC (Kuhn, 2020). Detailed in 

Chapter 3 and in Paul et al. (2022), RFE begins with all predictors, and at each iteration, 

removes the least important predictor based on variable importance analysis for each 

respective ML model (Guyon et al., 2002; Poggio et al., 2021). This process was 

conducted for each response variable (TN, BNA, GSN), using a model-agnostic process 

for calculating variable importance, approach to avoid model partiality, applied to each 

ML (CU, SGB, SVM) within the caret package (Kuhn, 2020).  

Model training and validation accounting for spatial auto-correlation was 

performed according to the cross-validation procedures (LOBOCV) outlined in Section 

4.3.8.1. Training data included the full dataset (n = 675), including 2020 PTF derived 

data points, while the validation data included only 2021 and 2022 direct soil 

observations (n = 445). The final model and ML were selected based on the highest CCC 

for each response variable. Once the final model and ML was selected, PTF data points 

were reintroduced to use the full dataset for both training and validation. To test for the 

possibility of increased or decreased accuracy from PTFs, RFE was conducted again for 

comparison with all response variables but without using PTFs for model training. 

Additionally, to test the effectiveness of novel ACI frequency layers, RFE was conducted 

a third time for comparison with all response variables but omitting ACI layers to observe 

the change in CCC. Once the best combination was determined (i.e., with or without 
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PTFs, and with or without ACI layers) the final model and ML were applied to the study 

area to obtain the final prediction map for TN, BNA, and GSN.  

In order to identify the controls for the stable and labile N pools (TN and BNA, 

respectively) and GSN, interpretation of ML results was carried out using the iml package 

(Molnar et al., 2018) within the R statistical software (R-CoreTeam, 2022). Interpretation 

metrics included feature importance analysis, feature importance based on scorpan 

groups (i.e., climate, organisms, and relief), and accumulated local effects (ALE) plots to 

obtain correlations of each parameter with respect to the response variable (Molnar et al., 

2018). 

4.3.8.4 Uncertainty estimation 

 As observed by Deragon et al. (2023), uncertainty analysis is increasingly 

necessary when using DSMs in practical applications. As such, to estimate the 

uncertainty of N pool predictions for application in N fertilizer recommendations, a 

quantile regression (QR) approach first introduced by Koenker and Bassett (1978) and 

adapted by Kasraei et al. (2021) was performed. The required inputs for QR include the 

model residuals (i.e., the difference between the observed and predicted values) specific 

to each ML and response variable, and the associated predicted map. This feature adds 

flexibility, in that, by using the model residuals and predicted map generated from each 

ML, QR as a framework can be applied for each model, while maintaining model specific 

interpretations (Kasraei et al., 2021). In order to train the QR function, the quantreg 

package (Koenker, 2019) within the R statistical software (R-CoreTeam, 2022) was used 

with the model residuals and the predicted map for each ML (CU, SGB, SVM) and 

response variable (TN, BNA, GSN) as inputs. The 0.05 (5%, or lower prediction limit) 
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and 0.95 (95%, or upper prediction limit) quantiles were calculated, then subtracted from 

each other, and the result was applied to each cell of the predicted map in order to obtain 

the 90% prediction interval (PI). From this, three additional maps were generated 

including 5% lower limit, 95% upper limit, and from the difference, the 90% PI map of 

the study area. QR generated maps were then used to identify areas of higher or lower 

uncertainty, evidenced by areas of higher or lower PIs, respectively. In addition to 

uncertainty estimates, “eye-testing” was performed to assess the logic of spatial 

representations. 

4.4 RESULTS AND DISCUSSION 

4.4.1  Feature Elimination and Model Performance 

4.4.1.1 Variance inflation factor analysis 

Beginning with a total of 85 covariate layers, 31 were removed due to 

multicollinearity (Table 4.2) using VIF analysis (63% decrease). The remaining 54 

covariate layers below the stopping threshold (VIF = 10), included 9 climate layers 

reduced from 19 (53% reduction), 11 organism layers from an initial 13 (15% reduction), 

and 34 relief layers from 53 (36% reduction). The remaining covariates were used for 

RFE of each response variable and ML. The reduction in covariates compared to other 

studies that saw a 67% (Paul et al., 2022) or 58% (Deragon et al., 2023) reduction in 

covariates from VIF alone. Climate covariates calculated from single sources, such as 

temperature/precipitation climate models and relief covariates derived from a single 

DEM, are most susceptible to multicollinearity and were thus among the highest 

proportion removed (Mendonça-Santos et al., 2006).  
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4.4.1.2 Recursive feature elimination for Total Nitrogen 

 Comparing CU, SGB, and SVM to predict TN representing the stable N pool, the 

RFE process showed the best model to be SVM (CCC = 0.45) with a total of 8 covariates 

required for prediction (Figure 4.5, Table 4.3). The removal of irrelevant predictors using 

RFE resulted in a 20% increase in concordance when predicting TN with the inclusion of 

PTFs. To test for the possibility of confounding effects from PTFs, 2020 sample points 

were removed and the RFE process was repeated. The removal of PTFs resulted in an 8% 

reduction in CCC when compared to the best model (Figure 4.5). As such, PTFs were 

retained for use in final mapping procedures. In order to test the effectiveness of novel 

ACI frequency layers, these predictors were removed from the RFE process and the result 

was a 27% decrease in the CCC (Figure 4.5). As such, ACI frequency layers were 

retained for mapping procedures. 

The relevance of predictor variables retained, and response of ACI layers as 

related to TN (representing the stable N pool) is discussed in Section 4.4.3.1. With 

respect to model performance, CCC was not calculated in other reported DSM studies of 

TN, so could not be directly compared. The RMSE for TN (0.033%, Table 4.3) showed 

favorable results when compared to similar studies (0.069%) in the literature (Hengl et 

al., 2015). Mapping TN, Mponela et al. (2020) had an R2 of 0.14 using 3-fold cross 

validation, but 0.89 using out of the bag error, demonstrating the possible range based on 

validation techniques. Wang et al. (2013) obtained R2 of 0.57 using geographically 

weighted regression and 0.68 using ordinary cokriging to predict TN. Results for R2 have 

the potential for systematic bias, in that predictions may conform to the line of best fit, 

but deviate from the origin; as such, using CCC is preferred as it corrects for this by 
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assessing distance and closeness to the 1:1 line through the origin (Lin, 1989). Even with 

potential for bias, R2 values for TN mapping were relatively modest, showing the 

inherent difficulty with predicting N parameters. Nevertheless, the CCC and the RMSE 

of this study showed comparable accuracy with the available literature (Uygur et al., 

2010; Wang et al., 2017; Zhou et al., 2020).  

 
 
Figure 4.5 Feature elimination concordance (CCC) results for total nitrogen (TN) using the 
support vector machines (SVM) model, and biological nitrogen availability (BNA), and growing 
season nitrogen (GSN) using the stochastic gradient boosting (SGB) model with the number of 
predictors given for results before recursive feature elimination (RFE), after RFE with 
pedotransfer functions (PTFs), without PTFs, and without annual crop inventory (ACI) frequency 
layers. 

 

4.4.1.3 Recursive feature elimination for Biological Nitrogen Availability 

 After RFE, the best ML for predicting BNA was SGB (CCC = 0.45) as compared 

with CU and SVM (Figure 4.5, Table 4.3). While RFE resulted in a strong increase in 

CCC using PTFs (29%), the increase was greater without the use of PTFs (36%), so PTFs 

were not used for final predictive mapping of BNA as representing the labile N pool 
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(Figure 4.5). The removal of ACI layers from the RFE process evidenced a 24% 

reduction as compared to the best model and were thus retained (see Section 4.4.3.2).  

 Regional DSMs using BNA as the soil attribute, as analyzed from 2-week aerobic 

incubation analysis (Pool I or N flush), could not be found in the literature and so results 

could not be directly compared. This absence of regional scale DSMs of BNA are likely 

due to the scarcity of geographically referenced databases containing this parameter. In 

comparison with results from the stable N pool, the same CCC of 0.45 for TN and BNA 

was achieved (Figure 4.5, Table 4.3) but required more predictors (8 vs. 12, respectively). 

The instability of BNA as representing the labile N pool, as the more active and quickly 

degrading N pool, likely contributes to the need of more covariates for prediction. 

Further, the variable nature of BNA is shown in that the assistance of PTFs for increasing 

model performance was not observed.  

PTFs have been found to both increase and decrease model performance. Reddy 

and Das (2023), comparing DSMs derived with the inclusion, and exclusion of PTFs, 

found that PTFs reduced the total error. Román Dobarco et al. (2019a) on the other hand, 

saw an increase in the relative error (25% to 36%) with the inclusion of PTFs in soils of 

varying textural classes (very sandy or clayey soils). In this study area, with uniformly 

coarse textured soil (Laurence et al., 2023; Nyiraneza et al., 2017), the decrease in 

performance using PTFs is likely due to the relatively poor CCC (0.54) of the PTF itself 

(Figure 4.2). In comparison, the CCC for the PTF of TN was 0.76, and yielded more 

stable predictions for use in RFE. As such, the PTF for BNA with its lower CCC was not 

capable of yielding reliable predictions to assist RFE. This observation was also inferred 

by Román Dobarco et al. (2019a) who suggested updating results with more reliable 
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PTFs once training data became available. In terms of this study, the PTFs for all 

response variables (TN, BNA, and GSN) could only be derived using two predictor 

variables (OM and pH), thus as more parameters become available, PTF strength could 

be improved in the future. In the Chapter 3 study, CCC results ranging from 0.73 to 0.80 

were possible with PTFs predicting BNA, using between four and nine predictors. It is 

assumed that using stronger PTFs for DSM procedures would contribute to better 

prediction potential of the BNA. 

4.4.1.4 Recursive feature elimination for Growing Season Nitrogen 

SGB showed the best CCC (0.47) after RFE procedures and was selected as the 

top model for GSN requiring 8 covariates (Figure 4.5, Table 4.3). CCC increased by 22% 

with the use of PTFs and 17% without PTFs; as a result, PTFs were used for final 

predictive mapping of GSN. ACI frequency layers, discussed in section 4.4.3.3, were also 

retained due to a drop in CCC of 6% with their removal. 

Since DSMs of GSN or similar calculated N parameters were not available in the 

literature, comparison of RFE results could not be completed. Recalling that GSN is a 

calculated parameter (Eq. 4.1), derived using a two-compartment prediction function 

using TN and BNA, its higher CCC (0.47) than both TN and BNA (0.45) is notable. 

Interestingly, the combined effect of TN (representing the stable N pool) and BNA 

(representing the labile N pool) yielding a stronger CCC than the inputs alone show a 

predictive stability in the function (Eq. 4.1) itself. As observed in Chapter 3, PTFs of 

GSN consistently outperformed both TN and BNA showing that the inclusion of two 

parameters in the function added a model stability not achieved with the same parameters 

individually. The consistency of this finding, in PTFs using direct measures (Chapter 3), 



 

110 
 

and here with DSMs using indirect (e.g., remotely sensed data), increases confidence in 

the GSN output for practical use in N fertilizer recommendations (Laurence et al., 2023).  

4.4.2 Spatial Representations of N pools and Growing Season Nitrogen 

Spatial representations of the study area were conducted without masking non-

agricultural lands (e.g., urban, water, forest, etc.) since these areas, having no soil 

samples collected, neither hindered nor helped overall accuracy and uncertainty 

(Nyiraneza et al., 2017). 

4.4.2.1 Total Nitrogen 

The final predictive map of TN, representing the stable N pool, and using SVM 

with 8 predictors (Table 4.3), had a range from 0.085 to 0.22% (Figure 4.6B), a mean of 

0.14% and a standard deviation (SD) of 0.018% (Table 4.4). The lower prediction limit 

(5th percentile) ranged from 0.072 to 0.11% TN (Figure 4.6A) and the upper prediction 

limit (95th percentile) ranged from 0.14 to 0.28% TN (Figure 4.6C). The overall 90% 

prediction interval (PI) width ranged from 0.063 to 0.17% TN (Figure 4.6D) with a mean 

of 0.11% and a SD of 0.015% (Table 4.4).  

 
Table 4.4 Descriptive statistics, including the minimum (Min), Mean, maximum (Max) values, 
and standard deviation (SD) for total nitrogen (TN), biological nitrogen availability (BNA), and 
growing season nitrogen (GSN) soil prediction and 90% prediction interval maps of the study 
area using support vector machines (SVM), and stochastic gradient boosting (SGB) learners. 
 

 

Parameter Units Learner Spatial Interpretation Min Mean Max SD
TN % SVM Soil Prediction Map 0.085 0.14 0.22 0.018

90% Prediction Interval Map 0.063 0.11 0.17 0.015
BNA mg N/kg SGB Soil Prediction Map -5.4 36.4 109.5 10.1

90% Prediction Interval Map 19.5 41.0 78.5 5.2
GSN kg N/ha SGB Soil Prediction Map 49.5 157.9 422.6 31.0

90% Prediction Interval Map 43.1 126.0 328.3 23.7
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Figure 4.6 Soil total nitrogen (TN) maps (%) of the study area using the support vector machine 
(SVM) model and uncertainty maps using quantile regression. (A) Lower prediction limit map 
(5th percentile), (B) prediction map, (C) upper prediction limit (95th percentile), and (D) 90% 
prediction interval map. 
 

Uncertainty estimation is relatively infrequent in DSMs of TN; however among 

the studies found, Zhou et al. (2020) assessed the uncertainty with results ranging from a 

SD of 0.05 to 0.14 g/kg with higher uncertainties of TN predictions in areas of low soil 

sampling density and complex surface structure. The issue of higher or lower sample 

density was not pronounced in this study due to the uniform grid system employed 

throughout the study area. Instead, higher uncertainty was evident in the central region of 

the study area (Figure 4.6D) where more intensive agricultural operations occur, as well 

as upper to upper-mid-slope locations where more erosion occurs. This is likely due to 

the atypical soil characteristics found with eroded soil conditions prevalent in these areas, 

as well as to the erosion related translocation of OM and associated nutrients from upper 

TN (%)
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to lower slope positions (Nyiraneza et al., 2017). In addition, it is also possible that these 

areas were proximate to livestock or confined animal production and therefore more land 

application of manure. 

4.4.2.2 Biological Nitrogen Availability 

Using SGB with a total of 12 predictors (Table 4.3), the final predictive map for 

BNA representing the labile N pool had a range from -5.4 to 109.5 mg N/kg (Figure 

4.7B). The mean BNA value for the study area was 36.4 mg N/kg with a SD of 10.1 mg 

N/kg (Table 4.4). The lower prediction limit (Figure 4.7A) ranged from 76.4 to 165.4 mg 

N/kg, while the upper prediction limit (Figure 4.7C) had a range from 43.1 to 328.3 mg 

N/ha. The 90% PI map had a minimum interval of 19.5 mg N/kg, mean of 41 mg N/kg, 

maximum of 78.5 mg N/ha, and a SD of 5.2 mg N/ha (Figure 4.7D, Table 4.4). 

Uncertainty estimates in regional representations of the labile N pool could not be 

found for comparison. However, comparing percent difference (max vs. min) of 

prediction intervals ranges (i.e., the greater the range, the greater the uncertainty) in PI 

maps between BNA and TN, BNA had a 12% greater interval range than TN (75% and 

63% difference, respectively), but a proportional difference in SD (87% vs 86%, 

respectively). This indicates a similar model accuracy (Figure 4.5) but a greater 

uncertainty range in predicting the more labile BNA parameter. The labile N pool, as a 

smaller pool in comparison to the stable N pool (Dessureault-Rompre et al., 2013) and 

capable of being consumed within a growing season (Chapter 3), may contribute to the 

increased uncertainty observed in BNA. In addition, the labile fraction of OM is more 

sensitive to loss via cultivation, which may also increase prediction uncertainty (Six et 

al., 1999, 2002, 2020). Due to the coarse textured soils of the study area, erosion on PEI 
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is one of the major risks to OM and nutrient loss, including loss to N pools (Edwards et 

al., 1998; Nyiraneza et al., 2017). 

 
 
Figure 4.7 Biological nitrogen availability (BNA) maps (mg N/kg) of the study area using the 
stochastic gradient boosting (SGB) model and uncertainty maps using quantile regression. (A) 
Lower prediction limit map (5th percentile), (B) prediction map, (C) upper prediction limit (95th 
percentile), and (D) 90% prediction interval map. 

 

4.4.2.3 Growing Season Nitrogen 

The predictive map of GSN, the calculated output based on TN and BNA (Eq. 

4.1), was performed with 8 predictors using the SGB model (Figure 4.5, Table 4.3). The 

prediction range was between 49.5 to 422.6 kg N/ha (Figure 4.8B), with a mean of 157.9 

kg N/ha and a SD of 31 kg N/ha (Table 4.4). Uncertainty maps showed the lower 

prediction limit (5th percentile) ranged from 76.4 to 165.4 kg N/ha GSN (Figure 4.8A) 

and the upper prediction limit (95th percentile) ranged from 119.5 to 493.7 kg N/ha GSN 

BNA (mg N/kg)
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(Figure 4.8C). The 90% PI ranged from 43.1 to 328.3 kg N/ha GSN (Figure 4.8D) and 

had a mean of 126 kg N/ha and a SD of 23.7 kg N/ha (Table 4.4).  

Prediction uncertainty was greater with spatial estimates of GSN, as compared to 

both TN and BNA. The SD was proportionally less than TN and BNA, which was 

expected due to a higher prediction accuracy (Figure 4.5); yet, the PI range (between max 

and min) was proportionally greater (87% difference) as compared to TN (63% 

difference) and BNA (75% difference). Areas of greatest uncertainty appeared on upper 

slope regions which predominate the central and southeastern regions of the study area 

(Figure 4.8C). Upper slopes and knolls that experience high levels of erosion and 

translocation of OM and associated nutrients (Edwards et al., 1998; Six et al., 2002) 

likely contribute to the higher prediction uncertainty of GSN in these regions. 

 
 
Figure 4.8 Estimated growing season nitrogen (GSN) maps (kg N/ha) of the study area using the 
stochastic gradient boosting (SGB) model and uncertainty maps using quantile regression. (A) 
Lower prediction limit map (5th percentile), (B) prediction map, (C) upper prediction limit (95th 
percentile), and (D) 90% prediction interval map. 

GSN (kg N/ha)
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4.4.3 Interpretation of Predictors for N pools and Growing Season Nitrogen  

4.4.3.1 Total Nitrogen 

In order to assist the management of soil N stocks, the question of what factors 

control the stable N pool, estimated using TN measures, can be observed by first 

considering importance and ALE plots in Figure 4.9. Climate based parameters, including 

precipitation seasonality (C.ps) and mean temperature of the warmest quarter 

(C.avgt.waq), were the most important predictors selected by the SVM learner (Figure 

4.9A). Consistent with studies related to the effect of climate on decomposition of OM 

and N pools (Dessureault-Rompré et al., 2010; Georgiou et al., 2022), the importance of 

climate for TN is also shown in Figure 4.9B, with climate variables collectively 

considered together as a group having the highest importance. Best correlation with 

climate variables (Table 4.3) and TN show precipitation of the warmest quarter (C.pwq) 

as the most important (-0.33). Interestingly, TN’s negative correlation with precipitation 

was counter-intuitive as other DSM studies note the reverse, showing TN increase with 

increased precipitation (Wang et al., 2017, 2018). However, due to the predominantly 

coarse soil texture and relative absence of clay (mean = 12%) in the study area (Chapter 

3), the decreasing TN with increasing precipitation can be understood. Amelung et al. 

(1998), as well as Georgiou et al. (2022), note the importance of clay for protection of 

carbon (C) and N stocks in soil and the resulting N loss in sandy soils with increased 

precipitation. Hence the negative correlation between TN and precipitation (Table 4.3) 

confirm the sensitivity of N stocks in humid climates with coarse textured soil, and the 

high potential for N leaching over winter and throughout the growing season (Nyiraneza 

et al., 2017; Sharifi et al., 2007c).    



 

116 
 

 
 
Figure 4.9 Variable importance plots (A), scorpan group importance plots (B), and accumulated 
local effects (ALE) of total nitrogen (TN = .y) with the support vector machines (SVM) model. 
Refer to Table 4.3 for a description of each covariate and abbreviation. 
 

From Figure 4.9 and Table 4.3, after precipitation, temperature was the most 

important of the climate controls of TN followed by relief. This was consistent with Zhou 

et al. (2020) who observed that climate variables had the highest relative importance 

related to TN as compared to terrain, soil, and organism covariates. Temperature 

covariates selected by SVM (C.avg.waq and C.avg.weq) having a strongly positive 

correlation (Table 4.3), also displayed a reverse relationship to other spatial studies of TN 

that showed the expected decrease in TN with increasing temperature (Wang et al., 2017, 

2018). The possitively correlated increase in TN with increasing temperature is likely a 

function of increased plant productivity increasing the C:N ratio and leading to increased 

immobilization of TN. Dessureault-Rompre et al. (2010), studying the relationship 

between climate and mineralizable N properties in soil, saw a possitive correlation with 

potential evapotransporation (a function of water content and temperature) and the larger 

theoretical Pool III, which suggests the more recalcitrant N pool may experience a net 

increase with increased temperature and plant biomass production. In addition, the 

positive correlation may highlight the greater role of biology, which increases with 

increased temperatures in soils, and retains TN via immobilization. 

(B)(A) (C)
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Organism/vegetation covariates important for modelling TN were second in 

importance to climate covariates (Table 4.3). Multi-year (ACI) crop frequency and soil 

management layers, indicating the number of times in grassland/pasture/forages 

(O.ACI.gr, Figure 4.3) showed high variable importance (Figure 4.7A). O.ACI.gr had the 

highest positive correlation (0.35) showing that TN increases with the number of times in 

grass species (Figure 4.9C, Table 4.3). Secondarily, the number of times in potatoes 

(O.ACI.po; -0.26) suggest that increasing frequency in potatoes yields a decrease in 

stable TN stocks (Figure 4.9C, Table 4.3). This result likely shows the result of tillage 

intensity, as potatoes require the highest rate of tillage of the crops considered, and 

forages require little to no tillage once the stand is established (Nyiraneza et al., 2017). 

Another factor contributing to decreased TN stocks is that potato production has a much 

lower crop residue input than forage systems. The importance of ACI frequency layers 

for predicting TN was also demonstrated by a 27% drop in CCC with their removal 

(Figure 4.5). The importance of organisms for predicting TN was also observed in other 

studies, but with relation to NDVI layers (Wang et al., 2018; Zhou et al., 2020). NDVI 

covariates had low relative correlations (Table 4.3) and were not selected by SVM for 

predicting TN. While ACI frequency covariates could not be compared directly, using 

landuse/land cover as a covariate has been used as a successful predictor with the highest 

relative importance for TN (Zhou et al., 2019). Of least importance in predicting TN as 

an estimate of the stable N pool, considered by group, were the relief covariates (Figure 

4.9B, Table 4.3). Similar (Zhou et al., 2019), as well as conflicting results in the literature 

were observed (Wang et al., 2017). In the study by Wang et al. (2017), terrain indices 

were observed as the most important (elevation, and wetness index); however, it is 
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notable that the study measured TN to a depth of 100 cm in comparison to a maximum 17 

cm depth with the current study area. TN predictions below the rooting-zone, with a 

lower influence on crop N availability in fertilizer recommendations, was not considered 

in this study. 

4.4.3.2 Biological Nitrogen Availability 

With respect to importance of predictors considered by scorpan group, BNA as an 

estimate of the labile N pool, exhibited a complete inversion of results as compared to TN 

(Figure 4.9B vs. Figure 4.10B) in showing relief as the most important, followed by 

organisms, and then climate. This alone is an important observation, which confirms the 

inherent differences and highlights varied controls of the stable and labile N pools. While 

most of the predictors for BNA were related to relief (58%), none of the relief variables 

selected by SGB had a particularly strong correlation (Table 4.3). The strongest 

correlations were observed from the organism scorpan group with the multi-year ACI 

frequency of forages (O.ACI.gr) layer (0.40), maximum NDVI (O.NDVI.ma) value 

(0.25) and range of NDVI (O.NDVI.ra) values (0.22; Table 4.3). NDVI layers were not 

selected by the top ML for TN, also highlighting the difference and importance of 

vegetation cover as a driver for the labile N fraction. Vegetative cover also reflects 

differences in the amount of crop and root residue input associated with various cropping 

systems, and as a result, would have a dramatic impact on BNA relative to TN. It is also 

notable that the top predictor for BNA (Figure 4.10A) was related to organisms’ 

covariates (O.ACI.gr, Figure 4.3). This underscores the importance of crop frequency 

layers and soil management, as there was 24% decrease in CCC with the removal of ACI 

frequency layers as a whole (Figure 4.5). The labile N fraction, estimated with BNA or 
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the 2-week aerobic N flush (Pool I) analysis, has not been mapped regionally and 

therefore could not be compared; however, differences in controls between TN and BNA 

(known in the literature as the N Flush or Pool I) have been noted in various studies at the 

local (spatial) and discrete sample scales (Angst et al., 2022; Simard et al., 2001).  

ALE plots (Figure 4.10C) and Table 4.3 show a similar trend with respect to BNA 

and the frequency of forages (O.ACI.gr) being positively correlated (0.40), and the 

frequency of potatoes being negatively correlated (-0.36). Based on this, it is evident that 

the effect of fibrous root crops adding biomass (Whittaker et al., 2023), and the relative 

absence of tillage with forages promote the growth of labile N stocks in similar fashion to 

the stable N pool (Kabir, 2005; Nyiraneza et al., 2010). Overall, while relief was a strong 

predictor, organisms and soil management were a key component in predicting BNA.  

 
 
Figure 4.10 Variable importance plots (A), scorpan group importance plots (B), and accumulated 
local effects (ALE) of biological nitrogen availability (BNA = .y) with the stochastic gradient 
boosting (SGB) model. Refer to Table 4.3 for a description of each covariate and abbreviation.  
 

4.4.3.3 Growing Season Nitrogen 

The nature of the GSN output, being calculated from, and including the combined 

effects of both TN and BNA, presents a novel awareness of N supply in general. Based 

on the results from the SGB learner, GSN appears to mirror BNA more closely in regards 

(A) (B) (C)
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to variable specific and grouped importance plots (Figure 4.11A and B). The top 

predictor of GSN (from SGB), was the multi-year ACI frequency layer related to number 

of times in forages (O.ACI.gr, Figure 4.3), which also had a correlation of 0.42 - the 

strongest of all correlations across all parameters and learners (Figure 4.11A, Table 4.3). 

Similarly with BNA, GSN was most influenced by the relief scorpan group, followed by 

organisms, and then climate (Figure 4.10B vs. 11B). Also of similarity, relief variables 

were the most abundant of the SGB predictors (50%) but held the weakest correlations. 

The impact of relief on GSN, as well as BNA, demonstrates its foundational importance 

to N supply in general, but not necessarily the importance of one attribute in particular. 

The overarching importance of terrain has been observed for mapping N parameters in 

various studies (Zhou et al., 2019, 2020). However, as mapping scale changes from 

landscape to infield applications, it may become evident that specific relief attributes 

appear more important.  

 
 
Figure 4.11 Variable importance plots (A), scorpan group importance plots (B), and accumulated 
local effects (ALE) of growing season nitrogen (GSN = .y) with the stochastic gradient boosting 
(SGB) model. Refer to Table 4.3 for a description of each covariate and abbreviation. 
 

Organism covariates on the other hand have a more pronounced impact on GSN 

as shown by correlation of predictors (Table 4.3), and feature importance (Figure 4.11). 

(A) (B) (C)
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Unlike both TN and BNA, GSN showed the least reduction in CCC with the removal of 

ACI frequency layers (Figure 4.5) with a 6% reduction (versus 27% for TN, and 24% for 

BNA). This resilience with the removal of crop frequency layers is somewhat expected 

due to the collective strength of the GSN output in comparison to TN and BNA observed 

in Figure 4.5. Prior to RFE, with the confounding effects of using all predictors, GSN had 

the highest CCC compared to both TN and BNA. Also in the same figure, it is interesting 

that the highest predictive strength (CCC = 0.47) is derived from the GSN value. Lastly, 

the most parsimonious model also belongs to GSN, shown by the highest CCC with the 

fewest variables as compared to TN and BNA (Figure 4.5 and Table 4.3). 

4.4.3.4 Soil management 

Based on correlation, feature importance, and ALE plots, it is strongly suggested 

that TN (representing the stable N pool) is driven by climate; whereas, BNA 

(representing the labile N pool) is functionally driven by organisms. The best correlations 

for TN, and the most selected parameters across all learners shown in Table 4.3 (CU, 

SGB, SVM) relate to climate. On the other hand, the best correlations, and the most 

selected parameters for BNA, belong to the organisms scorpan factor. With a mainly 

pedogenically driven stable N pool, and a management driven labile N pool, the key to 

managing N stocks points towards strategies that promote OM development. OM is 

known to control soil climate via buffering heat exchange via the mineral component, and 

promote retention of moisture levels (Leirós et al., 1999; Sieber et al., 2022). Coarse 

texture soils, which predominate the study area and are prone to N loss via leaching, can 

be improved (in terms of protecting N pools) by increasing OM via increasing vegetative 

biomass and ground cover (Yang et al., 2020). 
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This understanding of the effect of forages, or inversely from the effect of tillage 

intensity, was seen via ACI frequency layers (Figure 4.3 and 4.4, respectively) as a 

predictor of N parameters. The positive correlation (Figures 4.9 to 4.11, Table 4.3) and 

the importance of including O.ACI.gr (Figure 4.3) in predictions speaks to the inclusion 

of forages (pasture or forage crops) in a crop-rotation cycle as one aspect of increasing 

biomass and building OM reserves (Nyiraneza et al., 2010; Whittaker et al., 2023). Also, 

observed was the negative correlation (Figures 4.9 to 4.11, Table 4.3) with frequency of 

potato crops and tillage intensity (Figure 4.4). As a root crop, potatoes contribute 

minimally to increasing soil biomass in comparison to fibrous roots indicative of forages 

(Stark and Porter, 2005). Furthermore, tillage, which decreases OM by aerating and 

heating the soil, has the increased potential to reduce N pools and soil health overall 

(Kabir, 2005; Roscoe and Buurman, 2003; Sharifi et al., 2008).  In terms of soil 

management, the practitioner would do well to include forage crops, particularity 

legume-based forages, into rotations as well as minimizing tillage where possible 

(Whittaker et al., 2023). 

4.5 CONCLUSION 

 Soil management covariates using multi-year, ACI crop frequency layers, were 

instrumental in mapping soil N parameters. Prediction accuracy of TN and BNA 

increased substantially with the inclusion of ACI frequency layers, and confirmed the 

importance of cropping rotation on mapping N pool dynamics. In addition, this study was 

conducted in order to model and map surrogate parameters for the stable N pool via TN, 

the labile N pool via BNA, and the calculated estimate of GSN in order to inform N 

fertilizer and soil health management decisions. Climate factors including precipitation 
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and temperature covariates were among the best predictors of TN followed by organisms 

and relief. Alternatively, BNA and GSN were best predicted with relief and organism 

covariates. In particular, multi-year and novel ACI frequency covariates showed high 

importance in predicting N parameters, especially the number of times in forages and the 

number of times in potatoes over a 10-year period. As indicative of biomass introduction 

and tillage intensity, this finding provides the opportunity to include soil management 

into a mapping framework, as well as insight into soil management decisions. In addition, 

highly erodible soil conditions in the study area were apparent from increased uncertainty 

of predictions on upper slope positions. For the purpose of informing N fertilizer 

recommendations, novel DSMs of TN, BNA, and GSN can be used by practitioners 

across the study area. While this study focused at the regional scale with a 30 m spatial 

resolution, future studies may consider infield N dynamics as the controls at finer scales 

are likely to be influenced by different soil forming factors. Furthermore, additional 

studies using multi-year crop frequency layers as a method for incorporating soil 

management in a soil mapping framework, is highly recommended due to their prediction 

importance. 
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CHAPTER 5:  APPLYING PROVINCIALLY DERIVED PEDOTRANSFER 
FUNCTION AND SPATIAL ESTIMATES OF NITROGEN INDICES AT THE 

FIELD SCALE 3 
 

5.1 INTRODUCTION 

In previous chapters, pedotransfer functions (PTFs) and digital soil maps (DSMs) 

were developed from province wide datasets in order to be used as decision support tools 

(DSTs) for informing nitrogen (N) fertilizer recommendations at a field scale. Informing 

N recommendations, via estimates of organic-N mineralized from soil over a growing 

season, is a fundamental component of completing N balances for quantifying N sources, 

versus N demand from the crop (Frerichs et al., 2022; Morvan et al., 2022; Zebarth et al., 

2009) and is integral to a 4R Nutrient Stewardship (Johnston and Bruulsema, 2014). 

Growing Season Nitrogen (GSN) mineralization is estimated from a mixed-compartment 

kinetic model as described in Chapter 2 and in Dessureault-Rompre et al. (2015). The 

prediction function captures contributions from both the slowly mineralizing stable N 

pool, estimated from total nitrogen (TN) analysis, and the quickly mineralizing labile N 

pool, estimated from the 2-week aerobic incubation test commercially known as 

biological nitrogen availability (BNA) analysis. Frequently, due to perceived risk of yield 

loss, or from a lack of information on mineralized N sources, N fertilizers can be over 

applied, and lead to nitrous oxide (N2O) losses through the growing season and/or high 

concentrations of residual soil nitrogen (RSN) remaining in the soil after harvest. As a 

consequence, high RSN levels can increase the potential for nitrate leaching or N2O 

 
3 Chapter 5 was prepared as a thesis chapter intended for future publication. As a manuscript, this chapter 
would be considered as multi-authored (Laurence, L., Heung, B., MacDonald, E., Ramsay, M., and Burton, 
D.L.), in which the concept, design, data processing, and writing was done by the PhD Candidate with the 
assistance of all co-authors. 
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emissions (Zebarth et al., 2015). The implementation of DSTs (PTFs and DSMs) 

provides the opportunity to improve N management to sustain yield and minimize the 

potential for environmental impact. In this chapter we explore the potential for DSTs to 

be used in developing estimates of N parameters within a field, and supporting N 

fertilizer management.  

In Chapter 3, PTFs for TN, BNA, and GSN were developed for the purpose of 

establishing a framework, determining the optimum predictor variables, and making use 

of existing data to estimate the contribution of mineralizable N in soil. While the study 

showed that accurate predictions were achievable, from a practical point of view, it also 

revealed that the best predictors were not among those historically and commonly 

available to producers. The standard soil analytical suite common to agricultural 

producers is called the S3-package and includes a limited set of parameters applicable for 

PTF development, including soil organic matter (OM), pH, and cation exchange capacity 

(CEC). As such, there is an opportunity to use the framework established in Chapter 3 to 

develop novel PTFs that could make use of existing datasets held by producers. In 

Chapter 4, provincial scale DSMs of N indices were made to assist N fertilizer 

recommendations in situations where producers had no historical data. At a 30 m spatial 

resolution, the provincial scale DSM was developed successfully using the PEI soil 

quality monitoring database (SQMD) to predict TN, BNA, and GSN. However, based on 

the effects of scale (landscape vs. field), and the disparity that may exist between 

provincial (SQMD) training data and on-farm soil quality (Malone et al., 2017), there is a 

need to observe how spatial predictions might perform at the field level. For example, 

slope position will likely have a greater impact on field-scale soil variability, and tillage-
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intensive operations may have a lower soil quality as compared to the provincial (SQMD) 

benchmark (Lin et al., 2005). As such, potential issues between provincial scale 

predictions, infield soil results, and how they might be interpreted, is required for 

successful incorporation into N fertilizer recommendations. 

The aspect of how a producer mechanically applies their fertilizer is also essential 

from a DST application and adoption perspective. Broadly speaking, a producer may 

apply N fertilizers as a single rate application (SRA) or as a variable rate application 

(VRA). The SRA, sometimes known as a blanket-rate application, occurs where a 

producer creates one N fertilizer rate and applies it to the whole field regardless of infield 

variations. While not ideal, this application approach is typically chosen when VRAs are 

not feasible to the producer. VRAs are performed when infield soil or nutrient variations 

have been delineated into zones, and on-farm technology (e.g., applicator equipment) is 

available to modify fertilizer rates during application passes (Zebarth et al., 2009). As 

such, if PTFs and DSMs are to be put into practice, they should meet producer needs by 

informing both SRA or VRA scenarios.  

In order to address these issues, six producer fields were chosen that reflected the 

PEI standard 3-year potato rotation practices as described in Nyiraneza et al. (2017). 

Each was sampled to capture variability throughout the field, and analyzed for applicable 

soil quality and soil health parameters. With this infield data, there was an opportunity to 

compare observed N indices (i.e., sample results of TN, BNA, and GSN) versus 

provincial scale N predictions at specific sample locations. In addition, novel PTFs could 

be generated from a limited set of predictor variables (e.g., the S3-package) so that 

producers can make use of historical and widely available soil data. Lastly, in order to 
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meet the needs of producers who practice VRA, infield mapping of N indices provided 

the opportunity to apply a rich dataset of infield variation in N mineralization to inform N 

rate decisions. While there is some precedent for infield mapping of N parameters 

(Simard et al., 2001), infield mapping of N mineralization potential and predicted N 

mineralization over a growing season could not be found. Ultimately, DSTs that address 

producer needs, and provide a variety, or hierarchy of options to support N fertilizer 

management is imperative.  

The specific objectives of this study included (i) a comparison of directly 

measured (observed) parameters collected from field specific data versus, predictions 

derived from a provincial scale database; (ii) development and assessment of potential for 

PTFs based on limited predictor variables; (iii) infield mapping of TN, BNA, and GSN 

and assessment of the dominant predictors; and (iv) providing a logical framework for 

incorporating regional and locally derived estimates of GSN to support N fertilizer 

recommendations. 

5.2 METHODOLOGY 

The methodological framework used in this study is shown in Figure 5.1. 

Modelling activities and summary statistics were performed with version 4.2.2 of the R 

statistical software (R Core Team, 2022).  

5.2.1 Study Area 

The study area consisted of six agricultural fields throughout PEI that were also 

part of a separate study entitled “Satellite-Derived Bare Soil Mapping in Prince Edward 

Island – A Potential Tool for Site Specific Field Management” (MacDonald, 2023). Field 

sizes ranged from 14.0 to 39.2 hectares (ha) with an average area of 23.1 ha and a total 
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area of 138.8 ha (Table 5.1). Study area locations were selected based on the following 

criteria: to identify fields where the anticipated soil N mineralization would be below 

average, on the basis of management practices, and by geographic location. With respect 

to management practices, select producers were asked to identify poorly performing 

fields that generally followed a 3-year rotation with potato occurring once in the 3-year 

rotation. F2 provides an exception with prolonged forages and cereals in rotation prior to 

potatoes (Table 5.1). 

 
 
Figure 5.1 Methodological flow chart for field-scale application of pedotransfer functions (PTFs) 
and digital soil maps (DSMs) of total nitrogen (TN), biological nitrogen availability (BNA), and 
growing season nitrogen (GSN) that were derived from the provincial soil quality monitoring 
database (SQMD) benchmark. 
 

The climate of PEI is classified as cool and humid with mean temperatures 

ranging between -7 and 19°C, and precipitation rates ranging between 900 and 1000 mm 
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annually (MacDougall et al., 1988). Agricultural crop rotations consist mainly of potato, 

grain, corn, and legume or forage crops on a 3-year rotation (Nyiraneza et al., 2017; 

Whittaker et al., 2023). With most of the agricultural production concentrated in the 

central region of PEI, four of the fields were located accordingly, while the remaining 

two fields were selected to include the western and eastern areas of the province (Figure 

5.2, Table 5.1). 

Table 5.1 Overview of the study area’s six fields (F1 through F6) based on climatic location in 
Prince Edward Island, total area, and management considerations with rotations in order of 
progression ending with the most recent. 
 

 
 

5.2.2 Soil Data 

Samples were collected in May of 2023 prior to fertilization and planting using a 

soil auger to a maximum depth of 20 cm. The spatial sample design consisted of dividing 

each field into three zones based on soil colour and landscape position (upper, mid, 

lower) and collecting eight discrete georeferenced sample points per zone for a total of 24 

samples per field. Once collected, samples were delivered to the Prince Edward Island 

Analytical Laboratory (PEIAL) for analysis using their standard soil fertility (S3) 

package and the soil health package. 

Field ID: Location Area (ha) Irrigated General three year rotation
F1 West 39.2 Yes cereal - forage - potato
F2 Central 14.8 No cereal - forage - forage
F3 Central 22.5 No corn - potato - corn
F4 Central 14.0 No cereal - forage - potato
F5 Central 17.9 No cereal - forage - potato
F6 East 30.4 No potato - cereal - forage
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Figure 5.2 Map of the study area showing the geographic location of fields F1 through F6. 
 

TN and BNA were used as the principal soil analytical parameters for this study. 

TN was determined by combustion at 900°C using the LECO Method Report: Plants and 

Soils 10cc Loop, 4/16/2019, CN 828 S/N:20014 procedure. The average TN value, based 

on all soil analytical results (n = 144) was 0.12 % N (Table 5.2). BNA analysis are 

performed with a two-week aerobic incubation procedure adapted from Sharifi et al. 

(2007a). Detailed in Marshall et al. (2021), the procedure included premixing the soil 

sample (1:1) with inert Ottawa sand, placing in a Buchner funnel, and leaching available 

mineral N (NH4
+ and NO3

-) with 200 mL of a 0.01 M solution of CaCl2. The soil:sand 

mixture was incubated for 14 days at 25oC and leached again to obtain and estimate of 

potentially mineralizable N (mg N/kg soil) resulting from biological processes (Sharifi et 

al., 2007a). Based on the analytical results from this study (n = 144), the average BNA 

value was 18.12 mg N/kg (Table 5.2).  

F1

F2

F3

F4 F5
F6
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In addition to measured parameters of soil samples collected from the study area, 

georeferenced sample points of TN and BNA analysis collected in the spring of 2021 and 

2022 from the provincial soil quality monitoring database (SQMD) were included (n = 

445), and are summarized in Table 5.2. The SQMD was used in Chapter 4 to develop 

regional DSMs of TN, BNA, and GSN. The SQMD was applied in this study for 

comparison purposes, and to develop novel PTFs for testing on the study areas dataset. 

Table 5.2 Summary of soil analytical data from the study area, considering all fields (AF) 
together and individually (F1 through F6), and the provincial benchmark soil quality monitoring 
database (SQMD), showing sample size (n) for total nitrogen (TN), biological nitrogen 
availability (BNA), and growing season nitrogen (GSN) with summary statistics including the 
minimum (Min) value, 1st (25%) quartile, Mean, 3rd (75%) quartile and the maximum (Max) 
value. 
 

 
 

Area n  = Parameter Units Min 1st Mean 3rd Max
AF 144 TN % 0.05 0.10 0.12 0.14 0.20

BNA mg N/kg 5.1 14.2 18.1 21.1 59.8
GSN Kg N/ha 53.1 89.2 104.1 119.9 217.9

F1 24 TN % 0.07 0.10 0.11 0.11 0.17
BNA mg N/kg 8.8 15.7 18.3 18.8 36.7
GSN Kg N/ha 69.5 90.0 100.6 102.3 171.8

F2 24 TN % 0.14 0.16 0.17 0.18 0.20
BNA mg N/kg 16.6 20.3 22.2 24.0 27.3
GSN Kg N/ha 115.7 124.0 131.2 137.1 146.9

F3 24 TN % 0.05 0.08 0.10 0.11 0.17
BNA mg N/kg 7.3 11.4 13.6 14.8 25.1
GSN Kg N/ha 53.1 74.5 84.9 91.9 139.3

F4 24 TN % 0.05 0.09 0.11 0.12 0.14
BNA mg N/kg 5.8 12.9 15.3 18.5 22.7
GSN Kg N/ha 58.3 81.5 93.2 106.8 122.5

F5 24 TN % 0.08 0.12 0.13 0.14 0.15
BNA mg N/kg 5.1 14.7 15.9 17.4 23.1
GSN Kg N/ha 73.7 94.3 100.0 106.2 126.7

F6 24 TN % 0.08 0.10 0.11 0.11 0.12
BNA mg N/kg 13.1 18.7 23.4 24.9 59.8
GSN Kg N/ha 77.6 100.5 114.7 120.9 217.9

SQMD 445 TN % 0.05 0.11 0.14 0.17 0.32
BNA mg N/kg 0.0 27.7 38.3 45.9 120.2
GSN Kg N/ha 54.2 130.2 167.0 193.7 440.3
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5.2.3 Data Organization 

With the objective of assessing, developing, and implementing practical tools for 

producer use in both SRAs and VRAs scenarios, and to obtain optimum modelling 

results, soil data from the study area was considered in a variety of ways. The “all-field” 

(AF) consideration (Table 5.2), combining the data from all six fields (n = 144), 

approached the study area as a whole, despite differences in field location. With this 

approach, modelling AF data together helped determine if predictions would be more 

accurate based on the larger (study area) dataset, and with similar soil management 

practices, as compared with models trained solely from field-specific (FS) data (n = 24). 

Models trained using AF data, and FS data modelling could then be applied to the six 

producer fields (F1 through F6) to map infield variation for farming practices that use 

VRA. Lastly, to consider farms without application equipment capable of applying 

variable rates, the “mean value per field” (MF) was considered to look at SRA 

approaches. MF modelling was performed by obtaining the mean value for all 24 samples 

(to mimic a composite sampling strategy), which provides one measurement to represent 

the entire field (effectively n = 1). For comparing MF soil results with provincial DSM 

predictions (Section 5.3.3), the arithmetic mean of all pixels within the field boundary 

was calculated. 

5.2.4 Growing Season N Mineralization Estimates 

A two-pool, first-order and second-order, regression equation (Eq. 5.1) was used 

to estimate GSN (Dessureault-Rompre et al., 2015).  

                                             𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑘𝑘𝑆𝑆𝑡𝑡 +  𝑁𝑁𝐿𝐿�1 − 𝑒𝑒(−𝑘𝑘𝐿𝐿𝑡𝑡)�                                        [5.1] 
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Cumulative N mineralization potential (𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚) over the growing season (𝑡𝑡, d-1) , estimated 

at 130 days in the Atlantic maritime ecozone (Gordon and Bootsma, 1993; Pedlar et al., 

2015), was calculated using soil analytical results for TN (%) and BNA (mg N/kg). The 

zero-order regression equation (𝑘𝑘𝑆𝑆𝑡𝑡), representing the stable N pool, was calculated from 

the relationship in Eq. 5.2 described in Dessureault-Rompre et al. (2015): 

                               𝑘𝑘𝑠𝑠 = 0.123 (𝑇𝑇𝑇𝑇) + 0.00312 (𝐵𝐵𝐵𝐵𝐵𝐵) + 0.0685                             [5.2] 

The labile N pool, estimated using the first-order regression equation 𝑁𝑁𝐿𝐿(1 − 𝑒𝑒−𝑘𝑘𝐿𝐿𝑡𝑡), 

included BNA measures for 𝑁𝑁𝐿𝐿 and a value of 0.074 d-1 (𝑘𝑘𝐿𝐿) as suggested by Dessureault-

Rompre et al. (2015) for sandy loam textured soils. The average GSN value, calculated 

from 144 sample results for TN and BNA, was 104.1 Kg N/ha (Table 5.2).  

5.2.5 Pedotransfer Functions 

Novel PTFs, different from those developed in Chapter 3 (Laurence et al., 2023), 

were required to reflect the standard agricultural-soil analytical package (S3-package) 

most commonly requested and historically available to PEI producers. The S3-package 

consisted of three soil-quality parameters conducive for PTF development, including 

OM, pH, and CEC. In addition to these parameters, there was an opportunity to include 

ACI frequency layers that were developed in Chapter 4 to increase predictive capabilities 

where possible. ACI frequency layers (explained in Section 5.2.6.5) were relevant only 

for AF and MF modelling scenarios since infield variation of crops is applicable for 

mixed-cropping (or multi-cropping) practices only, and was not practiced in the study 

area. After variance inflation factor analysis on ACI frequency layers (Section 5.2.7), 

preliminary trials were conducted to select ACI frequency layers with the highest variable 
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importance. As a result, the number of years in potatoes, cereals, and forages were 

identified as the best predictors. A limited process of recursive feature elimination (RFE), 

explained in Section 5.2.9.2, was then conducted. For RFE, the S3-package was 

considered as the minimum suite of variables due to its high variable importance. In 

addition to the S3-package, the frequency of potatoes, cereals, and grasses/forages over a 

10-year period were included at the first iteration of RFE.  Based on variable importance 

the least important ACI frequency layer was removed at each subsequent iteration, until 

the S3-package remained.  

The SQMD (n = 444), having both response and predictor variables, was used 

with a suite of machine learners (Section 5.2.8), plus multiple linear regression (MLR) to 

obtain equation coefficients. For MLR, transformation of the data was not required due to 

the approximately normal distribution observed in probability density plots, and due to 

the comparable performance with machine learners (Section 5.2.8). Predictor variable 

summary statistics for the SQMD and the study area are given in Table 5.3. 

Table 5.3 Summary of the soil quality monitoring database (SQMD) and study area response 
variable parameters with organic matter (OM), pH, cation exchange capacity (CEC), frequency of 
potatoes (ACIp), cereals (ACIc), and grasses (ACIg) in years per decade (yrs/dec), sample size 
(n), and summary statistics including the minimum (Min) value, 1st (25%) quartile, Mean, 3rd 
(75%) quartile, and the maximum (Max) value. 
 

 

Source n  = Parameter Units Min 1st Mean 3rd Max
SQMD 444 OM % 1.2 2.5 2.9 3.3 7.0

pH NA 4.7 5.7 6.0 6.3 7.3
CEC Meq/100 g 3.0 8.0 9.7 11.3 21.0
ACIp yrs/dec 0 0 2 3 7
ACIc yrs/dec 0 1 2 3 6
ACIg yrs/dec 0 2 4 5 10

Study Area 124 OM % 1.1 1.9 2.3 2.7 3.8
pH NA 5.2 5.9 6.2 6.5 7.3
CEC Meq/100 g 5.0 8.0 9.7 11.0 22.0
ACIp yrs/dec 2 3 4 4 7
ACIc yrs/dec 1 2 3 4 5
ACIg yrs/dec 0 1 2 3 6
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5.2.6 Environmental Covariates 

Covariates used for model training, and based on applicable scorpan factors 

(McBratney et al., 2003), were generated on a 5 m spatial resolution for field boundary 

extents of F1 to F6 in the study area. All covariate layers were transformed to the same 

projection (European petroleum survey group spatial reference code 2961). A total of 90 

environmental covariates were considered for the study area (Table 5.4). 

Table 5.4 Environmental covariates considered for modelling study area data points (n = 144) 
and showing retained variables after variance inflation factor (VIF) analysis (threshold = 10). 
 

 

Soil variables VIF < 10 Relief/topographic variables (cont'd) VIF < 10
Soil color normalized / bare soil index  Convergence Index 
Biological Nitrogen Availability  Dam Height
Growing Season Nitrogen  Deviation from Mean Elevation, filter 3 m 2 
Total Nitrogen  Deviation form Mean Elevation, filter 50 m2

Deviation from Mean Elevation, filter 150 m2

Climate variables Deviation from Mean Elevation, filter 500 m2

Annual mean temperature (Celsius) Difference from Mean Elevation, filter 3 m 
Annual precipitation Difference from Mean Elevation, filter 50 m2

Isothermality Difference from Mean Elevation, filter 150. m2

Max temp of warmest month Difference from Mean Elevation, filter 500 m2

Mean diurnal temperature range Eastness (Aspect) 
Mean temp of coldest quarter Elevation Percentile, filter 3 m2

Mean temp of driest quarter Elevation Percentile, filter 50 m2 
Mean temp of warmest quarter Elevation Percentile, filter 150 m2

Mean temp of wettest quarter Elevation Percentile, filter 500 m2

Min temp of coldest month  General Curvature
Precipitation of coldest quarter Maximum difference from mean elevation scaled, filter 50 m2 
Precipitation of driest month Maximum difference from mean elevation scaled, filter 150 m2 
Precipitation of driest quarter Maximum difference from mean elevation scaled, filter 500m2 
Precipitation of warmest quarter Maximum difference from mean elevation, filter 50 m2

Precipitation of wettest month Maximum difference from mean elevation, filter 150 m2

Precipitation of wettest quarter Maximum difference from mean elevation, filter 500 m2

Precipitation seasonality (coefficient of variation) Maximum Elevation Deviation scaled, filter 50 m2 
Temperature annual range Maximum Elevation Deviation scaled, filter 150 m2 
Temperature seasonality (standard deviation x100) Maximum Elevation Deviation scaled, filter 500 m2 

Maximum Elevation Deviation, filter 50 m2

Organisms/vegetation variables Maximum Elevation Deviation, filter 150 m2

Growing season peak NDVI value: 2019  Maximum Elevation Deviation, filter 500 m2

Growing season peak NDVI value: 2020  Mean Flooded Depth
Growing season peak NDVI value: 2021  Mid-Slope Position 
Growing season peak NDVI value: 2022  Multiresolution Index of Ridge Top Flatness 
Maximum NDVI value over a 10 year period (2012 - 2021)  Multiresolution Index of Valley Bottom Flatness 
Mean NDVI value over a 10 year period (2012 - 2021) Multi-Scale Topographic Position Index
Minimum NDVI value over a 10 year period (2012 - 2021) Northness (Aspect) 
Range of NDVI values over a 10 year period (2012 - 2021)  Plan Curvature

Profile Curvature 
Crop and soil management variables Sky View Factor
Berries Slope 
Cereals  Slope Height
Corn Slope Length 
Fallow Standardized Height 
Grassland/Pasture/Forages  Stream Power Index 
N-fixing  Terrain Roughness Index
Oilseeds Topographic Position Index (normalized) 
Potatoes Topographic Wetness Index 
Vegetables (other)  Total Curvature 

Valley Depth 
Relief/topographic variables Visibility
Catchment Area SAGA Wetness Index 
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5.2.6.1 Bare-soil Index 

To incorporate soil-based variables into modelling procedures, average soil colour 

values from a 5 m buffer around each sample location, and normalized on a scale from 0 

(darker coloured) to 1 (lighter coloured), were generated from Plant Labs application 

program interface data at an original source resolution of 3 m. Resampled to 5 m, the soil 

colour normalized (S.SCN) layer was an average over four years (2018 to 2021) to 

account for seasonal anomalies. Soil colour was included due to the high correlation with 

soil organic carbon content (darker coloured) and conversely, depleted or eroded (lighter 

coloured) soils (Bartholomeus et al., 2011; Paul et al., 2020). 

5.2.6.2 Provincial nitrogen prediction variables 

Provincial scale predictive DSMs of TN (S.TNp), BNA (S.BNAp), and GSN 

(S.GSNp), generated at a 30 m spatial resolution were taken from Chapter 4 results. 

Provincial maps were tried for modelling to assess if provincial scale maps of TN, BNA, 

and GSN could be used to improve predictive strength at the field scale. Provincial DSMs 

were resampled to a 5 m spatial resolution using the nearest-neighbour method to avoid 

new values being generated through the interpolation process (Deragon et al., 2024).  

5.2.6.3 Climate variables 

Bioclimatic variables, including trends in temperature and precipitation, were 

only used in modelling of AF data together so that differences in climate across the 

province could be reflected. A total of 19 variables (Table 5.4) from the World-Clim 2.1 

dataset were obtained based on a 30-year (1970-2000) average (Fick and Hijmans, 2017). 

The original resolution of 30 arcseconds (approximately 643 m) was resampled to 5 m 

using the nearest-neighbour approach. Infield variability of climate, as measured by the 
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World Clim dataset, was not appropriate for use infield and was thus not used for FS 

modelling. 

5.2.6.4 Normalized difference vegetation index variables 

As a vegetation greenness indicator, a total of eight normalized difference 

vegetation index (NDVI) variables were calculated. Four NDVI layers were derived from 

median data over a 10-year period (2012-2021) during the months of May to October in 

order to represent a growing season; including, the maximum, mean, minimum, and 

range. These images were taken from moderate resolution imaging spectroradiometer 

(MODIS) and resampled from an original spatial resolution of 250 m to 5 m for each 

individual field boundary (Didan, 2021).  

An additional four NDVI layers were calculated based on the peak NDVI values 

of the previous four growing seasons from Sentinel-2 satellite imagery at an original 

spatial resolution of 10 m (Table 5.4). NDVI covariates for 2019, 2020, 2021 and 2022 

were generated using the average index value from a 5 m buffer around each sampling 

point. Resampling to a 5 m spatial resolution was done using the nearest-neighbour 

resampling method (Deragon et al., 2024).  

5.2.6.5 Annual crop inventory and soil management variables 

Annual crop inventory (ACI) data, from optical and radar-based satellite imagery 

provided by Agriculture and Agri-Food Canada (AAFC), was used to generate 9 crop 

frequency covariates as described in Chapter 4. ACI cropping data, at a 30 m spatial 

resolution and spanning 10 years from 2013 to 2022, was reclassified into nine categories 

based on crop type (e.g., cereals vs. pulses) and tillage intensity (e.g., forages, vs. cereals, 

vs. root crops). A “value raster” layer was created for each crop layer, which assigned a 
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number value to the crop categories. Each value raster layer was applied to each year of 

the ACI cropping data layers to quantify the frequency/number of times a particular 

category was planted over the 10-year period (Table 5.4). Crop frequency layers were 

used in AF modelling only in order to account for crop management practices between 

fields; as such, these layers were not included for FS modelling. 

5.2.6.6 Topographic Variables 

Topographical variables were aggregated to 5 m from a 1 m spatial resolution 

light detection and ranging (LiDAR) digital elevation model (DEM) provided by the PEI 

Department of Environment, Energy and Climate Change. The DEM was smoothed with 

a mean filter window of 5 m x 5 m, and the RSAGA (Brenning et al., 2018) and whitebox 

(Wu, 2021) packages within the R statistical software (R-CoreTeam, 2022) were used to 

generate 50 topographic covariates. Two additional topographic covariates, including 

slope and topographic position index, were generated to reflect landscape features 

surrounding sample locations by averaging values within a 5 m buffer at each point 

(Table 5.4).  

5.2.7 Variance Inflation Factor Analysis 

Prior to modelling, the assembled 90 covariates were assessed for 

multicollinearity using variance inflation factor (VIF) analysis with a stopping threshold 

of 10 (James et al., 2013; Marquaridt, 1970; O’brien, 2007). Using the R statistical 

software (R-CoreTeam, 2022) in addition to the onsoilsurvey package (Saurette, 2021), 

ordinary least squares regression was performed iteratively between all variables without 

reference to TN, BNA, or GSN. After VIF analysis, a total of 40 covariates were retained 

(Table 5.4). 
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5.2.8 Modelling Approaches 

Modelling the relationships between TN, BNA, and GSN and predictor variables 

was done by comparing three machine learners (MLs) commonly used for both PTFs, and 

regional or infield DSM approaches (Deragon et al., 2024). For all modelling procedures, 

the caret package (Kuhn, 2020) within the R statistical software (R Core Team, 2022) 

was used. Cubist (CU), random forest (RF), and support vector machines with radial 

basis function (SVM) were compared for each response variable and the top performing 

model was selected for final predictions.  

The CU model, using a rule and tree-based structure (Kuhn and Johnson, 2013; 

Quinlan, 1992), is applicable for interpreting linear and non-linear relationships as is 

common with N parameters (Clingensmith and Grunwald, 2022; Kim et al., 2013). 

Hyperparameters in the CU model include the number of committees (1, 10, 50, 100) that 

will indicate the number of trees to be aggregated, and the number of neighbours (0, 1, 5, 

9) to identify and assist prediction in relation to “neighbour” tree nodes in the training 

dataset (Deragon et al., 2023; Landré et al., 2018; Mello et al., 2022). Similarly, RF is a 

tree-based model that uses a non-parametric ensemble technique wherein predictions 

from decision trees are compared and tested against other uncorrelated trees to obtain 

optimum (least biased) predictions (Breiman, 2001; Heung et al., 2016). Accuracy of 

predictions is optimized with the mtry hyperparameter and the number of trees which was 

set at 500 (Kuhn, 2020). The hyperparameter mtry was set based on the number of 

predictors in sequence (by one’s) from 1 to n predictors. The SVM learner is a method 

that attempts to optimize boundaries (vectors) between set structures and classes of 

training data to increase prediction capabilities (Qin et al., 2022). Based on Kovačević et 
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al. (2010) and Priori et al. (2014), the hyperparameters of sigma (i.e., 0.0001, 0.001, 0.01, 

0.1, 1) and cost (i.e., 0.1, 1, 10, 100, 1000) were used with the radial basis function in the 

caret package (Kuhn, 2020).  

For PTF applications, and in addition to the MLs described, MLR was included in 

order to obtain model coefficients (i.e., equation based PTFs) that are capable of being 

used by producers without the source dataset. MLR is a common regression technique for 

quantifying the relationships between a response variable and multiple predictor variables 

(Padarian et al., 2018; Tabachnick et al., 2013). Transformation of the data via squaring, 

log-transforming or rooted predictors is often considered in non-normal distributions 

(Schillaci et al., 2021; Wösten et al., 1999); however, the training data had an 

approximately normal distribution and displayed comparable performance with machine 

learners. As such, data transformation was not required for MLR application. 

5.2.9 Modelling N pools and Growing Season Nitrogen 

Summary statistics and modelling activities were conducted using version 4.2.2 of 

the R statistical software (R-CoreTeam, 2022). As in Chapter’s 3 and 4, model evaluation 

included the concordance correlation coefficient (CCC) from Lin (1989) as the primary 

accuracy metric, followed by the coefficient of determination (R2), and the root mean 

square error (RMSE). Modelling of N pools and GSN was performed for both novel PTF 

and DSM development. 

5.2.9.1 Cross-validation procedures 

For sample point-specific (non-spatial) modelling associated with PTF 

development, a repeated 10-fold cross-validation procedure was performed with 50 

repeats (Ballabio et al., 2019; Laurence et al., 2023). For spatial applications, two 
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separate methods of spatial cross-validation were required for understanding if field 

predictions were best conducted based on training from a larger management-specific 

dataset (i.e., AF) or a smaller field specific (i.e., FS) dataset (see Section 5.2.3).  

For model training based on AF data, which implicitly includes a cluster of 24 

samples per field, a leave-one-field-out cross-validation (LFOCV) procedure was 

conducted in similarity to the leave-one-block-out spatial cross-validation in Chapter 4 

(Deragon et al., 2023; Roberts et al., 2017). In this method, and to overcome spatial auto-

correlation (Pohjankukka et al., 2017), six folds (one per field) were created, and at each 

iteration: a field was removed, the model was trained from the 5 remaining fields, and the 

model validated with observations from the one field left out. The model training (with 5 

fields) at each iteration, called the “inner-loop”, was done using repeated 10-fold cross 

validation with 20 repeats (Ballabio et al., 2019). After each iteration of the inner-loop, 

model predictions were validated against the training field (in the “outer loop”) and 

accuracy metrics were recorded. After each outer loop, a new field was put aside as the 

validation fold and the model was trained again with the remaining five fields. The 

LFOCV process, conducted for TN, BNA, and GSN as the response variables, was 

repeated until all six fields had been used for validation. 

For modelling based on FS data, and with a comparatively low number of 

sampling points per field (n = 24), a leave-one-out cross-validation (LOOCV) procedure 

was selected. LOOCV was chosen in preference to the repeated (k-fold) cross-validation 

method due to the low sample size per field (Deragon et al., 2023). In this method, one 

observation per iteration is removed during model training and used for validation. The 

number of iterations is equal to the number of sample points and the procedure is carried 



 

142 
 

out until all sample points have been used for testing/validation. As such, the LOOCV 

method negates the need for multiple repetitions.  

5.2.9.2 Feature elimination 

For PTF and DSM procedures, a process of RFE was used to select the fewest, 

most important predictors for each response variable (TN, BNA, and GSN). The RFE 

process was performed using a model-agnostic approach via the caret package (Kuhn, 

2020) allowing each ML to select important predictors specific to the learner. In general, 

the RFE process is considered a “backwards” elimination process in that all covariates 

are included in the first iteration, and after identification of the least important variable, it 

is removed and modelled again until the fewest variables are achieved with the highest 

CCC (Paul et al., 2022). RFE was performed for mapping using the LFOCV procedure 

for AF modelling of response variables, and with the LOOCV method, using the 

caretFuncs function, for FS modelling of response variables. After selection of the most 

important variables, model interpretation was conducted using the iml package (Molnar et 

al., 2018) within the R statistical software (R-CoreTeam, 2022). Interpretation metrics 

were done with feature importance analysis, considered by individual feature (covariate) 

and based on scorpan groups (i.e., climate, organisms, and relief), and accumulated local 

effects (ALE) plots in order to obtain correlations with respect to the response variable 

(Molnar et al., 2018). 

5.2.9.3 Infield mapping and uncertainty estimates 

For each of the six fields of the study area, and for each response variable (TN, 

BNA, and GSN), a prediction map trained from both AF data and FS data was generated 

for a total of 36 N prediction maps. Uncertainty estimates were also generated for each 
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prediction map using model residuals with the quantreg package (Koenker, 2019) within 

the R statistical software (R-CoreTeam, 2022). Uncertainty was performed using the 

quantile regression (QR) approach (Kasraei et al., 2021; Koenker and Bassett, 1978) 

wherein the lower (5% quantile) and upper (95% quantile) prediction limits were 

calculated and subtracted to provide a 90% prediction interval (PI) for each cell (pixel) of 

the predicted map. As a result, three maps (5% lower limit, 95% upper limit, and 90% PI) 

were produced in connection to each prediction map for a total of 108 uncertainty maps. 

In addition to identifying situations of higher uncertainty for each field, “eye-testing” was 

performed to check conformance of spatial representations to known field conditions.  

5.3 RESULTS AND DISCUSSION 

5.3.1 Soil Quality Monitoring Database Comparison with the Study Area 

Study area fields, identified by respective producers as having poor yield 

performance and a lower expected N mineralization potential, required qualification to 

understand how provincially derived DSTs (at the distal scale) might be implemented at 

the field level (at the proximal scale) to support N fertilizer recommendations (Figure 5.1, 

Step 1).  As a benchmark, soil samples collected from the study area were compared with 

soil results of SQMD parameters (Figure 5.3), including TN (representing the stable N 

pool), BNA (representing the labile N pool), and GSN (the calculated output of Eq. 5.1 

and 5.2 including both TN and BNA values).   

5.3.1.1 Total Nitrogen 

Considering the mean TN of all six fields (AF) considered together (n = 144), TN 

was 18% below the provincial SQMD (n = 445) average (Figure 5.3, Table 5.2). With 

only one field above the provincial average (F2) at 17% difference, the remaining fields 
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were below average to a maximum of 38% (F3) difference, and a range of 55% (Figure 

5.3, Table 5.2).  

 
 
Figure 5.3 Percent differences between mean total nitrogen (TN), biological nitrogen availability 
(BNA) and growing season nitrogen (GSN) soil results from the provincial soil quality 
monitoring database versus the mean soil data results of the six fields in the study area considered 
together (AF), and individually (F1 through F6) with negative results depicting soil observations 
below the provincial average. 
 

Since both the SQMD and study area samples were collected in the spring, 

differences in TN levels cannot be attributed to differences in seasonal variation. The 

lower mean TN observed in the study area clearly showed that fields were below the 

provincial benchmark, as chosen to provide a useful case study for implementing DSTs. 

The difference in TN likely displays the effect of management, as the SQMD includes 

soils collected from a variety of land uses, including exclusively forage based operations 

(PEI Department of Agriculture and Land, 2023). In contrast, the study area fields mainly 

implement potato-based rotations on the 3-yr cycle regulated since 2008 (Nyiraneza et 

al., 2017). F2 was an exception with a longer frequency in forages and cereals prior to 
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potatoes (Table 5.1), and was evidenced by higher relative TN levels (Figure 5.3). This 

observation is consistent with literature results, showing that an increase in forage 

rotations can improve soil organic matter and associated N pools (Whittaker et al., 2023). 

5.3.1.2 Biological Nitrogen Availability 

All soil BNA results collected from the study area were below the mean SQMD 

results (Figure 5.3, Table 5.2). The AF average difference was 72% below the SQMD 

with a range in fields from a minimum of 48% in F6 to a maximum of 95% below the 

SQMD in F3, with a range of 47% (Figure 5.3). As might be expected with this labile 

parameter, the mean AF BNA had a percentage difference that was 54% greater than TN 

showing more variability with BNA relative to TN. The large disparity between BNA 

values in the study area, as compared to the SQMD, was confirmed and also highlights 

the variable nature of this biologically mediated N pool.   

5.3.1.3 Growing Season Nitrogen 

GSN values for the study area, as calculated using Eq. 5.1 and 5.2 from TN and 

BNA soil results, were also below the provincial SQMD average (Figure 5.3, Table 5.2). 

The AF results for GSN had a mean difference that was 46% below the SQMD, a 

minimum of 24% (F2) to a maximum of 65% (F3) below the SQMD, and a range of 41% 

(Figure 5.3). GSN results for F2, with a longer rotation in forages and cereals (Table 5.1), 

was the field with the closest conformance to the SQMD benchmark (Figure 5.3). As has 

been observed in Chapter 3 and Chapter 4, GSN as a calculated value from TN and BNA, 

are more stable than the BNA parameter. Likewise, here, the mean AF results (Figure 

5.3) for GSN (46% below the SQMD) falls between the extremes of TN (18% below the 

SQMD) and BNA (72% below the SQMD).   
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5.3.1.4 Soil data considerations 

The soil data collected from the study area confirmed that the selected fields were 

of lesser soil quality than the SQMD provincial mean. The question of local vs provincial 

level disparity is a necessary consideration if provincial tools (i.e., PTFs or DSM derived 

from provincial scale data) are to be used at the field level. In addition, the variability 

observed between fields is notable (Figure 5.3, Table 5.2) and gives credence to the need 

for DSTs to help account for this variability when making N fertilizer recommendations.   

5.3.2 Pedotransfer Function Development and Comparison with the Study Area 

Following the framework offered in Chapter 3 (Laurence et al., 2023), and in 

alignment with PTF theory from McBratney et al. (2002) recommending greater 

accessibility for end-users, novel PTFs were developed from the provincial SQMD for 

response variables based on PEIAL’s standard analytical suite (the “S3-package”). As 

noted (Section 5.2.5), the purpose of producing novel PTFs was to determine if a reliable 

prediction could be made from a limited, yet widely available suite of soil parameters 

(OM, pH, CEC) and ACI soil management layers (Figure 5.1, Step 2). Once trained from 

the provincial dataset, PTFs were used to make predictions of study area data points (n = 

144) for comparison, and external validation with observed TN, BNA, and GSN soil 

results from the study area (Figure 5.2, Step 3). 

5.3.2.1 Predictor variables 

VIF analysis was conducted on S3-package parameters and applicable ACI soil 

management layers with no parameters being removed due to multi-collinearity. For 

comparison purposes, Figure 5.4 displays correlation plots of response and predictor 

variables for both the SQMD (Figure 5.4A) and the study area (Figure 5.4B). While 
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limited, the available predictor variables in the S3-package and ACI layers showed good 

correlations to response variables. The differences in correlation between the PTF 

training data (SQMD, Figure 5.4A) and the study area data (Figure 5.4B) were generally 

similar and provide confidence in the reliability of PTF use at the field scale.  

 
 
Figure 5.4 Correlations between (A) the soil quality monitoring database and (B) the study area 
results for total nitrogen (TN), biological nitrogen availability (BNA), growing season nitrogen 
(GSN), soil organic matter (SOM), pH, cation exchange capacity (CEC), ACI crop frequency of 
potatoes (ACIp), cereals (ACIc), and forages (ACIg). 
 

With respect to the correlation between pH and TN, in the SQMD (Figure 5.4A) 

there was a 0.06 correlation, while in the study area there is a 0.49 correlation (Figure 

5.4B). The correlation in Chapter 3 between TN and pH based on PEI’s soil health 

database (SHD, n = 2,222) was 0.12 and more akin to the provincial SQMD (Laurence et 

al., 2023). This difference could be attributed to liming applications, or the higher 

proportion of forages and lower proportion of potatoes in rotation at the provincial scale 

compared to the study area (Table 5.3). With a higher frequency of potatoes, the 

reduction in OM, decreased buffering capacity, and decreased rooting biomass, the pH 

(A) (B)
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parameter may exhibit a greater importance in depleted soils. Also, limestone is applied 

less frequently to potato fields in PEI, as producers prefer an acidic pH as a means of 

controlling potato scab (Waterer, 2002). Another notable difference was the change 

between a negative correlation of all response variables and the frequency in cereal crops 

over a 10-year span (ACIc) in Figure 5.4A to a positive correlation in Figure 5.4B. The 

suggestion here is that at the local scale, inclusion of cereal crops, that require fewer 

tillage passes and contribute to increased crop residue as opposed to potatoes, can have a 

positive correlation with N parameters. 

5.3.2.2 Total Nitrogen 

PTFs for TN, trained and internally validated with the SQMD (n = 445), were 

reduced over four iterations using the S3-package and removing the least important crop 

frequency layer at each iteration. The highest concordance (CCC = 0.84) was achieved 

with the CU learner and the S3-package and with all soil management layers (Figure 5.5).  

 
 
Figure 5.5 Chart of total nitrogen (TN) concordance (CCC) results of recursive feature 
elimination using the S3-package (S3), the frequency of cereals (ACIc), grasses (ACIg), and 
potatoes (ACIp) over a 10-yr period and modeled using cubist (CU), random forest (RF), support 
vector machine (SVM), and multiple linear regression (MLR). 
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However, after RFE and the removal of soil management layers, there was no significant 

difference with SVM and the S3-package alone (Figure 5.5, CCC = 0.83). As such, and 

opting for the most parsimonious model, TN with predictor variables OM, pH, CEC (the 

S3-package) and the SVM model (SVM-TN) was used for applying the PTF to the study 

area. 

Table 5.5 External validation results of PTFs derived using the support vector machine (SVM) 
learner and derived from the soil quality monitoring database for total nitrogen (TN), biological 
nitrogen availability (BNA), growing season nitrogen (GSN) and applied to the study area’s six 
fields including all fields considered together (AF, n = 144), fields considered individually (F1 
through to F6, n = 24/field) and the mean value of each field (n = 6) using organic matter (OM), 
pH, cation exchange capacity (CEC) and/or the frequency of grasses (ACIg) and potatoes (ACIp) 
in a 10 year period as conceptual models showing the concordance (CCC), coefficient of 
determination (R2), and the root mean square error (RMSE). 
 

 
 

Parameter Observations Conceptual Model CCC R2 RMSE
TN AF OM + pH + CEC 0.91 0.84 0.013

F1 OM + pH + CEC 0.86 0.84 0.011
F2 OM + pH + CEC 0.63 0.62 0.015
F3 OM + pH + CEC 0.88 0.90 0.012
F4 OM + pH + CEC 0.85 0.80 0.010
F5 OM + pH + CEC 0.76 0.68 0.012
F6 OM + pH + CEC 0.12 0.02 0.015
MF OM + pH + CEC 0.80 0.95 0.006

BNA AF OM + pH + CEC 0.13 0.12 15.9
F1 OM + pH + CEC 0.32 0.82 10.9
F2 OM + pH + CEC 0.01 0.01 24.0
F3 OM + pH + CEC 0.16 0.70 15.3
F4 OM + pH + CEC 0.12 0.76 12.2
F5 OM + pH + CEC 0.02 0.05 18.7
F6 OM + pH + CEC 0.03 0.03 9.5
MF OM + pH + CEC 0.08 0.14 14.4

GSN AF OM + pH + CEC + ACIg + ACIp 0.33 0.39 43.2
F1 OM + pH + CEC 0.50 0.88 28.8
F2 OM + pH + CEC 0.03 0.15 60.0
F3 OM + pH + CEC 0.30 0.81 45.8
F4 OM + pH + CEC 0.28 0.84 32.8
F5 OM + pH + CEC 0.08 0.27 53.3
F6 OM + pH + CEC 0.05 0.03 27.2
MF OM + pH + CEC + ACIg + ACIp 0.25 0.51 37.8
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The SVM-TN PTF was then used to make predictions on the study area’s 

independent data set for external validation. The CCC results, seen in Table 5.5, Figure 

5.6A and 5.6B, show that observed TN with AF samples had a CCC of 0.91 in relation to 

predicted TN in the study area. This result was promising considering the SQMD, from 

which SVM-TN was derived, had 18% higher TN values than study area results (Figure 

5.3). The scatterplot of AF results (Figure 5.6B), shows strong conformance to the 1:1 

line (predicted vs. observed TN) with relatively few outliers. F6 results, which had the 

lowest CCC (0.12), were mainly clustered above the 1:1 line, which means that predicted 

values tended to be less than observed TN results (Figure 5.6A, Table 5.5). 

The comparatively poor results in F6 may be indicative of the role climate plays 

in controlling TN (Chapter 4), as F6 is on the eastern and milder extreme of the province 

(Table 5.1). With respect to how PTFs might be used in practice, the MF result (Figure 

5.6A, Table 5.5) was of comparable strength (CCC = 0.80) to AF and the bulk of 

individual fields; as such, this shows that reliable estimates of TN could be made for 

whole-field N fertilizer applications and are more conducive to SRA scenarios. 

 
 
Figure 5.6 (A) Concordance (CCC) results of predicting total nitrogen (TN) on the study area 
with all field data together (AF), each field specifically (F1 through F6) and the mean of each 
field (MF) and (B) a scatter plot of the predicted vs. observed TN (%) with the 1:1 line for all 
results from a pedotransfer function modelled with support vector machine (SVM) and trained 
with the S3-package (organic matter, pH, and cation exchange capacity) from the soil quality 
monitoring database (SQMD). 
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5.3.2.3 Biological Nitrogen Availability 

Using RFE to select the optimum predictor variables for BNA, and the SQMD (n 

= 445) to train and internally validate models using MLs and MLR, the highest 

concordance (CCC = 0.61) was obtained with all predictors and the SVM model (Figure 

5.7). The optimum PTF, having the fewest predictors without a significant difference, 

was SVM and the S3-package (CCC = 0.57, Figure 5.7) including OM, pH, and CEC as 

the predictor variables (SVM-BNA). Comparing these results to TN (CCC = 0.83), the 

lower CCC in predicting BNA (CCC = 0.57) was somewhat expected given the multiple 

influences, variable, and labile nature of BNA. However, the substantial reduction in 

CCC between predicting TN vs. BNA was not observed in Chapter 3 (Laurence et al., 

2023) and was likely due to the limited suite of predictor variables available (OM, pH, 

CEC), and their respective correlations with BNA (Figure 5.4). For example, the 

correlation between BNA, OM, and pH was higher in the SQMD (0.58 and 0.10, 

respectively) than in the study area (0.40 and 0.04, respectively). 

 
 
Figure 5.7 Chart of biological nitrogen availability (BNA) concordance (CCC) results of 
recursive feature elimination using the S3-package (S3), the frequency of cereals (ACIc), grasses 
(ACIg), and potatoes (ACIp) over a 10-yr period and modeled using cubist (CU), random forest 
(RF), support vector machine (SVM), and multiple linear regression (MLR). 
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The PTF of choice (SVM-BNA), was then used to make predictions of BNA in 

the study area, and compared with observed values. The CCC results for BNA were 

markedly different from TN, and showed a CCC of 0.13 for AF samples (Table 5.5, 

Figure 5.8A and 5.8B). Compared with TN results (CCC = 0.91), the PTF for BNA 

showed lower predictive strength. Observing the scatterplot (Figure 5.8B), PTF 

predictions were typically higher than observations as indicated with most of the 

scatterplot points below the 1:1 line. Recalling that the SQMD had a mean BNA of 38.3 

mg/kg and the study area had a mean BNA of 18.3 mg/kg (Table 5.2), a difference of 

72%, the higher predicted vs. observed results can be understood. In addition, the 

selection of predictor variables, solely including OM, pH, and CEC, shows that these 

predictors do not fully capture the intrinsic controls for BNA. In the study by Laurence et 

al. (2023) in Chapter 3, the optimum predictors for BNA included aggregate stability, 

permanganate oxidizable carbon, soil respiration, and TN; none of which are available in 

the S3-package. Like TN, the PTF for BNA was successful in identifying field 

performance with respect to provincial (SQMD) averages.  

 
 
Figure 5.8 (A) Concordance (CCC) results of predicting biological nitrogen availability (BNA) 
on the study area with all field data together (AF), each field specifically (F1 through F6) and the 
mean of each field (MF) and (B) a scatter plot of the predicted vs. observed TN (%) with the 1:1 
line for all results from a pedotransfer function modelled with support vector machine (SVM) and 
trained with the S3-package (organic matter, pH, and cation exchange capacity) from the soil 
quality monitoring database (SQMD). 
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5.3.2.4 Growing Season Nitrogen 

Using the SQMD (n = 445) for training and validation, and after RFE, the 

optimum predictor variables for GSN were OM, pH, CEC from the S3-package plus crop 

management layers including the number of times in forages (ACIg) and potatoes (ACIp) 

over a 10-year period (Figure 5.9). The best CCC result (0.70) using these predictor 

variables was with the SVM model (SVM-GSNS3+), which was significantly different to 

other models that used the S3-package alone. In comparison to PTFs for TN (SVM-TN, 

CCC = 0.83) and BNA (SVM-BNA, CCC = 0.57), GSN (SVM-GSNS3+, CCC = 0.70) 

had a stronger predictive strength than BNA alone; likely due to the presence of TN in 

the GSN calculation (Eq. 5.1 and 5.2). It was observed in Chapter 3 that approximately 

half of the GSN came from the more stable fraction driven by TN; as such, it was 

understandable that GSN would be better predicted from the S3-package (containing 

OM) than would be the labile components that dominate BNA fractions. As a limitation, 

the inclusion of soil management (ACI crop frequency) layers was only useful for 

training AF or MF functions since cropping differences infield are only applicable in 

mixed-cropping scenarios. As such, for infield usage in the study area, the SVM model 

and the S3-package alone (SVM-GSNS3, CCC = 0.66) was the appropriate PTF (Figure 

5.9). 

Applied to the study area for external validation, the SVM-GSMS3+ and SVM-

GSNS3 PTFs were used to predict GSN and accuracy metrics were recorded (Figure 

5.10A and 5.10B, Table 5.5). Overall, for AF and MF results, the GSN predictions were 

promising with greater CCC results than BNA, but less than TN; a trend that was 

expected based on previous results. As observed in the scatterplot (Figure 5.10B), the 
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model predictions of GSN were higher than observed, which was evidenced by the points 

dominant below the 1:1 line. Like TN and BNA, the GSN results in the SQMD were 

above those in the study area; and in like manner, PTFs yielded predictions from the 

model that were reflective of field conditions (Figure 5.3). With fields considered 

individually (Figure 5.10), the same variability in GSN exists as observed with TN 

(Figure 5.6) and BNA (Figure 5.8) with ranges in CCC from 0.50 in F1 to 0.03 in F2 

(Table 5.5).  

 
 
Figure 5.9 Chart of growing season nitrogen (GSN) concordance (CCC) results of recursive 
feature elimination using the S3-package (S3), the frequency of cereals (ACIc), grasses (ACIg), 
and potatoes (ACIp) over a 10-yr period and modeled using cubist (CU), random forest (RF), 
support vector machine (SVM), and multiple linear regression (MLR). 
 

The accuracy of MF predictions (CCC = 0.25) was comparatively strong and 

suggests that applying “whole-field” PTFs of GSN may yield useful estimates for 

informing SRAs of N fertilizer. In general, estimates of GSN, as well as TN and BNA, 

from provincially derived PTFs were very successful in placing these fields in context 

with reference to provincial (SQMD) benchmark data. This aspect of the PTF is 

important for producers to identify fields that provide lower than average GSN supply in 
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order to adjust N fertilizer rates accordingly. For example, with predictions of GSN 

higher than observed, a reduction in soil N credits might be considered. 

 
 
Figure 5.10 (A) Concordance (CCC) results of predicting growing season nitrogen (GSN) on the 
study area with all field data together (AF), each field specifically (F1 through F6) and the mean 
of each field (MF) and (B) a scatter plot of the predicted vs. observed TN (%) with the 1:1 line 
for all results from a pedotransfer function modelled with support vector machine (SVM) and 
trained with the S3-package (organic matter, pH, and cation exchange capacity), and the 
frequency of grasses (ACIg), and potatoes (ACIp) over a 10-yr period from the soil quality 
monitoring database (SQMD). 

 

5.3.2.5 Pedotransfer function coefficients 

MLR modelling (Figure 5.5, 5.7, and 5.9) showed reliable results for TN (MLR-

TN, CCC = 0.82), BNA (MLR-BNA, CCC = 0.51) and GSN (MLR-GSN, CCC = 0.63) 

using the S3-package. PTF coefficients are provided in Table 5.6. From the producer 

Table 5.6 Pedotransfer function accuracy metrics including Lin’s concordance correlation 
coefficient (CCC), coefficient of determination (R2), and root mean square error (RMSE) and 
coefficients from multiple linear regression results for total nitrogen (TN), biological nitrogen 
availability (BNA), and growing season nitrogen (GSN) using S3-package parameters including 
organic matter (OM), pH, and cation exchange capacity (CEC). 
 

 
 
Note:  1. PTF formula for estimating TN, BNA, or GSN = a + b (OM) + c (pH) + d (CEC) 

2. NCG = variable included in conceptual model, but no coefficient generated 
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Parameter CCC R2 RMSE a b c d
TN 0.82 0.74 0.020 -0.0178 0.0475 0.0038 NCG
BNA 0.51 0.40 12.8 -16.7 13.9 3.4 -0.597
GSN 0.63 0.52 37.4 -33.9 52.9 10.3 -1.57
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perspective, and as evidenced by the variability observed within fields, the optimum 

application of PTF coefficients would be at the whole-field (e.g., MF) scale in preference 

to single point predictions. 

5.3.3 Provincial Digital Soil Map Comparison with the Study Area 

Having first considered the results of direct soil observations, and PTF point 

predictions (Sections 5.3.1 and 5.3.2, respectively), spatial applications of N parameters 

are now considered.  For the purpose of understanding how spatial representations might 

be implemented by producers, provincial scale DSM predictions (i.e., maps completed in 

Chapter 4) of TN, BNA, and GSN were compared with soil observations from the study 

area at each geographic location (Figure 5.1, Step 4). 

5.3.3.1 Total Nitrogen 

Predictions of TN from the provincial DSM (Section 4.4.2.1), developed using the 

SVM model with the SQMD (n = 445), had a CCC of 0.38 for AF, 0.40 for MF, and a 

range from -0.10 (F2 and F6) to 0.06 (F1) when compared with observed values at the 

same geographic location in the study area (Table 5.7).  

While there was relatively no CCC between observed and predicted values for 

fields individually (Figure 5.11), there was improved CCC for broader scale 

considerations such as AF and MF (Table 5.7). This result suggests that regional map 

predictions of TN are better suited for broad scale applications such as whole field 

nutrient management practices (e.g., SRA) but less so for infield approaches (e.g., VRT). 

However, while there was a lack of CCC at the infield scale, there remained a high 

percentage of infield observations within the DSMs uncertainty PI (90% prediction 
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interval), especially AF and MF results, showing good reliability of uncertainty estimates 

(Table 5.7).  

Table 5.7 External validation results from provincial digital soil map predictions of  total 
nitrogen (TN), biological nitrogen availability (BNA), and growing season nitrogen (GSN) 
derived from the soil quality monitoring database (SQMD) and applied to the study area’s six 
fields including all fields considered together (AF, n = 144), fields considered individually (F1 
through to F6, n = 24/field) and the mean value of each field (MF, n = 6) with the concordance 
(CCC), coefficient of determination (R2), and the root mean square error (RMSE). 
 

 
 

The scatter plot (Figure 5.11) shows a higher proportion below the 1:1 line, which 

indicates that predictions of TN are higher than observed values. Fields, such as F2 were 

almost exclusively above the 1:1 line (Figure 5.11), showing higher TN observations vs. 

Parameter Observations CCC R2 RMSE w/in 90% PI
TN AF 0.38 0.34 0.028 90%

F1 0.06 0.05 0.026 92%
F2 -0.10 0.26 0.028 100%
F3 0.00 0.00 0.036 71%
F4 0.01 0.00 0.035 77%
F5 -0.03 0.02 0.030 90%
F6 -0.10 0.04 0.015 95%
MF 0.40 0.52 0.021 100%

BNA AF 0.02 0.01 16.3 49%
F1 -0.03 0.02 15.4 42%
F2 -0.01 0.00 16.7 70%
F3 -0.13 0.38 15.8 29%
F4 0.03 0.08 22.2 15%
F5 -0.03 0.18 15.7 30%
F6 -0.01 0.00 12.7 76%
MF 0.05 0.26 15.0 33%

GSN AF 0.19 0.25 48.6 63%
F1 -0.06 0.03 46.7 54%
F2 -0.01 0.01 56.5 100%
F3 -0.01 0.01 46.6 36%
F4 0.10 0.20 60.2 31%
F5 0.05 0.10 38.6 50%
F6 0.01 0.00 37.4 76%
MF 0.19 0.78 43.5 50%
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predictions. This relationship was in keeping with Figure 5.3 that showed F2 as the only 

field with TN results above the provincial benchmark. Similarly, single point (PTF) 

predictions from F2 and reported in Section 5.3.2.2 (Figure 5.6B), were above the 1:1 

line. As such, the results grant validity to provincial DSTs as a soil quality benchmark to 

successfully qualify how specific fields compare with the provincial average.  

 
 
Figure 5.11 Scatter plot of observed Total Nitrogen (TN) from direct soil data in the study area 
versus predictions of TN from the provincial digital soil map (DSM) derived from the soil quality 
monitoring database (SQMD). 
 

5.3.3.2 Biological Nitrogen Availability 

BNA had limited CCC in the AF, MF, or individual field results (Table 5.2). 

However, AF results showed 49% of the soil observations within the DSMs uncertainty 

PI (Table 5.2). In addition, soil observations ranged from 15% (F4) to 70% (F2) being 

within the PI, which shows reliability with provincial DSM predictions of BNA. As 

observed in Figure 5.12, observations for BNA in the study area were almost exclusively 

below the regional predictions (i.e., below the 1:1 line), showing that the DSM was 
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reflective of the provincial benchmark with all BNA field samples below SQMD 

averages (Figure 5.3). Representing the labile N pool, the data also demonstrates that 

BNA was a more sensitive indicator, and responds more quickly than TN to management 

practices that negatively impact soil health.  

The clustering observed in Figure 5.12 shows a moderate level of precision vs. 

accuracy, which may indicate the negative bias introduced via poor soil quality inherent 

in the study area, then from issues introduced by the DSM itself. However, while the 

provincial scale DSM showed lower accuracy in point-specific predictions, the 

percentage of results within the uncertainty limits showed that 49% (AF) and 33% (MF) 

of the results were within the prediction interval. As such, the provincial DSM appears 

more suited to landscape or whole-field scale estimates of BNA. 

 
 
Figure 5.12 Scatter plot of observed Biological Nitrogen Availability (BNA) from direct soil data 
in the study area versus predictions of BNA from the provincial digital soil map (DSM) derived 
from the soil quality monitoring database (SQMD). 
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5.3.3.3 Growing Season Nitrogen 

Considering AF and MF, soil observations in the study area had a CCC of 0.19 

with provincial DSM predictions of GSN (Table 5.7). Considering individual fields 

however, infield GSN observations showed minimal CCC with DSM predictions as was 

similar with TN and BNA. The scatter plot in Figure 5.13 shows that provincial DSM 

predictions were higher in comparison to actual observed GSN values.  Regarding 

uncertainty of DSM predictions, 63% of AF observations were within the PI, 50% of MF 

observations were within the PI, and a range of 100% to 31% of infield specific 

observations were within the PI (Table 5.7). 

 
 
Figure 5.13 Scatter plot of observed Growing Season Nitrogen (GSN) from direct soil data in the 
study area versus predictions of GSN from the provincial digital soil map (DSM) derived from 
the soil quality monitoring database (SQMD). 
 

From an applied perspective, there was a good level of consistency in predictions, 

both as being reflective of the provincial benchmark (Figure 5.3), and as remaining close 

within the 90% PI. The higher CCC and number of observations within AF and MF 
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uncertainty limits, both of which are broader scale considerations, coupled with the lower 

CCC with infield applications, show that provincial scale DSM predictions of GSN are 

better applied to whole-field or landscape applications than fine-scale or zone-based 

approaches. As with PTF predictions, the provincially derived DSMs of GSN, in addition 

to TN and BNA, could identify variability between fields and place these fields in context 

with respect to the provincial SQMD benchmark. As such, the DSM provides a useful 

tool for producers when site specific data are not available and reasonable estimates of N 

parameters are required. 

5.3.4 Modelling Infield Nitrogen Indices 

Provincial scale predictions of N indices from DSMs were able to qualify how 

specific fields compared to provincial averages; and in addition, provide reasonable 

estimates for landscape or whole-field approaches to N fertilizer management (e.g., 

SRA). To assist producers in VRA scenarios, infield modelling was conducted to identify 

the best infield model and predictors of TN, BNA, and GSN - thereby identifying N 

controls at the proximal scale (Figure 5.1, Step 5). Data from the SQMD was not used for 

infield modelling procedures. 

5.3.4.1 Feature elimination 

Covariate layer values at AF data point locations were extracted and tested for 

multi-collinearity. Of the 90 covariate layers, 41 layers remained below the stopping 

threshold (VIF = 10) with a total reduction of 54% (Table 5.4).  

5.3.4.2 Total Nitrogen 

Representing the stable N pool, and to identify the optimum training approach, 

TN was modelled using all study area (AF) samples, and then with each field individually 
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using field-specific (FS) samples. For AF modelling of TN with LFOCV, the CU model 

obtained a CCC of 0.39 with two covariates required for prediction (Table 5.8). This 

CCC was comparable to the provincial DSM of TN in Chapter 4, which had a CCC of 

0.45 using eight predictors (Chapter 4).  

Training the model with FS data yielded the strongest results with a range from 

0.47 to 0.83 (Figure 5.14, Table 5.8), which was an improvement to using AF data for 

modelling (CCC = 0.39, Figure 5.14), and the provincial DSM of TN (Chapter 4). The 

suggestion from the results was that as the scale narrows to capture field level variability, 

field specific data was preferred for infield mapping and model training. The relevance of 

predictor variables retained for TN are discussed in Section 5.3.6.1. 

 
 
Figure 5.14 Comparison of concordance (CCC) results for infield modelling of total nitrogen 
(TN) using all fields considered together (AF) and individually (F1 to F6). 
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Table 5.8 Accuracy metrics, selected covariates by scorpan factor, and correlations for total nitrogen (TN) of all-field samples together (AF) and 
individually (F1 through F6) and identifying optimum models (CU = cubist, SVM = support vector machines) and validation procedures (LFOCV 
= leave field out cross validation, LOOCV = leave one out cross validation). 
 

AF F1 F2 F3 F4 F5 F6
CU SVM SVM CU SVM SVM SVM

Category Description Abbrev. Correlation LFOCV LOOCV LOOCV LOOCV LOOCV LOOCV LOOCV
Accuracy metrics Lin's concordance correlation coefficient CCC 0.39 0.52 0.83 0.70 0.57 0.67 0.47

Coefficient of determination R2 0.04 0.02 0.01 0.02 0.02 0.01 0.02
Root mean square error RMSE 0.17 0.31 0.76 0.58 0.38 0.49 0.35

Soil variables Soil color normalized / bare soil index S.SCN -0.18 
Biological Nitrogen Availability, provincial DSM prediction S.BNAp 0.16 

Climate variables Min temp of coldest month C.mint.cm 0.10 

Organism variables Growing season peak NDVI value: 2020 O.NDVI20 0.17  
Growing season peak NDVI value: 2021 O.NDVI21 -0.04 
Growing season peak NDVI value: 2022 O.NDVI22 0.44 

Relief variables Deviation from Mean Elevation, filter 3 m 2 R.dme3 -0.14 
Eastness (Aspect) R.E.asp -0.53  
Elevation Percentile, filter 50 m2 R.ep50 -0.20  
Mid-Slope Position R.msp -0.05  
Multiresolution Index of Ridge Top Flatness R.rtf -0.30   
Northness (Aspect) R.N.asp 0.02 
Slope Height R.sh -0.22 
Stream Power Index R.spi 0.08 
Topographic Position Index (normalized) R.TPIn -0.19  
Total Curvature R.tc -0.06 
Valley Depth R.vd 0.07 

Total covariates required 2 2 6 6 1 5 2
n  = 144 24 24 24 13 21 23
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5.3.4.3 Biological Nitrogen Availability 

Representing the labile N pool, BNA modelled with AF samples had a CCC of 

0.41 and required five covariates for prediction using the SGB learner (Figure 5.14, Table 

5.9). This result was also like the provincial scale DSM for BNA in Chapter 4, which 

obtained a CCC of 0.45 using the SGB learner and the SQMD.  

However, the best CCC results were obtained using FS samples to model 

respective fields (F1 to F6). The maximum CCC for BNA ranged from a maximum of 

0.74 (F2) using seven predictors, to a minimum of 0.42 (F5) using one predictor and the 

SVM learner (Table 5.9). The 49% difference between the FS CCC (0.74) and the 

provincial DSM CCC (0.45) for BNA, in addition to the comparatively low performance 

of AF modelling (0.41), confirms what has been observed thus far, that predictions of N 

indices were much improved if obtained from localized data. 

 
5.3.4.4 Growing Season Nitrogen 

GSN, the combined result of TN and BNA (Eq. 5.1 and 5.2), and as modelled 

using AF samples, had a CCC of 0.32 (Figure 5.14, Table 5.10). Again, FS modelling 

outperformed AF modelling and ranged from a maximum CCC of 0.77 (F4) and two 

predictors with CU learner, to a minimum of 0.50 (F5) and two predictors with the SVM 

learner (Table 5.10). 

In comparison with provincial scale DSM performance in Chapter 4, the best 

CCC for GSN was 0.47 and required eight predictors with the SGB learner. With FS 

modelling, there was an 83% difference in CCC (0.77 vs. 0.32, respectively) from the AF 

sampling (Figure 5.14, Table 5.10), and a 48% difference in CCC from the provincial    
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Table 5.9 Accuracy metrics, selected covariates for scorpan factors, and correlations for biological nitrogen availability (BNA) of all-field 
samples together (AF) and individually (F1 through F6) and identifying optimum models (SGB = stochastic gradient boosting, CU = cubist, SVM 
= support vector machines, and RF = random forest) and validation procedures (LFOCV = leave field out cross validation, LOOCV = leave one 
out cross validation). 
 

AF F1 F2 F3 F4 F5 F6
SGB CU SVM RF RF SVM SVM

Category Description Abbrev. Correlation LFOCV LOOCV LOOCV LOOCV LOOCV LOOCV LOOCV
Accuracy metrics Lin's concordance correlation coefficient CCC 0.41 0.69 0.74 0.58 0.60 0.42 0.71

Coefficient of determination R2 0.21 0.54 0.60 0.49 0.44 0.21 0.58
Root mean square error RMSE 5.1 4.0 1.7 3.0 3.2 3.4 3.6

Soil variables Soil color normalized / bare soil index S.SCN -0.34    

Biological Nitrogen Availability, provincial DSM prediction S.BNAp 0.07 

Organism variables Growing season peak NDVI value: 2019 O.NDVI19 0.26  

Growing season peak NDVI value: 2020 O.NDVI20 -0.01 

Growing season peak NDVI value: 2021 O.NDVI21 0.27 

Growing season peak NDVI value: 2022 O.NDVI22 0.13  

Relief variables Convergence Index R.conv -0.04 

Deviation from Mean Elevation, filter 3 m 2 R.dme3 -0.14  

Eastness (Aspect) R.E.asp -0.25 

Mid-Slope Position R.msp 0.12 

Multiresolution Index of Ridge Top Flatness R.rtf -0.14 

Northness (Aspect) R.N.asp 0.14  

Slope Average R.sa -0.22 

Slope Length R.sl 0.10 

Stream Power Index R.spi 0.08 

Topographic Position Index (normalized) R.tpi 0.01  

Valley Depth R.vd -0.07 

Wetness Index (SAGA) R.wi 0.20 

Total covariates required 5 2 7 2 2 1 7
n  = 105 24 24 14 24 20 21
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Table 5.10 Accuracy metrics, selected covariates by scorpan factor, and correlations for growing season nitrogen (GSN) of all-field samples 
together (AF) and individually (F1 through F6) and identifying optimum models (SGB = stochastic gradient boosting, CU = cubist, SVM = 
support vector machines) and validation procedures (LFOCV = leave field out cross validation, LOOCV = leave one out cross validation). 
 

AF F1 F2 F3 F4 F5 F6
SGB SVM CU CU CU SVM SVM

Category Description Abbrev. Correlation LFOCV LOOCV LOOCV LOOCV LOOCV LOOCV LOOCV
Accuracy metrics Lin's concordance correlation coefficient CCC 0.32 0.73 0.70 0.66 0.77 0.50 0.65

Coefficient of determination R2 0.14 0.60 0.54 0.60 0.65 0.28 0.51
Root mean square error RMSE 22.8 15.5 5.9 14.0 11.3 10.4 12.1

Soil variables Soil color normalized / bare soil index S.SCN -0.31     

Growing Season Nitrogen, provincial DSM prediction S.GSNp 0.46  

Organism variables Growing season peak NDVI value: 2019 O.NDVI19 0.32  

Growing season peak NDVI value: 2020 O.NDVI20 0.07  

Growing season peak NDVI value: 2021 O.NDVI21 0.17   

Growing season peak NDVI value: 2022 O.NDVI22 0.28 

Maximum NDVI value over a 10 year period (2012 - 2021) O.NDVI.ma 0.20 

Range of NDVI value over a 10 year period (2012 - 2021) O.NDVI.ra -0.26 

Relief variables Convergence Index R.conv -0.02 

Deviation from Mean Elevation, filter 3 m 2 R.dme3 -0.15 

Eastness (Aspect) R.E.asp -0.41   

Mid-Slope Position R.msp 0.06 

Multiresolution Index of Ridge Top Flatness R.rtf -0.23 

Northness (Aspect) R.N.asp 0.10 

Slope Length R.sl 0.10 

Stream Power Index R.spi 0.08 

Topographic Position Index (normalized) R.tpi -0.07  

Wetness Index (SAGA) R.wi 0.31 

Total covariates required 6 3 3 8 2 2 6
n  = 105 24 24 22 24 21 21
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DSM result (0.77 vs. 0.47, respectively). As such, there appears consistency that while 

modelling GSN with samples from different regions yield reasonable results (e.g., AF 

data or SQMD data), the best option for modelling N indices was with FS sample results. 

5.3.5 Infield Mapping of N parameters 

Based on models built from AF and FS data (Section 5.3.4), and to assist 

producers in VRA scenarios, infield maps of TN, BNA and GSN were produced for each 

field (F1 through F6) in the study area. Also, for comparison purposes, provincial scale 

DSM predictions and uncertainty estimates from Chapter 4 were extracted for the total 

area of each field (Figure 5.1, Step 6).  

5.3.5.1 Total Nitrogen 

Including both prediction and uncertainty maps (12 maps and 36 maps, 

respectively), a total of 48 infield maps of TN were generated for the study area 

consisting of fields F1 through F6. Descriptive statistics of TN predictions, the 90% 

(uncertainty) PI’s for maps modelled from AF and FS data for each field in the study area 

(F1 through F6), and the provincial scale DSM, are given in Table 5.11.  

Comparing the model accuracies for TN in fields F1 through F6, Section 5.3.4.2 

(Figure 5.14, Table 5.8), the highest CCC (0.83) was obtained from F2. The predictive 

map for F2, trained with SVM and six predictors using FS soil data, had a range from 

0.13 to 0.22% TN (Figure 5.15B), a mean of 0.17% and a standard deviation (SD) of 

0.016% TN (Table 5.11). The lower prediction limit (5th percentile) ranged from 0.13 to 

0.22% TN (Figure 5.15A) and the upper prediction limit (95th percentile) ranged from 
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0.13 to 0.23% TN (Figure 5.15C). The overall 90% PI width ranged from 0.003 to 0.01% 

TN (Figure 5.15D) with a mean of 0.01% and a SD of 0.001% (Table 5.11). The highest 

CCC results for remaining fields, F1 and F3 through F6, were obtained using FS soil data 

and are available in the Appendix (Figure A.1 to A.5).  

Table 5.11 Descriptive statistics (minimum (Min), Mean, maximum (Max) and standard 
deviation (SD) values) for total nitrogen (%) soil prediction and 90% prediction interval maps for 
the study area fields (F1 through F6) including extracted results from the provincial scale digital 
soil map (DSM) and novel maps trained with all-field samples (AF) and field-specific (FS) 
samples and including machine learners (SVM = support vector machines; CU = cubist) 
 

 

Field Data Source Learner Spatial Interpretation Min Mean Max SD
F1 Provincial DSM SVM Soil Prediction Map 0.11 0.12 0.14 0.004

90% Prediction Interval Map 0.08 0.09 0.11 0.003
AF Data CU Soil Prediction Map 0.10 0.11 0.14 0.007

90% Prediction Interval Map 0.002 0.04 0.05 0.008
FS Data SVM Soil Prediction Map 0.09 0.11 0.18 0.018

90% Prediction Interval Map 0.04 0.06 0.10 0.010
F2 Provincial DSM SVM Soil Prediction Map 0.14 0.15 0.16 0.005

90% Prediction Interval Map 0.11 0.11 0.12 0.004
AF Data CU Soil Prediction Map 0.12 0.17 0.17 0.013

90% Prediction Interval Map 0.02 0.02 0.05 0.007
FS Data SVM Soil Prediction Map 0.13 0.17 0.22 0.016

90% Prediction Interval Map 0.003 0.01 0.01 0.001
F3 Provincial DSM SVM Soil Prediction Map 0.12 0.13 0.15 0.004

90% Prediction Interval Map 0.09 0.10 0.11 0.003
AF Data CU Soil Prediction Map 0.07 0.11 0.17 0.020

90% Prediction Interval Map 0.05 0.05 0.06 0.003
FS Data CU Soil Prediction Map 0.03 0.11 0.19 0.019

90% Prediction Interval Map 0.02 0.02 0.03 0.001
F4 Provincial DSM SVM Soil Prediction Map 0.13 0.13 0.15 0.007

90% Prediction Interval Map 0.10 0.10 0.12 0.006
AF Data CU Soil Prediction Map 0.07 0.10 0.12 0.012

90% Prediction Interval Map 0.04 0.05 0.09 0.013
FS Data SVM Soil Prediction Map 0.08 0.11 0.14 0.019

90% Prediction Interval Map 0.004 0.04 0.07 0.025
F5 Provincial DSM SVM Soil Prediction Map 0.13 0.14 0.17 0.009

90% Prediction Interval Map 0.10 0.11 0.13 0.007
AF Data CU Soil Prediction Map 0.11 0.13 0.16 0.010

90% Prediction Interval Map 0.004 0.09 0.12 0.024
FS Data SVM Soil Prediction Map 0.03 0.12 0.19 0.018

90% Prediction Interval Map 0.02 0.03 0.05 0.003
F6 Provincial DSM SVM Soil Prediction Map 0.13 0.14 0.17 0.009

90% Prediction Interval Map 0.10 0.11 0.13 0.007
AF Data CU Soil Prediction Map 0.11 0.13 0.16 0.010

90% Prediction Interval Map 0.004 0.09 0.12 0.024
FS Data SVM Soil Prediction Map 0.03 0.12 0.19 0.018

90% Prediction Interval Map 0.02 0.03 0.05 0.003
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Figure 5.15 Soil total nitrogen (TN) maps (%) of best concordance field (F2) in the study area 
using the support vector machine learner and uncertainty maps using quantile regression. (A) 
Lower prediction limit map (5th percentile), (B) prediction map, (C) upper prediction limit (95th 
percentile), and (D) 90% prediction interval map. 

 

While in most cases, provincial DSM estimates were above TN for each field of 

the study area (Figure 5.11), F2 was the only field in which observed TN values were 

higher than the provincial DSM prediction (Figure 5.11, Table 5.11). As such, F2 appears 

to have had the strongest N capability among the fields in the study area, and was more 

similar in quality to the soils observed in the provincial SQMD (Figure 5.3). Except for 

F1, maps trained using FS data had the lowest 90% uncertainty PIs in comparison with 

AF trained maps (Figure 5.16, Table 5.11). Further, uncertainty was the greatest in field 

predictions from the provincial DSM of TN. It appears that for TN, prediction uncertainty 

increases with lower map resolution and with training data used from outside the 

geographic area. 
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Figure 5.16 Comparison of mean total nitrogen (TN) 90% prediction interval uncertainty 
estimates from the provincial digital soil map (DSM), and novel maps modelled from all-fields 
(AF) and field-specific (FS) data for each field (F1 through F6) in the study area. 
 

5.3.5.2 Biological Nitrogen Availability 

Field scale maps of BNA modelled from AF and FS data were produced for fields 

F1 through F6 of the study area. A total of 48 infield maps, including 12 prediction and 

36 uncertainty maps, were generated, and are summarized in Table 5.12. The best CCC 

results for BNA (Figure 5.14 and Table 5.9) were from F2 of the study area (0.74) using 

the SVM learner with FS data and seven predictor variables. The final BNA predictive 

map of F2 (Figure 5.17B) had a range from 15.8 to 38.3 mg N/kg BNA, a mean of 21.6 

mg N/kg and a SD of 2.4 mg N/kg BNA (Table 5.12). The lower prediction limit (5th 

percentile) ranged from 15.6 to 38.1 mg N/kg BNA (Figure 5.17A) and the upper 

prediction limit (95th percentile) ranged from 15.4 to 42.4 mg N/kg BNA (Figure 5.17C). 

The overall 90% PI width ranged from -0.2 to 4.3 mg N/kg (Figure 5.17D) with a mean 

of 1.0 and a SD of 0.5 mg N/kg BNA (Table 5.12). For the remaining fields, F1 and F3 
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through F6, the best CCC results were also obtained using FS data, and are shown in the 

Appendix (Figure A.6 to A.10). 

Table 5.12 Descriptive statistics (minimum (Min), Mean, maximum (Max) and standard 
deviation (SD) values) for biological nitrogen availability (BNA, mg N/kg) soil prediction and 
90% prediction interval maps for the study area fields (F1 through F6) including extracted results 
from the provincial scale digital soil map (DSM) and novel maps trained with all-field samples 
(AF) and field-specific (FS) samples and including machine learners (SGB = stochastic gradient 
boosting; CU = cubist; SVM = support vector machine; RF = random forest). 
 

 
 

Map source Learner Spatial Interpretation Min Mean Max SD
F1 Provincial DSM SGB Soil Prediction Map 17.2 31.2 48.5 6.0

90% Prediction Interval Map 31.1 38.3 47.2 3.1
AF Data SGB Soil Prediction Map 9.3 17.8 29.2 2.7

90% Prediction Interval Map 15.5 15.7 15.9 0.1
FS Data CU Soil Prediction Map 8.3 18.1 38.0 4.3

90% Prediction Interval Map -0.1 1.1 1.8 0.3
F2 Provincial DSM SGB Soil Prediction Map 25.8 36.2 54.7 6.6

90% Prediction Interval Map 35.5 40.8 50.3 3.4
AF Data SGB Soil Prediction Map 13.5 21.5 29.5 1.9

90% Prediction Interval Map 7.2 8.2 9.2 0.2
FS Data SVM Soil Prediction Map 15.8 21.6 38.3 2.4

90% Prediction Interval Map -0.2 1.0 4.3 0.5
F3 Provincial DSM SGB Soil Prediction Map 13.8 26.8 40.7 5.7

90% Prediction Interval Map 29.3 36.0 43.1 2.9
AF Data SGB Soil Prediction Map 8.6 14.4 24.5 2.1

90% Prediction Interval Map 1.6 8.2 19.5 2.4
FS Data RF Soil Prediction Map 10.8 14.0 20.7 2.5

90% Prediction Interval Map 3.8 4.3 5.2 0.4
F4 Provincial DSM SGB Soil Prediction Map 22.4 35.7 50.4 6.2

90% Prediction Interval Map 33.7 40.6 48.1 3.2
AF Data SGB Soil Prediction Map 7.0 15.2 24.2 3.0

90% Prediction Interval Map 9.8 10.7 11.8 0.3
FS Data RF Soil Prediction Map 9.9 15.5 20.8 2.3

90% Prediction Interval Map 6.0 6.6 7.1 0.2
F5 Provincial DSM SGB Soil Prediction Map 19.7 30.7 40.9 4.4

90% Prediction Interval Map 32.4 38.0 43.2 2.3
AF Data SGB Soil Prediction Map 9.7 16.3 24.8 2.2

90% Prediction Interval Map -3.3 3.3 8.4 1.7
FS Data SVM Soil Prediction Map -5.8 15.3 17.2 2.4

90% Prediction Interval Map 2.3 10.9 106.1 10.9
F6 Provincial DSM SGB Soil Prediction Map 18.3 30.3 52.0 5.1

90% Prediction Interval Map 31.7 37.8 49.0 2.6
AF Data SGB Soil Prediction Map 8.9 15.2 22.0 2.3

90% Prediction Interval Map -2.6 15.8 35.5 6.6
FS Data SVM Soil Prediction Map 10.6 21.3 102.8 4.5

90% Prediction Interval Map -29.4 8.8 13.9 2.1
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Figure 5.17 Biological nitrogen availability (BNA) maps (mg N/kg) of the best concordance field 
(F2) in the study area using the support vector machine (SVM) learner and uncertainty maps 
using quantile regression. (A) Lower prediction limit map (5th percentile), (B) prediction map, (C) 
upper prediction limit (95th percentile), and (D) 90% prediction interval map. 
 

Overall, maps trained using FS data had the lowest 90% uncertainty PIs, with the 

exception of F5 (Figure 5.18). The largest difference was observed in F2 between the 

provincial scale DSM mean uncertainty PI (40.8 mg N/kg) and the FS mean uncertainty 

PI (0.10 mg N/kg). Fields trained with AF data also showed a significant drop in 

uncertainty in BNA predictions from the provincial DSM, but were still of higher 

uncertainty than FS data. The improvement of AF predictions over provincial DSM 

predictions (trained from the SQMD) was likely due to the similarly managed fields 

present in the study area.  
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Figure 5.18 Comparison of mean biological nitrogen availability (BNA) 90% prediction interval 
uncertainty estimates from the provincial digital soil map (DSM), and novel maps modelled from 
all-fields (AF) and field-specific (FS) data for each field (F1 through F6) in the study area. 
 

5.3.5.3 Growing Season Nitrogen 

A total of 48 infield maps of GSN (12 prediction, and 36 uncertainty maps), 

modelled using both AF and FS data, were generated for the study area (fields F1 through 

F6). Descriptive statistics, including predictions from the provincial scale DSM of GSN, 

are summarized in Table 5.13.  

The best model results, comparing both AF and FS results, was from field F4 

(CCC = 0.77) using the CU model with FS data and two predictors (Figure 5.14, Table 

5.10). The F4 prediction map of GSN (Figure 5.19B) ranged from 56.6 to 134.0 kg N/ha 

GSN, a mean of 94.2 kg N/ha GSN and a SD of 13.2 kg N/ha GSN (Table 5.13). The 

lower prediction limit (5th percentile) ranged from 37.2 to 38.1 kg N/ha GSN (Figure 

5.19A) and the upper prediction limit (95th percentile) ranged from 74.6 to 142.2 kg N/ha 



 

174 
 

GSN (Figure 5.19C). The overall 90% PI width ranged from 20.9 to 37.4 kg N/ha GSN 

(Figure 5.19D) with a mean of 29.4 and a SD of 2.8 kg N/ha GSN (Table 5.13). The best 

results for the remaining fields (F1 to F3, F5 and F6) were achieved with FS data 

(Appendix, Figures A.11 to A.15). 

Table 5.13 Descriptive statistics (minimum (Min), Mean, maximum (Max) and standard 
deviation (SD) values) for growing season nitrogen (GSN, kg N/ha) soil prediction and 90% 
prediction interval maps for the study area fields (F1 through F6) including extracted results from 
the provincial scale digital soil map (DSM) and novel maps trained with all-field samples (AF) 
and field-specific (FS) samples and including machine learners (SGB = stochastic gradient 
boosting; SVM = support vector machine; CU = cubist). 
 

 

Map source Learner Spatial Interpretation Min Mean Max SD
F1 Provincial DSM SGB Soil Prediction Map 97.5 133.9 189.3 16.9

90% Prediction Interval Map 79.8 107.6 150.0 12.9
AF Data SGB Soil Prediction Map 60.8 101.1 147.9 12.5

90% Prediction Interval Map 0.1 43.7 94.4 13.5
FS Data SVM Soil Prediction Map 13.3 100.1 172.8 21.9

90% Prediction Interval Map -44.7 27.4 87.6 18.1
F2 Provincial DSM SGB Soil Prediction Map 137.1 185.2 221.3 16.5

90% Prediction Interval Map 110.1 146.8 174.5 12.6
AF Data SGB Soil Prediction Map 83.7 127.4 157.2 11.1

90% Prediction Interval Map 14.0 37.4 53.3 5.9
FS Data CU Soil Prediction Map 15.8 21.6 38.3 2.4

90% Prediction Interval Map -0.2 1.0 4.3 0.5
F3 Provincial DSM SGB Soil Prediction Map 104.6 130.1 172.9 12.6

90% Prediction Interval Map 85.2 104.7 137.5 9.6
AF Data SGB Soil Prediction Map 54.0 91.1 138.9 15.1

90% Prediction Interval Map 35.6 50.6 62.2 4.7
FS Data CU Soil Prediction Map 61.0 87.6 138.4 15.6

90% Prediction Interval Map 28.9 30.2 32.6 0.8
F4 Provincial DSM SGB Soil Prediction Map 103.1 144.3 208.7 26.5

90% Prediction Interval Map 84.1 115.6 164.8 20.2
AF Data SGB Soil Prediction Map 59.5 92.2 135.5 11.9

90% Prediction Interval Map 27.4 54.4 74.8 7.4
FS Data CU Soil Prediction Map 56.6 94.2 134.0 13.2

90% Prediction Interval Map 20.9 29.4 37.4 2.8
F5 Provincial DSM SGB Soil Prediction Map 111.3 135.4 168.2 14.1

90% Prediction Interval Map 90.3 108.8 133.9 10.8
AF Data SGB Soil Prediction Map 55.5 95.8 133.4 11.9

90% Prediction Interval Map 0.9 23.9 48.6 7.3
FS Data SVM Soil Prediction Map 42.4 101.0 122.0 7.9

90% Prediction Interval Map 3.1 38.6 51.3 4.8
F6 Provincial DSM SGB Soil Prediction Map 104.7 137.7 198.1 13.4

90% Prediction Interval Map 85.3 110.6 156.7 10.3
AF Data SGB Soil Prediction Map 54.6 87.7 127.0 10.8

90% Prediction Interval Map 43.8 68.0 96.7 7.9
FS Data SVM Soil Prediction Map 73.2 108.6 169.4 11.0

90% Prediction Interval Map -2.1 30.4 49.3 5.9
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Figure 5.19 Growing season nitrogen (GSN) maps (kg N/ha) of the best concordance field (F4) 
in the study area using the cubist (CU) learner and uncertainty maps using quantile regression. 
(A) Lower prediction limit map (5th percentile), (B) prediction map, (C) upper prediction limit 
(95th percentile), and (D) 90% prediction interval map. 
 

In similarity to TN and BNA, the uncertainty of map predictions was reduced in 

most fields by using FS data alone (Figure 5.20). The relatively higher uncertainty of 

provincial scale DSMs applied at the local field level, as seen in Figure 5.20, highlights 

the need for finer resolution maps and the value of FS soil data to improve estimates of 

GSN for use in VRA N fertilizer recommendations. There was a substantial reduction in 

uncertainty using AF data from the study area; however, except for F5, FS data showed 

the best overall reduction in prediction uncertainty (Figure 5.20). The most drastic 

reduction in uncertainty was observed with the 90% uncertainty PI of F2 in the provincial 

DSM at 147 kg N/ha GSN reduced to 1.0 kg N/ha GSN in the FS data map (Figure 5.20).  
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Figure 5.20 Comparison of mean growing season nitrogen (GSN) 90% prediction interval 
uncertainty estimates from the provincial digital soil map (DSM), and novel maps modelled from 
all-fields (AF) and field-specific (FS) data for each field (F1 through F6) in the study area. 
 

5.3.6 Infield Predictors for N Indices 

In order to improve understanding of N dynamics at the field scale, predictors and 

dominant scorpan factors selected from infield mapping of TN, BNA, and GSN were 

considered (Figure 5.1, Step 7). Interpretation of predictors was conducted using variable 

importance, scorpan group importance, and ALE plots (Molnar et al., 2018), based on 

modelling results outlined in Section 5.3.4. 

5.3.6.1 Total Nitrogen 

The stable N pool, which was estimated using TN, was best predicted using FS 

data (Figure 5.14) and relief variables (Figure 5.21, Table 5.8). Apart from F1, relief had 

the highest variable and group importance (Figure 5.21A and 5.21B) in the majority of 

fields in the study area. Specific relief variables showing importance (Figure 5.21A), as 
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well as high correlations (Table 5.8), included the eastness aspect (R.E.asp) with the 

highest correlation (-0.53) followed by multiresolution ridge top flatness (R.rtf, -0.30), 

slope height (R.sh, -0.22), and topographic position index (R.TPIn, -0.19). Interpreted 

from ALE plots (Figure 5.21C), results suggest that there was increased TN with 

increasing shade and water collecting scenarios related to slope and landscape flatness 

(Gallant and Dowling, 2003). 

In comparison to TN predictions at the provincial scale, relief had the least 

importance relative to climate and organism scorpan groups (Chapter 4). With the fact 

that micro-climates were a function of relief (Liu et al., 2023), and given that typical 

climate indices were not applicable at the fine scales, the importance of micro-climate 

(relief) at the infield scale was thus in agreement with provincial findings.  Relief, as a 

scorpan factor, was perhaps best expressed at a field scale (5 m resolution) since DSM 

estimates in Chapter 4 averaged relief over a larger area (30 m resolution) and therefore 

dilute the effects of relief locally. In the literature, terrain has also been found to be an 

important control of spatial distributions of TN, in addition to organisms (vegetative 

cover) via NDVI layers (Wang and Zhao, 2017; Zhou et al., 2020). In this study, 

organisms, primarily plants as represented by crop cover (O.NDVI20 and O.NDVI22) 

were also observed as important (Figure 5.21A and 5.21B) with correlations of 0.17 and 

0.44, respectively (Table 5.8). With positive correlations between TN and vegetative 

growth at the infield (proximal) scale, there was also agreement at the provincial DSM 

(distal scale) and with related studies (Parsaie et al., 2021). Wang et al. (2018) and Zhou 

et al. (2020), who mapped TN at the regional scale, also found NDVI to be of 

importance. Lastly, soil color (S.SCN) was observed as important for predicting infield  
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Figure 5.21 Variable importance, scorpan group importance, and accumulated local effects 
(ALE) plots of total nitrogen (TN = .y) field-specific (FS) modelling for each field (F1 through 
F6) of the study area (plots for F4 not included as only one relief variable was required for 
prediction). Refer to Table 5.8 for covariate descriptions and abbreviations. 

F6

Variable Importance (A) Scorpan  Group Importance (B) Accumulated Local Effects (C)
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F3
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TN in F1 and F3 (Figure 5.21A). With a negative correlation between TN and S.SCN 

(Table 5.8, -0.18), there was a logical connection with N dynamics in that as soil 

brightness increases (e.g., from less OM via erosion), the percentage TN decreases. 

5.3.6.2 Biological Nitrogen Availability 

Infield predictors of BNA, as a measure of the labile N pool, showed high 

importance related to relief and soil scorpan factors. As noted with TN, local relief as a 

driver of micro-climatic conditions also had a strong impact on BNA (Figure 5.22); in 

particular, eastness aspect (R.E.asp) and northness aspect (R.N.asp) with correlations 

of -0.25 and 0.14, respectively (Table 5.9). In addition to aspect, slope factors also 

showed importance in a similar way to TN and the stable N pool. 

Provincial scale DSM predictions of BNA also showed relief as important, but 

with an especially strong relationship to ACI soil management layers from Chapter 4. 

Infield variation of crop frequency was only applicable in fields where mixed-cropping 

was practiced; therefore, ACI soil management infield covariate layers cannot be 

compared with regional predictions. Interestingly however, the inclusion of soil variables 

did show importance at the field scale, specifically with the soil color (S.SCN) layer 

(Figure 5.22, Table 5.9). Soil color, having the highest correlation with BNA (Table 

5.9, -0.34), suggesting that BNA decreases with lighter colored soils, shows the impact of 

reduced OM levels in soil. Soil color, especially in PEI, was related to eroded soil 

conditions wherein lighter colored areas of a field indicate areas of increased erosion 

(Conforti et al., 2013). Erosion, as a negative influence on N indices, was inferred in 

Chapter 4 and in focused studies of the effects that erosion has on OM and nutrient loss 

(Edwards et al., 1998; Nyiraneza et al., 2017). 
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Figure 5.22 Variable importance (A), scorpan group importance (B), and accumulated local 
effects (ALE) plots (C) of biological nitrogen availability (BNA = .y) field-specific (FS) 
modelling for each field (F1 through F6) of the study area (plots for F5 are not included as only 
one soil variable was required for prediction). Refer to Table 5.9 for covariate descriptions and 
abbreviations. 
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5.3.6.3 Growing Season Nitrogen 

GSN, as calculated from TN and BNA (Eq. 5.1 and 5.2), showed the strongest 

correlations with soil scorpan variables overall (Figure 5.23, Table 5.10). Using the 

provincial scale DSM as a covariate layer (S.GSNp), this covariate had the highest 

correlation (0.46) with calculated GSN values in the study area (Table 5.10). Soil color 

(S.SCN), as the other soil variable used for prediction, and with a correlation of -0.31, 

had high importance with infield predictions of GSN (Figure 5.23, Table 5.10). As the 

top predictor in fields F4 and F6 (Figure 5.23), soil color demonstrates the connection 

between OM, or its lack via eroded soils, and GSN dynamics.  

At the provincial scale, GSN was best predicted with relief and organism scorpan 

groups (Chapter 4). This study showed similar findings in the majority of fields with 

relief as the best predictor group in four of the six fields (F2, F3, F5, and F6) and 

organisms showing relative importance in all fields but F2 (Figure 5.23). With respect to 

correlations as a group (Table 5.10), organism variables (i.e., plant cover) showed strong 

correlation with multiple NDVI layers, and relief layers especially eastness aspect (-0.41) 

and wetness index (0.31). In terms of GSN, there was similarity with TN and BNA, and 

the connection between increased GSN with increased shade and reduced slopes.  

5.3.6.4 Infield versus provincial scale  

Overall, relief appears to have the strongest connection and control of N indices, 

both stable and labile, at the field scale. Relief, comprising variations of slope and aspect 

and with its effect on moisture regimes and erosion potential, strongly influences soil 

climate at the proximal scale. At the provincial scale, TN was mainly driven by climate 

and BNA was mainly driven by organisms and relief (Chapter 4). With the connection 
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Figure 5.23 Variable importance (A), scorpan group importance (B), and accumulated local 
effects (ALE) plots (C) of biological nitrogen availability (BNA = .y) infield (IF) modelling for 
each field (F1 through F6) of the study area (plots for F5 are not included as only one soil 
variable was required for prediction). Refer to Table 5.10 for covariate descriptions and 
abbreviations. 
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between relief and local soil climate, there appears to be no contradiction as to important 

influences on N dynamics. Vegetation cover, shown by NDVI importance, and OM 

levels or the degree of erosion shown by the importance of soil colour, speak to the 

influence of soil management at both the provincial and infield scales. 

The variability of relief within a landscape, as well as the connection between 

relief and erosion potential in PEI, identifies the infield variability of N dynamics that 

could not be captured at the provincial (30 m resolution) scale. As such, infield mapping 

of N parameters including TN, BNA, and GSN in order to capture the influence of relief 

and micro-climate variation in VRA scenarios, is strongly encouraged. 

5.3.7 Application of Decision Support Tools 

DSTs, including both PTFs and DSMs, were developed for the intention of 

making information on N pools and GSN mineralization accessible to producers to 

inform N fertilizer management. Based on results, there appears a logical framework, or 

hierarchy of options, available to the producer related to non-spatial and spatial 

applications.  

5.3.7.1 Point prediction applications 

The two N pool predictive function (Chapter 2), which offers estimates of GSN 

by accounting for the stable and labile N pools via surrogate measures of TN and BNA, 

respectively, was the basis of (non-spatial) sample point-predictions (Dessureault-

Rompre et al., 2015), and the optimum device for informing N fertilizer 

recommendations. From a practical perspective, the output units of the GSN calculation, 

being in Kg N/ha, provide easily relatable and transferable results to assist N fertilizer 

recommendations. Also, being based on direct soil observations of TN and BNA, and 
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providing estimates in conformity with plant bioassay approaches in similar soils 

(Nyiraneza et al., 2022), the zero- plus first-order regression equation (Eq. 5.1 and 5.2) 

should be considered as optimal over estimates based on surrogate measures. 

Where direct measures of TN and BNA do not exist, non-spatial (point sample) 

estimates from surrogate measures can be obtained via novel PTFs developed in Chapter 

3 or Section 5.3.2. Based on the variability observed in BNA, the PTFs for GSN should 

be preferred as opposed to using the PTFs for TN, and BNA separately for input into Eq. 

5.1 and 5.2. PTFs for GSN showed a predictive stability, not seen with BNA alone, and 

are thus recommended. As such, the most accessible PTF due to data availability and 

transferability of model coefficients, was the MLR-GSN PTF (CCC = 0.63), which 

included coefficients for OM, pH, and CEC (available in the standard S3-package; 

Section 5.3.2.5, Table 5.6). However, due to the potential of specific fields having a 

poorer soil quality than the provincial scale (SQMD) benchmark, the producer should 

first qualify how their specific fields compare to published provincial averages and adjust 

accordingly. 

5.3.7.2 Spatial applications 

Considering spatial estimates of GSN for inclusion in N fertilizer 

recommendations, FS data achieved the best prediction results for infield mapping 

(Section 5.3.5.3), as compared to provincial DSM predictions (Chapter 4), which were 

optimal at the regional scale (Section 5.3.3). Where possible, georeferenced infield 

sampling points, and analysis of TN and BNA parameters in order to generate spatial 

predictions of GSN is recommended in VRA scenarios. Secondarily, where direct soil 

measures of TN, BNA, or the S3-package are not available, provincial scale DSM 
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predictions are recommended for GSN estimations at a landscape scale (i.e., SRA 

scenarios).  

It was observed in Section 5.3.3 and 5.3.5 that provincial scale DSM predictions 

of GSN (30 m resolution) were not able to capture infield dynamics for VRAs to the 

same degree as infield mapping (5 m resolution) with FS data. From a coarse-

scale/landscape perspective, the provincial DSM provided a reasonable “ball-park” 

estimate of GSN predictions and is ideal for situations where a producer has no point data 

available in order to use novel PTFs. Benchmarking, with reference to the quality of a 

producer’s own field in comparison with published soil averages and/or provincially 

derived DSMs, is also recommended to achieve optimized N fertilizer applications.  

5.4 CONCLUSIONS 

Provincially derived DSTs, including PTFs and DSMs, provided an extremely 

useful and effective benchmark to assess how well local fields compare to provincial 

“average” conditions. DSTs were also able to offer estimates of N parameters in 

situations where a producer has “the wrong data”, or no data at all. DSTs offered 

predictions of TN, BNA, and GSN that reflected the differences in field specific soil 

observations. The results therefore provide confirmation of the sensitivity of N 

parameters, and the value of provincial averages and provincially derived DSTs for 

guiding N management decisions. Fields F1 through F6 were clearly below the provincial 

average, and with the assistance of novel DSTs, there was an important benefit available 

for these producers to be able to confirm this, quantify it, and inform sustainable soil N 

management. Novel PTFs, trained with a reduced suite of predictors more accessible to 

PEI producers (i.e., the S3-package), proved capable of providing reasonable estimates 
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for informing N fertilizer recommendations. Spatial estimates of N parameters based on 

field-specific training data, outperformed results with all field samples considered 

together, and provincial DSM predictions. Infield dynamics were more successfully 

captured based on localized data at a finer resolution, and map uncertainty was also 

greatly reduced in comparison to provincial scales. Relief scorpan factors, followed by 

soil and organism (i.e., plant cover) variables showed the best predictive strength for TN, 

BNA, and GSN. Soil colour, a surrogate for OM loss via erosion processes, and the 

provincial scale DSM for GSN, had the best correlations for predicting GSN infield.  

Based on results of this study, a practical framework for incorporating 

provincially derived DSTs can be inferred; namely, a hierarchal or tiered approach to N 

management. From a producer’s perspective, seeking insight into estimates of GSN for 

informing N fertilizer recommendations, the first tier may consist of the provincial DSM. 

These maps offered coarse-scale estimates and would be recommended where a producer 

has no baseline data available other than the location of their field. For improved 

estimates, the second tier would include the use of PTFs for estimates of GSN. PTFs, 

from surrogate measures, based on direct soil data from a producer’s field, provide a 

more relevant point-estimate then the generic DSM prediction. Lastly, the third tier might 

include direct soil data with measures of TN and BNA are available for use in the GSN 

predictive function (Eq. 5.1 and 5.2). This third tier could be applied for both SRAs, or 

more preferably, for VRAs based on infield mapping with field-specific point data. 

Future studies should consider applying this tiered approach to N management in a 

variety of N trials, and cropping situations for further optimization. Also, in terms of 

applying DSTs, partitioning of provincial datasets, increasing training data, and model 
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training based on soil management practice, might alleviate producer risks associated 

with DSM predictions on poor quality fields. The provincial database, and associated 

DSTs, were useful and effective in documenting that study area fields were below 

standard with respect to soil health, as reflected in poorer soil N supply. As an 

affirmation of the value of the provincial benchmark values, and the sensitivity of N 

parameters to soil management, DSTs provided both an effective means for identifying 

variability between and within producer fields, and an ability to quantify and inform N 

fertilizer recommendations.  
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CHAPTER 6:  CONCLUSIONS 
 

6.1 SYNTHESIS 

The predictive function - parameterized with total nitrogen (TN) for the stable N 

pool, and biological nitrogen availability (BNA) for the labile N pool, to estimate 130-

day growing season nitrogen (GSN) as described in Chapter 2 - was applied to develop 

decision support tools (DSTs) in Prince Edward Island (PEI) to increase the efficiency of 

N use, and reduce N losses to the environment. The main issues facing PEI producers are 

an inadequate N credit system and the absence of an N test to inform N fertilizer 

recommendations. DSTs, in the form of Pedotransfer functions (PTFs) and digital soil 

maps (DSMs) developed using machine learning (ML), provided a means for non-spatial 

and spatial estimates of TN, BNA, and GSN (N response variables) to support N fertilizer 

management decisions.  

A framework and PTFs were developed using ML and multiple-linear regression 

(MLR), to make sample point predictions of N response variables and gain insight on N 

pool dynamics from correlated predictor variables (Chapter 3). In addition to standard 

recursive feature elimination (RFE) practices, a novel feature elimination method was 

used to obtain optimum and cost-efficient predictor variables (CBFE) without a 

significant reduction in predictive accuracy. For the stable and labile N pools, a Lin’s 

concordance correlation coefficient (CCC) of 0.80 and 0.78 was achieved for predictions 

of TN and BNA, respectively. The highest CCC of 0.82, for GSN, was obtained using 

aggregate stability, active carbon, soil respiration, organic matter, and pH as predictor 

variables. The cubist ML outperformed other learners in predicting N response variables, 
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and a maximum cost reduction of 49% was achieved with CBFE. Using this framework, 

novel PTFs generated reliable predictions of N response variables for possible use in N 

fertilizer recommendations. Based on the findings, the soil health suite of parameters 

used for prediction was able to capture intrinsic soil N controls at sample point (non-

spatial) locations. The framework and PTFs developed may best be suited for laboratory 

use to identify “best predictors” for N response variables, and to incorporate into 

producer laboratory reports for supporting N management decisions. 

Spatial estimates at the provincial scale, modelled from the province wide soil 

quality monitoring database (SQMD), were obtained through DSMs of N response 

variables (Chapter 4). Novel soil management layers, using multi-year crop frequency 

covariates, were instrumental in capturing important controls on N dynamics and 

achieved a maximum increase of 27% in CCC. TN, representing the stable N pool, was 

primarily controlled by climate variables (CCC = 0.45); whereas, BNA, representing the 

labile N pool, was best predicted with cropping and topographic variables (CCC = 0.45). 

GSN had the highest CCC (0.47) using the stochastic gradient boosting ML with multi-

year crop frequency covariates as the most important predictors. The ability to achieve a 

provincial scale DSM of N response variables, with prediction uncertainty estimates, 

provides the producer with a strong and useful predictive model of GSN when direct soil 

measures are not available. In addition, the insight gained on potential drivers of the 

stable and labile N pools can help the management of soil N stocks for reducing N losses. 

PTFs and DSMs derived from provincial scale soils data were then applied to six 

low productivity potato fields to qualify how DSTs might be used in practice, and on 

fields of lower soil quality (Chapter 5). Based on the results, predicted soil N 
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mineralization (Nmin) potential from PTFs and DSMs were successful at qualifying field 

performance (i.e., as a benchmark comparison of N response variables) at the field scale. 

To increase the accessibility of N estimates, PTFs were developed from the limited suite 

of parameters commonly used in PEI (the “S3-package”). Using ML, the PTFs had a 

CCC of 0.83 for TN, 0.57 for BNA, and 0.70 for GSN. DSTs were capable of identifying 

fields with lower soil Nmin potential, and gave useful approximations of N response 

variables at the landscape or whole-field scales (e.g., for single rate N applications). To 

assist producers using variable rate application of N fertilizer, infield maps were 

generated using ML and field-specific data. Infield maps showed the greatest prediction 

accuracy as well as the lowest uncertainty of predictions. Using field specific data, infield 

maps of TN and BNA achieved CCC results as high as 0.83 and 0.74, respectively, with 

the support vector machine learner. GSN results, with a CCC of 0.77 with the cubist 

learner, showed that soil-based covariates (such as soil colour and the provincial scale 

map of GSN) were the most important and highly correlated predictors. From the testing 

of DSTs at the field scale (Chapter 5), it was concluded that a tiered implementation 

approach could maximize the strengths for each DST in order to assist with N fertilizer 

recommendations. 

6.2 APPLICATIONS 

Sections 5.3.7 and 5.4 suggested a tiered hierarchy for implementing predictive 

DSTs. The specific objectives, outlined in Chapter 1 and Chapter 2 (Section 2.6), 

addressed the impediments that producers face when making N fertilizer 

recommendations; namely, no direct soil data, insufficient data, and the need for an 

updated system of incorporation. The following provides an example application, which 
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was informed from cumulative thesis results (Chapters 2 through 5). The study area from 

Chapter 5, including data from six producer fields (Fields F1 through F6), were used for 

demonstration.  

6.2.1 Tier 1 

This initial step, of a proposed tiered approach to N management, was based on 

the provincial scale DSM and is considered as an entry level DST for producers who do 

not have existing soil measurements. Table 6.1, Line 1 is populated with the average 

predictions of GSN from within the field boundary at the geographic location for fields 

F1 through F6. The DSM (Chapter 5) best performed at the whole-field/landscape scale 

and provided acceptable uncertainty estimations with a mean 90% prediction interval (PI) 

of 126 kg N/ha, or approximately +/- 63 kg N/ha of the predicted value. The degree of 

uncertainty in the GSN estimate is a function of limited field measurements, and 

demonstrate a need for further direct soil measures (training data) of TN and BNA as it 

becomes available. To translate the predicted GSN value from the provincial DSM into 

an N credit (Chapter 3 to 5), Line 2 (Table 6.1) applies a 60% “Tier 1 risk factor” to 

reflect the lower limit of the uncertainty PI (Section 4.4.2.3), and obtain a conservative 

estimation in response to this uncertainty. It is anticipated that the risk factor would 

become smaller (move closer to 1.0) over time and with increased training data. The 

active growing season adjustment (Line 3) acknowledges that plant uptake does not occur 

for the complete 130-day estimate of the growing season, but for approximately 70% of 

the 130-day growing season between May to August for potatoes (Section 2.2.4). 

Preferably, the predictive function could be adjusted to calculate either a 90-day uptake, 

or an acceptable duration for the period leading up to the most rapid plant uptake. Lastly, 
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a factor that considers the nitrogen use efficiency of GSN, estimated at approximately 

50%, is based on the and is in conformity to other N fertilizer sources (Chapter 2 and 

Section 3.2). This factor could also be adjusted to reflect more efficient on-farm N 

management practices. 

Table 6.1 Summary of Tier 1 to Tier 3 nitrogen (N)-credit options for fields in the study area (F1 
through F6) based on predictions of the provincial digital soil map (DSM), the pedotransfer 
functions (PTFs) from the S3 soil analytical package (including soil organic matter, OM; pH; and 
cation exchange capacity, CEC), and soil health (SH) analytical package (including total nitrogen, 
TN; and biological nitrogen availability, BNA). 
 

 
 

After applying the correction factors, the adjusted Tier 1 N credit (Table 6.1, Line 

5) would be used by producers for fields F1 through F6. This N credit, in kg N/ha, could 

be directly applied to offset alternative N fertilizer sources for single-rate application 

(SRA) scenarios. Due to the difference in the factors that were dominant in predicting 

GSN at regional vs. infield scales, the provincial DSM is not recommended as a sole 

data-source for infield variable rate applications; however, the DSM is ideal for baseline 

estimates or as a covariate layer, for creating N management zones. 

Line # Options Source Description F1 F2 F3 F4 F5 F6
1 Tier 1 DSM provincial scale Tier 1 GSN, field average - kg N/ha 134 185 130 144 135 138
2 Tier 1 risk factor 0.6 0.6 0.6 0.6 0.6 0.6
3 Active growing season adjustment 0.7 0.7 0.7 0.7 0.7 0.7
4 Nitrogen use efficiency 0.5 0.5 0.5 0.5 0.5 0.5
5 Adjusted Tier 1: N-Credit (kg N/ha) 28 39 27 30 28 29

6 Tier 2 PTF from S3-package  Average OM (%) 2.1 3.2 2.1 2.1 2.5 2.0
7 Average pH 6.5 6.7 6.1 5.9 6.4 5.6
8  Average CEC 8.0 9.2 10.1 10.4 10.9 9.8
9 Tier 2 GSN - kg N/ha 132 190 124 122 147 114
10 Tier 2 risk factor 0.7 0.7 0.7 0.7 0.7 0.7
11 Active growing season adjustment 0.7 0.7 0.7 0.7 0.7 0.7
12 Nitrogen use efficiency 0.5 0.5 0.5 0.5 0.5 0.5
13 Adjusted Tier 2: N-Credit (kg N/ha) 32 47 30 30 36 28

14 Tier 3 SH-package Average TN (%) 0.11 0.17 0.10 0.11 0.13 0.11
15 Average BNA (mg N/ha) 18.3 22.2 13.6 15.3 15.9 23.1
16 Tier 3 GSN - kg N/ha 102 131 86 94 101 115
17 Tier 3 risk factor 0.8 0.8 0.8 0.8 0.8 0.8
18 Active growing season adjustment 0.7 0.7 0.7 0.7 0.7 0.7
19 Nitrogen use efficiency 0.5 0.5 0.5 0.5 0.5 0.5
20 Adjusted Tier 3 N-Credit (kg N/ha) 29 46 30 33 36 40
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6.2.2 Tier 2 

The DST for the second-tier could account for situations where producers have 

direct soil data from their fields, but where analysis does not include TN or BNA. Based 

on the framework established in Chapter 3, PTFs were created in Chapter 5 from the 

standard soil testing suite offered at the PEI Analytical Laboratory, and called the S3-

package. Organic matter (OM), pH, and cation-exchange capacity (CEC) are all included 

in the S3-package and were used as predictor variables. Lines 6-8 (Table 6.1) allow 

producers to directly input soil results for OM, pH, and CEC, respectively from each 

field. It is notable, that with the N credit system currently in practice (Chapter 1 and 2), 

zero credits would have been applied to these fields since all OM results (Table 6.1, Line 

6) were below the 3.5% requirement. The raw output (Line 9) is the predicted GSN as 

derived from multiple-linear regression (MLR-GSN) PTF (CCC = 0.63) and trained with 

the provincial SQMD (Chapter 5.3.2.5, Table 5.6). The 70% “Tier 2 risk factor” (Table 

6.1, Line 10) allows for a higher N credit compared to Tier 1 (Line 2). This is due to the 

increased accuracy (CCC) associated with PTF predictions (being from direct soil 

measures) versus remotely sensed DSM predictions (Section 5.3.2). The active growing 

season adjustment (Line 11) and nitrogen use efficiency allowance (Line 12) were 

applied in similarity to Tier 1. 

The adjusted Tier 2 N credit (Table 6.1, Line 13) allows for potentially higher N 

credits due to the increased confidence of using field specific soils data. The Tier 2 (S3-

package) PTF could be used in a variety of applications including discrete soil results, 

composite soil results, or management-zone based soil results. 
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6.2.3 Tier 3 

The third tier is proposed for use when a producer has direct soil measures of TN 

and BNA (Table 6.1, Lines 14 and 15, respectively) for input into the prediction function 

outlined in Chapter 3.3.3 (Eq. 3.1 and 3.2). Based on direct soil measures, the prediction 

function’s output (Line 16) will offer estimates with higher confidence as compared to 

PTFs or DSMs. As such, the Tier 3 risk factor (Line 17), containing the lowest risk of the 

previous tiers, retains the highest percentage of the raw N credit prediction. The Tier 3 

risk factor was estimated based on the accuracy associated with the prediction function 

itself (Section 2.2). After applying the active growing season adjustment (Line 18) and 

nitrogen use efficiency allowance (Line 19), as with Tiers 1 and 2, the adjusted Tier 3 N 

credit (Line 20) can be applied directly for fields F1 through F6 to inform SRA of N 

fertilizer recommendations. 

6.2.4 Tier 4 

For producers who have the capability for variable-rate N applications (i.e., 

proper equipment/implements), a fourth tier is proposed. In the previous tiers, the 

adjusted N credit outputs (Table 6.1, Lines 5, 13, and 20), are most conducive for SRA 

scenarios; however, where georeferenced field-specific (discrete) samples of TN and 

BNA plus applicable covariates (Section 5.3.4.4) are available, infield mapping is a 

viable option. Infield mapping, which accounts for infield variation in soil Nmin potential, 

showed the highest accuracy and lowest uncertainty of predictions. Tier 4 mapping would 

therefore be considered the best option for minimizing RSN losses (Section 5.3.5.3). 
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6.3 LIMITATIONS AND RECOMMENDATIONS 

The methods and DSTs developed in this thesis focused specifically on the soil-

based N credit portion of PEIs N credit system (Chapter 2). As such, contributions from 

manure, compost, or previous legume crops, and their impact on the stable and labile N 

pools, were outside of this scope but are recommended for further study. Also, the effect 

of crop rotation or soil management, demonstrated by multi-year crop management 

covariates in Chapter 4, showed substantial importance in predicting N response variables 

and warrants further investigation. For example, reclassification of crop frequency layers 

could enhance predictive accuracies and provide further insight into N pool dynamics. 

Another aspect for consideration relates to increasing sample density of the SQMD, or 

creating management-specific DSMs. It is conjectured that with increased training data, 

or focused data from conventional potato operations, there may be a reduction in 

uncertainty estimates. However, perhaps the most critical aspect stemming from this 

research, is its implementation. In retrospect, with the disparity that exists between the 

current N credit system now in use, and the adjusted (tiered) N credits proposed, there is 

an opportunity to study how producers might receive this credit score, how would they 

respond to it, their willingness in adopting it, and what the outcome of that adoption 

might be. Research from the producer’s perspective into understanding their risks and 

hesitancy, and further consideration of approaches to make producers more confident 

with the proposed system, would greatly compliment the thesis findings. It is promising 

that the PEI Federation of Agriculture has begun including this framework into their N 

balance decision support system as part of the delivery of the On Farm Climate Action 

Fund programming.                                                                                                                                  
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APPENDIX 

 
 
Figure A.1 Soil total nitrogen (TN) maps (%) of Field 1 (F1) in the study area modeled with 
field-specific (FS) data using the support vector machine learner, and uncertainty maps using 
quantile regression. (A) Lower prediction limit map (5th percentile), (B) prediction map, (C) 
upper prediction limit (95th percentile), and (D) 90% prediction interval map. 
 
 

 
 
Figure A.2 Soil total nitrogen (TN) maps (%) of Field 3 (F3) in the study area modeled with 
field-specific (FS) data using the cubist learner, and uncertainty maps using quantile regression. 
(A) Lower prediction limit map (5th percentile), (B) prediction map, (C) upper prediction limit 
(95th percentile), and (D) 90% prediction interval map. 
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Figure A.3 Soil total nitrogen (TN) maps (%) of Field 4 (F4) in the study area modeled with 
field-specific (FS) data using the support vector machine learner, and uncertainty maps using 
quantile regression. (A) Lower prediction limit map (5th percentile), (B) prediction map, (C) 
upper prediction limitpper prediction limit (95th percentile), and (D) 90% prediction interval map. 
 
 

 
 
Figure A.4 Soil total nitrogen (TN) maps (%) of Field 5 (F5) in the study area modeled with 
field-specific (FS) data using the support vector machine learner, and uncertainty maps using 
quantile regression. (A) Lower prediction limit map (5th percentile), (B) prediction map, (C) 
upper prediction limit (95th percentile), and (D) 90% prediction interval map. 
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Figure A.5 Soil total nitrogen (TN) maps (%) of Field 6 (F6) in the study area modeled with 
field-specific (FS) data using the support vector machine learner, and uncertainty maps using 
quantile regression. (A) Lower prediction limit map (5th percentile), (B) prediction map, (C) 
upper prediction limit (95th percentile), and (D) 90% prediction interval map. 
 
 

 
 
Figure A.6 Biological nitrogen availability (BNA) maps (mg N/kg) of Field 1 (F1) in the study 
area modeled with field-specific (FS) data using the cubist learner, and uncertainty maps using 
quantile regression. (A) Lower prediction limit map (5th percentile), (B) prediction map, (C) 
upper prediction limit (95th percentile), and (D) 90% prediction interval map. 
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Figure A.7 Biological nitrogen availability (BNA) maps (mg N/kg) of Field 3 (F3) in the study 
area modeled with field-specific (FS) data using the random forest learner, and uncertainty maps 
using quantile regression. (A) Lower prediction limit map (5th percentile), (B) prediction map, (C) 
upper prediction limit (95th percentile), and (D) 90% prediction interval map. 
 
 

 
 
Figure A.8 Biological nitrogen availability (BNA) maps (mg N/kg) of Field 4 (F4) in the study 
area modeled with field-specific (FS) data using the random forest learner, and uncertainty maps 
using quantile regression. (A) Lower prediction limit map (5th percentile), (B) prediction map, (C) 
upper prediction limit (95th percentile), and (D) 90% prediction interval map. 
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Figure A.9 Biological nitrogen availability (BNA) maps (mg N/kg) of Field 5 (F5) in the study 
area modeled with field-specific (FS) data using the support vector machine learner, and 
uncertainty maps using quantile regression. (A) Lower prediction limit map (5th percentile), (B) 
prediction map, (C) upper prediction limit (95th percentile), and (D) 90% prediction interval map. 
 
 

 
 
Figure A.10 Biological nitrogen availability (BNA) maps (mg N/kg) of Field 6 (F6) in the study 
area modeled with field-specific (FS) data using the support vector machine learner, and 
uncertainty maps using quantile regression. (A) Lower prediction limit map (5th percentile), (B) 
prediction map, (C) upper prediction limit (95th percentile), and (D) 90% prediction interval map. 

BNA (mg N/kg)

BNA (mg N/kg)



 

218 
 

 
 
Figure A.11 Growing season nitrogen (GSN) maps (kg N/ha) of Field 1 (F1) in the study area 
modeled with field-specific (FS) data using the support vector machine learner, and uncertainty 
maps using quantile regression. (A) Lower prediction limit map (5th percentile), (B) prediction 
map, (C) upper prediction limit (95th percentile), and (D) 90% prediction interval map. 
 
 

 
 
Figure A.12 Growing season nitrogen (GSN) maps (kg N/ha) of Field 2 (F2) in the study area 
modeled with field-specific (FS) data using the cubist learner, and uncertainty maps using 
quantile regression. (A) Lower prediction limit map (5th percentile), (B) prediction map, (C) 
upper prediction limit (95th percentile), and (D) 90% prediction interval map. 
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Figure A.13 Growing season nitrogen (GSN) maps (kg N/ha) of Field 3 (F3) in the study area 
modeled with field-specific (FS) data using the cubist learner, and uncertainty maps using 
quantile regression. (A) Lower prediction limit map (5th percentile), (B) prediction map, (C) 
upper prediction limit (95th percentile), and (D) 90% prediction interval map. 
 
 
 

 
 
Figure A.14 Growing season nitrogen (GSN) maps (kg N/ha) of Field 5 (F5) in the study area 
modeled with field-specific (FS) data using the support vector machine learner, and uncertainty 
maps using quantile regression. (A) Lower prediction limit map (5th percentile), (B) prediction 
map, (C) upper prediction limit (95th percentile), and (D) 90% prediction interval map. 
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Figure A.15 Growing season nitrogen (GSN) maps (kg N/ha) of Field 6 (F6) in the study area 
modeled with field-specific (FS) data using the support vector machine learner, and uncertainty 
maps using quantile regression. (A) Lower prediction limit map (5th percentile), (B) prediction 
map, (C) upper prediction limit (95th percentile), and (D) 90% prediction interval map. 
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