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Abstract

Federated Learning (FL) has emerged as a novel distributed Machine Learning

(ML) approach to tackle the challenges associated with data privacy and overload

in ML-based intrusion detection systems (IDSs). Drawing inspiration from the FL

architecture, this thesis introduces the Server-Client Machine Learning Intrusion De-

tection System (SC-MLIDS), a hybrid ML IDS framework tailored for Wireless Sensor

Networks (WSNs). SC-MLIDS is crafted to leverage ML for achieving a two-layer in-

trusion detection mechanism in WSNs, free from constraints posed by specific attack

types. The framework follows a server-client model compatible with the configura-

tion of sensor nodes, sink nodes, and gateways in WSNs. In this setup, client models

located at sink nodes undergo training using sensing data, while the server model at

the gateway is trained using network traffic data. This two-layer training approach

not only amplifies the efficiency of intrusion detection but also ensures comprehensive

network coverage.

The principal innovation of SC-MLIDS is the development of two model aggre-

gation prediction algorithms, implemented at the gateway level. The first algorithm

assesses models based on their performance metrics and assigned weights. The second

algorithm uses a majority voting technique, combining predictions from both client

and server models to bolster accuracy. In the operational phase, sensor nodes trans-

mit collected data to their respective sink node for initial validation by the client

model. Once the data is validated and associated with network traffic information,

it is forwarded to the gateway for further validation through the model aggregation

prediction algorithms.

The results of our simulation experiments corroborate the effectiveness of the

proposed SC-MLIDS framework. It generates precise aggregation predictions, lead-

ing to a substantial reduction in redundant data transmissions. Furthermore, the

SC-MLIDS framework exhibits efficacy in detecting intrusions through a two-layer

validation process.
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Chapter 1

Introduction

The continuous advancement of Wireless Sensor Networks (WSNs) and their as-

sociated technologies has led to their widespread application in various industrial

sectors. This evolution has significantly enhanced productivity through intelligent

monitoring and management [1, 2]. However, WSNs face challenges in countering

network attacks due to their inherent limitations. Researchers have proposed vari-

ous intrusion detection systems (IDSs), focusing on identifying suspicious activities

through strategies such as anomaly detection and misuse detection [3].

The emergence of Machine Learning (ML) has offered more possibilities for IDS in

WSNs. Leveraging the inherent strengths of ML, these approaches have demonstrated

enhanced performance in detecting network attacks, thus becoming a prominent focus

in network security research. Through its capacity to train models with extensive

relevant data, ML facilitates efficient, highly accurate, and automated risk assessment

and intrusion detection [4].

Despite these advancements, current research in ML-based IDSs for WSNs pri-

marily concentrates on employing specific ML algorithms to detect particular types of

network attacks. This approach often results in solutions that are somewhat restric-

tive in their applications. Given the dynamic and diverse network environments that

WSNs encounter in real-world scenarios, there is a critical requirement for designing

a flexible, adaptable, and comprehensive ML IDS framework for WSNs.

In this thesis, we propose the Server-Client Machine Learning Intrusion Detection

System (SC-MLIDS), a hybrid ML IDS framework for WSNs. It integrates server

and client components, corresponding to the gateway and sink nodes in WSNs, and

realizes two-layer validation of both sensing data and network traffic data. Inspired

by the Federated Learning (FL) architecture, the SC-MLIDS framework is designed

to be an adaptable solution that transcends limitations related to attack types, WSN

architectural designs, ML algorithms, and model quantities. This two-layer approach

1
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uses the inherent strengths of ML, achieving comprehensive intrusion detection that

is not only efficient and highly accurate but also optimizes resource utilization.

The contributions of this thesis are summarized as follows:

1. SC-MLIDS: We have proposed a hybrid ML IDS framework, specifically de-

signed based on the unique architectural characteristics and operational tasks

of WSNs. This framework is not restricted to detecting specific types of at-

tacks, thereby offering extensive intrusion detection capabilities for WSNs. By

employing a simplified model at the sink node level, this framework enables the

initial validation of sensing data. Furthermore, at the gateway, we employ ag-

gregation prediction algorithms that merge the predictions of multiple models.

This approach enables comprehensive validation of both sensing and network

traffic data.

2. Model Aggregation Prediction Algorithms: We have proposed two dis-

tinct aggregation prediction algorithms aiming to merge prediction results by

aggregating ML models generated from varied ML algorithms and tasks.

(a) Weighted Score Algorithm: This algorithm combines the prediction

results of each model based on their performance metrics and assigned

weights. The resulting scores are then converted into binary classification

results, ensuring a holistic and comprehensive prediction result.

(b) Majority Voting Algorithm: This algorithm differentiates between pri-

mary and secondary models based on their task type and importance. It

employs a voting mechanism among the classification results of the sec-

ondary model group, which generates the final prediction results when

combined with the primary model’s results.

To support open scientific inquiry and to facilitate replication and further research

endeavours, the entire source code of the SC-MLIDS 1 project has been made publicly

accessible. Interested readers and researchers are encouraged to visit the GitHub code

repository. This repository contains all relevant code, algorithms, and datasets used

in the development and evaluation phases of the SC-MLIDS project.

1https://github.com/Hongwei-Z/SC-MLIDS
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The remainder of this thesis is structured as follows: Chapter 2 provides a com-

prehensive background and reviews related works. In Chapter 3, we detail the design

of the proposed SC-MLIDS framework and its aggregation prediction algorithms,

describing the dataset and its processing methods. Chapter 4 presents the experi-

mental setup and the results obtained from our simulation. Chapter 5 discusses these

results, exploring their implications and highlighting the limitations of this thesis

while suggesting directions for future work. This thesis concludes with Chapter 6,

which summarizes our findings and underscores the key contributions of our research.



Chapter 2

Background and Related Work

2.1 Wireless Sensor Networks (WSNs)

2.1.1 Overview

Wireless Sensor Networks (WSNs) are self-configuring networks that contain many

wireless sensor nodes [5, 6]. These nodes are used for sensing and monitoring the envi-

ronment in which they are deployed, and for collecting data. The WSN architecture,

as shown in Figure 2.1, consists of the following components: sensor nodes, sink nodes

and the gateway [7].

Figure 2.1: WSNs Architecture

Sensor nodes are tiny devices with low power consumption, integrated with sen-

sors, microcontroller, transceiver, power supply, and operating system [8, 9]. The

4
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sensor node senses and collects information from the environment through various

types of equipped sensors. Depending on the application scenario, the required sen-

sor types and data types vary. Common sensing data include temperature, humidity,

pressure, light, and sound [10].

The microcontroller, acting as the Central Processing Unit (CPU) of the sensor

node, controls all hardware components by running a micro-operating system [11, 12].

It performs the collection and simple processing of sensing data, then sends this data

to the sink node via the transceiver, or communicates with other sensor nodes [8].

The sink node is the data collection unit [13], responsible for receiving and or-

ganizing the data sent from the wireless sensor nodes in the covered area. In WSN

architectures, sink nodes often communicate with the gateway or the Internet to

upload data received from sensor nodes [13, 14]. However, in certain WSN configu-

rations, the gateway may be replaced by the sink node, allowing the sensor nodes to

upload data directly via the sink node [15]. Such arrangements enhance the efficiency

of data transmission. In more extensive WSN architectures, which include a large

number of sensor nodes, the deployment of multiple sink nodes can further enhance

data collection efficiency [14, 16]. By assigning each sink node responsibility for only

a limited number of sensor nodes to communicate and process data, it is possible to

avoid issues such as network latency and throughput limitations that arise when a

single sink node is overwhelmed by communications from numerous sensor nodes [16].

The gateway receives the data generated by the sensor nodes, which is transmitted

via the sink node, and uploads it to the Internet [17]. This process enables users to

access, process, and analyze the data. The superior hardware configuration of the

gateway facilitates the implementation of functions that are not feasible with sensor

nodes due to various limitations. An example of such a function is security solutions

to counter network attacks in WSNs [18].

Advances in technologies related to WSNs have led to their rapid application

across various industries. In the military field, WSNs can provide services such as

data collection, communication, and battlefield surveillance [19]. In the healthcare

sector, WSNs enable continuous remote monitoring of the health statuses of patients

without the constraints of fixed locations, resulting in improved quality of health-

care services [20]. WSNs facilitate intelligence in the agricultural field by monitoring
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farms, monitoring temperature changes, and managing irrigation systems, thereby in-

creasing agricultural productivity while reducing costs [21]. In the smart home sector,

WSNs provide users with enhanced home security through monitoring of tempera-

ture, smoke, and gas leakages [22]. Additionally, WSNs offer cost-effective solutions

to societal challenges, such as forest fire detection and air quality monitoring [23, 24].

WSNs are characterized by their small node size, low cost, and the capacity for

widespread deployment. However, these features also result in several limitations, in-

cluding computational power, power consumption, power supply, communication and

sensing capabilities [25, 26]. Consequently, these limitations pose multiple challenges

for WSNs, particularly in network security.

2.1.2 Attacks on WSNs

Common attacks on WSNs include Denial of Service (DoS) attacks, Sybil attacks,

Blackhole / Sinkhole attacks, Hello Flood attacks, Wormhole attacks, and attacks

compromising data integrity.

Denial of Service Attack

Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks are

among the most common attacks on WSNs [27]. These attacks flood sensor nodes

with excessive requests, resulting in them being unable to provide services properly

[28]. Since the sensor nodes are restricted in terms of computational power and

power supply, they are particularly vulnerable to DoS attacks that drain resources

and power, thereby disabling the sensor node [29].

Sybil Attack

The Sybil attack involves generating and propagating multiple false identities by

capturing or inserting malicious nodes to impersonate multiple legal nodes [28]. This

type of attack is detrimental as it disrupts the routing protocols of WSNs [30]. It

interferes with operations such as voting, reputation evaluation, and data aggregation.

Consequently, it reduces data integrity, security, and resource utilization in WSNs

[30, 31].
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Blackhole / Sinkhole Attack

In the Blackhole / Sinkhole attack, a compromised malicious node intercepts the

route requests from neighbouring nodes and responds with false shortest route paths

leading to the sink node [32, 33]. As a result, these neighbouring nodes, misled by the

false routing information, direct their packets to the malicious node [32]. This node,

executing the Blackhole attack, either blocks or drops these packets. Such an attack,

characterized by attracting traffic without forwarding it, can significantly impact the

network latency and throughput of the WSNs [34].

Wormhole Attack

In the Wormhole attack, the attacker compromises two nodes within the WSN,

establishing a direct high-speed communication tunnel between them [35]. The ma-

licious node advertises to nearby nodes that it possesses the shortest route, thereby

inducing these nodes to transmit their packets through the tunnel created by the

malicious node [36]. This transmission leads the nodes on both ends of the tunnel

to mistakenly believe they are neighbouring nodes [37]. As a result, the malicious

node attracts nearby traffic, thereby adversely affecting the routing algorithm and

confusing the routing protocol [37, 38].

Hello Flood Attack

The Hello Flood attack exploits a vulnerability in the WSN initialization mecha-

nism, designed to identify neighbouring nodes through exchanging greeting messages

[39]. Typically, a node sends a ”Hello” message to its neighbouring nodes, enabling

the message receiver to recognize the sender as a neighbouring node [40, 41]. In this

attack, the attacker employs a laptop-class device with high-power broadcast routing

capabilities to send a message to the nodes in the WSN [39]. Consequently, these

nodes mistakenly recognize the attacker as a neighbouring node. When a node trans-

mits packets to the base station, they are routed through the attacker, creating a

unidirectional link between the node and the attacker [41]. This situation leads to

confusion in the network and disrupts its normal functioning [39].
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Data-oriented Attack

In WSNs, the processes of data generation and packet transmission are susceptible

to common wireless network attacks. Compromised sensor nodes may generate false

data or selectively send packets, thereby compromising the integrity and reliability

of the data [28]. Furthermore, during data transmission, the network traffic can be

monitored, leading to potential data leakage [35]. Additionally, the transmitted data

is at risk of being intercepted, altered, or discarded, which further undermines the

reliability of the received data.

2.2 Internet of Things (IoT)

Internet of Things (IoT) forms a network infrastructure with many sensing, com-

munication, network, and information processing devices [42, 43]. This infrastructure

facilitates data exchange among devices, between devices and servers, and between

devices and the Internet [44].

The fundamental technology of IoT is Radio Frequency Identification (RFID),

which allows devices embedded with RFID tags to be read through Near Field Com-

munication (NFC) technology [43, 45]. This capability enables unique identification,

tracking, and monitoring of the devices [42]. IoT has achieved significant advancement

with the introduction of additional technologies such as WSNs, Machine-to-Machine

(M2M) communication, and low-power Personal Area Networks (PANs), thereby be-

coming more intelligent and interconnected [46].

IoT has found extensive applications across various sectors of human society, in-

cluding intelligent control and monitoring in industry and agriculture, smart cities,

smart homes, and healthcare [47, 48, 49].

2.3 Federated Learning (FL)

Federated Learning (FL) is a distributed Machine Learning (ML) approach that

involves model training through the collaboration of multiple clients with a server

[50, 51].

The FL architecture is shown in Figure 2.2 and the process can be summarized in

six steps [50, 51, 52]:
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Figure 2.2: Federated Learning Architecture

1. A generic initialization model is configured as the global model on the server.

2. This global model is then distributed to all clients.

3. Clients use their local data to train the model, thus generating customized local

models.

4. The parameters of the trained model, which differ from those of the global

model, are sent from the clients to the server.

5. Upon receiving these parameters, the server aggregates them using a strategy

such as Federated Averaging (FedAvg), allowing for the updating of the global

model.

6. Repeat steps 4 and 5, with the updated global model’s parameters sent back

to the clients for subsequent rounds of training. The cycle continues until the

model converges.

FL is well-suited for IoT applications, due to its decentralized nature, data privacy

protection, and resource conservation [53, 54, 55]. The rapid expansion of IoT has
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led to an enormous volume of data generated by an enormous of IoT devices, pre-

senting challenges related to data overload, data security, and data privacy [53]. The

distributed feature of FL eliminates the need for centralized data processing. Con-

figuring numerous local clients not only alleviates computational burdens but also

avoids privacy and security issues associated with data transmission. Therefore, FL

offers an effective and privacy-preserving solution for IoT environments.

2.4 Ensemble Learning (EL)

Ensemble Learning (EL) represents a predictive methodology that combines multi-

ple ML models, as illustrated in Figure 2.3. This approach involves training classifiers

on the same dataset using different algorithms, thereby generating different models

[56]. The primary objective is to synthesize a new model that integrates the strengths

of distinct classification algorithms. This integration aims to transcend the limita-

tions inherent in relying on a single classification algorithm, thereby enhancing the

performance of predictions [57].

Figure 2.3: Ensemble Learning Architecture

EL can be categorized into three principal types: bagging, stacking, and boosting

[58]:

1. Bagging: Bagging uses a randomized sampling technique to extract a sub-

set of the dataset for model training [57]. The prediction results of individual
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models are combined to generate the final predictions. This combination uses

aggregation methods such as classification voting or regression averaging [59].

Within this framework, the majority voting method consolidates the prediction

results from each model, and the class receiving the most votes is designated

as the final predictions [57, 60]. An extension of this method, weighted major-

ity voting, introduces model weights based on performance, assigning greater

predictive priority to models demonstrating superior performance [57, 60]. The

prediction results are then normalized to convert voting results into classifica-

tion results [57].

2. Stacking: In this approach, the initial dataset is used to train cardinal learners.

The outcomes generated by these cardinal learners are then used to train a meta

learner [56, 57].

3. Boosting: This method involves iteratively training the learner with samples

incorrectly predicted in previous iterations. A weak learner is progressively

transformed into a strong learner through this process [56, 57].

2.5 Related Work

Traditional intrusion detection systems (IDS) for WSNs are classified into anomaly

detection and misuse detection [3]. Anomaly detection systems primarily focus on

identifying anomalies in nodes, networks, and data within WSNs [61]. Misuse detec-

tion involves the detection of known attacks through the pre-configuration of attack

signatures [3]. However, the evolution of ML techniques has introduced more possi-

bilities for IDS in WSNs. ML-based IDS for WSNs can effectively identify and filter

anomalous data, thereby saving computational and network resources. Furthermore,

such systems can autonomously detect, learn from, and prevent various network at-

tacks and vulnerabilities, eliminating the need for human intervention [62].

Current research in ML-based IDS for WSNs primarily concentrates on deploying

specific ML algorithms for the identification and detection of particular types of net-

work attacks. For example, studies [62, 63] introduce methods using ML algorithms

such as the K-Nearest Neighbors (KNN), Decision Trees (DT), and Support Vector
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Machines (SVM), for outlier detection and the identification of specific network at-

tacks. Concurrently, the advancement of ML has promoted innovative approaches

such as Boosting and Deep Learning (DL) based schemes. For instance, research in

[64] investigates the comparison of three novel Boosting methods against three tra-

ditional ML techniques for detecting network attacks in WSNs. Additionally, [65]

explores the use of Deep Neural Networks (DNN) to solve the limitations inherent in

traditional ML, especially in response to imbalanced attacks.

Given the potential constraints associated with single ML classifiers, some stud-

ies have advocated for model ensemble strategies to enhance detection capabilities.

For example, [66] introduces an IDS scheme that integrates Random Forest (RF),

Density-based Spatial Clustering of Applications with Noise (DBSCAN), and Re-

stricted Boltzmann Machine (RBM). To enhance detection efficiency, certain meth-

ods, such as the one proposed in [67], apply feature selection algorithms to filter key

features. This approach is aimed at reducing the time required for attack detection

and ensuring efficient identification of attacks. Additionally, research efforts have

been directed towards developing detection methods for specific data types. The

study in [68] focuses on detecting anomalies in sensing data, while [69] combines tra-

ditional ML and DL techniques to identify malicious nodes through network traffic

classification.

The aforementioned studies represent the main research direction of ML-based

intrusion detection solutions for WSNs, offering valuable insights into WSN security.

However, these researches mainly focus on applying specific models or algorithms

to address unique network security challenges. There exists a notable gap in their

consideration of comprehensive network security issues in real-world WSN application

scenarios. The following key papers have made contributions to this research area

and provided crucial foundations and inspirations for our SC-MLIDS.

Yu and Tsai [70] propose an innovative ML-based IDS for WSNs that transcends

the limitations of detecting specific types of attacks. In their proposed framework,

each sensor node is equipped with an Intrusion Detection Agent (IDA). These IDAs

function autonomously, facilitating intrusion detection through two primary inter-

nal components. The first, the Local Intrusion Detection Component (LIDC), is

responsible for analyzing local features to evaluate whether the host node is under
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attack. The second, the Packet-based Intrusion Detection Component (PIDC), fo-

cuses on identifying malicious nodes by monitoring the communication activities of

neighbouring nodes deemed suspicious by the LIDC. Alerts identified by the IDAs

are transmitted to and examined by users through the base station. Importantly,

false alarms detected prompt the base station to fine-tune and optimize the model,

thereby enhancing its accuracy and reliability. This automation feature within the

IDS significantly enhances its adaptability.

Medhat et al. [71] develop two algorithms for defining detection rules, both based

on DT. These algorithms were specifically proposed for two WSN configurations de-

signed by the researchers: one is base station-sink-sensor architecture, and the other

is sink-sensor architecture. Within these configurations, the IDS is implemented at

the sensor nodes level using either supervised or unsupervised learning algorithms.

These algorithms are employed to generate detection rules through feature selection,

corresponding to each of the two WSN configurations. Intrusion detection is then

achieved by applying DT classifiers, which use the defined rules to detect anomalies

in sensing data. The binary DT-based algorithms are notable for their high detection

accuracy, achieved with a reduced number of features and lower resource demands.

Zhang et al. [72] introduce a hierarchical IDS based on the Extreme Learning

Machine (ELM) methodology. In their proposed framework, the cluster head node

initially preprocesses data collected by sensor nodes. This data is then transmitted to

the sink node for feature extraction relevant to intrusion detection, and subsequently

forwarded to the management node over the Internet. Within the management node,

the intrusion detection module employs their proposed Multi-Kernel ELM (MK-ELM)

model to determine the presence of intrusions. The results generated from this model

are then forwarded to an anomaly processing module for further analysis and decision-

making. Simulation results of their model have demonstrated its capability to achieve

high-precision detection while concurrently reducing the time required for detection.

Maleh et al. [73] propose an IDS that mixes SVM-based anomaly detection and

predefined attack rules signature, thereby enhancing the system’s capability to iden-

tify attacks or anomalies. This system is designed to integrate into a clustered WSN

topology, featuring dynamically elected cluster heads responsible for monitoring and

authenticating WSN nodes. This hybrid approach effectively combines the strengths
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of both ML anomaly detection and signature rules-based IDSs, resulting in a solution

that is not only lightweight and efficient but also highly accurate.

Alruhaily and Ibrahim [74] propose a two-layer ML defence strategy for IDS in

WSNs. A Naive Bayes (NB) classifier is employed at the sensor nodes layer to make

an initial classification decision on packets, labelling them as normal or malicious

traffic. For in-depth analysis, malicious traffic is examined in the cloud using an

RF multi-class classifier. This classifier is critical in identifying the specific attack

type and guiding the implementation of corresponding defence mechanisms. Their

approach achieves efficient utilization of network resources and demonstrates high

accuracy in experiments designed to detect normal traffic and four distinct types of

attacks.

A review of prior research has highlighted the significant improvements made

in hybrid ML-based IDSs for WSNs. However, some critical shortcomings are still

present. Current research has focused on the use of specific ML algorithms or the

combination of ML algorithms with traditional IDS approaches (e.g., signature rules)

to identify specific attack types. Additionally, these studies have notable limitations

in terms of ML algorithm selection, model optimization, processing efficiency, re-

source consumption, and deployment adaptability in WSNs, especially in dynamically

changing network environments and diverse security threats. These gaps highlight the

importance of the need for a hybrid ML IDS framework that is not only highly flexible

and adaptable but also capable of transcending the limitations of attack types.

To address these gaps, this thesis proposes the Server-Client Machine Learning

Intrusion Detection System (SC-MLIDS) framework. The SC-MLIDS framework is

designed based on the data characteristics and architectural features of WSNs. By im-

plementing a two-layer detection mechanism, it aims to achieve lightweight intrusion

detection that is both highly accurate and efficient. The adoption of a server-client

architecture not only ensures that the framework is highly adaptable and scalable but

also allows the framework to flexibly adapt to dynamically changing network security

threats and requirements. In addition, the framework supports diverse algorithms

and model adjustment, which can adapt to different model combinations generated

by diverse ML algorithms to meet different WSN architectures and application re-

quirements.



Chapter 3

Proposed Framework

3.1 Datasets

3.1.1 Dataset Preprocessing

Due to the unique characteristics of the framework proposed in this thesis, specific

requirements are set for the dataset to be used. The dataset must be generated in a

Wireless Sensor Network (WSN) scenario, including sensing and network traffic data,

and labelled according to network attacks. However, finding relevant datasets for

WSNs that meet these criteria is challenging. Since the WSN is one of the fundamen-

tal technologies supporting the Internet of Things (IoT), and both involve wireless

devices equipped with sensors, selecting a suitable IoT dataset presents an optimal

alternative.

The TON IoT [75] dataset contains data from IoT and Industrial IoT sensor

devices, as well as operating system and network traffic data, making it suitable for

the validation of Machine Learning (ML) network security solutions for IoT, such as

intrusion detection systems (IDSs). The TON IoT dataset contains a large amount

of network attack traffic data collected from large-scale real-world networks targeting

the IoT and is therefore popular in IoT security research.

The TON IoT dataset is divided into four categories: the raw dataset, the pro-

cessed dataset, the dataset split according to training and testing sets, and the de-

scription files of the dataset. The raw dataset contains sensing data from many IoT

sensors, captured network traffic data, and data from host run-time processes on

Linux and Windows operating systems.

In this thesis, the IoT device sensing data and network traffic data from the pro-

cessed dataset are employed. The weather dataset within the IoT device sensing data,

which closely aligns with the WSN scenario, is the only dataset used. Conversely, the

network traffic dataset is used in its entirety, as it is not categorized based on specific

15
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IoT devices.

The IoT weather dataset, as presented in Table 3.1, collects weather sensing data

including temperature, pressure, and humidity between March 31 and April 27, 2019,

and is categorized by attack type. A label of ’0’ denotes normal traffic and a label of

’1’ indicates malicious traffic.

Table 3.1: IoT Weather Dataset
Date Time Temperature Pressure Humidity Label Type
31-Mar-19 12:36:52 31.788508 1.035 32.036579 0 normal
31-Mar-19 12:36:53 41.630997 1.035 30.886165 0 normal
31-Mar-19 12:36:54 42.256959 1.035 19.755908 0 normal
31-Mar-19 12:36:55 49.116581 1.035 78.949621 0 normal
31-Mar-19 12:36:56 24.017085 1.035 40.001059 0 normal
... ... ... ... ... ... ...
27-Apr-19 12:41:17 40.384291 9.049059 93.094490 0 normal
27-Apr-19 12:41:18 47.240113 -5.782022 28.146511 0 normal
27-Apr-19 12:41:18 23.540606 0.913648 30.478316 0 normal
27-Apr-19 12:41:18 46.016150 3.493588 73.328413 0 normal
27-Apr-19 12:41:20 48.082975 0.100271 20.949148 0 normal

The dataset has a total of 650,242 rows, and the distribution of their types can

be seen in Table 3.2. Of these, 86%, amounting to 559,718 rows, represent normal

data, while the remaining 14% represent data affected by each of the seven types of

attacks.

Table 3.2: Attack Type Distribution of the IoT Weather Dataset
Attack Type Count
normal 559718
backdoor 35641
password 25715
ddos 15182
injection 9726
ransomware 2865
xss 866
scanning 529

The network traffic dataset is notably complex, containing network traffic from

various devices. It consists of 21,978,631 rows and 46 columns across 23 dataset files.

The data is categorized into several types: connection activity, statistical activity,
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Domain Name System (DNS) activity, Secure Sockets Layer (SSL) activity, Hypertext

Transfer Protocol (HTTP) activity, violation activity, and data labels.

Table 3.3: Processed Network Dataset
index 0 1 2 3 ...
ts 1554198358 1554198358 1554198359 1554198359 ...
src ip 3.122.49.24 192.168.1.79 192.168.1.152 192.168.1.152 ...
src port 1883 47260 1880 34296 ...
dst ip 192.168.1.152 192.168.1.255 192.168.1.152 192.168.1.152 ...
dst port 52976 15600 51782 10502 ...
proto tcp udp tcp tcp ...
service - - - - ...
duration 80549.53026 0 0 0 ...
src bytes 1762852 0 0 0 ...
dst bytes 41933215 0 0 0 ...
conn state OTH S0 OTH OTH ...
src pkts 252181 1 0 0 ...
src ip bytes 14911156 63 0 0 ...
dst pkts 2 0 0 0 ...
dst ip bytes 236 0 0 0 ...
label 0 0 0 0 ...
type normal normal normal normal ...

For this thesis, connection activity, statistical activity, and data labels are of

primary importance, therefore it is unnecessary to use the entire dataset. The refined

data, as illustrated in Table 3.3, includes information such as timestamps, source and

destination ports, protocols, duration, byte counts, connection states, packet lengths

and counts, and data labels, with a total of 17 columns.

Table 3.4: Attack Type Distribution of the Processed Network Dataset
Attack Type Count
scanning 7140161
ddos 6165008
dos 3375328
xss 2108944
password 1365958
normal 788599
backdoor 508116
injection 452659
ransomware 72805
mitm 1052
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The distribution of these types is detailed in Table 3.4, where only about 3.6% of

the data, corresponding to 788,599 rows, is normal, with the remainder of each of the

nine types of attacks.

The network traffic dataset covers a broader scope than the IoT weather dataset,

so they need to be merged based on shared features. First, the timestamps in the

network traffic dataset are converted to match the date and time format of the IoT

weather dataset. The time frame for the network traffic dataset spans from April 2 to

April 29, 2019. Consequently, data before April 2 is removed from the IoT weather

dataset, leaving approximately 53% of its data, equivalent to 347,223 rows.

The common features between both datasets include time-date, attack type, and

data labels. To facilitate a more precise merger, the datasets are merged using a left

merge method based on the IoT weather dataset, focusing on time-date and attack

type as the merging features. The merged dataset contains 3,256,615 rows. Due to

the non-uniqueness of the combination of time-date and attack type, a substantial

volume of replicated data is generated and requires further cleaning.

Figure 3.1: Attack Type Distribution of the Merged Dataset

The cleaning process involves two key steps. First, rows containing non-numeric

elements (NaN), indicative of missing values from the dataset merging, are removed.
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Second, within the merged dataset, rows that simultaneously match all five features

(time-date, temperature, pressure, humidity, and attack type) of the baseline IoT

weather dataset and are duplicates are also removed. Following these steps, the

cleaned merged dataset contains 203,441 rows. Compared to the date-filtered IoT

weather dataset, this represents 58.59% of the data.

Figure 3.1 illustrates the distribution of attack types in the cleaned merged dataset.

Normal data constitutes approximately 60.80% of the dataset, amounting to 123,690

rows. Malicious traffic proportions include 16.46% for backdoor traffic, and 10.39%

for password traffic. With the remaining four types of malicious traffic occupying

smaller percentages.

The merged dataset requires further processing to prepare it for use in ML models.

The IP addresses in the network traffic dataset, which included both IPv4 and IPv6

formats, could not be easily identified and encoded. Therefore, they are removed.

The non-numeric data in the merged dataset is encoded using a label encoder, con-

verting character data into numeric format. The numeric data is scaled using a scaler,

compressing it into a range from 0 to 1. After shuffling the merged dataset randomly,

the dataset preprocessing is completed.

Table 3.5: Merged Dataset
index 0 1 2 3 4 ... 203440
temperature 0.9486 0.5170 0.9596 0.5819 0.5132 ... 0.9509
pressure 0.6904 0.5001 0.4670 0.6743 0.7438 ... 0.4022
humidity 0.2075 0.4147 0.4953 0.5789 0.7367 ... 0.6414
src port 0.8152 0.6586 0.8236 0.1202 0.8618 ... 0.7081
dst port 0.0068 0.0008 0.1603 0.6426 0.1233 ... 0.0012
proto 1 2 1 1 1 ... 1
service 9 3 0 0 0 ... 0
duration 0 0 0 0 0 ... 0
src bytes 0 0 0 0 0 ... 0
dst bytes 0 0 0 0 0 ... 0
conn state 4 10 0 0 1 ... 10
src pkts 0 0 0 0 0 ... 0
src ip bytes 0 0 0 0 0 ... 0
dst pkts 0.0001 0 0 0 0 ... 0
dst ip bytes 0.0001 0 0 0 0 ... 0
target 1 0 0 0 1 ... 1

The resulting dataset is presented in Table 3.5. It combines sensing data from the
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IoT weather dataset with network connection activity and statistical activity data

from the network traffic dataset.

Figure 3.2: Target Distribution of the Merged Dataset

The distribution of labels in this dataset is presented in Figure 3.2, showing that

60.80% of the data, or 123,690 rows, are normal data. The remaining 39.20%, or

79,751 rows, represent attack data. To accurately mirror the data distribution in

real-world scenarios and avoid bias caused by data balancing, this dataset is kept

unbalanced.

3.1.2 Dataset Splitting

In this thesis, the proposed framework contains a server and multiple clients.

A dataset split that reflects this structure is required, beyond merely dividing into

training and testing sets. To demonstrate and test the proposed framework, we use

three clients as an example. The process of dataset splitting is illustrated in Figure

3.3. Initially, the merged dataset is divided into a training set and a testing set, with

a ratio of 80% and 20%, respectively.

Considering that the merged dataset includes both sensing data and network

traffic data, it is essential to split the dataset in alignment with the distinct functions
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Figure 3.3: Dataset Processing and Splitting

of the server and the clients. Specifically, the server requires only network traffic

data, while the clients require only sensing data. Therefore, the training set is further

divided based on data type, ensuring the label column is retained in both subsets.

The obtained datasets are classified as the sensor dataset and the network dataset.

For this experiment, the sensor dataset is evenly split among the three clients, with

each receiving over fifty thousand data entries. The server uses the entire network

dataset, amounting to 162,752 entries, which is equivalent to the combined data

quantity allocated to the three clients. Through these steps, four distinct datasets

are generated: the network dataset for the server, and three sensor datasets for the

clients.
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3.2 Proposed Framework

In large WSNs, multiple sink nodes are tasked with data collection from assigned

wireless sensor nodes. These networks use a gateway that serves as an intermediary

between the sink nodes and the Internet. This gateway’s primary functions include

communication with each sink node and the aggregation and processing of data.

This described architecture shares similarities with the global-local model structure

in Federated Learning (FL), as applied within the Internet of Things (IoT) context.

Therefore, this thesis proposed a framework for WSNs, a hybrid ML IDS with in-

tegrated server and client models, named Server-Client Machine Learning Intrusion

Detection System (SC-MLIDS).

3.2.1 Architecture

Figure 3.4: Proposed Framework
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The SC-MLIDS framework, as shown in Figure 3.4, contains two primary compo-

nents: a server and multiple clients.

• Server: Represents the gateway in the WSN.

• Client: Represents the sink nodes in the WSN.

• Client Model: This component is responsible for validating sensing data. Such

data are generated and transmitted by wireless sensor nodes that are managed

by the sink node.

• Server Model: This component is responsible for validating network traffic

data. This network traffic is associated with the sensing data that the gateway

receives from the sink node.

• Client Data: The sensing data that collected by the sink node from its ad-

ministered wireless sensor nodes and filtered by the client model.

• Dataset: A collection of sensing data matched with corresponding network

traffic data. This dataset is used to train both the client and server models.

During the WSN’s initial deployment phase, it is crucial to prepare a dataset

containing both sensing data and the corresponding network traffic data. This dataset

is used for training the ML models on both the clients and the server. The dataset

should be partitioned based on the number of sink nodes, according to the method

delineated in Figure 3.3.

The initial deployment phase of SC-MLIDS includes seven steps:

1. Distribute the Split Sensor Dataset: Each client receives a portion of the

split sensor dataset.

2. Train Client Models: In each client, a client model is trained using the

assigned sensor dataset.

3. Compress and Encrypt Client Model Files: After training, the client

model files are compressed and encrypted for secure transmission.
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4. Transmit Client Model Files to the Server: These compressed and en-

crypted client model files are then sent to the server.

5. Server Reception and Processing: Upon receipt, the server decompresses

and decrypts all the client model files.

6. Server Model Training: The server trains a server model using the network

traffic dataset.

7. Model Aggregation: The server aggregates all the client models and the

server model using the model aggregation algorithms.

During the formal operational phase, the SC-MLIDS framework follows a six-step

operational process:

1. Data Collection by Sensor Nodes: These nodes actively sense environmen-

tal conditions, generating relevant sensing data.

2. Data Transmission to Sink Nodes: The sensor nodes transmit the sensing

data to their affiliated sink nodes.

3. Data Validation at Sink Nodes: Upon receipt, the sink nodes employ the

integrated client model to validate the received sensing data.

4. Sending Data to the Gateway: The sink nodes forward the validated sensing

data, along with the corresponding network traffic data, to the gateway.

5. Gateway-Level Validation: The gateway applies aggregation prediction al-

gorithms, in conjunction with the client and server models, to conduct a final

validation of both the sensing data and the corresponding network traffic data.

6. Uploading Server-Validated Data: Following validation, the server-validated

data is uploaded to the Internet for additional analysis and processing by end-

users.

The proposed SC-MLIDS framework is designed to implement two-layer intru-

sion detection, targeting both the sink node and gateway levels. This approach is
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particularly applicable considering the inherent vulnerabilities of WSN nodes to net-

work attacks, largely due to their limited computational capacity for deploying robust

intrusion-resistant mechanisms.

Common attacks on WSNs primarily involve damage to nodes and network func-

tions or data contamination.

At the sensor node level, a compromised node poses a significant risk. The sens-

ing data generated by such a node can be subject to tampering, leading to erroneous

information being introduced into the network. This compromised data, once inte-

grated into the network, can severely undermine the reliability of the entire database,

thereby devaluing its overall integrity. Consequently, the SC-MLIDS framework pri-

oritizes the verification of data authenticity during the data collection phase, yielding

three key advantages:

1. Authenticity Verification: This process ensures a preliminary assessment of

the security status of the sensor nodes, as the data they generate is authenticated

at the outset.

2. Reliability Assurance: By verifying the sensing data, the possibility of the

database being contaminated with malicious data is significantly reduced, thereby

ensuring its reliability.

3. Efficient Data Management: The framework facilitates the filtering of sens-

ing data, and suspicious data are discarded. This not only saves network and

computational resources by reducing the volume of data needing transmission

but also alleviates some of the verification workload on the server side.

Overall, the SC-MLIDS framework is strategically positioned to enhance security

and efficiency in WSN operations, addressing critical vulnerabilities and optimizing

resource utilization.

At the gateway level, the SC-MLIDS framework uses server models that have been

trained on network traffic data. This training enables the identification of common

network attacks through traffic analysis, thereby facilitating effective intrusion detec-

tion within WSNs. The integration of various client models at the gateway further

enhances security.
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The use of aggregation prediction algorithms allows for comprehensive validation

of data from sensor nodes within the administration of a specific sink node. Since the

sensing data arriving at the gateway has already experienced initial validation by the

client model at the respective sink node, the subsequent extensive validation by all

models at the gateway level significantly enhances both data reliability and network

security.

Regarding the client models within the SC-MLIDS framework, they must be pre-

trained. During this phase, data encryption and compression algorithms should be

configured to meet the specific requirements of the WSN application. The pre-

configuration of encryption keys or seeds, along with salts, is crucial for reducing

the risks of data leakage during network transmission.

Furthermore, the SC-MLIDS framework demonstrates flexibility in its applicabil-

ity to small or simple WSNs. In such configurations, the structure is simplified to

include just a server and a client. Here, the sensor node gathers sensing data and

forwards it to the sink node for initial validation. The sink node then transmits this

validated data to the gateway, where comprehensive validation of both the sensing

data and network traffic data is conducted. The essential models for the aggrega-

tion prediction algorithms in this scenario include a client model and a server model.

This simplified structure effectively maintains the two-layer intrusion detection char-

acteristic of the SC-MLIDS framework, thereby ensuring robust security even in less

complex WSN configurations.

3.2.2 Aggregation Prediction Algorithms

The SC-MLIDS framework employs model aggregation methodologies at the gate-

way level, similar to the bagging approach in Ensemble Learning (EL). This process

includes two aggregation prediction algorithms:

1. Weighted Score Algorithm: This algorithm combines the prediction results

of each model based on their performance metrics and assigned weights. The

resulting scores are then converted into binary classification results, ensuring

holistic and comprehensive prediction results.

2. Majority Voting Algorithm: This algorithm operates on a majority voting
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principle, where the predictions made by each model are collectively analyzed.

The final prediction is then determined based on the results that receive the

majority votes among these models.

Due to the flexibility of the proposed two aggregation prediction algorithms, mod-

els trained using a variety of classifiers can also be aggregated effectively. This holds

regardless of the type and number of classifiers employed. Additionally, the strategy

of employing a combination of diverse classifiers, based on specific WSN application

scenarios and data characteristics, is also feasible and supported.

These algorithms enhance the robustness and accuracy of the SC-MLIDS frame-

work by using the diverse strengths of the individual models involved. The use of

both weighted score and majority voting provides a comprehensive approach to model

prediction, ensuring more reliable and effective intrusion detection in WSNs.

Considering that both algorithms perform the same task, it is crucial to choose

a suitable algorithm. Therefore, it is necessary to examine their performance based

on WSN application scenarios and special requirements and select the appropriate

algorithm that best suits the current needs. This will ensure that the SC-MLIDS

framework achieves optimal intrusion detection in different WSN environments.

Weighted Score Algorithm

Given the unique characteristics of WSNs, Precision emerges as a particularly

crucial metric in assessing the performance of ML models used for such networks. In

WSNs, the authenticity and accuracy of data are crucial for subsequent data analysis

processes. Consequently, ML models for WSN applications should prioritize minimiz-

ing false positives. This focus on Precision reflects the lower relative significance of

false negatives in this context.

Precision is defined as the proportion of all samples predicted to be positive that

are actually positive. A higher Precision indicates that the model performs greater

caution in its predictions, effectively reducing the occurrence of false positives. Addi-

tionally, Recall or True Positive Rate (TPR) denotes the proportion of actual positive

samples correctly identified as positive by the model. The F1 Score addresses poten-

tial imbalances within the dataset by harmonizing Precision and Recall. This score

is particularly relevant when dealing with unbalanced datasets.
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Therefore, while Precision remains a critical metric for the performance evalua-

tion of ML models in WSNs, the F1 Score also deserves consideration, especially in

scenarios involving dataset imbalance.

The weighted score algorithm proposed in this thesis innovatively integrates model

performance metrics into the bagging methodology of EL, designed specifically for

the characteristics of WSNs. As presented in Algorithm 1, this algorithm synthesizes

the final prediction results by considering a range of inputs. These inputs include

the individual prediction results of each model, the Precision and F1 Score of these

models, their respective weight shares, and the overall weight assigned to each model.

This approach allows for a precise final prediction, which is informed not only by

the predictive results of the individual models but also by their respective performance

metrics and assigned weights. By incorporating both Precision and F1 Score into

the weighting mechanism, the algorithm effectively acknowledges the importance of

precision and balanced performance in the WSNs context. Therefore, this method

offers a more comprehensive and contextually appropriate approach to ML models

aggregation, enhancing the reliability and applicability of the predictions in WSN

environments.

In the proposed weighted score algorithm, the initial step involves running each

client model and the server model to generate their respective independent predic-

tions. These predictions are stored in a two-dimensional array format. For instance,

the array might look like [ [0, 0, 0, ..., 1], [1, 0, 0, ..., 1], [1, 0, 0, ..., 1], ..., [0, 1, 1, ...,

1] ], where the last array corresponds to the prediction result of the server model.

Following this, the Precision and F1 Score obtained during the testing phase of

each model are provided and also stored as two-dimensional arrays. An example of

such an array could be [ [0.9746, 0.9927], [0.9615, 0.7805], [0.8183, 0.6399], ..., [0.9434,

0.9337] ].

Subsequently, the weights are assigned to each model. These weights are rep-

resented as an array, such as [0.1, 0.1, 0.1, ..., 0.5], with the condition that their

cumulative sum equals 1. This array configuration is crucial as it reflects the relative

importance and performance of each model within the aggregation prediction process.

For instance, in the SC-MLIDS framework, the server model is typically assigned a

greater weight compared to client models. This is due to the server model being
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Algorithm 1: Aggregation Prediction Algorithm by Weighted Score

Input : models predictions: 2D array, predictions of all models.

models metrics: 2D array, Precision and F1 of all models.

models weights: Array, the weights of each model.

precision weight: Floating point, the precision weight (default 0.6).

f1 weight: Floating point, the f1 weight (default 0.4).

Output: final predictions: Array of final predictions.

1 weighted scores = [ ]

2 for m in models metrics do

3 score← m[0]× precision weight+m[1]× f1 weight

4 weighted scores.append(score)

5 end for

6 weighted predictions = [ ]

7 for i← 0 to length of models predictions - 1 do

8 weighted pred←
models predictions[i]×models weights[i]× weighted scores[i]

9 weighted predictions.append(weighted pred)

10 end for

11 results← sum of weighted predictions / sum of

(models weights× weighted scores)

12 threshold← 0.5

13 if results ≥ threshold then

14 final prediction← 1

15 else

16 final prediction← 0

17 end if

18 return final predictions
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trained using network traffic data, which often makes it more critical in the overall

predictive accuracy.

Finally, the algorithm requires the assignment of weights to the Precision and F1

Score. The weight is determined based on the characteristics of the dataset used

to train the models. For example, the weights might be assigned as 0.6 and 0.4 for

Precision and F1 Score, respectively. This weighting approach allows for a balance

between Precision and F1 Score, ensuring that the aggregation prediction is not only

accurate but also sensitive to the dataset’s unique properties.

After completing the preparation of all required inputs, the weighted score for

each model is calculated as a linear combination of its Precision and F1 Score.

Let Pi and Fi represent the Precision and F1 Score for the ith model, respectively.

The weighted score Si is then given by:

Si = α · Pi + (1− α) · Fi (3.1)

where α is a user-defined parameter determining the relative importance of Precision

versus F1 Score.

Let predi represent the array of binary predictions from the ith model, and wi be

its assigned weight. The adjusted predictions adj predi for each model are calculated

as:

adj predi = predi · wi · Si (3.2)

This adjustment scales the predictions of each model according to both its perfor-

mance metrics and its assigned weight.

The final step involves aggregating these adjusted predictions across all models and

normalizing the result. Let N be the number of models. The aggregated prediction

A is given by:

A =

∑N
i=1 adj predi∑N

i=1 wi · Si

(3.3)

This equation computes a weighted average of the adjusted predictions, normalized

by the total weight-adjusted scores of all models.

Finally, a threshold θ (commonly 0.5 for binary classification) is applied to A to

obtain the final binary classification P :

Pj =

⎧⎨
⎩
1 if Aj ≥ θ

0 otherwise
(3.4)
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for each element j in A.

After the above operational steps, the result given by the weighted score algorithm

will be an array storing the final predictions. For instance, the array might look like

[0, 1, 1, ..., 0].

In summary, the proposed weighted score algorithm offers a comprehensive ap-

proach for scoring model performance and weights in WSNs. This is achieved by

considering various factors: the individual prediction results of each model, the per-

formance metrics of the models, the weights assigned to each model, and the assign-

ment of weights among these metrics. A notable aspect of this algorithm is that

the final prediction tends to be more closely aligned with models assigned higher

weights. Furthermore, if a model with a high weight also gives high-performance

metrics, the algorithm’s predictions are possible to closely mirror the metrics of that

model. However, it is important to acknowledge that due to the aggregate nature of

the predictions, there may be cases where the algorithm’s performance metrics are

slightly lower than those of the best-performing individual model.

The proposed weighted score algorithm is specifically designed for WSNs. By

incorporating both Precision and F1 Score, along with their respective weights, the

algorithm is highly applicable to WSN environments where minimizing false positives

is a critical concern. Despite the applicability of this algorithm is not limited to

WSNs. With appropriate modifications, such as the integration of additional model

metrics or alterations of Precision and F1 Score, the algorithm can be adapted to

other application scenarios requiring model aggregation prediction.

Therefore, in this thesis, the algorithm has been optimized for WSNs to accom-

modate their specific characteristics and needs. As an indispensable component of

the SC-MLIDS framework, it presents a robust and effective method for model ag-

gregation prediction, enhancing the performance of two-layer IDSs in WSNs. This

adaptability and precision emphasize the potential of the algorithm as an option in

various model aggregation scenarios.

Majority Voting Algorithm

Majority voting, a frequently employed method in EL, operates on the principle of

using predictions from multiple models, with the class receiving the majority of votes
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being selected as the final predictions. However, considering the specificities of the

SC-MLIDS framework, especially within the context of WSNs, a direct application of

majority voting is not feasible and requires modification to align with the server-client

architecture.

In WSNs applying the SC-MLIDS framework, the diversity of training sets and

the limited data collection scope of individual client models at each sink node may

not fully cover the range of potential scenarios in data collection. Consequently, an

aggregated prediction using the client models from each sink node, combined with ma-

jority voting, yields more accurate predictions. In addition, the server model, trained

on a comprehensive network traffic dataset, tends to have superior performance in

detecting various network traffic.

To accommodate these considerations, this thesis proposed a modified approach

of partial majority voting, as presented in Algorithm 2. In this algorithm, majority

voting is primarily based on the prediction results of the client models, but the server

model’s predictions carry a decisive weight and influence due to its comprehensive

training and superior performance.

In the proposed majority voting algorithm, each client and server model indepen-

dently generates prediction results. These are stored as a two-dimensional array, for

example, [ [0, 0, 0, ..., 1], [1, 0, 0, ..., 1], [1, 0, 0, ..., 1], ..., [0, 1, 1, ..., 1] ], where the

final array represents the server model’s predictions.

Upon inputting the prediction results from each model into the majority voting

algorithm, the algorithm proceeds to compute the predictions made by each model.

Since this algorithm primarily addresses binary classification models, the prediction

results can be straightforwardly computed. For instance, in the case of three client

models, the summation of predictions for a specific sample could yield counts such

as 0, 1, 2, or 3. These numbers represent the frequency with which the sample is

predicted as the negative class (denoted as 1) across the three models.

To account for potential errors and ensure robustness, the majority voting algo-

rithm adopts a threshold for majority determination. Particularly, a prediction result

is considered a majority if it is indicated as a negative class in more than two-thirds

of the client models. The majority voting results are then matched with the predic-

tions made by the server model. If there is a consensus between the majority voting
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Algorithm 2: Aggregation Prediction Algorithm by Majority Voting

Input : models predictions: 2D array, predictions of all models.

Output: final predictions: Array of final predictions.

1 majority votes = [ ]

2 for i← 0 to length of models predictions[0] do

3 result sum← 0

4 for j ← 0 to length of models predictions - 1 do

5 result sum← result sum+models predictions[j][i]

6 end for

7 threshold← 2
3
(length of models predictions - 1)

8 if result sum ≥ threshold then

9 vote← 1

10 else

11 vote← 0

12 end if

13 majority votes.append(vote)

14 end for

15 final predictions = [ ]

16 for k ← 0 to length of majority votes do

17 if majority votes[k] = models predictions[−1][k] then
18 final predictions.append(majority votes[k])

19 else

20 final predictions.append(1)

21 end if

22 end for

23 return final predictions
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result and the server model’s prediction, this result is denoted as the final prediction.

Otherwise, the algorithm defaults to recording the prediction as a negative class.

Specifically, for each prediction sample i, the algorithm sums up the predictions

from all models except the last one (server model). Let Aji denote the prediction of

the jth model for the ith sample. The sum Si for each sample is given by:

Si =
N−1∑
j=1

Aji (3.5)

where N is the total number of models, and N − 1 represents all models except the

last one.

The algorithm then applies a threshold θ (generally two-thirds of the number of

client models) to this sum to determine the majority vote Vi for each sample:

Vi =

⎧⎨
⎩
1 if Si ≥ θ

0 otherwise
(3.6)

This reflects the rule that if more than two-thirds of models predict as 1, the majority

vote is 1; otherwise, it’s 0.

The final prediction Pi for each sample is determined by comparing the majority

vote with the prediction of the last model:

Pi =

⎧⎨
⎩
Vi if Vi = ANi

1 otherwise
(3.7)

Here, ANi is the prediction of the last model for the ith sample. If the majority vote

matches the last model’s prediction, it is taken as the final prediction; otherwise, the

final prediction defaults to 1.

The proposed majority voting algorithm eventually produces an array that repre-

sents the final prediction, such as [0, 1, 1, ..., 0]. This array is the result of the majority

voting algorithm produced, which synthesizes the predictions from each model.

Distinct from general majority voting and weighted majority voting approaches,

the proposed majority voting algorithm uniquely assigns a decisive voting weight to

the model showing superior performance. This customized approach aligns with the

server-client structure inherent in the SC-MLIDS framework. It ensures that the
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predictions made by the client model are co-verified by the server model. The jointly

verified results from these two model types are then adopted as the final prediction

results. This approach is particularly effective in WSNs, where it is crucial to minimize

false positives in data.

The proposed majority voting algorithm, as configured in this thesis, is predis-

posed to yield results leaning toward the negative class. This bias is intentional,

deriving from the algorithm’s design where discrepancies between the two types of

model predictions default to the negative class, thereby reducing the occurrence of

false positives. However, this configuration is not rigid; the algorithm’s matching

conditions and majority voting thresholds can be customized to suit various appli-

cation scenarios. For instance, adjusting the decisive role’s voting weight or altering

the majority voting threshold can modify the prediction result’s tolerance.

In conclusion, this thesis has optimized the majority voting algorithm to address

the specific needs of WSNs, particularly their emphasis on minimizing false positives.

As an integral part of the SC-MLIDS framework, this algorithm presents an addi-

tional secure and effective method for model aggregation prediction, demonstrating

its adaptability and utility in diverse scenarios beyond WSNs.

3.3 Implementation Details

In this thesis, we have proposed the SC-MLIDS, a novel hybrid ML IDS framework

designed for WSNs. The SC-MLIDS framework uses a server-client structure in which

data from sensor nodes within the WSN is initially validated at the sink node using the

client model. Subsequently, sensing data that successfully pass this initial validation

is transmitted to the gateway. Concurrently, network traffic data generated during

this transmission is also collected. At the gateway, both the sensing data and the

corresponding network traffic data experience further validation through aggregation

prediction algorithms that integrate the client and server models.

To demonstrate the practical viability of the proposed SC-MLIDS framework, we

have developed a simulation program, which has been implemented using Python.

This program, along with the datasets, demonstrations, detailed descriptions, and

other relevant materials, has been made publicly available. These resources can be
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accessed via the GitHub repository named SC-MLIDS 1. This repository has been

established to facilitate easy access, replication, and further exploration by researchers

in the field.

In this thesis, we have developed a Python-based simulation program to simulate

the communication between sink nodes and the gateway in WSNs. This program is

partitioned into four modules: Utilities, Server, Client, and Aggregation Prediction.

Each module’s code and functionality are elaborated as follows:

• Utility Module: This module serves as an auxiliary tool within the simu-

lation program. It contains a variety of functions, including importing and

splitting datasets, outputting distributions of dataset labels, generating model

performance metrics, and creating encryption keys.

• Server Module: Designed to simulate the gateway’s role in a WSN, this mod-

ule handles communication with clients. It manages the reception of client mes-

sages, including metadata, ML model files, and subsequent sensing and network

traffic data. Additional functionalities include the decryption and decompres-

sion of model files and the training of the server model.

• Client Module: Simulating the sink node’s function in a WSN, this module

facilitates communication with the server. The client’s primary tasks include

training the client model, compressing and encrypting the model, and then

transmitting it to the server. The module also handles the transmission of

sensing data to the server. In scenarios involving multiple clients, the client

module can be duplicated and modified with distinct client IDs to simulate

various client entities.

• Aggregation Prediction Module: This module implements the two aggrega-

tion prediction algorithms specifically designed for the SC-MLIDS framework.

Additionally, it includes a helper method for integrating and generating the nec-

essary inputs for these algorithms and for displaying the performance metrics

of the models.

1https://github.com/Hongwei-Z/SC-MLIDS
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In our simulation, the SC-MLIDS framework’s functionality is showcased during

both the initial deployment phase and the formal operational phase of WSNs. Dur-

ing the initial deployment, the program executes model training, testing, and trans-

mission. In the operational phase, it manages sensing data collection, validation,

transmission, file processing, and aggregated validation.

To simulate the SC-MLIDS framework in the WSN’s initial deployment phase,

the program operates as follows:

1. Data Preparation: The processed TON IoT dataset is divided into a training

set and a testing set. The training set is further split into subsets for sensing

data and network traffic data, with the sensing data subset being divided again

based on the number of clients.

2. Client Model Training: Each client model is trained using its respective

subset of sensing data, using the Random Forest (RF) classifier from the ’scikit-

learn’ library.

3. File Saving: The trained client model is then saved as a file using a method

provided by the ’joblib’ library.

4. File Encryption: A seed and salt are generated to create a key, which is used

to encrypt the model file using the Fernet algorithm from the ’cryptography’

library, based on Advanced Encryption Standard (AES) symmetric encryption.

5. File Compression: The ’zlib’ library’s file compression method is applied to

the encrypted client model file.

6. Client-Server Connection Establishment: The ’socket’ library is used to

achieve client-server connection by defining the host and port.

7. File Transmission: The clients send metadata (including seed, salt, and file

size) to the server, followed by the encrypted and compressed model file.

8. Server-Client Connection: The server connects with each client.

9. File Reception and Verification: The server receives metadata and model

files from each client, verifying the file sizes to ensure completeness.
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10. File Decompression and Decryption: Each received model file is decom-

pressed and decrypted by the server and then serialized into a file.

11. Reception and Processing Repetition: Steps 9 and 10 are repeated until

all client model files are received and processed.

12. Server Model Training: The server trains its model using the network traffic

data subset and serializes this server model into a file.

In the operational phase simulation of the SC-MLIDS framework within a WSN,

the program iteratively executes the following steps:

1. Server-Client Communication: The server establishes and maintains com-

munication with each client.

2. Client-Level Data Validation: Sensing data is input into the client and

experiences validation via the client model.

3. Data Transmission to Server: Sensing data that successfully passes the

validation at the client level is then transmitted to the server. Conversely, data

failing this validation is discarded.

4. Server-Side Data Integration: Upon receipt, the server integrates the sens-

ing data with the corresponding network traffic data generated during commu-

nication.

5. Server-Level Data Validation: The server then employs aggregation predic-

tion algorithms for a comprehensive evaluation of the merged data.

6. Data Preservation and Discard: Data that successfully pass validation on

the server side is preserved, while data failing to pass this validation is discarded.

The detailed step-by-step description of the simulation for both the initial deploy-

ment and operational phases elaborates on the functioning of our developed simula-

tion program. This substantiates the practical viability of the proposed SC-MLIDS

framework. Notably, in our simulation program, RF classifiers are uniformly used at

both the client and server levels. The choice of RF is driven by their typically high
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accuracy, robust performance, and efficiency, particularly with unbalanced datasets

and a multitude of predictive variables [76, 77, 78]. Furthermore, their widespread

support across numerous open-source libraries facilitates ease of use and avoids the

need for extensive parameter tuning.

Given these advantages, the RF classifier is consistently used throughout our

simulation. However, it is critical to note that the SC-MLIDS framework and its

integrated model aggregation prediction algorithms are not restricted to this sin-

gle classifier type. The framework is flexible, supporting the integration of various

other classifiers depending on specific application scenarios and data characteristics.

Moreover, due to the adaptability of the proposed aggregation prediction algorithms,

models developed using diverse classifiers can be effectively aggregated, independent

of their type and quantity.



Chapter 4

Experimental Setup and Results

4.1 Experimental Setup

To conduct a comprehensive evaluation of our proposed Server-Client Machine

Learning Intrusion Detection System (SC-MLIDS) framework, we developed a cus-

tomized simulation program. This program contains key functions such as facilitating

communication between the server and client, training the models, and executing the

aggregation prediction algorithms. Through the deployment of this simulation pro-

gram, a series of experiments were implemented.

The experimental phase was executed on a high-performance laptop. This laptop

is equipped with an Intel Core i9-13900H CPU and an NVIDIA GeForce RTX 4060

Laptop GPU, offering advanced computing capabilities. The detailed specifications

of this laptop are provided in Table 4.1.

Table 4.1: Testing Platform
Laptop Lenovo ThinkBook 16p Gen 4
CPU Intel Core i9-13900H 2.60 GHz
Graphics Card NVIDIA GeForce RTX 4060 Laptop GPU 8 GB
Memory Samsung 32 GB (16 GB × 2) DDR5 5200 MHz
Storage Samsung PM9A1 1 TB PCIe 4.0 × 4 M.2 SSD
Operating System Microsoft Windows 11 Home 64-bit

To guarantee both the flexibility and reproducibility of our experiments, Python

was chosen as the primary programming language. The software environment for

these experiments is Python 3.10, with critical libraries including ’scikit-learn’, ’socket’,

’joblib’, ’matplotlib’, ’pandas’, and ’numpy’.

The core aim of our simulation program is to demonstrate client-server interaction

when SC-MLIDS framework is applied to a Wireless Sensor Network (WSN) environ-

ment. We use the collected sensing data to train the client model at the client. At

40
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the server, we use network traffic data for training the server model and implement-

ing the model aggregation. To maintain data integrity and security throughout this

process, the client models are compressed and encrypted before their transmission to

the server.

To simulate local communication on the laptop, the host and port numbers for

both the client and server were uniformly set to ’127.0.0.1’ and ’8080’, respectively.

This experimental setup included one server and three clients. The processed dataset

was divided such that 80% was allocated as the training set and the remaining 20%

as the testing set. Each client was assigned one-third of the training set, while the

server used the entirety of this set.

In terms of evaluation, each model’s performance was assessed using metrics such

as Accuracy, Precision, Recall, F1 Score, and the Receiver Operating Characteristic

(ROC) curves. Additionally, we implemented the two proposed model aggregation

prediction algorithms to merge the prediction results of these models. This approach

aimed to enhance the overall detection efficiency and accuracy, yielding comprehensive

prediction results that are not solely dependent on a single model’s performance.

The proposed weighted score algorithm is based on model performance and weights,

the weights assigned to the three client models were set uniformly at 0.2 each, while

the server model was assigned a higher weight of 0.4, reflecting its greater importance

and performance. In terms of performance metrics, particular attention was given to

the Precision and F1 Score. The weight assigned to Precision was set at 0.6, while the

F1 Score was weighted at 0.4. This specific weighting strategy was adopted because

we emphasized minimizing false positives in the model predictions. Additionally, it

reflects a balanced trade-off in the model’s predictive accuracy, considering both the

precision and the holistic performance as represented by the F1 Score.

4.2 Performance Metrics

In this thesis, the performance of the Machine Learning (ML) models and the

aggregation prediction algorithms are evaluated using four key metrics: Accuracy,

Precision, Recall, and F1 Score. The formulas for these metrics are as follows:
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TP = True Positives

FP = False Positives

TN = True Negatives

FN = False Negatives

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

F1 Score = 2× Precision×Recall

Precision+Recall
(4.4)

• Accuracy: This metric quantifies the proportion of correctly predicted classes

by the model. It is calculated by dividing the number of correctly predicted

samples by the total number of samples. Accuracy serves as a fundamental

metric for assessing the performance of ML models.

• Precision: Precision measures the proportion of actual positive classes among

those predicted as positive by the model. It is calculated by dividing the num-

ber of samples correctly predicted as positive by the total number of samples

predicted as positive. Precision is particularly critical in scenarios involving

unbalanced datasets.

• Recall: Recall calculates the ratio of samples correctly identified as positive by

the model to the total number of actual positive samples. This metric reflects

the model’s capability to correctly identify positive classes. Recall is also known

as True Positive Rate (TPR).

• F1 Score: The F1 Score provides a harmonized metric that balances Precision

and Recall. It is especially useful for obtaining a comprehensive view of the

model’s performance, particularly when dealing with unbalanced datasets.
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These metrics were selected not only to fulfill the basic requirements for evaluating

ML models but also to cater specifically to the needs of WSNs, ensuring a thorough

and relevant assessment of model performance.

4.3 Results

The proposed SC-MLIDS framework is characterized by two key software compo-

nents: server-client communication and model aggregation prediction algorithms. To

facilitate a comprehensive evaluation of the SC-MLIDS framework, our experimen-

tal design was separated into two distinct parts, corresponding to the two software

components.

4.3.1 Server-Client Communication

In our experimental evaluation of the SC-MLIDS framework, we simulated and

analyzed the communication process between the server and three clients using a

developed simulation program.

Table 4.2: Model Training and Transmission Results
Participants Server Client 1 Client 2 Client 3

Address
127.0.0.1
8080

127.0.0.1
54742

127.0.0.1
54814

127.0.0.1
54830

Label Distribution
0: 98809
1: 63943

0: 32980
1: 21270

0: 32884
1: 21366

0: 32931
1: 21319

Model Training Time
(seconds)

6.8305 8.9069 8.3103 8.1050

Model File Size (MB) 18.7705 106.4463 106.6699 106.2451
Encrypted Size (MB) N/A 141.9277 142.2266 141.6600
Encryption Time (seconds) N/A 0.7266 0.5947 0.5654
Compressed Size (MB) N/A 107.5145 107.7409 107.3119
Compression Time (seconds) N/A 5.2522 3.8984 3.8393
Sending Time (seconds) N/A 0.0100 0.0080 0.0080
Received File Size (MB) N/A 107.5145 107.7409 107.3119
Receiving Time (seconds) N/A 80.2155 64.8709 76.1133
Average Rate (MB/s) N/A 1.3403 1.6609 1.4099
Decompression
& Decryption Time (seconds)

N/A 1.1003 0.8955 1.1386

Table 4.2 systematically presents and summarizes this process. Each client model
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is trained using sensing data, then encrypted and compressed before being sent to

the server. The server, upon receiving these model files, proceeds to decompress

and decrypt them. Subsequently, the server model is trained using network traffic

data. To ensure uniformity across the experiment, all models uniformly employed the

Random Forest (RF) classifier.

For this local transmission simulation, clients were configured with loopback ad-

dresses but with distinct ports: Client 1 (127.0.0.1, 54742), Client 2 (127.0.0.1, 54814),

and Client 3 (127.0.0.1, 54830). Each client was assigned a training set of roughly

equivalent size, though variations in label distribution were observed. Specifically,

the label distribution for Client 1 was 0: 32980, 1: 21270; for Client 2 was 0: 32884,

1: 21366; and for Client 3, it was 0: 32931, 1: 21319.

The model training time for all three clients averaged just over 8 seconds. In

contrast, the server, processing three times the amount of data, completed its model

training in merely 6.83 seconds. The server model file, not being transmitted, was

exempt from encryption and compression procedures. The generated model files

across the clients were approximately 106 MB in size. Encryption of these files was

fast, ranging from 0.57 to 0.73 seconds, but resulting in a file size increase to about 142

MB. After compression, the model files were approximately 107 MB, slightly larger

than the original size, with compression times varying from 3.84 to 5.25 seconds for

the clients.

The transfer of the encrypted and compressed model files to the server was exe-

cuted with remarkable speed, showcasing the efficiency of the communication process.

The consistency in the size of the files received by the server compared to those sent by

the clients confirmed the integrity of the data during transmission. However, notable

variations were observed in the reception times. Specifically, Client 1 experienced

a longer reception time of approximately 80 seconds, while Client 2 completed the

transfer the quickest, in about 65 seconds, and Client 3 fell in between with a duration

of 76 seconds.

The average transmission rate for all clients exceeded 1 MB/s, with Client 2

achieving the highest rate at 1.66 MB/s. During the final phases of decompression

and decryption, each client completed the task in approximately 1 second, further

demonstrating the framework’s effectiveness in secure model transmission.
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In a subsequent round of experiments, we employed different classifiers for training

the server and client models. Partial results are shown in Table 4.3. This included a

selection of popular classifiers such as RF, Logistic Regression (LR), Gradient Boost-

ing (GB), and Support Vector Machine (SVM).

Table 4.3: Model Training Results Using Different Classifiers
Participants Server Client 1 Client 2 Client 3

Classifier
Support
Vector
Machine

Random
Forest

Logistic
Regression

Gradient
Boosting

Label Distribution
0: 98809
1: 63943

0: 32980
1: 21270

0: 32884
1: 21366

0: 32931
1: 21319

Training Time (seconds) 90.806 8.622 0.206 4.672
File Size (MB) 1.3936 108.0674 0.0020 0.1836

Despite using the same training sets, there was a marked difference in the file

sizes of the models generated by the different classifiers. Client 1, using the RF

classifier, produced a model file size similar to the previous round, approximately 108

MB. Client 2, using LR, generated a significantly smaller model file of only 2 KB.

Client 3, using GB, produced a model file of 188 KB. The server model trained using

SVM, resulted in a file size of only 1.39 MB. These results highlight that the choice

of classifier not only impacts the size of the resulting model file but also influences

the efficiency of transmission, thereby affecting the overall performance.

This experiment underscores the SC-MLIDS framework’s capacity to facilitate se-

cure and efficient model training and transfer between the server and clients. Such

hybrid ML showcases the potential of the SC-MLIDS framework in intrusion detec-

tion.

4.3.2 Aggregation Prediction Algorithms

To thoroughly evaluate the model aggregation prediction algorithms within the

proposed SC-MLIDS framework, we initially assessed the independent performance

of each model using the testing set. This assessment involved deriving metrics such

as Accuracy, Precision, Recall, F1 Score, and the ROC Curve.

As shown in Table 4.4, the performance metrics of the RF-based models reveal
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Table 4.4: Simulation Results without Applying SC-MLIDS
Accuracy Precision Recall F1 Score

Client 1 0.934479 0.934532 0.934479 0.934502
Client 2 0.935486 0.935577 0.935486 0.935524
Client 3 0.933790 0.933813 0.933790 0.933801
Server 0.997886 0.997888 0.997886 0.997887
Weighted Score 0.986729 0.986741 0.986729 0.986733
Majority Voting 0.971294 0.973226 0.971294 0.971448

their high effectiveness. The three client models consistently show performance met-

rics slightly above 0.93 across Accuracy, Precision, Recall, and F1 Score. This con-

sistency indicates their robust capability in accurate prediction. The close alignment

of all four metrics for each model suggests a well-balanced proficiency in identifying

both positive and negative classes. The server model demonstrates nearly perfect

scores in all metrics, exceeding 0.99, reflecting its superior predictive ability. This

may be attributed to the more comprehensive training set used for the server model.

Figure 4.1: ROC Curves without Applying SC-MLIDS

The ROC curves, as presented in Figure 4.1, corroborate these results. All models

give high area under the ROC curve (AUC) values, with the client models achieving
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an AUC of 0.98 and the server model scoring 1.00. Such high AUC values represent

remarkable model classification capabilities, further affirming the models’ predictive

strength.

However, the reliance on a single model type is not sufficient in the SC-MLIDS

framework, which integrates both server and client models, each validating different

data types. Hence, we implemented two model aggregation prediction algorithms to

yield balanced and comprehensive prediction results.

Table 4.4 also presents the results of the weighted score algorithm, a scoring

algorithm based on model performance and weights. The weights for the three client

models and the server model were set at 0.2, 0.2, 0.2, and 0.4, respectively, reflecting

the server model’s higher performance and importance. The Precision weight was set

at 0.6 and the F1 Score weight was set at 0.4. This specific weighting strategy was

adopted because we emphasized minimizing false positives and achieving balanced

predictions.

The weighted score algorithm combines the models to yield predictions that are

tested on the testing set with all four metrics at approximately 0.9867. Similarly,

the majority voting algorithm performs robustly, exceeding 0.97 in all metrics, with

a slightly higher Precision. While both algorithms slightly lag behind the best-

performing server model (by about 1% and 2%), they offer a more comprehensive

intrusion detection capability, reflecting the integrated predictive power that individ-

ual models lack.

In the next phase of our experiment, we continued to evaluate algorithm perfor-

mance by simulating the operational phase of the SC-MLIDS framework. Specifically,

we simulated a sink node collecting data from its managed sensor nodes, validating

it using the client model at the sink node, and then forwarding it to the gateway for

aggregation prediction.

For this experiment, we used a balanced subset of the testing set, giving an ex-

ample of Client 1, randomly selecting 10,000 samples each from positive and negative

classes. Client 1 predicted 9,739 samples as negative and discarded them. Of the

10,261 samples predicted as positive and sent to the gateway, 9,451 were true pos-

itives, and 810 were false positives. Table 4.5 details the results of the aggregation

prediction performed at the gateway.
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Table 4.5: Simulation Results with SC-MLIDS Applied
Accuracy Precision Recall F1 Score

Client 1 0.921060 0.848352 0.921060 0.883212
Client 2 0.939869 0.940314 0.939869 0.940088
Client 3 0.942013 0.943665 0.942013 0.942789
Server 0.997759 0.997805 0.997759 0.997770
Weighted Score 0.997759 0.997805 0.997759 0.997770
Majority Voting 0.987623 0.989263 0.987623 0.988025

As expected, when data is validated by Client 1 with further filtering and vali-

dation, we observe normal Accuracy and Recall metrics of 0.92, with lower Precision

and F1 Score. The other two client models gave slightly higher metrics, around

0.94. While close to previous results, the server model’s performance showed a slight

decrease, which may be caused by errors and remains within the range of normal

fluctuations. Figure 4.2 illustrates the ROC curves for each model in the SC-MLIDS

simulation, with respective AUC values of 0.92, 0.95, 0.95, and 1.00 for the three

clients and the server.

Figure 4.2: ROC Curves with SC-MLIDS Applied

However, the performance of the aggregation prediction algorithms gave significant
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improvement when the SC-MLIDS framework was applied. Compared to direct test-

ing, both algorithms showed improvements in all four metrics, by 1.12% and 1.68%,

respectively. Notably, the weighted score algorithm’s performance was identical to

the best-performing server model, with all four metrics exceeding 0.99. The perfor-

mance metrics of both the weighted score algorithm and the server model aligned

for three reasons: firstly, the server model showed excellent performance; secondly, it

assigned the greatest weight; thirdly, computational accuracy might introduce errors.

Nevertheless, the weighted score algorithm results were calculated by aggregating

the models, giving a significant difference from the server model’s performance. In

cases of exceptional model performance, the benefits of employing the weighted score

algorithm are not readily apparent. However, in real WSN scenarios, the perfor-

mance of individual models can vary significantly, leading to considerable differences

in their prediction results. The weighted score algorithm can balance these results,

overcoming the limitations of single models and offering comprehensive aggregated

predictions.

Table 4.6: Simulation Results in Different Classifiers without SC-MLIDS
Classifier Accuracy Precision Recall F1 Score

Client 1 Random Forest 0.934331 0.934310 0.934331 0.934320
Client 2 Logistic Regression 0.617685 0.591091 0.617685 0.536262
Client 3 Gradient Boosting 0.733147 0.731853 0.733147 0.732405

Server
Support Vector
Machine

0.970311 0.970298 0.970311 0.970303

Weighted
Score

N/A 0.960628 0.961353 0.960628 0.960391

Majority
Voting

N/A 0.942515 0.947397 0.942515 0.942962

In our further experiment with the proposed SC-MLIDS framework, we explored

using various classifiers for generating models on the example of three clients. As

detailed in Table 4.6, the classifiers deployed were RF for Client 1, LR for Client 2,

and GB for Client 3, while the server model was trained using the SVM algorithm.

Client 1 maintained the same performance metrics as the previous experiment due

to the continued use of the RF classifier. The other two clients, however, showed

poorer performance, with all metrics ranging between 0.53 and 0.73. In contrast, the

server model demonstrated the highest performance, achieving an accuracy and other



50

metrics as high as 0.97.

When these models were merged using the two aggregation prediction algorithms,

the synthesized prediction results for both algorithms were approximately 0.96 and

0.94 across all four metrics, respectively. Although these results were slightly lower

than the best-performing server model, the aggregation achieved high accuracy in

predictions, effectively harmonizing the individual models with varied performances.

Table 4.7: Simulation Results in Different Classifiers with SC-MLIDS
Classifier Accuracy Precision Recall F1 Score

Client 1 Random Forest 0.915598 0.838319 0.915598 0.875256
Client 2 Logistic Regression 0.859940 0.845874 0.859940 0.852753
Client 3 Gradient Boosting 0.773898 0.861784 0.773898 0.811472

Server
Support Vector
Machine

0.975017 0.978432 0.975017 0.976061

Weighted
Score

N/A 0.974149 0.977702 0.974149 0.975220

Majority
Voting

N/A 0.958619 0.969096 0.958619 0.961657

Table 4.7 presents the results of the simulation runs for the SC-MLIDS framework

using Client 1 as an example. After filtering the sensing data, the metrics showed

varying degrees of improvement when predicted by each model. The most notable im-

provement was observed in Client 2, exceeding twenty percent. This improvement also

positively impacted the performance of the model aggregation prediction algorithms,

with both algorithms improving each metric by more than one percent compared to

individual tests.

These experiments collectively demonstrate the performance of the SC-MLIDS

framework and its aggregation prediction algorithms from multiple angles. When

operating a WSN under the SC-MLIDS framework, data forwarded to the gateway

experiences a two-layer validation process: first by the client model at the sink node

and then by the synthesized verification at the gateway. This implementation of

the aggregation prediction algorithms results in significantly enhanced accuracy of

intrusion detection. Although the algorithm’s performance metrics did not achieve a

perfect model level, the comprehensive nature of the prediction approach employed

ensures more reliable results.



Chapter 5

Discussion

5.1 Interpretation of Results

We conducted experiments in two parts, reflecting the two core components of the

proposed Server-Client Machine Learning Intrusion Detection System (SC-MLIDS)

framework: server-client communication simulation and aggregation prediction algo-

rithms.

5.1.1 Server-Client Communication

Our simulation program, designed to demonstrate the operation of Wireless Sen-

sor Networks (WSNs) applying the SC-MLIDS framework, includes two phases: the

initial deployment phase and the formal operational phase.

During the initial deployment phase, the program demonstrated various processes

such as client model training, communication and data transfer between the client and

the server, server model training, and the execution of model aggregation prediction.

The results of these experiments helped detail the consumption of computational and

network resources, and the time spent in these activities. Notably, the SC-MLIDS

framework, during its initial deployment phase, encountered potential additional re-

source consumption, primarily in the context of model training and transmission.

In our experiments, we consistently employed the Random Forest (RF) classifier,

recognized for its high adaptability and performance in complex classification tasks.

However, simple sensing data detection tasks may not require such complex Machine

Learning (ML) algorithms. In such cases, employing simpler algorithms such as De-

cision Tree (DT) or Logistic Regression (LR) could lead to considerable savings in

resources. This was evidenced in our subsequent experiments. With the same train-

ing set, a model trained using LR occupied only 2KB and required 0.2 seconds for

training, significantly reducing resource consumption in the initial deployment phase.
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In the formal operational phase, the client model was used for the initial detec-

tion and filtering of sensing data. Data identified as malicious by the client model

was discarded, thus preventing the need for its transmission to higher levels, and

consequently yielding benefits in terms of reduced resource consumption. This data

filtering approach was specifically adopted to meet the unique requirements of WSN

data, where minimizing false positives is more critical than reducing false negatives.

Furthermore, the model aggregation prediction at the gateways involved merging

client and server models to collectively analyze and detect sensing and network traffic

data. This task was easily manageable by the gateway equipped with superior hard-

ware configurations. The deployment of various security measures in the gateway

or base station is a well-established practice in WSNs, as corroborated by extensive

research in the field.

The summarization and analysis of the experimental results from these phases in-

dicated that the potential resource consumption resulting from the SC-MLIDS frame-

work did not exceed the hardware and network resource limitations inherent in WSNs.

This affirmed the framework’s alignment with the need for lightweight solutions in

WSNs.

5.1.2 Aggregation Prediction Algorithms

In the SC-MLIDS framework, the gateway plays a critical role by aggregating

predictions from both client and server models. This process results in the generation

of final detection results through the synthesis and analysis of filtered sensing data and

network traffic data. This model aggregation is achieved through the implementation

of two specially designed algorithms: weighted score and majority voting.

The weighted score algorithm is particularly designed for the concerns of false

positives in WSNs. It uses a calculated combination of Precision and F1 Score, along

with weights that are assigned based on the model’s importance or the complexity of

the task. This approach takes into account both the performance of the model and

its assigned weight.

The majority voting algorithm relies on collective voting on the prediction results

of the client models, a feature inherent in the structure of multiple client models

and a single server model in SC-MLIDS. Since the server model is tasked with the
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critical function of network traffic data detection, which is of higher complexity and

importance, the results from the majority voting are matched with those of the server

model to ensure more reliable predictions.

Although the foundational ideas of these algorithms are well-established in the

field of ML, our adaptations are significantly customized to suit the specific charac-

teristics of WSNs. Both algorithms are uniquely developed for model aggregation in

the context of WSNs. Since both algorithms perform the same task of generating

aggregated prediction results, the performance of both algorithms should be exam-

ined according to the WSN application scenarios and requirements when applying

the SC-MLIDS framework, and one of them should be selected to perform the task.

In the context of intrusion detection, relying on the prediction results of a single

model is often insufficient. Hence, we employ model aggregation prediction algorithms

for a more comprehensive evaluation. Upon testing the models in the SC-MLIDS

framework with a testing set, we found that the server model, benefiting from a more

complete training set, showed superior performance. The client models, in contrast,

showed slightly inferior performance compared to the server model.

Although the predictions generated by our two algorithms were marginally less

effective than the optimally performing server model, the performance metrics of both

algorithms still met the standards of excellence, with all metrics close to or exceeding

99%. Additionally, the reduced data transmission volume, a result of sensing data

filtering by the client models, further enhanced the performance of both algorithms.

Notably, the high-accuracy detection capabilities of both algorithms are partic-

ularly remarkable in scenarios involving different types of classifiers or models with

lower performance metrics. This adaptability and flexibility enable them to demon-

strate exceptional detection capabilities, even under conditions of underperformance

models or in the face of more complex tasks.

5.2 Implications

Current research on ML-based Intrusion Detection Systems (IDS) for WSNs pri-

marily focuses on deploying specific ML algorithms to identify particular types of

network attacks. However, the SC-MLIDS framework proposed in this thesis tran-

scends these limitations. It is not restricted to detecting only certain types of attacks,
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nor is it restricted in its selection of ML algorithms or the number of models in terms

of its theoretical design. Depending on application requirements, various types of

ML algorithms can be chosen, and models can be trained using comprehensive and

complete datasets. This enables the detection of a wide range of attack types across

different WSN architectures.

The SC-MLIDS framework segments intrusion detection into two phases, based on

the data characteristics of WSNs. The initial detection is conducted at the sink node

level using the client model, effectively filtering well-characterized malicious data and

preventing unnecessary data transmission. Subsequently, at the gateway level, model

aggregation prediction algorithms are employed to thoroughly validate both sensing

data and network traffic data, achieving comprehensive intrusion detection.

The two model aggregation prediction algorithms integrated into the SC-MLIDS

framework deliver comprehensive intrusion detection results. These results are derived

by holistically considering the performance, weight, and task-specific characteristics

of the models. Both algorithms are designed with the unique attributes of WSNs in

mind, particularly focusing on the reliability of collected data and aiming to achieve

superior intrusion detection with low false positive rates.

From a practical perspective, the proposed SC-MLIDS framework aligns with the

typical three-layer architecture of WSNs: including sensor nodes, sink nodes, and

gateway. Realizing two layers of intrusion detection at the sink node and gateway

levels. This structural design offers the flexibility to adapt to WSN architectures

of varying complexity, providing an innovative and comprehensive solution for WSN

security. Moreover, our proposed framework efficiently uses the computational and

network resources of each component within the WSN, meeting the network’s require-

ment for a lightweight solution.

5.3 Limitations

The proposed framework has some limitations, each of which deserves considera-

tion for future research.

The dataset used in our experiments may not accurately replicate real-world WSN

datasets. The SC-MLIDS framework involves specific dataset characteristics, particu-

larly containing both sensing data and corresponding network traffic data. Due to the
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absence of suitable open-source datasets meeting these criteria, we used the TON IoT

dataset as an alternative. In our approach, sensing data served as the baseline, which

we merged with network traffic data based on matching timestamps and labels. While

this method is logically sound, it may introduce errors, potentially leading to minor

biases in the models trained using this dataset.

There is a notable gap between our simulation programs and actual deployed

applications. The simulation programs were designed to demonstrate the operational

process of the SC-MLIDS framework, but the experimental data generated may differ

from that in a real-world deployed WSN. Additionally, the process simulated in our

program might not fully capture the complexities and nuances of an operational WSN,

potentially leading to unforeseen issues in practical deployments.

Our experiments did not explore a wide range of combinations of ML algorithms.

The primary focus was on using RF classifiers for model training. Although we

also experimented with four different classifiers and observed varying results, the

selection of ML algorithms has significant implications for the detection process and

the overall performance of the SC-MLIDS. A more extensive exploration of algorithm

combinations could potentially yield insights into optimizing the detection capabilities

of our proposed framework.

Our proposed model aggregation prediction algorithms have shortcomings. Al-

though our algorithms are flexible and adaptive to models with varying performance,

no measures are taken for low-precision models that may have an impact on the

prediction results. This may lead to a reduction in intrusion detection confidence.

Additionally, the setting of model weights in the weighted score algorithm and the

selection of performance metrics, along with their weight settings, can significantly

impact the results of this algorithm. The choice of these parameters in this experiment

may introduce some bias.

5.4 Future Work

To address the identified limitations, future enhancements to this thesis could be

pursued in three key areas: dataset, algorithms, and deployment strategy.

For the enhancement of model accuracy and relevance, dataset selection should

closely mirror actual application scenarios. Thus, deploying real WSNs to collect
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real sensing data and network traffic data is imperative for advancing the SC-MLIDS

framework. Additionally, launching various types of attacks on these networks would

be beneficial to collect data containing a wider scope of attack scenarios, thereby

strengthening the model’s detection capabilities.

The selection of ML algorithms is critical to the effectiveness of intrusion detection

models. As sensing data typically includes state information and parameters such

as temperature, humidity, and pressure, such simple data could be used to train

models using simple ML algorithms. This would enable client models to conduct

initial intrusion detection with minimal resource consumption. Conversely, server

models, tasked with the more complex job of detecting network traffic data, require

more sophisticated ML algorithms due to the critical nature of this data for intrusion

detection. Hence, extensive experimentation is necessary to identify suitable ML

algorithms for both client and server models.

Improvements to model aggregation prediction algorithms are necessary. In model

aggregation prediction, effective strategies include incorporating dynamic weight as-

signment based on model performance or excluding underperforming models and

replacing them with superior-performing ones. Dynamic weight assignment automat-

ically adjusts the weights based on the performance of each model in a particular

situation, adapting to different data distributions and changes in the WSN envi-

ronment. Additionally, promptly identifying and excluding underperforming models

or replacing them with better-performing alternatives can enhance the holistic sys-

tem performance. This strategy addresses the limitations of fixed weight settings in

weighted score algorithms and enables the system to dynamically adapt to changing

threats and data characteristics in real-time WSN environments.

The unique aspect of the SC-MLIDS framework is its integration of clients and

a server, corresponding to the sink nodes and gateway in WSNs. In more straight-

forward WSNs, which might lack either sink nodes or gateway, the deployment of

the SC-MLIDS framework could be constrained. In such cases, the functions of the

client and server models could be merged within either the sink node or the gate-

way, enabling simultaneous detection of both data types. Conversely, in larger WSNs

that include both sink nodes and a gateway, there is no barrier to deploying the

SC-MLIDS.
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Conclusion

The Server-Client Machine Learning Intrusion Detection System (SC-MLIDS) pro-

posed in this thesis introduces a novel hybrid Machine Learning (ML) framework for

intrusion detection in Wireless Sensor Networks (WSNs). Drawing upon the concept

of Federated Learning (FL), this framework takes the strengths of ML to minimize

data transmission while ensuring high-precision intrusion detection, thereby effec-

tively safeguarding WSN security.

In designing the SC-MLIDS framework, we have thoroughly considered the archi-

tectural specificities of WSNs and the necessity for data reliability. The framework

effectively implements two-layer intrusion detection by deploying simplified client

models at sink nodes and a more complex server model at the gateway. This frame-

work strikes a balance between low resource consumption and enhanced detection

accuracy. We have validated the effectiveness of this framework through a series of

experiments, assessing both the individual performance of client and server models

and the effectiveness of integrating the two proposed model aggregation prediction

algorithms.

These algorithms, namely weighted score and majority voting, are designed to

improve the reliability of prediction results. They are particularly designed to align

with the specific characteristics of WSNs, such as data features and transmission

constraints, thereby achieving efficient intrusion detection while maintaining a low

false positive rate. Experimental results demonstrate that these algorithms excel in

merging the prediction results of models with diverse performance levels. Specifically,

their capacity to deliver comprehensive predictions, ensures that intrusion detection

is not overly reliant on a single model.

Moreover, the design and implementation of SC-MLIDS underscore its adaptabil-

ity for various types of attack detection and flexibility in selecting ML algorithms
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based on actual application requirements. This flexibility makes it an effective break-

through in WSN network security.

In conclusion, the SC-MLIDS framework demonstrates significant potential in

the field of WSN intrusion detection, both theoretically and practically. It not only

provides an efficient and high-precision detection methodology but also offers a new

direction for future research in WSN security.
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Appendix A

Server-Client Communication

A.1 Server Console Result

C:\U sers>python helper.py

C:\U sers>python server.py

Server is waiting for connections ...

Connected to Client 1:

Address: ('127.0.0.1' , 54742)

Client 1 model decryption information:

Key: b'ZJg3BjY6SI0hL9h8IYYf9GxsUR5aqtd6ntQU5wXpjTs='

Seed: 0.60792627

Salt: b'\x03\x02\x8a\xcd\xe5\xd2\xdf\xfa\x00q\xc3\xee~\x85\xef\xdf'

Receiving Client 1 model file: 100%|108M/108M [01:20<00:00, 1.41MB/s]

Client 1 model file has been received, time spent: 80.2155 seconds

Client 1 model file size: 107.5145 MB

Client 1 model file has been decompressed and decrypted

, time spent: 1.1003 seconds

Client 1 model file has been saved to: ./received_models/client_1.joblib

------------------------ Client 1 Completed ------------------------

Connected to Client 2:

Address: ('127.0.0.1' , 54814)

Client 2 model decryption information:

Key: b'D39wlizQSuynNVIslW_DzbkqkvO__AjdaQt5x_A9jmQ='

Seed: 0.60615668

Salt: b'\xca\xb9\x92\x11>\xe1\x97\xc1\xf6\x13I\x04NQ{"'

Receiving Client 2 model file: 100%|108M/108M [01:04<00:00, 1.74MB/s]
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Client 2 model file has been received, time spent: 64.8709 seconds

Client 2 model file size: 107.7409 MB

Client 2 model file has been decompressed and decrypted

, time spent: 0.8955 seconds

Client 2 model file has been saved to: ./received_models/client_2.joblib

------------------------ Client 2 Completed ------------------------

Connected to Client 3:

Address: ('127.0.0.1' , 54830)

Client 3 model decryption information:

Key: b'yXP5THp4LPQSTGB_-xy8_x0H8HzaGJoUlzHZ6KfVWoY='

Seed: 0.60702304

Salt: b'\xbc\xd9xMwO\x87d\x91\x9e\xb5\xa8\xb9\xa8z\xd6'

Receiving Client 3 model file: 100%|107M/107M [01:16<00:00, 1.48MB/s]

Client 3 model file has been received, time spent: 76.1133 seconds

Client 3 model file size: 107.3119 MB

Client 3 model file has been decompressed and decrypted

, time spent: 1.1386 seconds

Client 3 model file has been saved to: ./received_models/client_3.joblib

------------------------ Client 3 Completed ------------------------

----------------- All Clients Have Been Processed ------------------

Training the server model using network traffic data ...

Target distribution: {0: 98809, 1: 63943}

Server model training completed in 6.8305 seconds.

Server model saved to: ./received_models/server_model.joblib

----------------------------- All Done -----------------------------

A.2 Clients Console Result

C:\U sers>python client1.py

Client 1:
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Target distribution: {0: 32980, 1: 21270}

Client 1 model training completed in 8.9069 seconds.

Client 1 model saved to: ./client_models/client_1.joblib

Client 1 model encryption information:

Key: b'ZJg3BjY6SI0hL9h8IYYf9GxsUR5aqtd6ntQU5wXpjTs='

Seed: 0.60792627

Salt: b'\x03\x02\x8a\xcd\xe5\xd2\xdf\xfa\x00q\xc3\xee~\x85\xef\xdf'

Model file size: 106.4457 MB

Model file encrypted, file size: 141.9277 MB

, time spent: 0.7266 seconds

Model file compressed, file size: 107.5145 MB

, time spent: 5.2522 seconds

Client 1 has connected to the server

Model file has been sent from Client 1, file size: 107.5145 MB

, time spent: 0.0100 seconds

------------------------ Client 1 Completed ------------------------

C:\U sers>python client2.py

Client 2:

Target distribution: {0: 32884, 1: 21366}

Client 2 model training completed in 8.3103 seconds.

Client 2 model saved to: ./client_models/client_2.joblib

Client 2 model encryption information:

Key: b'D39wlizQSuynNVIslW_DzbkqkvO__AjdaQt5x_A9jmQ='

Seed: 0.60615668

Salt: b'\xca\xb9\x92\x11>\xe1\x97\xc1\xf6\x13I\x04NQ{"'

Model file size: 106.6699 MB

Model file encrypted, file size: 142.2266 MB

, time spent: 0.5947 seconds

Model file compressed, file size: 107.7409 MB

, time spent: 3.8984 seconds

Client 2 has connected to the server
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Model file has been sent from Client 2, file size: 107.7409 MB

, time spent: 0.0080 seconds

------------------------ Client 2 Completed ------------------------

C:\U sers>python client3.py

Client 3:

Target distribution: {0: 32931, 1: 21319}

Client 3 model training completed in 8.1050 seconds.

Client 3 model saved to: ./client_models/client_3.joblib

Client 3 model encryption information:

Key: b'yXP5THp4LPQSTGB_-xy8_x0H8HzaGJoUlzHZ6KfVWoY='

Seed: 0.60702304

Salt: b'\xbc\xd9xMwO\x87d\x91\x9e\xb5\xa8\xb9\xa8z\xd6'

Model file size: 106.2449 MB

Model file encrypted, file size: 141.6600 MB

, time spent: 0.5654 seconds

Model file compressed, file size: 107.3119 MB

, time spent: 3.8393 seconds

Client 3 has connected to the server

Model file has been sent from Client 3, file size: 107.3119 MB

, time spent: 0.0080 seconds

------------------------ Client 3 Completed ------------------------


