
APPLICATIONS OF DEEP CONVOLUTIONAL NEURAL

NETWORKS TO PASSIVE ACOUSTIC MONITORING OF BALEEN

WHALES

by

Mark Thomas

Submitted in partial fulőllment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

February 2024

© Copyright by Mark Thomas, 2024

For Elizabeth.

ii

Table of Contents

List of Tables . vi

List of Figures . ix

Abstract . xiv

Acknowledgements . xv

Chapter 1 Introduction . 1

1.1 Contributions . 4

1.2 Thesis Organization . 6

Chapter 2 Background and Related Work 8

2.1 Neural Networks . 8

2.2 Convolutional Neural Networks . 11
2.2.1 Deep Residual Learning . 15
2.2.2 Additional Advancements . 17

2.3 CNN-based Detection Models . 19
2.3.1 Two-stage Detection Models: Region-based CNNs 20
2.3.2 Single-stage Detection Models 22

2.4 Performance Metrics for CNNs and R-CNNs 26
2.4.1 Precision, Recall, and F-1 Score 26
2.4.2 Using Average Precision to Describe Detection Performance . 27

2.5 Visual Representations of Acoustic Data 29
2.5.1 Linearly-scaled Spectrograms 30
2.5.2 Mel-scaled Spectrograms . 31
2.5.3 Novel Representation: Stacked & Interpolated Spectrograms . 32

2.6 Applications of Machine Learning to PAM 34

2.7 Applications of Convolutional Neural Networks to PAM 35

Chapter 3 Deep Convolutional Learning for PAM 38

3.1 Acoustic Data Sets . 40

3.2 CNNs for Spectrogram Classiőcation 40

iii

3.2.1 Data set and Methods . 41
3.2.2 Experimental Results . 46

3.3 R-CNNs for Vocalization Detection 48
3.3.1 Data set and Methods . 48
3.3.2 Experimental Results . 49
3.3.3 DCS Use and Adaptability . 50

Chapter 4 Learning from Unlabeled Passive Acoustic Data 52

4.1 Background, Data Sets, and Methods 52
4.1.1 Acoustic Data Sets . 53
4.1.2 Semi-Supervised Learning . 59

4.2 Experimental Results . 62
4.2.1 Baseline vs. Semi-supervised 63
4.2.2 Out-of-Distribution Performance 65

Chapter 5 Operational DCS . 67

5.1 Background and Requirements of Operational DCS 67

5.2 Standardized methods for training and evaluation 68
5.2.1 Data Set Creation . 69
5.2.2 Model Training . 73
5.2.3 Model Evaluation . 75
5.2.4 Inference on Edge Devices . 77

5.3 Automated DCS Results . 79
5.3.1 Blue, Fin, Right, and Sei Whale Detector 79
5.3.2 Humpback and Infrasonic Fin Whale Detector 85
5.3.3 Minke Whale Pulse Train Detector 87

5.4 Model Updates via Transfer Learning 88
5.4.1 Adapting to New Noise Sources 89
5.4.2 Adapting to New Locations 92
5.4.3 Discussion . 94

5.5 Updating Models Parameters Over-the-Air 94
5.5.1 Model Quantization . 95
5.5.2 Transmitting Partial Networks 97
5.5.3 Discussion . 100

Chapter 6 Conclusion and Future Work 103

6.1 Keeping Up with the Evolution of Machine Learning 104
6.1.1 Algorithms and Architectures 104

iv

6.1.2 Technological Tools and Resources 104

6.2 Future Work: Spatio-temporal Contextual Awareness 106

Bibliography . 108

v

List of Tables

3.1 Deployment locations and recording depths of the AMARs used
in collecting the ESRF data. Note that a recorder was deployed
at station 3 near Sable Island, however it was lost either due to
burial in moving sand or őshing gear. 42

3.2 Number of őles and the distribution of each acoustic source for
the training, validation, and test sets. 43

3.3 Mean performance and 95% conődence intervals of ten train-
ing/testing runs using different random number generator seeds. 46

3.4 Median values of average precision (AP) evaluated over various
IoU thresholds as described in the COCO Detection Challenge 50

4.1 Deployment locations and recording depths of the AMARs used
in collecting Sets A and B. 56

4.2 Annotation distribution for Sets A and B separated at the acous-
tic source level. 58

4.3 Performance comparison of the baseline and semi-supervised CNN
architectures in terms of precision, recall, and F-1 score, mea-
sured on the validation data of Set A: Bay of Fundy. The best
performing models are highlighted in bold. 64

4.4 Performance comparison of the baseline and semi-supervised CNN
architectures in terms of precision, recall, and F-1 score, mea-
sured using the data from Set B: Atlantic OCS. The best per-
forming models are highlighted in bold. 65

5.1 Estimated number of parameters (measured in millions (M)) ,
ŕoating-point operations per second (FlOPS, measured in bil-
lions (B)), and memory footprint (measured in megabytes (MB))
of the YOLO and EfficientDet families of models. 80

5.2 Overall performance of the YOLO models trained to detect the
vocalizations of BW, FW, RW, and SW 82

5.3 Overall performance of the EfficientDet models trained to detect
the vocalizations of BW, FW, RW, and SW 83

vi

5.4 Per-őle performance comparisons of the YOLO detector against
JASCOs contour detector. No comparative metrics were avail-
able for detecting North Atlantic right whales (RW). 84

5.5 Measured runtimes of the YOLO detection models when evalu-
ating 110 őles each 10 minutes long at sampled at 8kHz. Infer-
ence was parallelized on a 24-thread CPU. Measurements include
the the process of loading the models into memory, creating the
TFLite interpreters, streaming the data, and performing the FFT. 85

5.6 Performance of the YOLO-s/l models trained to detect infrasonic
FW vocalizations. 87

5.7 Performance of the YOLO-s/l models trained to detect HB vo-
calizations. 87

5.8 Performance of the YOLO-s/l models trained to detect both HB
and infrasonic FW vocalizations. 87

5.9 Performance of the YOLO models trained to detect minke whale
pulse train vocalizations. 88

5.10 Resulting performance of the YOLO models frozen at layer 9 and
őne-tuned on an increasing number of glider self-noise examples. 90

5.11 Resulting performance of the YOLO models frozen at layer 24
and őne-tuned on an increasing number of glider self-noise ex-
amples. 91

5.12 Performance of the YOLO-s FW/HB detector őne-tuned on data
from the Paciőc Ocean compared to the performance of a YOLO-
s model trained from scratch on that same data. 93

5.13 Performance of the BW/FW/RW/SW detector evaluated using
two levels of model quantization (16-bit ŕoating points and 8-bit
integers). 96

5.14 Size of the full YOLO models quantized using 16-bit ŕoating
points and 8-bit integers.. 96

5.15 Run time and power consumption estimates of the YOLO models
on the Tinker board. A * indicates that the active cooling fan
on the SBC turned on and subsequently spiked power usage. . . 97

5.16 Model size measured in kilobytes (KB) and number of parame-
ters measured in millions of the second TFLite models quantized
at 16-bits. 98

vii

5.17 Run-time and power consumption of the split models on the
Tinker board. After 10 min, the experiments for the large and
x-large models were stopped as they were no longer faster than
real-time and deemed non-operational. A * indicates that the
active cooling fan on the SBC turned on and subsequently spiked
power usage. 98

5.18 Size of the serialized network weights measured in kilobytes (KB)
after being split at the speciőed layer and quantized to 16-bits. 100

5.19 Time to recompile and peak power consumption of each YOLO
model on the edge device. A * indicates that the active cooling
fan on the SBC turned on and subsequently spiked power usage. 100

viii

List of Figures

2.1 Three historically common activation functions: a) sigmoid (σ),
b) hyperbolic-tangent (tanh), and c) rectiőed linear unit (ReLU). 9

2.2 Example őgure of a fully-connected neural network with four
inputs (xi), three outputs (ŷi), and three hidden layers each
with 5 neurons (h(j)

i), where i indexes the nodes of the network
for each layer and j indexes the layer number. 10

2.3 Example illustrations depicting the őrst two steps (top to bot-
tom) of a convolution operation using a 3x3 őlter (shaded) being
applied over a 5x5 input (green) and the corresponding output
(orange). The code used to create the example illustrations was
downloaded from the technical report of Dumoulin et al. [27]. 13

2.4 Example network diagram of a convolutional neural network
(CNN) with an input spectrogram (x), two convolutional layers
displaying the size and number of őlters of each layer, two 2x2
max pooling layers, and two fully connected layers (fc) display-
ing the number of nodes in the fully connected layer. The őrst
fully connected layer is simply a ŕattened version of the output
of the őnal max pooling layer. The őnal fully connected layer
assumes the number of classes is 10 and a softmax activation
function. 15

2.5 Example graphs of a residual building block (left) and bottle-
neck residual building block (right). 16

2.6 Diagram containing the three networks used in the Faster R-
CNN model architecture. The őrst network consists of a CNN
łbackbonež used in extracting features. These features are sent
to a region-proposal network (RPN) in order to determine where
in the features there may be regions of interest (RoIs). Fi-
nally the CNN features and RoIs are combined using a pool-
ing/alignment operation and passed to fully connected layers in
the łheadž network in order to optimize for classiőcation (CE
loss) and bounding box regression (L-1 loss). 22

ix

2.7 Example diagram of the EfficientDet model architecture. The
model is composed of an EfficientNet CNN backbone which
produces features at various scales. These features are passed
to a feature pyramid network (BiPFN), of which each layer in
the BiFPN is fully connected to two convolutional layers used
in producing bounding box predictions and class probabilities.
The convolutional blocks within the backbone network that are
passed to the BiFPN are denoted in blue. 24

2.8 Example diagram of the YOLOv5 model architecture. The
model is composed of a CNN backbone with convolutional blocks
and a SPP block. Three scales of learned features are passed
as input to a PANet referred to as the łneckž. Finally, three
additional convolutional blocks in the head network are com-
bined via non-max suppression. The convolutional/SPP blocks
within the backbone network that are passed to the PANet are
denoted in blue and purple. 25

2.9 Example depiction of the intersection (left) and union (right)
between a ground truth bounding box (blue) and predicted
bounding box (orange). The intersection-over-union (IoU) of
these two bounding boxes is computed as the division of these
two areas, respectively. 28

3.1 An example spectrogram containing two consecutive sei whale
vocalizations, the őrst from times 2-4 seconds and the second
from roughly 6-8 seconds. The spectrogram is duplicated in
order to demonstrate two different systems: (a) the predicted
output of system trained for spectrogram classiőcation, and (b)
the predicted output of a system trained for vocalization detec-
tion. 39

3.2 Individual deployment locations for each of the 19 AMARs used
in collecting the ESRF data set. The recording devices were
deployed over 12 months along the Scotian Shelf off the coast of
Atlantic Canada. Note that a recorder was deployed at station
3 missing from this őgure near Sable Island, however it was lost
either due to burial in moving sand or őshing gear. 41

x

3.3 Example spectrograms for each of the three whale species: a)
blue whales, b) őn whales, c) sei whales, and d) non-biological
noise. Dashed vertical lines depict the start and end times of
the expert annotations centered within the 30s window used in
the data creation sampling routine. For visualization purposes
őltered versions of the spectrograms are being shown on a log-
frequency scale so that the reader can more easily identify the
vocalizations. 44

3.4 Normalized confusion matrices of the two best performing clas-
siőers in terms of F-1 score. 47

3.5 Example annotations (top row) and corresponding predictions
made by the R-CNN (bottom row) for several example vocal-
izations produced by the three species of interest. As previously
mentioned vocalizations have only been partially labelled, for
example: in row 1 column 5, there appears to be several sei
whale vocalizations occurring consecutively, however, only one
has been annotated. Interestingly, the R-CNN has detected
two vocalizations and therefore the reported metrics for this
test instance would be artiőcially low. 49

3.6 Example predictions (green) and expert annotations (yellow)
presented in PAMlab. The őle used in this example was ran-
domly selected from a set of data not used during training,
validation, or testing. The acoustic őle was recorded in June
2015 off the coast of Nova Scotia in the Gully Marine Protected
Area. 51

4.1 Deployment Locations: (a) Set A: three AMARs were deployed
in the Bay of Fundy between August and November, 2015. (b)
Set B: six AMARs were deployed along the Atlantic Outer Con-
tinental Shelf (OCS) from late November 2017 to June 2018. . 55

xi

4.2 The data distribution of all őles from the training and valida-
tion data set (Set A) plotted over time, factored by the deploy-
ment location (station) and annotation level (fully, partially,
or non-annotated). Files that contain at least one vocalization
made by minke whales known as a łpulse trainž are plotted as
blue squares. Files that either explicitly do not (fully-annotated
őles) or possibly contain a pulse train (partially/non-annotated)
are plotted using red X’s (i.e., possible sources of false alarm).
The plotted őgure only contains data until November 1 of 2015
as there were no minke whale annotations during the őnal two
months of the deployment. A slight jitter was added to each
point in order to distinguish őles from the same date. 57

4.3 A spectrogram containing a minke whale pulse train annotated
with a long blue bounding box along with several overlapping
humpback whale vocalizations individually annotated using yel-
low bounding boxes. 58

4.4 Two example data instances before and after being passed through
the SpecAugment data augmentation routine. The top row
of spectrograms contains consecutive minke whale pulse trains
below 400Hz as well as several humpback whale vocalizations
bounded between 400 and 600Hz. The second row of spec-
trograms contains a possible source of false alarm pertaining to
humpback whale vocalizations bounded between 200 and 500Hz
coupled with several őn whale 20Hz pulse vocalizations. Col-
umn one (starting from the left) contains the original data in-
stance. Column two contains the same data instance after being
łtime-warpedž using SpecAugment (W = 200). Column three
contains two example time and frequency masks per instance
using maximum mask widths of T = 50 and F = 50. 61

5.1 Outline of the pipeline used in creating a DCS development data
set. The requirements to the pipeline include a conőguration
őle that may specify several parameters used when running the
FFT and a SQL query for selecting the annotations from the
database. 71

5.2 Image of the Asus Tinker Edge T SBC. Image source: product
information page from ASUS. 78

xii

5.3 Example AP@.5 of the YOLO-l model evaluated after each
epoch. The model with 9 frozen layer is able to make major
adjustments to the weights of the neural network due to fewer
weights being frozen, but over time the difference in perfor-
mance is negligible. The őgure is faceted by the number of new
instances supplied to the model for training. 92

5.4 AP@0.5 measured over 300 epochs of training a model from
scratch versus using transfer learning. 93

xiii

Abstract

Research into automated detection and classiőcation systems (DCS) of marine mam-

mal vocalizations in acoustic recordings is expanding internationally due to the ne-

cessity to analyze large collections of data for conservation purposes. This work

discusses historical implementations of marine mammal DCS and introduces more

recent developments using deep learning and convolutional neural networks (CNNs).

A novel application of region-based CNNs (R-CNNs) is used for the development of

a DCS that is capable of detecting the vocalizations of endangered baleen whales

in both time and frequency. A state-of-the-art approach to semi-supervised learning

is adapted for the task of spectrogram classiőcation in order to address the issue of

data scarcity commonly found in passive acoustic monitoring (PAM) and increase the

performance of the aforementioned systems by as much as ten percent. Finally, an

operational marine mammal DCS is developed to address real-world constraints like

data set variance, computational limitations, and over-the-air model updates. This

work contributes to advancing marine mammal vocalization detection and supports

conservation efforts through PAM.

xiv

Acknowledgements

Throughout the duration of my doctoral studies, I have had the privilege of working

with many incredibly talented, thoughtful, and kind individuals in industry, govern-

ment, and academia. To name them all here would exceed the page limit of this

document.

Much of this work was completed in collaboration between myself and researchers

at JASCO Applied Sciences and was made possible through a number of grants span-

ning several years: NSERC Engage, Mitacs Accelerate, and Department of Defence

IDEaS. I would like to sincerely thank several members of the JASCO Applied Sci-

ences team, notably: Katie and Julien for their receptivity and allowing me to pick

their brain with any questions I may have related to marine biology; Briand for his

help in data collection, data pre-processing, and Java development; and Nisarg for his

assistance in operationalizing the research described in this work. I was also fortunate

to work at Google X through their AI Residency program. I consider many of the

individuals that I was able to work with during this time to be some of the smartest

people I have ever met and owe a immense amount of gratitude.

I am overwhelmingly grateful to my co-supervisors Bruce and Stan. First, to

Bruce I simply cannot express how thankful I am for the invitation to work on the

research outlined in this document and introducing me to a őeld in which I was

at őrst oblivious and now hope to continue working on for many years to come. I

thank you for your guidance and suggestions relating to passive acoustic monitoring

and digital signal processing in which your years of expertise and ability to foster

community in this space are overtly apparent. To Stan, I thank you for being a calm

and passionate researcher who is both a fervent learner and inspiring to so many

others. I am astounded by your continued grace, encouragement, and support of my

studies especially during several very challenging years.

Finally, to my family. There are no words that I could write on this page that

are capable of characterizing how grateful I am for shaping me into the person I am

today and the happiness you have brought me. I love you all.

xv

Chapter 1

Introduction

The majority of the Earth’s surface (roughly 70.8%) is covered by the ocean [45]. It

is therefore not surprising that the ocean plays a critical role in our planets climate

and its many ecosystems. However, the health of the Earth’s ocean has increasingly

been threatened by a wide range of human activity, including: climate change, over-

extraction of resources, and pollution [34, 40]. Many of us are well aware ofśif not

deeply connected tośsome of the anthropogenic threats just listed. Particularly those

whose striking imagery has been captured and communicated broadly (e.g., receding

sea ice, coral reef bleaching, and waterways őlled with plastic or industrial waste).

Another signiőcant issue that plagues the ocean is that of noise pollution. Anthro-

pogenic activities like off-shore drilling and pile-driving, seismic surveys, vessel traffic,

and military exercises have altered the acoustic landscape of the ocean [52]. These

activities can generate sounds at frequencies that disrupt the communication and

navigation of marine life.

For all of these reasons, it is becoming increasingly important to study marine

environments and the species that inhabit them. One such group of species are the

subset of marine mammals known as cetaceans. Increases in the number of ship

strikes in common breeding and feeding grounds have lead to the deaths of hundreds

of cetaceans [48, 62]. Entanglement in őshing gear is another source of concern in less

travelled marine traffic environments and has also been responsible for a sizable num-

ber of cetacean casualties [35]. Many of the species belonging to this taxonomy pro-

duce vocalizations for the purposes of navigation, feeding, breeding, and intraspecies

communication [135]. Marine mammals must now compete with the aforementioned

anthropogenic acoustic sources in order to be heard by their co-inhabitants [78]: a

concept known as acoustic masking. Making matters worse, research has shown that

noise created by human activity causes temporary to permanent hearing loss in ma-

rine mammals; severely altering their way of life [109] or in some cases leading to

1

2

strandings [125].

Policy makers, government officials, and environmental groups, among others,

have expressed their concern for the well being of marine mammals and have pre-

sented solutions to mitigate the risk that human activity poses to these animals, such

as: tightening speed restrictions on vessels, removing őshing gear, and pausing mil-

itary exercises or construction when marine mammals are detected in a given area.

However, often times our limited understanding of cetacean behaviour and/or inabil-

ity to detect species presence in real-time has resulted in sub-optimal enactment of

these mitigation strategies [23].

Ones ability to make informed decisions and mitigate further harm to these species

hinges on a robust and accurate method of determining species presence. Fortunately,

marine mammal vocalizations are predominantly distinct on a per-species level, allow-

ing one to determine which speciesśif anyśare present in a given area by detecting the

sounds (i.e., vocalizations) they emit [135]. Using the total number of detected vocal-

izations, it is possible to estimate the abundance of a given species present in a record-

ing area [76, 82] and potentially improve our understanding of cetacean behaviour.

The process of analyzing acoustic data for the purpose of estimating species presence

and abundance is more generally known as Passive Acoustic Monitoring (PAM). As

one may expect, PAM is not unique to marine environments [30, 110, 118], however

for the case of marine mammals, PAM offers several advantages. First, by passively

monitoring for marine mammal vocalizationsśas opposed to actively monitoring (e.g.,

using active SONAR)śwe reduce the risk of altering the species’ behaviour [86]. A

similar argument can be made when comparing passive acoustics to visual surveys

on-board vessels. Second, visual surveys at sea, using aircraft, or through satellite

imagery are limited to the short periods of time when the species of interest is in

close proximity to the ocean surface, acclimate weather conditions not withstanding.

Finally, as a function of time, the őnancial cost of passive acoustics out-weighs visual

surveys, active SONAR, and other means of determining presence/absence [82]. For

the remainder of this work, the use of the acronym PAM implies passive acoustic

monitoring of cetaceans only.

3

As alluded to above, PAM offers a practical approach to measuring marine mam-

mal presence and make subsequent abundance estimates. In terms of threat mitiga-

tion, one is predominantly concerned with detecting species presence. The primary

challenge in determining species presence via PAM, is developing a robust detection

algorithm. Research and development of detection algorithms is accomplished us-

ing recorded audio and accompanying ground truth data in the form of annotations.

Once a detection system has been developed and proven to be reliable, it may be used

in real-time applications and assist in threat mitigation. Ideally, the ground truth

annotations would be created by a trained expert (e.g., marine biologist) who would

analyze all of the available PAM data to provide an accurate count of the individual

marine mammal vocalizations: start/end times of each vocalization and correspond-

ing frequency bounds. However, the volume that PAM data is regularly collected

has long-since surpassed the speed at which it can be analyzed by human experts.

In many cases, PAM data is collected continuously over several months via moored

acoustic recording devices. A single acoustic recorder typically collects multiple ter-

abytes of PAM data per deployment and collections of PAM data are starting to be

described on a petabyte-scale [30, 127]. In reality, when the acoustic recording devices

are retrieved, often as little as three percent of the entirety of the data is manually

annotated due to time and/or resource restrictions [59]. As a result, machine learn-

ing (ML) has been a useful tool in developing automated Detection and Classiőcation

Systems (DCS) of marine mammal vocalizations for many years [5, 31, 81, 100]. More

recently, researchers have started to develop neural network based DCS under the ML

sub-őeld known as deep learning (DL) [56, 105, 117].

The scope of this document is to brieŕy overview the past, present, and possi-

ble future of ML/DL-based DCS for PAM. This research is limited to the cetacean

sub-order known as Mysticeti (i.e., baleen whales), however, the applications of this

research may be applied to species outside of this taxanomy. Related work corre-

sponding to other species of marine mammals (e.g., Odontoceti; or toothed whales)

is included due to the relatively small amount of related work that exists.

This document describes several working applications using original data collected

for scientiőc research that could have substantial implications towards environmental

policy and conservation efforts. The data was manually selected based on the target

4

species of interest, however, it has not been cleaned and manipulated unlike many

research areas in ML that use common sets of image data or pre-processed acoustic

recordings.

1.1 Contributions

The main contributions of this research are as follows:

1. A convolutional neural network (CNN) is trained to classify spectrograms con-

taining the vocalizations of endangered baleen whales.

2. Region-based CNNs (R-CNNs) are developed to detect individual baleen whale

vocalizations in time and frequency.

3. State-of-the-art (SOTA) approaches to semi-supervised learning for computer

vision are adapted to the task of spectrogram classiőcation and the classiőers

trained through semi-supervised learning are demonstrated to be more robust

to out-of-distribution examples.

4. The research above is packaged for operational use in an industry PAM set-

ting, running DCS on edge devices, and performing over-the-air updates when

networking bandwidth is limited.

This research has resulted in őve publications (one journal article and four conference

proceedings), and a number of contributed/invited talks:

Publications

• A. Theissler, M. Thomas, M. Burch, F. Gerschner (2022) łConfusionVis: Com-

parative evaluation and selection of multi-class classiőers based on confusion

matricesž. Knowledge-Based Systems

• M. Thomas, B. Martin, and S. Matwin, (2021) łLeveraging Unlabelled Data

through Semi-supervised Learning to Improve the Performance of a Marine

Mammal Classiőcation Systemž. From Shallow to Deep: Overcoming Limited

and Adverse Data Workshop, International Conference on Learning Represen-

tations (ICLR)

5

• M. Thomas, B. Martin, K. Kowarski, B. Gaudet, and S. Matwin, (2019)

łDetecting endangered baleen whales within acoustic recordings using R-CNNsž.

Joint Workshop on AI for Social Good, Neural Information Processing Systems

(NeurIPS)

• M. Thomas, B. Martin, K. Kowarski, B. Gaudet, and S. Matwin, (2019) łMa-

rine mammal species classiőcation using convolutional neural networks and a

novel data representationž. European Conference on Machine Learning (ECML)

• M. Thomas, (2019) łTowards a novel data representation for classifying acous-

tic signalsž. Canadian Conference on Artiőcial Intelligence

Technical Reports

• M. Thomas, N. Patel, E. Maxner, B. Martin (2023) łOperational Neural Net-

works for Marine Mammal Detection and Classiőcationž Technical report for

Defence Research and Development Canada (DRDC).

Invited Talks

• łLetting marine mammal Vocalization neural networks swim on their ownž, Ma-

chine Learning Advances for Marine Acoustics and Imagery Data, MERIDIAN

and Ocean Networks Canada, Halifax, NS, Nov 2022

• łPotential and novelty of deep learning (panel discussion)ž, Detection and Clas-

siőcation in Marine Bioacoustics with Deep Learning, MERIDIAN and Ocean

Networks Canada, Victoria, BC, Nov 2019

• łDetecting endangered baleen whales within acoustic recordings using R-CNNsž,

Detection and Classiőcation in Marine Bioacoustics with Deep Learning, MERID-

IAN and Ocean Networks Canada, Victoria, BC, Nov 2019

• łMarine mammal species classiőcation using convolutional neural networksž,

Workshop on the Analysis of Acoustic Landscapes, University of São Paulo,

São Paulo, Brazil, Sep 2018

6

Contributed Talks

• łAn end-to-end approach for true detection of low frequency marine mammal

vocalizationsž, 178th Meeting of the Acoustical Society of America, San Diego,

California, Dec 2019

• łDeep learning detection and classiőcation of baleen whale vocalizations using a

novel data representationž, CIFAR Deep Learning and Reinforcement Learning

Summer School (DLRLSS), University of Alberta, Edmonton, AB, Jul 2019

• łMarine mammal species classiőcation using convolutional neural networksž, 8th

International DCLDE Workshop, Paris, France, Jun 2018

1.2 Thesis Organization

The remainder of this document is outlined as follows.

In Chapter 2, two subsets of models frequently used for the tasks of image clas-

siőcation and object detection are reviewed: CNNs and single/two-stage detections

models, respectively. These models make up the basis of the DL-based DCS devel-

oped in this work. An overview of visual representations of acoustic data, namely

spectrograms, is presented and a justiőcation is made for why such a representation

is useful in PAM. Metrics for measuring the performance of DL-based DCS are intro-

duced. Finally, related work that makes use of feature engineering coupled with ML

algorithms and more recent work applying DL to PAM is discussed.

The majority of the related work outlined above can be categorized under the

ML paradigm of łsupervised learningž. In Chapter 3 supervised learning strategies to

DCS development are presented. First a CNN is developed to classify spectrograms

possibly containing the vocalizations of endangered baleen whales. Next, a novel

approach to detecting individual vocalizations within a spectrogram is put forward

that uses R-CNNs as a model architecture. In doing so, a necessary distinction

between spectrogram classiőcation and vocalization detection is made.

Chapter 4 outlines the current limitations of supervised learning for DCS devel-

opment and presents an alternative approach to updating the weights of a neural

7

network under the ML paradigm of łsemi-supervised learningž, whereby, unlabeled

data coupled with annotated examples can be used to produce more generalizable

classiőcation systems.

In Chapter 5 an operational marine mammal DCS is developed that addresses

several of the constraints found in real-world applications that are often overlooked

in a purely research environment, such as: the variance and bias of PAM data sets,

computational limitations, power efficiencies, and the ability to update models on

autonomous platforms.

Lastly, Chapter 6 contains concluding remarks and proposes further research to

include spatio-temporal context in the development of marine mammal DCS.

Chapter 2

Background and Related Work

The accelerated pace at which the őeld of machine learning continues to evolve un-

questionably makes for a difficult to write introductory chapter. This chapter there-

fore hopes to describe several concepts at a level of granularity that both informs the

reader and encourages further investigation, while at the same time, avoids becoming

out-dated within a matter of monthsśif not weeksśof the time of writing.

In this chapter, the fundamental concepts of neural networks (NNs) are outlined,

setting the stage for an introduction to CNNs used for the task of classiőcation.

Following which, CNN-based model architectures used in performing detection are

introduced. To monitor/benchmark the NNs throughout this work, several metrics

are mathematically deőned. Finally, related work pertaining to more traditional ML

algorithms and those using DL in some capacity are reviewed.

2.1 Neural Networks

Neural networks are computational models that consist of interconnected layers of

artiőcial neurons. They are designed to learn representations of functions or complex

patterns using input data. Representations are learned through the process of training

and optimization. A basic NN is comprised of an input layer, one or more hidden

layers, followed by an output layer, and each layer generally consists of multiple

neurons. A single neuron can be deőned as a non-linear mapping of some input x to

some output h(x). This mapping is typically split into two steps. The őrst step being

a linear combination of the neurons inputs and model parameters. This step is often

referred to as the łpre-activationž and deőned as:

a(x) = W
Tx+ b, (2.1)

where x is the input to the neuron (i.e., the input data or the output of a previous

neuron), W is a vector of weights that quantiőes the connection between neurons, and

8

9

b is a bias term specifying the intercept of the affine transformation. The values of the

weights and biases are determined using an optimization procedure that is described

provided below. The second step is often referred to as the łpost-activationž and

simply applies a non-linear function to the output of Equation 2.1:

h(x) = f(a(x)), (2.2)

where a(x) is the output of the pre-activation deőned above and the non-linear func-

tion f is referred to as an łactivationž function.

As alluded to above, the activation function introduces non-linearity into the

network which enables a networks ability to learn complex representations of the input

data. Moreover, as the number of layers in the model increases and subsequent non-

linearities are stacked, more complex non-linear relations can be learned. Historically,

several common activation functions include the sigmoid function (σ), hyperbolic

tangent (tanh), and rectiőed linear unit (ReLU) [84], each of which are deőned and

visualized in Figure 2.1. There is a great deal of existing research into alternative

activation functions [3], some of which are adaptations to those listed above. For the

purposes of this work, it is generally assumed that each NN employs ReLU activation

functions in the hidden layers.

x

σ(x)

−3−2−1 1 2 3

−3
−2
−1

1

2

3

(a) Sigmoid

σ(x) =
1

1 + e−x

x

tanh(x)

−3−2−1 1 2 3

−3
−2
−1

1

2

3

(b) tanh

tanh(x) =
ex − e−x

ex + e−x

x

ReLU(x)

−3−2−1 1 2 3

−3
−2
−1

1

2

3

(c) ReLU

ReLU(x) = max(0, x)

Figure 2.1: Three historically common activation functions: a) sigmoid (σ), b)
hyperbolic-tangent (tanh), and c) rectiőed linear unit (ReLU).

Neural networks are often presented in the form of an acyclic graph like that of

Figure 2.2. The graph depicted in this őgure displays a neural network with four

10

inputs (xi), three outputs (ŷi), and three hidden layers, each containing őve neurons

(h(j)
i). In the notation above, i is used to index the node of the graph, and j indexes

each node’s corresponding layer. The provided graph is a common example of a

fully-connected neural network (e.g., multi-layer perceptron (MLP)) whose namesake

comes from the fact that each node is connected to every other node in the layers

immediately before and after.

In keeping with the notation used so far, the mathematical operation performed

at node h
(1)
1 is equivalent to:

h
(1)
1 = f(w

(0)
1 x1 + w

(0)
2 x2 + w

(0)
3 x3 + w

(0)
4 x4 + b(0)), (2.3)

where the weights w
(0)
i are depicted in the graph as the edges connecting nodes xi

and h
(1)
i .

x1

x2

x3

x4

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

h
(1)
5

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

h
(2)
5

h
(3)
1

h
(3)
2

h
(3)
3

h
(3)
4

h
(3)
5

ŷ1

ŷ2

ŷ3

input
layer

hidden layers

output
layer

Figure 2.2: Example őgure of a fully-connected neural network with four inputs (xi),
three outputs (ŷi), and three hidden layers each with 5 neurons (h(j)

i), where i indexes
the nodes of the network for each layer and j indexes the layer number.

The łtrainingž or łlearningž procedure of a neural network is conceptually straight-

forward and equivalent to őnding values for each weight (w(j)
i) and bias (b(j)) belonging

to a parameter set θ that minimizes a pre-deőned loss function between the network’s

11

predictions (ŷi) and the target values (yi). When performing classiőcation, a pre-

diction ŷi is interpreted as a score representing how conődent the model is that the

input pertains to class i. Together, the conődence scores can each be interpreted as

un-calibrated probabilities of classifying the input correctly, for each class respectively

[85]. The process of updating the weights and biases to minimize the loss function is

generally achieved through backpropagation [101]. In backpropagation, the gradient

of the loss function with respect to each weight and bias in the network is computed

via the chain rule of calculus and these gradients are used to update the parameters

following some optimization algorithm (e.g., gradient descent). The choice of loss

function used in training a network is an area of research in its own right. The work

presented throughout this document generally makes use of the cross-entropy loss

function deőned in Equation 2.4.

LCE(y, ŷ) = −
N
∑

i=1

yi · log(ŷi), (2.4)

where N is the number of classes (e.g., N = 3 in the example network of Figure

2.2). Assuming the weights and biases of the neural network belong to the set θ, the

update rule for the network parameters using gradient descent can be written as:

θ ← θ − α∇θL (2.5)

where ∇θL is the gradient vector for each parameter in the network and α is a scalar

value specifying the magnitude of the gradient update (also known as the łlearning-

ratež). The process of calculating gradients and updating the weights and biases is

iteratively performed until the loss function converges to a minimum value, a speciőed

number of passes over the entire data set (i.e., epochs) has occurred, or the training

process has been halted to avoid over-őtting (i.e., early-stopping).

2.2 Convolutional Neural Networks

Convolutional neural networks were őrst introduced in the late 1980s [66] and later

used to achieve state-of-the-art results in computer vision on the MNIST benchmark

data set in 1998 [65]. However, CNNs were long thought to be too computationally

inefficient until researchers from the University of Toronto found that by using graph-

ics processing units (GPUs) they could handle many matrix multiplications in parallel

12

and accelerate the training process. Subsequently, this allowed for them to increase

the number of hidden layers in the network and achieve signiőcant improvements in

accuracy for image classiőcation tasks [60]. Since that time, CNNs have been known

to perform well in cases where the training data of the network is structural (e.g., vec-

tors containing time series data, tensors containing RGB image data). In contrast to

the fully-connected neural network described above, the beneőt of CNNsśspeciőcally

their ability to learn complex representations from structural dataśis due to a tech-

nique known as parameter sharing, which involves using the same set of weights and

biases on different regions of the input data. Moreover, parameter sharing in a CNN

has an added beneőt of reducing the number of parameters in the set θ.

In general, a CNN is simply a neural network that makes use of the mathematical

convolution operation in lieu of the matrix multiplication in at least one layer of

the network. In reality, most CNNs correspond to neural networks which are almost

entirely made up of convolutional layers. A typical convolutional layer replaces the

pre-activation deőned in Equation 2.1 with a discrete convolution operation between

the input (I) and a matrix or tensor of weights referred to as a kernel or őlter (F).

Assuming the input I is a tensor with height H, width W , and number of channels

C (e.g., an RGB image) and the convolutional őlter F has height h, width w, and

channels c, the convolution operation can be written as:

O(i, j) =
h−1
∑

m=0

w−1
∑

n=0

c−1
∑

k=0

I(i+m, j + n, k) · F (m,n, k) + b, (2.6)

where b is an additional learnable bias term. Note that convolution as described above

is computed łchannel-wisež and therefore c and C must be equal. In much of this

work, the input to the CNN is a spectrogram which can be interpreted as a gray-scale

image and thus the initial number of channels in the őrst convolutional layer is equal

to one.

The degree to which the őlter is passed over the input in terms of horizontal and

vertical units is known as the stride of the convolution operation. Typically, a stride

of one or two units is used. Additional padding may be added to the input I prior to

the convolution operation in order to convolve over each value of the input an equal

number of times and maintain the size of the output (O). This degree of padding

is referred to as łsamež padding. If no padding is added the convolution operation

13

may be said to have łvalidž padding [27]. The choice of őlter size, stride length,

and the amount of padding used in a convolution operation impacts the size of the

corresponding output. Assuming the input has size H ×W , the őlter has size h×w,

the stride of the operation across height and width are sh and sw, respectively, and

similarly, the padding in height/width is ph and pw, then the dimension of the output

can be calculated as:
⌊

H − h+ 2ph
sh

+ 1

⌋

×
⌊

W − w + 2pw
sw

+ 1

⌋

(2.7)

Figure 2.3 contains three examples depicting a convolution using a 3×3 őlter, various

levels of padding, and different stride values.

padding=0, stride=1 padding=1, stride=1 padding=1, stride=2

Figure 2.3: Example illustrations depicting the őrst two steps (top to bottom) of
a convolution operation using a 3x3 őlter (shaded) being applied over a 5x5 input
(green) and the corresponding output (orange). The code used to create the example
illustrations was downloaded from the technical report of Dumoulin et al. [27].

Parameter sharing is achieved through passing the same őlter or kernel over multi-

ple locations of the input. This reduces the total number of parameters in the network

14

and allows the CNN to learn interesting features that are invariant to translation. For

example, an edge in the top left of a two-dimensional input may be equivalent to an

edge in the bottom right of a similar input in that they are both edges and their

location does not matter. As the parameters of the őlter (F) are shared over the

entire input, multiple őlters are used, each with their own learnable weights. The no-

tation for expressing the size and number of convolutional őlters in a layer is typically

denoted as łh × w × nž, where as before, h and w refer to the height and width of

the őlter, and n is the number of őlters used in that layer. The number of channels

in each őlter is inferred from the number of channels in the input or the output of

the previous layer. In other words, the number of őlters n used in one convolutional

layer is equivalent to the number of channels C in the next layer.

In practice, implementations of convolution in many DL librariesśand in fact,

that of Equation 2.6śactually implement cross-correlation, the only difference being

the őlter is not ŕipped relative to the input. Mathematically, true convolution is

equivalent to moving the indices i and j in Equation 2.6 from the őlter (F) to the

input (I). As the parameters of the őlter are learned from the data, the difference in

notation is negligible. In order to stay consistent with the bulk of the deep learning

literature, the use of the term convolution even when referring to cross-correlation is

maintained throughout this document.

The output of the convolution operation is then passed through an activation

function (as in Equation 2.2), applied element-wise to each value in O. Many con-

volutional layers are followed by a pooling operation which assists in making the

learned model parametersśoften referred to as features or feature mapsśless suscepti-

ble to small variations. Common pooling operations include max pooling in which the

maximum value within a speciőed grid is passed to the next layer, or average pooling

where the mean value is used. Pooling can also be interpreted as down-sampling the

feature-maps. Much like convolution, pooling arithmetic is dependent on the size of

the sampling grid and the stride of the operation. Typically a 2 × 2 grid and stride

of one is used, in which case, the dimensions of the feature maps after pooling are

reduced by half. In some of the literature, it is assumed that pooling is included in

a convolutional layer, however, the two operations are distinguished between in this

work for the simple reason that not all layers in the networks described below adhere

15

to this assumption.

The model architecture of a CNN is often visualized as a network diagram dis-

playing the size of the input at each layer, the size of the convolutional őlters, the

number of őlters, pooling operations, and the output of the network (Figure 2.4).

Convolutional Layer Pooling Layer Fully Connected Layer

5x5 conv, 3
5x5 conv, 62x2 max pool 2x2 max pool fc, 1024

fc, 10

input (x)

CE Loss

Figure 2.4: Example network diagram of a convolutional neural network (CNN) with
an input spectrogram (x), two convolutional layers displaying the size and number of
őlters of each layer, two 2x2 max pooling layers, and two fully connected layers (fc)
displaying the number of nodes in the fully connected layer. The őrst fully connected
layer is simply a ŕattened version of the output of the őnal max pooling layer. The
őnal fully connected layer assumes the number of classes is 10 and a softmax activation
function.

2.2.1 Deep Residual Learning

Apart from the utilization of GPUs for the purposes of training deep learning models,

perhaps one of the most important advances to the őeld of CNNs was the introduction

of residual learning [38]. Intrigued by the results reported by other researchers that

using deeper CNN architectures drastically improves performance [46, 107, 113], He

et al. posed the question:

łIs learning better networks as easy as stacking more layers? ž

The authors demonstrate that this is not the case and that after a certain depth,

including additional layers in the network actually increases training error. One would

assume that if indeed there was nothing left to be learned from the data, the additional

layers would simply learn an identity mapping and thus the network would yield the

16

same results as its shallower version. However, due to optimization complexities, an

identity mapping is not learned and the training accuracy begins to degrade.

To this end, the authors proposed a novel solution to the above issue by learning

a function H(x) through a residual mapping F(x), such that H(x) = F(x) + x. In

this way, learning an identity mapping is as simple as learning F(x) = 0. Figure

2.5 contains two examples of what the authors call łresidual building blocksž: one

standard block comprised of two convolutional layers and a second łbottleneckž block

containing a stack of three layers.

As depicted in Figure 2.5, the bottleneck version of the residual mapping contains

two 1-dimensional convolutional layers that are used to speed up the training process

of deeper networks (e.g., 50 layers or more) by őrst reducing the dimension of the input

that is passed to the 3 × 3 convolution, then subsequently increasing the dimension

back to a desired size. An added beneőt of the őrst 1-D convolutional layer is that it

increases the non-linearity of the residual mapping via the inclusion of an additional

ReLU activation.

x

3x3 Conv

3x3 Conv

+

H(x)

ReLUF(x)

ReLU

x

1x1 Conv

3x3 Conv

1x1 Conv

+

H(x)

F(x)

ReLU

ReLU

ReLU

Figure 2.5: Example graphs of a residual building block (left) and bottleneck residual
building block (right).

The building blocks described above make up a class of CNN architectures known

in the literature as Residual Networks or ResNets [38]. Since their introduction in

2015, Residual building blocks have been adapted and used in many other CNN

architectures [41, 43, 112, 115]. In the following Chapters, several commonly used

17

ResNets with bottleneck residual building blocks are implemented. The numeric value

in the name of the model, for example łResNet-50ž, indicates that the network has a

total of őfty layers.

2.2.2 Additional Advancements

Machine learningśin particular deep learningśis a fast paced area of research. While

it is futile to list all of the many advancements, algorithms, and techniques for im-

proving the performance of deep learning based approaches to computer vision, a few

techniques that were particularly effective in this work are described below.

SGD with Momentum & Adam

The optimization algorithm used in updating the parameters of a neural network

plays an important role in determining the convergence speed and generalization

performance of a model. Equation 2.5 outlines how the weights and biases (θ) are

updated using gradient descent, where it is assumed that all of the available input data

is used for each update step. In other words, the gradient vector ∇θL is calculated

using every instance in the training set. Full gradient descent is often infeasible

in a DL setting due to the size of the training data sets and the computational

complexity of the models. As such, Stochastic Gradient Descent (SGD) is a preferred

optimization strategy whereby sampled batches of data are used to compute∇θL. The

number of instances used in computing the gradient update vector is referred to as the

training łbatch sizež and the update step of standard (or vanilla) SGD is equivalent

to that of Equation 2.5. In this work, two additional optimization routines performed

favourably to vanilla SGD. The őrst optimization algorithm is a slight modiőcation to

SGD known as SGD with momentum [101]. SGD with momentum aims to accelerate

convergence by maintaining a moving average of previous gradient vectors in order

to determine the direction of the next gradient update step in the event that the

gradient vectors may be noisy. The gradient update rule of the parameters θ using

SGD with momentum can be expressed as:

νt = βνt−1 + (1− β)∇θL

θ = θ − ανt,
(2.8)

18

where νt is the łvelocityž at step t, β is the momentum coefficient, and as before: ∇θL
is the gradient vector of the loss function with respect to the model parameters (θ)

and α is the learning rate. Common values for SGD with momentum are α = 0.01

and β = 0.9

The second optimization algorithm is Adaptive Moment Estimation (Adam) [55],

which aims to achieve the same goal as SGD with momentum (i.e., improving conver-

gence speed and generalization) but does so by maintaining moving average estimates

of the őrst and second moments of the computed gradient vector. The update rule

when using Adam can be expressed as:

mt = β1mt−1 + (1− β1)∇θL

νt = β2νt−1 + (1− β2)∇θL2

θ = θ − α

(

mt√
νt + ϵ

)

,

(2.9)

where mt and νt are the estimates of the őrst and second moments of the computed

gradient vector, respectively, β1 and β2 are łdecay ratesł for the two moments, ∇θL2

is the element-wise square of the gradient vector ∇θL, ϵ is a small constant to avoid

division by zero, and α is the learning rate. In practice, mt and νt are bias-adjusted

by dividing by (1− βt
1) and (1− βt

2), respectively. The mathematics of Equation 2.9

can be interpreted as adapting the learning rate for each parameter in θ according

the computed moments. Similarly to SGD, updating θ with Adam is performed using

batches of data. Common hyper-parameter values used in Adam are α = 0.001,

β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

Depthwise Separable Convolutions

Lastly, when model efficiency is of concernśas discussed in Chapter 5śa variant of the

standard convolution operation may be beneőcial. One such variant that has proved

useful for computationally lightweight applications is known as łdepthwise separable

convolutionž [41, 19, 115]. Depthwise separable convolution consists of separating the

convolution operation into two stages: a depthwise convolution and a pointwise (or

1× 1) convolution.

In a depthwise convolution, each channel of the input has a unique őlter. In

comparison to a standard convolution, a depthwise convolution is not accumulated

19

across the input channels. A depthwise convolution can be expressed as:

Od(i, j, k) =
h−1
∑

m=0

w−1
∑

n=0

I(i+m, j + n, k) · Fd(m,n, k), (2.10)

where, as before, I is the input to the convolutional layer, however, the output Od

and őlter Fd are unique on a per-channel level.

A pointwise convolution is then applied to the outputs of the depthwise convolu-

tion to achieve a channel-wise sum:

O(i, j) =
C−1
∑

k=0

Od(i, j, k) · Fp(1, 1, k) + b. (2.11)

Multiple pointwise convolutions are performed using various learnable őlters (Fp) and

the outputs are stacked along the channel axis.

In contrast to a standard convolution operation, depthwise separable convolutions

decouple spatial and channel-wise features. As a result, the computational overhead

and number of parameters is signiőcantly reduced. Intuitively, this can be shown

with the following example. Suppose the input to the őrst convolutional layer is an

RGB image with dimension 10 × 10 × 3. Applying 32 őlters of size 3 × 3 to the

input using a standard convolution would require 32 × 3 × 3 × 3 = 864 individual

weights, and assuming a stride of one and valid padding, would consist of 32 × 3 ×
3× 3× 8× 8 = 55, 296 multiplyśaccumulate operations (MACs). In comparison, the

depthwise convolution would require 3× 3× 3 = 27 weights with 3× 3× 3× 8× 8 =

1, 728 MACs, the pointwise operation consists of 1 × 1 × 3 × 32 = 96 weights with

1 × 1 × 3 × 10 × 10 × 32 = 9, 600 MACs, for a combined 123 weights and 11, 328

MACs.

While beneőcial in terms of computational efficiency, depthwise separable convo-

lutions may present several drawbacks including limiting the expressiveness of the

network in terms of learning complex representations and as a result may lead to

underőtting and lower model accuracy.

2.3 CNN-based Detection Models

Convolutional neural networks, as they have been described above, are particularly

useful for the task of classiőcation, notably on images. In other words, CNNs are

20

quite efficient at interpreting the contents of an input x and assigning a conődence

score that the contents of the input pertain to some class y. However, a traditional

CNN generally performs less favourably when it comes to developing systems that

are capable of specifying where in the input the content of interest lies or specifying

whether the input to the network contains multiple informative regions of interest of

the same or different classes. The most prominent example of the task just described

is generally referred to in ML as łobject detectionž.

While it is certainly possible to detect objects to some degree using a standard

CNN, for example via a sliding window [104], systems designed speciőcally with de-

tection in mind are preferred. These systems can be classiőed into two categories:

single-stage and two-stage detection models. As the name suggests, single-stage mod-

els aim to directly predict bounding boxes and class labels for targets (e.g., objects in

an image) in a single pass over the input. Likewise, two-stage approaches őrst propose

potential regions of interest (RoI) in the input using one neural network and subse-

quently reőne and classify these proposals using a secondary network. The choice of

which algorithm to use generally reduces to the intended application of the model.

Single-stage detection models are known for their ability to perform inference at or

close to real-time making them well-suited for applications where latency is of con-

cern (see Chapter 5), while two-stage detectors have historically outperformed their

single-stage counterparts in terms of precision and thus are preferred in scenarios

where detection accuracy supersedes run-time performance.

2.3.1 Two-stage Detection Models: Region-based CNNs

The most well-known and commonly used two-stage detection models are region-

based convolutional neural networks (R-CNNs). R-CNNs were őrst introduced in

2014 as an alternative to ensemble systems used for the task of object detection [33].

The original R-CNN model architecture őrst generated RoIs within an image using

a selective search algorithm [119]. These RoIs respresent possible bounding boxes

and are then passed to a CNN for classiőcation. In some sense, one can interpret

this model as simply a more efficient means of the sliding window approach. While

the results of the original architecture were promising, the computational overhead of

running each RoI through the CNN was undesirable. The following year, Fast R-CNN

21

was proposed that simply swapped the order of the selective search algorithm and the

CNN [32]. Instead, Fast R-CNN projects the RoIs generated via selective search onto

the shared feature maps of the CNN. In comparison, if the selective search algorithms

generated 1000 RoIs for a single input, the Fast R-CNN architecture would perform

only a single pass through the CNN while the original R-CNN architecture would

require 1000 passes.

In subsequent works, Faster R-CNN [95] and Mask R-CNN [36] were proposed

which replaced the selective search algorithm all-together with a secondary neural

network known as a łregion proposal networkž (RPN). The RPN used in these archi-

tectures carries the beneőt of reducing the total number of RoIs necessary for precise

detection that is typically required when using selective search. For the purpose of

this work, slight differences between the Faster/Mask R-CNN architectures are ne-

glected, notably the use of object masks for the task of instance segmentation [111].

For the remainder of this document the use of the term R-CNN simply implies the

model architecture described by Faster R-CNN.

The R-CNN architecture used in this work can be described as follows. First, the

model input is passed through a CNN or similar feature extraction network (referred

to as the backbone network). The feature maps of the backbone network are then

temporarily stored as well as passed to the RPN which generates N RoIs (typically

N=256). The RoIs of the RPN are then projected onto the stored feature maps

and handed to a third network referred to as the head network. Projection of the

RoIs onto the feature maps is accomplished via either a pooling operation known

as RoIPool [95] or using a similar yet more effective operation known as RoIAlign

[36]. The head network is comprised of several fully-connected layers and is used

to maintain two loss functions: a cross-entropy loss (Lcls = LCE; Equation 2.4) for

performing classiőcation on the predicted bounding boxes, and a smoothed L-1 loss

function for performing bounding box regression:

Lreg(t, v) =
∑

i∈x,y,w,h

smooth(ti − vi), (2.12)

where t represents the predicted bounding box indexed at x, y, w, and h, v is the

22

corresponding ground truth annotation, and the łsmoothž function can be deőned as:

smooth(x) =

0.5x2, if |x| < 1

|x| − 0.5, otherwise
(2.13)

The őnal loss function is a weighted combination of the classiőcation and regression

losses L = Lcls+λLreg. An example network diagram of R-CNN is depicted in Figure

2.6.

input (x)
"backbone" CNN

RPN

"head" networkRoI pool/align

L-1 loss

CE loss

Convolutional Block

. . .

Fully Connected Layer

Figure 2.6: Diagram containing the three networks used in the Faster R-CNN model
architecture. The őrst network consists of a CNN łbackbonež used in extracting
features. These features are sent to a region-proposal network (RPN) in order to
determine where in the features there may be regions of interest (RoIs). Finally the
CNN features and RoIs are combined using a pooling/alignment operation and passed
to fully connected layers in the łheadž network in order to optimize for classiőcation
(CE loss) and bounding box regression (L-1 loss).

2.3.2 Single-stage Detection Models

As discussed previously, single-stage detectors generate bounding boxes and class

predictions of the targets contained in an input using a single neural network. Like

the CNNs and indeed the backbone network of an R-CNN, single-stage detectors

őrst start by learning features of interest using convolutional layers. In many cases,

following the feature extraction layers of the network, anchor boxes are generated at

various locations, sizes, and aspect-ratios and superimposed on the learned feature

maps. Each generated anchor box represents a potential candidate bounding box

for the detection task, the coordinates of which are adjusted during optimization.

23

Depending on how the task of detection is framed the model architecture of a single-

stage detector may vary in its construction. Two variations of single-stage detectors

are used in this work: EfficientDet and You Only Look Once (YOLO).

EfficientDet

The EfficientDet architecture [116] is a family of object detection models that com-

bines a similarly named image classiőcation CNN called EfficientNet [115] with a

feature pyramid network (FPN; used for learning object scale [69]) and additional

convolutional layers to generate class and bounding boxes predictions. Both Effi-

cientNet and EfficientDet are grounded on the concept of łcompound-scalingž, which

suggests that as the input to a model increases (e.g., the size of an image), the

receptive-őeldśand by proxy, model siześshould also increase. Traditionally, CNN

model scaling is done in a single dimension by increasing either the number of őlters

(width) or the number of layers (depth) in the network. Compound scaling suggests

that both dimensions are dependent on the input of the model. An EfficientDet model

is denoted with a suffix indicating the compound scaling coefficient used to re-scale

width and depth (e.g., EfficientDet-łD1ž, uses a scaling coefficient of 1). The term

łefficientž in the model name is largely due to its use of depth-wise separable con-

volutions outlined in Section 2.2.2 that are more efficient than standard convolution

operations while maintaining their effectiveness in terms of feature extraction.

In EfficientDet, features from various levels of the EfficientNet backbone are com-

bined via an improved variation of FPN known as Weighted Bi-directional FPN

(BiFPN) such that a balance between high-level features (i.e., those learned in the

earlier convolutional layers) which have higher spatial resolution but lower seman-

tic information, and low-level features (i.e., those of the latter convolutional layers)

that inversely have poor spatial resolution but improved semantic information, can

be fused to improve the models ability to learn object scale. These fused features

are passed to two distinct groups of convolutional layers tasked with generating class

probabilities and bounding box predictions, respectively (Figure 2.7).

EfficientDet replaces the cross-entropy loss function introduced earlier with a focal

24

loss designed to address the problem of class imbalance [70]:

Lcls(y, ŷ) = −
C
∑

i=1

yi · (1− ŷ)γ · log(ŷi), (2.14)

where γ is a focusing parameter used to weight hard examples.

input (x) EfficientNet backbone

BiFPN

Convolutional Block

Focal loss

L-1 loss

Feature Pyramid Network

box prediction

class probability

Figure 2.7: Example diagram of the EfficientDet model architecture. The model is
composed of an EfficientNet CNN backbone which produces features at various scales.
These features are passed to a feature pyramid network (BiPFN), of which each
layer in the BiFPN is fully connected to two convolutional layers used in producing
bounding box predictions and class probabilities. The convolutional blocks within
the backbone network that are passed to the BiFPN are denoted in blue.

You Only Look Once

You Only Look Once (YOLO) was introduced in 2016 [92] and is likely the őrst

example of a single-stage detector. The primary insight of YOLO was framing object

detection as purely a regression problem. Detection is achieved by applying an S×S

(default 7× 7) grid cell to the input and tasks grid cells which contain the center of

various targets/objects with producing bounding box predictions, a box conődence

score, and conditional class probabilities. The resulting model was able to achieve

performance close to several state-of-the-art (SOTA) two-stage detectors, but with

signiőcantly faster inference run-times.

Following the success of the őrst version of YOLO, a number of improved versions

have been proposed by both the original authors and other unaffiliated researchers

and engineers. Several of the improvements to the YOLO model over the years include

25

using batch-normalization in the network and k-means clustering to better initialize

anchor boxes (YOLOv2 [93]); an improved backbone network with multi-scale pre-

dictions (YOLOv3 [94]); as well as self-attention and improved data augmentation

strategies (YOLOv4 [13]).

input (x) "backbone" network

"neck" network

Convolutional Block SPP Block PANet

non-max
suppression

"head" network

CIOU loss +
2 x CE loss

Figure 2.8: Example diagram of the YOLOv5 model architecture. The model is
composed of a CNN backbone with convolutional blocks and a SPP block. Three
scales of learned features are passed as input to a PANet referred to as the łneckž.
Finally, three additional convolutional blocks in the head network are combined via
non-max suppression. The convolutional/SPP blocks within the backbone network
that are passed to the PANet are denoted in blue and purple.

After version four, discrete updates to the YOLO model are less traceable and

have largely become iterative open-source repositories that frequently update the

model architecture based on improvements found in the deep learning and computer

vision literature. In this work, one such repository (YOLOv5 [51]) is used that also

implements a variation of compound scaling to create various sized networks. The

YOLOv5 family of models with compound scaling are also named using a suffix in-

dicating the size of the model: YOLO-n (nano), -s (small), -m (medium), -l (large),

and -x (extra-large). YOLOv5 uses a combination of three loss values: two binary

cross-entropy losses on the box conődence score and conditional class probabilties, re-

spectively, and a Complete Intersection-over-Union (CIOU) loss [131]. YOLOv5 also

implements Spatial Pyramid Pooling (SPP) [37] in the őnal block of the backbone

network. Similar to the BiFPN used in EfficientDet, YOLOv5 computes features at

several scales and passes these features to a secondary network known as a Path Ag-

gregation Network (PANet) [71] used in combining the multi-scale features efficiently.

26

A simpliőed network diagram of YOLOv5 is presented in Figure 2.8.

2.4 Performance Metrics for CNNs and R-CNNs

In this section several statistical metrics commonly used to measure the performance

of detection and classiőcation systems are introduced. However, for the time being one

should consider these metrics only from the point of view of a researcher coming from

machine learning and not speciőcally PAM. Additional comments on these metrics

from a PAM perspective are brought forward in Chapter 5 when discussing operational

DCS.

2.4.1 Precision, Recall, and F-1 Score

The most commonly computed metrics for evaluating the performance of a classiőer

are precision (P) and recall (R). Precision and recall are calculated using the total

number of true positive (TP), false positive (FP), and false negative (FN) predic-

tions. In the case of a CNN trained for the task of binary classiőcation (i.e., the class

labels are either 0 or 1), a true positive is equivalent to the scenario where both the

class label and predicted class of the CNN are equal to 1. Adversely, a false positive

is equivalent to the case where the predicted class is 1, however, the true class label

is 0. Finally, a false negative is equivalent to the case where the predicted class is 0

and the true class label is 1.

Precision and recall are computed using Equations 2.15 and 2.16, respectively.

P =
TP

TP + FP
(2.15)

R =
TP

TP + FN
(2.16)

Precision deőnes the proportion of TP predictions among all positive predictions

(i.e., it measures the accuracy of positive predictions), while recall deőnes the propor-

tion of TP predictions among all actual positive classes (i.e., measuring the ability of

the model to identify positive classes).

For the case of binary classiőcation, precision and recall is straightforward. In the

case of multi-class classiőcation, the metrics are computed using either a micro or

27

macro average. For the purposes of this work, precision and recall are expressed using

as a macro average, whereby, the őnal precision and recall metrics are computed as

the mean of the individual precision and recall for each possible class. Consider a

classiőcation problem with N possible classes, computing a macro average of precision

can be expressed as:

Pmacro =
1

N

N
∑

i=1

Pi, (2.17)

where Pi is the precision of class i. Macro-averaged recall is computed analogously.

Using a macro average, the performance of the classiőcation model is treated equally

across all possible classes, and therefore better represents overall performance of class-

unbalanced data sets.

At a certain point, the precision and recall metrics described above become in-

versely proportional, i.e., as precision increases, recall tends to decrease. As such, a

balance between high precision and high recall is desired. A third metric known as

F-score (Fβ) is often used in order to express such a balance and is computed as the

harmonic mean of precision and recall:

Fβ = (1 + β2) · P · R
(β · P) + R

, (2.18)

where β is a positive real value that weights the importance of recall and precision.

Three commonly used values for β include 1 (balanced importance of precision and

recall), 2 (increased importance of recall), and 0.5 (increased importance of precision).

Notably, in this work, model łaccuracyž is never used, as such a metric is mislead-

ing for class-imbalanced data sets. Later sections of this work will demonstrate the

unbalanced nature of PAM annotations due to differences in species population and

vocalization rates.

2.4.2 Using Average Precision to Describe Detection Performance

The performance metrics outlined in Section 2.4.1 are appropriate when the entire

input to a model can be considered as belonging to a single class. When individual

regions of a model’s input are described differently, as in the case of object detection,

these metrics must be elaborated upon. In this work, the performance of a detection

28

model (single-stage or two-stage) is measured using Average Precision (AP) and com-

puted following the formulas described by the COCO Detection Challenge benchmark

data set.1

AP is dependent on an additional threshold function known as Intersection over

Union (IoU). IoU measures the similarity between the ground truth bounding box

and a predicted bounding box and is computed by dividing the area of the boxes’

intersection by the area of their union. A visual depiction of the intersection and

union of two bounding boxes can be seen in Figure 2.9.

Figure 2.9: Example depiction of the intersection (left) and union (right) between
a ground truth bounding box (blue) and predicted bounding box (orange). The
intersection-over-union (IoU) of these two bounding boxes is computed as the division
of these two areas, respectively.

Somewhat un-intuitively, computing AP is not as simple as taking the łaverage

of precisionž, and is instead computed by taking the area under the precision-recall

curve.

Computing AP can be outlined as follows:

• Sort the models’ predictions in descending order based on conődence scores.

• For each prediction, determine the values of FP and TP using a threshold on

IoU. If the IoU between a ground truth bounding box and a predicted bounding

box exceeds this threshold, the prediction is considered a TP, otherwise a FP.

• Compute P and R for the current prediction (where the denominator used in

computing in R is simply the total number of ground truth boxes). Upon

iterating over all the predictions, the result is a precision-recall curve ordered

by the conődence scores of the model.
1Details of the COCO Detection Challenge: https://cocodataset.org/#detection-eval

29

• Compute the area under the P/R-curve.

Typically, the IoU thresholds used in computing AP range from 0.5 to 0.95 by

increments of 0.05 (sometimes denoted AP@0.5:0.95). By varying the IoU threshold,

we can evaluate the performance of a detection model at different levels of difficulty

(e.g., different target sizes and aspect ratios). AP may also be computed at speciőc

IoU thresholds, for example AP@0.5.

For a multi-class detection problem AP is computed for each class and a second

mean over all classes is taken. In some cases, this may be denoted as mean-Average

Precision (mAP); however, the łmž is often inferred from the data set. While quite

convoluted, the metrics deőned above offer a very informative description of detection

performance in scenarios where the number, size, and scale of ground truth annota-

tions in a single input may vary signiőcantly.

Finally, in addition to (m)AP, in later sections of this work, the precision and

recall that produce the highest F-1 score on the P/R-curve used in computing AP are

also reported. These P and R metrics are sometimes referred to as łbox precisionž

and łbox recallž.

2.5 Visual Representations of Acoustic Data

The models introduced in Sections 2.2 and 2.3 are primarily used in the visual do-

main on tasks such as image classiőcation and object detection. In this section a

commonly used visual representation of acoustic data often found in the DCS lit-

erature is described, namely, the spectrogram. However, this topic often begs the

question:

łWhy use a visual representation of an auditory signal? ž.

The Fourier transform necessary to produce a spectrogram will inevitably lead

to some loss of information (i.e., that pertaining to phase), and as such, provide the

automated DCS with an imperfect representation of the ground truth data. However,

the beneőts that come with a visual representation typically out-weigh the trade-offs

created from this imperfection.

For one, more reliable results have been observed when using models that oper-

ate in a visual domain versus models originally developed to operate on vectors of

30

sequential data such as recurrent neural networks (RNNs) [12]. Anecdotally, these

őndings seem to suggest that spectrograms simply provide DL-based systems more

signal and less noise.

Finally, and perhaps the most obvious response to this question, is simply that

spectrograms correspond to the domain which expertsśnamely marine biologistsśuse

during acoustic analysis [59]. It is quite likely that the ground truth annotations were

created using spectrograms in software like JASCO Applied Sciences PAMLab2, Cor-

nell University’s Raven3, or Audacity4. Additionally, the species of marine mammals

that is of concern in this work vocalize across relatively consistent frequency bands

and therefore, visual representations such as spectrograms allow for DCS predictions

to have temporal and frequency bounds. As a result, the predictions of an automated

DCS trained on spectrograms can be easily and quickly interpreted by experts and

more informative in down-stream tasks.

There are several other data representations used in the development of PAM DCS

beyond the spectral representations described below, some of which are are brieŕy

discussed in the related work (Section 2.6).

2.5.1 Linearly-scaled Spectrograms

As outlined above, human analysis of acoustic recordings is often performed aurally

by listening to the recording as well as visually using spectrograms.

A popular approach for generating spectrograms is through a Short-time Fourier

Transform (STFT). The STFT procedure calculates the sinusoidal frequency and

phase content of an acoustic signal over time and is most commonly visualized in two

dimensions with time on the x-axis, frequency on the y-axis, and intensity expressed

by varying colour.

The equation of the discrete-time STFT of a signal x[n] can be expressed as:

X(n, ω) =
∞
∑

m=−∞

x[m]w[m− n]e−iωm , (2.19)

where w is a windowing function with a pre-speciőed length centred at time n. In

2JASCO Applied Sciences: https://www.jasco.com
3Raven Sound Analysis: https://ravensoundsoftware.com
4Audacity: https://www.audacityteam.org

31

the equation expressed above, time (n) is discrete and frequency (ω) is continuous,

however, in practice both units are discretized and each successive STFT is computed

using an implementation of the Fast Fourier Transform (FFT) algorithm (e.g., the

Cooley-Tukey algorithm [22]). Equation 2.19 describes a complex function, therefore,

we take the square of the absolute value of X(n, ω) yielding a spectrogram of the

power spectral density. Finally, we convert the intensity to a logarithmic scale (i.e.,

decibels (dB)), as is commonly the case in underwater acoustics.

2.5.2 Mel-scaled Spectrograms

A spectrogram computed using the approach formulated above is linear in frequency

and therefore does not contain information related to how human beings perceive

sound. For example, while the difference between two signals occurring at 1000Hz

and 1500Hz and two other signals occurring at 10kHz and 10.5kHz are numerically

equivalent (i.e., their difference is equal to 500Hz), the difference of the lower frequency

signals is perceptually much larger to a human listener. In some scenarios, including

low frequency applications, such an imperception is negligible, however at higher

frequencies a logarithmic scale may be preferred. The most common logarithmic

scale used in the literature is the mel-spectrogram, whereby frequency is transformed

from hertz to mels (from the word melody) using the following equation:

ωmel = 2595 log10

(

1 +
ωHz

700

)

. (2.20)

Using this transformation, the resulting frequency scale more closely aligns with

the log-like human-auditory perception known as pitch. The audio processing Python

library librosa5 used throughout this work converts a spectrogram to mels by further

discretizing the frequencies into n bins, computing the mel-scale of each bin and

transforming the spectrogram from hertz to mels using a triangular őlter. In effect,

the mel-spectrograms have effectively been compressed in the frequency axis to the

value n.

5Librosa

32

2.5.3 Novel Representation: Stacked & Interpolated Spectrograms

During the creation process of a linear or mel-scale spectrogram, a decision must be

made on the appropriate combination of parameters to pass to the FFT. In practice,

when marine biologists analyze acoustic recordings, they will often generate multiple

spectrograms using different FFT parameters, for example: changing the length of the

FFT window and/or the window overlap. By changing the parameters of the FFT,

the time and frequency resolutions of the spectrogram are altered. Using multiple

spectrograms with varying resolutions is particularly helpful when annotating un-

derwater acoustic recordings containing marine mammal vocalizations because some

species tend to make prolonged low-frequency vocalizations with a small bandwidth

(e.g.: blue whale moans), while other species make shorter vocalizations with a larger

bandwidth (e.g.: humpback songs). Depending on the set of parameters used to gen-

erate the spectrogram, one can easily mis-classify a vocalization as a different species

or miss the vocalization entirely.

A novel representation of an acoustic signal is proposed that attempts to exploit

the strategy used by human experts during the annotation process. First, following

Equation 2.19, several spectrograms are generated using different FFT parameters.

Because each of the spectrograms vary in resolution across time and frequency, they

are interpolated using a simple linear interpolation spline over a grid proportionate

to the smallest time and frequency resolution. The equation of a linear interpolation

spline for some point (n, ω) between (ni, ωi) and (ni+1, ωi+1), where n is known, can

be expressed as:

ω = ωi +
ωi+1 − ωi

ni+1 − ni

(n− ni) . (2.21)

After interpolation, the dimensions of the matrices corresponding to each spec-

trogram are the same. The interpolated spectrograms are then stacked to form a

multi-channel tensor; imitating the concept of RGB channels in a digital colour im-

age. The details of the algorithm used to produce a single instance of the novel

representation described above are outlined in Algorithm 1.

33

Algorithm 1: Generating an instance of the novel representation
Input: The waveform x, function w, and parameters Θ = [θ1, θ2, . . . , θk]

Output: A tensor Z with k channels

1 Initialize the interpolation resolutions ω0 and n0 to ∞
2 for i = 1 to k do

3 Generate a spectrogram Di = STFT(x;w, θi) (Eqn 2.19)

4 Maintain a running minimum of ω0 and n0

5 if ∆ωi < ω0 then

6 ω0 = ∆ωi

7 end

8 if ∆ni < n0 then

9 n0 = ∆ni

10 end

11 end

12 for i = 1 to k do

13 Interpolate each spectrogram Si = INTERPOLATE(Di;ω0, n0) (Eqn

2.21)

14 end

15 Stack the interpolated spectrograms Z = [S1,S2, . . . ,Sk]

16 Return Z

34

2.6 Applications of Machine Learning to PAM

In developing an automated DCS using machine learning, one hopes to accurately

detect and assign a label to an instance of an audio recording containing a species of

interest. However, developing a generalizable DCS presents several distinct challenges.

For one, underwater recordings often have a low signal-to-noise ratio (SNR) making

feature extraction difficult. Another challenge is that ground truth labelled data is

difficult to obtain due to the required expertise and training of the labeller. As a

result, only a very small fraction of the large collections of acoustic data is suitable

for supervised learning [29]. Furthermore, the small numbers of some species coupled

with the low rate of occurrence of their vocalizations make for highly unbalanced data

sets. Many of these challenges, especially as they relate to real-world DCS use, are

elaborated upon in Chapter 5.

Traditionally, many of the algorithms used to detect and classify marine mammal

vocalizations are derived from the properties of a signal of interest. In general, these

approaches can be divided into two categories. The őrst category involves comparing

unlabelled data to templates of certain vocalizations. Examples of this approach in-

clude matched őltering, where a template corresponding to the vocalization of interest

is convolved with the signal to produce a detection function. The detection function

is evaluated using a pre-determined threshold parameter to determine whether a de-

tection has been made [21]. Another example is spectrogram correlationśnot to be

confused with spectrogram cross-correlation, which is equivalent to matched őltering

[79]. Spectrogram correlation őrst computes a correlation kernel using segments of

template spectrograms. The correlation kernel is then convolved over the spectro-

gram of the unlabelled data producing a vector representing the similarity between

the spectrogram and the kernel over time. Large similarity values correspond to

possible detections. These methods largely do not involve machine learning.

The second category of algorithms is made up of three stages: detection, feature

extraction, and classiőcation. An example being detecting regions of interest in a

spectrogram, following which, features (e.g.: the duration of the detection or the ab-

solute change in frequency) are extracted and used as input vectors for classiőcation.

Various detection algorithms are used in the őrst step of this approach including:

neighbourhood search algorithms (e.g., pixel connectivity) in spectrograms that have

35

been őltered, smoothed, and cast to binary representations [5] and contour detectors

that operate by continually searching for local maxima within pre-speciőed frequency

bands of normalized spectrograms over time [81]. These detection algorithms are

heavily dependent on the őltering, normalization, and smoothing operations that are

performed on each spectrogram. Once the regions of interest are determined, feature

vectors are then handed to commonly used classiőcation algorithms such as: linear or

quadratic discriminant analysis (LDA/QDA) [5, 31], support vector machines (SVM)

[26], shallow artiőcial neural networks [4, 26], Gaussian mixture models (GMMs),

and hidden Markov models (HMMs) [99, 100, 108]. Outside of using spectrograms,

other data representations including continuous and discrete wavelet transformations

and mel-scale frequency cepstral coefficients (MFCCs) have been reported to varying

degrees of success [120].

The algorithms described above involve a signiőcant amount of human inputś

often from expertsśwhich is a limitation to the development of future classiőers for

several reasons. In the former category the templates used for detection and clas-

siőcation are largely speciőc to not only certain species, but also different types of

vocalizations produced by the same species. At the same time, the detection thresh-

old may require őne-tuning depending on the noise characteristics of the data set.

For the latter category of algorithms, many of the hyperparameters provided to the

smoothing and noise-removal routines are dependent on the data set. Subsequently,

the hand-engineered features are contaminated by these speciőcations as well as hu-

man bias. These limitations yield systems which are not as easily generalizable to a

broad category of species using data collected at different sampling rates, geographic

locations, or using different recording devices.

2.7 Applications of Convolutional Neural Networks to PAM

More recently, researchers have started to use DL-based alternatives in place of tra-

ditional machine learning algorithms for the purpose of DCS development. In part,

the application of deep learning to PAM has been brought on by its success in other

őelds, namely image classiőcation [38, 61]. The attraction of deep learning also stems

from the ability to train neural networks that can more easily generalize to new tasks

[57, 115]. But more importantly, deep learning algorithms typically rely on zero

36

feature engineering and learn latent representations directly from the training data.

Much like the traditional machine learning approaches mentioned above, applications

of deep learning typically operate in the frequency domain (i.e., using spectrograms).

Most notably, DL-based DCS development has been likened to image classiőcation

through the use of CNNs.

Much of DL-based PAM research reported in the literature is focused on higher

frequency vocalizations (e.g., whistles, clicks, and pulsed calls) made predominantly

by toothed whales (odontocetes). Bergler at el. [9] train several ResNet models

to classify spectrograms containing various orca (Orcinus orca) vocalizations against

background noise examples and in a separate work report improved performance

by pre-training the ResNet classiőer using an auto-encoder [8]. Jiang et al. [50]

train a CNN to classify spectrograms containing the vocalizations of orcas and long-

őnned pilot whales (Globicephala melas). Liu at al. [72] apply CNNs to classify

spectrograms containing various vocalization types as opposed to the species that

produced them, and Luo et al. [74] train a CNN to detect the vocalizations of

odontocetes using a combination of real audio recordings and synthetic data. Zhong

et al. [132] employ an ensemble model of CNNs to classify Beluga detections as true

or false positives. Finally, Best et al. [11] acknowledge that many of the reported

őndings in the literature may be susceptible to data drift (a topic that will be touched

upon in this work later on), and pose better separations to the data sets used in

training/testing the orca classiőcation models previously mentioned.

Slightly less research has been reported applying CNNs to the lower frequency

(< 1000Hz) vocalizations of baleen whales where acoustic masking due to vessel

traffic can be especially challenging. One species of baleen whales that is of partic-

ular concern for conservation purposes is the North Atlantic right whale (Eubalaena

glacialis). As such, several papers have been published which attempt to classify

spectrograms containing their vocalizations. The most distinguishing right whale vo-

calization is known as the upcall. Kirsebom et al. [56] as well as Shiu et al. [105]

both develop spectrogram classiőcation models using ResNets to identify upcalls. In

subsequent work, Ibrahim at el. [44] develop a multi-model approach to determining

right whale presence/absence by passing a spectrogram through a CNN, a scaleogram

through a stacked auto-encoder and fusing the outputs of both systems to create a

37

őnal predictive result. Vickers et al. [123] propose the use of denoising CNNs to

improve model accuracy using both upcalls and a second right whale vocalization

known as a gunshot. In additional work, the same authors [122] suggest methods to

improve model robustness in a similar fashion to that reported above by Best et al.

Beyond right whales, additional research has been reported that uses CNNs to clas-

sify spectrograms possibly containing the vocalizations of blue whales (Balaenoptera

musculus) [133] and humpback whales (Megaptera novaeangliae) [2, 83]. Lastly, the

work of Madhusudhana et al. [75] presents a signiőcant advancement through its

incorporation of an RNN that enables a CNN to incorporate temporal context in

its predictions of őn whale (Balaenoptera physalus) vocalizations and subsequently

improve performance. Moreover, the recurrent nature of the model allows the output

of the model to closer align with the notion of łvocalization detectionž (as opposed

to łspectrogram classiőcationž) used in this thesis.

Chapter 3

Deep Convolutional Learning for PAM

So far the concepts of classiőcation and detection have often been used interchange-

ably, however, a distinction between these two tasks should be made and elaborated

upon. For the case of a DL-based DCS, particularly one that employs a CNN, it is

argued that true detection of marine mammal vocalizations should contain precise

frequency components in the predicted output (e.g., bounding boxes). From this,

much of the related work cited in Section 2.7 often confuses detection with what is

referred to in this work as spectrogram classiőcation. This distinction is necessary

when one is concerned with estimating the total number of individual vocalizations

within a speciőed time frame or when detecting multiple species whose vocalizations

are visible in the same spectrogram.

Consider Figure 3.1 that depicts a spectrogram containing two consecutive sei

whale vocalizations known as łdown sweepsž. On the left (a) is the scenario of the

predicted output of a system trained to do spectrogram classiőcation. The output

of such a system is simply a conődence score (i.e.: probability) that the entire spec-

trogram contains at least one sei whale vocalization. On the right (b) is the same

spectrogram as well as the predicted output of a similar system trained to detect indi-

vidual vocalizations. As we can see, individual detections are presented as bounding

boxes with an attached score representing the probability that said bounding box

contains a single sei whale vocalization. Clearly the system designed to produce

predictions at the spectrogram level is incapable of distinguishing between individual

vocalizations and are therefore unreliable for estimating species abundance. Similarly,

the classiőcation system is unable to conődently determine whether a spectrogram

contains multiple vocalizations from different species.

In some cases, spectrogram classiőcation may be sufficient to detect individual

vocalizations, at least temporally [56]. When the length of the vocalization of interest

is highly consistent (e.g., always three seconds in length), one can simply ensure the

38

39

length of the spectrogram that is being classiőed matches that of the vocalization

of interest. Detection is accomplished by sliding the classiőer over a spectrogram

containing the entire recording, provided the classiőer was trained on ambient or

false positive examples. Spectrogram classiőcation is less adaptable when one is

attempting to detect call types of varying lengths (e.g. songs produced by humpback

whales) or when developing automated DCS for multiple call types and/or multiple

species. In the latter two scenarios, it is very unlikely that the collective call types of

interest share the same average duration.

(a) spectrogram classification (b) vocalization detection

Figure 3.1: An example spectrogram containing two consecutive sei whale vocaliza-
tions, the őrst from times 2-4 seconds and the second from roughly 6-8 seconds. The
spectrogram is duplicated in order to demonstrate two different systems: (a) the pre-
dicted output of system trained for spectrogram classiőcation, and (b) the predicted
output of a system trained for vocalization detection.

For the remainder of this work, it is maintained that the use of the phrase łan

automated DCS of marine mammal vocalizationsž adheres to the following deőnition,

as demonstrated in Figure 3.1b.:

Deőnition 1 (Detection and Classiőcation System (DCS)). An automated system

that can accomplish both detection (e.g., in the form of bounding boxes or contour

masks) and classiőcation of individual calls represented as a classiőcation score or

probability.

The use of the term łclassiőcation systemsž or łspectrogram classiőcationž is pre-

ferred when referring to simpler systems that only classify the contents of a spectro-

gram to a particular species or call type, as in Figure 3.1a.

40

Based on the research presented below, the system described in Section 3.3 was,

at the time of publication, novel to PAM in producing detections of individual vocal-

izations in the frequency domain via end-to-end deep learning.

3.1 Acoustic Data Sets

The remainder of this Chapter relies on an acoustic data set collected by JASCO

Applied Sciences under a contribution agreement with the Environmental Studies

Research Fund (ESRF) and his here-by referred to simply as the ESRF data set.

This data set was collected in two deployments: the őrst starting in August 2015

and ending in July 2017. Twenty Autonomous Multi-channel Acoustic Recorders

(AMARs) were deployed off the coast of Atlantic Canada along an area of particular

biological interest known as the Scotian Shelf (Figure 3.2) at depths ranging from

44 meters to 2002 meters. In 2015-2016, the AMARs were őtted with HTI-99 omni-

directional hydrophones from HTI Inc. (−165 ± 3dB re 1V/µPa sensitivity) and in

2016-2017, with M36-V35dB omnidirectional hydrophones from GeoSpectrum Tech-

nologies Inc. (−165 ± 3dB re 1V/µPa sensitivity). The AMARs operated on a 20

minute duty cycle. The AMARs recorded for 11 minutes 18 seconds at 8 kilo-samples

per second (ksps) bounded between 10Hz and 4kHz, followed by 64 seconds at a much

higher 250ksps. For the remainder of this Chapter, as this work is only concerned

with low-frequency baleen whale vocalizations, the data is restricted to the 8ksps

data. Further details of the locations and depths of each recorder are provided in

Table 3.1

3.2 CNNs for Spectrogram Classiőcation

The contents of this Section are largely taken from the conference proceedings:

Thomas, Mark, et al. łMarine mammal species classiőcation using convolutional

neural networks and a novel acoustic representation.ž Joint European Conference on

Machine Learning and Knowledge Discovery in Databases. Springer, Cham, 2019.

41

Figure 3.2: Individual deployment locations for each of the 19 AMARs used in col-
lecting the ESRF data set. The recording devices were deployed over 12 months along
the Scotian Shelf off the coast of Atlantic Canada. Note that a recorder was deployed
at station 3 missing from this őgure near Sable Island, however it was lost either due
to burial in moving sand or őshing gear.

3.2.1 Data set and Methods

Over the past decade, CNNs have continued to improve upon the state-of-the-art for

many computer vision tasks [38, 61]. Recently, a growing collection of research has

been brought forward applying CNNs to tasks which are auditory in nature, including:

speech recognition [1, 24, 67], musical information retrieval [17, 18, 42], and acoustic

scene classiőcation [89, 90, 102]. Inspired by the compelling results obtained in the

previously mentioned domains, researchers in oceanography and marine biology have

started to investigate similar solutions for PAM.

42

Table 3.1: Deployment locations and recording depths of the AMARs used in collect-
ing the ESRF data. Note that a recorder was deployed at station 3 near Sable Island,
however it was lost either due to burial in moving sand or őshing gear.

Set A: Bay of Fundy (model training/validation)

station longitude latitude depth (m)

1 46◦59′28.8240′′ N 60◦1′26.5080′′ W 186

2 45◦25′33.5634′′ N 59◦45′50.3274′′ W 125

4 43◦13′1.2714′′ N 60◦29′57.9474′′ W 1830

5 42◦32′51.3600′′ N 62◦10′34.4634′′ W 2002

6 44◦51′11.1240′′ N 55◦16′15.8874′′ W 1802

7 45◦42′2.9520′′ N 51◦13′59.3400′′ W 78

8 47◦29′35.0520′′ N 59◦24′47.6994′′ W 428

9 48◦55′38.3874′′ N 58◦52′40.2954′′ W 44

10 51◦16′8.8320′′ N 57◦32′15.3240′′ W 121

11 55◦36′10.8000′′ N 57◦45′1.4394′′ W 158

12 57◦15′9.8274′′ N 60◦0′6.3000′′ W 143

13 55◦13′40.6914′′ N 54◦11′25.6914′′ W 1750

14 53◦0′56.4120′′ N 53◦27′36.7914′′ W 582

15 50◦24′47.7714′′ N 49◦11′46.9674′′ W 2000

16 44◦11′32.2800′′ N 53◦16′27.8760′′ W 1602

17 44◦58′17.0754′′ N 48◦44′1.4280′′ W 1282

18 46◦54′31.5714′′ N 48◦30′15.0474′′ W 111

19 48◦43′43.4274′′ N 49◦22′51.1320′′ W 1282

20 50◦45′8.3514′′ N 52◦20′9.6714′′ W 237

In this section, a classiőcation system is presented that is capable of classify-

ing spectrograms containing the vocalizations of three species of endangered baleen

whales: blue whales (BW; Balaenoptera musculus), őn whales (FW; Balaenoptera

physalus), and sei whales (SW; Balaenoptera borealis). The vocalizations of these

species can be particularly challenging to distinguish as all three species are capable

of making a similar vocalization known as a down sweep during the summer months

and often inhabit the same region during overlapping time frames.

The ESRF acoustic recordings introduced in Section 3.1 were analyzed by marine

biology experts at JASCO Applied Sciences producing over 30,000 annotations in the

43

form of bounding boxes around signals pertaining to the three species of whales and

other acoustic sources labelled as łnon-biologicalž. Other species of whales present in

the recording area were also annotated, however, they are not included in this work.

The distribution of annotations is heavily unbalanced in favour of the more vocal őn

whales at roughly a 6:1 ratio, as depicted in Table 3.2.

Table 3.2: Number of őles and the distribution of each acoustic source for the training,
validation, and test sets.

Acoustic source label training validation test

Blue Whale BW 2692 (6.23%) 601 (6.49%) 574 (6.20%)

Fin Whale FW 15,118 (35.01%) 3244 (35.06%) 3272 (35.36%)

Sei Whale SW 1701 (3.94%) 332 (3.59%) 383 (4.14%)

Non-biological NN 2078 (4.81%) 449 (4.85%) 398 (4.30%)

Ambient noise AB 21,589 (50.00%) 4626 (50.00%) 4627 (50.00%)

The data used for training, validating, and testing the classiőers were created in

the following fashion. First, 30 second long excerpts centered on human annotations

were extracted from the full set of acoustic őles. Four spectrograms depicting typical

examples of the 30 second excerpts are provided in Figure 3.3; one for each of the

possible acoustic sources. Examples of the start/end times of the annotated bounding

boxes are drawn using dashed vertical lines. As we can see, not every vocalization that

appeared in a spectrogram was labelled. In Figure 3.3a for example, there appears to

be three blue whale vocalizations occurring consecutively, however, only the second

has been annotated. Partial annotations are an unfortunate by-product of the way in

which marine biologists annotate PAM data if, for a certain data set, stakeholders are

more concerned with species presence/absence versus abundance. Ways of mitigating

some of the issues that may arise when using partial annotations are discussed later

on in Chapter 4.

For each 30 second excerpt, a smaller ten second long sample (hereby referred to

as simply a łsamplež) containing the entire annotation is randomly selected. Due to

the partial labelling of the recordings, it is possible that a sample may include more

than one vocalization. For example, a sample from time 10 to 20 seconds in the őle

used to produce Figure 3.3c would in fact contain three sei whale vocalizations. This

44

means that it is also possible that a sample contains an unlabelled vocalization of

another species. The data containing only ambient noise were produced in a similar

fashion, however, they were produced from a large set of őles that were known to not

contain baleen whale vocalizations. As such, the sampling routine simply selected a

ten second sample randomly from the entire őle.

Figure 3.3: Example spectrograms for each of the three whale species: a) blue whales,
b) őn whales, c) sei whales, and d) non-biological noise. Dashed vertical lines depict
the start and end times of the expert annotations centered within the 30s window used
in the data creation sampling routine. For visualization purposes őltered versions of
the spectrograms are being shown on a log-frequency scale so that the reader can
more easily identify the vocalizations.

The samples were used to produced three spectrograms using varying FFT win-

dow lengths (256, 2048, and 16,384 samples) in order to train three different CNNs.

Each FFT used an overlap of 25 percent and a Hann windowing function. The spec-

trograms were truncated to have an upper frequency bound of 1000Hz. Additionally,

a mel-scaled copy of the spectrogram obtained using a FFT length equal to 2048 was

created with 128 mels and used to train a fourth CNN. Finally, a combination of

the three original spectrograms was used to form a three-channel version of the novel

representation outlined in Section 2.5.3. Each spectrogram was scaled to decibels

45

(dBs) before being normalized between [0, 1] for optimization purposes. No addi-

tional őltering, smoothing, or noise removal was applied to the spectrograms. An

individual 10 second, decibel-scaled, and normalized spectrogram is analogous to a

single łinstancež used for training, validation, and testing.

In practice, the ten second sampling routine and all subsequent steps including

spectrogram generation, re-scaling, etc., were executed in parallel on the CPU while

the CNNs were trained on the GPU. In this way, the sampling routine acted as a

quasi-data-augmentation strategy for each training batch.

Separate training, validation, and test data sets were produced using a random

split ratio of 70/15/15, respectively. Model performance on the validation set was

measured after each epoch, while the model performance on the test set was only

measured after the training had completed. The random sample is a notable ŕaw and

discussed in detail later on in Chapter 5 when developing systems to be used in the

real-world.

Multiple ResNet-50 CNNs were trained to classify the spectrograms described

above. Each CNN was implemented in Python using the PyTorch open source deep

learning platform [88]. Training was distributed over four NVIDIA P100 Pascal GPUs

each equipped with 16GB of memory. Computing resources were provided by Com-

pute Canada1 The sampling routine and subsequent data processing was performed

in parallel on two 12-core Intel E5-2650 CPUs. The initial learning rate was set to

0.001 and decayed by a factor of 10 using a step schedule of 30 epochs. The batch

size of each training step was set to 128. Stochastic Gradient Descent (SGD) with

momentum (β = 0.9) and weight decay (equal to 1e−4), was used to optimize a cross-

entropy loss function. The CNN was trained for a total of 100 epochs. After each

epoch, model performance was measured using the validation set and a checkpoint

of the model was saved if the measured F-1 score increased. As such, an early stop-

ping criteria was not used, however, if the model began to overőt to the training

set, the best model with respect to the validation set was still maintained. Finally,

the training process was repeated ten times using different random number generator

seeds.

1Compute Canada: https://alliancecan.ca/en

46

3.2.2 Experimental Results

Performance metrics for each ResNet-50 CNN were compiled as the mean and 95%

conődence interval over the ten training runs. Performance is measured in terms of

precision, recall, and F-1 score and was evaluated on the test set listed in Table 3.2.

The classiőer trained on the novel representation outperforms the remaining clas-

siőers trained on single-channel inputs. However, two-sample t-tests indicate that the

improvement in performance between the classiőer trained on the novel representa-

tion is not quite statistically signiőcant (maximum p = 0.0881). Figure 3.4 contains

two confusion matrices corresponding to two of the better performing classiőers: those

trained on the novel representation and the single-channel linearly scaled spectrogram

produced using a window length of 2048 samples.

Table 3.3: Mean performance and 95% conődence intervals of ten training/testing
runs using different random number generator seeds.

FFT length precision recall F-1 score

Freq. in Hz 256 0.714 (±0.060) 0.641 (±0.037) 0.675 (±0.046)

Freq. in Hz 2048 0.863 (±0.036) 0.838 (±0.039) 0.850 (±0.023)

Freq. in Hz 16384 0.860 (±0.032) 0.847 (±0.058) 0.853 (±0.031)

Freq. in mels 2048 0.762 (±0.067) 0.723 (±0.048) 0.742 (±0.044)

Novel representation - 0.887 (±0.045) 0.871 (±0.036) 0.878 (±0.031)

The performance of the CNN trained on linearly scaled spectrograms using an FFT

window of 2048 frames is compared to those trained on linear spectrogram generated

with window lengths of 256 and 16,384 frames. The comparison is accomplished via

two-sample t-tests of statistical signiőcance. In comparison to the CNN trained on

spectrograms with window lengths equal to 256, the model trained using an FFT

length of 2048 is preferable (p = 3.375e−14). This őnding is not necessarily surprising

as the smaller FFT length is more suited for short sweeping vocalizations such as

whistles, which the species of interest in this section do not make. The CNN trained

on spectrograms with an FFT length equal to 16,384 performed equally well in terms

of statistical signiőcance (p = 0.8086). This is likely due to the fact that the longer

FFT window is well suited to the display low infrasonic moans and pulse vocalizations

47

made by blue and őn whales, respectively. However, due to the smaller variance in

performance presented by the CNN trained using FFT lengths of 2048 samples, it

is likely the preferable model; offering a balance between low-frequency vocalizations

and the down-sweeps. The performance of the CNN trained on mel-spectrograms did

not exceed that of the linearly scaled spectrograms (p = 6.451e−11) due to the fact

that the logarithmic scaling of spectrograms below 1000Hz is somewhat negligible.

Figure 3.4: Normalized confusion matrices of the two best performing classiőers in
terms of F-1 score.

While the reported performance metrics provided above are signiőcant, spectro-

gram classiőcation of the species of interest in this section (i.e., blue, őn, and sei

whales) is only a partial accomplishment. Moreover, it is difficult to directly compare

the performance of our trained CNN against the traditional approaches presented

in Section 2.6 as most traditional methods are aimed at detecting individual vocal-

izations. In the following section, a full DCS is introduced that builds upon the

ResNet-50 model presented here in order to detect individual vocalizations.

48

3.3 R-CNNs for Vocalization Detection

The contents of this section are largely taken from the workshop proceedings:

Thomas, Mark, et al. łDetecting Endangered Baleen Whales within Acoustic Record-

ings using Region-based Convolutional Neural Networks.ž Joint Workshop on AI for

Social Good at Neural Information Processing Systems (NeurIPS), 2019.

3.3.1 Data set and Methods

The same ESRF acoustic recordings used in training the CNNs of Section 3.2 were

used to train a R-CNN for vocalization detection. There were however several slight

differences in making the training, validation, and testing data sets. First the R-CNN

makes use of the entire bounding box annotation as opposed to only the start/end

times used in the sampling procedure of Section 3.2.1. Second, the ambient and non-

biological noise classes are omitted as the detection of these acoustic sources is baked

into the background class of the R-CNN. Third, the model was trained on őve second

spectrograms instead of the ten second spectrograms used earlier. Reducing the

length of the spectrograms by half was necessary in order to deal with GPU memory

constraints. In other words, due to the way the RPN of an R-CNN inŕates the number

of training instances in each mini-batch, the size of the original spectrograms had to

be reduced in order to őt in memory. The spectrograms used to train the R-CNN

used a FFT window of length 2048 samples, overlapped by 25 percent, and a Hann

windowing function. The novel representation of section 3.2 is not employed here as

the computational overhead of generating three spectrograms instead of one coupled

with the more computationally intense R-CNN model made for slow experimentation.

Again, the spectrograms were truncated using an upper frequency bound of 1000Hz

and scaled to dBs before being normalized between [0, 1].

The R-CNN architecture used in this section was proposed by Ren et al. [95],

known as Faster R-CNN and introduced in Section 2.3.1. The R-CNN was imple-

mented in Python using PyTorch [88]. The same ResNet-50 architecture trained for

spectrogram classiőcation was used as a feature extraction layer, coupled with a Fea-

ture Pyramid Network (FPN) [69]. The 256 output features of the FPN are then

handed to the RPN producing 1000 RoI proposals per training instance. The 1000

49

RoIs are then passed through the RoIAlign procedure and the head network composed

of fully connected layers for classiőcation and bounding box regression.

The R-CNN was trained for 100 epochs with early stopping being evaluated on

the loss of the validation set. Four NVIDIA P100 Pascal GPUs each with 16GB of

memory and a batch size of 4 were used for training. The initial learning rate of SGD

with momentum (β = 0.9) was set to 0.003 and decayed by a factor of 10 when the

loss of the training set plateaued.

3.3.2 Experimental Results

The results detailed in this section depict the median of ten training runs using

different random number generator seed values.

Figure 3.5: Example annotations (top row) and corresponding predictions made by
the R-CNN (bottom row) for several example vocalizations produced by the three
species of interest. As previously mentioned vocalizations have only been partially
labelled, for example: in row 1 column 5, there appears to be several sei whale vocal-
izations occurring consecutively, however, only one has been annotated. Interestingly,
the R-CNN has detected two vocalizations and therefore the reported metrics for this
test instance would be artiőcially low.

The R-CNN performs well when considering a low Intersect over Union (IoU)

threshold (e.g., AP@.5) between the ground truth bounding boxes and the R-CNN

predictions, as reported in Table 3.4. The performance drops for IoU values larger

than 0.7, which is reŕected through the mAP column of the same table. This is

50

an acceptable result especially as the area of the bounding boxes being predicted is

relatively small in comparison to those found in the training data of natural images

for which these metrics were őrst created.

Table 3.4: Median values of average precision (AP) evaluated over various IoU thresh-
olds as described in the COCO Detection Challenge

Species Label AP@.5 mAP@.5:.95

Overall - 82.1 41.8

Blue whale BW 85.7 52.8

Fin whale FW 75.3 30.8

Sei whale SW 85.4 41.9

The R-CNN described in this section represents a true detection and classiőcation

system of endangered baleen whale vocalizations. Such a system obtained via end-to-

end deep learning is novel to the area of PAM of cetaceans. Using this approach, one

can detect the vocalizations of blue, őn, and sei whales at an individual vocalization

level and these detections can be used to estimate call distribution, species abundance,

and subsequently better understand the behaviour of these species.

3.3.3 DCS Use and Adaptability

The R-CNN developed in this section represents the őrst iteration of a system known

internally at JASCO Applied Sciences as MammalNet. The primary goal in devel-

oping MammalNet was to assist in the detection and classiőcation of blue, őn, and

sei whale down-sweep vocalizations, particularly as these vocalizations are difficult

to distinguish using traditional methods like spectrogram correlation. A secondary

goal was to implement this model directly into the manual analysis software PAMlab

used by marine biologists at JASCO, the Department of Fisheries and Oceans (DFO)

and Defence Research and Development Canada (DRDC). As PAMlab is developed

in Java, the model trained above was converted using the Open Neural Network Ex-

change2 compatibility standard and implemented into PAMlab via a Java runtime

environment. The result is a fully working blue, őn, and sei whale DCS that can be

used by marine biologists and other stakeholders on data collected in various parts
2Open Neural Network Exchange (ONNX): https://onnx.ai

51

of the world. Furthermore, the underlying code for running MammalNet in PAMlab

is adaptable and can be used to easily implement CNNs and/or R-CNNs trained to

classify or detect new species that vocalize at similar or dissimilar frequencies; pro-

vided they have been converted to a compatible ONNX format. Figure 3.6 contains

a screenshot of the MammalNet DCS running in PAMlab.

While this effort was successful in implementing MammalNet into PAMlab, the

run-time performance was deemed to slow for operational use. This fact is largely due

to the relatively large computation cost of the R-CNN model. These issues as well

as more direct comparisons between DL-based DCS and traditional methods used in

industry are addressed in detail in Chapter 5.

Figure 3.6: Example predictions (green) and expert annotations (yellow) presented in
PAMlab. The őle used in this example was randomly selected from a set of data not
used during training, validation, or testing. The acoustic őle was recorded in June
2015 off the coast of Nova Scotia in the Gully Marine Protected Area.

Chapter 4

Learning from Unlabeled Passive Acoustic Data

The contents of this chapter are largely taken from the workshop proceeding:

Thomas, Mark, et al. łLeveraging Unlabelled Data through Semi-supervised Learning

to Improve the Performance of a Marine Mammal Classiőcation System.ž From

Shallow to Deep: Overcoming Limited and Adverse Data Workshop at International

Conference on Learning Representations (ICLR), 2021.

4.1 Background, Data Sets, and Methods

The advantages of deep learning applied to PAM DCS development are contrasted

with a few disadvantages. For one, fully supervised frameworks for learning deep neu-

ral networks have been notoriously branded as łdata-hungryž [63, 64], i.e., requiring

enough labeled training data to ensure that the correct patterns or latent features

are learned instead of simply exploiting data memorization. The necessity to acquire

large amounts of labeled training data is a by-product of the number of parameters

typically found in a deep neural network, often measured in millionsśor more recently,

even billionsśof model weights. Secondly, while deep learning has been presented as a

means of learning abstract and adaptable features, in some cases, the same algorithms

can behave poorly on instances that are deemed out-of-distribution (OOD) [7].

As it relates to PAM, deep learning faces two challenges. Due to the speed/scale

at which PAM data is collected and the percentage of this data that is then manu-

ally annotated, labeled training data is inordinately scarce. The result of which is

usually observed through model bias, sometimes referred to as over-őtting [103], in

favour of the training data set. Second, depending on the sampling strategy used

to determine which individual acoustic recordings should be analyzed, manual an-

notations may lack enough variation such that the developed algorithm is robust to

OOD instances. For example, the acoustic sources during the őrst month of a several

month deployment may vary dramatically to that of the following month depending

52

53

on weather conditions, the presence of different species of marine mammals, and ad-

ditional sources of non-biological noise. From a machine learning perspective this is

not unlike the phenomenon known as data drift [126]. Additionally, something should

be said regarding ones interest in making use of the vast amounts of data that have

been collected purely out of consideration to the cost of data acquisition.

Sparsely annotated training data sets are not exclusive to PAM. Many scientiőc ap-

plications that employ deep learning solutions are faced with data scarcity, especially

those applications for which manual annotations are expensive to collect or require

expert knowledge (e.g.: medical annotations of MRI scans [47]). To this end, a great

deal of research has been conducted that aims to develop deep learning algorithms

that learn from both labeled and unlabeled examples. This area of research is typi-

cally categorized as semi-supervised learning. In this work, a SOTA semi-supervised

learning algorithm known as MixMatch [10] is adapted to improve the performance

of a deep neural network used to classify spectrograms. The spectrograms in ques-

tion contain minke whale (MW; Balaenoptera acutorostrata) vocalizations for which

there were relatively few labeled examples available during the time of training. In

particular, it is demonstrated that:

i. Deep learning remains an appropriate solution to spectrogram classiőcation even

in cases where only a small number of labeled examples is available for training.

ii. Deep neural networks trained using the semi-supervised learning framework

outlined in this work are more robust to OOD examples.

4.1.1 Acoustic Data Sets

There are two distinct data sets used in this work. The őrst data set, hereby re-

ferred to as łSet Až, consists of acoustic recordings spanning roughly three months

starting from late August to December of 2015. During this time, three Autonomous

Multichannel Acoustic Recorders (AMARs) were strategically deployed in the Bay

of Fundy in order to measure the sound pressure level (SPL) of vessels travelling in

the area as well as detect marine mammal vocalizations. Of the three recorders, two

were positioned along the inbound shipping lane at depths of 151 and 140 meters,

54

respectively, and one along the outbound shipping lane at a depth of 123 meters. Fig-

ure 4.1 contains the locations of the three deployed acoustic recorders. Each AMAR

used in collecting Set A was őtted with an M36-V35dB omnidirectional hydrophone

from GeoSpectrum Technologies Inc. (−165 ± 3dB re 1V/µPa sensitivity). The hy-

drophones were protected by a shroud-covered cage, which doubled as a means of

reducing unwanted acoustic artifacts corresponding to ŕow noise. The AMARs oper-

ated on a 15 minute duty cycle. For each 15 minute cycle, the AMARs recorded for

10 minutes 34 seconds at 16 kilo-samples per second (ksps) bounded between 10Hz

and 8kHz, followed by 64 seconds at 375ksps (10Hz to 187.5kHz recording band-

width). The acoustic recordings corresponding to each cycle were each stored on

internal solid-state ŕash memory. Once again, as this work is primarily concerned

with low-frequency baleen whale vocalizations, the data is restricted to the 24-bit

16ksps recording channel.

The second data set (łSet Bž) consists of a selection of acoustic recordings taken

from a large scale deployment along the Atlantic Outer Continental Shelf (OCS). Six

AMARs were deployed along the Atlantic OCS from late November 2017 to June

2018. The locations of the six AMARs are also contained in Figure 4.1. Similarly

to Set A, each AMAR used in the OCS deployment was őtted with an M36-V35dB

omnidirectional hydrophone (GeoSpectrum Technologies Inc., −165±3dB re 1V/µPa

sensitivity) and used hydrophone cages covered with cloth shrouds. The AMARs used

in this deployment used a duty cycle schedule targeted at minimizing recording time

when echo sounders were in use, as well as allowing for a mixture of single/multi-

channel recordings to occur. In this work, only the single-channel data was used.

The sampling rate of the single channel data varied from 8kHz and 16kHz and the

recording duration also varied from 60 seconds to 10 minutes.

The two data sets serve distinct purposes. Set A is used for both model training

and model validation, during which, the classiőer is simply tasked with distinguish-

ing between two classes: łcontains a minke whale vocalizationž vs. łdoes notž (i.e.,

binary classiőcation). In other words the training set is limited to the explicit anno-

tations corresponding to minke whale vocalizations. As such, instances pertaining to

false alarms, either ambient noise, non-biological noise, or the vocalizations of other

species, were taken from 227 fully-annotated őles. The minke whale annotations were

55

taken from 160 of these őles, plus an additional 512 partially-annotated őles. Finally,

roughly 10 percent (725) of the remaining non-annotated őles of the deployment were

processed to be used for semi-supervised learning. Figure 4.2 contains the entire data

distribution with respect to time of the instances making up Set A, separated by their

annotation level (fully, partially, or non-annotated). As you can see, the training data

is sparse in terms of the number of minke whale annotations and highly unbalanced

in favour of the possible false alarms. Moreover, from a deep learning perspective, the

total number of minke whale annotations available for training is signiőcantly smaller

than is likely necessary for neural network trained using only supervised learning as

a binary classiőcation problem.

Figure 4.1: Deployment Locations: (a) Set A: three AMARs were deployed in the
Bay of Fundy between August and November, 2015. (b) Set B: six AMARs were
deployed along the Atlantic Outer Continental Shelf (OCS) from late November 2017
to June 2018.

56

Table 4.1: Deployment locations and recording depths of the AMARs used in collect-
ing Sets A and B.

Set A: Bay of Fundy (model training/validation)

station longitude latitude depth (m)

STN1 44◦33‘29.4600′′ N 66◦20′1.4400′′ W 151

STN2 44◦46′7.9200′′ N 66◦15′15.7800′′ W 140

STN3 44◦45′32.9400′′ N 66◦9′19.7400′′ W 123

Set B: Atlantic OCS (model testing)

station longitude latitude depth (m)

BLE 29◦15′3.5274′′ N 78◦21′2.7000′′ W 872

JAX 30◦29′33.8640′′ N 80◦0′11.2314′′ W 317

CHB 32◦4′12.9000′′ N 78◦22′26.5794′′ W 404

HAT 35◦11′58.3800′′ N 75◦1′13.3680′′ W 296

SAV 32◦2′31.8480′′ N 77◦20′52.4394′′ W 790

WIL 33◦35′6.8634′′ N 76◦27′2.0154′′ W 461

Set B represents a proxy for OOD examples and therefore is only used during

model testing. Table 4.2 contains the annotation distribution of both Set A and Set

B at the source level.

Unlike many other species of large baleen whales, MWs are currently not listed

as endangered species under Canada’s Species at Risk Act (SARA) or the Marine

Mammal Protection Act (MMPA) of the United States. However, researchers believe

that the species is still being threatened by various sources of anthropogenic activ-

ity, including: climate change, entanglement in őshing gear, ship strikes, increased

underwater noise, and whaling [98]. For this reason, the development of automated

detection and classiőcation systems has continued to expand beyond the scope of only

endangered species.

In this work, a model capable of classifying a vocalization distinct to the north

Atlantic minke whale known as a łpulse trainž (PT) is developed. Minke pulse trains

recorded in the Caribbean have been characterized according two different forms: the

łspeed-upž pulse train typically occupies the 200ś400 Hz band and has a duration of

roughly 45 seconds and the łslow-downž pulse train which occupies a slightly tighter

57

250-350Hz band and lasts roughly 60 seconds [80]. A third form known as the łcon-

stantž pulse train was characterized for minke whales recorded off the Gulf of Maine

[97]. More generally, the difference in minke pulse train forms is typically charac-

terized by the inter-pulse interval (IPI), i.e., the period of time between consecutive

pulses in a train. For the purpose of this work, the various forms of pulse trains are

treated equally and grouped under a single class.

Figure 4.2: The data distribution of all őles from the training and validation data
set (Set A) plotted over time, factored by the deployment location (station) and
annotation level (fully, partially, or non-annotated). Files that contain at least one
vocalization made by minke whales known as a łpulse trainž are plotted as blue
squares. Files that either explicitly do not (fully-annotated őles) or possibly contain
a pulse train (partially/non-annotated) are plotted using red X’s (i.e., possible sources
of false alarm). The plotted őgure only contains data until November 1 of 2015 as
there were no minke whale annotations during the őnal two months of the deployment.
A slight jitter was added to each point in order to distinguish őles from the same
date.

Due to the relatively long signal length of the minke whale pulse train, it is not

uncommon to see overlap between pulse trains and the vocalizations of other baleen

whales. For the case of the training data (Set A), pulse trains often overlapped

with the much shorter low-frequency vocalizations of őn whales (FW; Balaenoptera

physalus), humpback whales (HB; Megaptera novaeangliae), and North Atlantic right

58

whales (RW; Eubalaena glacialis) recorded in the area. In the case of the OCS

deployment (Set B), the sources of false alarm included the vocalizations of sei whales

(SW; Balaenoptera borealis), plus additional non-biological noise corresponding to

vessels and distant seismic activity off the coast of West Africa.

Table 4.2: Annotation distribution for Sets A and B separated at the acoustic source
level.

Set A: Bay of Fundy (model training/validation)

Acoustic source label training validation

Minke whale pulse train MW 556 56

Ambient noise AB 5560 620

Fin whale FW 3383 422

Humpback whale HB 5773 597

North Atlantic right whale RW 462 49

Set B: Atlantic OCS (model testing)

Acoustic source label test set

Minke whale pulse train MW 336

Non-biological noise NN 266

Sei whale SW 62

Figure 4.3: A spectrogram containing a minke whale pulse train annotated with a
long blue bounding box along with several overlapping humpback whale vocalizations
individually annotated using yellow bounding boxes.

59

Each time series corresponding to the acoustic recordings (i.e., WAV őles) de-

scribed above are split into 45-second segments overlapped by three seconds to en-

sure full coverage of the marine mammal vocalizations. Much like the previous work

in Chapter 3, each 45 second segment is passed through a FFT with a window size

equal to 2048 frames and is overlapped by 512 frames using a Hann windowing func-

tion. The magnitude of the spectrogram is scaled to dBs, truncated using an upper

frequency bound of 1000Hz, and normalized between [0, 1]. The resulting scaled,

truncated, and normalized spectrogram is equivalent to a single data instance used

as input for training, validating, and testing the neural network.

4.1.2 Semi-Supervised Learning

Several variations of the commonly used ResNet CNN architecture introduced in Sec-

tion 2.2.1 are trained to to classify spectrograms to one of two classes: łambient/non-

biological/otherž vs. łminke whale pulse trainž.

The semi-supervised learning algorithm used in this work, MixMatch, was pre-

sented as a SOTA approach to handling label scarcity across a variety of image

classiőcation tasks [10]. MixMatch was chosen due to its performance on image

classiőcation tasks on data sets similar in size to that described above. MixMatch

is grounded upon the use of two types of data-augmentation [106]. First MixMatch

makes use of the similarly named mixup data-augmentation strategy such that the

neural network learns a vicinal distribution [16] rather than an empirical distribution

of the data. In other words, mixup constructs a single training instance with features

x̃ and labels ỹ as a linear combination of two instances;

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj
(4.1)

where (xi, yi) and (xj, yj) are chosen at random from the entire data set and the

random variable λ ∼ Beta(α, α) controls the intensity of the vicinal distribution.

Models trained using vicinal risk minimization (VRM) have been shown to be less

susceptible to data memorization than those trained using the standard paradigm

often used in machine learningśand that which has been discussed thus farśknown as

empirical risk minimization (ERM) [128, 129]. Such models trained via VRM have

also been shown to be more robust to OOD examples [114].

60

The second data-augmentation strategy is used to produce predictions of unla-

beled instances under the assumption that a robust classiőer should predict the same

class label for a transformed instance a = g(xi) as it would for a transformed instance

b = g(xi) if the stochastic function g corresponds to a commonly used image trans-

formation such as cropping, rotation, warping, or adding noise. A single prediction

for xi is obtained following a łsharpeningž routine:

pc =
p2c

∑

j p
2
j

, (4.2)

where pc is the average probability over two stochastic data augmentations that xi

belongs to class c.

Brieŕy, the entire MixMatch algorithm can be described as follows. At each

iteration of the model training process, MixMatch maintains two equally sized sets

of data, X and U , one for which labels are available and the other whose labels are

sharpened predictions from the model currently being trained. Finally, two vicinal

data sets X̃ and Ũ are created using mixup.

The semi-supervised loss function used for training a classiőer via MixMatch is the

combination of the supervised cross-entropy loss (LX = LCE) and an unsupervised

loss LU weighted by a hyper-parameter λU , i.e., L = LX + λULU . The unsupervised

loss is calculated as the squared Euclidean norm between the sharpened label guesses

and predicted model output.

LU =
1

N |Ũ |
∑

u,q∈Ũ

||q − f(y|u; θ)||2, (4.3)

where f(y|u; θ) is the predicted output of the classiőer provided input u and model

parameters θ, and N is the number of possible classes.

MixMatch is explicitly dependent on several hyper-parameters. Suggestions from

the literature [10] narrow the scope of this work to two of these hyper-parameters:

the weighting parameter of the combined loss function (λU) which controls how much

emphasis should be placed on optimizing L with respect to the unlabeled data, and

the VRM distribution parameter (α) which determines how dominant one instance

should be over the other during mixup.

The second data augmentation strategy of the MixMatch algorithm is necessary

for sharpening the guessed labels of the classiőer and in turn the stability of the loss

61

function. However, as one may surmise, most of the common data transformation

techniques used in traditional image classiőcation do not transfer directly to the

spectrogram domain. For example, one common strategy is to randomly crop the

input image before passing it to the model. However, in the case of a spectrogram

such a transformation will alter the frequency representation of the input. Similarly,

rotating or ŕipping the input horizontally are not safe transformations. Instead, a set

of transformations known as SpecAugment [87] is relied upon, whereby, random masks

are added vertically (in time) or horizontally (in frequency) to the spectrogram. In

the time domain, assuming a spectrogram with τ time steps, SpecAugment randomly

masks the time steps [t0, t0 + t) where t0 ∼ Unif(0, τ) and t ∼ Unif(0, T). Similarly,

for a spectrogram with ν frequency bins, SpecAugment masks bins [f0, f0 + f) where

f0 ∼ Unif(0, ν) and f ∼ Unif(0, F). The hyper-parameters T and F correspond to

the maximum number of time steps and frequency bins, respectively, that can be

masked.

Figure 4.4: Two example data instances before and after being passed through the
SpecAugment data augmentation routine. The top row of spectrograms contains
consecutive minke whale pulse trains below 400Hz as well as several humpback whale
vocalizations bounded between 400 and 600Hz. The second row of spectrograms con-
tains a possible source of false alarm pertaining to humpback whale vocalizations
bounded between 200 and 500Hz coupled with several őn whale 20Hz pulse vocaliza-
tions. Column one (starting from the left) contains the original data instance. Column
two contains the same data instance after being łtime-warpedž using SpecAugment
(W = 200). Column three contains two example time and frequency masks per in-
stance using maximum mask widths of T = 50 and F = 50.

62

In addition to masking, SpecAugment includes a hyper-parameter W used to warp

the spectrogram in the time domain using a polyharmonic spline between time steps

(W, τ−W) either to the left or right of the center of the spectrogram by some distance

w ∼ Unif(0,W).

Figure 4.4 contains two data instances before and after being transformed through

SpecAugment using various hyper-parameters.

4.2 Experimental Results

Two subsets of models were trained for the classiőcation task of identifying marine

mammal vocalizations within spectrograms. First, three baseline models (ResNet-

18, 50, and 101) were trained using the fully-annotated and partially-annotated data

listed in Table 4.2. The baseline model was trained by minimizing the supervised

loss function LX of Equation 1, this is analogous to the concept of ERM mentioned

previously. Second, multiple ResNet models were trained via semi-supervised learn-

ing, following the MixMatch algorithm described in Section 4.1.2, using various Mix-

Match and SpecAugment hyper-parameters. These models made use of both the

fully/partially-annotated data as well as the available non-annotated data.

Both the baseline and semi-supervised models were implemented using the Python

deep learning library PyTorch [88]. Model training was distributed over two NVIDIA

V100 GPUs each equipped with 16GB of memory. Both models were trained for

roughly 30 epochs (i.e., complete iterations over the data) or until early stopping

was deemed necessary as the performance of the model on the validation set started

to decrease. The ResNet-18 and ResNet-50 baseline models were trained on mini-

batches of 64 instances, while the ResNet-101 baseline was trained on slightly smaller

batches of 32 instances due to GPU memory restrictions. Using two data augmenta-

tions of the unlabeled set, the semi-supervised model was trained using mini-batches

of size 48 (16 labeled examples plus 2× 16 unlabeled examples). Initial attempts at

training the CNNs using the unbalanced class distributions described in Set A did

not perform favourably. Therefore, the use of a balanced sampling routine is main-

tained during training. In other words, the labeled examples of each mini-batch were

distributed evenly across the two classes. For example, during the training of the

baseline ResNet-50 model, 32 of the 64 instances making up a mini-batch belonged

63

to the minke whale class and the remainder was taken from the collection of other

sources listed in Table 4.2. Similarly, while training the models via semi-supervised

learning, 8 of the 16 labeled examples were taken from the minke whale class. The

initial learning rate of both the baseline model and semi-supervised models was set

to 0.001 and decayed by a factor of ten after the training loss plateaued. The Adam

[55] algorithm introduced in Section 2.2.2 is used to optimize the semi-supervised loss

function deőned above. Per the suggestions of the authors [10], the hyper-parameter

λU was increased linearly from 0 to the provided value over the őrst őve epochs. After

each epoch, the performance of each model was evaluated on the validation data set.

Errors were not back-propagated through the network using the validation set. The

highest performing model in terms of F-1 score on the validation set was maintained

after each epoch.

4.2.1 Baseline vs. Semi-supervised

After training various combinations of models and hyper-parameters, it was observed

that the VRM parameter (α) did not signiőcantly impact performance. Also of note

is that the performance of the classiőers on the validation set decreased when using

the more complex ResNet-50/101 architectures. This phenomenon can be attributed

to the relatively small data set used during training which allowed the models with

more parameters to over-őt to the training data. Due to this decrease in performance

the results obtained from training ResNet-50 are omitted and the performance of the

18-layer architecture with the much deeper 101-layer version are presented instead.

These experiments demonstrated the SpecAugment hyper-parameters were more

important compared to those used for MixMatch, with the exception of the time

warping parameter (W) which did not appear to impact performance. This őnding

aligns with comments made by the authors of the original SpecAugment paper [87]. In

general, it was found that a balanced number of frequency and time masks performs

favourably. The best performing models in terms of F-1 score were observed using

two time and frequency masks with T = 69 and F = 26; equal to roughly 10 percent

of the dimensions of the spectrogram (691× 257).

Table 4.3 contains the direct comparison of overall performance between the mod-

els trained using semi-supervised learning versus those trained using only labeled

64

data. The őrst row of each sub-table in Table 4.3 represents the performance of the

baseline (fully-supervised) model, while the subsequent rows correspond to models

trained via semi-supervised learning. Classiőer performance was evaluated on the

validation data of Set A and is presented in terms of precision, recall, and F-1 score.

The values depicted represent the median training run in terms of F-1 score after

training each model őve times using different random number generator seeds. The

performance metrics contained in Table 4.3 use a VRM hyper-parameter of α = 0.5

and several values of the unsupervised loss hyper-parameter (λU).

Table 4.3: Performance comparison of the baseline and semi-supervised CNN archi-
tectures in terms of precision, recall, and F-1 score, measured on the validation data
of Set A: Bay of Fundy. The best performing models are highlighted in bold.

ResNet-18 CNN Architecture

Training paradigm λU precision recall F-1 score

Supervised (ERM) - 0.79700 0.85807 0.82641

Semi-supervised

(VRM)

5 0.77950 0.92624 0.84656

10 0.81645 0.90301 0.85755

25 0.79570 0.90153 0.84532

50 0.80782 0.90242 0.85250

100 0.73856 0.93043 0.82346

ResNet-101 CNN Architecture

Training paradigm λU precision recall F-1 score

Supervised (ERM) - 0.73344 0.80124 0.76585

Semi-supervised

(VRM)

10 0.78889 0.93577 0.85607

25 0.74697 0.89709 0.81538

50 0.78212 0.88308 0.82954

Regardless of the choice of model architecture, the performance of the models

trained using semi-supervised learning appear to outperform those trained strictly

using labeled data. This can be seen by comparing rows one and three of the per-

formance metrics for the ResNet-18 CNN and comparing rows one and two for the

65

ResNet-101 CNN. Using a paired sign test of population medians, the increase in

performance of the ResNet-101 architecture is statistically signiőcant (p = 0.00364).

This is a substantial őnding as it implies the features learned by the CNN were pos-

itively inŕuenced using unlabeled data. Moreover, the fact that models trained with

lower values of the VRM hyper-parameter (α) performed on par with those where

α > 0.5, means the increase in model performance is not strictly due to the use of

VRM. In general, it was observed that setting λU to a value between 10 and 50 lead

to a well performing model in terms of F-1 score. The hypothesis is that values in

this range provide a better balance between LX and LU instead of putting too much

emphasis on either one of these terms during training.

4.2.2 Out-of-Distribution Performance

The two baseline models trained using fully-supervised learning from Section 4.2.1 as

well as the best performing models trained using semi-supervised learning were used

to classify the data from Set B. Table 4.4 contains the overall performance metrics of

the semi-supervised classiőers versus the baseline models.

Table 4.4: Performance comparison of the baseline and semi-supervised CNN archi-
tectures in terms of precision, recall, and F-1 score, measured using the data from
Set B: Atlantic OCS. The best performing models are highlighted in bold.

ResNet-18 CNN Architecture

Training paradigm precision recall F-1 score

Supervised (ERM) 0.75213 0.75178 0.75195

Semi-supervised (λU = 10) 0.89658 0.88799 0.89226

ResNet-101 CNN Architecture

Training paradigm precision recall F-1 score

Supervised (ERM) 0.72769 0.69944 0.71329

Semi-supervised (λU = 10) 0.85406 0.85282 0.85344

The models trained using MixMatch outperform the models trained using only

labeled data. The observed increase in performance is even larger for Set B, clearly

demonstrating that the baseline models are more susceptible to training bias and

poor OOD performance when the number of available training examples is small.

66

Again, using a paired sign test of population medians, the increase in performance

is statistically signiőcant (p = 0.00364). Moreover, the performance of the semi-

supervised models on Set B actually exceed that of Set A, demonstrating that the

semi-supervised CNNs are more robust and can generalize to unseen acoustic data

collected in distinct locations, at varying depths, and are less susceptible to unknown

acoustic sources.

Chapter 5

Operational DCS

The contents of this chapter are largely taken from the report:

Thomas, Mark, et al. łOperational Neural Networks for Marine Mammal Detection

and Classiőcationž Technical report for Defence Research and Development Canada

(DRDC), 2023.

5.1 Background and Requirements of Operational DCS

The research reported up to this pointśboth within this document and related work

conducted by othersśhas largely been effective at demonstrating that CNN-based

automated DCS are viable candidates for detecting marine mammal vocalizations

post hoc, i.e., using data that has already been collected via moored recording devices.

Far less time and attention has been spent on analyzing the functionality of the

developed DCS in terms of its use in real-world and real-time applications. Largely,

this is due to the various operational constraints that are not necessarily a problem

when conducting research. In fact, one could argue that much of the related work

outlined in Section 2.7, while certainly beneőcial to the bio-acoustics community, also

fails at demonstrating operational deep learning-based DCS.

Developing a DCS presents several technical challenges that have hindered the

operational utility of the research discussed so far. For one, passive acoustic moni-

toring is a multidisciplinary research topic involving acousticians, marine biologists,

oceanographers, physicists, engineers, and computer scientists. The process of train-

ing, evaluating, and deploying an automated DCS is challenging for all, but the level

of difficulty may vary dramatically depending on the expertise of the researcher. Sec-

ond, of the constraints not faced when purely conducting research, perhaps the most

presumptuous is computational efficiency. Many of the automated DCS reported in

the literature fail to mention how well they perform on lightweight/low-power devices.

Such devices are effectively a requirement if the end-goal of the system is to determine

67

68

species presence/absence in real-time. And őnally, while deep learning models have

shown to perform well on acoustic data from the same environment that they were

trained on, their performance begins to degrade on new data collected in different

locations for a variety of reasons, including: seasonality, weather, bathymetry, the

type or conőguration of the recording device, and local noise conditions.

This chapter addresses the above challenges in the following ways:

1. An end-to-end pipeline, with very little required human input, is developed in

order to democratize the training and evaluation process involved in DCS devel-

opment. Additionally, guidelines on how PAM data sets should be selected and

separated into train/test splits are provided, such that, the resulting systems

are more robust and generalizable.

2. High-performing and lightweight alternatives to the two-stage detection models

used in Section 3.3 are developed, and measures of the computational/energy

requirements to run these models in real-time (or faster) on edge devices are

compiled.

3. Methods for updating neural networks via transfer-learning and sending the

updated network parameters over-the-air are presented. These methods are

particularly effective when the automated DCS is running on an edge device or

autonomous platform and network bandwidth is extremely limited.

The following work was completed through a Department of National Defence (DND)

IDEaS Grant and conducted at JASCO Applied Sciences (JASCO).

5.2 Standardized methods for training and evaluation

The task of producing an automated DCS (operational or otherwise) can be divided

into three stages: data set selection/creation, model training, and model evaluation.

In this section, each of these stages is outlined in turn, with the caveat that ML

research, especially deep learning, is a highly iterative and experimental process,

whereby one stage may hinge on another, and stages may be explored simultaneously.

Paramount to this work is the fact that deep learning has sometimes been pre-

sented as more of an art than a science. The intention is to divide the stages above

69

into digestible and tractable steps such that this art is closer to łpaint-by-numbersž.

A great deal of consideration went into the selection of software, libraries, and tools

used to create the pipelines described below. In some sense one intends on remov-

ing the łgate-keeperž such that more efficient experimentation can be carried out by

researchers with varying levels of DL expertise.

5.2.1 Data Set Creation

Perhaps the most critical component of any ML/DL algorithm is the quality of the

data set on which the algorithm is trained. The neural network architectures that

have proved successful so far in this work are variations of CNNs and often used on

structural data in the form of images. The most suitable visual analogue for the

task of marine mammal detection and classiőcation is the spectrogram [56, 105, 117].

The steps of combining annotations stored in a relational database with WAV őles

stored in a data-warehouse to create a large corpus of spectrogram/label pairs used

in training and testing detection models are summarised below.

JASCO maintains a large database containing over 1.4 million annotations (as

of October 2022) in the form of bounding boxes (start/end times, low/high frequen-

cies) drawn around a variety of sounds in spectrograms. Such sources include marine

mammals, ősh, and non-biological sources. A pipeline was developed that takes sev-

eral conőguration parameters and outputs a directory containing binary records. Each

record contains one-or-more spectrograms, corresponding annotations when available,

and additional metadata. The data set creation pipeline was developed using Python

in a ŕexible way such that it could be run on a single machine using built in Python

multiprocessing or distributed across a larger computing cluster using Apache Beam1,

Flink2, or Spark3. The pipeline operates using the following steps:

1. Query JASCO’s annotation database to select the annotations that make up

the data set.

2. Loop over the unique WAV őles from the returned set of annotations and stream

the contents of these őles in blocks equal to the requested length (seconds) of

1Apache Beam: https://beam.apache.org
2Apache Flink: https://spark.apache.org
3Apache Spark: https://spark.apache.org

70

the spectrogram.

3. Perform the FFT, creating a spectrogram from the streamed block and apply

any requested transformations (e.g., scaling, normalization, etc.)

4. Format and carry-forward any annotations/metadata pertaining to the data

block that was just processed.

5. Byte-encode the output of the previous step and save the results to a binary

őle.

For those working in the őeld of machine learning, the steps outlined above are

all-to-familiar. What makes the pipeline accessible is the limited input required by

the user to create data sets quickly and efficiently. The inputs to the pipeline are two-

fold: a SQL query specifying which annotations in the database the user would like to

select and a conőguration őle containing parameters used during the creation of the

spectrogram (e.g., length in seconds, frequency range, and normalization). The SQL

query can be as detailed or as general as necessary. Alternatively, if the user cannot

access the database at that time, a CSV of annotations that have been previously

exported from the database can be provided and the SQL query will not be executed.

An example SQL query that matches the schema of the JASCO annotation database

is contained in Listing 5.1. Similarly, the conőguration őle can include as much or

as little detail as the user requires to develop their algorithm. The contents of an

example conőguration őle are presented below (Listing 5.2).

71

Figure 5.1: Outline of the pipeline used in creating a DCS development data set.
The requirements to the pipeline include a conőguration őle that may specify several
parameters used when running the FFT and a SQL query for selecting the annotations
from the database.

Listing 5.1: Example SQL query used in selecting the annotations from JASCO’s

annotation database to be used in the dataset creation pipeline.
-- Example Query:

-- Select all blue , fin , and sei whale annotations from the ESRF

-- deployment between June 2015 and July 2017, where the vocalization

-- falls in the 25 -1000Hz frequency band.

select * from annotations

where (

client = ’ESRF ’

and species in (’BW’, ’SW’, ’FW ’)

and starttime >= ’2015-06-01’

and endtime < ’2017-08-01’

and highfreq <= 1000

and lowfreq >= 25

);

72

Listing 5.2: Example conőguration őle for the data set creation pipeline. Optional

parameters are preőxed as such.
record:

directory: /home # Where to put the data set

name: my_dataset # The name of the data set

prefix: train # dataset prefix (e.g., train or test)

annotations:

data: query.sql # Path to SQL query or CSV

agnostic: false # (Optional) train a class -agnostic model

balance: false # (Optional) balance the dataset

true_negatives: false # (Optional) include true -negatives examples

spectrogram:

seconds: 10 # Length of the spectrogram

min_freq: 10 # (Optional) lower frequency bound

max_freq: 1000 # (Optional) upper frequency bound

db_scale: true # (Optional) dB scale the spectrogram

log_scale: true # (Optional) log -scale y-axis

pcen: false # (Optional) apply per -channel energy normalization

Processing of the pipeline is done in parallel on a per-őle basis. For example, if

there are 8 unique WAV őles returned in step 1 above, on a 4-core/8-thread CPU,

each thread would process a single őle concurrently and the entire batch of őles would

be processed in one phase. On a workstation with many cores (e.g., the 12-core/24-

thread CPU used for much of this work) processing time is achieved quickly even for

large data sets in excess of 50,000 examples. Additionally, it was discovered through

experimentation that streaming the contents of a őle in step 2, as opposed to loading

the entire őle into memory, led to a 10x improvement in run-time.

The most challenging aspect in creating a well-suited data set using the pipeline

developed in this work is deőning the problem statement which subsequently char-

acterizes the SQL query or optional CSV. And while the quality of the annotated

acoustic data at JASCO is notable, there is no perfect data set as far as ML or DL

is concerned. Furthermore, the stochastic nature of acoustic data exacerbates several

challenges one often faces when training and testing neural networks: model general-

ization and robustness to out-of-distribution data. It is likely the case that many of

the DL-based PAM algorithms reported in the literature have been developed under

sub-optimal conditions. The standard approach to dividing data into training and

test sets is through simple random sampling. This approach does not provide suffi-

cient evidence that a system designed for PAM generalizes in any way. During this

73

work, a set of guidelines and heuristics was formulated that outlines how to select

training and test data sets. These guidelines were presented to internal and external

stakeholders to garner feedback. It was argued that the importance of the test data

set exceeds that of the training set if one intends on using the developed detector

for operational PAM. Several suggestions in creating data sets for PAM development

include:

1. Separate the training and test sets at

(a) bare minimum: hold out individual WAV őles

(b) better: hold out entire stations or time frames from the full data set

(c) best: hold out time frames, stations, and even full acoustic deployments

2. Visualize the time/geographical overlap of your data sets to ensure the same

data is not trained and tested on by accident (e.g., two recording stations very

close in proximity picking up the same low-frequency sound)

3. Pick good FP/FN/TN examples (e.g., low signal-to-noise, new soundscapes,

overlapping sources, etc.)

By creating the data sets used throughout this work with these considerations

in mind, the hypothesis is that the results presented in this chapter fairly represent

model generalizability, while maintaining a balance between model bias and model

variance. Further ablation studies to demonstrate this hypothesis are required and

discussed in the proposed future work (Chapter 6).

5.2.2 Model Training

Much like the pipeline developed for creating data sets, a great deal of effort went into

creating a model training code base with very little conőguration requirements. There

are an abundance of open-source tools and libraries available within the deep learning

community, all of which have beneőts and drawbacks, however, as one of the goals

in this research is to make DCS development more accessible, making use of these

resources, which have existing levels of community engagement and support, seemed

like the best approach going forward. A suitable application programming interface

74

(API) known as the Tensorŕow (TF) Object Detection API was identiőed. The TF

API consists of several pre-existing workŕows for training SOTA detection algorithms

with little user input, apart from standard conőguration parameters like batch size,

learning rate, and data augmentations. Later on, while continuing to work on the

additional goals of this work, notably those pertaining to transfer learning (Section

5.4) and model quantization (Section 5.5.1), a second open-source Python library

łYOLOv5ž was identiőed as being suitable for the task of model training.

As will be discussed later on, committing to a single framework may prove costly

in a fast-paced őeld like machine learning. It was decided to use both libraries in

tandem with the beneőt of being able to compare results of varying models. This

resulted in the development of two code repositories for training detection models

using different ML frameworks: Tensorŕow and PyTorch. Both of which can be used

to compile a trained model for inference on edge devices.

Using either of the developed code bases, the training procedure is quite similar

and hinges on a conőguration őle that is used by wrapper functions to the TF Object

Detection API and YOLOv5. The conőguration őle includes a few important pieces

of information:

i. The name of the detection architecture one would like to use.

ii. The location of the training and test data sets.

iii. A list of the classes and their labels

iv. Optional hyper-parameters such as the initial learning rate, batch-size, and how

often to save model checkpoints.

An example conőguration őle for the model training procedure is available in 5.3.

75

Listing 5.3: Example conőguration őle for the model training pipeline.
Base directory of the dataset

dataset: /home/my_dataset

Location of train/test under the base directory

train: train

test: test

The classes in the dataset

classes:

0: BW

1: FW

2: RW

3: SW

The name of the model to train

model: yolov5n

Optional hyper -parameters

batch_size: 16

learning_rate: 0.001

optimizer: adam

...

Both code repositories implement various optimization routines, loss functions,

and data augmentation strategies. For the remainder of this chapter, one can as-

sume that model training in both PyTorch and Tensorŕow was performed using the

NVIDIA CUDA Toolkit, a parallel computing framework and API that uses graphical

processing units (GPUs) to perform the many multiply-accumulate (MAC) operations

required in a single pass of a neural network. Two varieties of GPUs were used for

training the neural networks: a NVIDIA RTX 3090 GPU with 24GB of VRAM was

used to train models locally at JASCO Applied Sciences and computation resources

using a NVIDIA Tesla V100 with 16GB of VRAM were provided by Compute Canada.

5.2.3 Model Evaluation

The performance metrics introduced in Section 2.4.2 (i.e., Average Precision and

mean-Average Precision) are used in evaluating the DCS detectors developed through-

out this chapter. However, these metrics were derived for computer vision tasks

and not widely used in industry PAM applications [39]. To benchmark the deep

learning-based DCS against methods currently used in industry, notably the contour

76

detectors at JASCO [77], performance is evaluated on a per-őle basis rather than

per-vocalization.

Per-őle Performance Metrics

The contour detectors currently in use at JASCO are deterministic and therefore do

not yield interpretable conődence scores. Additionally, the contour detectors were

developed with the goal of species presence/absence detection in mind, as opposed to

counting individual vocalizations. To measure performance of the contour detectors

in terms of presence/absence, JASCO compiles the number of TP, TN, FP, and FN

on a per-őle basis. The procedure for computing P, R, and F-score on a per-őle basis

is as follows:

1. Select a small sample of őles to be annotated by a manual analyst. At JASCO

this is performed using łAutomatic data selection for validationž (ADSV [58])

such that the distribution of the sample is as closely aligned as possible to the

full acoustic data set.

2. Set an integer threshold value (≥ 1) to be used in Step 3

3. For each annotated őle from the sample of Step 1, check whether the number of

detections from that őle exceeds the threshold set in Step 2. If so, this őle is la-

beled as a 1, otherwise a 0. The result is a large table of binary presence/absence

predictions.

4. Again, iterating over each őle, compare the presence/absence ground truth to

the output of Step 3 to determine if the contour detector ran on that őle is a

TP, TN, FP, or FN.

5. Sum the TP, TN, FP, and FN counts from Step 4 and compute P, R, and F-score

using the standard equations 2.15, 2.16, and 2.18.

6. Increase the threshold set in Step 2, and iterate through this process, optimizing

for one of P, R, or F-score. Notably at JASCO this process is generally optimized

to improve an additional metric known as Matthew’s Correlation Co-efficient

(MCC).

77

7. Repeat this process for each detector/species to be evaluated.

To directly compare the output of the automated DCS to JASCO’s contour detec-

tors, a thresholding and optimization system was implemented. As the CNN-based

detection models contain conődence scores, two thresholds are used in Step 2 of the

procedure described above: one threshold for the number of detections and a second

threshold on the conődence score. As the number of detectable species in the detector

increases, so does the number of threshold parameters. The system for determining

threshold values was implemented such that if the number of species is small (such as

the examples in this chapter), a brute-force approach to iterating over a grid of pos-

sible values can be used. If the detection model can detect many species, the choice

of thresholds is treated as a multi-dimensional optimization problem and optimized

using a Genetic Algorithm (GA).

The topic of model evaluation was subject to several productive conversations

throughout the duration of this work, again with both internal and external stake-

holders. What level of granularity performance is measured should depend on the

goal of the operational system. For the purpose of presence/absence detection, per-

őle computations are informative and likely sufficient. For additional down-stream

tasks such as density estimation, more reőned metrics such as mAP may prove useful.

Also of note is the ability to optimize the predictions of a model for precision over

recall (or vice versa). In some cases, for example when attempting to detect highly

endangered species, one may be willing to sacriőce lower precision for higher recall.

In other cases precision may outweigh recall, such as a desire to reduce unnecessary

engagement by a human operator.

5.2.4 Inference on Edge Devices

Several neural network architectures were considered for this work, all of which can

be described as CNN-based object detection algorithms. While the two-stage R-

CNN detector developed in Section 3.3 performed well, the additional proposal stage

required by these networks generally leads to less efficient models in both size and run-

time. In Section 3.3.3, we alluded to the limitations of using R-CNNs for performing

inference (i.e., using a trained model to make predictions on unseen data) at or close

to real-time. Because of this, emphasis was placed on training less computationally

78

expensive single-stage detectors: EfficientDet and YOLO (Section 2.3.2).

These models and others are part of a growing trend in the development of

lightweight networks for use on mobile and edge devices. A by-product of the in-

creased interest in lighter neural network architectures is the increased availability

of hardware to run these networks efficiently. One such piece of hardware is the

łEdge TPUž from Google; an Application-Speciőc Integrated Circuit (ASIC) that is

purposefully designed to perform neural network inference.

The Asus Tinker Edge T (hereby referred to as łTinker boardž; Figure 5.2) is a

commercially available single board computer (SBC) similar in design to a Raspberry

Pi, with the additional beneőt of an on-board Edge Tensor-processing unit (TPU).

Brieŕy, TPUs are machine learning accelerators that speed up the processing of neural

network inputs in a similar fashion to the CUDA Toolkit described above. Edge TPUs

are computationally efficient and consume less power than a conventional CPU or

GPU. As the Edge TPU is a Google product it has been optimized to run TensorFlow

Lite (TFLite) models, and thus TFLite was adapted as the compiled network format

for this work.

Figure 5.2: Image of the Asus Tinker Edge T SBC. Image source: product information
page from ASUS.

There are multiple ways to create a TFLite model. The EfficientDet model was

implemented using the Tensorŕow Object Detection API and converting these models

to TFLite is straightforward using the Tensorŕow Lite Converter. For the case of

YOLO, the models were őrst transformed from PyTorch to a standard ONNX format

and subsequently from ONNX to TFLite. In both cases, the conversion process allows

for some additional modiőcations to the model to reduce latency and size if required.

79

The output in both cases (EfficientDet and YOLO) is a compiled ł.tŕitež őle can

that be run via an interpreter on the edge device (i.e., Tinker board). The results

of running the YOLO model on the Tinker board are well documented in the latter

sections of this chapter. These results indicate the power draw of the boards while

running model inference. When the Tinker board is idle its power draw is roughly 2.5

watts (W). No attempt to shutdown peripherals, remove unnecessary bloat, or sleep

the boards between operation was investigated during this work.

5.3 Automated DCS Results

Experiments with models of various sizes and complexities are carried out for sev-

eral different data sets and species. In total, there were őve model architectures

used from each of the EfficientDet and YOLO families of models, respectively. The

average footprints of the model in megabytes (MBs), number of parameters, and nec-

essary ŕoating-point operations per second (FLOPs) required to complete a single

pass through each network are compiled in detail in Table 5.1. The values presented

in the table are estimates based on the models reported in Section 5.3.1. Depending

on the size of the input (i.e., spectrogram), the number of FLOPs and parameters

may differ slightly from the values listed below.

5.3.1 Blue, Fin, Right, and Sei Whale Detector

In the őrst experiment, the models listed above were trained to detect the audible

vocalizations of blue whales (BW, Balaenoptera musculus), őn whales (FW, Bal-

aenoptera physalus), north Atlantic right whales (RW, Eubalaena glacialis), and sei

whales (SW, Balaenoptera borealis). The data set used to train the BW/FW/R-

W/SW detector is comprised of acoustic data from three Atlantic Ocean deployments.

The training data set consisted of acoustic data recorded by the Bedford Institute

of Oceanography (BIO) at the Gully Marine Protected Area (MPA; May 2015 to

April 2016) and the Environmental Studies Research Fund (ESRF) project on the

Scotian-shelf (August 2015 to July 2017). The test data set from BIO was recorded

in the Emerald Basin over multiple years (May 2015 to April 2016; September 2016

to November 2017). The spectrograms used for training and testing were 10 sec-

onds in length and bounded between 10 and 500 Hz. Each spectrogram was scaled

80

logarithmically in the frequency axis and the magnitude of the STFT was scaled in

decibels (dBs). Notably, the two data sets were taken from separate deployments and

contain no geographical or temporal overlap. The data were selected in such a way

to ensure a good measure of generalizability. Infrasonic vocalizations made by blue

and őn whales were not used in training or testing these models.

Table 5.1: Estimated number of parameters (measured in millions (M)) , ŕoating-
point operations per second (FlOPS, measured in billions (B)), and memory footprint
(measured in megabytes (MB)) of the YOLO and EfficientDet families of models.

EfficientDet

Model Size Parameters (M) FLOPS (B) Size (MB)

D0 3.9 2.5 22

D1 6.6 6.1 34

D3 12 25 79

D5 34 135 197

D7 52 325 235

YOLO

Model Size Parameters (M) FLOPS (B) Size (MB)

nano (n) 1.8 4.1 7

small (s) 7.0 15 28

medium (m) 21 48 80

large (l) 46 107 178

extra-large (x) 86 204 330

All models were trained on a GPU (RTX 3090 or V100) for a total of 300 epochs

(i.e., iterations through the entire data set). The batch size was set to 16 for the

EfficientDet models and 32 for the YOLO models. The neural networks were opti-

mized via gradient descent using the Adam optimizer with an initial learning rate

of 0.001 that decayed to 0.00001 following a cosine learning rate schedule [73]. The

YOLO models were trained using 16-bit ŕoating point precision, as is standard for

this model, while the EfficientDet models used 32-bit ŕoating points; theoretically

giving an upper hand to EfficientDet. This training routine is maintained throughout

the remainder of the report with the only exception being altering the number of

81

epochs on occasion.

The performance of the YOLO family of models signiőcantly outperforms that of

the EfficientDet family, as demonstrated in Tables 5.2 and 5.3. Much of the detri-

ment of the EfficientDet models appears to be its poor performance on FW vocaliza-

tions whose bounding boxes are particularly small. Interestingly, the smallest YOLO

model, YOLO-n, also seems to struggle with detecting FWs, but the second small-

est YOLO model (YOLO-s), does not. Also of note is that the performance of the

YOLO models seems to peak at the łlargež (YOLO-l) model size. This is likely due

to the łextra-largež model having more parameters and potentially over-őtting to the

training data.

The data used to train the BW/FW/RW/SW detector is by-and-large partially

labeled. Meaning that in a single spectrogram with multiple vocalizations, there is a

high probability that only one of the vocalizations has been annotated. Unfortunately,

partially labeled data will negatively impact the performance of the model. This

research has successfully demonstrated that partially labelled data can be used for

the task of spectrogram classiőcation (Chapter 4), and the intention is to conduct

future work to adapt these approaches for the task of detection. One hypothesis is

that the vocalizations of FWs are particularly challenging when partially labeled.

Deep learning research is an iterative and experimental process. As a result, the

remaining work focuses on the YOLO family of models due to its increased perfor-

mance, resulting in faster and more effective experimentation.

Comparison to JASCO’s Contour Detector

To compare the results of these models against the contour detectors currently in use

at JASCO, the results are restricted to two of the better performing YOLO models

at different ends of the size-spectrum (YOLO-s and YOLO-l). The neural network

and contour detectors are compared on a per-őle basis, of which, the method for

converting per-vocalization predictions to per-őle predictions is described in Section

5.2.3.

A perfect one-to-one comparison of the detectors is still slightly out of reach due

to the way the contour detectors and neural networks were developed. The contour

detectors are mostly separated by call-class or call-type whereas the neural networks

82

Table 5.2: Overall performance of the YOLO models trained to detect the vocaliza-
tions of BW, FW, RW, and SW

YOLO

Model Size
Species P R AP@.5 mAP@.5:.95

nano (n)

All 0.554 0.453 0.441 0.270

BW 0.666 0.667 0.671 0.394

FW 0.115 0.225 0.047 0.027

RW 0.660 0.450 0.480 0.273

SW 0.775 0.460 0.567 0.385

small (s)

All 0.858 0.546 0.607 0.498

BW 0.844 0.651 0.746 0.569

FW 0.836 0.477 0.497 0.429

RW 0.816 0.555 0.610 0.479

SW 0.935 0.499 0.577 0.514

medium (m)

All 0.884 0.525 0.607 0.479

BW 0.811 0.590 0.687 0.511

FW 0.857 0.467 0.501 0.408

RW 0.947 0.538 0.635 0.496

SW 0.920 0.504 0.605 0.499

large (l)

All 0.919 0.526 0.620 0.515

BW 0.817 0.656 0.701 0.560

FW 0.942 0.513 0.537 0.456

RW 0.960 0.532 0.624 0.506

SW 0.959 0.494 0.620 0.539

x-large (x)

All 0.880 0.551 0.623 0.488

BW 0.808 0.669 0.742 0.555

FW 0.811 0.497 0.515 0.432

RW 0.966 0.541 0.632 0.470

SW 0.936 0.497 0.603 0.494

83

Table 5.3: Overall performance of the EfficientDet models trained to detect the vo-
calizations of BW, FW, RW, and SW

EfficientDet

Model Size
Species P R AP@.5 mAP@.5:.95

D0

All 0.529 0.423 0.417 0.238

BW 0.588 0.623 0.617 0.352

FW 0.301 0.234 0.164 0.075

RW 0.694 0.507 0.550 0.380

SW 0.533 0.326 0.337 0.144

D1

All 0.559 0.437 0.447 0.278

BW 0.680 0.621 0.656 0.432

FW 0.320 0.247 0.176 0.078

RW 0.684 0.574 0.606 0.436

SW 0.554 0.307 0.351 0.169

D3

All 0.561 0.436 0.445 0.284

BW 0.659 0.631 0.665 0.435

FW 0.285 0.230 0.166 0.084

RW 0.742 0.580 0.595 0.447

SW 0.560 0.302 0.353 0.171

D5

All 0.561 0.457 0.463 0.306

BW 0.678 0.656 0.687 0.477

FW 0.311 0.239 0.177 0.087

RW 0.692 0.583 0.614 0.475

SW 0.562 0.350 0.373 0.186

D7

All 0.547 0.462 0.458 0.286

BW 0.664 0.663 0.683 0.452

FW 0.294 0.248 0.167 0.080

RW 0.683 0.588 0.601 0.428

SW 0.546 0.349 0.381 0.185

84

operate at the species level. The results of Table 5.4 represent a best approximation

of a one-to-one comparison.

In general, the neural network performs as well, if not slightly better for most

species with the exception of BWs. The results of the per-őle detector on BWs

suggest that additional data containing false positive examples should be used during

training. Speciőcally, it was observed that a large degree of over-prediction (i.e.,

many false positives) for BWs when using the YOLO-l model. The performance of

the contour detector for this species is far superior.

Table 5.4: Per-őle performance comparisons of the YOLO detector against JASCOs
contour detector. No comparative metrics were available for detecting North Atlantic
right whales (RW).

Blue Whale (BW)

YOLO-s YOLO-l JASCO

Precision 0.41 0.33 0.93

Recall 0.52 0.94 0.96

F-1 Score 0.46 0.49 0.94

Fin Whale (FW)

YOLO-s YOLO-l JASCO

Precision 0.97 0.96 0.95

Recall 0.80 0.80 0.79

F-1 Score 0.88 0.87 0.86

Sei Whale (SW)

YOLO-s YOLO-l JASCO

Precision 0.84 0.84 0.61

Recall 0.92 0.91 0.73

F-1 Score 0.88 0.87 0.66

85

Inference Run-times

As a side result, when running the YOLO models to compile per-őle performance

comparisons, the run-time required to evaluate 110 WAV őles was also logged. Each

WAV őle is roughly 10 minutes in length and sampled at 8kHz. Evaluation was per-

formed in parallel on a 24-thread CPU, i.e., 24 instances of the model were initialized

and ran concurrently. The evaluation run-times described below include the process

of loading the models into memory, creating the TFLite interpreters, data streaming,

and FFT computations (Table 5.5). Finally, this analysis was performed using two

levels of model quantization. The values listed below are total run-times as opposed to

per-őle run-times and present a signiőcant promise on running these models on entire

acoustic deployments in a very short amount of time. Notably, a signiőcant decrease

in run-time is observed when models are quantized at 8-bits. As will be discussed

in Section 5.5.1, this advantage is also present when performing model inference on

edge devices.

Table 5.5: Measured runtimes of the YOLO detection models when evaluating 110 őles
each 10 minutes long at sampled at 8kHz. Inference was parallelized on a 24-thread
CPU. Measurements include the the process of loading the models into memory,
creating the TFLite interpreters, streaming the data, and performing the FFT.

Model Size 16-bit Runtime 8-bit Runtime

nano (n) 12s 11s

small (s) 21s 16s

medium (m) 58s 29s

large (l) 2m 16s 54s

x-large (x) 4m 47s 1m 35s

5.3.2 Humpback and Infrasonic Fin Whale Detector

Several research projects at JASCO with an emphasis on manual annotation have

resulted in acoustic deployments that include many fully annotated őles. Multiple

deployments containing fully annotated őles were identiőed for training detection

models for humpback (HB, Megaptera novaeangliae) vocalizations and infrasonic calls

86

made by FWs. These vocalizations have proven difficult for the neural networks when

the data sets used for training are only partially annotated. Because these species

generally vocalize in sequence, if only the őrst of a series of vocalizations is annotated,

the detection model in unintentionally penalized for correctly predicting the remaining

calls in the partially annotated sequence and learning stagnates.

The data set used to train the HB and infrasonic FW detector is comprised of

acoustic data from four Atlantic Ocean deployments. The training data set was

recorded by Stantec in the Bay of Fundy (August 2015 to December 2015). The

test data sets consisted of acoustic data from BIO that was obtained in the Gully

MPA (May 2015 to April 2016), ESRF project on the Scotian-shelf (August 2015 to

July 2017), and the University of New Hampshire (UNH) on the United States (US)

Outer Continental Shelf (OCS; December 2017 to June 2018). The spectrograms

used for training and testing were 30 seconds in length and bounded between 10 and

2000 Hz. Each spectrogram was scaled logarithmically in the frequency axis and the

magnitude of the STFT was scaled in dBs. The train and test data sets share a small

degree of temporal overlap in terms of their collection (fall 2015), however, they are

in completely different locations (the closest being the Gully found along the Scotian

Shelf and the Bay of Fundy). Therefore, these data sets should present very little risk

of bias and remain good measures of generalizability.

Several experiments were performed to test the efficacy of the detection models for

these species/call-types. First, a detector was trained for each species separately, fol-

lowing which, a multi-class detector was trained on both species’ annotations. While

the species’ vocalizations used in training the models above don’t overlap, these exper-

iments are informative in measuring any possible trade off between running multiple

models independently or combining their detection into a single model. In this case,

the model trained on both species at once outperformed the two models trained sep-

arately. This behaviour is-Ðin all likelihood-Ðsimply a matter of entropy. Not only

are we providing the model with more data to learn generalizable features, but the

instances pertaining to the other class can act as false positive signals to train on.

87

Table 5.6: Performance of the YOLO-s/l models trained to detect infrasonic FW
vocalizations.

Model Size P R AP@.5 mAP@.5:.95

small (s) 0.717 0.719 0.747 0.344

large (l) 0.706 0.688 0.711 0.320

Table 5.7: Performance of the YOLO-s/l models trained to detect HB vocalizations.

Model Size P R AP@.5 mAP@.5:.95

small (s) 0.717 0.775 0.800 0.567

large (l) 0.902 0.875 0.932 0.675

Table 5.8: Performance of the YOLO-s/l models trained to detect both HB and
infrasonic FW vocalizations.

Model Size Species P R AP@.5 mAP@.5:.95

small (s)
All 0.930 0.903 0.962 0.760

FW 0.969 0.944 0.988 0.808

HB 0.892 0.863 0.936 0.712

large (l)
All 0.874 0.867 0.926 0.691

FW 0.939 0.925 0.975 0.763

HB 0.809 0.808 0.878 0.619

5.3.3 Minke Whale Pulse Train Detector

Finally, a third set of models were trained to detect minke whale (MW, Balaenoptera

acutorostrata) pulse trains (PTs). The detection models trained for identifying the

vocalizations listed thus far have all been relatively short in duration (e.g., a few

seconds) and as a result, the input spectrogram to these models has been short (max-

imum of 30s). The PT emitted by MWs is much longer in duration: lasting up to

45-60s per vocalization [97]. Two data sets containing annotated MW PTs were used

for training and testing YOLO models. The data set used to train the MW detector

is comprised of acoustic data recorded by UNH on the US OCS (December 2017 ś De-

cember 2020) while the test data set was obtained from Stantec in the Bay of Fundy

88

(August 2015 ś April 2016). The spectrograms used for training and testing were

45 seconds in length and bounded between 10 and 2000Hz. Again, each spectrogram

was scaled logarithmically in the frequency axis and the magnitude of the FFT was

scaled in dBs.

Much like the x-large model trained to detect BW, FW, RW, and SW, the larger

models trained to detect MW appear to overőt to the training set and the best

performance is observed when using the smallest (YOLO-n) model.

Table 5.9: Performance of the YOLO models trained to detect minke whale pulse
train vocalizations.

Model Size P R AP@.5 mAP@.5:.95

nano (n) 0.776 0.644 0.733 0.444

small (s) 0.755 0.620 0.698 0.391

large (l) 0.776 0.563 0.643 0.326

5.4 Model Updates via Transfer Learning

Transfer learning is a machine learning technique in which the trained weights of a

neural network are used as a starting point for a new learning task. Conceptually,

transfer learning assumes that many of the features learned by the previous network

are useful towards understanding the inputs corresponding to the new task. As such,

the time to train the new network and the number of required training examples is

theoretically lower [134]. Transfer learning was identiőed as a suitable technique for

passive acoustic data for a few primary reasons:

• The distribution of the data at a species-level can vary broadly between PAM

deployments.

• Various factors including weather, bathymetry, season, and anthropogenic sources

can have a signiőcant impact on acoustic landscape and the data collected.

• The probability of encountering new and/or unknown acoustic sources and

events is high.

89

In a similar vein to the reasons listed above, is the concept of data drift which

refers to the phenomenon where the distribution of the input data changes over time

and the performance of a model trained on said data begins to degrade (sometimes

referred to as model drift). Such a scenario is not uncommon in passive acoustics,

where the time of a recording, the recording device or conőguration, and biases of

the manual analysts can result in distributional variance of the training data sets.

Transfer learning has also been shown to be effective at mitigating data drift [130].

When performing transfer learning for a task with very few data, it is often pre-

ferred to łfreezež many of the initial layers of the detection model (e.g., the backbone).

The model weights within the frozen layers are not updated via gradient descent. This

procedure is also referred to as model łőne-tuningž. Several levels of model freezing

were experimented with, using various model sizes and these experiments have a

direct impact on the őndings of Section 5.5.

Both traditional transfer learning for new tasks and transfer learning for adjusting

to data/model drift were recognized as candidates for experimentation in this work.

The transfer learning experiments use the YOLO family of models. Information

pertaining to what models were used as baselines for őne-tuning, how many layers

were frozen, and the performance of each are laid out in the following sub-sections.

5.4.1 Adapting to New Noise Sources

A goal of this work was to demonstrate that transfer learning could be used to up-

date a trained network to reject a new class of noise signals perhaps not seen during

training. A primary example of unseen/unexpected distribution shift in an opera-

tional PAM setting is self-noise made by an ocean glider. Acoustic data collected by

a Teledyne glider on the Scotian Slope was analyzed for self-noise and categorized

into several annotation types. The most common example of glider self-noise over-

laps with frequency bands typically associated with baleen whale vocalizations. In

particular, one instance of glider self-noise lasting roughly 1 second in duration in the

frequency range ≤ 500Hz may be confused with an impulsive vocalization made by

FWs.

The self-noise glider data is a good example of possible data drift as an unseen and

possibly conŕicting source is present in the data and the method of data collection is

90

entirely different (hydrophone attached to an ocean glider versus a moored recording

device). This experiment tests the efficacy of transfer learning to őne-tune a detection

model to ignore glider self-noise. The experiment is broken down with the following

two variables:

i. Test the effectiveness of transfer learning when freezing the YOLO model at two

different levels: layer 9 and layer 24. Layers 0ś9 in the YOLO model pertain to

the model backbone, while Layer 24 is the classiőcation/bounding box head.

ii. Test the effectiveness of transfer learning depending on how many new annota-

tions are available for őne-tuning. The new number of new training examples

provided to the model during őne-tuning is varied by n = 50, 100, 500, and 1000.

The resulting experiment consists of 8 conőgurations for each YOLO model (or 40

conőgurations total). The baseline models used for őne-tuning on glider self-noise

were those trained to detect BW, FW, RW, and SW (Section 5.3.1). The experimental

results are presented in Tables 5.10 and 5.11.

Table 5.10: Resulting performance of the YOLO models frozen at layer 9 and őne-
tuned on an increasing number of glider self-noise examples.

P R AP@.5 mAP@.5:.95

Model Size # Examples Value % Inc. Value % Inc. Value % Inc. Value % Inc.

nano (n)

50 0.708 6% 0.462 1% 0.516 3% 0.346 4%

100 0.734 10% 0.458 0% 0.520 4% 0.348 5%

500 0.753 13% 0.457 0% 0.524 5% 0.350 6%

1000 0.745 12% 0.466 2% 0.523 5% 0.350 6%

small (s)

50 0.794 2% 0.486 0% 0.574 0% 0.430 2%

100 0.815 5% 0.488 1% 0.580 1% 0.435 3%

500 0.808 4% 0.493 2% 0.579 1% 0.433 3%

1000 0.813 5% 0.496 2% 0.579 1% 0.435 3%

medium (m)

50 0.800 4% 0.475 4% 0.582 4% 0.449 6%

100 0.801 4% 0.480 5% 0.584 4% 0.446 6%

500 0.796 4% 0.497 9% 0.591 5% 0.449 6%

1000 0.814 6% 0.489 8% 0.588 5% 0.449 6%

large (l)

50 0.819 4% 0.534 4% 0.625 3% 0.487 4%

100 0.813 3% 0.539 5% 0.626 3% 0.487 4%

500 0.806 2% 0.539 6% 0.624 3% 0.486 4%

1000 0.797 1% 0.545 7% 0.625 3% 0.486 4%

x-large (x)

50 0.771 1% 0.523 7% 0.589 2% 0.427 3%

100 0.768 1% 0.522 6% 0.585 2% 0.428 3%

500 0.796 4% 0.517 5% 0.590 2% 0.431 4%

1000 0.782 3% 0.522 6% 0.590 2% 0.430 4%

91

Table 5.11: Resulting performance of the YOLO models frozen at layer 24 and őne-
tuned on an increasing number of glider self-noise examples.

P R AP@.5 mAP@.5:.95

Model Size # Examples Value % Inc. Value % Inc. Value % Inc. Value % Inc.

nano (n)

50 0.715 7% 0.449 -2% 0.510 2% 0.345 4%

100 0.697 5% 0.455 0% 0.509 2% 0.346 5%

500 0.718 8% 0.458 0% 0.516 3% 0.348 5%

1000 0.707 6% 0.463 1% 0.519 4% 0.349 6%

small (s)

50 0.807 4% 0.479 -1% 0.579 1% 0.434 3%

100 0.815 5% 0.479 -1% 0.582 2% 0.435 3%

500 0.813 5% 0.490 1% 0.585 2% 0.436 4%

1000 0.815 5% 0.488 1% 0.584 2% 0.435 3%

medium (m)

50 0.793 3% 0.462 2% 0.574 2% 0.437 4%

100 0.796 4% 0.457 1% 0.573 2% 0.438 4%

500 0.790 3% 0.476 5% 0.578 3% 0.440 4%

1000 0.790 3% 0.478 5% 0.577 3% 0.439 4%

large (l)

50 0.802 2% 0.511 0% 0.617 2% 0.483 3%

100 0.813 3% 0.517 1% 0.621 3% 0.484 3%

500 0.814 3% 0.524 3% 0.621 2% 0.485 4%

1000 0.800 1% 0.528 3% 0.622 3% 0.483 3%

x-large (x)

50 0.780 2% 0.500 2% 0.586 2% 0.426 3%

100 0.775 2% 0.501 2% 0.585 2% 0.425 3%

500 0.770 1% 0.514 5% 0.590 2% 0.428 3%

1000 0.761 0% 0.521 6% 0.589 2% 0.426 3%

The effectiveness of transfer learning was somewhat dependent on the size of the

network, the number of layers frozen, and the number of new annotations introduced

to the model during őne-tuning. HoweverÐ-and interestinglyśthis effect seems to

largely disappear as the model is őne-tuned for longer (Figure 5.3). The percentage

increases (% inc.) listed in the table represent an increase in performance for each

metric after transfer learning. In other words, the performance of the model before

transfer learning was that amount worse, and likely predicting the glider self-noise as

a marine mammal vocalization.

Regardless of where the model was frozen, providing more data for őne-tuning

had a very slight advantage (e.g., 4 % increase in mAP n=50 versus 5% for n=500 at

layer 9). However, this increase is negligible and demonstrates that, especially for the

smaller transfer learning task at layer 24, only a small amount additional examples

may be required. Additional experiments pertaining to various possible sources of

false alarm may be beneőcial.

The glider self-noise problem was speciőcally selected as it presents a challenge

to the deterministic contour detectors. When testing the automated DCS on data

92

containing glider noise, the performance of the models was relatively good to begin

with, however, through transfer learning, the average precision of the model increased

by an average 4ś5%. This experiment demonstrates the generalizability of the neural

network quite well, however, it does not demonstrate an łorder of magnitudež-type

increase in performance that one may hope for.

50 100 500 1000

0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150

0.50

0.55

0.60

epoch

m
A

P
@

.5

frozen layers

9

24

Figure 5.3: Example AP@.5 of the YOLO-l model evaluated after each epoch. The
model with 9 frozen layer is able to make major adjustments to the weights of the
neural network due to fewer weights being frozen, but over time the difference in
performance is negligible. The őgure is faceted by the number of new instances
supplied to the model for training.

5.4.2 Adapting to New Locations

A data set collected on the West Coast of Canada was identiőed as a good example

for transfer learning where the method of recording and the species one is attempting

to detect remains the same (FW and HB), but the location and possible variety of

vocalizations differs from the baseline model. The data set used during transfer learn-

ing in this experiment is comprised of acoustic data from one deployment recorded by

Parks Canada and the Department of Fisheries and Oceans Canada (DFO) off Gow-

gaia Shelf (July 2017 to July 2021). The test data set came from the same location

but was recorded from July 2021 to June 2022. The spectrograms used for training

and testing were 30 seconds in length and bounded between 10 and 2000 Hz. Each

spectrogram was scaled logarithmically in the frequency axis and the magnitude of

the spectrogram was scaled in dBs.

The prominent interest in this experiment is determining whether the training

process of a detection model for a new task can be expedited simply by using the

93

weights of a baseline model as initialization. Unlike the glider self-noise experiment

above, the layers of the baseline model are not frozen and the data for őne-tuning

is not restricted to some number n. This experiment aims to determine whether the

features learned on data collected in the Atlantic Ocean can be used to expedite the

training process for a new detection task using data from the Paciőc Ocean. The

baseline model used in this experiment is the YOLO-s model trained to detect FW

and HB vocalizations (Section 5.3.2) and the layers of these models are not frozen

during transfer learning.

Table 5.12: Performance of the YOLO-s FW/HB detector őne-tuned on data from
the Paciőc Ocean compared to the performance of a YOLO-s model trained from
scratch on that same data.

Species P R AP@.5 mAP@.5:.95

Trained from scratch
All 0.361 0.387 0.295 0.168

FW 0.336 0.461 0.338 0.201

HB 0.386 0.314 0.251 0.136

Transfer learning
All 0.572 0.504 0.525 0.381

FW 0.589 0.582 0.601 0.460

HB 0.555 0.425 0.449 0.301

0.0

0.1

0.2

0.3

0.4

0 100 200 300

epoch

m
A

P
@

.5

trained from scratch

transfer learning

Figure 5.4: AP@0.5 measured over 300 epochs of training a model from scratch versus
using transfer learning.

94

As anticipated, the training process of the YOLO-s model őne-tuned from a base-

line was much faster than the model trained from scratch (Figure 5.4). While the

model was not able to be trained for as long as perhaps desired, due to resource restric-

tions during experimentation, after 300 epochs, the transfer-learned model manages

to outperform the model trained from scratch by roughly 55% (Table 5.12).

5.4.3 Discussion

Through these experiments, it was demonstrated that transfer learning is effective in

two different scenarios. In the őrst scenario, the data that was used for transfer learn-

ing contained unseen and possibly overlapping energy produced by an autonomous

glider. In addition, the method of data collection varied signiőcantly from that of

the acoustic data used for training the baseline model. It was shown that neural

networks trained to detect baleen whale vocalizations can adapt to data drift using

very few examples. The glider self-noise transfer learning experiment was successful

in demonstrating that a large proportion of the models’ layers may be frozen, and

this őnding is especially impactful when one aims to update the weights of a neural

network remotely (Section 5.5). This experiment was also successful in demonstrat-

ing the generalizability of the neural network detectors. In the second scenario, the

acoustic data used in transfer learning was collected in a similar fashion to the data

set used to train the baseline model and also targeted to detect the same species. This

experiment demonstrated that using pre-existing weights as initialization signiőcantly

decreases the time it takes to train a new model. Moreover, while further training of

both models would likely be beneőcial, after 300 epochs of training, the performance

of the transfer learning model is signiőcantly higher than that of the model trained

from scratch.

5.5 Updating Models Parameters Over-the-Air

Updating detection models to adapt to unseen or unexpected noise is a feasible task

and relatively straight-forward between deployments or periods of data collection.

However, in the scenario described above pertaining to glider self-noise (Section 5.4.1),

the automated DCS has been deployed to an autonomous platform with extremely

limited networking connectivity, that is both slow and expensive. Even the smallest

95

model found in Table 5.1 (YOLO-n), with a footprint of only 7MB, far exceeds the

networking limitations imposed on autonomous ocean gliders. The glider used in this

work is assumed to have Iridium Certus 100 communications that supports TCP/IP

connections at 3 kilobits/second and an operating service plan that permits 20 MB/-

month of total data transfer at a cost of $300/month. Updating the YOLO-n model

over-the-air (OTA) would eat up 35% of the monthly data allowance and require more

than 2 hours of uninterrupted network connectivity. Several approaches are explored

to make updating the NNs feasible in an operational setting.

5.5.1 Model Quantization

A particularly effective strategy in minimizing the footprint of a neural network is

model quantization [68]. The idea behind model quantization is to represent the

weights and/or activation functions of a neural network using fewer bits than the

original ŕoating-point representation. The standard ŕoating-point representation in

neural networks developed using PyTorch and Tensorŕow is 32-bits. Common repre-

sentations used in model quantization include 16-bit ŕoating-points and 8-bit integers.

The reduced footprint of the model not only leads to lower memory usage but also

improves inference time since lower precision computations can be performed more

quickly (as shown in Table 5.5). With the reduction in precision of the model weights

and/or activations, comes the possibility that performance may decrease. The degree

to which model quantization impacts performance is dependent on the model and the

type of quantization being performed. In some cases, quantization may have little

to no effect, while in other cases, the performance of the neural network may drop

signiőcantly. Several experiments were conducted, using different sized YOLO mod-

els and different model quantization levels, to determine the efficicacy of using model

quantization for low-bandwidth OTA updates.

As an exploratory result, the overall performance for each of the YOLO models

using 16-bit and 8-bit quantization was compiled (Table 5.13). There is a measurable

drop in performance when the YOLO-n model is quantized at 8-bits. A much smaller

decrease was observed for YOLO-l/x and no change in performance for the s/m

variants of the YOLO model.

The estimated footprint in kilobytes (KBs) of the various YOLO models quantized

96

at 16 and 8-bits is presented in Table 5.14. In the best-case, the size of the model

after quantization is reduced by 50-75%, however, at roughly 2MB the smallest model

(YOLO-n quantized at 8-bits) is still too large for effective transmission over Iridium.

Table 5.13: Performance of the BW/FW/RW/SW detector evaluated using two levels
of model quantization (16-bit ŕoating points and 8-bit integers).

Model Size 16-bit overall mAP 8-bit overall mAP

nano (n) 0.270 0.155

small (s) 0.498 0.498

medium (m) 0.479 0.477

large (l) 0.515 0.502

extra-large (x) 0.488 0.463

Table 5.14: Size of the full YOLO models quantized using 16-bit ŕoating points and
8-bit integers..

Model Size 16-bit Size (KB) 8-bit Size (KB)

nano (n) 3,541 1,937

small (s) 13,807 7,196

medium (m) 40,877 20,976

large (l) 90,243 45,977

x-large (x) 168,534 85,513

As a benchmark for the following sections pertaining to model separation, the

YOLO detectors were run on the Tinker board producing run-time and power-consumption

estimates (Table 5.15). Each size of YOLO model was run using 16-bit and 8-bit

precision. The estimated run-time and power consumption includes the process of

loading the models, setting up the TFLite interpreter, streaming the acoustic data,

and performing the Fourier transforms. An important note is that the power draw

measurements outlined in this section were collected visually by monitoring a bench

power supply while each model was run or compiled. As such, only the peak power

draw was collected, that is: the maximum amount of power drawn at any one point

in time. Anecdotally, the average power draw was observed to be at a minimum 10%

lower than peak. The power supply operated on 12V and was the not current limited.

97

In addition, the longer a model ran or took to compile, the more likely it was for the

active cooling fan on the TPU to spin up; signiőcantly increasing peak power draw

by another 5-10%. Experiments during which the active cooling on the Tinker Board

was engaged are denoted with an asterisk next to the power consumption estimate.

Table 5.15: Run time and power consumption estimates of the YOLO models on the
Tinker board. A * indicates that the active cooling fan on the SBC turned on and
subsequently spiked power usage.

16-bit Float 8-bit Integer

Model Size Run-time
Peak Power

Usage (W)
Run-time

Peak Power

Usage (W)

nano (n) 0m 19s 4.4 0m 18s 4.3

small (s) 0m 25s 4.8 0m 23s 4.5

medium (m) 0m 43s 5.4 * 0m 36s 4.4

large (l) 1m 23s 5.5 * 1m 0s 4.4

extra-large (x) 2m 43s 5.6 * 1m 37s 4.7

5.5.2 Transmitting Partial Networks

The most straight forward option for updating the weights of a neural network on

an edge device is simply transmitting an entire pre-compiled model OTA. In this

scenario, no loss in performance will be observed apart from those potentially due to

quantization. However, this may not be feasible provided the edge device has limited

networking capabilities. In such a case, two additional strategies present themselves.

Divide the network into two sections

The őrst possible strategy to updating the weights of a neural network may be effective

if the network was őne-tuned via transfer learning using frozen layers. In this scenario,

the model may be divided into two pre-compiled sections, where the output of the

őrst network is used as the input to the second network and only one network (likely

the latter) is updated OTA. In this scenario, differences in evaluation performance are

explicitly tied to the results obtained during transfer learning or model quantization.

The downside of this approach is that splitting the models into two sections may

98

come with computational overhead and additional conőguration requirements by the

user.

Additional experiments were conducted that divided each model at different łfreez-

ingž points using layers 9 and 24 of the YOLO network architecture. After the models

were split, they were each re-compiled into two separate TFLite models. For this

work, one can assume that only the second models (i.e., those updated via transfer

learning) are likely to be sent OTA and the sizes of the second models are provided

in Table 5.16. The footprints of the models in Table 5.16 correspond to those after

quantization at half-precision (i.e., 16-bit ŕoating point representations).

Table 5.16: Model size measured in kilobytes (KB) and number of parameters mea-
sured in millions of the second TFLite models quantized at 16-bits.

Split at layer 9 Split at layer 24

Model Size 16-bit Size (KB) Parameters (M) 16-bit Size (KB) Parameters (M)

nano (n) 1,796 0.9 52 0.01

small (s) 6,925 3.5 75 0.02

medium (m) 19,968 10.2 99 0.03

large (l) 43,414 22.2 123 0.05

extra-large (x) 80,262 41.0 146 0.06

Table 5.17: Run-time and power consumption of the split models on the Tinker board.
After 10 min, the experiments for the large and x-large models were stopped as they
were no longer faster than real-time and deemed non-operational. A * indicates that
the active cooling fan on the SBC turned on and subsequently spiked power usage.

Split at layer 9 Split at layer 24

Model Size Run-time
Peak Power

Usage (W)
Run-time

Peak Power

Usage (W)

nano (n) 0m 58s 5.6 * 0m 58s 5.7 *

small (s) 2m 30s 5.8 * 2m 30s 5.8 *

medium (m) 5m 51s 5.9 * 5m 52s 5.8 *

As depicted above, freezing the model at the backbone versus the head will have

a drastically different effect on the size of the second model. The smallest model

update: YOLO-n, quantized using 16-bit ŕoating points, and split at layer 24, has a

transferable size of 52 KB; roughly 1.5% of the full model. Splitting the model in two

parts presents slightly higher overhead on the edge device as two TFLite interpreters

99

must be loaded simultaneously. Run-times and power consumption estimates were

measured using the Tinker board when both models are ran in sequence. These

measurements are presented in Table 5.17.

Fine-tune layers and recompile the network

In a similar fashion to splitting the network in two, if the network weights were up-

dated via transfer learning, only those weights updated during gradient descent (i.e.,

the unfrozen layers) may be packaged, compressed, and sent to the autonomous plat-

form. Following which, the network is re-compiled on the edge device. It is possible

that the packaged weights are quantized beyond 16-bits prior to being sent to the

autonomous platform, however, this remains a technical limitation in this work and

quantization beyond 16-bits is handled on-edge during re-compilation when deemed

necessary. Similar to the previous method, any noticeable change in evaluation per-

formance is due to transfer learning and should be anticipated.

The weights of the unfrozen layers after transfer learning are extracted and pack-

aged using the Python (de)serialization package łpicklež. Following which, the new

weights are sent OTA to the old model and the model is recompiled to TFLite. This

approach to model updating comes with the beneőt of less overhead on the edge

device at run-time, however, with the downside of having to recompile. Table 5.18

contains the approximate sizes (in kilobytes) of the serialized weights that would need

to be transferred after splitting the model at layers 9 and 24.

As one can see, there is practically no difference in the transferrable size of the

compiled model and model weights when the neural network is split at layer 9 (i.e.,

the backbone). This anomaly can be explained by the fact that there is a small, static

amount of data required to represent the computational graph of each model. When

the number of parameters being updated is large (e.g., layer 9), this static portion of

the model is relatively small in comparison to the model’s weights. When the number

of parameters being updated is much smaller (e.g., layer 24) the impact is far more

noticeable.

In the best-case scenario; transferring only the serialized weights of the neural

network as opposed to the TFLite compiled second model, the amount of bandwidth

required to perform OTA updates is reduced by almost 50% from 52 KB to 27 KB.

100

After re-compilation, the run-times for each of these models matches those reported

in Table 5.15.

Table 5.18: Size of the serialized network weights measured in kilobytes (KB) after
being split at the speciőed layer and quantized to 16-bits.

Model Size

Split at layer 9

Size (KB)

Split at layer 24

Size (KB)

nano (n) 1,749 27

small (s) 6,878 50

medium (m) 19,915 74

large (l) 43,355 98

extra-large (x) 80,197 121

Table 5.19: Time to recompile and peak power consumption of each YOLO model on
the edge device. A * indicates that the active cooling fan on the SBC turned on and
subsequently spiked power usage.

Model Size Recompilation time
Peak Power

Usage (W)

nano (n) 7m 6s 4.8

small (s) 8m 48s 5.3 *

medium (m) 13m 54s 4.9 *

large (l) 23m 32s 5.6 *

extra-large (x) 30m 14s 6.1 *

5.5.3 Discussion

It is likely the case that updating an entire neural network is not feasible under the

connectivity assumptions for autonomous gliders, for example over Iridium where

bandwidth, down-time, and cost is a limiting factor. The smallest quantized model

explored in this work is roughly 1.9 MB in size, exceeding the amount one could

feasibly send over Iridium by several orders of magnitude. By dividing the network

in two and/or updating only a small portion of the network via transfer learning,

101

one is able to minimize the amount of bandwidth required to update the model

from 1.9 MB (YOLO-n 8-bit quantized full model) to 52 KB (YOLO-n 16-bit split

model) or 27 KB (YOLO-n 16-bit updated weights). Moreover, the performance of

the split/weight updated models would likely exceed that of the full models due to

the level of quantization used. With additional experimentation, its is likely that one

may overcome issues of quantizing the updated model weights to 8-bits and likely

reduce the size of the Iridiam transfer by another 50%, or roughly 14 KB.

This research demonstrates that there are advantages and disadvantages to the

various methods of updating models OTA. A few additional factors that go into

selecting a method of OTA updating should also be considered:

• When the model can be updated in its entirety, one is not subject to how

many or which layers to freeze during transfer learning or őne-tuning. Given

our current satellite technology, updating the entire network is likely infeasible

and such an approach to OTA updates is more suitable to situations when the

autonomous system has a direct connection to shore.

• One fact not mentioned above pertaining to model splitting, is that one may

prefer to split the model into many pieces (>2) and perform transfer learning

using multiple approaches. Moreover, it is possible to swap or stack an entirely

new architecture to/on the previous models so long as the shape and datatypes

of the inputs/outputs remain the same.

• In a similar fashion to splitting the models more than once, when sending se-

rialized weights OTA, one can also choose which weights to update, and this

selection can be in no particular order. However, the architecture of the model

remains static.

Based on the experiments of this chapter, transferring the serialized weights of a

model seems to be the most effective way to perform updates OTA. The bandwidth

required to send the model weights is measurably smaller than when the model is

split into multiple sections and the performance of the larger split models is too slow

for operational use (i.e., slower than real-time). While there is additional down-time

required to recompile the models on the edge, this amount of time seems feasible

based on the application and use-case. Finally, it should be noted that while the

102

experiments conducted here are promising, it is possible that a new task may not

adapt as easily and with as few examples as those of the glider self-noise experiments.

Brainstorming and initial research and development of an optional solution to such

a problem has been considered, whereby, a network trained on the predictions being

sent home from the autonomous system is used as a őlter. On an ocean glider where

bandwidth is expensive, such a solution does not necessarily minimize the őnancial

cost accrued though sending home incorrect predictions, however, it may lessen the

workload required by a manual analyst.

Chapter 6

Conclusion and Future Work

This thesis has outlined the process of research and development for DL-based passive

acoustic monitoring (PAM) detection and classiőcation systems (DCS). A review of

deep learning models focused on two subsets: convolutional neural networks (CNNs)

commonly used for image classiőcation and single/two-stage detection models used in

object detection. These models formed the foundation of the DL-based DCS imple-

mented in this work. The signiőcance of using spectrograms as a visual representation

of acoustic data in PAM was justiőed, showcasing their utility in the context of the

developed DCS. Moreover, performance metrics for evaluating DL-based DCS were

introduced and provided a means to assess the efficacy of the aforementioned systems.

This work explored related research, spanning from traditional feature engineer-

ing coupled with machine learning (ML) algorithms as well as more recent applica-

tions using deep learning for PAM. In Chapter 3, details were presented surrounding

the development process of supervised learning strategies, beginning with a CNN

designed to classify spectrograms potentially containing vocalizations of endangered

baleen whales. Subsequently, a novel approach was proposed, using R-CNNs to detect

individual vocalizations within a spectrogram, emphasizing the distinction between

spectrogram classiőcation and vocalization detection. The limitations of supervised

learning in DCS development were outlined in Chapter 4, leading to the exploration of

an alternative approach under the ML paradigm known as łsemi-supervised learningž.

This method involved utilizing unlabeled data alongside annotated examples to build

more generalizable classiőcation systems. Finally, Chapter 5 presented the develop-

ment of an operational marine mammal DCS, addressing real-world constraints often

overlooked in research environments. These constraints included handling variance

and bias in PAM data sets, considering computational limitations, power efficiency,

and enabling model updates on autonomous platforms.

103

104

6.1 Keeping Up with the Evolution of Machine Learning

Keeping up with the current state-of-the-art (SOTA) in machine learning can be an

exciting yet somewhat arduous task, as new technologies and resources continue to

be introduced and others improved upon each day. This fact is especially true for

neural networks and deep learning. Staying at the forefront of research and devel-

opment in DL can be broken down into several categories: the algorithms and/or

architectures used in reaching SOTA performance, the hardware and software used

during development, and the training and evaluation data sets. For an operational

system, additional considerations must be made, as new technologies and algorithms

are often unproven in their reliability beyond an academic paper.

6.1.1 Algorithms and Architectures

Throughout the latter portions of this work, R&D of an operational DCS was ap-

proached by considering both the current SOTA as well as the proven reliability of

past methods. Speciőcally, the use of CNN-based detection models was used due to

their proven ability across various domains. In recent years, the SOTA methods for

tasks such as image classiőcation have made use of the attention mechanism [121] by

way of Transformer architectures [25]; but the necessity of lightweight computation

inhibited additional research in this area. The use of attention mechanisms may prove

especially useful in the suggested future work described later in this chapter related

to including contextual information to improve DCS reliability.

6.1.2 Technological Tools and Resources

The tools and resources for developing neural networks can be separated into soft-

ware and hardware. On the hardware side, SOTA algorithms and deep learning

architectures often originate from large technology companies and AI research labs

with seemingly no budgetary limitations on computing resources. The act of simply

training many SOTA methods introduced more recently, such as large Transformer

models, is likely infeasible at smaller research groups with limited computational

power. Due to the highly iterative and experimental nature of deep learning research,

105

an inability to run hundreds of experiments simultaneously can be a bottleneck to-

wards adopting the current SOTA methods. The neural network architectures chosen

for this work, while not on the bleeding edge, are well-proven and have associated

best practices for training and testing which allowed for more impactful experiments

using the hardware available.

On the software side, while there are many frameworks and/or libraries available

for ML research, not committing to a single library may be beneőcial in order to keep

up with the pace of innovation and maximize productivity. For example, much of the

research in this work was developed using the Python ML framework PyTorch and

while experimenting with porting neural networks to Java via an ONNX runtime,

it was observed that the models produced would not run sufficiently fast enough to

be considered operational. During this time, a Java runtime for models developed

in Tensorŕow was indeed available and it is possible that the inference speeds expe-

rienced using ONNX could have been improved, however, the process of converting

and/or retraining these models was out of scope. In a similar experience, mid-way

through developing the operational detection models of Chapter 5, the Tensorŕow

Object Detection API was deprecated in favour of another tool also being maintained

by Google. While the API can still be used, updated models and compatibility with

newer versions of Tensorŕow will not continue.

Beyond the risk of deprecation, another reason to avoid committing to a single

ML framework or software tool is that much of the heavy lifting in terms of model

implementation has already been done. Many ML academic papers include links to

implementations of their algorithms on GitHub, Huggingface, or similar websites. By

becoming proőcient in multiple libraries/frameworks, it is easier to stay adaptable to

the latest developments, iterate, and runs experiments. Despite these advantages, it

can be challenging to learn and use multiple libraries simultaneously. Therefore, it

is also advised to design stages of a ML pipeline such that they are adaptable and

separable (e.g., the pipeline outlined in Section 5.2).

106

6.2 Future Work: Spatio-temporal Contextual Awareness

With all of their successes, both machine and deep learning approaches to DCS

developmentśas they currently standślargely do not make use of important contex-

tual data that can further inform the system. The most widely used deep learning

approach to DCS development is to train models on slices of spectrograms possibly

containing one or more marine mammal vocalization [56, 105, 117]. When applied

to an entire acoustic recording in a sliding window fashion, such models disregard

the previous predictions in the immediate vicinity. For some species, such as sei

whales which often vocalize in doubles or triples, short-term temporal context such

as whether-or-not the previous prediction indicated that a sei whale vocalization was

present can be useful in sharpening the current prediction. An additional example of

when contextual information may prove useful is when particularly vocal species (e.g.,

humpback whales) are present in an area of interest, and whose vocalizations may

at times resemble those of other less-vocal species. Not only can these types of tem-

poral context be used to inform the models predictions, but also assist in estimating

the number of individual whales present in the recorded area. Such an improvement

would lend itself to more robust density estimations. Additionally, many species of

marine mammals are capable of making a variety of different vocalizations that vary

in bandwidth and duration. Developing a DCS that classiőes vocalizations at the call

type level (as opposed to species level) may enhance individual detection performance

as well as better inform a contextually aware system.

Longer-term temporal context, such as the time of year of the recordings, can

also inform the model as most species of baleen whales follow predictable migratory

patterns. In addition to temporal data, spatial context such as the location of the

deployment, the depth of the recording device, and the estimated detection range are

important factors that are largely ignored by current DL-based DCS.

Naively introducing contextual awareness through the application of binary rules

(e.g., only one sei whale vocalization was detected so it is a false positive) may lead

to decreased false positives, however, would likely negatively impact the true positive

rate. One possible solution, would be to couple the predictions of a DCS similar

to that in this work with a model that is more accustomed to sequential data (e.g.,

a recurrent neural network (RNN)) as demonstrated by Madhusudhana et al [75].

107

Unfortunately, introducing a second deep learning algorithm would likely negate any

progress being made in terms of model efficiency. The same can be said regarding

model boosting or ensembles of models. Outside of the realm of deep learning, one

approach would be to use the predictions of the DCS as a prior distribution to a

lightweight Bayesian model, for example a Gaussian process [91].

Research targeted at the tasks of video classiőcation [14] and human action recog-

nition within videos [54] may be easily adapted for contextual awareness. Researchers

have suggested the use of 3-dimensional convolutions [49, 53]śas opposed to the 2-

dimensional operation used in this workśin order to learn temporal context. Non-local

neural networks [124] have been proposed in order to capture both short-term and

long-term temporal dependencies between individual frames of videos [15, 28, 124].

However, while these approaches are useful for encoding temporal context, they lack

support for the type spatial information we are also interested in.

Perhaps the most likely candidate for introducing contextual information directly

into a DCS is by way of the attention mechanism. In doing so, a detection model

may include contextual information both at a high (e.g., long-term temporal) and

low (e.g., pixel-space) levels. Attention mechanisms have been reported for the task

of speech recognition as far back as 2015 [20] and subsequently used for acoustic

scene classiőcation in 2018 [96]. Perhaps the most promising example in relation to

this work is Context R-CNN [6] which has proven to be successful at improving the

performance of detection models used to predict the presence of species in natural

environments using camera traps.

The PAM community has expressed a great deal of interest in the development

of a system described above that effectively incorporates contextual information, as

it holds great potential for signiőcantly improving the accuracy and robustness of

marine mammal detection and classiőcation. Further research in this area is a highly

encouraged and and would be well-received.

Bibliography

[1] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Ger-
ald Penn, and Dong Yu. Convolutional neural networks for speech recog-
nition. IEEE/ACM Transactions on audio, speech, and language processing,
22(10):1533ś1545, 2014.

[2] Ann N Allen, Matt Harvey, Lauren Harrell, Aren Jansen, Karlina P Merkens,
Carrie C Wall, Julie Cattiau, and Erin M Oleson. A convolutional neural
network for automated detection of humpback whale song in a diverse, long-
term passive acoustic dataset. Frontiers in Marine Science, 8:607321, 2021.

[3] Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, and Roberto Pre-
vete. A survey on modern trainable activation functions. Neural Networks,
138:14ś32, 2021.

[4] Mohammed Bahoura and Yvan Simard. Blue whale calls classiőcation using
short-time fourier and wavelet packet transforms and artiőcial neural network.
Digital Signal Processing, 20(4):1256ś1263, 2010.

[5] Mark F Baumgartner and Sarah E Mussoline. A generalized baleen whale call
detection and classiőcation system. The Journal of the Acoustical Society of
America, 129(5):2889ś2902, 2011.

[6] Sara Beery, Guanhang Wu, Vivek Rathod, Ronny Votel, and Jonathan Huang.
Context r-cnn: Long term temporal context for per-camera object detection.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 13075ś13085, 2020.

[7] Yoshua Bengio, Frédéric Bastien, Arnaud Bergeron, Nicolas Boulanger-
Lewandowski, Thomas Breuel, Youssouf Chherawala, Moustapha Cisse, Myr-
iam Côté, Dumitru Erhan, Jeremy Eustache, et al. Deep learners beneőt more
from out-of-distribution examples. In Proceedings of the Fourteenth Interna-
tional Conference on Artiőcial Intelligence and Statistics, pages 164ś172, 2011.

[8] Christian Bergler, Manuel Schmitt, Rachael Xi Cheng, Hendrik Schröter, An-
dreas Maier, Volker Barth, Michael Weber, and Elmar Nöth. Deep represen-
tation learning for orca call type classiőcation. In Text, Speech, and Dialogue:
22nd International Conference, TSD 2019, Ljubljana, Slovenia, September 11ś
13, 2019, Proceedings 22, pages 274ś286. Springer, 2019.

[9] Christian Bergler, Hendrik Schröter, Rachael Xi Cheng, Volker Barth, Michael
Weber, Elmar Nöth, Heribert Hofer, and Andreas Maier. Orca-spot: An auto-
matic killer whale sound detection toolkit using deep learning. Scientiőc reports,
9(1):10997, 2019.

108

109

[10] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital
Oliver, and Colin A Raffel. Mixmatch: A holistic approach to semi-supervised
learning. In Advances in Neural Information Processing Systems, pages 5049ś
5059, 2019.

[11] Paul Best, Maxence Ferrari, Marion Poupard, Sébastien Paris, Ricard Marxer,
Helena Symonds, Paul Spong, and Hervé Glotin. Deep learning and domain
transfer for orca vocalization detection. In 2020 International Joint Conference
on Neural Networks (IJCNN), pages 1ś7. IEEE, 2020.

[12] Michael J Bianco, Peter Gerstoft, James Traer, Emma Ozanich, Marie A Roch,
Sharon Gannot, and Charles-Alban Deledalle. Machine learning in acoustics:
Theory and applications. The Journal of the Acoustical Society of America,
146(5):3590ś3628, 2019.

[13] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Op-
timal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934,
2020.

[14] Darin Brezeale and Diane J Cook. Automatic video classiőcation: A survey of
the literature. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 38(3):416ś430, 2008.

[15] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han Hu. Gcnet: Non-local
networks meet squeeze-excitation networks and beyond. In Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops, pages
0ś0, 2019.

[16] Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. Vicinal
risk minimization. In Advances in neural information processing systems, pages
416ś422, 2001.

[17] Keunwoo Choi, George Fazekas, and Mark Sandler. Automatic tagging using
deep convolutional neural networks. arXiv preprint arXiv:1606.00298, 2016.

[18] Keunwoo Choi, György Fazekas, Mark Sandler, and Kyunghyun Cho. Convolu-
tional recurrent neural networks for music classiőcation. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2392ś
2396. IEEE, 2017.

[19] François Chollet. Xception: Deep learning with depthwise separable convolu-
tions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1251ś1258, 2017.

[20] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. Attention-based models for speech recognition. Advances in
neural information processing systems, 28, 2015.

110

[21] Christopher W Clark, Peter Marler, and Kim Beeman. Quantitative analysis
of animal vocal phonology: an application to swamp sparrow song. Ethology,
76(2):101ś115, 1987.

[22] James W Cooley and John W Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of computation, 19(90):297ś301, 1965.

[23] Kimberley TA Davies and Sean W Brillant. Mass human-caused mortality
spurs federal action to protect endangered north atlantic right whales in canada.
Marine Policy, 104:157ś162, 2019.

[24] Ltsc Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide,
Michael L Seltzer, Geoffrey Zweig, Xiaodong He, Jason D Williams, et al. Re-
cent advances in deep learning for speech research at microsoft. In IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),
volume 26, page 64. IEEE, 2013.

[25] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[26] Peter J Dugan, Aaron N Rice, Ildar R Urazghildiiev, and Christopher W Clark.
North atlantic right whale acoustic signal processing: Part i. comparison of
machine learning recognition algorithms. In 2010 IEEE Long Island Systems,
Applications and Technology Conference, pages 1ś6. IEEE, 2010.

[27] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for
deep learning. arXiv preprint arXiv:1603.07285, 2016.

[28] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast
networks for video recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6202ś6211, 2019.

[29] Fabio Frazao, Bruno Padovese, and Oliver S Kirsebom. Workshop report: De-
tection and classiőcation in marine bioacoustics with deep learning. arXiv
preprint arXiv:2002.08249, 2020.

[30] Rory Gibb, Ella Browning, Paul Glover-Kapfer, and Kate E Jones. Emerging
opportunities and challenges for passive acoustics in ecological assessment and
monitoring. Methods in Ecology and Evolution, 10(2):169ś185, 2019.

[31] Douglas Gillespie, Marjolaine Caillat, Jonathan Gordon, and Paul White. Au-
tomatic detection and classiőcation of odontocete whistles. The Journal of the
Acoustical Society of America, 134(3):2427ś2437, 2013.

[32] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision, pages 1440ś1448, 2015.

111

[33] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 580ś587, 2014.

[34] Benjamin S Halpern, Shaun Walbridge, Kimberly A Selkoe, Carrie V Kappel,
Fiorenza Micheli, Caterina D’Agrosa, John F Bruno, Kenneth S Casey, Colin
Ebert, Helen E Fox, et al. A global map of human impact on marine ecosystems.
science, 319(5865):948ś952, 2008.

[35] Sheryl Hamilton and G Barry Baker. Technical mitigation to reduce marine
mammal bycatch and entanglement in commercial őshing gear: lessons learnt
and future directions. Reviews in Fish Biology and Fisheries, 29(2):223ś247,
2019.

[36] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages
2961ś2969, 2017.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid
pooling in deep convolutional networks for visual recognition. IEEE transactions
on pattern analysis and machine intelligence, 37(9):1904ś1916, 2015.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770ś778, 2016.

[39] John A Hildebrand, Kaitlin E Frasier, Tyler A Helble, and Marie A Roch.
Performance metrics for marine mammal signal detection and classiőcation.
The Journal of the Acoustical Society of America, 151(1):414ś427, 2022.

[40] Ove Hoegh-Guldberg and John F Bruno. The impact of climate change on the
world’s marine ecosystems. Science, 328(5985):1523ś1528, 2010.

[41] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[42] Eric J Humphrey and Juan Pablo Bello. Rethinking automatic chord recogni-
tion with convolutional neural networks. In 11th International Conference on
Machine Learning and Applications (ICMLA), volume 2, pages 357ś362. IEEE,
2012.

[43] Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Dar-
rell, and Kurt Keutzer. Densenet: Implementing efficient convnet descriptor
pyramids. arXiv preprint arXiv:1404.1869, 2014.

112

[44] Ali K Ibrahim, Hanqi Zhuang, Laurent M Chérubin, Nurgun Erdol, Gregory
O’Corry-Crowe, and Ali Muhamed Ali. A multimodel deep learning algorithm
to detect north atlantic right whale up-calls. The Journal of the Acoustical
Society of America, 150(2):1264ś1272, 2021.

[45] Shiklomanov Igor. World fresh water resources. Water in crisis: a guide to the
world’s. Oxford University Press, Inc, Oxford, 1993.

[46] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[47] Ryo Ito, Ken Nakae, Junichi Hata, Hideyuki Okano, and Shin Ishii. Semi-
supervised deep learning of brain tissue segmentation. Neural Networks, 116:25ś
34, 2019.

[48] Aleria S Jensen, Gregory K Silber, Connie Ewald Akamine, Dave Flanna-
gan, John Ford, Pat Gerrior, Joseph Green, Frances Gulland, Diana Gutierrez,
Michael Henshaw, et al. Large whale ship strike database. NOAA Technical
Memorandum NMFS-OPR, 2004.

[49] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural net-
works for human action recognition. IEEE transactions on pattern analysis and
machine intelligence, 35(1):221ś231, 2012.

[50] Jia-jia Jiang, Ling-ran Bu, Fa-jie Duan, Xian-quan Wang, Wei Liu, Zhong-bo
Sun, and Chun-yue Li. Whistle detection and classiőcation for whales based on
convolutional neural networks. Applied Acoustics, 150:169ś178, 2019.

[51] G Jocher. Yolov5 by ultralytics (version 7.0)[computer software], 2020.

[52] Nicola Jones. Ocean uproar: saving marine life from a barrage of noise. Nature,
568:158ś161, 04 2019.

[53] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classiőcation with convolutional neu-
ral networks. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 1725ś1732, 2014.

[54] Eunju Kim, Sumi Helal, and Diane Cook. Human activity recognition and
pattern discovery. IEEE pervasive computing, 9(1):48ś53, 2009.

[55] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[56] Oliver S Kirsebom, Fabio Frazao, Yvan Simard, Nathalie Roy, Stan Matwin,
and Samuel Giard. Performance of a deep neural network at detecting north
atlantic right whale upcalls. The Journal of the Acoustical Society of America,
147(4):2636ś2646, 2020.

113

[57] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models
transfer better? In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2661ś2671, 2019.

[58] Katie A Kowarski, Julien J-Y Delarue, Briand J Gaudet, and S Bruce Mar-
tin. Automatic data selection for validation: A method to determine cetacean
occurrence in large acoustic data sets. JASA Express Letters, 1(5):051201, 2021.

[59] Katie A Kowarski and Hilary Moors-Murphy. A review of big data analysis
methods for baleen whale passive acoustic monitoring. Marine Mammal Sci-
ence, 2020.

[60] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classiő-
cation with deep convolutional neural networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume
1, NIPS’12, page 1097ś1105, Red Hook, NY, USA, 2012. Curran Associates Inc.

[61] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classiőcation
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097ś1105, 2012.

[62] David W Laist, Amy R Knowlton, James G Mead, Anne S Collet, and Michela
Podesta. Collisions between ships and whales. Marine Mammal Science,
17(1):35ś75, 2001.

[63] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-
level concept learning through probabilistic program induction. Science,
350(6266):1332ś1338, 2015.

[64] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Ger-
shman. Building machines that learn and think like people. Behavioral and
brain sciences, 40, 2017.

[65] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278ś2324, 1998.

[66] Yann LeCun et al. Generalization and network design strategies. In Connec-
tionism in perspective, volume 19. Citeseer, 1989.

[67] Honglak Lee, Peter Pham, Yan Largman, and Andrew Y Ng. Unsupervised
feature learning for audio classiőcation using convolutional deep belief networks.
In Advances in neural information processing systems, pages 1096ś1104, 2009.

[68] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Prun-
ing and quantization for deep neural network acceleration: A survey. Neuro-
computing, 461:370ś403, 2021.

114

[69] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature pyramid networks for object detection. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2117ś
2125, 2017.

[70] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Fo-
cal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980ś2988, 2017.

[71] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation
network for instance segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8759ś8768, 2018.

[72] Songzuo Liu, Meng Liu, Mengjia Wang, Tianlong Ma, and Xin Qing. Classi-
őcation of cetacean whistles based on convolutional neural network. In 10th
International Conference on Wireless Communications and Signal Processing
(WCSP), pages 1ś5. IEEE, 2018.

[73] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983, 2016.

[74] Wenyu Luo, Wuyi Yang, and Yu Zhang. Convolutional neural network for
detecting odontocete echolocation clicks. The Journal of the Acoustical Society
of America, 145(1):EL7śEL12, 2019.

[75] Shyam Madhusudhana, Yu Shiu, Holger Klinck, Erica Fleishman, Xiaobai Liu,
Eva-Marie Nosal, Tyler Helble, Danielle Cholewiak, Douglas Gillespie, Ana
Širović, et al. Improve automatic detection of animal call sequences with tem-
poral context. Journal of the Royal Society Interface, 18(180):20210297, 2021.

[76] Tiago A Marques, Len Thomas, Stephen W Martin, David K Mellinger, Jes-
sica A Ward, David J Moretti, Danielle Harris, and Peter L Tyack. Esti-
mating animal population density using passive acoustics. Biological Reviews,
88(2):287ś309, 2013.

[77] Bruce Martin, Katie Kowarski, Xavier Mouy, and Hilary Moors-Murphy.
Recording and identiőcation of marine mammal vocalizations on the scotian
shelf and slope. In 2014 Oceans-St. John’s, pages 1ś6. IEEE, 2014.

[78] S Bruce Martin, Corey Morris, Koen Bröker, and Caitlin O’Neill. Sound ex-
posure level as a metric for analyzing and managing underwater soundscapes.
The Journal of the Acoustical Society of America, 146(1):135ś149, 2019.

[79] David K Mellinger. A comparison of methods for detecting right whale calls.
Canadian Acoustics, 32(2):55ś65, 2004.

115

[80] David K Mellinger, Carol D Carson, and Christopher W Clark. Characteristics
of minke whale (balaenoptera acutorostrata) pulse trains recorded near puerto
rico. Marine Mammal Science, 16(4):739ś756, 2000.

[81] David K Mellinger, Stephen W Martin, Ronald P Morrissey, Len Thomas, and
James J Yosco. A method for detecting whistles, moans, and other frequency
contour sounds. The Journal of the Acoustical Society of America, 129(6):4055ś
4061, 2011.

[82] David K Mellinger, Kathleen M Stafford, Sue E Moore, Robert P Dziak, and
Haru Matsumoto. An overview of őxed passive acoustic observation methods
for cetaceans. Oceanography, 20(4):36ś45, 2007.

[83] October 29 Monday and Deep LearningEnvironmentMachine HearingMachine
Perception. Acoustic detection of humpback whales using a convolutional neural
network.

[84] Vinod Nair and Geoffrey E Hinton. Rectiőed linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807ś814, 2010.

[85] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer
Science & Business Media, 2012.

[86] Douglas P Nowacek, Lesley H Thorne, David W Johnston, and Peter L Tyack.
Responses of cetaceans to anthropogenic noise. Mammal Review, 37(2):81ś115,
2007.

[87] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph,
Ekin D Cubuk, and Quoc V Le. Specaugment: A simple data augmentation
method for automatic speech recognition. arXiv preprint arXiv:1904.08779,
2019.

[88] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NIPS-W, 2017.

[89] Sai Samarth R Phaye, Emmanouil Benetos, and Ye Wang. Subspectralnet-
using sub-spectrogram based convolutional neural networks for acoustic scene
classiőcation. arXiv preprint arXiv:1810.12642, 2018.

[90] Karol J Piczak. Environmental sound classiőcation with convolutional neural
networks. In 2015 IEEE 25th International Workshop on Machine Learning for
Signal Processing (MLSP), pages 1ś6. IEEE, 2015.

[91] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer
school on machine learning, pages 63ś71. Springer, 2003.

116

[92] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Uniőed, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 779ś788, 2016.

[93] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
7263ś7271, 2017.

[94] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[95] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards
real-time object detection with region proposal networks. IEEE transactions on
pattern analysis and machine intelligence, 39(6):1137ś1149, 2016.

[96] Zhao Ren, Qiuqiang Kong, Kun Qian, Mark D Plumbley, and Björn W Schuller.
Attention-based convolutional neural networks for acoustic scene classiőcation.
In Scenes and Events 2018 Workshop (DCASE2018), page 39, 2018.

[97] Denise Risch, Christopher W Clark, Peter J Dugan, Marian Popescu, Ursula
Siebert, and Soőe M Van Parijs. Minke whale acoustic behavior and multi-
year seasonal and diel vocalization patterns in massachusetts bay, usa. Marine
Ecology Progress Series, 489:279ś295, 2013.

[98] Denise Risch, Thomas Norris, Matthew Curnock, and Ari Friedlaender. Com-
mon and antarctic minke whales: Conservation status and future research di-
rections. Frontiers in Marine Science, 6:247, 2019.

[99] Marie A Roch, Holger Klinck, Simone Baumann-Pickering, David K Mellinger,
Simon Qui, Melissa S Soldevilla, and John A Hildebrand. Classiőcation of
echolocation clicks from odontocetes in the southern california bight. The Jour-
nal of the Acoustical Society of America, 129(1):467ś475, 2011.

[100] Marie A Roch, Melissa S Soldevilla, Jessica C Burtenshaw, E Elizabeth Hen-
derson, and John A Hildebrand. Gaussian mixture model classiőcation of odon-
tocetes in the southern california bight and the gulf of california. The Journal
of the Acoustical Society of America, 121(3):1737ś1748, 2007.

[101] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533ś536, 1986.

[102] Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks
and data augmentation for environmental sound classiőcation. IEEE Signal
Processing Letters, 24(3):279ś283, 8 2016.

[103] Cullen Schaffer. Overőtting avoidance as bias. Machine learning, 10(2):153ś178,
1993.

117

[104] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus,
and Yann LeCun. Overfeat: Integrated recognition, localization and detection
using convolutional networks. arXiv preprint arXiv:1312.6229, 2013.

[105] Yu Shiu, KJ Palmer, Marie A Roch, Erica Fleishman, Xiaobai Liu, Eva-Marie
Nosal, Tyler Helble, Danielle Cholewiak, Douglas Gillespie, and Holger Klinck.
Deep neural networks for automated detection of marine mammal species. Sci-
entiőc Reports, 10(1):1ś12, 2020.

[106] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmen-
tation for deep learning. Journal of Big Data, 6(1):1ś48, 2019.

[107] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[108] Mark D Skowronski and John G Harris. Acoustic detection and classiőcation of
microchiroptera using machine learning: lessons learned from automatic speech
recognition. The Journal of the Acoustical Society of America, 119(3):1817ś
1833, 2006.

[109] Brandon L Southall, James J Finneran, Colleen Reichmuth, Paul E Nachtigall,
Darlene R Ketten, Ann E Bowles, William T Ellison, Douglas P Nowacek,
and Peter L Tyack. Marine mammal noise exposure criteria: Updated scientiőc
recommendations for residual hearing effects. Aquatic Mammals, 45(2):125ś232,
2019.

[110] Dan Stowell. Computational bioacoustics with deep learning: a review and
roadmap. PeerJ, 10:e13152, 2022.

[111] Farhana Sultana, Abu Suőan, and Paramartha Dutta. Evolution of image
segmentation using deep convolutional neural network: a survey. Knowledge-
Based Systems, 201:106062, 2020.

[112] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learn-
ing. In Proceedings of the AAAI Conference on Artiőcial Intelligence, volume 31,
2017.

[113] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1ś9, 2015.

[114] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199, 2013.

118

[115] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for con-
volutional neural networks. In International Conference on Machine Learning,
pages 6105ś6114, 2019.

[116] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and effi-
cient object detection. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10781ś10790, 2020.

[117] Mark Thomas, Bruce Martin, Katie Kowarski, Briand Gaudet, and Stan
Matwin. Marine mammal species classiőcation using convolutional neural net-
works and a novel acoustic representation. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pages 290ś305. Springer,
2019.

[118] Devis Tuia, Benjamin Kellenberger, Sara Beery, Blair R Costelloe, Silvia
Zuffi, Benjamin Risse, Alexander Mathis, Mackenzie W Mathis, Frank van
Langevelde, Tilo Burghardt, et al. Perspectives in machine learning for wildlife
conservation. Nature communications, 13(1):792, 2022.

[119] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM
Smeulders. Selective search for object recognition. International journal of
computer vision, 104(2):154ś171, 2013.

[120] Ayinde M Usman, Olayinka O Ogundile, and Daniel JJ Versfeld. Review of au-
tomatic detection and classiőcation techniques for cetacean vocalization. IEEE
Access, 8:105181ś105206, 2020.

[121] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

[122] William Vickers, Ben Milner, Artjoms Gorpincenko, and R Lee. Methods to
improve the robustness of right whale detection using cnns in changing condi-
tions. In 2020 28th European Signal Processing Conference (EUSIPCO), pages
106ś110. IEEE, 2021.

[123] William Vickers, Ben Milner, Denise Risch, and Robert Lee. Robust north
atlantic right whale detection using deep learning models for denoising. The
Journal of the Acoustical Society of America, 149(6):3797ś3812, 2021.

[124] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local
neural networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7794ś7803, 2018.

[125] Lindy S Weilgart. The impacts of anthropogenic ocean noise on cetaceans and
implications for management. Canadian journal of zoology, 85(11):1091ś1116,
2007.

119

[126] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift
and hidden contexts. Machine learning, 23(1):69ś101, 1996.

[127] Sean M Wiggins and John A Hildebrand. Long-term monitoring of cetaceans
using autonomous acoustic recording packages. In Listening in the Ocean, pages
35ś59. Springer, 2016.

[128] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization. arXiv
preprint arXiv:1611.03530, 2016.

[129] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz.
mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412,
2017.

[130] Peilin Zhao, Steven CH Hoi, Jialei Wang, and Bin Li. Online transfer learning.
Artiőcial intelligence, 216:76ś102, 2014.

[131] Zhaohui Zheng, Ping Wang, Dongwei Ren, Wei Liu, Rongguang Ye, Qinghua
Hu, and Wangmeng Zuo. Enhancing geometric factors in model learning and
inference for object detection and instance segmentation. IEEE Transactions
on Cybernetics, 52(8):8574ś8586, 2021.

[132] Ming Zhong, Manuel Castellote, Rahul Dodhia, Juan Lavista Ferres, Mandy
Keogh, and Arial Brewer. Beluga whale acoustic signal classiőcation using
deep learning neural network models. The Journal of the Acoustical Society of
America, 147(3):1834ś1841, 2020.

[133] Ming Zhong, Maelle Torterotot, Trevor A Branch, Kathleen M Stafford, Jean-
Yves Royer, Rahul Dodhia, and Juan Lavista Ferres. Detecting, classifying,
and counting blue whale calls with siamese neural networks. The Journal of the
Acoustical Society of America, 149(5):3086ś3094, 2021.

[134] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. A comprehensive survey on transfer learning.
Proceedings of the IEEE, 109(1):43ś76, 2020.

[135] Walter MX Zimmer. Passive acoustic monitoring of cetaceans. Cambridge
University Press, 2011.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Contributions
	Thesis Organization

	Background and Related Work
	Neural Networks
	Convolutional Neural Networks
	Deep Residual Learning
	Additional Advancements

	CNN-based Detection Models
	Two-stage Detection Models: Region-based CNNs
	Single-stage Detection Models

	Performance Metrics for CNNs and R-CNNs
	Precision, Recall, and F-1 Score
	Using Average Precision to Describe Detection Performance

	Visual Representations of Acoustic Data
	Linearly-scaled Spectrograms
	Mel-scaled Spectrograms
	Novel Representation: Stacked & Interpolated Spectrograms

	Applications of Machine Learning to PAM
	Applications of Convolutional Neural Networks to PAM

	Deep Convolutional Learning for PAM
	Acoustic Data Sets
	CNNs for Spectrogram Classification
	Data set and Methods
	Experimental Results

	R-CNNs for Vocalization Detection
	Data set and Methods
	Experimental Results
	DCS Use and Adaptability

	Learning from Unlabeled Passive Acoustic Data
	Background, Data Sets, and Methods
	Acoustic Data Sets
	Semi-Supervised Learning

	Experimental Results
	Baseline vs. Semi-supervised
	Out-of-Distribution Performance

	Operational DCS
	Background and Requirements of Operational DCS
	Standardized methods for training and evaluation
	Data Set Creation
	Model Training
	Model Evaluation
	Inference on Edge Devices

	Automated DCS Results
	Blue, Fin, Right, and Sei Whale Detector
	Humpback and Infrasonic Fin Whale Detector
	Minke Whale Pulse Train Detector

	Model Updates via Transfer Learning
	Adapting to New Noise Sources
	Adapting to New Locations
	Discussion

	Updating Models Parameters Over-the-Air
	Model Quantization
	Transmitting Partial Networks
	Discussion

	Conclusion and Future Work
	Keeping Up with the Evolution of Machine Learning
	Algorithms and Architectures
	Technological Tools and Resources

	Future Work: Spatio-temporal Contextual Awareness

	Bibliography

