
 

SYNERGISTIC INTEGRATION OF DEMAND SIDE MANAGEMENT, RENEWABLE ENERGY 

SOURCES, BATTERY, AND HYDROGEN STORAGE IN HYBRID ENERGY SYSTEMS 

 

 

 

 

 

 

 

By 

Nadia Gouda 

 

 

 

 

 

Submitted in partial fulfillment of the requirements 

for the degree of Master of Applied Science 

 

 

 

 

at 

Dalhousie University 

Halifax, Nova Scotia 

April 2024 

 
© Copyright by Nadia Gouda, 2024 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my children, who remind me every day of what truly matters. This thesis is 

dedicated to you, as a symbol of my commitment to our future and the world I hope to help shape for you   



iii 

 

 

CONTENTS 

List of Tables .............................................................................................................................. vii 
List of Figures ............................................................................................................................ viii 
Abstract ....................................................................................................................................... x 
List of Abbreviation and Symbols Used .......................................................................................... xi 
Acknowledgements .................................................................................................................... xvi 
Chapter 1 INTRODUCTION .......................................................................................................... 1 

1.1 Background .................................................................................................................... 1 
1.2 Motivation ...................................................................................................................... 3 
1.3 Thesis objectives ........................................................................................................... 3 
1.4 Thesis methodologies and contributions....................................................................... 4 
1.5 Thesis outline .................................................................................................................. 5 

Chapter 2 LITERATURE REVIEW ................................................................................................ 6 
2.1 Introduction .................................................................................................................... 6 
2.2 Integration of renewable energy sources ........................................................................... 6 
2.3 Integration of energy storage systems ............................................................................... 7 

2.3.1 Integration of the battery storage systems .................................................................. 8 
2.3.2 Integration of the hydrogen storage systems ............................................................... 9 

2.4 Optimization technique .................................................................................................. 11 
2.5 Safety issues related to hydrogen and its justification ...................................................... 14 

2.5.1 Flammability ........................................................................................................... 14 
2.5.2 Leakage .................................................................................................................. 14 
2.5.3 Material Compatibility ............................................................................................ 14 
2.5.4 Pressure .................................................................................................................. 15 
2.5.5 Hydrogen Combustion Characteristics ..................................................................... 15 
2.5.6 Training and Awareness .......................................................................................... 15 
2.5.7 Regulatory Compliance ........................................................................................... 16 

2.6 Summary ...................................................................................................................... 16 
Chapter 3 PROPOSED SYSTEM MODEL AND METHODOLOGY ................................................ 17 

3.1 Introduction .................................................................................................................. 17 
3.2 First model .................................................................................................................... 17 

3.2.1 Objective functions formulation ............................................................................... 18 



iv 

 

3.2.1.1 Operating cost function ....................................................................................... 18 
3.2.1.2 Pollution emission function .................................................................................. 19 

3.2.2 Smart grid structure ................................................................................................ 19 
3.3 Second model ................................................................................................................ 19 

3.3.1 Smart grid overview and working mechanism .......................................................... 20 
3.3.2 Uncertain systems modeling ..................................................................................... 21 

3.3.2.1 Wind system modeling ......................................................................................... 22 
3.3.2.2 Solar system modeling ......................................................................................... 22 
3.3.2.3 Hydrogen storage system modeling ....................................................................... 23 
3.3.2.4 Demand modeling ............................................................................................... 24 

3.3.3 Objective functions .................................................................................................. 24 
3.3.3.1 First objective function (f1) .................................................................................. 24 
3.3.3.2 Second objective function (f2) ............................................................................... 25 
3.3.3.3 Third objective function (f3) ................................................................................. 26 

3.4 Demand side management strategy and classification of loads ......................................... 26 
3.4.1 Demand shifting modeling ....................................................................................... 27 
3.4.2 Classification of loads .............................................................................................. 27 

3.4.2.1 Sheddable loads .................................................................................................. 28 
3.4.2.2 Non-Sheddable loads .......................................................................................... 28 
3.4.2.3 Shiftable loads .................................................................................................... 28 

3.5 Constraints modeling ...................................................................................................... 29 
3.5.1 Power balance constraints ....................................................................................... 29 
3.5.2 Technical DGs constraints ....................................................................................... 30 
3.5.3 Battery constraints .................................................................................................. 31 

3.6 Summary ....................................................................................................................... 32 
Chapter 4  OPTIMIZATION TECHNIQUES .................................................................................. 33 

4.1 Introduction .................................................................................................................. 33 
4.2 Shuffled frog leaping algorithm ...................................................................................... 33 
4.3 Particle swarm optimization (PSO) ................................................................................ 36 

4.3.1 Mathematical Modeling of PSO ............................................................................... 37 
4.4 Multi-Objective Particle Swarm Optimization (MOPSO) ................................................ 38 

4.4.1 Applications of MOPSO in context of SMG and smart distribution grids ......................... 39 
4.5 Genetic algorithm (GA) ................................................................................................. 40 



v 

 

4.5.1 Mathematical modeling of GA ................................................................................. 41 
4.6 Non-dominated sorting genetic algorithm (NSGA) .......................................................... 43 
4.7 Non-dominated sorting genetic algorithm (NSGA-II) ........................................................ 44 
4.8 Hybrid-MOPSO-NSGA-II algorithm ................................................................................ 45 
4.9 Summary ....................................................................................................................... 49 

Chapter 5 RESULTS, ANALYSIS AND DISCUSSION .................................................................. 50 
5.1 Introduction .................................................................................................................. 50 
5.2 First model results ......................................................................................................... 50 

5.2.1 Case 1: Basic grid operation .................................................................................... 51 
5.2.2 Case 2: Operation with maximum usage of renewable energy resources .................... 52 
5.2.3 Case 3: Operation with maximum usage of renewable energy resources and demand 
response programs .......................................................................................................... 54 

5.3 Second model results ..................................................................................................... 54 
5.3.1 Case 1: First objective (operational cost and pollution emission optimization) ........... 57 
5.3.2 Case 2: First and second objective optimization ........................................................ 58 
5.3.3 Case 3: First and third objective optimization .......................................................... 59 
5.3.4 Case 4: First, second and third (tri-objective) simultaneous optimization................... 60 
5.3.4.1 Case study 1: Basic operation ................................................................................ 62 

5.3.4.2 Case study 2: Operation with DSM and Battery ...................................................... 62 
5.3.4.3 Case study 3: Operation with DSM considering both battery and hydrogen ............... 63 

5.4 Summary ...................................................................................................................... 67 
Chapter 6 CONCLUSION ............................................................................................................ 68 

6.2 Link between proposed work and practical applications .............................................. 69 
6.2.1 Renewable energy integration ................................................................................. 70 
6.2.2 Operational cost reduction ...................................................................................... 70 
6.2.3  Pollution emission minimization ............................................................................ 70 
6.2.4 Energy Gap Minimization ...................................................................................... 71 
6.2.5 Integration of Multiple Energy Sources .................................................................... 71 
6.2.6 Constraints handling .............................................................................................. 71 
6.2.7 Managing distributed energy resources in smart micro-grid ........................................ 72 
6.2.8 Demand Response and Load Management ................................................................ 72 

6.3 Challenges ..................................................................................................................... 72 
6.3.1 Intermittency and Variability .................................................................................. 73 
6.3.2 Grid Stability and Reliability ................................................................................... 73 



vi 

 

6.3.3 Energy Storage Technologies ................................................................................... 73 
6.3.4 Conflicting Objectives ............................................................................................. 73 
6.3.5 Computational Complexity ...................................................................................... 74 
6.3.6 Communication and Coordination ........................................................................... 74 

6.4 Future directions ........................................................................................................... 74 
References ................................................................................................................................ 75 
 

 

 

 

 

 



vii 

 

LIST OF TABLES 
 

Table 1: Comparison of existing and proposed studies ....................................................... 13 

Table 2: Distributed energy resources emissions coefficients .............................................. 52 

Table 3: Optimal power allocation (kw) using SFLA ......................................................... 53 

Table 4: Operational cost and emissions in case i, ii and iii ................................................. 53 

Table 5: Fuel cell design and operating parameters ............................................................ 56 

Table 6: PEM electrolyzer design and operating parameters ................................................ 56 

Table 7: Different case studies for tri-objective optimization using Hybrid-NSGA-II-MOPSO . 61 

Table 8: Diesel generator technical and economic data ....................................................... 64 

Table 9: Battery parameters ........................................................................................... 64 

Table 10: Comparison between case studies considering the proposed objective functions ....... 66 

 

 

 

 

  



viii 

 

LIST OF FIGURES 
Figure 1: First Model: SMG schematic diagram .............................................................. 18 

Figure 2: Second Model: SMG schematic diagram ......................................................... 21 

Figure 3: Energy flow diagram for second model ............................................................ 22 

Figure 4: SFLA conceptual diagram .............................................................................. 36 

Figure 5:PSO algorithm concept (birds flock), position and velocity of particles ............... 37 

Figure 6: SMG load profile ............................................................................................ 51 

Figure 7: Pareto criterion distribution for case 1 using SFLA ........................................... 51 

Figure 8:Pareto criterion distribution for case 2 using SFLA ............................................ 52 

Figure 9: Pareto criterion distribution for case 3 using SFLA ........................................... 54 

Figure 10:Wind speed .................................................................................................. 55 

Figure 11: Solar irradiance ........................................................................................... 55 

Figure 12: Hydrogen storage status .............................................................................. 55 

Figure 13: Battery SOC ................................................................................................ 56 

Figure 14: First objective: Operational cost and pollution emission optimization using 

Hybrid-NSGA-II-MOPSO .............................................................................................. 58 

Figure 15: First and second objective optimization using Hybrid-NSGA-II-MOPSO ........... 59 

Figure 16: First and third objective optimization using Hybrid-NSGA-II-MOPSO ............... 59 



ix 

 

Figure 18: Basic operation using Hybrid-NSGA-II-MOPSO .............................................. 62 

Figure 19: Operation with DSM and Battery using Hybrid-NSGA-II-MOPSO ...................... 63 

Figure 20: Operation with DSM considering both battery and hydrogen using Hybrid-NSGA-

II-MOPSO ................................................................................................................... 65 

Figure 21: Comparison between pre-optimized and optimized power supplies ................ 65 

Figure 22: Demand and supply in final case study ......................................................... 66 

 

  



x 

 

ABSTRACT 
 

In recent years, there has been a significant increase in the demand for hybrid energy systems 

(HES). This surge is attributed to a combination of factors, including the pursuit of sustainable and 

resilient future energy solutions. HES integrates various energy resources to achieve synchronized 

energy output. However, HES faces notable challenges due to escalating energy consumption, the 

expenses associated with utilizing multiple sources, and increased emissions from non-renewable 

energy resources. On the other hand, when utilizing renewable energy sources (RES), the 

management of distributed energy resources (DER) plays a crucial role in optimizing the practical 

objectives of the grid. This thesis employs optimization techniques, such as the shuffled frog leaping 

algorithm (SFLA), to manage DER and implement demand response programs (DSP). The aim is 

to optimize the economic, technical, and environmental aspects of a smart micro-grid (SMG). 

Furthermore, this thesis adopts a hybrid approach that combines well-established techniques, 

namely the Non-Dominated Sorting Genetic Algorithm II and Multi-Objective Particle Swarm 

Optimization (Hybrid-NSGA-II-MOPSO), aims to optimize operational costs, reduce pollution, 

and address the challenge of achieving a high penetration of RES while minimizing the energy gap 

between initial demand and consumption. For prediction of uncertain behavior of RES before 

integration with the grid, cumulative distribution function (CDF) and probability distribution 

function (PDF) are used. The DER included consists of wind, solar, micro-turbine, diesel generator, 

and utility grid. The demand side management (DSM) strategy is designed for three types of loads, 

sheddable loads, non-sheddable loads, and shiftable loads. To establish a bi-directional 

communication link between the grid and consumers, distribution grid operator (DGO) is 

employed. For validation, this model is is compared with different individual optimization 

techniques like SFLA, MOPSO and NSGA-II as well as different constraints are considered. The 

results obtained shows the superiority of proposed SFLA and Hybrid-NSGA-II-MOPSO algorithms 

in terms of avoiding pre-mature convergence which is a common challenge in optimization, and 

achieving global optimum for the proposed objectives.  
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CHAPTER 1 INTRODUCTION 
 

1.1 Background 
 

The demand of HES, which integrates both renewable energy sources (RES) and Non-RES , is 

one of the important topics these days due to several compelling factors. Additionally, HES 

contribute to environmental sustainability by incorporating renewables like solar and wind 

alongside backup non-RES, thus reducing carbon emissions while ensuring a stable power supply 

[1]. These systems enhance grid resilience through energy storage solutions, such as batteries, 

hydrogen storage systems (HSS), which stabilize grids and aid rapid recovery during outages [2]. 

Moreover, their cost efficiency, driven by optimized energy usage and incentives, makes them an 

attractive choice [3]. Finally, continuous technological advancements in RES  and grid management 

further growing demand for these systems, promising a sustainable and resilient energy future [4] . 

HES with DSM strategy always need a communicational link through which information and data 

exchanges between the utility grid and the consumers. 

RES plays a crucial role in enabling the transition towards a more environmentally sustainable 

and cleaner energy in the future. Given their uncertain nature, it is imperative to have backup energy 

sources in place when utilizing RES in smart microgrids (SMG). However, effectively managing 

DER is of paramount importance when incorporating RES, as this management contributes to 

optimizing the operational costs and pollution emissions of the grid [5]. Hence, it is essential to 

facilitate the DER optimal management and operation through proper planning for optimization of 

practical SMG objectives. In examining the energy management of DER in SMG, numerous 

methods and structures have been suggested, incorporating range of resources [6].  

SMGs are advanced energy systems that integrate RES, storage system, and intelligent control 

technologies to efficiently generate, distribute, and manage electricity at the local level. These 

SMGs operate autonomously or in coordination with the larger grid, enhancing reliability, 

resilience, and sustainability of energy supply [7]. By leveraging digital communication and 

automation, SMGs optimize energy production and consumption, integrate diverse energy 

resources, and respond dynamically to fluctuations in demand and supply. This decentralized 
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approach enables communities, campuses, or industrial facilities to enhance energy security, reduce 

carbon emissions, and achieve greater control over their power infrastructure. SMGs play a crucial 

role in modernizing the energy landscape and promoting a more flexible and resilient power grid 

[8]-[9]-[10]. The energy management of SMGs involves the management of both generation and 

demand sides [11]. It ensures the fulfillment of system constraints, aiming to achieve an 

economical, sustainable, and reliable operation of the SMGs [12]. The energy management of 

SMGs offers various advantages such as dispatch to energy savings, reactive power support, 

frequency regulation, reliability improvement, cost reduction, energy balance, reduced CO2 

emissions, customer participation, and customer privacy etc.  [13]- [14]. 

 

One of the primary challenges in HES pertains to the management and control of distributed 

generation [15]. The dynamic interaction amongst the RES and demand can lead to critical issues 

concerning power quality and system stability, which are not commonly encountered in 

conventional energy systems [16]. Consequently, it becomes imperative to efficiently regulate the 

energy flow within the HES to ensure a continuous and reliable power supply for the load demand 

[17]-[18]. Besides, to facilitate the transition towards a more sustainable and environmentally 

friendly energy future, the key role of renewable energy (RE) resources cannot be overstated [19]-

[20]. Renewable energy technologies and alternative fuels are characterized by their ability to 

provide energy that is low in carbon emissions, clean, safe, reliable, and not subject to price 

fluctuations [21]. However, the intermittent nature of RES and the need for grid stability underscore 

the substantial challenges associated with large-scale energy storage[22]. 
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1.2 Motivation 
 

HES integrates various energy resources to achieve synchronized energy output. However, HES 

faces notable challenges due to the expenses associated with utilizing multiple sources, and 

increased emissions from non-RES, etc. [23]. On the other hand, when utilizing RES, the 

management of DER plays a crucial role in optimizing the practical objectives of the grid. Thus, to 

ensure sustainable, reliable, and cost-effective future energy solution, energy management of such 

systems is necessary, and it is considered as the primary motivation of this thesis. 

 

1.3 Thesis objectives 
 

The energy management of HES and DER is important to ensure cost-effective, reliable, and 

sustainable energy in the future. In order to tackle these problems, this work utilizes the shuffled 

frog leaping algorithm (SFLA) and a (Hybrid-NSGA-II-MOPSO) algorithm to optimize the 

following objective functions: 

• Efficiently manage DER for optimal power allocation to minimize the operational cost 

and pollution emission, while considering the maximum usage of RES impact. 

• Optimally engage consumers through demand response programs (DRP) and presenting 

its impact in terms of minimum operational cost and pollution emission. 

• Integrate  hydrogen and battery storage systems in HES for synchronized energy output. 

• Planning strategies to address the challenges in HES, including rising energy 

consumption, escalating costs, and increasing emissions, involves identifying and 

implementing solutions to mitigate these issues. 

• Develop a multi-objective optimization strategy that minimizes operational costs, 

reduces pollution, and maximizes renewable energy penetration. 
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1.4 Thesis methodologies and contributions 
 

This work focuses on energy management of distribution grids incorporating DSM strategy, 

battery and HSS to optimize operational costs and reduce the pollution as minimization problems, 

while also addressing the challenges of achieving a high penetration of renewable energy resources, 

framed as a maximization problem. The third objective function is introduced through the 

implementation of the DSM strategy, aiming to minimize the energy gap between initial demand 

and consumption. This DSM strategy is designed around consumers with three types of loads, 

sheddable loads, non-sheddable loads, and shiftable loads. To establish a bi-directional 

communication link between the grid and consumers, a DGO is utilized. Additionally, the uncertain 

behavior of wind, solar, and load demand is modeled using probability distribution functions: 

Weibull for wind, PDF beta for solar, and Gaussian PDF for load demand. To tackle this complex 

tri-objective optimization problem, a (Hybrid-NSGA-II-MOPSO) algorithm is proposed. 

Simulation results demonstrate the effectiveness of the proposed model in optimizing the tri-

objective problem while considering various constraints. The contributions of the proposed study 

are highlighted as follows: 

• Management of DERs in SMG using SFLA technique, to tackle operational cost and 

emission problems. 

• Integration of hydrogen and battery storage systems in hybrid energy system for 

synchronized energy output. 

• Addressing challenges in hybrid energy systems, such as rising energy consumption, cost 

and emissions, and planning strategy for tackling these challenges. 

• Development of a multi-objective optimization strategy for distribution grids that 

minimizes operational costs, reduces pollution, and maximizes renewable energy 

penetration. 

• Introducing DSM strategy and a bi-directional communication system with consumers, 

coupled with a hybrid optimization approach, to tackle the complex tri-objective 

optimization problem effectively. 
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1.5 Thesis outline 
 

The remaining sections of the work are organized as follows: 

Chapter 2 – Literature Review. 

This chapter provides the reader with a comprehensive literature review about the problems 

tackled, and techniques used for optimizing these problems, and flaws in the existing literature. 

Chapter 3 – Proposed System Model 

This chapter presents the system architecture in detail with uncertainty modeling of RES and 

constraints. 

Chapter 4 – Proposed Optimization Techniques. 

This chapter provides the detail overview of proposed optimization techniques that are used in this 

work. These techniques are (SFLA) and (Hybrid-NSGA-II-MOPSO). 

Chapter 5 – Simulation tests, Results and Discussion. 

This chapter provides detail overview of the simulation results, analysis, and discussion. 

Chapter 6 – Conclusion and Future Work. 

The last chapter presents the concluding remarks and the possible directions in which this work 

can be extended. 
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CHAPTER 2 LITERATURE REVIEW 
 

2.1 Introduction 
 

The management of DERs in context of HESs modeling is an ongoing challenge for engineers, 

scientists, and researchers. In the last decade, different techniques are used by researchers to tackle 

the management of DERs in HESs systems. This chapter looks at the objectives tackled, 

approaches used, and scenario considered for optimization in HESs. 

 

2.2 Integration of renewable energy sources 
 

To facilitate the shift toward a more environmentally sustainable and cleaner energy future, 

RES plays a key role in ensuring the success of this transition. Renewables technologies are 

characterized by their low carbon emissions, cleanliness, safety, reliability [24]. Consequently, 

many researchers and scientists are dedicated to advancing energy systems that harness renewable 

and sustainable energy resources, such as geothermal, wind, and solar energy. Although, these 

energy sources present challenges in terms of storage and transportation [25]-[26]. This study [27] 

highlighted the intermittency of RES and the necessity for stabilization of grid, which underscores 

the challenge of implementing large-scale storage system. Since the supply of energy coming from 

RES unpredictable and inconsistent in nature, substantial quantities of energy storage systems 

(ESSs) are indispensable for effective management. ESSs are essential for transferring electricity 

production across various timeframes, including hourly, daily, and seasonal periods [28]. 

 Battery energy storage systems (BESS) are playing a significant role in the integration of 

solar photovoltaic power generation into the grid while mitigating fluctuations. ESSs equipped 

with batteries have the capability to provide both active and reactive power, thereby enhancing 

system voltage and frequency. In addition to their primary focus on enhancing system stability, 

energy storage control systems can also be seamlessly integrated with energy markets, thereby 

promoting the cost-effectiveness of solar resources. A comprehensive review of BESS, including 

a historical overview and analysis of their role in renewable integration, can be found in[29] . 

Among various battery storage technologies, the most mature option presently available is the 
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lead-acid battery [30]-[31]. Furthermore, [32] offers an in-depth sustainability analysis of a BESS 

when integrated with a hybrid renewable energy source in an island mode. In recent years, 

hydrogen integration into power systems considered by many researchers, encompassing various 

aspects, including production, storage, re-electrification, and safety concerns [33]. There is a 

multiple study available that uses RES such as solar and wind for hydrogen production holds great 

promise for the sustainable development of the world [34]. One potential method for storing 

renewable energy involves the utilization of a carrier gas, such as hydrogen, which can be stored, 

transported, and accessed as needed [35]-[36]. Energy storage technology facilitates the 

conversion of one medium into storable forms, enabling energy to be saved through multiple 

avenues and later converted back into electric power when required [37]. These energy storage 

technologies contribute for enhancing the security of energy, mitigating climate change, and 

augmenting the value of current and future energy systems [38]. HSS are gaining popularity as a 

relatively cost-effective means of storing renewable energy, with applications in transportation and 

trade. 

 

2.3 Integration of energy storage systems 
 

Over the past few years, the integration of storage systems into power grids has become a focal 

point of research efforts, particularly in conjunction with the utilization of renewable energy 

resources. This study is based on a comprehensive overview of three distinct storage systems, each 

playing a key role in addressing the challenges of renewable energy integration. These systems 

include the battery storage system, known for its flexibility and rapid response capabilities, the 

hydrogen storage system, which offers the potential for long duration and high-capacity of storing 

energy, and the hybrid-battery-hydrogen storage system, which combines the strengths of both 

technologies to create a versatile and robust solution. 
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2.3.1 Integration of the battery storage systems 
 

Battery energy storage systems have undergone extensive testing and evaluation in recent years. 

This section provides a summary of the most recent research and developments in this field. This 

paper [39] explored integrating RES with the installation of a BESS in isolated power grids. The 

BESS is treated as a dispatchable generator and is integrated into the unit commitment and 

economic dispatch (UC+ED) platform. To minimize costs, the primary usage of the proposed 

energy system was to fulfill a portion of the spinning reserve requirements and secondarily to 

reduce the demand on thermal generators using available resources. This paper also presented 

BESS configurations that optimize economic feasibility and minimize RES curtailment. The 

findings suggested that this technology could yield profitability and significantly to reduce RES 

curtailment levels. This study [40] introduced a decentralized power management strategy aimed 

at mitigating the impact on grid voltages and enhancing the performance of grid-integrated energy 

storage batteries (GIESB) in conjunction with WTs and PVs. The aim of this strategy was to 

formulate three distinct clusters of the proposed objective functions for optimizing the 

discharging/charging cycles of GIESBs by employing a well-known technique called mixed 

integer linear programming (MILP). This study also considered the batteries depth of discharge 

(DOD) and state of charge (SOC), respectively. In order to minimize the cost of power charging 

for GIESBs, the first cluster was designed by leveraging time-of-use (TOU) tariffs. Moreover, to 

optimize the charging power of GIESBs, the second cluster was designed by considering per-unit 

generation from WTs and PVs. Finally, to minimize the discharging power of GIESBs, third 

cluster was designed based on consumption of residential loads (per-unit).  

Besides, this study [41] presented an approach that combines the economic, technical 

design and power control of an off-grid hybrid-RES integrated with a hybrid energy storage 

system. This storage system includes batteries, such as lead-acid battery and lithium-ion, and a 

supercapacitor. Notably, it was investigated that the integration RES with hybrid energy storage 

systems is a unique contribution. First, authors utilized hybrid optimization of multiple energy 

resources (HOMER) software to assess the feasibility and optimize nine different configurations 

at a 1-minute resolution, determining the ideal component sizes. Subsequently, authors also 

developed MATLAB/Simulink models for the most promising design, implementing a dynamic 

rule-based strategy to study and analyze the dynamic response of the proposed system, monitoring 
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of the DC-bus voltage, power balance, and load voltage control when faced with sudden changes 

in RES or load. 

 

2.3.2 Integration of the hydrogen storage systems 
 

Hybrid energy systems (HES) faces significant challenges such as increased in the consumption 

of energy, energy costs of operator used, and potential environmental repercussions stemming 

from heightened emissions resulting from the depletion of non-renewable energy resources, 

specifically fossil fuels. In this study [42] an energy management strategy was developed utilizing 

hydrogen storage system and DRP through the design of PLC unit. The performance of the 

proposed system was assessed through the comparison of different scenarios, including a demand 

response and hydrogen energy system. The objectives tackled in this study were to reduce peak 

energy demand, minimize system costs, and harness surplus power generation from the battery's 

charge rate. The application HSS within microgrids has the potential to enhance economic, 

environmental, and reliability metrics, offering a superior storage capacity compared to alternative 

technologies such as batteries. Building upon this concept, this paper [43] introduced a novel 

energy management strategy for microgrids (isolated) that considers hydrogen storage and demand 

response initiatives. The overall optimization framework is tackled through Constraint-and-

Column Generation Algorithm. The resulting tool is tested on a standard isolated microgrid, 

affirming its suitability for industrial applications. Consequently, the impact of hydrogen storage 

and demand response initiatives is explored, leading to the conclusion that adaptable demand has 

a more significant influence on cost savings than hydrogen storage, resulting in a 6% reduction in 

total costs compared to the base scenario.  

Furthermore, certain inherent issues are identified, such as the observation that flexible 

consumers are more frequently engaged when the hydrogen chain is operational, potentially 

leading to undesirable outcomes like response fatigue. One of the challenges faced by renewable 

energy sources is their unpredictable generation patterns. As a result, the incorporation of long-

term storage systems such as HSS is imperative for integration of RES into power grids. By 

introducing such storage system, it is reasonable to assume that storing energy during off-peak 

hours and utilizing it during peak hours can enhance the overall efficiency of RES. Besides, 
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assessing the economic viability of storage systems necessitates simulation over several years, 

with a minimum time step of 1 hour. Using averaged production and electricity tariff values would 

not provide a sufficiently accurate evaluation. To this end, a software-based simulation model and 

implemented model had been developed for determining the economic efficiency of a wind turbine 

with and without a hydrogen storage system was discussed in [44].  

One possible approach for storing renewable energy involves employing a carrier gas, such as 

hydrogen, which possesses the qualities of being storable, transportable, and easily accessible [45]. 

The utilization of HSS is gaining prominence as a cost-effective means of storing renewable 

energy, including its application in transportation and trade [46]. Particularly, in research studies 

[47]-[48]-[49], HSS established a foundation for the realization of a hydrogen-based economy, 

characterized by a 100% reliance on renewable energy sources. The rationale for transitioning to 

a hydrogen-based economy is becoming increasingly compelling across various facets of the 

energy sectors, encompassing power generation and transportations [50]. The hydrogen-based 

economy holds promise as a mean to achieve a transition to a low-carbon energy system [51]. 

Besides, hydrogen has emerged as a viable energy storage solution for SMGs due to its high energy 

density and versatility. Hydrogen can be produced through electrolysis using excess electricity 

during low-demand periods. The hydrogen gas can then be stored and used for power generation 

when demand is high. Recent advancements in electrolyzer technology have improved the 

efficiency of hydrogen production, making it an attractive option for grid-scale energy storage 

[52]. One notable challenge with hydrogen integration is the cost of infrastructure and the issue of 

energy losses during the conversion process. Researchers are actively working on improving the 

efficiency and reducing the environmental impact of hydrogen production and storage systems 

[53]. Integration of hydrogen with smart grids is also seen as a way to balance the intermittent 

nature of RESs, enhancing grid stability. Batteries have been a fundamental component of smart 

grid systems for many years [54]. Lithium-ion batteries, in particular, have become the leading 

technology for energy storage due to their high energy density and reliability. Battery systems are 

known for their fast response time and the ability to store energy at various scales, from small 

residential installations to large utility-scale systems [55]. The combination of hydrogen and 

batteries as a hybrid energy storage solution has gained attention as a way to exploit the strengths 

of both technologies while mitigating their weaknesses. In a smart grid context, the hybrid 
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approach can provide reliable and flexible energy storage solutions, especially in regions with 

intermittent renewable energy sources [56]. The integration of hydrogen and batteries has the 

potential to provide a continuous and stable energy supply, regardless of weather conditions or 

fluctuations in energy demand. Studies suggest that such systems can significantly increase the 

overall efficiency of the grid while reducing greenhouse gas emissions [57]. 

 

2.4 Optimization technique 
 

Several models have been proposed for solving the environmental, economic and technical indices 

of HES as a single and multi-objective optimization problems [58]-[59]-[60]. In particular, the 

SMG problem consists of objective functions like operational cost, CO2 emissions and peak to 

average ratio (PAR) and this optimization problem was solved using max-min fuzzy technique 

[61]. By utilizing the DRP, results illustrate that the operational cost and CO2 emissions are 

minimized by 16% and 17%. This problem was solved as a bi and tri-objective optimization 

problem. Besides, an optimization model for operational cost reduction in integrated microgrid 

(MG) was solved using linear programming (LP) and heuristic approaches[62]. Results show that 

the LP approach saves up to approximately 3% to 5% excess energy of grid. In this study [63], 

optimization of energy flow in MG was performed using Quantum Teaching Learning-based 

optimization (QTLBO) technique. To address the DER uncertainty, four different scenarios were 

chosen based on seasonal variations. The results obtained indicated that the suggested model 

provides advantages for both market operators and consumers in terms of techno-economic 

benefits. The SMG’s economical and technical problems are tackled using multi-objective genetic 

algorithm (MOGA). Authors used DSM strategy for scheduling and management of both the 

generation and demand side in terms of optimizing operational cost and emission as a bi-objective 

problem. Results revealed that the consumers active participation in the DSM strategy provide 

benefits to both the utility and customers [64]. The comparison between existing literature and 

proposed study is illustrated in Table 1. Besides, the limitations in the existing literature and the 

suggested solutions to fill those gaps are given as follows: 

• Determining the most suitable unit sizing algorithm for HES is crucial. It should ensure the 

optimal utilization of power generated from RES without relying on the grid network. 
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Achieving the correct unit sizing for energy sources and storage is pivotal in determining 

the system's cost-effectiveness and reliability. Balancing the size of a hybrid power system 

to minimize/maximize multi-objective functions such as, operational cost, pollution 

emissions, energy gap, high penetration of renewable energy sources, while meeting 

targeted power supply availability remains a challenge[65] -[66]-[67]-[68]. 

• Managing a fully operational HES is a complex and expensive task. It demands effective 

supervision, coordination, management, and control of each subsystems using operators 

such as smart grid operator (SGO) for bi-directional communication between utility and 

consumers [69]. The control system plays a pivotal role in overseeing, coordinating, 

managing, and controlling the diverse tasks assigned to each subsystem to ensure the 

smooth operation and functionality of the entire system. Implementing proper supervision, 

management, and control across all subsystems and control systems can lead to increased 

operational efficiency [70]-[71]. Such a type of operator’s involvement remains a challenge 

in context of energy management in distribution grids. 

• Addressing DSM strategy and battery and hydrogen energy storage systems, hybrid model 

of battery and hydrogen storage system is essential. The unpredictability of load demand 

must be factored in when designing an appropriate energy storage system while using 

renewable energy sources. The integration of such storage systems is vital in HES, serving 

to provide continuous electricity supplementation during periods of renewable energy 

source unavailability. Implementation of such systems, specifically both batteries and 

hydrogen storage systems integration at the same time remain a challenge [72]-[73]. 
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Table 1: Comparison of existing and proposed studies 

References Objectives Techniques Optimization 
problem 

Limitations 

[65] Total cost Constraint and Column 
Generation Algorithm 

Single Emissions 
and energy 

gap 

[66] Control performance Genetic algorithm Single Ignored 
cost, 

emissions 

[67] Operational cost, stability Asynchronous Advantage 
Actor-Critic (A3C) 

reinforcement learning 
algorithm 

Multi (Bi) Emissions 

[68] Capital and replacement 
cost 

Mixed integer quadratic 
constrained programming 

(MIQCP) 

Multi (Bi) Emissions 
and energy 

balance 
ignored 

[69] Energy and demand gap Improved harmony search 
and geographic information 

system (GIS) method 

Single Emissions 

[70] Levelized cost of energy Particle swarm optimization 
(PSO) and ant colony 
optimization (ACO) 

Single Emissions 

[71] Cost Artificial bee colony – 
Particle swarm optimization 

(ABC-PSO) 

Single Emissions 
ignored 

[72] Operational cost, 
economic analysis 

PSO adaptive inertia weight 
(PSOAIW) and PSO with a 
constriction factor (PSOCF) 

Multi (Bi) Energy gap 
and 

Emissions 

[73] Cost of energy 
consumption 

Mixed integer linear 
programing (MILP) 

Single Energy gap 
and 

emissions 

This study Operational cost, 
pollution emission, 
Energy gap, High 

penetration of RES 

Hybrid-NSGA-II-MOPSO / 
SFLA 

Multi (Tri) - 
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2.5 Safety issues related to hydrogen and its justification 
 

Using hydrogen as a storage system in distribution grids offers several advantages, such as long-

term energy storage and the potential for clean energy production. However, it is important to 

consider safety issues associated with hydrogen, as it is a highly flammable and reactive gas. Here 

are some safety issues and justifications related to the use of hydrogen in the context of energy 

storage.[74], [75], [76] 

 

2.5.1 Flammability 
 

Safety Issue: Hydrogen is highly flammable and can form explosive mixtures with air in a wide 

concentration range (4-74% by volume). 

Justification: Proper handling and storage procedures are essential to mitigate the risk of hydrogen 

leaks and potential ignition sources. Adequate ventilation, gas detection systems, and safety 

protocols must be in place to prevent and respond to fire hazards. 

 

2.5.2 Leakage 
 

Safety Issue: Hydrogen molecules are small and can permeate through materials, potentially 

leading to leakage.  

Justification: Robust leak detection systems and well-designed storage and distribution 

infrastructure are crucial to minimize the risk of hydrogen leakage. Regular maintenance and 

inspections are essential to identify and address any potential leaks promptly. 

 

2.5.3 Material Compatibility 
 

Safety Issue: Hydrogen can cause embrittlement in certain materials, affecting the structural 

integrity of pipelines, storage tanks, and other components. 
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Justification: Selecting materials that are compatible with hydrogen and regularly inspecting and 

replacing components prone to embrittlement are necessary. Material standards and guidelines 

should be followed to ensure the integrity of the storage and distribution infrastructure. 

 

2.5.4 Pressure 
 

Safety Issue: Hydrogen is often stored and transported under high pressure, presenting risks of 

rupture or explosion. 

Justification: Proper design, maintenance, and monitoring of pressure vessels are critical to 

prevent accidents related to overpressure. Safety relief devices and pressure regulation systems 

should be in place to control pressure within safe limits. 

 

2.5.5 Hydrogen Combustion Characteristics 
 

Safety Issue: Hydrogen flames are nearly invisible, making it challenging to detect a burning leak. 

Justification: Advanced detection systems, such as flame detectors and gas sensors, are necessary 

to promptly identify and respond to hydrogen combustion incidents. Fire suppression systems and 

emergency response plans should be in place to mitigate the consequences of a fire. 

 

2.5.6 Training and Awareness 
 

Safety Issue: Lack of awareness and training among personnel working with hydrogen can lead 

to unsafe practices. 

Justification: Comprehensive training programs for personnel involved in the handling, 

maintenance, and operation of hydrogen storage systems are crucial. Increasing awareness of 

hydrogen safety protocols and emergency response procedures is essential for preventing accidents 

and ensuring a quick and effective response in case of incidents. 
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2.5.7 Regulatory Compliance 
 

Safety Issue: Failure to comply with relevant safety regulations and standards can increase the 

risk of accidents. 

Justification: Adherence to local and international safety standards and regulations is necessary 

to ensure the safe design, installation, and operation of hydrogen storage and distribution systems. 

Regular audits and inspections can help verify compliance and identify areas for improvement. 

While hydrogen holds promise as long-term energy storage solution, addressing safety issues 

is paramount to ensure the secure deployment and operation of hydrogen storage systems in 

distribution grids. Robust safety measures, advanced monitoring systems, and comprehensive 

training programs are essential components of a safe and reliable hydrogen infrastructure. 

 

2.6 Summary 
 

This chapter covers different literature review related renewables topics like the integration of 

RES, ESSs such as battery, and hydrogen with HESs and SMGs, followed by the review of 

different techniques used for energy management of distributed energy resources (DERs) in power 

systems.  
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CHAPTER 3 PROPOSED SYSTEM MODEL AND METHODOLOGY 
 

3.1 Introduction 
 

The system model of this thesis is divided into two components. The first model presents 

an accurate mathematical representation for energy management in SMG. This model aims to 

optimize two primary objectives: operational cost and CO2 emissions. Achieving this optimization 

is realized through the effective management of DER and the implementation of DRP, employing 

the SFLA. 

In the second model, the focus shifts to addressing the tri-objective optimization problem 

within the distribution grid. This involves managing a high penetration of renewable energy 

sources and implementing a demand-side management strategy. The key objectives in this context 

include minimizing operational costs and pollution emissions, maximizing the integration of 

renewable energy resources, and reducing the energy gap between the initial demand and the 

optimal consumption value. To tackle this complex problem, a Hybrid-NSGA-II-MOPSO 

technique is employed, considering various constraints. Schematic diagrams illustrating the first 

and second models are presented in Figure 1 and Figure 2, respectively. 

 

3.2 First model 
 

This model presents an accurate mathematical representation for energy management in SMG to 

optimize two objectives, operational cost and CO2 emission by managing DER and employing 

DRP. The objectives formulation of this study is given as follows: 
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3.2.1 Objective functions formulation  
 

3.2.1.1 Operating cost function 
 

 Optimizing the operational cost of SMG: 
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Where h represents the time slot of the operation, G and S represent the units of generation and 

storage, 𝑆𝑆𝑖𝑖(ℎ) indicates the unit 𝑖𝑖 at time slot h, 𝑊𝑊𝐺𝐺𝐺𝐺(ℎ) and 𝑊𝑊𝑆𝑆𝑆𝑆(ℎ) in (1) represent total output 

power for the unit 𝑖𝑖 and storage 𝑗𝑗, 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺(ℎ) and 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆(ℎ) are the price of energy offered, 𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺 and 

𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺  indicate the start and shut down cost, finally, 𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(ℎ)  and 𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(ℎ)  represent the 

exchanging power with the market at time h.  

 

Figure 1: First Model: SMG schematic diagram 

 



19 

 

3.2.1.2 Pollution emission function 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2(𝑍𝑍) = �𝐸𝐸𝐸𝐸ℎ
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+ 𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(ℎ)𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(ℎ)�                          𝐸𝐸𝐸𝐸(2) 

Where 𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺(ℎ), 𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆(ℎ), 𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(ℎ) represents the emissions of generation, storage units and 

market. 

 

3.2.2 Smart grid structure 
 

The proposed SMG consist of DES (wind, solar, battery, micro turbine and utility), energy 

management controller (EMC), and consumers. 

 

3.3 Second model 
 

In this work, tri-objective optimization model of distribution grid is solved with high penetration 

of renewable energy sources and demand side management strategy and is considered as second 

model. The objective functions are operational cost and pollution emission, maximization of high 

penetration of renewable energy resources and minimization of energy gap between initial demand 

and optimal value of consumption. This model is optimized using hybrid MOPSO-NSGA-II 

technique considering multiple constraints. The proposed system schematic architecture is shown 

in Figure 2. The energy flow diagram of this system model is shown in Figure 3. 
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3.3.1 Smart grid overview and working mechanism 
 

The proposed system consists of the following components: distributed energy resources 

(DERs), consumers, electric vehicle (EV) charging station, and the smart grid operator (SGO). 

Within the DER category, in this work, the energy resources, such as diesel generators (DGs), 

wind turbines (WTs), photovoltaic (PV) systems, batteries, and a Hydrogen storage system are 

used.. Consumers are further categorized into sheddable loads, non-sheddable loads and shiftable 

loads. Furthermore, technical constraints applicable to resources and the overall system are 

introduced. The resultant model is solved utilizing a Hybrid-MOPSO-NSGA-II approach, yielding 

a range of potential solutions (non-dominated solutions). Finally, decision-making mechanism is 

used to select the optimal solution from the set of solutions.  

 

In times, when solar energy production diminishes, such as during nighttime hours, energy 

drawn from the battery storage system, hydrogen storage system, and the utility grid seamlessly 

takes over, ensuring uninterrupted electricity supply to households. Similarly, when wind energy 

is not available, the combined support of solar energy, battery storage, hydrogen storage, and the 

grid provide a reliable and stable source of power. Moreover, surplus energy generated from these 

RES can be efficiently directed towards charging electric vehicles at dedicated stations, thus 

promoting a sustainable and eco-friendly transportation system. This dynamic energy management 

approach not only optimizes energy utilization but also contributes significantly to reducing 

reliance on non-RES. 
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Figure 2: Second Model: SMG schematic diagram 

 

3.3.2 Uncertain systems modeling 
 

RES is uncertain and its prediction is necessary before integrating these sources with grids. PDF 

is used for modeling the uncertainty of wind and solar energy resources. The uncertain behavior 

of wind is modeled through PDF Weibull, PV is modeled through beta PDF and demand is 

modeled through Gaussian PDF, respectively. 
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Figure 3: Energy flow diagram for second model 

 

3.3.2.1 Wind system modeling 
 

Wind energy source is uncertain in nature, PDF Weibull is used for modeling the intermittent 

behavior of wind speed [77]. The output power of wind turbine is shown in Equation 3. 
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Where 𝑆𝑆𝑐𝑐𝑐𝑐, 𝑆𝑆𝐶𝐶𝐶𝐶, 𝑆𝑆𝑟𝑟, and s are  the cut-in speed, the minimum wind speed at which the turbine starts 

to generate power, the cut-out speed, the maximum wind speed at which the turbine is designed to 

operate, the rated wind speed, and the speed at which the turbine generates its rated power.  

 

3.3.2.2 Solar system modeling 
 

In this study, PDF beta is used for modeling the intermittent behavior of solar irradiance [77]. The 

output power of solar energy is modeled in Equation 4 as follows: 
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𝑊𝑊𝑃𝑃𝑃𝑃(𝑠𝑠𝑠𝑠) = 𝜂𝜂𝑃𝑃𝑃𝑃 × 𝐴𝐴 × 𝑠𝑠𝑠𝑠                                                 𝐸𝐸𝐸𝐸(4) 

Where 𝑊𝑊𝑃𝑃𝑃𝑃 is PV power, 𝑠𝑠𝑠𝑠 indicates solar irradiance, 𝜂𝜂𝑃𝑃𝑃𝑃  is PV efficiency, 𝐴𝐴 area covered by 

PV. 

 

3.3.2.3 Hydrogen storage system modeling 
 

The Hydrogen Storage System (HSS) comprises several key components: An electrolyzer (EL), 

hydrogen storage tanks (HTS) and fuel cell (FC). This integrated system operates in a manner 

where, during the charging phase, the electrolyzer (EL) produces hydrogen molecules, which are 

subsequently stored in the hydrogen storage tanks (HTS). Conversely, during discharge, the stored 

hydrogen molecules in the HTS are converted by the fuel cell (FC) into electrical power. To 

describe this system mathematically, a comprehensive model is presented in Equation 5 and 

Equation 6. Specifically, the generation of hydrogen molecules by the EL is formulated in 

Equation 6 and the consumption of these hydrogen molecules to generate electrical power via the 

FC is determined using equation 5 [78].  

𝐺𝐺𝐻𝐻𝐹𝐹𝐹𝐹(𝑠𝑠𝑠𝑠, 𝑡𝑡,ℎ𝑦𝑦𝑦𝑦) =
𝑊𝑊𝐹𝐹𝐹𝐹(𝑠𝑠𝑠𝑠, 𝑡𝑡,ℎ𝑦𝑦𝑦𝑦)
𝜂𝜂𝐹𝐹𝐹𝐹  .𝐻𝐻𝐿𝐿𝑉𝑉𝐻𝐻

      ∀ 𝑠𝑠𝑠𝑠, 𝑡𝑡,ℎ𝑦𝑦𝑦𝑦                                      𝐸𝐸𝐸𝐸(5) 

𝐺𝐺𝐻𝐻𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠, 𝑡𝑡,ℎ𝑦𝑦𝑦𝑦) =
𝜂𝜂𝐸𝐸𝐸𝐸  .𝑊𝑊𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠, 𝑡𝑡, ℎ𝑦𝑦𝑦𝑦)

𝐻𝐻𝐿𝐿𝑉𝑉𝐻𝐻
      ∀ 𝑠𝑠𝑠𝑠, 𝑡𝑡,ℎ𝑦𝑦𝑦𝑦                              𝐸𝐸𝐸𝐸(6) 

Where 𝑠𝑠𝑠𝑠, 𝑡𝑡,ℎ𝑦𝑦𝑦𝑦 represents the probability of scenario, time period, and hydrogen indices. 𝐺𝐺𝐻𝐻𝐹𝐹𝐹𝐹  

and  𝐺𝐺𝐻𝐻𝐸𝐸𝐸𝐸 indicate the hydrogen generation and consumption in time slot t, 𝑊𝑊𝐹𝐹𝐹𝐹and 𝑊𝑊𝐸𝐸𝐸𝐸, represent 

the power of FC and EL, 𝜂𝜂𝐹𝐹𝐹𝐹  and  𝜂𝜂𝐸𝐸𝐸𝐸, show the efficiency of FC and EL, and 𝐻𝐻𝐿𝐿𝑉𝑉𝐻𝐻 represents 

lowering the hydrogen heating value, respectively.  

The model also accounts for the limitations inherent in both the generation and consumption of 

hydrogen molecules by the EL and the fuel cell FC. These limitations are addressed through 

equations 7 and 8, respectively, ensuring a more accurate representation of the system's behavior. 

𝐺𝐺𝐻𝐻𝐹𝐹𝐹𝐹,𝑚𝑚𝑚𝑚𝑚𝑚 ≤  𝐺𝐺𝐻𝐻𝐹𝐹𝐹𝐹(𝑠𝑠𝑠𝑠, 𝑡𝑡,ℎ𝑦𝑦𝑦𝑦) ≤  𝐺𝐺𝐻𝐻𝐹𝐹𝐹𝐹,𝑚𝑚𝑚𝑚𝑚𝑚    ∀ 𝑠𝑠𝑠𝑠, 𝑡𝑡,ℎ𝑦𝑦𝑦𝑦                                 𝐸𝐸𝐸𝐸(7) 
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𝐺𝐺𝐻𝐻𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 ≤  𝐺𝐺𝐻𝐻𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠, 𝑡𝑡,ℎ𝑦𝑦𝑦𝑦) ≤  𝐺𝐺𝐻𝐻𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚    ∀ 𝑠𝑠𝑠𝑠, 𝑡𝑡, ℎ𝑦𝑦𝑦𝑦                                         𝐸𝐸𝐸𝐸(8) 

 

3.3.2.4 Demand modeling 
 

In this study, the uncertain nature of demand is modeled using Gaussian PDF. In order to predict 

the intermittent parameters such as wind speed, solar irradiance and demand, several scenarios are 

generated using Monte Carlo simulation. The occurrence probability of each scenario is modeled 

in Equation 9 as follows: 

𝜌𝜌𝑠𝑠 = 𝜌𝜌𝑠𝑠𝑊𝑊𝑊𝑊 × 𝜌𝜌𝑠𝑠𝑃𝑃𝑃𝑃 × 𝜌𝜌𝑠𝑠𝐿𝐿                                                                             𝐸𝐸𝐸𝐸(9) 

Where 𝜌𝜌𝑠𝑠, 𝜌𝜌𝑠𝑠𝑊𝑊𝑊𝑊, 𝜌𝜌𝑠𝑠𝑃𝑃𝑃𝑃, 𝜌𝜌𝑠𝑠𝐿𝐿 shows the probability of scenario s, probability of the WT in scenario 

s, and probability of the demand in scenario s, respectively. 

 

3.3.3 Objective functions 

3.3.3.1 First objective function (f1) 
Operational cost and pollution emission of the proposed SG is considered as first objective 

function consisting of diesel generator, operational cost, degradation cost of battery, and 

operational cost of electrolyzer and fuel cell in hydrogen storage system, further, pollution 

emission of utility grid (UG) and DGs and modeled as equation 10. 

min𝑓𝑓1 = � 𝜌𝜌𝑠𝑠𝑠𝑠

𝑆𝑆𝑆𝑆

𝑠𝑠𝑠𝑠=1

��� 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠, 𝑡𝑡,𝑑𝑑𝑑𝑑)
𝐷𝐷𝐷𝐷

𝑑𝑑𝑑𝑑=1

𝑇𝑇

𝑡𝑡=1

+ � 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠𝑠𝑠, 𝑡𝑡, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) + � 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠𝑠𝑠, 𝑡𝑡, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏=1

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏=1

+ � 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐻𝐻𝐻𝐻𝐻𝐻(𝑠𝑠𝑠𝑠, 𝑡𝑡,ℎ𝑦𝑦𝑦𝑦) + � 𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑) + 𝐸𝐸𝐸𝐸𝑈𝑈𝑈𝑈(𝑡𝑡)
𝐷𝐷

𝑑𝑑=1

𝐻𝐻𝐻𝐻𝐻𝐻

𝐻𝐻𝐻𝐻𝐻𝐻=1

�                  𝐸𝐸𝐸𝐸(10) 
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Where the first part in Equation 10 indicates the operational cost of DGs, the second and third 

parts represent the operational cost of charging and discharging of battery feeding the EVs station 

and demand, the fourth part shows the operational cost of hydrogen storage system which consist 

of electrolyzer and fuel cell costs, and the fifth part indicates the pollution emission associated 

with DGs and UG. In Equation 10, 𝜌𝜌𝑠𝑠𝑠𝑠, represents the probability of each scenario in the system 

model which on weather patterns, demand patterns and reliability of the grid, and 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 

𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝐸𝐸𝐸𝐸𝐷𝐷𝐷𝐷 , 𝐸𝐸𝐸𝐸𝑈𝑈𝑈𝑈  indicate the operational cost, and cost of charging and 

discharging, emission of DGs and UG, respectively. 

 

3.3.3.2 Second objective function (f2) 
 

Load consumption management is one of the most important parameters of power systems, 

specifically, when using renewable energy resources. In this work, the mathematical model of load 

consumption management is proposed and modelled in equation 11, 12 and 13. The energy gap 

between the initial demand and its optimal value is minimized in Equation 11, the system initial 

demand is modeled in Equation 12 and the power consumption optimal value is modeled in 

Equation 13 as follows: 

min 𝑓𝑓2 = � 𝜌𝜌𝑠𝑠𝑠𝑠

𝑆𝑆𝑆𝑆

𝑠𝑠𝑠𝑠=1

��𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠𝑠𝑠, 𝑡𝑡) −𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�
𝑇𝑇

𝑡𝑡=1

                                           𝐸𝐸𝐸𝐸(11) 

Where 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠𝑠𝑠, 𝑡𝑡), 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , and  𝜌𝜌𝑠𝑠𝑠𝑠  in Equation 11 indicate the original power, optimal 

value of power and probability of scenarios, respectively. 

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠𝑠𝑠, 𝑡𝑡)

= 𝐷𝐷𝑇𝑇(𝑠𝑠𝑠𝑠, 𝑡𝑡) + 𝑊𝑊𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠, 𝑡𝑡,ℎ𝑦𝑦𝑦𝑦) + 𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑠𝑠𝑠𝑠, 𝑡𝑡) + 𝑊𝑊𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠, 𝑡𝑡) + 𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑠𝑠𝑠𝑠, 𝑡𝑡, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

− 𝐷𝐷𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠, 𝑡𝑡)  ∀  𝑠𝑠𝑠𝑠, 𝑡𝑡,ℎ𝑦𝑦𝑦𝑦, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏                                                           𝐸𝐸𝐸𝐸(12) 

 



26 

 

Where 𝐷𝐷𝑇𝑇(𝑠𝑠𝑠𝑠, 𝑡𝑡) , 𝑊𝑊𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠, 𝑡𝑡,ℎ𝑦𝑦𝑦𝑦) , 𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑠𝑠𝑠𝑠, 𝑡𝑡) , 𝑊𝑊𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠, 𝑡𝑡) , 𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑠𝑠𝑠𝑠, 𝑡𝑡, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) , and 

𝐷𝐷𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠, 𝑡𝑡) in Equation 12 represent, total demand, power of electrolyzer, power of wind, power 

generated by PV, power of battery and unmet demand in time slot t, respectively. 

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
 ∑ 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠𝑠𝑠, 𝑡𝑡)𝑡𝑡∈𝑇𝑇

𝑇𝑇
    ∀ 𝑠𝑠𝑠𝑠, 𝑡𝑡                                            𝐸𝐸𝐸𝐸(13) 

 

 3.3.3.3 Third objective function (f3) 
 

The substantial integration of renewable energy resources to meet demand significantly affects the 

operational costs of the system. Consequently, this factor is considered as the third objective 

function of the proposed system model. Utilizing renewable energy resources to meet demand 

clearly results in a cost-effective system response. This function is characterized by the total energy 

produced by the wind turbine (WT) and photovoltaic (PV) systems divided by the overall energy 

demand of the system during the operational time and as modeled in Equation 14 as follows: 

max 𝑓𝑓3 = � 𝜌𝜌𝑠𝑠𝑠𝑠

𝑆𝑆𝑆𝑆

𝑠𝑠𝑠𝑠=1

��
∑ 𝑊𝑊𝑤𝑤𝑤𝑤(𝑠𝑠𝑠𝑠, 𝑡𝑡,𝑤𝑤𝑤𝑤) + ∑ 𝑊𝑊𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠, 𝑡𝑡,𝑝𝑝𝑝𝑝)𝑃𝑃𝑃𝑃

𝑝𝑝𝑝𝑝=1
𝑊𝑊𝑊𝑊
𝑤𝑤𝑤𝑤=1

𝐷𝐷𝑇𝑇(𝑠𝑠𝑠𝑠, 𝑡𝑡)
�

𝑇𝑇

𝑡𝑡=1

                        𝐸𝐸𝐸𝐸(14) 

Where 𝑊𝑊𝑤𝑤𝑤𝑤(𝑠𝑠𝑠𝑠, 𝑡𝑡,𝑤𝑤𝑤𝑤), 𝑊𝑊𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠, 𝑡𝑡,𝑝𝑝𝑝𝑝), 𝐷𝐷𝑇𝑇(𝑠𝑠𝑠𝑠, 𝑡𝑡), and 𝜌𝜌𝑠𝑠𝑠𝑠 indicate the power generated by wind, 

PV, total demand required and probability of scenarios in time slot t, respectively.  

 

3.4 Demand side management strategy and classification of loads 
 

The demand side management strategy in this study is based on load shifting (LS). The responsive 

consumers participate in this strategy according to the status of the grid, which results in benefiting 

both the consumers and utility during the operational time.  
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3.4.1 Demand shifting modeling 
 

The Demand Shifting (DS) strategy serves the purpose of redistributing energy consumption from 

peak hours to off-peak hours, ultimately smoothing out the demand profile. This strategy aims to 

alleviate the strain on the energy grid during peak periods and promote more efficient resource 

utilization. the model for the DS strategy is presented through equations (15) and (16). Equation 

15 outlines the calculation of the demand for the Residential Demand Shifting RDS system during 

each time step. This calculation considers the shifted demand from time t to time t1 within a 

specific scenario (Sc). Essentially, it determines how the energy demand is shifted from its original 

peak time to a more favorable off-peak time. 

 

𝐷𝐷𝐿𝐿𝐿𝐿(𝑠𝑠𝑠𝑠, 𝑡𝑡) = ��𝐷𝐷𝐿𝐿𝐿𝐿(𝑠𝑠𝑠𝑠, 𝑡𝑡1, 𝑡𝑡) − � 𝐷𝐷𝐿𝐿𝐿𝐿(𝑠𝑠𝑠𝑠, 𝑡𝑡1, 𝑡𝑡)        ∀ 𝑠𝑠𝑠𝑠, 𝑙𝑙𝑙𝑙, 𝑡𝑡                                𝐸𝐸𝐸𝐸(15)
𝐿𝐿𝐿𝐿

𝑙𝑙𝑙𝑙=1

𝐿𝐿𝐿𝐿

𝑙𝑙𝑙𝑙=1𝑡𝑡1

 

Where 𝑠𝑠𝑠𝑠, 𝑙𝑙𝑙𝑙, 𝑡𝑡 represents the probability of scenario, load shifting in time slot t to t1, and time 

period t, besides, 𝐷𝐷𝐿𝐿𝐿𝐿 shows the demand.In order to manage and control the extent of participation 

of the RDS system in this strategy, equation 16 is introduced. This equation sets limits on the 

degree to which the RDS system can actively engage in the demand-shifting process. It establishes 

boundaries to ensure that the strategy operates within predefined constraints, aligning with overall 

system goals and requirements. 

0 ≤��𝐷𝐷𝐿𝐿𝐿𝐿(𝑠𝑠𝑠𝑠, 𝑡𝑡1, 𝑡𝑡) ≤ 𝑟𝑟 × �𝐷𝐷𝐿𝐿𝐿𝐿(𝑠𝑠𝑠𝑠, 𝑡𝑡)        ∀ 𝑠𝑠𝑠𝑠, 𝑙𝑙𝑙𝑙, 𝑡𝑡                                       𝐸𝐸𝐸𝐸(16)
𝐿𝐿𝐿𝐿

𝑙𝑙𝑙𝑙=1

𝐿𝐿𝐿𝐿

𝑙𝑙𝑙𝑙=1𝑡𝑡1

 

In Equation 16, 𝑠𝑠𝑠𝑠, 𝑙𝑙𝑙𝑙, 𝑡𝑡 represents the probability of scenario, load shifting in time slot t to t1, and 

time period t, besides, 𝐷𝐷𝐿𝐿𝐿𝐿 shows the demand. 

 

3.4.2 Classification of loads 
 

In this study, the loads are divided into three categories, sheddable, non-sheddable and shiftable 

loads and are explained as follows [79]: 



28 

 

 

3.4.2.1 Sheddable loads 
 

Sheddable loads refer to those loads that, during various times of the day, can be switched off by 

consumers or electricity distribution companies without causing any disruptions to the daily lives, 

well-being, or security of individuals in their homes[78]. This approach offers benefits to both 

customers and power companies. This work exclusively focuses on sheddable loads in residential 

settings. We have also categorized sheddable loads specifically for the residential houses. In this 

context, we have gathered data on the average power consumption associated with sheddable loads 

in household appliances. 

 

3.4.2.2 Non-Sheddable loads 
 

Non-sheddable loads encompass those appliances and devices that consumers cannot switch off at 

any specific time throughout the day (24 hours). These include items such as refrigerators, coolers, 

aquariums, cell phones, TVs, toasters, blenders, electric samovars, coffee makers, microwaves, 

electric mixers, and extractor hoods. It is important to note that electricity distribution companies 

do not have the authority to interrupt the power supply to these loads. Instead, they must ensure a 

consistent and uninterrupted energy supply with the desired quality for consumers. 

 

3.4.2.3 Shiftable loads 
 

Shiftable loads refer to those loads that must be consumed over the course of a 24-hour day, but 

do not have a specific time allocated for their use. These loads play a crucial role in optimizing 

customer pricing strategies. The total load of these appliances is communicated to the electricity 

distribution company, which is responsible for distributing them evenly throughout the day.  
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3.5 Constraints modeling 
 

The objective functions which are defined as minimization of operational cost and pollution 

emission in generation side, minimization of energy gap between initial demand and optimal value 

of consumption in demand side and maximization of the renewable energy sources penetration are 

optimized regarding several constraints such as technical constraints of diesel generator and power 

balance constraints and are modeled by Equations 17 to 22 in the following subsections. 

 

3.5.1 Power balance constraints 
 

The system's power balance constraint, which is applicable to every time step and scenario, is 

mathematically represented by Equation 17 [80]. This equation effectively ensures that the total 

power generation from various sources within the system, including DGs, PV systems, WTs and 

the power generated by FC, is equal to the sum of the overall energy demand of the system. This 

energy demand comprises the power required for charging EVs station, the energy consumed by 

EL minus the unmet demand.  

�𝑊𝑊𝑑𝑑(𝑠𝑠𝑠𝑠, 𝑡𝑡) + � 𝑊𝑊𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠, 𝑡𝑡)
𝑃𝑃𝑃𝑃

𝑝𝑝𝑝𝑝=1

𝐷𝐷

𝑑𝑑=1

+ � 𝑊𝑊𝑤𝑤𝑤𝑤(𝑠𝑠𝑠𝑠, 𝑡𝑡)
𝑊𝑊𝑊𝑊

𝑤𝑤𝑤𝑤=1

+ � 𝑊𝑊𝑓𝑓𝑓𝑓(𝑠𝑠𝑠𝑠, 𝑡𝑡)
𝐻𝐻𝐻𝐻𝐻𝐻

ℎ𝑦𝑦𝑦𝑦=1

= 𝐷𝐷𝑒𝑒𝑒𝑒(𝑠𝑠𝑠𝑠, 𝑡𝑡)

+ �𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠𝑠𝑠, 𝑡𝑡)

𝐿𝐿𝐿𝐿
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𝐻𝐻𝐻𝐻𝐻𝐻

ℎ𝑦𝑦𝑦𝑦=1
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Where 𝑊𝑊𝑝𝑝𝑝𝑝,𝑊𝑊𝑤𝑤𝑤𝑤,𝑊𝑊𝑓𝑓𝑓𝑓,𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸,𝑊𝑊𝐸𝐸𝐸𝐸,𝐷𝐷𝑑𝑑 ,𝐷𝐷𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 indicates the power of PV, WT, FC, EVs, EL, total 

demand and unmet demand, respectively.  Besides, 𝑠𝑠𝑠𝑠, 𝑡𝑡 represents the probability of scenario and 

total time period. Equation 17 serves as a critical constraint in the system's operation. It guarantees 

that the generation and consumption of power are in equilibrium, ensuring that all energy demands 

are met while accounting for the contributions of different power sources and the fluctuating needs 

of the system over various time steps and under various scenarios. This balance is fundamental for 

the reliable and efficient functioning of the system, promoting sustainability by integrating 

renewable energy sources like PV systems, WT, and minimizing the unmet demand, thereby 

enhancing overall system stability and resilience. 

 

3.5.2 Technical DGs constraints 
 

The technical limitations imposed on DGs are represented by Equations 18 through 22. Both the 

minimum and maximum operational boundaries of DGs are captured by Equation 18. Furthermore, 

the minimum uptime and downtime requirements for DGs are mathematically described by 

Equations 19 and 20. Finally, the constraints on the rate of ramp-up and ramp-down for DGs are 

depicted using Equations 21 and 22 respectively. 

𝑊𝑊𝑑𝑑
𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑊𝑊𝑑𝑑(𝑠𝑠𝑠𝑠, 𝑡𝑡) ≤ 𝑊𝑊𝑑𝑑

𝑚𝑚𝑚𝑚𝑚𝑚            ∀    𝑠𝑠𝑠𝑠, 𝑡𝑡,𝑑𝑑                                              𝐸𝐸𝐸𝐸(18) 

𝜗𝜗0𝑛𝑛(𝑠𝑠𝑠𝑠, 𝑡𝑡,𝑑𝑑) + � 𝜗𝜗0𝑓𝑓𝑓𝑓(𝑠𝑠𝑠𝑠, 𝜏𝜏,𝑑𝑑)
min(𝑇𝑇,𝑡𝑡−1+𝑀𝑀𝑀𝑀)

𝜏𝜏=𝑡𝑡+1

≤ 1     ∀  𝑠𝑠𝑠𝑠, 𝑡𝑡,𝑑𝑑                         𝐸𝐸𝐸𝐸(19) 

𝜗𝜗0𝑓𝑓𝑓𝑓(𝑠𝑠𝑠𝑠, 𝑡𝑡, 𝑑𝑑) + � 𝜗𝜗0𝑛𝑛(𝑠𝑠𝑠𝑠, 𝜏𝜏,𝑑𝑑)
min(𝑇𝑇,𝑡𝑡−1+𝑀𝑀𝑀𝑀)

𝜏𝜏=𝑡𝑡+1

≤ 1     ∀  𝑠𝑠𝑠𝑠, 𝑡𝑡,𝑑𝑑                            𝐸𝐸𝐸𝐸(20) 

𝑊𝑊𝑑𝑑(𝑠𝑠𝑠𝑠, 𝑡𝑡,𝑑𝑑) −𝑊𝑊𝑑𝑑(𝑠𝑠𝑠𝑠, 𝑡𝑡 − 1,𝑑𝑑) ≤ 𝑅𝑅𝑅𝑅     ∀   𝑠𝑠𝑠𝑠, 𝑡𝑡,𝑑𝑑                                              𝐸𝐸𝐸𝐸(21) 

𝑊𝑊𝑑𝑑(𝑠𝑠𝑠𝑠, 𝑡𝑡 − 1,𝑑𝑑) −𝑊𝑊𝑑𝑑(𝑠𝑠𝑠𝑠, 𝑡𝑡,𝑑𝑑) ≤ 𝑅𝑅𝑅𝑅      ∀   𝑠𝑠𝑠𝑠, 𝑡𝑡,𝑑𝑑                                              𝐸𝐸𝐸𝐸(22) 
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Where RU, RD, MU, MD, 𝜗𝜗0𝑓𝑓𝑓𝑓, and 𝜗𝜗0𝑛𝑛 in above Equations represent, ramp-up, ramp-down time 

of DGs, minimum-up and minimum-down time of DGs and binary variables of DGs. Its operation 

takes place using on=1 and off=0. Besides, 𝑊𝑊𝑑𝑑
𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑊𝑊𝑑𝑑

𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑊𝑊𝑑𝑑 , represents the minimum, 

maximum and total demand [81]. 

 

3.5.3 Battery constraints 
 

To enhance the balance between energy generation and demand, a commonly employed approach 

is to incorporate an energy storage system (ESS), such as a battery, HSS, etc. into the grid. The 

State of Charge (SOC) signifies the dynamic balance between the charging and discharging of 

energy within the battery. In this framework, battery efficiently storing electrical energy during 

surplus generation periods and discharging it during peak demand hours. This approach not only 

optimizes the grid's performance but also enhances energy utilization, and integration of RES with 

proposed grid. The SOC of the battery at time 't' is mathematically described by the following 

equation[77]: 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡 − 1)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑊𝑊 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

(𝑡𝑡)                             𝐸𝐸𝐸𝐸(23) 

0 ≤ 𝑊𝑊 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

(𝑡𝑡) ≤ 𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)                                                         𝐸𝐸𝐸𝐸(24) 

Where 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡 − 1)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 in equation indicates the amount of charging in current 

and previous hours, 𝑊𝑊 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

(𝑡𝑡) represents the amount of charging and discharging of battery at 

peak hours, and 𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) shows maximum battery capacity. 

While using battery storage system, the energy balance is a key component. To ensure energy 

balance, the power flow into the battery must be equal to the power flow out as shown in Equations 

25 and 26 as follows: 

𝑊𝑊𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)                                                                           𝐸𝐸𝐸𝐸(25) 

𝑊𝑊𝑖𝑖𝑖𝑖(𝑡𝑡) −𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = 0                                                                  𝐸𝐸𝐸𝐸(26) 
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Where 𝑊𝑊𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) represents the power into the battery and power out from the battery, 

respectively. 

 

3.6 Summary 
 

This chapter provides detailed mathematical representation and explanation of proposed system 

model. The proposed techniques for both models will be discussed in detail in next chapter. 
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CHAPTER 4  OPTIMIZATION TECHNIQUES  
 

4.1 Introduction 
 

This chapter of the thesis provides a detailed discussion of the optimization techniques, which 

consist of existing and proposed techniques. The existing techniques includes particle swarm 

optimization (PSO), multi-objective particle swarm optimization (MOPSO), genetic algorithm 

(GA), non-dominated sorting genetic algorithm (NSGA), and non-dominated sorting genetic 

algorithm-II (NSGA-II). Besides the proposed techniques are shuffled frog leaping algorithm 

(SFLA) and hybrid of Non-Dominated Sorting Genetic Algorithm II and Multi-Objective Particle 

Swarm Optimization (hybrid-NSGA-II-MOPSO).The shuffled frog leaping algorithm (SFLA) is 

used to manage DER and implement demand response programs (DSP). The aim is to optimize 

the economic, technical, and environmental aspects of a smart micro-grid (SMG). Furthermore, 

this thesis adopts a hybrid approach that combines well-established techniques, namely the Non-

Dominated Sorting Genetic Algorithm II and Multi-Objective Particle Swarm Optimization 

(Hybrid-NSGA-II-MOPSO), aims to optimize operational costs, reduce pollution, and address the 

challenge of achieving a high penetration of RES while minimizing the energy gap between initial 

demand and consumption. The detailed discussion of SFLA and hybrid-MOPSO-NSGA-II 

algorithms is as follows: 

 

4.2 Shuffled frog leaping algorithm 
 

SFLA draws inspiration from a collective of frogs seeking sustenance through two primary actions: 

shuffling and leaping. The specificities of these behaviors involve the frogs jumping to locate a 

position with a greater abundance of food than their current one, followed by the shuffling of 

information. This technique considers the frog’s population and each represents an outcome to the 

associated problem. There is one important terminology named “memeplex” which indicates the 

groups consists of population of frogs. Each group in the memeplex searches locally and then 

shuffles information [82]. The position of frog’s changes using Equations 27 and 28. Where 𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 

and 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 represent the positions of worst and best frog in the current memeplex, 𝑝𝑝′𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 indicate 
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the new position of the worst frog, C shows the permissible degree of positional change of frog, 

and k is a random value between 0 and 1.  

𝑝𝑝′𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐶𝐶                                                                           𝐸𝐸𝐸𝐸(27) 

𝐶𝐶 = 𝑘𝑘(𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)                                                                       𝐸𝐸𝐸𝐸(28) 

Algorithm 1: Pseudo code for SFLA 

 Input: Number of iterations, population size, fitness values, objective functions. 
 Output: Optimization of objective functions 
1 Initialization: Initialize variables. 
2 for ℎ = 1 𝑡𝑡𝑡𝑡 ℎ𝑚𝑚𝑚𝑚𝑚𝑚      do 
3 Calculating each frog fitness value 
5  for each memeplex    do 
6   for 𝑘𝑘 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚   do 
7   Determining the worst and best frog in the given memeplex (fbest, fworst). 
8   Calculating the position of the candidate (𝑝𝑝′) by using Equation (3) and (4) for 

finding the fworst in the given memeplex. 
9    if 𝑝𝑝′is better than the worst frog’s position. 
1
0 

   Taking 𝑝𝑝′ is a new position. 

1
1 

   else 
calculating the position of the candidate in the given memeplex. 

1
2 

    if 𝑝𝑝′is better than the worst frog’s position 

1
3 

    Taking 𝑝𝑝′ is a new position. 

1
4 

    else 

Moving the fworst to random position. 

1
5 

    end if 

1
6 

   end 
if 

 

1
7 

  end 
for 
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1
8 

 end 
for 

   

1
9 

 Shuffl
e 
frogs 

   

2
0 

end 
for 

    

  21    Frog with best position is an optimal solution. 
 

In this work, the distributed energy sources management at the generation side and employing 

DRP at the demand side is performed for optimizing the operational cost and CO2 emission of SMG 

using SFLA. The proposed objective functions are in conflict and not proportionate with each other, 

thus this algorithm yields number of solutions instead of single optimal solution which leads to 

optimize the objective functions simultaneously [83], [84], [85]. In this work, the operational cost 

and CO2 emission are considered as a multi-objective optimization problem by managing the DER 

and employing DRP. Both the objective functions are minimization problem and subjected to 

constraints, the formulation of this problem is given as follows: 

min𝐹𝐹(𝑍𝑍) = [𝑓𝑓1(𝑍𝑍),𝑓𝑓2(𝑍𝑍)]𝑇𝑇 

 Subject to: 

  𝑘𝑘𝑖𝑖(𝑍𝑍) < 0        𝑖𝑖 = 1.2 … …𝑀𝑀𝑢𝑢𝑢𝑢𝑢𝑢 

                        𝑙𝑙𝑖𝑖(𝑍𝑍) = 0        𝑖𝑖 = 1.2 … …𝑀𝑀𝑒𝑒𝑒𝑒                                                             𝐸𝐸𝐸𝐸(29) 

Where F represents a vector encompassing the objective functions, while Z is a vector containing 

the optimization variables. The inequality and equality constraints of this problem are represented 

by 𝑘𝑘𝑖𝑖(𝑍𝑍) and 𝑙𝑙𝑖𝑖(𝑍𝑍), while M indicates the number of objective functions which is considered as 

two objective functions in this work. Algorithm 1 outlines the implementation procedure of SFLA 

and the concept diagram of the proposed SFLA is shown in Figure 4. 
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Figure 4: SFLA conceptual diagram 

 

4.3 Particle swarm optimization (PSO) 
 

Particle Swarm Optimization (PSO) is a nature-inspired optimization algorithm that is 

based on the social behavior of birds and fish. The underlying idea is to simulate the social behavior 

of a group of individuals, called particles, in order to find optimal solutions in a search space. In 

PSO, each particle represents a potential solution to the optimization problem. The position of a 

particle in the search space corresponds to a possible solution, and the quality of that solution is 

evaluated using an objective function. The particles move through the search space, adjusting their 

positions based on their own experience and the experience of their neighbors. The algorithm is 

initialized with a population of particles, each assigned a random position and velocity in the search 

space. As the algorithm iterates, particles adjust their positions and velocities according to the 

following principles.  [80] 
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Figure 5:PSO algorithm concept (birds flock), position and velocity of particles 

 

Individual Best (𝑷𝑷𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃): Each particle remembers its own best-known position in the search 

space. If the current position is better than the remembered best, the particle updates its 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 

Global Best (𝑮𝑮𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃): Among all the 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 positions, the one with the best fitness value is 

considered the global best. Particles adjust their velocities to move towards the 𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 position. 

Velocity Update: The velocity of each particle is updated based on its current velocity, the 

difference between its current position and 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, and the difference between its current position 

and 𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. This velocity update equation guides the particles towards promising regions in the 

search space. 

The process continues iteratively, and the algorithm converges towards optimal or near-

optimal solutions. 

 

4.3.1 Mathematical Modeling of PSO 
 

Let's represent the position of a particle in the search space as 𝑋𝑋𝑖𝑖 =

 (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖1, … … … 𝑥𝑥𝑖𝑖𝑖𝑖), where  𝑖𝑖 is the particle index and 𝑛𝑛 is the dimensionality of the search 

space. The velocity of the particle is represented as 𝑉𝑉𝑖𝑖 =  (𝑣𝑣𝑖𝑖1, 𝑣𝑣𝑖𝑖1, 𝑣𝑣𝑖𝑖1, … … … 𝑣𝑣𝑖𝑖𝑖𝑖).  

The velocity update equation for each dimension 𝑗𝑗 is given by: 
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𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡 + 1) = 𝑤𝑤 ⋅ 𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡) + 𝑐𝑐1 ⋅ 𝑟𝑟1 ⋅ (𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑥𝑥(𝑡𝑡)) + 𝑐𝑐2 ⋅ 𝑟𝑟2 ⋅ (𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗 − 𝑥𝑥𝑥𝑥𝑥𝑥(𝑡𝑡))            𝐸𝐸𝐸𝐸(30) 

Where 𝑤𝑤 is the inertia weight, controlling the impact of the previous velocity on the current 

velocity, c1 and c2 are acceleration coefficients, r1 and r2 are random numbers between 0 and 1, 

𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 is the best-known position of particle 𝑖𝑖 in dimension j and 𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑗𝑗 is the best-known global 

position in dimension j respectively. 

The position update equation for each dimension j is given by: 

𝑥𝑥𝑥𝑥𝑥𝑥(𝑡𝑡 + 1) = 𝑥𝑥𝑥𝑥𝑥𝑥(𝑡𝑡) + 𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡 + 1)                                                                                         𝐸𝐸𝐸𝐸(30) 

These equations are applied for each dimension of each particle in the swarm during each 

iteration of the algorithm. The process continues until a termination condition is met, such as 

reaching a maximum number of iterations or achieving a satisfactory solution. 

This mathematical representation captures the core dynamics of the PSO algorithm, where 

particles explore the search space, remember their own best positions, and adjust their velocities 

to converge towards promising solutions. This algorithm can be used for optimizing single 

objectives in SMG and distribution grids, to optimize multi-objectives in SMG and smart 

distribution grids, multi-objective particle swarm optimization can be used. The details of MOPSO 

is given as follows: 

 

 4.4 Multi-Objective Particle Swarm Optimization (MOPSO)  
 

MOPSO is a powerful optimization algorithm inspired by the social behavior of bird flocks. 

It is particularly effective in solving complex optimization problems involving multiple conflicting 

objectives. In the context of SMG and smart distribution grids, MOPSO plays a crucial role in 

optimizing various parameters to enhance the overall performance, efficiency, and reliability of 

the grid system. MOPSO builds upon the principles of PSO. In PSO, a population of potential 

solutions, called particles, moves through the solution space. Each particle adjusts its position 

based on its own experience and the experiences of its neighbors. This cooperative behavior allows 

the swarm to explore and exploit the search space efficiently. Traditional optimization methods 

often focus on a single objective, but real-world problems, especially in smart grids, involve 
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multiple conflicting goals. MOPSO addresses this by simultaneously optimizing multiple 

objectives, creating a trade-off frontier known as the Pareto front. [86]Let's consider a smart 

microgrid and smart distribution grid scenario where various conflicting objectives need 

optimization. Suppose we have 'n' objectives to minimize (or maximize) denoted by:  

𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥), . . . ,𝑓𝑓𝑓𝑓(𝑥𝑥)                                       𝐸𝐸𝐸𝐸(32) 

where x represents the solution vector. Each particle in the swarm is represented as a 

solution vector: 

𝑥𝑥𝑥𝑥 = [𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, . . . , 𝑥𝑥𝑥𝑥𝑥𝑥]                                        𝐸𝐸𝐸𝐸(33) 

where d is the dimension of the search space. Besides, the velocity (𝑣𝑣𝑣𝑣𝑣𝑣) and position (𝑥𝑥𝑥𝑥𝑥𝑥) 

of each particle are updated iteratively using equations 32 and 33. 

 

4.4.1 Applications of MOPSO in context of SMG and smart distribution grids 
 

In the context of smart grids, MOPSO can be applied to optimize various objectives, such 

as optimizing the operation and control of distributed energy resources to minimize the overall 

cost, ensuring a reliable power supply by optimizing the allocation and scheduling of resources, 

reducing carbon emissions and promoting the use of RESs, and distributing the load efficiently 

among different components of the grid. MOPSO enables the simultaneous consideration of these 

conflicting objectives, providing a set of solutions on the Pareto front that represents the trade-offs 

between different goals. [87] 

MOPSO is a versatile optimization algorithm that proves beneficial in the complex and 

dynamic environment of SMGs and smart distribution grids. By addressing multiple conflicting 

objectives simultaneously, it aids in achieving a balance between economic, environmental, and 

reliability considerations, ultimately contributing to the efficient and sustainable operation of 

modern grid systems. 
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4.5 Genetic algorithm (GA) 
 

GA is an optimization algorithm inspired by the process of natural selection. Developed to 

solve complex optimization and search problems, GA draw their inspiration from the principles of 

evolution, with the aim of finding high-quality solutions within large and often nonlinear solution 

spaces. This algorithm belongs to the broader category of evolutionary algorithms and have been 

widely applied in various fields, including engineering and artificial intelligence. GA is the 

representation of potential solutions as individuals in a population. Each individual, often 

represented as a string of parameters or a chromosome, corresponds to a candidate solution to the 

optimization problem at hand. The algorithm begins by initializing a population of these 

individuals randomly or through some heuristics. The quality of each solution is assessed using a 

user-defined objective function, which evaluates how well the solution satisfies the optimization 

criteria. 

The evolutionary process unfolds through a series of iterative steps, mimicking the 

mechanisms of natural selection. During each iteration, known as a generation, individuals are 

selected from the current population to serve as parents for the creation of the next generation. The 

selection process is typically biased towards individuals with higher fitness, i.e., those that perform 

better according to the objective function. This reflects the survival-of-the-fittest principle, 

allowing the algorithm to focus on promising regions of the solution space. Reproduction occurs 

through genetic operators, primarily crossover and mutation. Crossover involves combining 

genetic material from two parent individuals to create offspring. This is analogous to genetic 

recombination in nature, where traits are inherited from both parents. Mutation introduces small 

random changes in an individual's genetic material, adding diversity to the population and 

preventing premature convergence to suboptimal solutions. [88] 

The offspring constitute the new generation, and the cycle of selection, crossover, and 

mutation continues. Over successive generations, the population tends to evolve towards better 

solutions, guided by the iterative interplay of selection pressures and genetic operators. The 

termination criterion, such as a maximum number of generations or the achievement of a 

satisfactory solution, determines when the algorithm concludes its search. One of the strengths of 

genetic algorithms lies in their ability to explore large and complex solution spaces effectively. 
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Their stochastic nature allows for a broad exploration of the search space, making them particularly 

useful when dealing with nonlinear, multi-modal, or ill-defined optimization problems. Despite 

their versatility, the success of genetic algorithms depends on appropriately tuning parameters, 

selecting suitable genetic operators, and designing an effective fitness function tailored to the 

specific optimization task at hand. 

 

4.5.1 Mathematical modeling of GA 
 

Mathematical modeling of GAs involves expressing the key components and processes of 

the algorithm in a formal mathematical framework. Let's denote the following terms to facilitate 

the mathematical representation. 

𝑷𝑷𝒊𝒊: Population at generation 𝑖𝑖, where each individual is represented as 𝑥𝑥𝑖𝑖. 

𝒇𝒇(𝒙𝒙𝒊𝒊): Objective function evaluating the fitness of an individual 𝑥𝑥𝑖𝑖. 

𝑷𝑷𝒊𝒊∗: The selected subset of individuals from 𝑃𝑃𝑖𝑖 based on their fitness. 

𝑪𝑪𝒊𝒊: Crossover operator applied to 𝑃𝑃𝑖𝑖∗ to produce offspring. 

𝑴𝑴𝒊𝒊: Mutation operator applied to the offspring. 

𝑷𝑷𝒊𝒊+𝟏𝟏: New population formed by combining 𝑃𝑃𝑖𝑖∗ and 𝑀𝑀𝑖𝑖. 

The mathematical modeling of the GA can be expressed through the following equations: 

 

1. Initialization 

𝑃𝑃0 = 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … … … … . , 𝑥𝑥𝑛𝑛                                        𝐸𝐸𝐸𝐸(34) 

 

2. Selection 

The selection operator chooses individuals from 𝑃𝑃𝑖𝑖  based on their fitness. Common methods 

include roulette wheel selection, tournament selection, or rank-based selection. 
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Pi∗ = Selection Operator (Pi, f)                                         𝐸𝐸𝐸𝐸(35) 

 

3. Crossover 

Ci = Crossover operator (Pi∗)                                         𝐸𝐸𝐸𝐸(36) 

The crossover operator combines pairs of individuals from Pi∗  to create offspring. This can be 

expressed as: 

Crossover operator �xi, xj� = �
(x′i, x′j)          with probability ρc
(xi, xj)            Otherwise                                                  𝐸𝐸𝐸𝐸(37) 

 

4. Mutation 

𝑀𝑀𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (Ci)                                                                                   𝐸𝐸𝐸𝐸(38) 

The mutation operator introduces small random changes to the offspring. It can be defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (x′i) = �
(x′′i)          with probability ρc
(x′i)            Otherwise                  

                              𝐸𝐸𝐸𝐸(39) 

Where x′′i is the mutated version of x′i, and ρc is the probability of mutation. 

 

5. New population 

The new population 𝑃𝑃𝑖𝑖+1 is formed by combining the selected individuals 𝑃𝑃𝑖𝑖∗  and the mutated 

offspring 𝑀𝑀𝑖𝑖. 

 

6. Termination 

The algorithm terminates after a predefined number of generations or when a satisfactory solution 

is found. This mathematical model provides a high-level overview of the GA process, 

incorporating selection, crossover, mutation, and the formation of new populations. The specific 
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details of the selection, crossover, and mutation operators will depend on the problem at hand and 

the design choices made during the algorithm's implementation. 

 

4.6 Non-dominated sorting genetic algorithm (NSGA) 
 

Non-dominated Sorting Genetic Algorithm (NSGA) is a multi-objective optimization 

algorithm that leverages genetic algorithms to efficiently search for solutions in a complex, multi-

dimensional objective space. NSGA addresses optimization problems with multiple conflicting 

objectives, where finding a single optimal solution may not be feasible due to the trade-offs among 

different objectives. The fundamental concept of NSGA lies in the evolution of a population of 

potential solutions, commonly referred to as individuals or chromosomes. These individuals are 

encoded representations of candidate solutions, and the algorithm aims to explore and refine this 

population to identify a set of solutions that are non-dominated, meaning no other solution in the 

population is better in all objectives simultaneously. 

One key element of NSGA is the sorting of individuals into different fronts based on their 

non-dominated status. The sorting process involves ranking individuals according to their 

dominance relationships, creating a hierarchy of fronts where individuals in the first front are non-

dominated by any other, those in the second front are dominated only by individuals in the first 

front, and so on. This non-dominated sorting ensures that the algorithm maintains a diverse set of 

solutions that cover the Pareto front, representing the trade-offs between conflicting objectives. To 

drive the evolution of the population, NSGA employs genetic operators such as crossover and 

mutation. Crossover combines the genetic information of two parent solutions to generate new 

offspring, while mutation introduces small changes to the genetic code of an individual. These 

operators allow the algorithm to explore the solution space efficiently, adapting and refining the 

population over successive generations.  

NSGA further enhances its ability to explore diverse solutions by introducing a concept 

known as crowding distance. Crowding distance measures the density of solutions in the objective 

space, promoting the selection of solutions that contribute to the diversity of the Pareto front. This 
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diversity is crucial for capturing a representative set of trade-off solutions, providing decision-

makers with a range of choices based on their preferences for different objectives. 

 

4.7 Non-dominated sorting genetic algorithm (NSGA-II) 
 

NSGA-II is a multi-objective optimization algorithm that has found applications in various 

fields, including smart microgrids and smart distribution grids. It is particularly valuable in 

scenarios where multiple conflicting objectives need to be optimized simultaneously. In the 

context of smart grids, NSGA-II can be employed to address challenges related to energy 

management, system reliability, and cost-effectiveness. Smart microgrids and distribution grids 

involve complex systems with diverse objectives, such as minimizing energy costs, maximizing 

renewable energy integration, and enhancing system resilience. NSGA-II excels in handling such 

multi-objective optimization problems by efficiently exploring the trade-offs between conflicting 

objectives. [89] 

NSGA-II is capable of handling multiple conflicting objectives. In smart grids, these 

objectives could include minimizing power losses, maximizing the use of renewable energy 

sources, and ensuring grid stability [90]. NSGA-II allows the formulation of an objective function 

that reflects these diverse goals. NSGA-II employs Pareto dominance to compare and rank 

solutions. A solution is considered better than another if it performs at least as well in all objectives 

and outperforms in at least one. This enables the algorithm to generate a set of solutions 

representing the trade-offs between conflicting objectives, known as the Pareto front. Smart 

microgrids and distribution grids often require diverse solutions that cater to different operational 

scenarios. NSGA-II incorporates mechanisms to maintain diversity in the population, preventing 

the algorithm from converging prematurely to a specific solution. This is crucial for adapting to 

dynamic changes in the grid environment.  

NSGA-II is known for its ability to adapt to dynamic environments. In the context of smart 

grids, where energy demand and availability of renewable resources can vary, NSGA-II can 

continuously evolve solutions to optimize system performance under changing conditions. Smart 

grids may have constraints related to system reliability, equipment limitations, and regulatory 
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requirements. NSGA-II can be extended to handle these constraints effectively, ensuring that the 

generated solutions are not only Pareto-optimal but also feasible within the given constraints. 

NSGA-II can be integrated into decision support systems for smart grids, providing valuable 

insights to grid operators and planners. The Pareto front generated by NSGA-II serves as a 

decision-making tool, offering a range of optimal solutions for stakeholders to choose from based 

on their preferences and priorities. [91] 

 

4.8 Hybrid-MOPSO-NSGA-II algorithm 
 

Particle swarm optimization (PSO) algorithm [80]is highly efficient and well-known technique for 

solving single-objective optimization problems which was extended to multi-objective particle 

swarm optimization (MOPSO) for solving multi-objective problems [92]. The MOPSO extended 

version include Pareto dominance into the conventional PSO technique which uses leader that 

guides other particles in the search space, stores record of the trad-off/non-dominated solutions in 

external repository.  

By exploring the features of the two algorithms discussed earlier, in this study, we proposed a 

hybrid MOPSO-NSGA-II algorithm for solving non-linear and complex problem of proposed SG 

in highly challenging search space. The purpose of the proposed hybrid technique is to enhance 

the overall search mechanism of the hybrid algorithm. It achieves this by combining NSGA II and 

MOPSO, which utilize distinct approaches to explore and exploit the search space. This 

combination helps to avoid the problem of solutions getting stuck in local optima by striking a 

balance between exploration and exploitation within the hybrid algorithm. In order to prevent 

premature convergence and obtain a well-distributed Pareto optimal solution, the entire population 

is divided into two halves based on the ranking generated by non-domination fronts. The first half 

of the population is improved using the NSGA II algorithm, while the other half is treated as swarm 

particles and optimized using MOPSO to guide them towards the best possible solutions. The 

detailed explanation of both algorithms is discussed in [92], [93]. 

MOPSO is a metaheuristic algorithm designed for tackling optimization problems with multiple 

conflicting objectives. Taking inspiration from the social behaviors observed in birds, MOPSO 

operates with a population of particles navigating the solution space. Each particle represents a 
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potential solution, and their movements are influenced by personal best and global best solutions. 

The primary goal of using this algorithm is to identify a set of solutions forming the Pareto front. 

On other hand, NSGA-II is a powerful optimization algorithm designed for multi-objective 

optimization problems. Inspired by genetic algorithms, NSGA-II introduces a novel non-

dominated sorting and crowding distance mechanism to maintain a diverse set of solutions. The 

algorithm begins with an initial population and employs genetic operators like crossover and 

mutation to generate offspring. The solutions are then ranked based on non-domination, creating 

Pareto fronts. The crowding distance mechanism ensures the spread of solutions in the Pareto 

fronts, promoting diversity. Through successive generations, NSGA-II efficiently evolves a 

population of solutions that represents a well-distributed set along the Pareto front, providing 

decision-makers with a range of trade-off options for multiple conflicting objective. 

In real-world optimization problems, many problems entail the simultaneous optimization of 

multiple objective functions. These objectives are often non-proportional and can be in conflict 

with each other. Consequently, the optimization process yields a set of solutions instead of a single 

optimal solution since it is not feasible to find a single solution that can optimize all objectives 

simultaneously. 

�
𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓1,𝑓𝑓2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓3

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�                                        𝐸𝐸𝐸𝐸(40) 

In this work MOPSO-NSGA-II algorithm is applied in the following steps  

Step 1: Specify the SG problem parameters, 

• Total demand of proposed power system 

• Decision variables upper bound 

• Decision variables lower bound 

• Total number of decision variables 

Step 2: Specify the MOPSO parameters, 

• Size of the repository 

• Coefficients c1 and c2 

• Inertial weight W 
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• Selection of leader 

Step 3: Specify the NSGA-II parameters, 

• Maximum iteration 

• Size of the population 

• Crossover 

• Mutation 

Step 4: Evaluation of the proposed SG objective functions f1, f2 and f3, 

• Calculate the objective functions 

• Provide the calculated objective functions to the algorithm 

Step 5: Perform non-dominating sorting 

Step 6: Start MOPSO for exploration 

Step 7: Start NSGA-II exploitation 

Step 8: Apply decision making mechanism 

Step 9: Stop when conditions met  

The flowchart of proposed Hybrid-NSGA-II-MOPSO method is shown in Figure 5. 
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Figure 5: Hybrid MOPSO-NSGA-II Algorithm flow chart 

 

The Hybrid-NSGA-II-M0PSO algorithm exhibits several advantages. One notable advantage is its 

ability to strike a balance between exploration and exploitation. NSGA-II, with its non-dominated 

sorting and crowding distance mechanism, promotes diversity within the Pareto front, preventing 
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premature convergence. On the other hand, M0PSO excels in global exploration by leveraging 

particle swarm optimization principles, allowing for effective exploitation of promising regions in 

the solution space. This synergy results in an algorithm that not only converges faster but also 

maintains a diverse set of high-quality solutions. Additionally, the hybrid approach enhances 

robustness, as it can adapt to the problem's characteristics and demands, making it well-suited for 

addressing the complexities inherent in real-world optimization scenarios. The Hybrid-NSGA-II-

M0PSO algorithm thus stands out as a powerful and versatile optimization tool, capable of 

delivering superior performance across a wide range of multi-objective optimization challenges. 

 

4.9 Summary 
 

This chapter provides detailed overview and explanation of proposed optimization algorithms, its 

general explanation, implementation steps and advantages. 
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CHAPTER 5 RESULTS, ANALYSIS AND DISCUSSION 
 

5.1 Introduction 
 

This chapter of thesis provides the results, analysis, and discussion for both models. The first model 

aims to optimize two primary objective functions: operational cost and CO2 emissions. Achieving this 

optimization is realized through the effective management of DER and the implementation of DRP, 

employing the SFLA. However, the second model presents the results that focus on addressing the tri-

objective optimization problem within the distribution grid. This involves managing a high penetration of 

renewable energy sources and implementing a demand-side management strategy. The key objectives in 

this context include minimizing operational costs and pollution emissions, maximizing the integration of 

renewable energy resources, and reducing the energy gap between the initial demand and the optimal 

consumption value. To tackle this complex problem, a modified hybrid Multi-Objective Particle Swarm 

Optimization (MOPSO) and Non-dominated Sorting Genetic Algorithm II (NSGA-II) technique is 

employed, considering various constraints. The detailed discussion of the results for both models are 

discussed in detail as follows: 

 

5.2 First model results 
 

This model is implemented based on three different scenarios: 1) Basic grid operation, 2) 

Operation with maximum usage of renewable energy resources, 3) Operation with maximum usage 

of renewable energy resources and demand response programs. The load profile of proposed SMG 

is shown in Figure 6. 
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Figure 6: SMG load profile 

The DER emissions coefficients are shown in Table 1. Besides, the battery considered in the 

proposed study has capacity of 40 kWh.  

 

5.2.1 Case 1: Basic grid operation 
 

In this case, the grid operation is executed with a focus on the objective functions that represent 

the operational costs and CO2 emissions. The simulation results for this scenario are illustrated in 

Figure 7. As depicted in figure, the operational cost at the optimal point stands at 251.9 estimated 

cost (Ect- E-chain network), while the pollution emission registers at 452.4 kg. The operational 

cost and pollution emission are high due to reliance on the utility grid for the energy supplied in 

this particular case.  

 

Figure 7: Pareto criterion distribution for case 1 using SFLA 
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5.2.2 Case 2: Operation with maximum usage of renewable energy resources 
 

In this case, the primary emphasis is on maximizing the use of RES to optimize operational costs 

and reduce CO2 emissions in the SMG through the implementation of the SFLA. The simulation 

results for this scenario are depicted in Figure 8 illustrating that the operational cost at the optimal 

point is 297.5 Ect, and the pollution emission is 419.1 kg. Through maximum usage of RES, the 

outcomes indicated that, in comparison to Case 1, operational costs have increased while CO2 

emissions have decreased.  

 

 

Figure 8:Pareto criterion distribution for case 2 using SFLA 

 

 

Table 2: Distributed energy resources emissions coefficients 

Sources CO2 kg/MWh 
Wind Turbine 0.00 
Photovoltaic 0.00 
Battery 9.80 
Grid 960 
Micro Turbine 710 
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Table 3: Optimal power allocation (kw) using SFLA 

Hrs WT-1 WT-2 WT-3 PV-1 PV-2 MT-1 MT-2 Battery Utility 

1 1.645 2.545 1.543 0.00 0.00 8.841 9.966 6.546 12.05 

2 1.645 4.321 3.232 0.00 0.00 7.674 11.654 -16.622 28.42 

3 1.593 1.453 0.936 0.00 0.00 7.784 12.545 -11.541 30.31 

4 1.595 2.353 4.215 0.00 0.00 5.776 10.457 -12.342 28.56 

5 1.598 0.253 0.124 0.00 0.00 8.564 6.346 15.560 27.08 

6 0.824 4.543 6.424 0.00 0.00 8.564 9.543 6.898 22.56 

7 0.632 2.653 4.211 0.00 0.00 5.453 5.231 11.560 29.88 

8 0.632 1.640 1.420 0.21 0.24 24.676 8.121 13.885 10.50 

9 1.351 1.542 1.145 3.32 2.43 30.665 5.321 31.677 -17.19 

10 3.699 2.321 1.213 8.14 2.72 31.654 11.132 28.810 -19.24 

11 8.180 4.032 3.422 4.04 5.40 31.654 25.321 31.553 -29.31 

12 11.815 8.432 7.443 5.22 4.32 31.654 10.840 29.901 -31.45 

13 3.045 1.231 1.036 10.07 6.43 28.332 8.542 28.021 -19.98 

14 2.561 3.433 2.540 8.22 7.32 28.440 11.554 28.025 -31.53 

15 1.330 1.054 1.221 7.51 2.341 31.552 3.541 28.030 -19.66 

16 1.432 1.054 1.041 6.67 2.05 20.560 2.542 31.910 -14.58 

17 1.688 1.242 3.242 6.67 8.54 28.401 23.541 31.055 -6.05 

18 0.381 2.412 6.332 0.00 0.00 19.750 29.929 13.034 25.76 

19 0.293 0.541 0.432 0.00 0.00 23.800 27.322 15.660 21.31 

20 0.980 0.924 0.532 0.00 0.00 25.504 22.321 22.070 11.54 

21 0.998 0.908 0.402 0.00 0.00 28.667 22.532 27.430 -14.59 

22 1.242 1.542 1.904 0.00 0.00 20.041 16.212 25.010 -8.67 

23 0.401 0.341 0.612 0.00 0.00 8.901 16.312 -7.906 29.60 

24 0.560 0.432 0.320 0.00 0.00 27.886 12.532 -7.881 7.54 

 

 

Table 4: Operational cost and emissions in case i, ii and iii 

Cases Operational 
cost (Ect) 

Emissions 
(kg) 

1 251.9 452.4 
2 297.5 419.1 
3 218.5 374.2 
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Figure 9: Pareto criterion distribution for case 3 using SFLA 

 

5.2.3 Case 3: Operation with maximum usage of renewable energy resources and demand 
response programs 
 

 In this case, the maximum RES is utilized with the implementation of DRP to optimize 

operational costs and CO2 emissions in SMG using SFLA. The simulation results obtained in this 

case are shown in Figure 9, indicating that the operational cost at the optimal point is 218.5 Ect, 

and pollution emissions are 374.2 kg, which outperforms both cases discussed earlier in terms of 

minimizing both objectives. Case 3 highlights the impact of DRP in the proposed scenario. The 

optimal power allocation in this case is shown in Table 3. The operational cost and CO2 emissions 

obtained in all three cases are shown in Table 4.  

 

5.3 Second model results 
 

In this model, Hybrid-NSGA-II-MOPSO model is employed to smart distribution grid for 

optimization of tri-objective function considering DSM strategy and residential consumers with 

sheddable, non-sheddable and shiftable loads. The hourly wind speed for the proposed study is 

shown in Figure 10, Figure 11 illustrates the hourly solar irradiance, Figure 6 provides insights 

into the status of hydrogen storage and Figure 12 represents the pressure levels within stored 

hydrogen. The state of charge (SOC) of the battery is depicted in Figure 13. Fuel cell and PEM 

electrolyzer design and operating parameters are given in Table 5 and Table 6, respectively.  
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Figure 10:Wind speed 

 

Figure 11: Solar irradiance 

 

 

Figure 12: Hydrogen storage status 
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Figure 13: Battery SOC 

 

Table 5: Fuel cell design and operating parameters 

Parameter Value 
Current density 1100 𝐴𝐴/𝑚𝑚2 
Area of cell 0.1 𝑚𝑚2 
Heat rate of fuel cell 1518 𝑊𝑊 
Fuel cell operating pressure 100 𝑘𝑘𝑘𝑘𝑘𝑘 
Fuel cell operating temperature 80℃ 

 

Table 6: PEM electrolyzer design and operating parameters 

Parameter Value 
Cathode activation energy 18000 𝑗𝑗/𝑚𝑚𝑚𝑚𝑚𝑚 
Anode activation energy 76,000 𝑗𝑗/𝑚𝑚𝑚𝑚𝑚𝑚 
Temperature 80℃ 
Thickness of membrane  0.1 𝑚𝑚𝑚𝑚 

 

In order to demonstrate the proposed model’s efficiency, the simulation of this model is planned 

and implemented in four different scenarios.  

1) Scenario 1: Optimize the first objective function. 

2)  Scenario 2: Optimize the first and second objective functions.  

3) Scenario 3: Optimize the first and third objective functions. 
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4) Scenario 4: Tri-objective simultaneous optimization 

For the comparison purpose, first we implement a basic grid operation, we have seen that the 

utility grid operational cost and pollution emission was 60% and 85% of the overall operational 

cost and pollution emission. This implies that the operational cost and pollution emission of utility 

grid is high, therefore, by utilizing the maximum utilization of RES with DSM strategy, using 

hydrogen storage system to store electricity and used that in peak hours may results in minimizing 

the operational cost and pollution emission.  Therefore, by implementing these four distinct modes, 

the proposed model's efficiency is thoroughly evaluated, and its performance is quantified. The 

four modes are explained in detail as follows: 

 
5.3.1 Case 1: First objective (operational cost and pollution emission optimization) 

 
In this mode of simulation, the utilization of RES with implementation of DSM strategy is 

performed, the primary focus lies in the optimization of operational costs and pollution emission 

objective functions of the proposed grid. The goal is to strike a balance between minimizing 

operational cost and reducing environmental impact. To achieve this, the simulation employs a 

Hybrid-NSGA-II-MOPSO technique, which serves as an effective tool for obtaining the Pareto set 

solutions or non-dominated solutions. The selection process is facilitated through a robust 

decision-making mechanism, designed to provide guidance when choosing the ideal solution. 

Among the array of Pareto set solutions, the 15th solution is picked as best/optimal solution, as 

depicted in Figure 14. Results show that the operational cost is reduced by 12% and pollution 

emission is reduced by 7% as compared with basic operation mode using Hybrid-NSGA-II-

MOPSO technique. 
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Figure 14: First objective: Operational cost and pollution emission optimization using 
Hybrid-NSGA-II-MOPSO 

 

5.3.2 Case 2: First and second objective optimization 
 

The second mode extends the optimization scope to both the first and second objectives of the 

model, by utilizing both RES with DSM in the system. By simultaneously targeting two key 

objectives, this mode evaluates the model's capacity to handle multiple optimization criteria. In 

this mode of simulation, operational cost, pollution emission and minimizing energy gap is 

optimized, the Pareto set solution/non-dominated solutions are obtained using the proposed 

Hybrid-NSGA-II-MOPSO technique and decision-making mechanism is used for picking 

best/optimal solution in the search space. Results illustrate, among the Pareto set solutions, 20th 

solution is picked as optimal solution as shown in Figure 15. Results show that the operational cost 

and pollution emission is reduced by 11% and 5% and energy gap is minimized by 13% as 

compared to basic operational mode using Hybrid-NSGA-II-MOPSO technique. 
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Figure 15: First and second objective optimization using Hybrid-NSGA-II-MOPSO 

 

Figure 16: First and third objective optimization using Hybrid-NSGA-II-MOPSO 

 
 
5.3.3 Case 3: First and third objective optimization 
 

Similar to the previous mode, this mode introduces different sets of objectives. It concentrates on 

optimizing the first and third objectives of the model, emphasizing the significance of these 

specific objectives. This mode helps to assess whether the model can adapt to diverse optimization 

requirements and excel in situations where objectives differ from the previous cases. In this mode 

of simulation, the first objective, reducing operational cost and pollution emission (minimization 

problem) and maximizing penetration of renewable energy sources (maximization problem) is 

optimized, the Pareto set solution/non-dominated solutions are obtained using the proposed 
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Hybrid-NSGA-II-MOPSO technique and decision-making mechanism is used for picking 

best/optimal solution in the search space as shown in Figure 16. Considering minimization 

problem, results indicate that the operational cost and pollution emission is reduced by 10% and 

7% as compared with basic operational mode, on other hand, penetration of renewable energy is 

maximized by 15%. 

 

5.3.4 Case 4: First, second and third (tri-objective) simultaneous optimization 
 

The final mode pushes the boundaries further by considering a tri-objective optimization 

scenario. In this mode, all three objectives are simultaneously optimized, mirroring complex real-

world situations where multiple, often conflicting, objectives need to be addressed. This mode 

evaluates the model's versatility and its ability to navigate intricate trade-offs among objectives. 

Besides, the proposed tri-objective complex model is solved considering three different case 

studies as follows: 

a) Case study 1: Basic operation 

b) Case study 2: Operation with DSM and Battery 

c) Case study 3: Operation with DSM considering both battery and hydrogen 

The involvement of DSM strategy and different sources in each case study is shown in Table 7. 

The study introduces a novel and intricate tri-objective complex model, which is tackled using the 

Hybrid-NSGA-II-MOPSO optimization approach across three distinct case studies. The first 

scenario, denoted as the "basic operation," serves as the fundamental benchmark, characterizing 

the system's performance without any additional features. In the second case, referred to as 

"operation with DSM and battery," the DSM strategies and battery storage are introduced, 

reflecting a more dynamic and flexible energy management framework. The third and most 

advanced scenario, "operation with DSM considering both battery and hydrogen," showcases the 

convergence of DSM with both battery and hydrogen storage solutions, representing a cutting-

edge approach to energy optimization. The proposed case studies and their outcomes are explained 

in detail as follows: 
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Table 7: Different case studies for tri-objective optimization using Hybrid-NSGA-II-
MOPSO 

Case studies Sources Involvement DSM 
Strategy 

Basic operation Wind 

 

  

 Solar   

 Battery  × 

 Hydrogen ×  

 Utility   

 Diesel generator   

Operation with DSM and Battery Wind 

 

  

 Solar   

 Battery   

 Hydrogen ×  

 Utility   

 Diesel generator ×  

Operation with DSM considering both battery 
and hydrogen 

Wind 

 

  

 Solar   

 Battery   

 Hydrogen   

 Utility   

 Diesel generator ×  
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5.3.4.1 Case study 1: Basic operation 
 

This operational case study represents the standard operational framework without the 

integration of advanced energy storage system or strategies, providing a baseline for 

comparison. The results in case study 1 revealed high operational costs and emissions, 

underscoring the necessity for more efficient and sustainable energy management practices by 

utilizing high penetration of RES, implementing DSM strategy and minimizing the energy gap. 

In case study 1, considering the tri-objective optimization, the utility grid operational cost and 

pollution emission is 65% and 73% of the overall operational cost and pollution emission. This 

implies that the operational cost and pollution emission of utility grid is high, therefore, by 

utilizing the maximum utilization of RES with DSM strategy, using hydrogen storage system to 

store electricity and used that in peak hours may results in minimizing the operational cost and 

pollution emission. The Pareto set solution obtained through Hybrid-NSGA-II-MOPSO and 

best/optimal solution obtained through decision making mechanism in case study 1 is shown in 

Figure 17. 

 

Figure 17: Basic operation using Hybrid-NSGA-II-MOPSO 

 

5.3.4.2 Case study 2: Operation with DSM and Battery 
 

The "operation with DSM and battery" case study introduces two key elements to enhance 

energy management. DSM strategy is employed to regulate energy consumption patterns and 

mitigate peak loads, while battery storage systems are integrated to store excess energy and release 
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it when demand is high. This combination enhances the system's flexibility and resilience, reducing 

the reliance on the grid during peak periods. This case study showcased substantial improvements, 

with a 4.1% reduction in operational cost, a 9% decrease in pollution emissions, and a 12.5% 

reduction in the energy gap using Hybrid-NSGA-II-MOPSO method. These findings emphasize 

the effectiveness of integrating DSM and battery storage in achieving cost savings and 

environmental benefits. Moreover, the penetration of renewable energy sources is increased by 

7%, reflecting a positive shift towards cleaner and more sustainable power sources. The Pareto set 

solution obtained through Hybrid-NSGA-II-MOPSO and best/optimal solution obtained through 

decision making mechanism in case study 2 is shown in Figure 19. 

 

Figure 18: Operation with DSM and Battery using Hybrid-NSGA-II-MOPSO 

 

5.3.4.3 Case study 3: Operation with DSM considering both battery and hydrogen 
 

The most advanced scenario, "operation with DSM considering both battery and hydrogen," 

takes energy management to a cutting-edge level. It combines DSM strategy with the utilization 

of both battery and hydrogen storage solutions. This multifaceted approach optimizes energy usage 

by leveraging the benefits of two storage technologies, offering a dynamic and sustainable energy 

management strategy that is forward-looking and environmentally conscious. In this case study, 

the results exhibited even more remarkable outcomes. Operational cost was reduced by 5.4%, 

pollution emissions dropped by 13%, and the energy gap decreased by 14.5% using Hybrid-

NSGA-II-MOPSO method. Notably, the integration of hydrogen storage further improved the 
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system's performance. Moreover, the penetration of renewable energy sources increased 

significantly by 15%, illustrating a substantial commitment to sustainable energy solutions. These 

findings underscore the immense potential of combining advanced storage technologies and 

demand-side management strategies for optimizing energy systems, simultaneously reducing 

costs, emissions, and energy shortfalls while maximizing the adoption of renewable energy 

sources. The Pareto set solution obtained through Hybrid-NSGA-II-MOPSO and best/optimal 

solution obtained through decision making mechanism in case study 3 is shown in Figure 20. 

 
Table 8: Diesel generator technical and economic data 

Parameters 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀𝑀𝑀) 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀𝑀𝑀) RU 
(MW) 

RD 
(MW) 

MU (h) MD(h) 

DG-1 0 1 0.06 0.01 5 3 
DG-2 0 1.2 0.08 0.02 8 1 
DG-3 0 0.85 0.03 0.01 10 1 

 

 
Table 9: Battery parameters 

Parameter Value 
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  1.125 MW 
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1.125 MW 

𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 10% 
𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 100% 
𝜂𝜂𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 90% 
𝜂𝜂𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 95% 
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Figure 19: Operation with DSM considering both battery and hydrogen using Hybrid-
NSGA-II-MOPSO 

 

 

Figure 20: Comparison between pre-optimized and optimized power supplies 

 

The comparison between the pre-optimized and optimized energy supply is shown in Figure 21, 

revealing a transformation in the system's performance. Prior to optimization, the system's energy 

supply fell short of meeting the prevailing demand, resulting in a noticeable deficit that affected 

the operation of the energy infrastructure. However, the transition to an optimized supply scenario 

yielded remarkable results. Following the implementation of proposed DSM strategy, battery and 

hydrogen storage systems, the energy supply was not only brought in line with the demand but, in 

fact, surpassed it. The surplus power generated is used to feed electric vehicle (EV) charging 

stations with the additional energy it required. This enhancement in supply not only eradicated the 
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previous energy shortfall but also contributed to the sustainability goals of the system by 

facilitating the electrification of transportation through the EV station. The optimization, thus, is 

not only rectified a critical supply-demand imbalance but also harnessed excess power to promote 

the growth of eco-friendly technologies and services. The final demand and supply of the proposed 

system model considering third case study is shown in Figure 22.  

 

 

Figure 21: Demand and supply in final case study 

 

Table 10: Comparison between case studies considering the proposed objective functions 

Case studies Operational cost 
reduction 

Pollution emission 
reduction 

Penetration 
of RES 

Energy 
gap 

reduction 

Bi-objectives 

Case 1 12% 7% - - 

Case 2 11% 5% - 13% 

Case 3 10% 7% 15% - 

Tri-objectives 

Case 1 - - - - 

Case 2 4.1% 9% 7% 12.1% 

Case 3 3.4% 13% 15% 14.5% 
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5.4 Summary 
 

This chapter provides details of simulation results for two proposed models. The first model 
presents simulation test for energy management in SMG considering management of DERs using 
SFLA algorithm. The second model utilizes a modified Hybrid-NSGA-II-MOPSO model to smart 
distribution grid for optimization of tri-objective function considering DSM strategy.  
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CHAPTER 6 CONCLUSION 
 

This chapter of the thesis presents the concluding remarks of the proposed work, 

challenges, and future directions. 

This thesis work exploring two distinct models, the primary focus of the first model lies in 

addressing the challenges of operational cost reduction and pollution emission mitigation within 

SMG. By integrating DRP, this model fosters active consumer participation, which is beneficial 

for both consumers and utility providers. The optimization process for the first model is executed 

through the innovative SFLA algorithm. Considering the second model, this work extended to 

tackle tri-objective optimization energy management problem within distribution grids. This 

model optimizes operational cost, pollution emission, the substantial integration of renewable 

energy resources, and the minimization of the energy gap. Enabling consumer involvement 

through DSM strategies and incorporating three types of loads. The second model employs the 

hybrid-NSGA-II-MOPSO algorithm to solve this complex tri-objective optimization problem. 

The significance of the proposed models in this thesis work playing a key role in advancing 

the integration of renewables within the energy landscape. The first model addressing operational 

cost and pollution emissions in smart microgrids, introduces a paradigm shift by incorporating 

DRPs. This approach not only optimizes operational efficiency but also fosters a symbiotic 

relationship between consumers and utilities. By actively engaging consumers in the energy 

management process, the model paves the way for seamless integration of RESs, thereby 

enhancing the overall sustainability of the microgrid. Besides, by encouraging consumers to 

engage in load-shifting and demand-response activities, the model promotes a flexible grid that 

can seamlessly accommodate the intermittent nature of renewable energy sources which results in 

improving the renewables integration with SMG and smart distribution networks. 

First model successfully addresses the economic and environmental challenges of the SMG 

through a multi-objective approach, employing DER management and DRP integration using the 

SFLA technique. The simulation results are evaluated across three distinct cases and validate the 

effectiveness of the proposed model in various dimensions. In Case 1, where the energy supply 

heavily relies on the utility grid, both operational costs and pollution emissions were observed to 

be high. In Case 2, despite elevated operational costs, a notable reduction in CO2 emissions was 
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achieved through maximizing the utilization of RES. Lastly, in Case 3, by strategically 

implementing DRP and optimizing RES usage, the proposed model demonstrated a significant 

reduction in both operational costs and CO2 emissions compared to Case 1 and Case 2. This 

underscores the efficacy of the SFLA-based approach in achieving a balanced and sustainable 

solution for the economic and environmental concerns within the SMG context.  

Based on the results obtained from the first model it is found that the model can be improved by 

adding more objective functions and adding hydrogen which is a long storage system. Besides, 

this work employing a hybrid optimization technique which combining the strengths of two 

different algorithms: In second model, a tri-objective optimization problem concerning energy 

management within distribution grids through the analysis of three distinct case studies  is 

addressed. In the first case, basic operation of distribution grid is performed, the operational cost 

and pollution emissions is investigated high due to the absence of demand side management 

strategy and storage system. In the second case, the operational cost and pollution emission are 

decreased by 4.1% and 9%, and the energy gap narrowed by 12.5%, highlighting the benefits of 

demand side management strategy and battery storage system. Moreover, the penetration of 

renewable energy sources in the second case is increased by 7%, indicating a substantial shift 

towards more sustainable power generation. In the final case of study, DSM strategy, and both 

battery and hydrogen storage systems are used, the reduction in operational costs is investigated 

as 5.4% as compared to case 2, a 14.5% reduction in pollution emissions, a substantial 13.5% 

decrease in the energy gap, and the penetration of RES increased significantly by 15%. The 

introduction of hydrogen storage system in third case study further enhanced system performance, 

emphasizing the commitment to more sustainable energy solutions. 

 

6.2 Link between proposed work and practical applications 
 

This work involves the simultaneous optimization of smart micro grid and distribution grid 

objective functions, such as, operational cost, pollution emission, energy gap minimization, and 

high penetration of renewable energy sources using SFLA and hybrid-NSGA-II-MOPSO 

algorithms. This work has direct and significant implications for practical applications in the field 
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of energy management and smart grid systems. Here are some links between our work and practical 

applications[94], [95]:  

 

6.2.1 Renewable energy integration 
 

Link: This optimization approach aims to achieve high penetration of renewable energy sources 

(wind and solar) in the micro grid. 

Practical application: This is crucial for real-world applications as it addresses the challenge of 

integrating variable and intermittent renewable sources into the energy mix, optimizing their 

contribution to overall energy generation. 

 

6.2.2 Operational cost reduction 
 

Link: Optimization of operational costs is one of our objectives, indicating a focus on efficient 

resource utilization. 

Practical application: Reducing operational costs is a key goal for practical implementation, as 

it directly impacts the economic viability of smart micro grids and distribution grids, which 

encourages sustainable energy practices. 

 

6.2.3  Pollution emission minimization 
 

Link: Another objective involves minimizing pollution emissions, reflecting a commitment to 

environmentally friendly energy solutions. 

Practical application: This aligns with the global push towards cleaner energy and sustainability. 

Practical applications include meeting environmental regulations and reducing the carbon footprint 

associated with energy generation. 
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6.2.4 Energy Gap Minimization 
 

Link: This work also addresses the minimization of energy gaps, indicating a focus on maintaining 

a stable and reliable power supply. 

Practical application: In real-world scenarios, minimizing energy gaps is crucial for ensuring a 

consistent and reliable power supply, which is vital for industries, residences, and critical 

infrastructure. 

 

6.2.5 Integration of Multiple Energy Sources 
 

Link: This optimization considers a mix of energy sources, including wind, solar, battery storage 

system, hydrogen storage system, diesel generator, and the utility grid. 

Practical application: The ability to integrate diverse energy sources is essential for building 

resilient and adaptable smart micro grids and distribution grids. Practical applications involve 

achieving energy independence, reducing reliance on non-renewable sources, and enhancing grid 

reliability. 

 

6.2.6 Constraints handling 
 

Link: our work incorporates various constraints such as power balance, generation bounds, battery 

constraints, and diesel generator constraints, etc.  

Practical application: Real-world energy systems are subject to numerous operational 

constraints. Your approach addresses these constraints, making the optimization results more 

applicable and feasible for practical implementation. 
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6.2.7 Managing distributed energy resources in smart micro-grid 
 

Link: Managing distributed energy resources (DERs) within a smart micro-grid is a critical aspect 

of modern energy systems. The proposed DERs include various decentralized and often renewable 

sources, energy storage systems, demand response technologies, and other distributed components. 

our focus on optimizing smart micro grids, including the management of DERs, aligns with the 

broader goals of enhancing grid efficiency, reliability, and sustainability. 

Practical application: Real-world smart grids need to effectively incorporate DERs to maximize 

their benefits. This includes optimizing the use of RES, managing energy storage efficiently, and 

coordinating demand response actions. 

 

6.2.8 Demand Response and Load Management 
 

Link: The proposed smart micro-grid optimization involves demand response strategies, which 

are integral to managing DERs and overall grid performance. 

Practical application: Effective demand response, facilitated by the management of DERs, 

enables utilities to balance supply and demand, reduce peak loads, and enhance overall grid 

stability. This is particularly important for optimizing energy consumption patterns. 

This work contributes directly to the development of practical solutions for optimizing the 

operation of smart micro grids and smart distribution grids, making them more efficient, 

sustainable, and adaptable to real-world constraints and challenges in the energy sector. 

 

6.3 Challenges  
 

Following are challenges associated with energy management of power systems using renewable 

and non-renewable energy resources.  
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6.3.1 Intermittency and Variability 
 

One of the primary challenges with renewable energy sources, such as solar and wind, is their 

intermittent and variable nature. The generation of power depends on weather conditions, time of 

day, and seasonal changes, making it difficult to predict and manage the energy supply consistently 

within a grid. 

 

6.3.2 Grid Stability and Reliability 
 

Integrating a high percentage of renewable energy into the smart grid can pose challenges to grid 

stability and reliability. Fluctuations in energy production may lead to voltage and frequency 

variations, potentially causing disruptions in the power supply. Developing effective energy 

storage solutions becomes crucial to address this issue. 

 

6.3.3 Energy Storage Technologies 
 

Although energy storage is a key solution to manage the intermittent nature of renewable energy, 

the development and implementation of cost-effective and efficient energy storage technologies 

remain a challenge. Current storage solutions often have limitations in terms of capacity, lifespan, 

and environmental impact. 

 

6.3.4 Conflicting Objectives 
 

Energy management in power systems often involves conflicting objectives, such as minimizing 

costs, maximizing reliability, and reducing environmental impacts. Balancing these objectives 

requires careful consideration and trade-offs, and finding a Pareto-optimal solution that satisfies 

multiple conflicting goals can be challenging. 

 



74 

 

6.3.5 Computational Complexity 
 

Multi-objective optimization algorithms can be computationally intensive, especially for large-

scale power systems with numerous variables and constraints. This complexity may result in 

longer computation times, limiting the practical applicability of these algorithms in real-time 

energy management scenarios. 

 

6.3.6 Communication and Coordination 
 

In multi-objective optimization, decisions often need to be made collaboratively. Coordinating 

actions and ensuring effective communication among different entities in the power system, such 

as generators, grid operators, and consumers, is essential for achieving optimal results. 

 

6.4 Future directions 
 

In future, this work will be extended in diverse direction. We will use artificial intelligence-based 
techniques to optimize the following objectives in micro-grids and distribution grids: 

• To perform an accurate techno-economic analysis of proposed distribution grids and micro-
grids. 

To optimize and control the power flow in smart micro-grids and distribution grids. 

• To optimize the capital, operating costs and environmental pollution problems. 
• Peer to peer micro grids constraint will be add to the objective functions. 

Besides, we will implement more DSM strategies such as flexible load scheduling, load 
curtailment, time of use, incentive programs, etc. To involve different types of consumers to 
improve the efficiency of energy systems.  
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