
MODELING HUMAN MOTION-CAPTURE DATA FOR
CREATIVITY

by

Emily Napier

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2023

© Copyright by Emily Napier, 2023

Dedicated to Hayley Bone.

ii

Table of Contents

Abstract . v

Acknowledgements . vi

Chapter 1 Introduction . 1

1.1 Thesis outline . 2

Chapter 2 Background . 4

2.1 Datasets . 4

2.2 Pose representations . 4

2.3 Related Work . 5

Chapter 3 Spectral analysis for dance movement query and inter-
polation . 7

3.1 Preface . 7

3.2 Introduction . 7

3.3 Background . 8
3.3.1 Related work . 9

3.4 Motion querying . 11

3.5 Motion interpolation . 13

3.6 Results . 14

3.7 Expert user feedback . 18
3.7.1 Motion sequence query results 19
3.7.2 Motion interpolation results 19
3.7.3 Low-pass filtered motion . 19

3.8 Discussion . 20

3.9 Summary . 21

Chapter 4 Sequence modeling of motion-captured data 22

4.1 Preface . 22

iii

4.2 Introduction . 22

4.3 Background . 24
4.3.1 Pose tokenization . 24
4.3.2 Natural Language Processing 24
4.3.3 Sequence modeling . 26

4.4 Pose tokenization . 29
4.4.1 Methods . 30
4.4.2 Results . 32

4.5 Language modeling . 36
4.5.1 Datasets . 36
4.5.2 Methods . 37
4.5.3 Results and discussion . 38

4.6 Conditional generation . 43

4.7 Motion classification . 46

4.8 Summary . 47

Chapter 5 Conclusion . 49

5.1 Future work . 50

Bibliography . 52

Appendix A Appendix . 59

A.1 PCA . 59
A.1.1 Spectral embedding based on PCA 59

A.2 ICA . 60

A.3 SMPL pose representations . 60

A.4 Data simplification: Joint removal . 61

A.5 Bilateral data augmentation . 62

iv

Abstract

Human motion-capture data can be represented, modeled, and generated through

computational techniques. This thesis explores representations and strategies for

querying, interpolating, and sequence modeling of motion-capture data. We employ

spectral analysis of motion capture data to facilitate the query and comparison of

movements, and identify target features for interpolation. We train a decoder-only

transformer model on text-encoded motion-capture data, which we fine-tune for dance

generation and movement classification. Our core contributions are defining interpo-

lation and language model training procedures for generating motion-captured dance.

v

Acknowledgements

First and foremost I would like to thank Sageev Oore and Gavia Gray for their

support during my master’s degree. Dr. Gray provided me with attentive guidance

and mentorship while taking me under her wing with patience and boundless support.

Dr. Oore’s compassion and thoughtful advice has been invaluable to me in broadening

my horizons and expanding the scope of my research perspectives. I could not have

completed this work without either of you.

I would also like to thank the members of Dr. Oore’s research group for their

insightful discussions. Scott Lowe went above and beyond his role as a mentor,

and Hana Torabi and Ruis MacDonald were not only collaborators but also, more

importantly, friends.

Next, I would like to thank David Rokeby, Douglas Eacho, and Xavier Snelgrove

for their profound insights on movement and motion-capture. Thank you to Michael

Thaut and Tristan Loria for sharing their knowledge of movement analysis and con-

tributing the Parkinson’s gait dataset. Thank you Vlado Keselj for guiding my first

project during the program, which led to my first paper.

Finally, thank you Hayley Bone, Diana Rutherford from The Dance Institute, Sara

Corkum and Ranna Mirsaeidghazi from Motion Dance Centre, and Solène Bernier for

contributing your knowledge and experience as movement educators and performers.

Resources used in preparing this research were provided, in part, by the Province

of Ontario, the Government of Canada through CIFAR, and companies sponsoring

the Vector Institute. Funding for this research was provided by CIFAR, NSERC, and

Research Nova Scotia.

vi

Chapter 1

Introduction

Advancements in machine learning have presented new opportunities for e↵ective

modeling and analysis of human movement. In this thesis we consider human move-

ment through the lens of motion-capture data, and test our models in creative applica-

tions. We explore ways of representing motion-capture data through spectral analysis,

and implement state of the art machine learning techniques to model motion-capture

sequences. We focus on generative modeling for dance data through manipulation

of spectral features and generative language modeling, and focus on analysis of data

through classification of movement. Identifying patterns across individuals that are

invariant to individual skeletal structure is an important constraint for both practical

and creative settings, making it a candidate for artificial intelligence based solutions.

The field of modeling human movement as motion-capture data, skeleton key-

points, or body meshes has been investigated by computer vision and sequence model-

ing researchers for applications including dance, sports, computer graphics and health

and safety. The target audience of this work is the machine learning for performing

arts and machine learning community. One of the common goals for this community

is capturing real-time human movement for interactive systems and movement analy-

sis. We aim to identify meaningful representations and models of movement through

computational techniques which capture bio-mechanical properties as well as artistic

or practical intent, and test these representations on downstream tasks. In dance sys-

tems this includes prompting and supporting creative practices where artists perform

artificially generated or conceptualized movement, use artificially generated move-

ment in the choreographic process, and conduct virtual rehearsals. These goals di↵er

from the computer graphics community who create visually convincing or appealing

movement digitally.

In this work we employ representations of motion-capture data that are suitable

for artificial-intelligence-based solutions. We recognize similarities in the temporal

1

2

relationship of text and motion-capture data, and implement techniques to compress

and discretize motion-capture data as a text-based encoding that is suitable for lan-

guage model architectures. In doing so we make adjustments and accommodate the

higher dimensionality and continuity of the data. Similar to the natural language

processing field, we aim to learn embeddings of motion-capture data that can be

used for a range of downstream tasks. We explore techniques for representing human

movement in a way that it can be compared, manipulated, predicted, generated and

classified.

1.1 Thesis outline

This thesis is based on two papers that I co-authored, which explore two questions

about human motion-capture processing:

1. The first paper, Spectral Analysis for Dance Movement Query and Interpola-

tion [50], considers how to transform motion-capture data for query and interpolation.

2. The second paper, Sequence Modeling of Motion-Captured Dance [49], consid-

ers how to generate and classify motion-capture data.

The first paper, discussed in Chapter 3, compares transformations as target met-

rics for query and interpolation. We evaluate our results through quantitative and

qualitative analysis, with input from experts in the dance field. Our dance movement

query identifies movements with similar spectra, and our interpolation technique in-

spired by neural-style transfer demonstrates generation of novel and danceable out-

puts. Quantitative results are analyzed by the k-nearest neighbors (kNN) algorithm,

and qualitative results are discussed in terms of the potential utility of these algo-

rithms in educational and professional dance settings.

The second paper, discussed in Chapter 4, trains language models (LMs) on

motion-capture data. We evaluate spectral and machine learning transformations

within a lossy-encoding procedure for converting motion-capture data to text, and

train models on this text-based corpus. We attempt to compress the data in both

the joint rotation and time dimensions. Our training procedure involves pre-training

models on the largest publicly available motion-capture dataset and fine-tuning them

on task specific datasets. We add classification heads for multiclass classification tasks

and generate novel motions with conditioning tokens and select joints as prompts. We

3

demonstrate that this approach expands the range of outputs in comparison to our

first paper while maintaining control over the generated movements.

The main contributions of the first paper are:

• an exploration of spectral analysis for dance query,

• an interpolation technique for motion generation.

The main contributions of the second paper are:

• a tokenization technique for converting motion-cature data to text,

• a pre-training and finetuning procedure for language models trained on that

text,

• conditional generation of motion-captured dance,

• classification of motion-capture data.

The primary contributions of each paper led to generative motion-captured dance

data, through interpolation or conditional generation. Both of these techniques work

towards the same goals of capturing meaningful representations of motion-capture

data, and manipulating the sequences of movement to generate novel outputs. We

discuss the potential of future iterations of the work and the utility of each existing

technique in rehearsal and performance settings.

Both papers were co-authored by Gavia Gray, who guided and reviewed the tech-

nical implementation of my work.

Chapter 2

Background

2.1 Datasets

This work focuses on motion-capture data; specifically we focus on the AIST++

dataset and the AMASS dataset. The AIST++ dataset is a collection of 5.2 hours

of dance motion sequences [39] processed from a corresponding video database [63].

The dataset comprises 30 dancers performing dance motions across 10 genres, and

includes basic and advanced movements performed with one of 60 musical pieces from

80 to 135 beats-per-minute (BPM). The AMASS [43] dataset is the largest publicly

available dataset of human motion, comprised of multiple smaller optical marker-

based datasets. It includes over 11000 motions from over 300 subjects, totaling over

40 hours of motion-capture data.

2.2 Pose representations

Motion data is typically modeled as a sequence of frames, wherein each frame is

represented using a set of joint angles referred to as a pose, and body shape parameters

describing a body model. Both the AMASS and AIST++ datasets are represented

in SMPL [40] notation (see Section A.3 for details).

Using body shape parameters, the 3D positions in space occupied by each joint

can be recovered by forward kinematics. The sequence of motion can therefore be

represented as a sequence of joint angles or a sequence of 3D positions through time.

By combining the axis-angle 3D rotation vectors into matrices which describe pose

over time, we investigate ways of reducing the information required to describe and

model movements. We simplify the dataset by decreasing the frame rate from 60 fps

to 20 fps, and by removing joints that have low visual impact on rendered motions

(see Section A.4 for details).

4

5

2.3 Related Work

Modeling human motion can be divided into a series of problems that can be solved

with task-specific or end-to-end architectures [76]. The full pipeline that is addressed

in the literature includes:

• motion-capture from either RGB videos, optical-based markers, or inerial mea-

surement units,

• learning motion sequence representations, and

• applying this knowledge to downstream tasks.

The first step, capturing motion data from RBG videos, can be subdivided into

capturing 2D or 3D keypoints, and 3D meshes. Popular methods of capturing 2D

keypoints include OpenPose [9] and MediaPipe [42], where the most common ar-

chitectures use convolutional Neural Networks (CNNs). 3D keypoint detection has

employed physics-informed modeling [70] or end-to-end approaches for joint mesh

and 3D keypoint recovery [60, 34]. The SMPL [40] framework used in this work is a

unified representation for motion-capture data that includes 3D meshes and 3D joint

angles. This step in the pipeline is not the focus of this work, however the video to

SPML tool we use may impact our results.

Learning motion sequence representations is a precursor to performance on down-

stream tasks. Past work has explored various model architectures including generic

neural networks and convolutional networks, temporal and graph convolutional net-

works, and recurrent neural networks [37, 18, 19]. Motion-capture specific model

architectures or loss functions that consider the hierarchical structure of the body

model [2], bilateral symmetry [15], or train on motion-capture specific signals such as

geodesic rotation error [26] have improved motion-capture modeling. The introduc-

tion of the AMASS [43] dataset paired with the emergence of the transformer [66] out-

performed standard sequence models such as RNNs and LSTMs. The first transformer-

based models predicted continuous motion-capture data, [1] and more recently have

been used with discrete motion representations similar to those we discuss in Chap-

ter 4. Auto-Encoders (AEs) and Variational Auto-Encoders (VAEs) [54] are one of the

most common models to learn latent space representations of human motion-capture

6

data, and VQ-VAEs which convert motions to discrete latent space representations

have been implemented as a tokenization strategy for modeling motion-capture data

with language models [41]. Finally, transformer-based di↵usion models [75] have re-

cently been used to model motion-capture data, and show promising results with

multi-modal datasets [73].

Improvements in learning motion sequence representations also drive improvement

in downstream tasks. With the tools mentioned above, the downstream tasks that

we focus on are:

• generative modeling for dance movement, and

• motion classification.

AI Choreographer [38] and Transflower [64] are examples of deep learning based

approaches which use the AIST++ dataset with transformers. AI Choreographer

conditions dance movement on music, and Transflower adds a normalizing flow to

model the modalities together. ChoreoNet [72] builds on generating dance movement

conditioned on musical prompts by organizing sequences of motions according to

music. We focus on generating movement conditioned on existing examples of dance.

Motion classification, querying, and description look for patterns across move-

ments. These patterns can help identify movements that are correlated with cer-

tain activities like sports, or certain emotions or characters in performing arts or

video games. Adversarial learning techniques with generative adversarial networks

(GANs) [71] have driven improvements in classification tasks, and expanding beyond

categorical classification has become possible due to increased availability of paired

data. Text-based motion description [74] in particular can be utilized for both mo-

tion querying and classification with more diverse outputs. Finally, improving motion

sequence modeling by considering spatio-temporal relationships [57], increasing the

motion window length, and increases in publicly available dataset size are factors that

lead to better performance in both generative and classification tasks.

Detailed background methodology and chapter-specific related work can be found

in Section 3.3 for Chapter 3, and Section 4.3 for Chapter 4.

Chapter 3

Spectral analysis for dance movement query and

interpolation

3.1 Preface

This chapter is based on the paper presented at the Movement and Computing Confer-

ence in 2022 [50]. One of the constraints of being successful in training deep learning

models is being able extract important features from the data though representation

learning [23]. Time series are often represented spectrally; we wish to understand

how to interpret this representation in the context of human movement data.

The intention for this paper was to explore and learn about motion-capture data

and the AIST++ dataset, and to implement simple computational tools for dance and

movement. We focus on identifying transformations of the data that were e↵ective for

query and interpolation tasks. Evaluation of the work included seeking expert user

feedback on the utility of the tools in educational and professional dance settings.

My contribution to this work included:

• implementing and testing the STFT and DCT transformations,

• implementing and testing the query algorithm,

• implementing and testing loss functions for the interpolation,

• obtaining expert user feedback,

• co-writing the paper.

3.2 Introduction

Quantifying and generating dance has been explored through various movement anal-

ysis, interpolation, and prediction techniques. Systems that generate novel motions

7

8

provide choreographers with the ability to explore their own ideas and seek inspira-

tion for new ideas digitally. One of the constraints of these systems is the control

with which choreographers can interact creatively with generated motions. This work

generates suggestions for choreographers to expand their typical vocabulary of move-

ment, while providing the ability to iterate their creation towards target statistics.

Digital representations of motion, such as the joint angles typically extracted by

motion capture systems [24], can be analysed to extract or infer characteristics of

a dancer’s motion. In this chapter, we demonstrate how spectral features of joint

angles can be used to modify, search for and visualize similar motions. We aim to

define metrics to quantify and visualize similarity between motions, thus contributing

to defining dance creations computationally with artistically relevant results.

First, we use the Short-time Fourier Transform (STFT) of joint angles and the k-

nearest neighbors (kNN) algorithm to rank short sequences of the AIST++ database

in order of similarity. This quantifies di↵erences between motions, and can return

sequences based on an input motion and the target similarity.

Next, we propose a motion interpolation technique that is inspired by, and some-

what parallels, neural style transfer [22]. Style transfer modifies images (e.g. paint-

ings or photographs of scenery) to maintain their low frequency structure (related

to theme or subject), while adapting their higher frequency characteristics (related

to style or color) to match those of another provided image. We demonstrate and

confirm through expert user feedback that the high frequency components of motion

contain information related to movement complexity and quality, and optimize the

Discrete Cosine Transform (DCT) of a motion to visualize the dancer performing a

movement with di↵erent low frequency components.

We show that this representation of motion could provide a basis of digital tools

that demonstrate various levels of complexity in choreography, measure similarity

between movements, and generate new movements from provided examples.

3.3 Background

We describe a neural style transfer [22, 46] inspired technique that uses spectral

features with automatic di↵erentiation to interpolate movements. In neural style

transfer, a white noise image is jointly optimized to contain content based features

9

of one image and the style and texture of another. The features are computed with

convolutional layers, where layers earlier in the network capture local elements like

colour and texture, and later layers capture more complex patterns like objects. The

white noise image is modified towards the target features through gradient descent.

Figure 3.1 shows examples from the original paper [22] where the original image is

visualized with di↵erent artistic styles.

Inspired by this, we use spectral features of a target motion to drive incremental

changes made to an input motion. The original motions consist of a time series of joint

angles, and we e↵ectively adjust the joint angles of the input motion in such a way

that its spectral features will more closely resemble those of the target motion. In this

approach, the time-series of joint angles are comparable to the model parameters in

a traditional machine learning system. They are updated according to the objective

function, which drives the interpolation by measuring the similarity between the

spectral features of the model parameters and the target motion. This optimization

is feasible thanks to automatic di↵erentiation, which allows us to compute gradients

and make adjustments in the appropriate directions.

3.3.1 Related work

Digital methods of querying and imagining dance have been explored by various

dance and computational experts [3]. Early implementations blended sequences of dis-

cretized movements, including notations like Laban Movement Analysis (LMA) [67],

which dicretizes movements into spatial and temporal components, and Boolean fea-

tures or matrix representations [48, 47] which define body pose with respect to the

surrounding joints (eg. the right foot is in front of the left foot). Query by similarity

approaches have been contributed by Muller at al., and BalOnSe [17], which identified

similar movements based on their ballet.owl ontology and Labanotation [16], a dance

notation system based on LMA. Our work identifies spectral embeddings as a way to

compare motions automatically and to reduce the requirement for manual labeling.

To automate generation of new motion sequences, systems have explored altering

motions through genetic algorithms [35, 10] or tracing paths through latent space

representations of motion capture databases to generate novel motions [5]. To fur-

ther refine these approaches, target styles can guide the creation of novel movement.

10

Figure 3.1: Examples of neural style transfer on images.

11

Style Machines [8] used stylistic Hidden Markov Models to generate motions in a

di↵erent dance genre. SmartBody [56] and Dong et al. [12] used signal decomposition

techniques to separate movement into functional and stylistic components that can

be blended to create motions with new e↵ects. Our work compares and identifies

transforms that capture various components of movement, and alters them through

gradient decent to generate novel and continuous outputs.

Fourier analysis of motion data has been implemented in multiple works, including

gait analysis and motion recognition [27, 55]. Computational techniques have also

been used in dance education settings to encourage deeper understanding of move-

ment, and Fast Fourier transforms have been suggested as a metric to define the

timing of motion [4].

3.4 Motion querying

Motion sequences in the query were defined as 128 frame (2.13 s) sub-sequences of the

basic dance videos in the AIST++ dataset. Subsequences captured a short instance

of movement that incorporated 2-5 beats dependent on the music’s BPM, and the 72

dimensional joint rotation vector that defined the pose. To find the closest matches

for a query sub-sequence, Sinput, it is compared to all other motion sub-sequences, Sx,

in the dataset. The comparison first computes the STFT spectrograms [58] for both

sub-sequences Sinput and Sx, and then computes their cosine similarity. Matching

sequences can then be ranked in order of similarity scores.

The STFT is defined in eq 3.1 for signal Sx[n] and Hann window w[n], which is

defined in eq 3.2:

z = STFT(Sx[m]) =
1X

n=�1
Sx[n] w[n�m] e�jwn (3.1)

w[n] =
1

2

1� cos

✓
2⇡n

N

◆�
for 0 < n < N. (3.2)

We selected 16 frame (267 ms) windows for the spectrogram to align with timescales

that are relevant to rhythm [59] and choreographic timing. Our objective in selecting

this window length was to capture the half-beats at the maximum tempo of music in

the dataset, which was 130 BPM.

12

Cosine similarity is described in eq 3.3, where zzza and zzzb represent the result of

the transformations of motions a and b, which in the case of the motion sequence

query are Sinput and Sx:

dcos(zzza,zzzb) =
zzza ·zzzb

kzakkzbk
. (3.3)

The performance of the query was measured by accuracy and entropy metrics that

compared the genre and dancer labels of the k-nearest sub-sequences, Sx, in the query

dataset to the labels associated with Sinput. Accuracy was calculated by the predicted

genre or dancer label of Sinput, which was defined by the majority vote of the labels

from the k-nearest sub-sequences. Entropy was calculated based on the labels of the

same k sub-sequences, where low entropy indicated that these sub-sequences were

from the same category.

Entropy is defined in eq 3.4 where P(gi) is the empirical probability of the k-nearest

sub-sequences, Sx, being from a particular category, gi:

H(g) = �
nX

i=1

P(gi|Sx) log P(gi|Sx). (3.4)

Our results compare cosine similarity and euclidean distance as common metrics

for measuring distances in vector spaces with the kNN algorithm.

In addition to this experiment that was part of the original paper, we assessed the

performance of the DCT and PCA on the query task.

The DCT is defined in eq 3.5 for a motion, S:

DCT(S) =
N�1X

n=1

Sn cos

⇡

n

✓
n+

1

2

◆
k

�
for k = 0, . . . , N � 1. (3.5)

The DCT was considered due to its success in JPEG image compression; it is

e↵ective in producing a sparse subset of coe�cients that carry critical information

about an image. Assuming the same principles could be applied to motion data,

we consider the DCT in the query procedure. PCA can be used as a dimensionality

reduction technique, and is a common feature extraction method in machine learning.

PCA is described in Section A.1.

In our original query experiment we only considered the frequency information of

the STFT in the form of a spectrogram, making the transformation lossy. The DCT

is lossless, so the resulting transform does not reduce the information content of the

13

(a) STFT spectrum of Minput (b) STFT spectrum of Mtarget

Figure 3.2: Example spectrograms of a motion sub-sequences.

sub-sequence. In order to improve our query results and to compress the sub-sequence

in a lossy way, we only consider the low-frequency components of the DCT in the

query procedure.

3.5 Motion interpolation

Motion interpolation compared two examples, Minput and Mtarget, from the AIST++

dataset and generated a new motion, Moutput, that shared features of each. The

first motion, Minput, was used to create the starting parameters of Moutput, which

was adjusted toward the second motion, Mtarget. A range of spectral features F ,

computed via arbitrary function f , were selected for the optimization, and the mean-

squared-error loss between Fa = f(Moutput) and Fb = f(Mtarget) was calculated in

that space.

An example of the function f that we use to compute the spectral features was

the STFT. The STFT is shown in Figure 3.2 for an original and target motion pair

by computing the principal component of the transformation across all of the joint

rotations. This defines a spectral embedding of the STFT, as described in Section

A.1.1.

Mean-squared-error (MSE) loss is defined in eq 3.6, where Fa and Fb represent

the range of spectral features selected for the optimization for each joint rotation, i:

MSE(Fa,Fb) =
1

n

nX

i=1

(Fa,i � Fb,i)
2. (3.6)

An example of the initial and final error (absolute di↵erence) between the spectral

14

(a) Initial error between DCT coe�-

cients of Minput and Mtarget

(b) Final error between DCT coe�-

cients of Moutput and Mtarget

Figure 3.3: Error between the spectral embedding of DCT coe�cients before and
after interpolation. Error decreased after interpolation, but is still greater than 0 to
retain features of Minput.

embedding of the DCT coe�cients, as described in A.1.1, is shown in Figure 3.3.

Automatic di↵erentiation allows e�cient gradient computation of the motion fea-

tures which can be used to gradually optimize Moutput towards Mtarget with gradient

descent. At each step of the optimization the axis-angle rotation vectors of each joint

were constrained to valid rotations by their parameterization. The STFT, DCT, and

PCA transforms from Section 3.4 were considered as objective functions, f .

Examples of Moutput were demonstrated and assessed qualitatively, and the cosine

similarity between the STFTs of Minput, Mtarget and Moutput were calculated. The

performance of the interpolation was assessed based on its ability to move Moutput

closer to the target both visually and by the similarity of the spectra.

3.6 Results

The comparison of cosine similarity and euclidean distance of the STFT in the kNN

algorithm showed that cosine similarity performed better at returning motions of the

same genre and dancer. The accuracy was calculated by the majority vote of the

labels for the k = 10 most similar sub-sequences, and the entropy was defined by

eq 3.4 with the k = 10 most similar sub-sequences. The accuracy and entropy for

both approaches are shown in Table 3.1.

Examples of the query results were demonstrated with Sinput, one Sx with high

ranking dcos score according to the metric in eq 3.3, and one Sx with lower ranking dcos

15

score. Demo Video 1 (https://youtu.be/mE6lCxYs06k) demonstrates three examples

from the original paper results.

Genre Dancer

Accuracy (%) " Entropy (ban) # Accuracy (%) " Entropy (ban) #

Cosine Similarity 85.0 0.126 78.3 0.238
Euclidean Distance 83.3 0.149 75.0 0.247

Table 3.1: Accuracy and entropy metrics of cosine similarity and euclidean distance
approaches to ranking similarity of motion spectra with the kNN algorithm. Cosine
similarity performed better in both metrics and categories.

Genre Dancer

Accuracy (%) " Entropy (ban) # Accuracy (%) " Entropy (ban) #

DCT 88.3 0.0889 83.3 0.233

STFT 85.0 0.126 78.3 0.238

PCA 88.3 0.116 81.7 0.220

Table 3.2: Accuracy and entropy metrics of ranking similarity of DCT, STFT and
PCA motion spectra with the kNN algorithm. The DCT and PCA results are com-
puted with 16 components. The DCT and PCA performed better than the STFT on
both metrics and categories.

Table 3.2 compares the kNN query algorithm results with PCA, the DCT, and

the STFT over the time dimension with cosine similarity. We demonstrate qualita-

tive results in Demo Video 2 (https://youtu.be/cJPI3bBztms). PCA and the DCT

perform slightly better at the query task quantitatively, however we can see that the

STFT query results demonstrate movements that are more similar and are a better

match for the timing of the original movement. In both examples we can see that the

results of the DCT query do not capture similar choreography. PCA performs better

than the DCT, however the STFT captures the timing of the query dancer better in

these examples.

This spectral embedding of the STFT is shown in Figure 3.4 for an example of

Minput, Mtarget, and Moutput from the dataset. Figure 3.4c shows the spectral em-

bedding of Moutput, which demonstrates that the energy in the high frequency bins

increased during optimization. This resulted in jittery, discontinuous movements,

which indicated that this approach doesn’t retain continuity of motion during op-

timization due to the separation of frequency and phase information. This meant

https://youtu.be/mE6lCxYs06k
https://youtu.be/cJPI3bBztms

16

(a) STFT spectrum of Minput (b) STFT spectrum of Mtarget

(c) STFT spectrum of Moutput

Figure 3.4: Spectrograms of Minput, Mtarget, and Moutput. Figure 3.4c demonstrates
higher energy (lighter tones) in the high frequency range, which resulted in jittery
movements.

that the STFT was not feasible as an optimization target, however the spectral em-

bedding of an example motion from the original paper is shown in Demo Video 3

(https://youtu.be/geI67TnhQDw) to demonstrate how motion correlates with en-

ergy in the frequency domain. This also shows the frequency components of motion

that were used in the motion query.

We also tested motion interpolation with PCA and the DCT, and found that

PCA resulted in jittery movements like the STFT results. The DCT was able to

e↵ectively capture and interpolate the low frequency components of movement. To

more intuitively understand the e↵ect of using certain frequency ranges to drive the

optimization, we reconstructed motions where select DCT frequencies have been fil-

tered out. In Demo Video 4 (https://youtu.be/G6VfHxkEJG0) we show how a motion

from the original paper looks after we apply a low-pass filter (LPF) where we have

(a) filtered out only high frequency components (above the green line in Figure 3.5),

https://youtu.be/geI67TnhQDw
https://youtu.be/geI67TnhQDw
https://youtu.be/G6VfHxkEJG0

17

Figure 3.5: DCT coe�cients of the low (left of the red line) and low and mid-
frequencies (left of the green line) that were kept after filtering. Note that the excluded
frequencies (right of the dividers) have lower magnitude and therefore contribute less
to the reconstruction.

and (b) filtered out high and mid-frequency components (above the red line in Fig-

ure 3.5). Increasing the range of frequencies in the reconstruction naturally leads to

a higher-fidelity version of the motion, but the filtered versions of the DCT also have

qualitative characteristics that the expert users described and commented on.

The e↵ectiveness of the motion interpolation system was assessed by its ability to

convey motion features of both Minput and Mtarget in the generated motion. Each

row of Table 3.3 lists all pairwise cosine similarities between: Minput, Mtarget, and

the corresponding generated (interpolated) Moutput for the DCT-based interpolations

presented in the original paper. DCT-based qualitative results can be found in Demo

Video 5 (https://youtu.be/-wb3AQ3j1WE) where the asterisk indicates whether the

music playing is associated with Minput or Mtarget.

For the DCT-based interpolation we saw that the interpolated motions were more

similar to both the original and target motions than they were to each other. This in-

dicates that the interpolated motion exists between the two inputs in the query space,

which was confirmed qualitatively from the motion demonstrations and feedback from

dance experts. We found that the PCA-based interpolation had poor quantitative

and qualitative results with similar issues of jittery motions as seen with the STFT.

We show a comparison of the DCT and PCA-based interpolations in Demo Video 6

(https://youtu.be/5lyBIunewV0) and Table 3.4.

https://youtu.be/-wb3AQ3j1WE
https://youtu.be/-wb3AQ3j1WE
https://youtu.be/5lyBIunewV0
https://youtu.be/5lyBIunewV0

18

Example O→T I→O I→T

1 0.662 0.899 0.847
2 0.539 0.835 0.812
3 0.637 0.866 0.744

Table 3.3: Cosine similarity between original (O), target (T), and interpolated (I)
sequences in Demo Video 5. The interpolated sequences had high similarity to the
original and target sequences.

DCT PCA
Example O→T I→O I→T O→T I→O I→T
1 0.637 0.866 0.744 0.637 0.991 0.634
2 0.662 0.900 0.847 0.662 0.995 0.687

Table 3.4: Cosine similarity between original (O), target (T), and interpolated (I)
sequences in Demo Video 6. The DCT-based interpolations have increased similarity
to the target motions (results are comparable to Table 3.3), and the PCA-based
interpolations remain very similar to the original motions and fail to demonstrate a
valid interpolation.

3.7 Expert user feedback

The results of the original study, with the STFT-based query and DCT-based inter-

polation methods, were sent to six expert dance artists who are performers, educa-

tors, and choreographers. They watched alternate versions of Demo Video 1 (Section

3.7.1), Demo Video 4 (Section 3.7.3), and Demo Video 5 (Section 3.7.2), that did

not include text and randomized the order of the motions on the screen from left to

right. Expert feedback from sections 3.7.1 and 3.7.2 provide qualitative results of our

two main contributions, and feedback from Section 3.7.3 assesses our selection of low

frequency components of the DCT as a metric for motion interpolation.

In the assessment of the motion query from Section 3.4 experts were provided with

three query results. Each result had one original motion, Sinput, one high ranking

motion, Sx,h (i.e. similar according to the similarity metric defined by eq 3.3 and

features defined by eq 3.1), and one low-ranking motion, Sx,l (i.e. with a low dcos

score). They were asked to identify which two of the three motions were the most

similar.

In the motion interpolation assessment from Section 3.5 they were provided with

3 examples of motion interpolation, and were asked to identify which motions were

https://youtu.be/-wb3AQ3j1WE
https://youtu.be/5lyBIunewV0
https://youtu.be/mE6lCxYs06k
https://youtu.be/G6VfHxkEJG0
https://youtu.be/-wb3AQ3j1WE

19

the interpolation from Minput, Mtarget, and Moutput.

Finally, in Section 3.7.1, they were asked to identify and comment on the di↵er-

ences between the stronger and weaker dancers shown. The experts were also asked to

comment on whether they could conceptualize a utility for these tools in the context

of choreography generation or for educational purposes.

3.7.1 Motion sequence query results

In this Section users were asked to identify which two motions were the most similar.

Users averaged 94 % accuracy in their responses, with comments indicating that ”it

was clear which were the most similar”. When asked about the utility of a motion

query system, 5 out of the 6 indicated that there are scenarios where they could use

this tool in their work.

3.7.2 Motion interpolation results

The motion interpolation results showed that identifying the interpolated motion

was a di�cult task. Users responded with uncertainty and described the task as

challenging. We can infer based on the users being unable to identify Moutput as an

out of distribution example that the interpolated motions were feasible dance steps

that were still similar to the original and target sequences.

Use cases for this tool focused on choreography generation and exploration. 4 of

the 6 participants indicated they could identify a potential use case.

3.7.3 Low-pass filtered motion

This section assessed whether the low frequency components of the DCT captured

basic choreography of the motion while removing complexity. Users were asked to

identify which dancer was the better performer, and all users indicated that the

dancers demonstrating the filtered version of the motion demonstrated less energy

and e↵ort.

20

3.8 Discussion

Dance performance often contains sections where performers are expected to match

each other’s pose and timing as similarly as possible. The motion query provides a

tool that can measure a dancer’s similarity to a target motion or dancer. One expert

suggested a use case for improving technique where teachers could “show a visual of

the ’correct’ movement and compare it with the dancer’s own recorded movement,

allowing them to adjust and match as necessary”. Another user suggested using the

query to identify movements from professional dancers and choreographers that are

similar to motions students are learning in class.

When asked about choreography use cases, one user suggested “identifying classi-

cal variations which contain a particular co-ordination or movement”. Another user

pointed out that in industry where large volumes of work have been recorded, “teach-

ers, pedagogues, and examining organizations could use this tool to search syllabus

work to find linking and progressing steps”, and “choreographers and rehearsal direc-

tors could use it to browse through archives of rehearsal material and performance

footage”.

Use cases for motion interpolation included “augmenting variations in choreogra-

phy and movement” and exploring “more complex and layered choreography”. In-

creasing accessibility to choreographers was another theme highlighted by users, with

one suggesting that for “someone facing physical challenges wishing to create move-

ment for people considered more able, the interpolation tool could help that person

experiment with movements virtually that they are unable to take on physically”.

Another user suggested that in their experience “combining movements, especially

ones we can recognize with ones that are less familiar, can challenge the body and

brain to form new pathways and move di↵erently”.

Users described the dancers expressing the filtered movements in Section 3.7.3 as

not “using the full range of motion in their joints”, having “the complexity of mo-

tion” of the other dancer, or “completing movements”. The unfiltered motions were

described as “using more extension” and having “more dynamic movement qualities”.

Use cases for this video focused on dance education, particularly when “teaching the

same choreography to a class with students of varying levels and capabilities”. This

indicated that filtered motions could be used to demonstrate simpler versions of the

21

original motion, and additional spectral features can be added as students are able

to express more complexity in their movements.

Our query expands on existing work comparing motion by LMA or binary feature

representations by measuring the similarity between their spectral features. In our

user study, we found that dance experts thought that our search tool could help chore-

ographers and students examine existing work and improve their ability to replicate

motions. Our motion interpolation method suggests a new choreography generation

tool that specifies target statistics while optimizing joint angles directly, and expert

user feedback supported that defining a target metric for generated motion through

another motion was appealing and interpretable to choreographers.

3.9 Summary

This chapter explores spectral analysis as a method for querying and interpolating

movements. We found that STFT spectrograms capture the frequency components

of movement in a way that is e↵ective for querying tasks, and the DCT is an e↵ective

metric for style-transfer inspired interpolation. This demonstrates that spectral em-

beddings can help us to access semantic information in motion, which allows the style

embedding to be altered. Experts were able to conceptualize uses for a search tool

that can identify and measure similar movements in both educational and professional

settings. The concept of motion interpolation was interpretable to dance experts and

created novel movements that are continuous and often dancable. Experts identified

opportunities for an interpolation tool in their choreographic process, but noted the

challenges of working with digital tools in educational settings.

Chapter 4

Sequence modeling of motion-captured data

4.1 Preface

This chapter is based on the workshop paper [49] presented at the ”Machine Learning

for Creativity and Design” workshop at NeurIPS in 2022. Our primary goal was to

learn embeddings of human motion which capture a wide range of movement and lead

to the generation of novel dance sequences. We train a transformer model on dis-

cretized motion-captured data, which is adapted to perform downstream generation

and classification tasks.

Our main creative objective was to generate movements that have more range

than our interpolations from Chapter 3, while o↵ering artists similar controls over

the output. We utilize the generative models from Chapters 3 and 4 in rehearsal and

performance, and note the utility of the tools in both the choreographic process and

as part of a visual performance.

My contribution to this work included:

• implementing and testing tokenization and compression strategies,

• implementing custom positional embeddings,

• training and testing GPT based models,

• implementing and testing conditional generation,

• co-writing the paper.

4.2 Introduction

Previous work in deep learning with motion-capture data has utilized architectures

that are common in natural language processing (NLP), namely sequence-to-sequence

22

23

models including RNNs, LSTMs, and transformers. The language model we train

and our final tokenization method is generic, meaning that this approach could be

implemented with more advanced language models as the field evolves. One of the

limitations of this approach is that the quantity of publicly available motion-capture

data is significantly less than other modalities, however the size of the AMASS dataset

makes a transformer language model a natural choice to learn how to compose this

form of language.

Existing transformer-based solutions have focused on processing motion-capture

as continuous values, however we have elected to discretize and compress the data.

With this representation of motion we are able to predict or generate movement

following an existing sequence, fill in missing data in a sequence, prompt motion

generation with conditioning tokens, and classify movements.

Our downstream tasks for this chapter include:

• motion generation in Section 4.6 and

• motion classification in Section 4.7.

In Section 4.6 we condition generations on prefixed target motion labels including

the dancer performing the movement, the genre, and the song it will be paired with.

In addition to these conditioning tokens we prompt outputs on the movement of a

select joint or subsets of joints forming gestures, or the motion of a specific dance

move. This can indicate the trajectory or style of a complete movement, and we

demonstrate that this motion-prompting technique reduces freezing seen in other

generative models. We demonstrate that example outputs contain characteristics of

the prompted conditioning tokens, and by treating human motion-capture data as a

long sequence of tokens in a generative context, we build a system that can prompt

the model and provide direction for novel outputs.

In Section 4.7 we describe a method for classifying motions with a supervised linear

classifier trained on motion labels. We report our classification results using the same

tokens as the conditional generation task, further demonstrating our model’s ability

to encode these properties. We compare our model to Linear Discriminant Analysis

(LDA).

24

4.3 Background

4.3.1 Pose tokenization

This chapter describes the process of converting motion-capture data to a text-based

encoding and training language models to model the encoded data. In this encod-

ing technique joint angles or joint angle related compressions were discretized into

tokens that were represented as alphanumeric characters, and frames of motion data

were encoded as “words” with a space token separating them. We considered var-

ious approaches to encoding motion-capture data as text, including a jpeg inspired

DCT-based compression algorithm, PCA and ICA dimensionality reduction, and both

uniform and quantile binning.

Our DCT-based approach was inspired by the jpeg [68] algorithm for compressing

images. The jpeg algorithm includes steps to divide images into tiles, compute their

DCT, and select the most informative DCT components. Our implementation tiles

the data over the time dimension, computes the DCT of each joint rotation over each

tile, and keeps a percentage of the DCT components based on their magnitude. Our

final uniform tokenization process benefits from a fixed maximum error, and provides

an end-to-end generic solution for training language models on motion-capture data.

4.3.2 Natural Language Processing

We propose language modeling as an approach to modeling human motion as a vo-

cabulary of movements and poses in sequence because language models have been

demonstrated as an e↵ective method for learning representations of text [11] and

other modalities [28, 13, 29]. Treating motion as a generic sequence of tokens is in

contrast to existing work, which has mostly focused on treating values in the sequence

as continuous [64, 38, 2, 1]. The advantage of a discrete sequence is training becomes

identical to character level modeling. This approach was inspired by recent work in

reinforcement learning treating the task as “one big sequence modeling problem” [29].

The primary deep learning architecture we use in this work is the transformer [66].

We use a decoder-only version implemented with the minGPT [33] and mlm-pytorch [69]

frameworks. The transformer architecture has demonstrated improved performance [66]

25

over previous sequence modeling architectures, especially in natural language process-

ing. Causal models such as the transformer are trained in a self-supervised manner

with autoregressive learning [25], where during training the model is assessed on its

ability to predict the next token. At test time, the final predicted token can be

appended to the original sequence to generate novel outputs.

We discuss pre-training and fine-tuning our model on specific tasks and datasets.

The pre-training phase is the process during which the model learns the motion-

capture domain, and we hypothesize that a model trained on a larger corpus of

kinematics data will have a better understanding of the domain and will translate

that information to downstream tasks [11]. The fine-tuning phase is the process of

training the model or a classifier on a task specific dataset. In this work we pre-train

our models on the AMASS dataset, and fine-tune on the AIST++ dataset for dance

related generation and classification tasks.

Our training procedure is inspired by recent work in pre-training and fine-tuning

language models for dataset specific applications, and shows similar model behavior as

those trained with English text datasets [11]. Namely, pre-training on a large corpus

develops an embedding for language that models patterns in words and sentence

structure, and fine-tuning identifies patterns specific to the task and dataset. This

can be seen in our experiment results, where our model is compared to traditional

baselines on downstream classification tasks.

Training our models with causal or masked attention allows us to predict future

tokens based on past information or to fill in missing information in motion sequences.

The flexibility of the attention mechanism allows us to alter our model to consider the

temporal and spatial relationships in motion-capture data, and to make adjustments

for downstream generation and classification tasks.

One of the constraints of language models is that the self-attention mechanism

has quadratic space and time complexity with respect to the length of the context

window. Previous work training transformer architectures on motion-capture data

has measured benchmarks up to 400 ms [2], which we anticipated being insu�cient

for dance and gait-related modeling. Our data compression techniques and custom

algorithm described above attempt to reduce the e↵ect of this constraint by creating

a compression strategy that would allow for 2 seconds of data in the context window.

26

Another constraint of character-level language models is the tendency to freeze

and repeat the last known character when inferring novel sequences. We use the

structure of our encoded text to our advantage by conditioning the model on subsets

of joint angles listed in Section A.4, which provide a partial prompt that is consistent

and available over time.

4.3.3 Sequence modeling

In order to process SMPL data x, we encode x into a discrete sequence x0. The model

f✓ takes x0 as input and predicts the sequence y0 as output. y0 can be decoded to get

an SMPL sequence y as the final output, where:

• j is the number of joints

• r is the number of joint rotation dimensions

• t is the number of frames

• x 2 Rj⇥r⇥t

• y 2 Rj⇥r⇥t

• x0 = (x1, . . . , xT);T = j ⇥ r ⇥ t

• y0 = (x2, . . . , xT+1);T = j ⇥ r ⇥ t

In this work f✓ is a decoder-only transformer, and uniform tokenization is the

encoding procedure to convert between x and x0 or y and y0.

The transformer architecture contains two mechanisms that we discuss in this

section that distinguish it from recurrent neural networks. We experiment with and

adapt these functions to our dataset and downstream tasks:

1. An attention mechanism that allows or constrains the flow of information be-

tween input and output pairs, and has no internal state.

2. A positional embedding that informs the model of the position of time steps in

the sequence. The transformer processes paired inputs and outputs invariant

to their ordering so it has to infer or be told positional information.

27

The attention mechanism which calculates the weighted attention from the query

(Q), key (K), and value (V) vectors and the length of the key, dk is shown in Equa-

tion 4.1.

Attention(Q,K, V) = Softmax

✓
QKT

p
dk

◆
V (4.1)

In the context of self-attention we compute weights that indicate the elements

in the sequence that are most informative of the current element. We can think

of the query as an embedding related to the current time step, and the keys as

embeddings related to the other time steps. The attention mechanism computes the

dot product of the query and keys and generates logits that identify the correlation

between the current element and the rest of the sequence. The magnitude of a

dot product scales up with sequence length, so the division by the square-root of

the sequence length balances the resulting logits. The softmax function, which is

described in Equation 4.2, converts the logits to probabilities which sum to 1.

The softmax function is defined for a vector x as:

Softmax(xi) =
exi

PN
j=1 e

xj
(4.2)

Finally, the probabilities are multiplied by the values associated with each element,

resulting in the final weighted attention vector.

Figure 4.1 shows the decoder-only architecture we utilize in this chapter. Fig-

ure 4.1a shows the overall architecture of the transformer comprising a series of de-

coder heads leading to linear and softmax layers. The input to the model, vemb, is

the sum of the token and positional embeddings. These embeddings are defined by

matrices that encode each vocabulary token or positional token into a vector of length

Nemb. At the output of the final decoder head, the vemb is passed through a linear

layer to generate logits, and a softmax layer to generate probabilities of each token

in the vocabulary at each time step. The final sequence is selected according to these

probabilities. In this case we implement a greedy search, however alternate methods

such as beam search could be more e↵ective for some sequence modeling problems.

Figure 4.1b shows the interior of a decoder head. The basic building blocks are

feed-forward networks (FFNs) and attention blocks which are stacked with residual

connections and normalization operations between them. At each block an embedding

28

(a) Transformer decoder block dia-

gram

Self-Attention

Add & Normalize

Add & Normalize

Feed Forward

(b) Transformer self-attention head

block diagram

Figure 4.1: Block diagrams showing the high-level components of a decoder-only
transformer. Figure b shows the interior architecture of the decoder heads in Figure
a.

vector, vemb, is passed into the decoder head where the self attention block computes

the weighted attention vector, vattn. The input and attention vectors, vemb and vattn

are summed, normalized, and passed through a FFN. The output of the FNN, v↵n is

added to the the normalized sum of vemb and vattn, and the resulting output vector,

voutput is passed to the next decoder head or to the final linear and softmax layers of

the transformer.

Previous implementations of generative motion-capture modeling which we aim

to build on utilized mean-squared error as an objective function. Mean squared error

(MSE) loss is defined in equation 4.3 where yi represents the true or target value of

the ith sample and ŷi represents the predicted value of the ith sample.

MSE =
1

N

NX

i=1

(yi � ŷi)
2 (4.3)

In this case SMPL data is predicted as a float, and does not require tokeniza-

tion or discretizing preprocessing steps. Our implementation tokenizes the data, and

trains the model with a cross-entropy loss function. Cross-entropy loss is described in

equation 4.4 where yic denotes the true label (ground truth) for the ith sample being

the cth character in the token vocabulary. yic takes the value of 1 if the prediction

is correct, and 0 otherwise. ŷic indicates the predicted probability for the ith sample

29

being character c as generated by the model.

Cross-Entropy Loss = � 1

N

NX

i=1

CX

c=1

yic log(ŷic) (4.4)

The main disadvantage of cross-entropy loss is that it does not reflect the distance

between tokens in space. Assuming that our tokenization scheme results in bins of

1 degree of rotation, the cross-entropy loss is not directly informed that a prediction

with 45 degree error is better than a prediction with 90 degree error. With MSE loss,

this relationship is modeled explicitly. The main advantage of cross-entropy loss is

that the model is less likely to converge to an average prediction, making it a better

candidate for generative outputs.

4.4 Pose tokenization

Our tokenization strategy had two goals: to convert motion-capture data to text so it

can be used in a generic language model architecture, and to minimize the sequence

length. In order to train a generic language model architecture on motion-capture

data we converted the data to a text-based encoding, or a one-dimensional sequence

of characters. In each case we represented the frames, or frame-related compressions,

as words, and separated them with a space token. We converted the poses in each

word to a string of alpha-numeric characters, which were defined by our encoding

strategy.

The second goal maximized the information in the context window of the lan-

guage model by representing motions in as few characters as possible. We aimed to

capture a minimum of 2 seconds of movement that could represent the periodicity of

movement in dance related activities. To achieve this we investigate methods of com-

pressing motion-capture data in SMPL format with spectral analysis, dimensionality

reduction, and generic binning strategies. We consider the e�cacy of these techniques

in the context of using the text-based encoding in our language model architectures.

Figure 4.2 shows an example of the final text encoding with frame and joint index

references.

30

Figure 4.2: Example of motion data as encoded text.

4.4.1 Methods

Each of our tokenization schemes incorporated either uniform or quantile binning

techniques to convert poses or pose-compressions to integers which were then matched

to a dictionary of alphanumeric characters. Uniform tokenization follows the method

described in [29], which we describe in more detail below.

Let x be a continuous variable that we want to quantize, and let q1, q2, ..., qn be

the n quantization levels or bins. We assume that the bins are uniformly spaced, so

that the distance between adjacent bins is the same and can be denoted as �.

Then, the quantization operation Q(x) can be defined as:

Q(x) = qk if qk�1 x < qk

where k is the index of the bin that contains x, and is given by:

k =

�
x� q1
�

⌫
+ 1

Here, b·c denotes the floor function, which rounds down to the nearest integer.

Note that the quantized value Q(x) takes on one of the n possible quantization

levels q1, q2, ..., qn, depending on which bin x falls into.

In the case of quantile binning, the data is divided into bins based on the quantiles

or percentiles of the variable distribution. We start by specifying the number of bins,

denoted as n. The variable x is then divided into n intervals or bins such that each

bin contains an equal number of observations. This means that each bin represents a

specific quantile of the variable’s distribution.

In the quantile tokenization method every bin has the same number of samples

in it, which makes the bin widths inversely proportional to the number of occurances

and makes the probability of each token the same. Uniform tokenization uses a con-

sistent bin width, which has two benefits for language modeling. The first is that

the maximum reconstruction error is consistent for each token in the dataset, which

31

Figure 4.3: Illustration describing the process of quantization.1

(a) Uniform binning (b) Quantile binning

Figure 4.4: Visualizations of uniform and quantile binning strategies. Uniform bin-
ning has consistent bin widths resulting in a fixed maximum reconstruction error.
Quantile binning has consistent bin frequency with increasing reconstruction error
when poses are less common.

means that we can consider a diverse set of movements without representing improb-

able poses poorly. The second is that the model can learn the probability of a token

occurring in human movement more easily, since the tokens that are closer to common

postures and gestures will be represented more frequently. This is comparable to the

frequency of characters in an alphabet. Quantile and uniform binning are visualized

in Figure 4.4.

In Chapter 3 we demonstrated that the DCT captured the low-frequency compo-

nents of motion in a way that was e↵ective for a motion interpolation task. Building

1
Attribution: Gregory Maxwell, CC BY 3.0 https://creativecommons.org/licenses/by/3.0, via

Wikimedia Commons.

https://creativecommons.org/licenses/by/3.0

32

on this result, we design a jpeg-inspired algorithm to compress the data. The com-

ponents of the jpeg algorithm which we take inspiration from include dividing images

into “tiles”, which contain 8x8 pixel subsections of the original image, computing the

DCT for each color channel across the tile, and storing the DCT components with

resolutions proportional to their impact on human perception of the image. These

concepts are translated into our procedure by dividing the sequence into “tiles”,

meaning series of frames spanning up to one second, computing the DCT of each

joint rotation over the tile period, and removing the lowest values in the DCT, with

the assumption that these have the least impact on the reconstruction error.

In order to convert the DCT components to alphanumeric characters, we first

convert the DCT components to integers with either the quantile or uniform bin-

ning strategies. We convert the resulting integers to alphanumeric characters in the

bin-to-character dictionary, and used run-length encoding on consecutive DCT com-

ponents that were set to zero. We replaced these components with a single character

that represents the value zero and the length of the run. This reduces the storage

requirements and word length of our dataset.

The jpeg-inspired DCT-based compression algorithm attempted to compress the

data over the time dimension. To compress the data over the joint rotation dimension

we also considered PCA and Independent Component Analysis (ICA) (described in

Section A.2). While the DCT-based compression uses run-length encoding to com-

press the data, PCA or ICA o↵er a consistent way to reduce the word length.

4.4.2 Results

We report quantitative metrics for our tokenization procedures, however qualitative

evaluation equally informed our design choices. We provide demonstrations of recon-

structed motions as part of our qualitative analysis, recognizing that for a generative

model the output is a visual rendering of movement. The quantitative metrics that

we consider in this section include the average or maximum word length, compression

factor, duration of motion sequences in the context window, and average or maximum

reconstruction error.

Word length refers to the number of characters that make up a word, in this case

words are either frames or jpeg-inspired tiles. The fixed word length for a generic

33

tokenization strategy (uniform or quantile) is shown in equation 4.5 where:

Word Lengthuniform = Njoints ⇥Nrotations. (4.5)

The word length for the jpeg-based algorithm has a fixed dependency on the

dimensionality reduction on the joint rotation dimension, and a variable dependency

on the e�cacy of the run-length encoding of the DCT components. The word length

for this encoding strategy is shown by equation 4.6 where Djoint rotations is the number

of components in the joint rotation after dimensionality reduction, Ltile represents

the frame length of the DCT tile, and RDCT represents the ratio of DCT components

that are kept after run-length encoding.

Word LengthDCT = Djoint rotations ⇥ Ltile ⇥RDCT (4.6)

The maximum word length, assuming no run-length coding is utilized, would be

the same equation with RDCT = 1.

Compression factor refers to the ratio of bytes required to represent the encoded

sequence compared to the original sequence. We report this by comparing the num-

ber of bytes in the SMPL representation with the number of characters required to

represent a motion and the number of bytes required to represent the alphabet. The

duration of the sequence in the context window measures how many seconds of the

original movement fits within a 1024 token block size after the data simplifications

and compressions. The block size is one of the main constraints of language models

and limits the “memory” capacity of the model. Ours is selected based on compute

resources.

Finally, the reconstruction error is the sum of the error of each joint in the skeleton.

This can be reported as geodesic error or rotation matrix error for joint rotations, or

as positional error if forward kinematics is applied to the original and reconstructed

joint rotations. In this section we refer to geodesic error as shown in equation 4.7,

which computes the shortest path between rotations a and b.

Errorgeodesic = arccos

✓
a · b

kakkbk

◆
(4.7)

34

Table 4.1: Comparison of the jpeg-based algorithm tile length with PCA and ICA
encoding techniques. All examples were computed with 10% of the DCT components
retained in the encoding and 24 PCA/ICA components over the 72 joint dimensions.
The final values were represented by 360 quantile bins converted to alphanumeric
characters.

DCT tile length Joint compression Avg Word Length # Compression Factor " Duration (s) " Reconstruction Error #

15 ICA 45.5 132 5.63 0.0925
30 ICA 86.5 144 5.92 0.0901
60 ICA 169 152 6.06 0.0890
15 PCA 43.5 126 5.88 0.0904
30 PCA 84.8 141 6.04 0.0875
60 PCA 166 153 6.17 0.0872

Our jpeg-inspired compression algorithm was the most promising solution for max-

imizing the duration of the motion sequence in the context window. Table 4.1 com-

pares the e↵ects of PCA and ICA dimensionality reductions and the DCT tile length

on the average word length, compression factor, duration, and the average reconstruc-

tion error. The results demonstrate that PCA performs slightly better than ICA, and

that increasing the tile length decreases the reconstruction error and increases the du-

ration in the context window. We expect that for the language model to learn the

composition of sequences it would require at least 3 words in the context window,

meaning that the upper limit of the tile length is bound by the maximum word length

and the context window. In our case this limits the maximum word length to 341

characters.

Table 4.2 shows the e↵ect of increasing the number of DCT components or PCA

components included in the text encoding. This table demonstrates the relationship

between compression and reconstruction error of the encoding algorithm, and Demo

Video 7 (https://youtu.be/JME9vbxtH7Q) demonstrates qualitative examples of the

encoding techniques with low and high reconstruction error. The figure on the left

(low error) encodes 60 frames in the DCT, retains 40% of the coe�cients, and includes

15 PCA components. The figure on the right (high error) encodes 60 frames in the

DCT, retains 10% of the coe�cients, and includes 42 PCA components.

From the results in Table 4.2 we demonstrate that increasing the number of PCA

components has a greater impact on reconstruction error than the number of DCT

components. We note the best result with 10% of the DCT components and 42

PCA components where the mean reconstruction error reaches 0.0476 cm with word

length 307. Demo Video 8 (https://youtu.be/UIasLJlegbc) shows qualitative results

https://youtu.be/JME9vbxtH7Q
https://youtu.be/JME9vbxtH7Q
https://youtu.be/UIasLJlegbc

35

Table 4.2: Scaling the PCA and DCT components included in the text encoding. All
examples were computed with 60 frames per tile and the final values were represented
by 360 quantile bins converted to alphanumeric characters.

DCT components (%) PCA components Avg Word Length # Compression Factor " Duration (s) " Mean Reconstruction Error #

10 15 102 257 10.04 0.129
10 24 170 150 6.02 0.0886
10 33 239 108 4.28 0.0577
10 42 307 85.5 3.33 0.0476
20 15 186 144 5.50 0.125
30 15 201 133 5.09 0.125
40 15 186 144 5.50 0.125

Figure 4.5: Mean and maximum geodesic error with respect to the number of uniform
bins. The inflection point in the graph informed our decision to tokenize the data
with 360 uniform bins.

of this encoding strategy for 3 examples of motion. We see that while the e↵ects

of the tokenization algorithm are visually undetectable during each tile, there are

discontinuities at the boundaries that create a visible disturbance in the sequence.

These are visible in Demo Video 8 at 1 Hz frequency. This result also indicates that

increasing the tile length decreases the number of discontinuities, resulting in the

inverse relationship between tile length and reconstruction error shown in table 4.1.

Based on these results our final tokenization strategy in Section 4.5 employs uni-

form tokenization. Figure 4.5 shows reconstruction error with respect to the number

of bins in the uniform tokenization. We selected 360 bins where the maximum quan-

tized error was 1 degree of rotation for each dimension of the axis-angle vector.

https://youtu.be/UIasLJlegbc

36

4.5 Language modeling

After tokenizing the AMASS and AIST++ datasets we train the generic minGPT [33]

and mlm-pytorch [69] frameworks on our combined dataset with no alterations. Both

frameworks are decoder-only transformer architectures based on GPT2, which con-

tains 12 attention heads, 12 layers, and 768-dimensional embeddings. The flexibility

of the attention mechanism allows us to alter our model for conditional generation

and classification tasks during the fine-tuning phase of training, and to test both

causal and masked attention mechanisms.

In this work we pre-train the models on the AMASS and AIST++ datasets, and

fine-tune the model on the AIST++ dataset for dance generation and motion clas-

sification. Pre-training refers to a training regime that precedes the “fine-tuning”

training on a task of interest. The goal is that the model may perform downstream

motion modeling tasks more e↵ectively after learning to model generic motion ac-

curately. Our model’s performance on an autoregressive generation benchmark is

described in Section 4.5.3, however as this is a generative model quantitative bench-

marks will always be lacking in describing the performance of the model [62]. We

demonstrate and assess our generative outputs qualitatively with demo videos.

In Section 4.5.3 we discuss the results of training both causal and masked models,

compare the results of pre-training and training from scratch, the e↵ect of simplifying

the dataset, and the e↵ect of a custom positional embedding based on the structure

of our encoded data. Finally, we describe our methods and results for conditional

generation and classification tasks in Sections 4.6 and 4.7.

4.5.1 Datasets

Training on a large dataset of tokens allows for a more flexible model that can learn

useful representations. This approach to representation learning is core to deep learn-

ing [23, p.524]. However, there is a tradeo↵ in the inductive priors an architecture

might assert versus the e↵ect of data. For example, vision transformers are typically

described as more generic than convolutional networks, and they are able to learn

more useful representations, but this e↵ect was only seen on larger datasets [14].

In Table 4.3 we investigate the relative information content of di↵erent datasets

37

Table 4.3: Comparison of relative information content of datasets. Size is reported in
bits per token for generative models trained on each dataset. The reported bits/frame
was trained on all joints rather than the subset used elsewhere in this paper.

Name Description Size (bits)

ImageNet Image Database 179G (3.57 bits/pixel) [65]
The Pile Text Database 837G (2.45 bits/token) [7]
AMASS Motion Database 0.76G (88.6 bits/frame)

used in deep learning. The information content here is quantified by looking at the

potential compressed size using optimal entropy coding under a competitive genera-

tive model of the data, including our own. The result suggests that pre-training on

AMASS may be limited by the dataset size, and further that the motion capture data

publicly available may be insu�cient to train generative models that are as powerful

as those operating in other modalities.

In this work we consider a bilateral data augmentation to accomodate the relative

dataset size. We mirror the data through a matrix multiplication that inverts the

direction of the appropriate joint rotations to perform motions on the left and right

side of the body. Details of this operation can be found in Section A.5. We list a

number of other data augmentations that could be applied to motion-capture data in

Section 5.1.

4.5.2 Methods

Causal modeling typically refers to the practice of training a model to autoregressively

predict the next token [25]. At test time, the final predicted token can be appended

to the original sequence iteratively to generate novel outputs. Masked modeling

typically refers to training a model to fill in a sequence where a portion of the tokens

have been randomly masked. In our model, we randomly masked 15% of tokens in

the training sequence and allowed the model to attend to the remaining 85%. Our

causal model learns autoregressive joint angle prediction for motion prediction and

generation tasks, and our masked model learns to fill in sequences where there could

be a joint occluded or some of the data could be missing. Figure 4.6 shows causal and

stochastic attention mechanisms for the Causal Language Model (CLM) and Masked

Language Model (MLM).

38

(a) Causal Self-attention (b) Stochastic Self-attention

Figure 4.6: Visualizing the attention masks of the CLM and MLMs. Light areas are
time steps that the model can attend to.

To simplify the modeling task, we reduced our frame rate to 20 seconds and we

only include 13 of the original 24 joints. A complete list of these joints can be found

in the appendix A.4 and Figure 4.7 demonstrates these joints on the SMPL skeleton.

Our initial tests are run on models with 26 million parameters based on the es-

timated parameter requirements [32] for our 285M token dataset. The models were

pre-trained for 7500 iterations on the AMASS dataset processed with the data splits

defined by Rempe et al. [54], and the AIST++ [39] dataset.

Inspired by spatio-temporal transformers for motion-capture data [1] we imple-

mented a custom positional embedding that informed the attention mechanism of

the frame and joint rotation index. Each character in the sequence was mapped to a

frame and joint index, which mapped to two positional embeddings that were added

to the token embedding. We summed them together the same way a traditional ab-

solute position embedding is used in a transformer [66]. Figure 4.8 demonstrates the

frame and joint indices for a motion sequence.

After pre-training the models, we fine-tuned them on the AIST++ dataset. The

fine-tuning process reduced the bits/frame result further than training from scratch,

and incurred an absolute quantization error that was not visually noticeable.

4.5.3 Results and discussion

We train our models with the batch size set to 128, the learning rate set to 2E-4,

and embedding, attention, and residual dropout set to 0.1. We tested various batch

39

Figure 4.7: 13 of the 24 available joints were modeled.

(a) Frame index. (b) Joint index.

Figure 4.8: Visualizing the frame and joint indices of a motion sequence with 43
tokens per word.

40

Figure 4.9: The selected learning rate is 10 times less than the inflection point where
the learning rate causes an increase in the causal loss.

sizes with negligible changes in performance, and focused on tuning the learning rate.

We ran a learning rate sweep shown in Figure 4.9 with our encoded data. This

technique [31] plots the loss with respect to the learning rate over the plausible range

of values, and shows where the learning rate passes the optimal range. The suggested

value is 10 times less than the inflection point on the graph, which was 2E-4 in our

case.

Table 4.4 compares the results of training the causal and masked models with

the standard absolute positional embedding and our custom positional embedding.

The loss curves of the causal model showed that the custom embedding helps the

model learn faster, however the models converged to the same loss. The masked

model improved significantly from the custom embedding and reached a lower loss

and bits/frame rate. The final causal and masked losses are not directly comparable,

and we found that the causal model performed better at generative tasks which was

our primary goal. We continued our experiments with the causal model due to the

nature of our downstream tasks.

Table 4.5 shows the e↵ect of dataset simplifications on model performance. Here

41

Causal Masked

Embedding bits/frame loss bits/frame loss

Absolute 106 1.75 256 4.24
Custom 104 1.72 90 1.49

Table 4.4: Comparison of causal and masked model performance with absolute posi-
tional embeddings and our custom positional embedding.

Table 4.5: Performance after reducing the frame rate and removing joints. Note that
the causal loss, or per character loss, is lowest when the complexity of the dataset is
lowest.

Data simplifications Causal bits/frame Causal loss

13 joints, 20 fps 104 1.85
24 joints, 20 fps 273 2.63
13 joints, 60 fps 151 2.69
24 joints, 60 fps 199 1.92

we train the causal model from scratch on the AIST++ dataset with frame rate and

joint reductions. The results show that both simplifications have a significant impact

on the final performance.

We demonstrate the e↵ect of pre-training and fine-tuning in Table 4.6. We show

the model performance after pre-training on the AMASS and AIST++ datasets and

fine-tuning on the AIST++ dataset, and compare it to training the model from

scratch. We test two learning rate options for the fine-tuning stage, and find that

decreasing the learning rate did not improve the final loss. The table shows that pre-

training and fine-tuning the model improved performance, and the qualitative results

demonstrated that pre-training made the output movements feasible.

Table 4.6: Comparison of pre-training on AMASS and the AIST++ dataset with and
without fine-tuning and training the model from scratch on the AIST++ dataset.
Note that the loss after fine-tuning is significantly lower than training from scratch.

Training regime Causal bits/frame Causal loss

Training from scratch 100 1.66
Pre-training 104 1.72
Fine-tuning (lr=2e-4) 86 1.42
Fine-tuning (lr=1e-4) 86 1.42

42

Table 4.7: AMASS results comparing to the work of Aksan et. al. [1] and the results

used for comparison in their paper in the style presented in their paper. # indicates metrics

where lower is better and " indicates metrices where higher is better. * indicates the model

was evaluated by Aksan et. al. [1] rather than the original authors. Our model is referred

to here as LM.

Euler # Joint Angle # Positional # PCK (AUC) "
milliseconds 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400
Zero-Velocity [45, 2] 1.91 5.93 11.36 17.78 0.37 1.22 2.44 3.94 0.14 0.48 0.96 1.54 0.86 0.83 0.84 0.82
Seq2seq [45, 2] 2.01 5.99 11.22 17.33 0.37 1.17 2.27 3.59 0.14 0.45 0.88 1.39 0.86 0.84 0.85 0.83
QuaterNet [51, 2] 1.49 4.70 9.16 14.54 0.26 0.89 1.83 3.00 0.10 0.34 0.71 1.18 0.90 0.87 0.88 0.85
DCT-GCN (ST)* [44] 1.23 4.00 8.05 13.04 0.24 0.77 1.60 2.66 0.09 0.31 0.63 1.06 0.92 0.89 0.89 0.87
DCT-GCN (LT)* [44] 1.27 4.18 8.37 13.38 0.24 0.80 1.65 2.71 0.09 0.31 0.65 1.07 0.91 0.89 0.89 0.87
RNN-SPL [2] 1.33 4.13 8.03 12.84 0.22 0.73 1.51 2.51 0.08 0.28 0.57 0.96 0.93 0.90 0.90 0.88
Transformer 1.30 4.01 7.88 12.69 0.22 0.73 1.52 2.54 0.08 0.28 0.58 0.97 0.92 0.90 0.90 0.88
ST-Transformer 1.11 3.61 7.31 12.04 0.20 0.68 1.45 2.48 0.08 0.27 0.57 0.97 0.93 0.90 0.90 0.88
LM 1.01 3.28 5.97 8.78 0.097 0.295 0.520 0.761 0.200 0.562 0.943 1.32 0.505 0.399 0.350 0.354

Table 4.7 shows our best model performance compared to existing baselines. The

metrics listed reflect the ways transformer models for motion modeling are compared

in the literature. These models are typically trained on continuous 3D joint angles,

which can be represented using at least six formalisms. Errors between angles may

be similarly computed in various ways. For example, geodesic error is the size of the

minimum rotation in radians to rotate from one angular orientation to another. In

Table 4.7 this metric is called Joint Angle. The remaining metrics in Table 4.7 are

described by Aksan et. al. [2]. Briefly:

• Euler is the RMSE between the joint angles expressed as Euler angles

• Two are defined over positions computed from the predicted joint angles using

a predefined forward kinematics model:

– Positional is the MSE between positions in 3D space

– PCK (AUC) is ratio of joints within a spherical threshold around the target

position in 3D space

Our model tends to outperform baselines on joint rotation related metrics, and

perform worse than the baseline in 3D joint position related metrics. This is likely

due to the lack of 3D joint position data in our model, and we discuss a training

procedure that could improve positional error in Section 5.1.

43

Figure 4.10: Illustration of how the transformer operates on an example of text with
conditioning tokens prepended to the sequence. Masked tokens are denoted with
“M”, the causal model moves from left to right inferring masked tokens.

4.6 Conditional generation

Fine-tuning on the AIST++ dataset resulted in a model that outputs novel dance

movement. In order to control the output, we use select joints as input and fine-

tuned the model with additional conditioning tokens at the beginning of the sequence

as shown in Figure 4.10. The conditioning tokens indicate the dancer, dance genre,

music, and choreography that define each example in the database.

We demonstrate examples where a partial skeleton is used as a prompt - including

the root joint and the 3 joints defining an arm or leg. Figure 4.11 demonstrates an

example of how the input is selected. The remaining joints were replaced with mask

tokens, and the causal model iteratively filled in the masked tokens while attending

to the existing motion sequence.

The conditioning tokens were taken from the AIST++ filenames, which include a

selection of 30 dancers, 10 genres, and 60 music files. Each dance genre had at least 10

basic choreography options, which were repeated examples of basic movements. We

included a token indicating whether the movement came from this basic movement

vocabulary or whether it was an advanced movement selected by the dance artist,

and primarily used the advanced movement prompt for generating outputs.

Demo Video 9 (https://youtu.be/RXv89p7443g) shows an example of the model

inputs (left) compared to the original or context motion (right) from the AIST++

dataset. Demo Video 10 (https://youtu.be/z8I2xkqaZ6U) shows the e↵ect of con-

ditioning tokens on rendered examples, where the example on the left shows the

context motion, the middle example shows a motion generated from the root ori-

entation, translation, and right arm joints of the context motion, the “waack” genre

token, dancer ID 26, and song “mWA2”, and the example on the right shows a motion

https://youtu.be/RXv89p7443g
https://youtu.be/z8I2xkqaZ6U

44

(a) Right leg as the context motion. (b) Right arm as the context motion.

Figure 4.11: Illustration of the joints used as context for the model, and the generated
output. The video of motion b can be found in Demo Video 10.

generated from the same joints, the “krump” genre token, dancer ID 29, and song

“mKR2”.

We can see that conditioning tokens promote diversity in the generated output,

and promote common movements from the target conditions. For example, move-

ments conditioned on “waack” tokens demonstrated more circular arm movements,

movements conditioned on “krump” tokens demonstrated more downward movements

with the arms and legs, and movements conditioned on “house” tokens demonstrated

more bending in the knees, leading to more frequent changes of weight placement.

Figure 4.12 demonstrates an example of how the conditioning tokens a↵ect the tra-

jectory of a gesture. It shows (a) the 3D position of the right wrist in the context

motion from the krump genre, (b) the 3D position of the left wrist in the generated

motion conditioned on the waack genre, and (c) the 3D position of the right wrist in

a waack motion sampled from the dataset. These plots attempt to demonstrate the

model’s ability to generate movements that follow the symmetrical patterns found in

dance movement, and how conditioning tokens a↵ect the generated motion.

Conditioning dance generation on a select set of joints allows us to generate long

dance sequences that maintain a certain coherence (via the user-controlled joints)

despite the limitation of the available model time window. By further conditioning

the output on individual dancers, genres, or musical properties, choreographers can

https://youtu.be/z8I2xkqaZ6U

45

(a) 3D position of the right

wrist during the context

motion.

(b) 3D position of the

left wrist during the gen-

erated motion, conditioned

on waack tokens.

(c) 3D position of the right

wrist during a waack mo-

tion.

Figure 4.12: Visualizing the e↵ect of conditioning tokens on joint trajectories in 3D
space.

explore how specific dancers or dancers with specific dance backgrounds might adapt

to their gestures and cues, or generate motion for tasks they are less familiar with.

The success of this style of modeling opens up a vast array of approaches from

related fields surrounding language modeling. Long-range models could increase the

available time window [61, 28]. Prompt tuning would allow distillation of a dancer’s

style to a vector [36, 21], and any modality that may be paired with motion may be

contrastively learned [52].

We utilized outputs from this model in rehearsal and live performance where

dancers learned and performed generated movements. Example movements that were

used in this performance are shown in Demo Video 11 (https://youtu.be/yRtEKLmzeH4).

In this work, the dancers and choreographers used and interacted with both the con-

ditional generation and motion interpolation tools. Interpolated motions tended to

be more e↵ective as creative prompts for short movements, while outputs from the

conditional generation tool were able to generate longer sequences of novel choreog-

raphy. One of the constraints of working with both tools, especially the conditional

generation tool, was that the generated movements were not always danceable or fea-

sible to perform. Another constraint was that the timing of the movements changed

speed and o↵set over time. When the joint-based prompts contained information that

could be related to beats or timing, the generative model would often coordinate the

rest of the joints with the movement. If the prompt was stationary or did not contain

movement that related to the musicality of the overall movement, the model often

generated o↵-beat or awkward timing. The choreographers and dancers had to adapt

https://youtu.be/yRtEKLmzeH4

46

Figure 4.13: Visualizing the attention mask of the classifier. The motion sequence has
a causal mask as before, but the classification tokens (the last 2 indices) can attend
to any token in the context window.

the model outputs based on these constraints, however the choreographer noted that

the creative prompts reduced choreography ideation and rehearsal time.

4.7 Motion classification

Motion classification is one of the most common downstream tasks for human motion

modeling. We aim to classify dance data by the same dancer, genre, and choreography

tokens that we used in our conditional generation task. In order to classify movements,

we assign the final tokens in the context window as multi-class logits, and train a

classifier head with a single linear layer mapping to the multi-class labels with a

cross-entropy loss function. In this case the causal mask makes the classification task

more di�cult for earlier class predictions, so the causal mask is removed for predicting

classification logits. The attention mask for this operation is shown in Figure 4.13.

In order to classify the smaller AIST++ dataset, we use our pre-trained causal

model that was trained on the AMASS and AIST++ datasets. We take inspiration

47

Table 4.8: Performance of our classification model on the AIST++ dataset. The
majority class prediction is the baseline without either model. Results show the
accuracy as a percentage.

Method Dancer SituationGenre

MCP Baseline 5.32 58.6 10.5
LDA 51.8 76.0 54.4
Our model 80.7 97.1 89.1

from BERT [11] in our fine-tuning procedure by decreasing the learning rate to 2e-

5 and decreasing the batch size to 16. We fine-tune the transformer weights for the

autoregressive joint angle prediction task jointly with the linear classifier on the target

datasets, and report the classification accuracy and compare our results to LDA.

Table 4.8 shows the classification results on the AIST++ dataset for the dancer,

genre, and situation. The situation refers to whether the movement comes from the

collection of basic or advanced movements. The classifier outperforms the majority

class prediction (MCP) and LDA baselines.

4.8 Summary

This chapter defines a training procedure for SMPL motion-capture data with generic

language model architectures. We explore motion tokenization strategies comprising

a jpeg-inspired algorithm and uniform tokenization of the data. The jpeg-inspired

algorithm utilized data compression techniques that were successful in Chapter 3,

however the final result showed visible discontinuities from tiling the time dimension.

Our final tokenization scheme benefits from being generic, and we believe it could be

utilized with other formats of motion-capture data and can be improved on as data

tokenization advances.

Our language model training experiments show that pre-training was an e↵ective

way to improve performance on downstream tasks, and that simplifying the dataset

and adjusting the positional embeddings to the data resulted in the model learning

faster and converging to lower loss in most cases. We show that fine-tuning a causal

model on dance data with conditioning tokens informing the model of global move-

ment patterns was an e↵ective way to add control over the outputs, and that adding

48

subsets of joints as a prompt o↵ered further control and prompted more cohesive

outputs. Finally, we found that the model was able to e↵ectively classify labels in

the AIST++ dataset and beat the LDA baseline. We o↵er suggested improvements

for future work in Section 5.1.

Chapter 5

Conclusion

This work provides an exploration of learning human movement patterns from data

using machine learning and deep learning procedures. We explore representations

of motion that can e↵ectively capture and compress motion-capture data, develop

tools to generate novel movement, and learn global patterns in the data. We propose

that common NLP techniques can be applied to motion-capture data when the data

is discretized, and with minimal structural changes to the model architecture. We

believe that this work and other work like it provides a basis for training LLMs on

motion-capture data, and that our ability to model this modality will improve with

the NLP field.

In Chapter 3 we develop techniques for motion query and interpolation. The

query tool uses the cosine similarity between STFT spectrograms of motions from

the AIST++ dataset to identify motions that are similar, and assigns a similarity

score between motions. Expert user feedback indicates that this tool would be ef-

fective in educational settings to compare student performance with each other and

to more advanced dancers, and in professional settings where choreographers have to

search for and compare movements from past performance or rehearsal footage. The

interpolation tool uses the DCT to interpolate low-frequency components of move-

ment, which capture a simplified version of movement and its choreography. We

demonstrate that the DCT captures the movement better than the STFT or PCA,

and ask experts to comment on the outputs. Experts found that while motion in-

terpolation and digital tools in general could be challenging to use in an educational

setting, performance experts and choreographers were able to identify specific cases

where they could use the tool for creative prompts.

Chapter 4 focuses on the technical process of training language models on motion-

capture data. We explore discretization methods for SMPL formatted motion-capture

49

50

data, and report experimental results of training a decoder-only transformer archi-

tecture on the data with cross-entropy loss. Our training procedure shows that pre-

training on a large corpus of motion-capture data was an e↵ective way of learning

the motion-capture domain for downstream tasks. In our generative dance work we

fine-tuned the model on the AIST++ dataset for both classification and conditional

generation based on genre, dancer, and choreography labels. We describe a scenario

where we implemented the model in a rehearsal setting, and note the challenges and

main contributions of the model to the creative process. We aim to provide context

in both machine learning research and practical dance application, enabling exciting

new directions in both understanding and composing dance with the help of machine

learning.

5.1 Future work

Future work for this thesis includes improving the motion-capture data tokenization

scheme, and improving the language modeling capacity. For our tokenization scheme

we believe that wavelet transforms [20] may be an e↵ective way to compress motion-

capture data that would be a non-real time transform that could be expanded based

on the context window. PoseGPT [41] used a variational auto-encoder to convert

poses to a discrete latent space, which we believe is a more promising direction for

this work. The constraints of language models are being addressed in NLP research,

and faster attention mechanisms and long-form transformers are promising directions

to allow us to increase the context window of our models and potentially make data

compression schemes like the jpeg-inspired algorithm more feasible.

The largest constraint that motion-capture modeling faces is the amount of pub-

licly available data, and we believe that the performance of our model will scale with

dataset size. To accommodate this issue with the currently available data, we suggest

the following data augmentations that could potentially improve training results:

• Increasing/decreasing the frame rate of the motions. This could help the model

to understand the speed and resolution of movements.

• Selecting di↵erent subsets of joints. This could demonstrate that movements

can be performed with just the upper or lower body, and could help the model

51

to learn the dependencies between joints.

• Rotating the starting orientation of the root joint on the horizontal plane. This

would help the model to map out 3-dimensional space without over-fitting to

the directions individuals were facing when the movement was recorded.

In addition to these data augmentations, adding tasks to the pre-training pro-

cedure may also improve the model’s understanding of the motion-capture domain.

Training the language model on the SMPL joint angles and mesh parameters, the 3D

positions resulting from forward kinematics, and ground contacts that can be recov-

ered from models like HuMoR [54] are example tasks that may improve performance.

This idea reflects the T5 [53] paper, and depends on the assumption that advances

in data and training augmentations in NLP may also apply to motion-capture data.

Bibliography

[1] Emre Aksan, Peng Cao, Manuel Kaufmann, and Otmar Hilliges. Attention,
please: A spatio-temporal transformer for 3D human motion prediction. CoRR,
abs/2004.08692, 2020.

[2] Emre Aksan, Manuel Kaufmann, and Otmar Hilliges. Structured prediction
helps 3D human motion modelling. In The IEEE International Conference on

Computer Vision (ICCV), Oct 2019. First two authors contributed equally.

[3] Sarah Fdili Alaoui, Kristin Carlson, and Thecla Schiphorst. Choreography as
mediated through compositional tools for movement: Constructing a historical
perspective. In Proceedings of the 2014 International Workshop on Movement

and Computing, MOCO ’14, page 1–6, New York, NY, USA, 2014. Association
for Computing Machinery.

[4] Yoav Bergner, Shiri Mund, Ofer Chen, and Willie Payne. First steps in dance
data science: Educational design. In Proceedings of the 6th International Con-

ference on Movement and Computing, pages 1–8, 2019.

[5] Alexander Berman and Valencia James. Towards a live dance improvisation
between an avatar and a human dancer. In Proceedings of the 2014 International

Workshop on Movement and Computing, MOCO ’14, page 162–165, New York,
NY, USA, 2014. Association for Computing Machinery.

[6] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[7] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence
Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler,
Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang,
and Samuel Weinbach. Gpt-neox-20b: An open-source autoregressive language
model, 2022.

[8] Matthew Brand and Aaron Hertzmann. Style machines. In Proceedings of the

27th Annual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’00, page 183–192, USA, 2000. ACM Press/Addison-Wesley Publishing
Co.

[9] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Open-
pose: Realtime multi-person 2d pose estimation using part a�nity fields, 2019.

[10] Kristin Carlson, Thecla Schiphorst, and Philippe Pasquier. Scuddle: Generating
movement catalysts for computer-aided choreography. pages 123–128, 01 2011.

52

53

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[12] Ran Dong, Yangfei Lin, Qiong Chang, Junpei Zhong, Dongsheng Cai, and
Soichiro Ikuno. Motion feature extraction and stylization for character animation
using hilbert-huang transform. In Proceedings of the 2021 ACM International

Conference on Intelligent Computing and Its Emerging Applications, ACM ICEA
’21, page 16–21, New York, NY, USA, 2022. Association for Computing Machin-
ery.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale, 2020.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale, 2020.

[15] Xiaoxiao Du, Ram Vasudevan, and Matthew Johnson-Roberson. Bio-LSTM: A
biomechanically inspired recurrent neural network for 3-d pedestrian pose and
gait prediction. IEEE Robotics and Automation Letters, 4(2):1501–1508, apr
2019.

[16] Katerina El Raheb, Theofilos Mailis, Vladislav Ryzhikov, Nicolas Papapetrou,
and Yannis Ioannidis. Balonse: Temporal aspects of dance movement and its
ontological representation. pages 49–64. Springer International Publishing, 2017.

[17] Katerina El Raheb, Nicolas Papapetrou, Vivi Katifori, and Yannis Ioannidis.
Balonse: Ballet ontology for annotating and searching video performances. pages
1–8, 07 2016.

[18] Benjamin Filtjens, Pieter Ginis, Alice Nieuwboer, Peter Slaets, and Bart Van-
rumste. Automated freezing of gait assessment with marker-based motion cap-
ture and multi-stage spatial-temporal graph convolutional neural networks. Jour-
nal of NeuroEngineering and Rehabilitation, 19(1), may 2022.

[19] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. Recur-
rent network models for human dynamics, 2015.

[20] Jules Françoise, Gabriel Meseguer-Brocal, and Frédéric Bevilacqua. Movement
analysis and decomposition with the continuous wavelet transform. In Proceed-

ings of the 8th International Conference on Movement and Computing, MOCO
’22, New York, NY, USA, 2022. Association for Computing Machinery.

54

[21] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal
Chechik, and Daniel Cohen-Or. An image is worth one word: Personalizing
text-to-image generation using textual inversion, 2022.

[22] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A neural algorithm
of artistic style, 2015.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[24] George E Gorton III, David A Hebert, and Mary E Gannotti. Assessment of
the kinematic variability among 12 motion analysis laboratories. Gait & posture,
29(3):398–402, 2009.

[25] Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wier-
stra. Deep autoregressive networks. 2013.

[26] Liang-Yan Gui, Yu-Xiong Wang, Xiaodan Liang, and José M. F. Moura. Ad-
versarial geometry-aware human motion prediction. In Vittorio Ferrari, Mar-
tial Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision –

ECCV 2018, pages 823–842, Cham, 2018. Springer International Publishing.

[27] Yan Guo, Gang Xu, and Saburo Tsuji. Understanding human motion patterns. In
Proceedings of the 12th IAPR International Conference on Pattern Recognition,

Vol. 3-Conference C: Signal Processing (Cat. No. 94CH3440-5), volume 2, pages
325–329. IEEE, 1994.

[28] Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals,
and João Carreira. Perceiver: General perception with iterative attention. In
ICML, 2021.

[29] Michael Janner, Qiyang Li, and Sergey Levine. O✏ine reinforcement learning as
p.524one big sequence modeling problem, 2021.

[30] I.T. Jolli↵e. Definition and derivation of principal components. In Principal

Component Analysis, pages 1–6. Springer, 1986.

[31] Jeremy Jordan. Setting the learning rate of your neural network.
https://www.jeremyjordan.me/nn-learning-rate/.

[32] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Je↵rey Wu, and Dario Amodei.
Scaling laws for neural language models, 2020.

[33] Andrej Karpathy/karpathy. mingpt. https://github.com/karpathy/minGPT.

[34] Muhammed Kocabas, Nikos Athanasiou, and Michael J. Black. Vibe: Video
inference for human body pose and shape estimation, 2020.

http://www.deeplearningbook.org

55

[35] François-Joseph Lapointe and Martine Époque. The dancing genome project:
Generation of a human-computer choreography using a genetic algorithm. In
Proceedings of the 13th Annual ACM International Conference on Multimedia,
MULTIMEDIA ’05, page 555–558, New York, NY, USA, 2005. Association for
Computing Machinery.

[36] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for
parameter-e�cient prompt tuning. In Proceedings of the 2021 Conference on

Empirical Methods in Natural Language Processing, pages 3045–3059, Online
and Punta Cana, Dominican Republic, November 2021. Association for Compu-
tational Linguistics.

[37] Chen Li, Zhen Zhang, Wee Sun Lee, and Gim Hee Lee. Convolutional sequence
to sequence model for human dynamics, 2018.

[38] Ruilong Li, Shan Yang, David A. Ross, and Angjoo Kanazawa. AI choreographer:
Music conditioned 3D dance generation with aist++, 2021.

[39] Ruilong Li, Shan Yang, David A. Ross, and Angjoo Kanazawa. Learn to dance
with aist++: Music conditioned 3D dance generation, 2021.

[40] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J. Black. SMPL: A skinned multi-person linear model. ACM Trans.

Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–248:16, October 2015.

[41] Thomas Lucas*, Fabien Baradel*, Philippe Weinzaepfel, and Grégory Rogez.
Posegpt: Quantization-based 3D human motion generation and forecasting. In
European Conference on Computer Vision (ECCV), 2022.

[42] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha
Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong,
Juhyun Lee, Wan-Teh Chang, Wei Hua, Manfred Georg, and Matthias Grund-
mann. Mediapipe: A framework for building perception pipelines, 2019.

[43] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and
Michael J. Black. AMASS: archive of motion capture as surface shapes. CoRR,
abs/1904.03278, 2019.

[44] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong Li. Learning tra-
jectory dependencies for human motion prediction. In The IEEE International

Conference on Computer Vision (ICCV), October 2019.

[45] Julieta Martinez, Michael J. Black, and Javier Romero. On human motion pre-
diction using recurrent neural networks. In Proceedings IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) 2017, Piscataway, NJ, USA,
July 2017. IEEE.

56

[46] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going
deeper into neural networks, 2015.

[47] Meinard Muller, Andreas Baak, and Hans-Peter Seidel. E�cient and robust
annotation of motion capture data. In Proceedings of the 2009 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, SCA ’09, page
17–26, New York, NY, USA, 2009. Association for Computing Machinery.

[48] Meinard Muller, Tido Röder, and Michael Clausen. E�cient content-based re-
trieval of motion capture data. In ACM SIGGRAPH 2005 Papers, SIGGRAPH
’05, page 677–685, New York, NY, USA, 2005. Association for Computing Ma-
chinery.

[49] Emily Napier, Gavia Gray, and Sageev Oore. Sequence modeling of motion-
captured dance. In Workshop on Machine Learning for Creativity and Design,
2022.

[50] Emily Napier, Gavin Gray, and Sageev Oore. Spectral analysis for dance move-
ment query and interpolation. In Proceedings of the 8th International Conference

on Movement and Computing, MOCO ’22, New York, NY, USA, 2022. Associa-
tion for Computing Machinery.

[51] Dario Pavllo, David Grangier, and Michael Auli. Quaternet: A quaternion-
based recurrent model for human motion. In British Machine Vision Confer-

ence 2018, BMVC 2018, Northumbria University, Newcastle, UK, September

3-6, 2018, page 299, 2018.

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from
natural language supervision, 2021.

[53] Colin Ra↵el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of
transfer learning with a unified text-to-text transformer, 2019.

[54] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang, Srinath Sridhar, and
Leonidas J. Guibas. Humor: 3D human motion model for robust pose estimation.
In International Conference on Computer Vision (ICCV), 2021.

[55] Mikel D Rodriguez, Javed Ahmed, and Mubarak Shah. Action mach a spatio-
temporal maximum average correlation height filter for action recognition. In
2008 IEEE conference on computer vision and pattern recognition, pages 1–8.
IEEE, 2008.

[56] Ari Shapiro, Yong Cao, and Petros Faloutsos. Style components. In Proceedings

of Graphics Interface 2006, pages 33–39, 2006.

57

[57] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Decoupled spatial-temporal
attention network for skeleton-based action recognition, 2020.

[58] Julius O. Smith. Mathematics of the Discrete Fourier Transform

(DFT). http:http://ccrma.stanford.edu/ jos/mdft///ccrma.stanford.edu/-
~jos/mdft/, accessed (10th Feb 2022). online book, 2007 edition.

[59] Kun Su, Xiulong Liu, and Eli Shlizerman. How does it sound? Advances in

Neural Information Processing Systems, 34, 2021.

[60] Yu Sun, Qian Bao, Wu Liu, Yili Fu, Black Michael J., and Tao Mei. Monocular,
one-stage, regression of multiple 3D people. In ICCV, 2021.

[61] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip
Pham, Jinfeng Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long range
arena : A benchmark for e�cient transformers. In International Conference on

Learning Representations, 2021.

[62] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evalua-
tion of generative models, 2015.

[63] Shuhei Tsuchida, Satoru Fukayama, Masahiro Hamasaki, and Masataka Goto.
Aist dance video database: Multi-genre, multi-dancer, and multi-camera
database for dance information processing. In Proceedings of the 20th Interna-

tional Society for Music Information Retrieval Conference, ISMIR 2019, pages
501–510, Delft, Netherlands, November 2019.

[64] Guillermo Valle-Pérez, Gustav Eje Henter, Jonas Beskow, André Holzapfel,
Pierre-Yves Oudeyer, and Simon Alexanderson. Transflower: probabilistic au-
toregressive dance generation with multimodal attention. 2021.

[65] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, koray kavukcuoglu,
Oriol Vinyals, and Alex Graves. Conditional image generation with pixelcnn
decoders. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need,
2017.

[67] Rudolf Von Laban. Modern educational dance. Princeton Book Company Pub,
1975.

[68] G.K. Wallace. The jpeg still picture compression standard. IEEE Transactions

on Consumer Electronics, 38(1):xviii–xxxiv, 1992.

[69] Phil Wang/lucidrains. mlm-pytorch. https://github.com/lucidrains/mlm-
pytorch.

58

[70] Kevin Xie, Tingwu Wang, Umar Iqbal, Yunrong Guo, Sanja Fidler, and Florian
Shkurti. Physics-based human motion estimation and synthesis from videos,
2021.

[71] Liang Xu, Ziyang Song, Dongliang Wang, Jing Su, Zhicheng Fang, Chenjing
Ding, Weihao Gan, Yichao Yan, Xin Jin, Xiaokang Yang, Wenjun Zeng, and Wei
Wu. Actformer: A GAN-based transformer towards general action-conditioned
3D human motion generation, 2022.

[72] Zijie Ye, Haozhe Wu, Jia Jia, Yaohua Bu, Wei Chen, Fanbo Meng, and Yanfeng
Wang. ChoreoNet: Towards music to dance synthesis with choreographic action
unit. In Proceedings of the 28th ACM International Conference on Multimedia.
ACM, oct 2020.

[73] Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli Huang, Yong Zhang,
Hongwei Zhao, Hongtao Lu, and Xi Shen. T2m-gpt: Generating human motion
from textual descriptions with discrete representations, 2023.

[74] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei
Yang, and Ziwei Liu. Motiondi↵use: Text-driven human motion generation with
di↵usion model, 2022.

[75] Mengyi Zhao, Mengyuan Liu, Bin Ren, Shuling Dai, and Nicu Sebe. Modi↵:
Action-conditioned 3D motion generation with denoising di↵usion probabilistic
models, 2023.

[76] Wentao Zhu, Xiaoxuan Ma, Zhaoyang Liu, Libin Liu, Wayne Wu, and Yizhou
Wang. Learning human motion representations: A unified perspective, 2023.

Appendix A

Appendix

A.1 PCA

PCA is a dimensionality reduction technique that captures the axes along which the

data has maximum variance [30](1-6). PCA can be expressed as a weight matrix W

transforming an input matrix X to produce T ,

T = WX. (A.1)

For example, when X is a matrix of joint angles, the dimension being reduced may

be the time dimension, allowing PCA to capture components of joint motion through

time.

To find the PCA weight matrix W we apply singular value decomposition (SVD)

after centering the data to produce X̃,

X̃ =
rX

i=1

�iuiv
⇤
i (A.2)

W =

2

666664

v⇤
1

v⇤
2
...

v⇤
N

3

777775
, (A.3)

where N is the number of principal components we have chosen.

A.1.1 Spectral embedding based on PCA

The motion data used in this work came from pose, or joint angle rotations, in

SMPL [40] format. In Chapter 3 the STFT was calculated for each axis angle rotation

of the joints, creating 72 sets of spectral features. To interpret this visually the

features for each joint rotation can be plotted individually as a spectrogram, however

59

60

this is not a practical representation to aid in understanding the motion of the body

as a whole.

In Sections 3.5 and 3.6 PCA is fit to the set of STFT spectral features, and we

plot the first principal component. This shows a more general representation of the

spectra of the motion instead of detailed features of a single rotation.

A.2 ICA

ICA is a statistical technique used to separate a set of mixed signals into their un-

derlying independent components [6](591). Given a matrix of mixed signals X, ICA

aims to find a matrix of unmixing vectors A such that the recovered signals S can be

obtained as:

S = AX. (A.4)

In ICA, the goal is to estimate the unmixing matrix A such that the components

in S are statistically independent. In the context of SMPL motion-capture data, we

apply ICA over the joint rotations to isolate signals that capture components of joint

motion over time.

A.3 SMPL pose representations

The SMPL [40] framework models human movement as a series of frames that contain

pose and body shape parameters. A complete frame of motion can be described by:

• ~✓: pose, composed of axis-angle 3D rotation vectors ~!: ~✓ = [~!T
0 , ..., ~!

T
K] for K

angles.

• ~�: shape parameters.

~✓ contains the 24 joints listed in section A.4 as axis-angle rotations. The axis-

angle format consists of an axis of rotation and an angle of rotation around that axis,

resulting in a 3-dimensional rotation vector. Matrices that define motions contain 72

joint rotations by N frames.

61

~� is a 10-dimensional vector which contains parameters that alter a 3D mesh of

the human body. This a↵ects features such as height and bone length, and is used to

recover joint positions through forward kinematics in this work.

A.4 Data simplification: Joint removal

In Chapter 4 we select a subset of joints from the SMPL formatted data to simplify

our model. The full list of SMPL joints and whether they were included in our work

is shown in Table A.1.

SMPL joints Included in Chapter 4
Pelvis Yes

Left Hip Yes
Right Hip Yes
Spine No

Left Knee Yes
Right Knee Yes
Thorax No

Left Ankle Yes
Right Ankle Yes
Upper Thorax No

Left Toe No
Right Toe No

Neck No
Left Collar No
Right Collar No

Jaw No
Left Shoulder Yes
Right Shoulder Yes
Left Elbow Yes
Right Elbow Yes
Left Wrist Yes
Right Wrist Yes
Left Hand No
Right Hand No

Table A.1: SMPL joint table.

62

A.5 Bilateral data augmentation

The bilateral data augmentation performs a matrix multiplication on the original

movement to mirror symmetrical joint angles. Demo Video 13 (https://youtu.be/RWaAtb1lG9M)

shows an example movement and the augmented version.

https://youtu.be/RWaAtb1lG9M

	Title Page
	Table of Contents
	Abstract
	Acknowledgements
	Introduction
	Thesis outline

	Background
	Datasets
	Pose representations
	Related Work

	Spectral analysis for dance movement query and interpolation
	Preface
	Introduction
	Background
	Related work

	Motion querying
	Motion interpolation
	Results
	Expert user feedback
	Motion sequence query results
	Motion interpolation results
	Low-pass filtered motion

	Discussion
	Summary

	Sequence modeling of motion-captured data
	Preface
	Introduction
	Background
	Pose tokenization
	Natural Language Processing
	Sequence modeling

	Pose tokenization
	Methods
	Results

	Language modeling
	Datasets
	Methods
	Results and discussion

	Conditional generation
	Motion classification
	Summary

	Conclusion
	Future work

	Bibliography
	Appendix
	PCA
	Spectral embedding based on PCA

	ICA
	SMPL pose representations
	Data simplification: Joint removal
	Bilateral data augmentation

