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Abstract 

Background 

Physical resilience, broadly defined as the ability to resist or recover from health stressors, is a 

relatively new concept in the field of aging, yet, anticipated as a potentially game-changing idea. 

In particular, physical resilience has significant potential to complement the widely used concept 

of frailty. To date, conceptual and methodological difficulties have hampered such potential. 

Frailty and physical resilience are broad and closely related concepts with multiple 

interpretations, many approaches to measure physical resilience have been proposed, and 

empirical studies have rarely investigated frailty and physical resilience together. 

Project Aim 

Enrich our understanding of the relationship between frailty and physical resilience in the health 

of aging populations by providing a novel, integrated framework and a concurrent empirical 

investigation of the two concepts in longitudinal population data.  

Specific Objectives 

1. Guided by the integrated framework, operationalize multiple specific measures of frailty 

and physical resilience and provide a descriptive analysis of each measure.  

2. Evaluate the relationship between frailty, physical resilience, and mortality. 

3. Evaluate the relationship between frailty, physical resilience, and acute functional 

recovery.  

Methods 

This study uses repeated measurements of a 41-item frailty index (FI) from waves 3-13 of the 

Health and Retirement Study in the United States to operationalize three indicators of resilience: 

the frailty-disease mismatch (FM), the rate of aging (RoA), and a dynamical indicator of resilience 

(DIOR-FI). This study evaluates each measure using descriptive statistics and logistic regression 

models estimating the probability of 2-year all-cause mortality (n=27,744) and full functional 

recovery after myocardial infarction (n=1,905). 

Results  

Resilience indicators generally had low agreement (kappa ≤0.24) and moderate to weak 

correlation (Pearson r ≤0.53). All indicators showed statistically significant associations with 

mortality and recovery. Despite requiring careful interpretation, FM shows the greatest promise 

for adding predictive ability beyond age, sex, and frailty. 

Conclusion 

This study demonstrates key insights and lessons learned for future research on frailty and 

physical resilience. With further refinement of the methods proposed in this thesis, the 

combination of population data (for estimating FM) and routinely collected health data (for 

estimating RoA and DIOR-FI) offer promising opportunities to improve risk estimation in aging 

populations. 
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Chapter 1: Introduction 

Today, older adults are living longer than previous generations. As a result, an increasing number 

of individuals are reaching advanced ages (80+), driving unique healthcare needs and 

considerations. Increased general vulnerability at these advanced ages means that treating 

diseases individually is no longer sufficient. As the limits of human longevity continue to be tested, 

we approach the brink of what is likely to be the next epidemiological transition: from chronic 

disease to frailty. Broadly considered as an aging-related state of increased vulnerability to 

stressors, frailty has emerged as a key concept in understanding the health of older adults. This 

vulnerability results in an increased risk of a negative health outcome (e.g., hospitalization, death, 

etc.) after encountering a stressor (e.g., fall, infection, minor surgery, etc.). Thus, a frail individual 

is an individual who is likely to end up being hospitalized or dying after a seemingly banal event 

that would not have triggered a serious response in a less frail individual. Without intervention, 

the typical progression a frail individual will experience is functional decline, disability, loss of 

independence, and, eventually, death. Morley et al. describe this as the frailty cascade (1). With 

our population living longer, more adults than ever experience and succumb to frailty. In Canada, 

as elsewhere globally, an aging population is changing the needs of its healthcare system, and 

addressing the complex health needs of this population has become a priority. Better 

understanding of aging-related vulnerability is key to address the needs of this growing 

population.  

To date, measures of frailty have been widely and effectively used in healthcare settings and 

health research for patient risk stratification, prognosis, and risk assessment (2). Knowledge of 

frailty has improved our ability to predict adverse events, yet unexplained heterogeneity in 

outcomes remains. In terms of prediction of adverse outcomes, the best performing measures of 

frailty typically have an area under the receiving operating characteristic curve (AUC, a measure 

of discrimination) between 0.6 to 0.8, depending on the outcome, length of follow-up, and 

population (3–6). Though variation exists, values in this range are often described as poor to good 

discriminatory accuracy (7). The need for a deeper understanding of an older individual’s risk of 

adverse outcomes has recently been highlighted by Andrew et al. (8). Noting heterogeneous 

outcomes in COVID-19 severity among frail individuals in long term care facilities, Andrew et al. 
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call for moving beyond a simple understanding and grading of vulnerability and suggest that 

understanding resilience is key.  

The concept of resilience, broadly defined as the ability to resist or recover from stress, has a long 

history of application in various fields such as psychology and engineering but has only recently 

been applied to physical health and aging. Specifically, a new construct termed physical resilience 

has been proposed as a whole-person level characteristic which determines an individual’s ability 

to resist or recover from functional decline following a stressor (9). This concept has particular 

relevance to understanding heterogeneous outcomes in frail individuals: an important feature in 

the frailty cascade is the potential to recover rather than progress down the cascade (1). Being 

able to identify who is most likely to recover would improve estimation of risk associated with 

frailty and, thus, would help reduce unexplained heterogeneity in outcomes. 

The concept of physical resilience has clear potential to complement and expand upon what frailty 

offers; it has been proposed to assist in clinical decision making, developing care models, and 

identifying preventative strategies (10). Recently, there has been an increasing interest in how 

the concepts of physical resilience and frailty fit together (11–14). However, despite numerous 

editorials and conceptual articles, very few empirical studies have measured both frailty and 

physical resilience simultaneously, and to the best of my knowledge, none have provided a 

comparison of their ability to predict adverse outcomes. This leaves many questions unanswered, 

and the complementary potential of physical resilience and frailty has yet to be realized. To 

address this gap in the literature, both conceptual and methodological challenges need to be 

addressed. For example, frailty and physical resilience are broad and closely related concepts with 

multiple interpretations. This leads to a lack of conceptual clarity between the two concepts, 

which is further exacerbated by the existence of additional similar aging-related concepts (e.g., 

intrinsic capacity, biological aging, etc.). The lack of conceptual clarity then leads to a frequent 

disconnect between empirical work and underlying theory. In terms of methodological issues, 

owing to the relative novelty of the concept of physical resilience, empirical measurement 

approaches have yet to be firmly established. For example, given that physical resilience is a 

multidimensional construct, researchers have used various operationalizations in their empirical 

work. Furthermore, not only are empirical studies evaluating both frailty and physical resilience 

lacking, but there is also a lack of studies comparing these different measurement approaches for 

physical resilience. Thus, not much is known about how these different approaches relate to one 
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another, nor their relative performance. Understanding the individual and combined 

performance of frailty and physical resilience to predict health outcomes has significant potential 

to improve the identification of at-risk groups and individuals, which, in turn, can aid clinical 

decision making and resource planning and allocation.  

With the goal of better understanding the relationship between frailty, physical resilience, and 

health risk in aging populations, this thesis aims to address these challenges by providing a novel 

integrated conceptual framework and a concurrent empirical analysis to evaluate the relationship 

between multiple measures of frailty, physical resilience, and two key outcomes: mortality and 

recovery. To accomplish this goal, this thesis will proceed as follows: Chapter 2 reviews existing 

conceptual and empirical work. Chapter 3 synthesizes the information from the review into an 

integrated framework to bridge the gap between concepts and measurement approaches. 

Chapter 4 states the specific objectives of the empirical analysis. Chapter 5 describes the 

operationalization of the measurement approaches highlighted in the integrated framework and 

the empirical methods to investigate the individual and combined effects of frailty and physical 

resilience on estimates of mortality and recovery. Chapter 6 presents the results of the empirical 

investigation. Chapter 7 concludes with the discussion, contextualizing the results and providing 

recommendations for future work.  
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Chapter 2: Literature Review 

This chapter discusses concepts and measurement of both frailty and physical resilience. Given 

that concepts and measurement of frailty are well established but those of physical resilience are 

not, this chapter begins with a brief overview of frailty (section 2.1), then, proceeds with a review 

of the conceptual literature on physical resilience (section 2.2), followed by a review of studies 

employing an empirical measurement of physical resilience (section 2.3). The literature review 

explores the relationship between frailty and physical resilience where applicable. Table 1 

provides a glossary of key terms introduced in the review of the conceptual literature on physical 

resilience (section 2.2). 

Table 1. Glossary of Key Terms Introduced in the Conceptual Review 

Term Definition 

Actualization In the context of stress response, actualization refers to the 

observed (realized), post-stress response. An observed stress 

response is the actualization (or realization) of the pre-stressor 

potential to respond.  

Frailty A state of low reserve across multiple organ systems which leads to 

vulnerability to stressors. Frail individuals are more likely to 

experience decline after encountering a stressor. 

Intrinsic capacity “The composite of all the physical and mental capacities of an 

individual” (World Health Organization). Intrinsic capacity takes a 

positive ability perspective, focuses on specific domains, and 

emphasizes longitudinal monitoring. A person with high intrinsic 

capacity is less likely to experience decline after encountering a 

stressor. 

Physical resilience 

 

The ability to resist or recover from the negative health effects of a 

stressor. Physical resilience is constrained by the level of reserve 

but not wholly determined by it. Physical resilience can be 

conceptualized at the overall, whole-person level, or at the level of 

specific organs/organ systems. 

Potential In the context of stress response, potential refers to what can be 

estimated prior to experiencing a stressor. Pre-stress reserve 

represents one’s potential to respond to a stressor. This potential 

can only be realized after experiencing a stressor. 

(Physiologic) Reserve A term used to refer to the resources the body has to deal with 

incoming stress. Reserve can be conceptualized at the overall, 
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Term Definition 

whole-person level, or at the level of specific organs/organ 

systems. Exact definitions vary, and the literature sometimes uses 

synonyms such as “functional reserves” or “reserve capacity”. 

Reserve is the central linking construct between aging-related 

concepts.  

Robustness The ability to resist decline after experiencing a health stressor. 

Robustness can be considered to be the opposite of frailty. 

Robustness can also be considered as resistance to a stressor and 

quantified as the time to and peak magnitude of perturbation. 

Stressors 

 

Anything that poses a challenge to the body. This includes relatively 

minor stressors that can cause a system to reach a tipping point, 

resulting in a state change to a worse health state (e.g., exercise or 

drinking alcohol). Additionally, the state changes themselves (often 

entailing a major health event) can further be considered a stressor 

on the body (e.g., major health events such as stroke or hip 

fracture, or clinical stressors such as surgery or chemotherapy).  

Stressors, acute  Stressors that are short-lived, usually have a higher 

intensity/severity, and have more immediate effects on the body 

(e.g., stroke, and hip fracture, and surgery). 

Stressors, chronic 

 

Stressors that are repeated or extended over time, are typically 

lower in intensity, and have effects on the body that occur over a 

longer period (e.g., dialysis and chemotherapy). 

Tipping Point 

 

A threshold that determines how much stress a system can take 

before a state change occurs. If the stress threshold is exceeded, 

the tipping point is reached, typically leading to a worse health 

state. Stress thresholds are determined by reserve. A frail 

individual is considered to be highly prone to experiencing tipping 

point events and transitioning to a worse health state. 

Vulnerability Higher risk of experiencing a negative effect from a stressor. 

Vulnerable individuals are more likely to experience declines in 

health after encountering a stressor. 

 

2.1 An Overview of Frailty 

2.1.1 Concepts of Frailty 

The term “frailty” was first introduced in 1979 in the demography literature by Vaupel et al. (15) 

as a way to account for unexplained heterogeneity in mortality risk among individuals of the same 
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chronological age. Today, the term has been generalized to explain differences in risk of adverse 

outcomes between individuals with similar exposures (including age) (16). Frailty is 

conceptualized as a state of low physiologic reserve which leads to increased vulnerability to 

stressors, and thus, higher risk of adverse outcomes. Physiologic reserve can broadly be 

considered to represent the physiologic resources an individual has to handle incoming stressors. 

Frailty can be considered as an inherently dynamic concept because it relies on the idea of stress 

response. However, conventional measurement approaches are static, as they are not estimated 

in relation to time or stressors (measurement of frailty is described in section 2.1.2). 

Despite this relatively agreed-upon conceptual definition of frailty, there has been much debate 

over how best to operationalize this concept. Much of this debate has focused on two conceptual 

perspectives: the phenotype model (17) and the deficit accumulation model (18). The phenotype 

model is based on the idea that sarcopenia (the progressive age-related loss of skeletal muscle 

mass (19)) is the central impairment on which the multifactorial causal pathways of frailty 

converge and, in turn, this impairment perpetuates the progression of frailty (17). This idea is 

reflected by common phenotypic criteria that capture strength, physical activity, and energy 

levels. On the other hand, the deficit accumulation model states that frailty results from the 

accumulation of age-related health deficits (18). Deficits can include signs and symptoms, 

diseases, disabilities, or abnormalities in medical/laboratory tests (e.g., high cholesterol) (20). 

Rockwood and Mitnitski (21) suggest that deficit accumulation is the basis for loss of physiologic 

reserve and, thus, is indistinguishable from loss of reserve; as more deficits accumulate, both the 

level of frailty and risk of adverse outcomes increase.  

Both models are based on the presence or absence of impairments. However, the phenotype 

model views frailty as a pre-disability syndrome that may manifest in the absence of clinical 

disease (22). In contrast, the cumulative deficit model views frailty as a state in which both clinical 

disease and disability can be incorporated (i.e., as deficits) (18). Thus, it is possible that the two 

approaches identify different types of vulnerability (22). 

2.1.2 Measurement of Frailty 

Several approaches to measure frailty have been well characterized and firmly established (23), 

but this review will only focus on two: the frailty phenotype, representing the phenotype model, 
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and the frailty index (FI), representing the cumulative deficit model (24). Although much variation 

exists, many other frailty measures can be considered variations of these two. The frailty 

phenotype is defined by five criteria: unintentional weight loss, exhaustion, weak grip strength, 

slow walking speed, and low physical activity (25). This discrete measure classifies an individual 

as frail if they meet three or more of these criteria. In contrast, the frailty index is a continuous 

measure defined as the proportion of deficits an individual has accumulated. A minimum of 30 

deficits are recommended, and the specific deficits used do not matter as long as the deficits 

cover several domains, such as self-assessed health status, cognition, chronic conditions, function, 

and physical performance measures (20). The interchangeable nature of the deficits included in 

frailty index makes it very flexible, allowing construction in numerous different data sources. The 

deficits chosen should cover a wide range of bodily systems, be related to health, and increase in 

prevalence with age (20). The frailty index ranges from 0 (indicating no deficits) to 1 (indicating all 

deficits), but it has been consistently observed that the empirical upper limit for human survival 

is approximately 0.70 (26). Interestingly, the frailty index has been proposed as a measure of 

biological age1F1F

1 (30) and is not limited to use in older adults (22). In fact, multiple studies have 

demonstrated that after accounting for chronological age, the frailty index has the strongest 

independent relationship with mortality compared to other estimators of biological age, such as 

those estimated by a battery of biomarkers including the Klemera and Doubal method, DNA 

methylation, and telomere length (31–33). Thus, biological aging can be thought of as the 

cumulative loss of reserve, which can be quantified by the accumulation of deficits (i.e., the frailty 

index). The corresponding loss in reserve across multiple systems eventually leads to a state 

where the body has an impaired ability to effectively compensate for stressors. Thus, the 

individual is at increased risk of adverse outcomes, including hospitalization and death.  

It has been demonstrated that these two approaches identify different groups of individuals as 

robust and frail (5,34). In fact, one study found the prevalence of frailty to be drastically different 

depending on the approach used: 3.6% using the frailty phenotype, and 34% using the frailty index 

(34). Similarly, a study of eight different frailty scales (including the frailty phenotype and frailty 

 
1 Similar to frailty, the concept of biological age (also referred to as functional or physiological age) was 
introduced to account for the observed heterogeneity in health status among individuals of the same 
chronological age (27). Approaches to the estimation of biological age vary widely, but typically involve the 
measurement of multiple biomarkers related to aging, chronic disease, or mortality, and can include a range 
of both functional and molecular indicators (28,29). 
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index) found that the scales identify different but overlapping groups of individuals (3). This 

discrepancy highlights that frailty may not be a unified concept; different approaches are tailored 

to different purposes. For example, the frailty phenotype, focusing on signs and symptoms, may 

be limited to older adults with no disability but, among them, is better at predicting disability (22). 

The frailty index, on the other hand, provides predictive information among a broader range of 

individuals regardless of age or functional status. Despite their differences, frailty measures 

display similar empirical characteristics (3). Cesari et al. advocate that the frailty phenotype and 

the frailty index should be considered complementary, not competing alternatives or substitutes, 

as they are so often perceived (22). The value of this view has been demonstrated in empirical 

studies of risk estimation: Kulminski et al. showed that though the frailty index was more 

predictive of death than the frailty phenotype, classifying individuals by simultaneously using the 

frailty phenotype and the frailty index may be a promising option to improve mortality prediction 

(35). Similarly, Watanabe et al. found that individuals identified to be frail by two instruments (the 

Frailty Screening Index and the Kihon Checklist, which are screening tools modeled after the frailty 

phenotype and frailty index, respectively) had a higher mortality risk than those only identified as 

frail by one (36). These findings illustrate that while having multiple operationalizations of the 

same concept may be initially challenging, there are advantages of capturing different facets of 

the same concept. They can be used in different applications or in the same application to improve 

risk estimation. This is an important insight to keep in mind when assessing different approaches 

to physical resilience: not only may physical resilience be complementary to frailty, but multiple 

measures of physical resilience may also be complementary to each other.  

2.2 Review and Synthesis of the Conceptual Literature on Physical Resilience 

To understand the concept of physical resilience and its relation to frailty, it is helpful to trace 

how the concept has evolved over time. This section, therefore, reviews and synthesizes the 

conceptual literature on physical resilience in chronological order. This section focuses on 

conceptual development, but because the concept has evolved hand in hand with empirical, 

methodological development, it also briefly introduces landmark methodological contributions. 

The empirical literature will be reviewed closely in section 2.3.  
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2.2.1 A Brief History of the Physical Resilience Literature  

Over the past 20 years, the concept of physical resilience has attracted increasing attention in the 

aging literature, as evidenced by the growing number of articles with physical resilience in the 

title and abstract. Figure 1 shows this trend (see Appendix A for PubMed search terms). The 

history of the concept of physical resilience can be characterized by 13 landmark publications 

(indicated in numbers in parentheses in Figure 1) and broken down into three periods. Years from 

2011 to 2017 represent the foundational period when the conceptual groundwork for physical 

resilience was laid out. Years from 2017 to 2020 represent a period of proliferation of 

methodological innovation as well as an increasing interest in the relationship between frailty and 

physical resilience. Year 2017 is both the end of the conceptual foundational period (period 1) 

and the beginning of the methodological innovation period (period 2) because a landmark study 

by Gijzel et al. (37) published in 2017 made both conceptual and methodological contributions, 

bridging the two periods. Lastly, years from 2021 to 2023 represent the period of the first major 

prospective clinical studies specifically designed to investigate physical resilience with updated 

conceptual frameworks. This period also observed a shift in discourse where the concept of 

intrinsic capacity (described in section 2.2.4) was brought into the discussion surrounding frailty 

and physical resilience.  
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Figure 1. Timeline of Physical Resilience Literature 

The number of PubMed articles with physical resilience in the title/abstract as of January 3rd, 2024. See 

Appendix A for PubMed search terms. Numbers in parentheses indicate 13 landmark publications: (1) 

Resnick et al. 2011; (2) Whitson et al. 2016; (3) Ukraintseva et al. 2016; (4) Hadley et al. 2017; (5) Gijzel et 

al. 2017; (6) Whitson et al. 2018; (7) Kuchel 2018; (8) Varadhan et al. 2018; (9) Rikkert and Melis 2019; (10) 

Wu et al. 2019; (11) Colon-Emeric et al. 2020; (12) Whitson et al. 2021; and (13) Walston et al. 2023.  

 

2.2.2 The Foundational Period (2011 – 2017) 

In 2011, Resnick et al. (landmark publication #1) first described the term “physical resilience” in 

the context of the physical health of older adults as "the ability to recover or optimize function in 

the face of age-related losses or disease" (p.644) (38). Subsequently, in 2016, Whitson et al. 

(landmark publication #2) published the first major influential effort to clarify the concept of 

physical resilience informed by a systematic review (9). This seminal work paved the way for 

subsequent studies by proposing a working definition and a conceptual model of physical 

resilience, identifying three potential measurement approaches to physical resilience, and 

specifying three key future research areas.  

Whitson et al. defined physical resilience as “a characteristic at the whole person level which 

determines an individual’s ability to resist functional decline or recover physical health following 

a stressor” (p.493) (9). Of note, this definition conceptualizes physical resilience as a characteristic 
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(i.e., “an ability or capacity that can change over time” (p. 491)) rather than a trait (i.e., “a 

relatively fixed characteristic, part of one’s nature” (p. 491)) or a trajectory (i.e., “change in 

symptoms or function over time” (p. 491)). The conceptual model of physical resilience proposed 

by Whitson et al. postulated that physical resilience influences the outcome after a stressor and 

that physical resilience is influenced by both external and internal factors (Whitson et al. (9), 

Figure 3). The external factors include environment and life experiences, whereas the internal 

factors include genetics, psychosocial factors, and what Whitson et al. called “physiologic reserve” 

defined as “the potential capacity of a cell, tissue, or organ system to function beyond its basal 

level in response to alterations in physiologic demands” (p.492) (9). The level of physiologic 

reserve across organ systems constrains physical resilience at the whole person level, and 

physiologic reserve can be measured by performing stress tests on the system(s) involved. This 

concept of physiologic reserve became central in subsequent work aiming to further clarify the 

concept of physical resilience, as discussed below. In addition, Whitson et al. identified three 

potential measurement approaches as indicators of physical resilience: phenotypes (e.g., frailty, 

fatiguability), age discrepancy (i.e., biological vs. chronological age), and functional trajectories 

after a stressor. For the latter, they distinguished “resistant trajectories” (i.e., no change in 

function after a stressor) from “resilient trajectories” (i.e., initial decline then recovery in function 

after a stressor) (p. 493). Furthermore, Whitson et al. specified three key future research areas: 

the measurement of physical resilience; the examination of physiologic reserve between and 

across systems; and effective interventions to optimize resilience.  

Building upon Whitson et al.’s distinction between resistant and resilient trajectories, Ukraintseva 

et al. (landmark publication #3) further clarified the concept of resilience and differentiated it 

from the concept of robustness (39). Ukraintseva et al. considered a two-stage response to a 

stressor: deviation from baseline (resistance) and return to baseline (recovery). They referred to 

the former, the ability to resist deviation from the baseline state, as “robustness,” and the latter, 

the ability to quickly and completely recover after a deviation from the baseline state, as 

“resilience.” By understanding these concepts of robustness and resilience as abilities, 

Ukraintseva et al. suggested that the ability to resist and the ability to recover may be different 

and perhaps have different underlying mechanisms. In response to Ukraintseva et al., Whitson et 

al. (40) clarified that they considered robustness to be the opposite of frailty. This is a key point 

that was further elaborated later in the second period, 2017-2020. 
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A report from the National Institutes of Aging (US) workshop, “Measures of physiologic 

resiliencies in human aging,” held in 2015 and published in 2017 by Hadley et al. (landmark 

publication #4) (41), corresponds to one of the three key future research areas proposed by 

Whitson et al., the examination of physiologic reserve between and across systems. The 

“physiologic resiliencies” in Hadley et al. align with the concept of resistance to and recovery from 

stressors discussed by Ukraintseva et al. (40) but specifically applied to lower levels, such as cells, 

tissues, organs, or organ systems, rather than the whole person. These physiologic resiliencies in 

aggregate can influence whole person physical resilience. Hadley et al. conceptualized resilience, 

whatever the level, as a homeostatic stress response to a stressor that occurs in four sequential 

phases as illustrated in Figure 2: 1) a pre-stressor baseline, 2) time to and peak magnitude of 

perturbation, 3) time course of recovery, and 4) stabilization after recovery (i.e., completeness of 

recovery). Phase 2 in Hadley et al. corresponds to robustness discussed by Ukraintseva et al., and 

phases 3 and 4 in Hadley et al. correspond to what Ukraintseva et al. called resilience.  

 

Figure 2. Four Sequential Phases of a Homeostatic Stress Response to a Stressor 

Four sequential phases of a homeostatic stress response to a stressor as described by Hadley et al. 2017.  

Importantly, Hadley et al. (41) suggested that physiologic reserve determines threshold stress 

levels and, in turn, influences the stress response trajectory. If a stress level exceeded the 

threshold determined by reserve, a perturbation and/or state change would occur, at which point 

the system could not easily return to its basal (prestress) state. Thus, reserve influences phase 2 
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in Hadley et al., time to and peak magnitude of perturbation (i.e., robustness in Ukraintseva et al. 

(39)), rather than recovery phases of 3 and 4.  

The final major contribution in the foundational period is the application of complex dynamical 

systems theory to resilience in humans, operationalized as dynamical indicators of resilience 

(DIORs) in empirical investigation. This contribution was first made in an empirical paper by Gijzel 

et al. (37) in 2017 (landmark publication #5) and later expanded in a conceptual paper by Scheffer 

et al. (42) in 2018. The idea behind DIORs is that changes in the dynamics of a system may indicate 

proximity to a “tipping point,” defined as an abrupt state change of the system that occurs past a 

certain threshold (42). Identification of proximity to a tipping point may indicate an opportunity 

for intervention before a critical transition to a worse state occurs. In this understanding, “critical 

slowing down” could serve as an early warning of a tipping point: slow recovery from small 

perturbations (e.g., a decrease in blood pressure) may indicate loss of resilience, and a critical 

tipping point (e.g., syncope) may be near (42). Moreover, small perturbations at multiple 

subsystem levels (e.g., organs, organ systems) themselves, before encountering any stressor, may 

indicate resilience at the whole person level. Thus, whole-person resilience can be seen as an 

emergent property resulting from the underling network of specific physiologic resiliencies.  

Importantly, Scheffer et al. argued that what they called functional reserves critically determine 

the ability of the system to respond to stressors. Functional reserves discussed by Scheffer et al. 

are equivalent to physiologic reserves discussed by Whitson et al. 2016 and Hadley et al. 2017. 

Taken together, the views by Whitson et al. 2016 (9), Ukraintseva et al. 2016 (39), Hadley et al. 

2017 (41), and Scheffer et al. 2018 (42) converge: reserves determine stress thresholds (Whitson 

et al. 2016(9), Hadley et al. 2017 (41)) and tipping points (Scheffer et al. 2018 (42)), and the level 

of stress thresholds (which determine the ability to resist stress) can be characterized as 

robustness (Ukraintseva et al. 2016 (39)).  

Taken together, these foundational ideas set the scene for further conceptual and empirical 

development of physical resilience. 

Key Takeaways from the Foundational Period 

1. Physical resilience is understood through stress response.  
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2. Stress response can be decomposed into four sequential phases: 1) pre-stressor baseline, 2) 

resistance/decline, 3) recovery, and 4) stabilization to new baseline.  

3. Resistance is characterized as robustness. This distinction between resilience (recovery) and 

robustness (resistance) implies different underlying mechanisms. 

4. Physiologic reserve influences resistance (robustness) by determining stress thresholds, at 

which tipping points occur.  

5. Whole person physical resilience is comprised of a network of specific physiologic resiliencies. 

6. Dynamical systems theory suggests that the dynamics of a system, before experiencing a 

tipping point, can indicate the resilience of a system. 

2.2.3 Methodological Innovation and Discourse on Frailty and Resilience (2017-2020) 

The next period is marked by prominent discourse on the relationship between frailty and 

resilience, along with the proliferation of methodological innovation. The methodological work 

will be fully explored in section 2.3 but is included briefly here to provide a complete picture of 

the historical overview.  

Methodological Milestones 

This period observed the following three methodological milestone studies. In 2017, Gijzel et al. 

(37) (landmark publication #5) published the first application of dynamical indicators of resilience 

(DIOR). In 2019, Wu et al. (43) (landmark publication #10) first introduced residual-based methods 

to estimate physical resilience by conceptualizing physical resilience as adaptation to cumulative 

stress. In 2020, Colon-Emeric et al. (44) (landmark publication #11) proposed two innovative 

methods to quantify recovery: the recovery phenotype and the expected recovery differential. 

Section 2.3 will describe in detail these notable milestones. 

Conceptual Discourse on Frailty and Resilience 

While earlier discourse focused on the distinction between frailty and physical resilience and 

examined whether one concept should be abandoned for the other (e.g., (45,46)), more recent 

conceptual discourse has affirmed differences between these two concepts and advocated for 

their combined use. In 2018 and 2019, a number of leading experts published commentaries and 
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editorials on the relationship between frailty and physical resilience. Their titles eloquently 

captured the gist of the recent conceptual discourse: “Physical resilience: Not simply the opposite 

of frailty” by Whitson et al. 2018 (11) (landmark publication #6), “Frailty and resilience as outcome 

measures in clinical trials and geriatric care: Are we getting any closer?” by Kuchel 2018 (13) 

(landmark publication #7), “Can a link be found between physical resilience and frailty in older 

adults by studying dynamical systems?” by Varadhan et al. 2018 (12) (landmark publication #8), 

and “Rerouting geriatric medicine by complementing static frailty measures with dynamic 

resilience indicators of recovery potential” by Rikkert and Melis 2019 (14) (landmark publication 

#9). A common view shared by these articles is that physical resilience has significant potential to 

complement measures of frailty by adding a dynamic element that frailty lacks.  

Rikkert and Melis contributed to the conceptual discourse in this second period by revisiting the 

idea of tipping points. They defined tipping points as “the points in time that separate a more 

healthy condition from an acute, but in principle reversible disease condition and malfunction of 

the human’s subsystems or organ dysfunction” (14) (p.2) and considered frailty as being highly 

prone to these tipping points. In other words, frail individuals are more likely to experience such 

a change in health after encountering a stressor. In addition, Rikkert and Melis reinforced the idea 

that dynamical indicators at the subsystem level could indicate proximity to and recovery from 

these tipping points. Given that frailty is often conceptualized as a state of low physiologic reserve 

across multiple organ systems (see section 2.1.1), Rikkert and Melis’ view aligns with Hadley et 

al.’s view that reserve influences the stress response trajectory by determining threshold stress 

levels (i.e., tipping points). Whitson et al. 2018 further reinforced this view by connecting the 

concepts of frailty, robustness, and resilience: “If the spectrum from robustness to frailty reflects 

the amount of physiologic potential one has to react to stressors, physical resilience refers to the 

actualization of that potential” (11) (p.1460). In addition to connecting the three concepts of 

frailty, robustness, and resilience, Whitson et al. made an important contribution by 

distinguishing between “potential” and “actualization”. Potential is what can be estimated prior 

to a stressor. Actualization is what can be observed post-stressor. In other words, one’s potential 

to recover can be estimated by pre-stressor reserve, while one’s actualized recovery can only be 

observed post-stressor. 

This potential-actualization distinction by Whitson et al. can be related back to Hadley’s four 

phases of stress response (section 2.2.2). The level of reserve across multiple organ systems 
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determines where an individual is on the spectrum from robust to frail (i.e., frailty represents low 

reserve, and robustness represents high reserve). The level of reserve can be estimated prior to 

experiencing a stressor and, thus, can represent an individual’s pre-stressor potential to respond. 

This corresponds to phase 1 of stress response (Figure 3). Everything after phase 1 represents the 

post-stressor realization of this potential. The level of pre-stress reserve determines stress 

thresholds and, thus, determines whether decline (or resistance) will occur after encountering a 

stressor (phase 2). Decline (or resistance) is a necessary precursor to recovery (phase 3) and 

subsequent stabilization (phase 4). Thus, the level of reserve (pre-stressor) constrains the level of 

physical resilience (post-stressor) by determining stress thresholds.  

 
Figure 3. Phases of Stress Response Reflecting Ideas of Potential and Actualization 

This figure explains the four phases of stress response described in Hadley et al. by incorporating the 

distinction between "potential" and “actualization” by Whitson et al. Reserve determines where a person 

is on the scale from robust to frail and further determines an individual’s pre-stressor potential to respond 

to a stressor. This potential can only be realized after encountering a stressor, thus, phases 2-4 encompass 

the realization of that potential.  

Since proposed by Whitson et al. 2018, the idea of resilience as the actualization of physiologic 

potential to react to stressors has gained traction in other articles (for examples, see (47–49)). 

The post-stressor actualization of physical resilience is what studies of physical resilience aim to 

predict. Frailty is a key component of understanding the pre-stressor potential to respond to 

stressors. However, as currently implemented, frailty lacks a dynamic element that may prove 

useful in estimating this potential.  
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Key Takeaways from the Period of Methodological Innovation and Discourse on Frailty and 

Resilience 

1. Methodological innovations proliferated, including dynamical indicators of resilience (DIORs), 

residual-based methods, and advanced measures of recovery. 

2. Interests grew as to how frailty and resilience related to each other, and the conceptual 

discourse in this period built upon the understanding of reserve and robustness from the 

foundational period. 

3. Robustness and frailty can be considered opposite ends of the reserve spectrum.  

4. The level of reserve influences the stress response trajectory by determining stress-response 

thresholds. A robust person has high reserve (and thus high stress thresholds) and is much 

less likely to experience decline after encountering a stressor. Conversely, a frail person has 

low reserve (and thus low stress thresholds) and is much more likely to experience decline 

after encountering a stressor. 

5. The robustness-frailty reserve spectrum reflects the pre-stressor potential to respond to 

stressors, whereas physical resilience is the post-stressor realization of the potential.  

6. Reserve (pre-stressor potential) constrains the level of resilience (post-stressor realization).  

2.2.4 The First Major Clinical Studies and Discourse Shift (2021-2023)  

The most recent and final period is marked by the initiation of two major clinical studies of 

physical resilience and their guiding conceptual frameworks, showing the cutting-edge 

development of physical resilience on the clinical front. The introduction of the concept of 

intrinsic capacity also shifted the conceptual discourse during this period.  

In 2021, Whitson et al. (landmark publication #12) described their ongoing clinical study, the 

Physical Resilience Indicators and Mechanisms in the Elderly Knee Replacement (PRIME-KNEE) 

study, as a template for physical resilience research among older adults (48). The aim of the 

ongoing PRIME-KNEE study is to validate clinical tests and biomarkers that predict resilience to 

total knee arthroplasty. The guiding framework for the PRIME-KNEE study is called the Duke 

University Pepper Center Conceptual Model of Resilience (Figure 1, Whitson et al. (48)). This 

framework considers resilience as a dynamic response to a stressor. The level of pre-stress reserve 

is comprised of multiple domains (cognitive, psychological, and physical) and influences the 
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dynamic stress response (resilience). The range of potential responses lead to a range of potential 

outcomes regarding survival, independence, quality of life, and morbidity. The entire stress 

response trajectory plays out in the broad context of environmental factors. Each point in the 

framework (pre-stress reserve, stressors, resilience (dynamic response), and environment) is a 

potential opportunity to intervene, and such an opportunity can be before, during, and after the 

stressor. Of note, this framework considers resilience as a dynamic response rather than a 

characteristic as in the original conceptualization of resilience by the same research group 

(Whitson et al. 2016, landmark publication #2). This shift reinforces their “actualization of 

potential” idea discussed in Whitson et al. 2018 (landmark publication #6) and clearly 

differentiates what can be measured pre- vs. post-stressor; Resilience can only be realized after a 

stressor. This framework has been discussed within and the beyond the context of the PRIME-

KNEE study in recent published articles (e.g., see (50,51)). 

In 2023, Walston et al. (52) (landmark publication #13) published a conceptual framework of 

physical resilience for their clinical study, the Study of Physical Resilience and Aging (SPRING). This 

study has three sub-studies representing three different major clinical stressors: bone marrow 

transplant, dialysis initiation, and total knee replacement. Walston et al. developed their own 

terminologies: physiologic resilience capacity, representing pre-stressor estimation of the ability 

to recovery, and resilience phenotypes, representing the observed post-stressor trajectories. 

Walston et al. propose that physiologic resilience capacity is not directly quantifiable but can be 

described through a combination of static surrogate measures and dynamic stimulation tests. This 

physiologic resilience capacity in Walston et al. is conceptually equivalent to what Whitson et al. 

(48) call reserve (i.e., pre-stressor potential to react to stressors), however, it suggests an 

integrative measurement approach to quantify it. Similarly, the resilience phenotypes in Walston 

et al. are equivalent to what Whitson et al. calls resilience (i.e., post-stressor actualization of the 

potential). Walston et al.’s framework focuses specifically on clinical stressors and presents a link 

from stressor to physiologic resilience capacity, to resilience phenotypes, to clinical outcomes. 

They hypothesize that pre-stressor resilience capacity is influenced by such factors as age, disease, 

health behaviours, and psychosocial elements and can be estimated through a combination of 

static surrogate measures (of which they include frailty), and stimulus response measures (see 

section 2.3.2). Walston et al.’s study plans to examine post-stressor resilience phenotypes for one 

year after the stressor. In summary, these two ongoing clinical studies will provide valuable 
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information to characterize resilience following clinical stressors and determine what factors 

influence pre-stressor reserve, which in turn influences resilience.  

In addition to these two major clinical studies of physical resilience, the most recent period has 

observed a shift in the discourse on frailty and resilience by introducing the concept of intrinsic 

capacity (10,49,53,54). These recent articles describe frailty, physical resilience, and intrinsic 

capacity as different tools for different purposes, but the introduction of intrinsic capacity can 

further enrich the discourse on frailty and resilience. In the World Report on Ageing and Health in 

2015, the World Health Organization defined intrinsic capacity as “the composite of all the 

physical and mental capacities of an individual” (55) (p.28), and in 2018, Cesari et al. suggested 

intrinsic capacity concerns the following five domains: locomotion, vitality, cognition, 

psychological, and sensory (56). Intrinsic capacity is another concept for which the construct of 

reserve plays a critical role, and some authors in recent articles suggest that intrinsic capacity 

represents an evolution of the concept of frailty (57). Intrinsic capacity represents a global level 

of reserve indicated by the aforementioned domains, while frailty represents a state of low 

reserve across multiple physiologic systems. Despite being similarly based on reserve, intrinsic 

capacity focuses on the monitoring of reserves over time for prevention of premature aging and 

promotion of healthy aging, while frailty focuses on health deficits and is best suited to cross-

sectional risk assessment (10,49). By bringing the concept of intrinsic capacity into the discourse 

on frailty and resilience, recent articles emphasize the added value of longitudinal assessment of 

reserves to the typical cross-sectional assessment of studies of frailty and the typical short-term 

assessment, immediately before and after a stressor, of studies of resilience.  

Key Takeaways from the Period of the First Major Clinical Trials and a Discourse Shift 

1. Landmark prospective clinical studies of physical resilience are underway building upon the 

conceptual discourse on physical resilience over 20 years.  

2. The discourse on frailty and physical resilience is recently being expanded to include intrinsic 

capacity. The concept of reserve plays a critical role in all three concepts.  

3. The introduction of intrinsic capacity to the discourse highlights the importance of 

longitudinal monitoring of reserves.  
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This final period concludes the historical overview of the concept of physical resilience. The next 

section will discuss how physical resilience has been empirically operationalized to date.  

2.3 Review and Synthesis of the Empirical Literature on Physical Resilience 

Specific empirical operationalizations of physical resilience vary widely but can be broadly 

described by their general measurement approach. The first categorization we can make is 

whether a measure of physical resilience is defined by: a system, a stressor, and an outcome (or 

state) (10). For example, we could define the system as the whole person, the stressor as a 

myocardial infarction, and the outcome as physical function, measured by the Short Form 36 

Physical Function Subscale (SF-36 PFS). Measures of physical resilience that apply this useful 

“triad” of system, stressor, and outcome, can be further grouped into four general categories of 

measurement approaches: 1) measures of post-stressor change, 2) stimulus response measures, 

3) residual-based measures, and 4) dynamical indicators of resilience.2 This section first reviews 

each of these four major categories. This section then briefly reviews measures of physical 

resilience that do not apply the triad of stressor, system, and outcome, including self-reported 

measures, static surrogates, proxy measures, and aggregate indicators. The section concludes 

with a summary and comparison of the four major categories of measures. 

2.3.1 Measures of Post-Stressor Change 

Measures of post-stressor change directly quantify the response to a defined stressor using 

multiple observations over time. This approach is by far the most common, and though no gold 

standard measures currently exist, measuring a functional trajectory following a well-defined 

stressor has been suggested as a promising candidate (9). However, such a measure can take 

many forms, and significant variation exists in the empirical literature. Measures have been 

operationalized using acute, chronic, and unspecified stressors. An acute stressor is one that is 

short-lived and usually has a higher intensity/severity, while a chronic stressor occurs over a 

longer period and is typically lower in intensity. For example, a heart attack could be considered 

 
2 Note that some specific interpretations or operationalizations of physical resilience may not fit nicely into 
only one of these categories, and these categories may be further refined as literature expands. However, 
for now, such categorization can aid in understanding the different approaches that have been taken.  
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an acute stressor with more immediate effects, while dialysis could be considered a chronic 

stressor with more long-term effects. This distinction is important as it determines what kind of 

post-stressor response can be observed.  

Acute Stressors 

Operationalization of response to acute stressors ranges from simple metrics of recovery using 

two time points to complex statistical approaches to quantifying recovery trajectories across 

multiple outcomes. As an example of simple metrics, Calle et al. (58) operationalized two 

measures of recovery after orthopedic surgery (hip fracture, hip replacement, and knee 

replacement) and stroke (ischemic or hemorrhagic): absolute and relative functional gain.3 Calle 

et al. defined absolute functional gain as the difference between the Barthel Index score (which 

measures functional independence) at discharge and admission, and relative functional gain as 

the percentage of lost function recovered. Results were stratified by the category of stressor 

(orthopedic or stroke), but the exact type and severity were not taken into account, which may 

contribute to variation in the amount of recovery. They examined the relationship between 

recovery and frailty-related factors (e.g., delirium, ability to walk, sarcopenia) but did not use an 

overall measure of frailty.  

In contrast to this simple approach, Colón-Emeric et al. (59) used a latent growth mixture model 

to determine common recovery patterns across 10 functional outcomes over 12 months in 

patients with hip fracture. Colón-Emeric et al. categorized individuals as high, medium, and low 

resilience based on the common recovery patterns across all outcomes. Colón-Emeric et al. (44) 

expanded upon this initial work by describing two approaches to quantify physical resilience: the 

“recovery phenotype” and the “expected recovery differential”.  

The recovery phenotype observes clinical events or trajectories and uses statistical methods (e.g., 

latent class analysis (LCA) or principal component analysis (PCA)) to summarize recovery patterns 

across multiple variables (e.g., time series of different functional outcomes for LCA and multiple 

clinical classification variables for PCA). Colón-Emeric et al. presented the latent class analysis 

approach described above for hip fracture as one method to determine the recovery phenotype. 

 
3 Note that while Calle et al. were studying recovery, they did not use the term “physical resilience” in the 
publication. 
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They further described an approach to use PCA in the case of using multiple clinical classification 

variables that cannot be captured as a time series (e.g., survival). They provided the example of 

pneumonia as the stressor, where the outcomes used to determine the recovery phenotype 

included length of hospital stay, intensive care unit admission, death within 28 days, and discharge 

location. This is a unique application which provides an opportunity to incorporate multiple 

relevant outcomes that may not fit to a conventional times series analysis. Importantly, in both 

applications (hip fracture and pneumonia) the authors considered stressor characteristics related 

to severity such as anesthesia type, duration of surgery, partial vs total arthroplasty, and 

laboratory findings. 

Colón-Emeric et al. defined an alternative approach, the expected recovery differential, as the 

expected vs. observed recovery based on a population-derived model. 4  In their empirical 

demonstration, the recovery phenotype typically identified the healthiest individuals as the most 

resilient, and the least healthy as least resilient. However, the expected recovery differential 

identified healthy individuals who had worse recovery than expected and unhealthy individuals 

who had better recovery than expected (based on the population-derived model). Given these 

results, Colón-Emeric et al. suggested the recovery phenotype is useful for characterizing complex 

recovery patterns, while the expected recovery differential is useful for exploring the biological 

mechanisms underlying physical resilience (44). These methods represent two unique approaches 

that can be tailored for different applications and used for multiple outcomes to ascertain an 

overall level of physical resilience.  

Chronic Stressors 

Operationalization of response to chronic stressors typically takes the form of a simple 

categorization of a trajectory after the initiation of a new chronic stressor (hereafter referred to 

as an “incident chronic stressor”). As an example, Hladek et al. used phenotypic trajectories of 

four variables over 12 months following incident hemodialysis: physical function, mental health, 

vitality (defined as energy or fatigue), and general health (60). They characterized three simple 

phenotypes for each variable: improving, stable, and declining. Physical function and vitality were 

 
4 Though the expected recovery differential is a residual-based method, the key reason why it is included 
here is because it is defined by a singular specific stressor and time course of recovery. Thus, these 
characteristics fit better with measures of post-stressor change rather than the hallmarks that define the 
residual-based methods described in section 2.3.3. 
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found to be independently associated with mortality after accounting for baseline covariates 

including age, sex, race, BMI, comorbidity, and several disease-specific biomarkers (60). A similar 

study by Presley et al. (61) defined resilience as maintenance or improvement in disability scores 

over eight months in a sample of patients newly diagnosed with stage 4 lung cancer (i.e., an 

incident chronic stressor) who were just beginning treatment. Importantly, neither study 

observed a baseline trajectory prior to initiation of the chronic stressor. Thus, it is impossible to 

know whether the patients were stable, improving, or declining prior to the stressor. It would 

likely be more informative to determine if the trajectory changes after initiation of the chronic 

stressor rather than just observing the post-stressor trajectory.  

Unspecified Stressors 

In addition to operationalizing responses to acute and chronic stressors, a few studies also 

operationalized the response to unspecified stressors. Pedone et al. (62) determined physical 

resilience by examining the change in physical function after a nonspecific stressor, defined as a 

self-reported “major health event”.  Pedone et al. categorized individuals as resilient (maintained 

function after event), non-resilient (declined after the event), decliners (declined in absence of 

event), and controls (no event, no decline). They found that resilient individuals were similar to 

controls in terms of change in Activities of Daily Limitations (ADLs) and mortality over time. This 

is an interesting way to broaden the applicability of a stress response measure, by including a non-

specific stressor that allows estimation in a broader population than a specific stressor, and to 

categorize and compare individuals who did not experience a health event. However, this 

approach does not consider recovery. Additionally, the subjectivity of a self-reported major health 

event means that there could be significant variation in the type, intensity, and duration of the 

reported events that is unaccounted for.  

Duan-porter et al. (63) conducted another study with an unspecified stressor. Their study 

population was a cohort of older overweight cancer survivors at least five years after their 

diagnoses. They defined decline as a drop of 13 or more points of the SF-36 physical function 

subscale, resistance as a lack of any decline, and resilience as regaining at least 50% of lost 

function over a two-year period. Decline, resistance, and resilience were measured without any 

reference to a defined stressor. Duan-porter et al. found that most older cancer survivors exhibit 

resilience, which is unsurprising given that the less resilient individuals would likely have a higher 
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risk of death. Of note, while this study did not explicitly define the stressor, by using this cohort, 

it is possible to consider cancer as the stressor. However, Duan-porter et al. did not explicitly 

conceptualize it as such, and relevant details such as remission status, duration of treatment, 

cancer type and stage were missing (the study only reported time from diagnosis and type of 

treatment). Furthermore, they noted in the discussion that those who experienced more decline 

may have experienced more severe stressors leading to the decline. Thus, for the current 

discussion, I consider this study as having an undefined stressor. This example highlights the need 

for explicit conceptual consideration of the three defining features of physical resilience (stressor, 

system, outcome) when operationalizing a measure.  

Summary of Measures of Post-Stressor Change  

Despite the variation in the health events used as stressors, all studies reviewed in this subsection 

operationalized resilience at the whole person level, and most of these studies used measures of 

physical function (e.g., SF-36 physical function subscale) as the outcome. All studies were 

conducted over a relatively short term, with three years after an incident stressor as the longest 

follow-up period. Over the observation period, studies typically employed three to four 

measurements, with a minimum of two and a maximum of eight. Lastly, all cited studies above 

used clinical samples except Pedone et al. (62). See Appendix B for a literature review table of all 

cited empirical studies using a measure of physical resilience between 2016 to 2023. 

A key consideration for these studies is whether stressor severity was accounted for. Stressors of 

higher severity are more likely to result in less recovery. Thus, if unaccounted for, the resilience 

measures may be confounded by the stressor severity. Most studies described above tried to 

account for stressor severity by including additional measures of severity or by restricting the 

selection criteria. As illustrated by the samples used in these studies, accounting for stressor 

severity is more difficult to address in population data where such detailed severity information 

may not be available. Therefore, measures of post-stressor change may be more feasible in clinical 

settings.  

Quantifying recovery has strong face validity for determining physical resilience and may be the 

best candidate for a gold standard (9). After all, the most recent conceptual frameworks for the 

ongoing clinical studies clearly differentiate between pre-stressor potential, and post-stressor 
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realization: resilience can only be realized after encountering a stressor. However, as noted by 

Whitson et al. (9), past recovery may be unreliable to predict future recovery. Observing a resilient 

trajectory does not necessarily mean the individual will demonstrate a resilient response again in 

the future. Recovery is influenced by both intrinsic (e.g., level of reserve) and extrinsic (e.g., nature 

of the stressor, care provided, rehabilitation, etc.) factors that may or may not be observed. In 

addition, it is possible that a stressor may alter an individual’s ability to recover in the future by 

depleting reserves (9). Thus, recovery measures may be useful to validate new measures of 

physical resilience but may have limited potential for predicting future recovery. Further work is 

needed to determine what impact stressors have on reserve and if past recovery is an adequate 

predictor of future recovery. Furthermore, a major limitation to these approaches is that they can 

only be applied to a small subset of the population who have experienced a specific health 

stressor. The use of a self-reported “major health event” by Pedone et al. (62) attempts to 

overcome this limitation, but this approach comes with its own limitations, such as the self-

reported nature of events, and still limits application to those who have experienced some event. 

Lastly, the empirical implementation of measures of post-stressor change, to date, has limited 

consideration of frailty.  

2.3.2 Stimulus Response Measures 

Stimulus response measures involve deliberately eliciting a response with a precise external 

stimulus and quantifying the response. Examples of this include monitoring heart rate during an 

exercise test or monitoring blood pressure during an orthostatic challenge (e.g., going from sitting 

to standing) (47). As a recent example, Koivunen et al. (64) studied several hemodynamic and 

postural sway indices after an orthostatic challenge and found that change in diastolic blood 

pressure and sway root mean square showed a significant hazard ratio for mortality in men. 

Additionally, the ongoing PRIME-KNEE (48) and SPRING (52) clinical studies, as discussed in section 

2.2.4, are both evaluating specific stimulus response measures across different bodily systems, 

including the immune system, adrenal system, and cardiovascular system. The advantage of this 

approach is that the stressor can be clearly defined and quantified, overcoming one of the main 

difficulties in measures of post-stressor change. Additionally, stimulus response tests can be 

performed prior to experiencing a real-life stressor, making them widely applicable in the clinical 

setting and potentially useful for predicting future events. However, a major drawback to this 

approach is that subjecting frail individuals to a stressor may impose unnecessary risk and it may 
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be infeasible to design practical tests that are safe for frail older adults to complete (47). Stimulus 

response measures have great potential for practical use in clinical settings, however, they require 

special tests and/or equipment and potentially pose risks to frail individuals. Thus, these measures 

may not be feasible in all individuals (i.e., frail) or settings (i.e., population). The key difference 

between measures of post-stressor change and stimulus response measures is that stimulus 

response is something that can be specifically tested using a minor elicited stressor (e.g., going 

from sitting to standing) before any major real-word stressors (e.g., heart attack) are 

encountered. In contrast, measures of post-stressor change reflect actual changes in health after 

experiencing such real-world stressors that pose a risk to health.  

2.3.3 Residual-based Measures 

The next category of physical resilience measures considers an individual’s ability to adapt to 

cumulative stress as a manifestation of physical resilience. In contrast to measures of post-

stressor change that use incident stressors and within-person functional change over time, 

residual-based measures consider the impacts of cumulative stressors on health by using the 

residuals of population-based models. By utilizing between-individual information, residual-based 

measures have the advantage of not requiring repeated measures (i.e., can be estimated in a 

cross-section).  

Wu et al. (43) were the first to conceptualize physical resilience as adaptation to cumulative stress. 

Wu et al. operationalized physical resilience as the mismatch between an individual’s observed 

and expected level of frailty, based on the residual of a population-derived linear regression 

model. This method was previously described by Sanders et al. (65), but Wu et al. were the first 

to apply it to the concept of physical resilience. Hereafter, Wu et al.’s method is referred to as the 

“frailty-disease mismatch method”. Their regression model used age, sex, chronic disease, and 

disease burden to predict frailty at a single timepoint. They considered those with higher frailty 

than expected to be “premature frailers”, those with similar expected and observed values to be 

“expected agers”, and those with lower frailty than expected to be “adapters” (i.e., are better 

able to adapt to the cumulative stress on their body; resilient). Wu et al. measured frailty with the 

Scale of Aging and Vigor Epidemiology, a modified version of the frailty phenotype designed to 

provide greater differentiation of the healthiest individuals (66). In a study population of initially 

well-functioning older adults, Wu et al. examined years of able life (defined as the number of 
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disability free years), years of healthy life (defined as the number of years reporting good or better 

self-rated health), years of healthy and able life (defined as the number of years reporting good 

health and having no disability), disability, hospitalization, mortality, and survival to 90 years as 

validation outcomes. All validation outcomes followed the expected gradient, with adapters 

having the best outcomes, and premature frailers having the worst. Subsequently, they followed 

this work with a simplified approach that determined the mismatch without requiring a regression 

model (67). Rather, they grouped participants by the number of diseases they had and classified 

each individual as an adapter, expected ager, or premature frailer, based on the category-specific 

mean and standard deviation of frailty. The results showed the simplified approach was less 

precise as it did not account for potential confounders such as demographic characteristics as in 

the regression approach. However, the results displayed acceptable agreement with the original 

approach, and the validation outcomes again followed the expected gradient. Wu et al. suggested 

the simplified method could make quantification more accessible and timely, potentially enabling 

clinical adoption, though they recommended the original method be used for research (67). The 

frailty-disease mismatch method is similar to a chronological/biological age mismatch, proposed 

as a possible measurement approach by Whitson et al. (9) (see section 2.2.2). A chronological-

biological age mismatch could be understood as using chronological age as a proxy for cumulative 

stress and is consistent with the frailty-disease mismatch method described above. However, the 

frailty-disease mismatch method used age, chronic disease, and disease burden to capture 

exposure to cumulative stress while accounting for sex differences. Thus, if the frailty-disease 

mismatch method were used to estimate an individual’s expected FI (a measure of biological age), 

it would be similar to, yet more comprehensive than, a simple chronological/biological age 

mismatch.  

Zhang et al. (68) followed up on the frailty-disease mismatch method by applying to a different 

outcome measure. They used a similar linear regression (i.e., including age, sex, and disease as 

predictors) with the short physical performance battery (SPPB) instead of the SAVE frailty scale. 

Similar to Wu et al. (43), Zhang et al. considered those with a better (worse) observed SPPB 

compared to expected SPPB as resilient (non-resilient). Their results supported those found by 

Wu et al.: continuous, binary, and four-category physical resilience, as quantified by residuals 

from a linear model, all demonstrated lower hazard for all cause mortality as physical resilience 

increased. Zhang et al. provided both unadjusted and adjusted models, the latter included age, 
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sex, smoking status, marital status, race/ethnicity, BMI, and care status as covariates. Both models 

demonstrated similar results.  

Milman et al. recently developed another noteworthy residual-based measure called the Frailty 

Resilience Score (FRS) (69). Rather than being a measure of physical resilience, they referred to 

the FRS as a measure of “resilience to frailty” (69). Their method is similar to the frailty-disease 

mismatch method of Wu et al. (43) in that the FRS is based on the expected (predicted) vs. 

observed level of frailty. The main difference is that instead of conditioning on disease burden in 

the regression model, the FRS conditions on a polygenic risk score .

5 that indicates elevated risk of 

frailty. Additionally, Milman et al. used a longitudinal mixed effect model for repeated measures 

of FI, and the FRS was defined as the average of the residuals (based on fixed effects only) in the 

earliest three interviews (in contrast to the single point-estimate of Wu et al.). Milman et al. found 

that one standard deviation decrease in the FRS, which indicates lower frailty than expected, 

resulted in a 38% reduction in the hazard of mortality (69). Though qualitatively different, 

conditioning on a polygenic risk score effectively serves the same purpose as conditioning on a 

level of disease (or other cumulative stress): both increase an individual’s expected level of frailty, 

allowing researchers to identify a mismatch which indicates a level of resilience.  

Lastly, Sotos-Prieto et al. applied a similar approach to longitudinal data (70). Though not exactly 

a residual-based measure in the same sense as the frailty-disease mismatch method or the FRS, 

Sotos-Prieto et al.’s approach similarly operationalizes physical resilience as the difference 

between expected and observed accumulation of deficits based on a population model. 

Specifically, they operationalized physical resilience as accumulating fewer deficits than expected 

over a 3.2 year follow up, with the expected increase being 0.74 per year, cited from previous 

research in their cohort (70). This expected number was the cohort-average slope for age 

estimated in a linear mixed effects model adjusting for education, diet, smoking, alcohol 

consumption, physical activity, sedentary behaviour, and body mass index (71). Sotos-Prieto et al. 

limited the resilience analysis to those with an FI above the cohort median, with the rationale that 

many deficits these individuals had accumulated must be chronic stressors. Thus, these 

 
5 A polygenic risk score determines an individual’s risk of a specific disease based on their genetic profile. 
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individuals were the unhealthiest 50% of the cohort and had higher exposure to chronic stress 

than the excluded half of the cohort.  

Of these individuals, Sotos-Prieto et al. further selected those who reported exposure to acute 

stressors in the year before the end of follow up. They defined these acute stressors as 

hospitalization, unintentional weight loss, or hip fracture. Of these individuals who had 

experienced more chronic and acute stressors (by their definitions), Sotos-Prieto et al. considered 

individuals who accumulated fewer deficits than the entire cohort average of 0.74 per year to be 

resilient. In cases where the individuals maintained or even improved their FI, Sotos-Prieto et al. 

considered them to be “over-resilient”. Though Sotos-Prieto et al.’s approach mirrors that of Wu 

et al. in concept (i.e., expected versus observed frailty), it does not use individual-level 

information to determine the expected value (i.e., it uses the population average as the 

“expected” value for everyone, ignoring any subgroup heterogeneity), and importantly, it limits 

the cohort to those above the median proportion of deficits accumulated, and having experienced 

a specific set of acute stressors. By adjusting for disease burden in their model, Wu et al. estimated 

physical resilience for everyone in their sample, without limiting the analysis to those with a 

specific level of stress: even individuals with no disease burden (i.e., cumulative stress) can be 

considered resilient or non-resilient based on their expected vs observed level of frailty.  

Despite taking a different approach than measures of post-stressor change, residual-based 

measures fit with the idea of adaptation to cumulative stress on the body. However, it is unclear 

how residual-based measures relate to measures of post-stressor change.  A clear advantage of 

residual-based measures is that they do not require the observation of incident acute stressors 

and can be estimated without multiple data collections. Importantly, capturing stressor severity 

is a challenge for residual-based measures as for measures of post-stressor change. Wu et al. 

attempted to capture severity by including self-rated health and the number of medications. This 

is a reasonable strategy with the data available and could be improved further with additional 

data, if available, such as length of time with each condition. This strategy could yield a reasonable 

approximation in absence of true gradings of severity. Despite this shared challenge of capturing 

stressor severity, residual-based measures are more widely applicable than measures of post-

stressor change and may be better suited to population studies, such as nationally representative 

cross-sectional studies. Conversely,  measures of post-stressor change are better suited to clinical 

studies with repeated measures on a small, clinical sample. The cited studies support this idea, as 
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the studies employing residual-based measures used population-based samples, while most 

studies employing measures of post-stressor change used clinical samples. These different 

measures need to be further examined and characterized in the same population to assess how 

they relate to one another and how their relative performance compares.  

2.3.4 Dynamical Indicators of Resilience (DIORs) 

The final category of physical resilience measures is Dynamical Indicators of Resilience (DIORs). 

As discussed in section 2.2.2, a key concept that supports DIORs is critical slowing down, which 

suggests that slow recovery from small perturbations may indicate loss of resilience and that a 

critical tipping point is near (42). Thus, the idea behind DIORs is that microrecoveries from 

stochastic deviations can indicate the resilience of the subsystem being measured and can be 

extrapolated to indicate resilience at the whole person level (42). DIORs are distinct from all other 

measures of physical resilience in that they are not conditional on a certain stressor (like measures 

of stimulus response and post-stressor change), nor on a level of cumulative stress (like residual 

based measures). Rather, they consider the variability from baseline to represent micro-

recoveries from minor stochastic stressors.  

The two most prominent DIORs are variance and cross-correlation of time series measurements, 

with increasing values indicating diminished resilience. An increase in variance of the specified 

outcome measure suggests loss of dynamic regulation ability (i.e., the system is less able to 

maintain stability in the face of stochastic microstressors). An increase in cross-correlation among 

multiple measures suggests loss of independence among interconnected subsystems, such that a 

less resilient subsystem is less able to deal with a stressor, and thus the stressor has a more 

prominent impact on the connected subsystems (e.g., measures of cardiac and renal function 

showing similar fluctuations). DIORs typically involve many repeated measurements of a specific 

parameter within a brief period. Gijzel et al. (37) measured self-rated physical, mental, and social 

health over the course of 100 days in a small sample of 22 institutionalized older adults. They 

evaluated variance, temporal autocorrelation, and cross-correlation as DIORs and found that 

cross-correlation and variance of all three domains were associated with baseline frailty 

(measured by the frailty index). This study used a small, non-generalizable sample as proof-of-

concept and demonstrated promising preliminary results for these measures as DIORs.  
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In a subsequent study, Gijzel et al. (72) examined a time series of postural balance over 30 seconds 

in a sample of high functioning older adults. They found that lower variance and temporal 

autocorrelation of mediolateral displacement, but not anteroposterior displacement, was 

associated with higher physical activity among hikers compared non-hikers. They supported this 

result with reference to studies suggesting that aging-related postural instability starts in the 

mediolateral direction, making it a more sensitive measure. Additionally, variance was 

independently associated with a successful aging index6 at one year post measurement. In the 

most recent paper, the same research group, Gijzel et al. (73), measured variability in several 

outcomes (heart rate, physical activity, life satisfaction, anxiety and discomfort) in a geriatric in-

patient population with acute illness. Variability in life satisfaction and variability in anxiety 

independently predicted three-month recovery after accounting for frailty (increased area under 

the curve (AUC) from 0.70 to 0.79). The authors defined three-month recovery as a binary 

indicator where “good recovery” was defined by remaining to live independently, not readmitted 

to hospital, and did not develop a new ADL difficulty by thee months post admission.  

Gijzel et al. (73) provides initial evidence that the microrecovery approach to resilience can 

modestly improve recovery prediction at three months when measured alongside frailty. 

Interestingly, only variability in psychological variables (life satisfaction and anxiety) was 

associated with recovery. In contrast, a study by Kolk et al. (74) found that higher variability in 

fear of falling was associated with both more decline and more functional recovery in a study of 

acutely hospitalized older adults. This finding violates the expectation of higher variability 

correlating with worse recovery. In addition, variation in step count, pain, and fatigue were not 

associated with recovery. Together these studies show that the choice of DIOR variable is 

important, and in some cases, variability shows the opposite association than what is expected.  

The potential opposite association is further illustrated in a study by Rector et al. (75). They 

demonstrated that using physical activity variability as a DIOR did not behave as expected in a 

sample of a geriatric inpatient population: higher variance in physical activity was associated with 

better ADL function and frailty scores rather than worse as hypothesized. Physical activity may 

have been a poor choice as any activity in this inpatient setting is likely a good sign. This makes 

 
6  The successful aging index consisted of eight indicators covering four domains including active 
engagement with life, personal resources, physical function, and emotional function (72). 
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intuitive sense as a stable low activity individual would likely be in worse shape than a high-

variance medium-high activity individual. Rector et al. underscored the importance of evaluating 

assumptions of variables when examining resilience: can we reasonably assume that higher 

variability in a specific variable reflects loss of homeostatic regulation? A recent study by Lucas et 

al. (76) supports the finding of the association between high physical activity variability and better 

outcomes: step count variability was positively correlated with measures of physical function in 

older adults receiving hemodialysis. Lucas et al. thus suggest that this could be used as a novel 

measure of physical resilience.  

Though not explicitly examining DIORs, studies by Zhu et al. (77) and Rouch et al. (78) found that 

blood pressure variability was independently associated with frailty, potentially providing a 

rationale for investigating blood pressure variability as a DIOR. Taken together, DIORs offer a 

measure that could be universally applied regardless of disease state or whether an individual has 

already experienced a specific health event. However, more work is needed to characterize 

appropriate variables and their relationship with different outcomes.  

There are interesting parallels between this dynamical indicator approach and recent work 

studying the intra-individual variability of whole-person-level functioning and frailty in the long-

term. A recent study by Stolz et al. (79) highlights the potential for investigating whole-person-

level variation by analyzing frailty index fluctuations over 12 years in the Survey of Health, Aging 

and Retirement in Europe (SHARE). They found a non-negligible level of variability, with 

individuals fluctuating by an average of 2 to 2.5 deficits (0.04 to 0.05 FI) over the follow-up period. 

Both FI and FI instability increased with age, and was higher among women, individuals with low 

socioeconomic status, and those who died. Similar results were noted by Lin and Kelley-Moore 

(80) who examined the intra-individual variability in functional limitations and cognitive 

impairment. These results suggest that relying on average health trajectories may mask valuable 

information. This point has a marked resemblance to dynamical indicators of resilience, albeit, on 

a larger scale (i.e., reflecting actual recoveries rather than microrecoveries). This non-negligible, 

previously untapped heterogeneity provides an opportunity to explore the idea of longer-term 

macro-scale DIORs.  

Rather than looking at single physiologic measures over the course of days or weeks (as done with 

typical short-term DIORs), we may be able to gain further insights by taking a long-term, macro-
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level approach to measuring physical resilience by analyzing the intra-individual variability of 

health deficit accumulation and recovery over the course of years. A typical DIOR observes small, 

reversible deviations in the baseline level of a system-specific marker, which are then 

extrapolated to the subsystem or whole person to indicate a certain level of physical resilience. 

An individual’s frailty index trend line could be considered as a composite, whole-person  baseline, 

and rather than microrecoveries as deviations, we could observe full recoveries and declines as 

deviations from that baseline. Compared to the typical DIORs focusing on microrecoveries at a 

subsystem for a short time, such an approach would have the advantage of more accurately 

reflecting resilience at the whole-person level as there is no need for extrapolation. At the same 

time, this approach loses the advantage of the typical DIORs, which can be estimated before 

actual declines in health or function have taken place. Furthermore, as mentioned in the 

conceptual review (section 2.2), DIORs are based on the concept of critical slowing down: greater 

variability may indicate that a critical tipping point is near. If we extrapolate this idea to the whole 

person, deviations at the whole person level could indicate that a whole person tipping point, a 

transition to disability, dependence, or death, is near. All DIOR papers cited in this sub-section 

studied a clinical population, except Gijzel et al. (72), which examined postural balance over time 

among hikers. It would be worthwhile to explore the concept of critical slowing down in large-

scale, longitudinal population-based studies.  

DIORs are the final measurement approach that can be described using the system-stressor-

outcome triad. The next two sub-sections briefly review measures that do not use the system-

stressor-outcome triad. Specifically, section 2.3.5 reviews self-reported measures of physical 

resilience, and section 2.3.6 reviews measures that have been suggested or used in place of well-

specified measures of physical resilience. 

2.3.5 Self-reported Measures 

Self-reported measures have also been used to study physical resilience. In contrast to the four 

categories of measures reviewed above, which objectively observe some sort of response to a 

defined stressor, self-reported measures directly ask patients who suffered from a stressor about 

their subjective experience related to recovery, with the aim of capturing an individual’s ability to 
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physically recover from stressors. Resnick et al. (38) developed the Physical Resilience Scale7 

questionnaire and evaluated its reliability and validity against general resilience questionnaires 

used in psychology literature. The results showed some support for the reliability and validity of 

the measure, but importantly they did not evaluate its performance against other measures of 

physical resilience or recovery. Park et al. (81) subsequently used the Physical Resilience Scale to 

determine the relationship between frailty, osteoarthritic symptoms, physical resilience, and 

disability. Using the Tilburg Frailty Indicator, a self-reported questionnaire assessing 

multidimensional frailty (82), they concluded that frailty is a mediator of the relationship between 

symptoms and disability and that physical resilience is an effect modifier of the relationship 

between symptoms and frailty as well as between symptoms and disability independent of frailty. 

This is an interesting finding that highlights the potential of concurrently measuring frailty and 

physical resilience. However, this study compared no additional measures of physical resilience, 

and it is unknown how this questionnaire relates to other measures of physical resilience. 

Additionally, the Physical Resilience Scale does not appear to have been validated in the language 

or study population in which Park et al. employed it (Korean). The question Park et al. tried to 

answer (how do frailty and physical resilience relate to important aging-related outcomes?) is an 

excellent one with significant implications. Replication of these results with additional measures 

of physical resilience will help elucidate the roles of frailty and physical resilience.  

A newer questionnaire developed by Hu et al. (83), the Physical Resilience Instrument for Older 

Adults (PRIFOR)8 was recently evaluated in a population of older adults admitted to medical wards 

with a Clinical Frailty Scale (CFS)9 rating between 4 (vulnerable) and 6 (moderately frail) (83). Hu 

et al. examined the predictive validity of PRIFOR using the EQ-5D (a health-related quality of life 

measure), the Clinical Frailty Scale, and the Katz Activities of Daily Living (ADL) scale. They found 

that PRIFOR was only associated with the Clinical Frailty Scale at one month after discharge and 

suggested PRIFOR could be used to predict recovery from frailty. Items from both questionnaires 

 
7 The Physical Resilience Scale is a 15-item questionnaire that asks questions related to recovery following 
acute events or illnesses. Examples of items include “I was determined to recover”, and “I accepted the new 
challenges”, with each item allowing a binary yes/no response for a total score out of 15 (38). 
8 PRIFOR is a 16-item questionnaire with responses on a 5-point Likert scale. Items cover three categories: 
positive thinking, coping and adjustment, and belief/hopeful mindset (83). 
9 Originally published in 2005 as a 7-point scale, the CFS is assessed by clinical judgment and focuses heavily 
on function while considering comorbidities and their management (84). In its current iteration, the CFS 
2.0, the scale has 9 designations to allow for further discrimination between states, ranging from 1 being 
“very fit” and 9 being “terminally ill” (85). 
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(PRIFOR and the Physical Resilience Scale) reflect an individual’s attitudes and perceptions related 

to recovery. This is a very different approach to measuring resilience than those defined by a 

stressor, system, and outcome. Though more development and validation are required, well-

developed questionnaire approaches have significant potential for clinical use as they could be 

completed at a single timepoint and provide an indication of physical resilience prior to 

experiencing a stressor. This thesis focuses on the physical resilience measurement approaches 

that can be defined by a system, a stressor, and an outcome, but future work exploring the 

concurrent investigations of self-reported measures and the approaches using the system-

stressor-outcome triad may offer valuable insight. 

2.3.6 Static Surrogate Measures, Proxy Measures, and Aggregate Indicators 

This subsection introduces measures that are not considered measures of physical resilience in 

themselves but may be useful when well-defined measures are not available or feasible.  

Static Surrogate Measures 

In the absence of well-defined measures of physical resilience, static surrogates (e.g., point 

estimates of frailty and physical function), which are easily obtained at a single timepoint and 

assumed to be correlated with resilience, may coarsely represent the level of physical resilience. 

Walston et al. provides examples of static surrogates in clinical studies: general static surrogates 

(e.g., phenotypic frailty, SF-36) and specific measures relevant to the specified stressor (e.g., Knee 

Injury and Osteoarthritis Outcome Score for knee replacement) (52). Walston et al. used these 

static surrogates in combination with stimulus response measures to estimate ability to recover 

before encountering a stressor (52).  

Proxy Measures 

Coarse proxy measures have been used to approximate physical resilience in longitudinal data 

without having to implement more complex and specific measures. These measures focus on 

development of disease and subsequent survival. Arbeev et al. used the age at onset of 

“unhealthy life” (defined as the first occurrence of a major complex disease) as a proxy for 

robustness (i.e., resistance to decline), and survival following onset as a proxy for resilience (86). 

Similarly, Galvin et al. (87) used the avoidance of disease at age 65+ as a proxy for robustness, and 
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survival to extreme ages as a proxy for resilience. Another study by Galvin et al. (88) defined 

resilience as survival following the onset of cardiovascular disease. Proxy measures such as these 

have the advantage of being simple and easy to implement with longitudinal data. However, they 

are very coarse approximations and are determined ex-post, leaving them with no ability to 

inform intervention efforts or clinical decision making. For example, if survival was used as a proxy 

for robustness, the dead were deemed non-resilient, but an intervention opportunity for them 

was lost after their deaths. The usefulness of these proxies appears to be for the assessment of 

the validity of a new measure of physical resilience. For example, Arbeev et al. used proxy 

measures to validate a new measure of “physiological dysregulation”, an aggregate indicator of 

robustness and resilience (86).  

Aggregate Indicators 

Ukraintseva et al. suggested that composite indices combining several biomarkers can be used to 

indicate resilience (89). They provided two specific examples, the frailty index and an index of 

physiological dysregulation. The index of physiological dysregulation describes the average 

deviation from a normal physiological baseline across multiple physiologic measures, reflecting 

deterioration of homeostatic mechanisms across different physiological systems.10  

2.3.7 Summary of Physical Resilience Measurement Approaches 

There is a significant diversity in empirical methods representing different conceptual 

perspectives of physical resilience. Measures of post-stressor change, stimulus-response 

measures, residual-based measures, and DIORs all use the system-stressor-outcome triad and are 

tightly connected to concepts of physical resilience. Hence, they represent four promising 

approaches to capturing an individual’s ability to cope with physical stressors. 

Measures of post-stressor change represent post-stressor actualization of resilience; they allow 

direct quantification of response after an incident chronic or acute stressor. The drawbacks to 

measures of post-stressor change are their narrow scope, and the difficulty in accounting for 

stressor severity. An incident stressor needs to be observed; thus, these measures can only be 

 
10 Physiological dysregulation shares similarities to the population-level expected vs observed nature of 
residual-based measures, but the key difference is that it does not condition on any sort of stress.  
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estimated in a small portion of a population who have experienced a specific stressor, and thus, 

measures of post-stressor change are better suited to clinical rather than population-based 

studies. Second, if the goal is to predict a resilient response, it is unclear whether observing the 

response to an incident stressor may indicate future response. The reason for this is that stressors 

could potentially reduce reserve and subsequently reduce future ability to respond to stressors. 

For example, if a stroke resulted in some permanent loss of function, the individual may not be 

able to recover from future stressors.  

Stimulus response measures have the major advantage of having no variation in stressor severity 

and may indicate an individual’s ability to respond prior to experiencing a real-world stressor. 

However, stimulus response measures require specialized tests and equipment, which may not 

be feasible for all individuals or outside of clinical settings. Residual-based measures and DIORs 

have the advantage of being non-specific and widely applicable, regardless of the setting or health 

of the individual, without the need to observe an incident stressor. Residual-based measures can 

be estimated using a single timepoint and are the most universally applicable. However, residual-

based estimates are based on a population average, so estimates may change depending on the 

reference population. DIORs require further investigation to find appropriate response variables. 

2.4 Complementing ongoing Clinical Studies with Longitudinal Population Data 

In the clinical setting, measures of physical resilience have the potential to be used as tools to 

guide individual patient care or as clinical outcomes to evaluate the effectiveness of new 

treatments/interventions. The current ongoing clinical studies, such as PRIME-KNEE by Whitson 

et al. (49) and SPRING by Walston et al. (53) introduced in section 2.2.4 and discussed in section 

2.3.2, are poised to advance the field by enhancing the understanding of these different types of 

measurement approaches in the context of clinical stressors. The expected advance likely includes 

better characterizing the post-stressor actualization of the ability to respond to major clinical 

stressors (i.e., measures of post-stressor change), better characterizing the pre-stressor potential 

to respond, including stimulus response, subsystem DIORs and static surrogates, as well as 

understanding relationships between these measures within and across the pre- and post-

stressor period.  

Contrary to the excellent ongoing clinical studies, population studies, to date, are lacking such 

integrative advancement that investigates multiple approaches at once. In addition, no 
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longitudinal or population-based frameworks exist to support such integrative measurement. This 

is an important gap in the literature as clarifying physical resilience in population settings can 

serve different functions to complement the ongoing clinical studies. In population settings, 

measures of physical resilience can be used to inform public health policies and programs that 

target groups of individuals. For example, population approaches to physical resilience can 

identify high-risk groups, evaluate effectiveness of policy interventions, and monitor the health 

of populations over time. Furthermore, population approaches can describe resilience in a 

broader range of (often healthier) individuals than clinical studies.  

To address this gap, this thesis aims to complement the ongoing, relatively short-term, clinical 

work with longitudinal population-level work that simultaneously investigates multiple 

measurement approaches to frailty and physical resilience. Measures of post-stressor change, 

residual-based measures, and DIORs can be applied to longitudinal population data, however, 

stimulus response measures require specific clinical tests and are not currently available in 

population data. Thus, this thesis will not consider stimulus response measures further. The other 

three approaches can be understood as complementary and are derived from different 

conceptualization of the stressor (Table 2).  

Table 2. Three Measurement Approaches to Physical Resilience in Population Data 

Stressor System Outcome 

Post-stressor change (Resilience as recovery) 

Incident acute or chronic  Typically whole person Functional measures* 

Residual-based (Resilience as adaptation) 

Existing/cumulative Whole person Frailty, Functional 
measures 

DIOR (Resilience as stability) 

“micro-stressors”: stochastic 
deviations in the absence of major 
stressors 

Whole person or subsystem Biomarkers, health 
status 

*Functional measures include any functional output of the system under study. For example, at the whole 
person level, a functional outcome could be mobility or ADLs.  

 

Building on the conceptual and empirical reviews, the next chapter proposes the Integrated Stress 

Response Framework for Frailty and Physical Resilience, specifically designed to guide longitudinal 

analyses in population data.  
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Chapter 3: An Integrated Stress Response Framework 
for Frailty and Physical Resilience 

Building on the conceptual and empirical literature reviews in Chapter 2, this chapter proposes 

the Integrated Stress Response Framework for Frailty and Physical Resilience (ISRF-FPR). This 

framework describes how frailty and physical resilience relate to each other in response to acute 

and chronic stressors and emphasizes the importance of longitudinal impacts of these stressors 

by explicitly incorporating cumulative stress. This framework is specifically for longitudinal, 

population-level analyses. This framework is flexible, integrating various concepts and methods 

proposed in the literature. The concept of physiologic reserve plays a central role in the 

framework.  

 

3.1 The Framework 

 

The ISRF-FPR builds on the standard understanding of physiologic reserve and physical resilience 

in the literature: physiologic reserve (or “reserve” for short) represents the pre-stressor potential 

to react to a stressor, whereas physical resilience (or “resilience” for short) is post-stressor 

realization of such potential (see section 2.2.3) (Figure 4). Stressors can be acute (i.e., short 

duration, typically with higher severity and immediate effects) or chronic (i.e., longer duration, 

typically with lower severity and longer-term effects) (see section 2.3.1). Physiologic reserve 

serves as the focal point of this framework; an individual’s level of reserve determines where they 

are on the spectrum from robust (high reserve) to frail (low reserve). Aggregation of the level of 

reserve in each sub-system (e.g., organs/organ systems) determines the level of reserve of the 

whole person. Frailty is typically understood as a low level of physiologic reserve across multiple 

bodily systems; thus, the ISRF-FPR considers frailty to be one specific approach to capture the 

global level of reserve. It is well established that frailty influences an individual’s ability to respond 

to stressors. For example, a frail individual (i.e., a person with low reserve) is more likely to have 

a poor outcome (e.g., loss of function) after encountering an acute or chronic stressor compared 

to a non-frail, robust individual (i.e., a person with higher reserve). Thus, the level of reserve 

constrains the level of physical resilience. However, the level of physical resilience is not wholly 

determined by the level of reserve. While frail individuals are typically non-resilient and robust 

individuals are typically resilient, there are numerous observations that frail individuals are 
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unexpectedly resilient and robust individuals are unexpectedly non-resilient, resulting in 

surprising health outcomes.  

 

 

Figure 4. Base Framework Representing Single Stressor Encounter  

Reserve represents the spectrum from robust to frail and determines an individual’s pre-stressor potential 

to respond. Resilience represents the post-stressor realization of that potential.  

 

Thus far, the framework is similar to those proposed by Whitson et al. (48) and Walston et al. (52), 

used to guide the PRIME-KNEE and SPRING studies, respectively (see section 2.2.4). These 

frameworks focus on a single, relatively short-term stressor. However, the recent inclusion of 

intrinsic capacity in the conceptual discourse underscores the importance of longitudinal 

assessment (see section 2.2.4). Additionally, focusing on a single stressor encounter does not 

allow for the perspective of physical resilience as adaptation. To fill this gap, the ISRF-FPR expands 

upon the scope of these existing frameworks by explicitly acknowledging the longitudinal cycle of 

stress. Specifically, an individual’s pre-stressor reserve is determined by multiple factors, including 

age, sex, and, importantly, cumulative stress that the body has experienced over the life course, 

up until that point in time (Figure 5). Newly encountered acute and chronic stressors that 
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challenge the body can contribute to this cumulative stress and, in turn, potentially “use up” a 

portion of reserve, rendering the body more susceptible to future stress. The dashed lines in Figure 

5 show a cyclic understanding of stress response.  

 

 

Figure 5. Longitudinal Cycle of Stress 

Acute and chronic stressors accumulate over the life course and impact the level of reserve, which, in turn, 

affects the ability to respond to new stressors.  

 

Importantly, to what extent acute and chronic stressors contribute to cumulative stress, which, in 

turn, impacts future reserve, is likely mediated by the level of reserve and the level of resilience 

at the time of the encounter with the stressor (Figure 6). The same stressor would therefore have 

less impact on future reserve for robust and/or resilient individuals than frail and/or non-resilient 

individuals. The dashed lines in Figure 6 show a cyclic understanding of stress and its relationship 

with reserve and resilience. 
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Figure 6. Impact of Reserve and Resilience on Longitudinal Cycle of Stress 

The level of reserve and resilience at the time of the stressor encounter influences the level of reserve in 

the long term, and thus, the potential to respond to future stressors.  

 

The ISRF-FPR next maps promising measurement approaches in the existing empirical literature 

(Figure 7). These measurement approaches correspond to the three concepts of physical 

resilience: resistance and recovery, adaptation, and stability. The concept of resilience as 

resistance and recovery corresponds to measures of post-stressor change; the concept of 

resilience as adaptation corresponds to residual-based measures conditioning on cumulative 

stress; and the concept of resilience as stability corresponds to stochastic deviations in the 

absence of defined stressors. In addition, the concept of resilience as stability also fits another 

measurement approach, longitudinal trajectories, as discussed in section 2.3.4. Longitudinal 

trajectory measures complement measures of stability (i.e., how much an individual varies around 

their mean trajectory), rather than being a measure of physical resilience per se (79,80). However, 

longitudinal trajectories have strong face validity as a dynamic surrogate indicator of physical 

resilience and embody the potential importance of longitudinal monitoring.    
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Figure 7. Measurement Approaches to Resilience Using Longitudinal Population Data 

The blue text maps measurement approaches from the empirical review onto the Integrated Stress 

Response Framework for Frailty and Physical Resilience. A key element of this figure is what side of the 

stressor encounter these measurement approaches fall on. Longitudinal trajectory, DIORs, and residual-

based measures represent the pre-stressor potential to respond: they are indicators of resilience that can 

be estimated without the observation of a specific incident stressor. Measures of post-stressor change are 

direct measures of resilience after the observation of a specific incident stressor. 

 

Importantly, all of these measures, except measures of post-stressor change, are located on the 

left-hand side of the figure, representing the pre-stressor potential. These pre-stressor measures 

are indicators of resilience, as opposed to direct measures of resilience. They do not require the 

observation of a specific incident stressor. Thus, they can be estimated in the entire population, 

rather than a clinical population, and can predict future stress response.  

 

The ISRF-FPR is flexible as it integrates multiple concepts and methods proposed in the literature 

when existing frameworks typically focus on a single stressor and do not consider alternative 

conceptualizations of physical resilience, such as resilience as adaptation. The framework thus far 

primarily focuses on frailty as an approach to capture the level of reserve at the whole person 

level, but lower-level applications are possible. For example, instead of operationalizing frailty as 

a global measure of reserve, one could operationalize it as a specific kind of reserve of a particular 

body system, or even multiple specific kinds of reserve, which would allow the assessment of 

cross-correlation of DIORs across multiple body systems.  
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Now returning to the original purpose of the thesis with the ISRF-FPR laid out, the objective is to 

see if indicators of resilience can complement static measures of frailty to improve risk estimation 

in older adults.  
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Chapter 4: Research Objectives 

The overall goal of this project is to elucidate the relationship between frailty, physical resilience, 

and risk in aging populations by providing the first comparative empirical evaluation of multiple 

measures of frailty and physical resilience. To meet this goal, I address three specific objectives: 

1) Guided by the ISRF-FPR operationalize multiple specific measures of frailty and physical 

resilience and describe the distributions of each measure.  

2) Evaluate how frailty and physical resilience relate to mortality, by exploring independent 

associations, potential effect modifications and the discriminatory ability of the selected 

measures. 

3) Evaluate how frailty and physical resilience relate to acute functional recovery, by  

exploring independent associations, potential effect modification, and the 

discriminatory ability of the selected measures.
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Chapter 5: Methods 

5.1 Operationalization of the ISRF-FPR and Overall Analytic Approach 

Though the operationalization of the ISRF-FPR, introduced in Chapter 3, could take many forms, 

the frailty index (FI) serves as the basis of the current investigation. As previously mentioned in 

section 2.1.1, Rockwood and Mitnitski suggested that deficit accumulation is the basis for loss of 

physiologic reserve and, thus, is indistinguishable from loss of reserve (21). Additionally, the FI is 

a continuous variable and is constructed in such a manner that it can increase or decrease as 

deficits are accumulated or recovered over time, and past research has consistently 

demonstrated its strong relationship with mortality. Thus, the FI is an excellent choice to 

operationalize pre-stressor reserve.  

Based on this operationalization of reserve, I use a mixed effects growth curve modelling 

approach to operationalize three additional pre-stressor indicators of resilience:  

1. Rate of Aging (RoA): Defined as the average rate of deficit accumulation in the polynomial 

growth model. 

2. Dynamical Indicator of Resilience (DIOR-FI): Defined as the variability of residuals around 

estimated FI trajectories. 

3. Frailty-Disease Mismatch (FM): Defined as a point estimate of the expected vs. observed 

FI based on the population average model (fixed effects only), accounting for stressors. 

These three measures correspond to the three identified pre-stressor measurement approaches 

in the ISRF-FPR: RoA is a measure of longitudinal trajectory, DIOR-FI is a measure of stochastic 

deviations (around estimated FI trajectories), and FM is a residual-based measure. Figure 8 below 

shows these specific measures mapped on to the framework in place of the general measurement 

approach categories. Furthermore, these three approaches represent resilience conceptualized 

as stability (RoA and DIOR-FI), and resilience conceptualized as adaptation (FM).  
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Figure 8. Operationalization of Pre-stressor Indicators of Resilience 

This figure shows the central operationalization of reserve (frailty index – FI), and the specific 

operationalized measures of each general measurement approach category: RoA is a longitudinal trajectory 

approach, DIOR-FI is a longitudinal stochastic deviations approach, and the FM is a residual-based measure 

(point-estimate). Together, these measures based on the FI represent resilience as stability (RoA and DIOR-

FI), and resilience as adaptation (FM).  

I specifically chose to operationalize and evaluate pre-stressor indicators of resilience as these are 

the universal measures: they can be estimated in anyone without the requirement of having to 

observe a specific stressor. Additionally, as discussed in Chapters 2 and 3, experiencing a stressor 

may “use up” a portion of reserve. Thus, in addition to limiting the population to those who have 

experienced a specific stressor, measures of post-stressor change may not reliably reflect future 

ability to respond to stress.  

Overall Analytic Approach 

This thesis follows a two-stage modelling approach. Stage one estimates the pre-stressor 

indicators using information derived from a mixed effect growth curve model and provides a 

descriptive analysis of each measure (objective 1). Using the estimated measures from Stage 1 as 

independent variables in logistic regression models, Stage 2 estimates their effect on two relevant 

outcome measures: mortality and functional recovery (objectives 2 and 3, respectively).  
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Note that this is only one operationalization of the framework, and many different approaches 

could be employed. The aim of this empirical work is to explore how we can leverage longitudinal 

population data to estimate resilience, indicated by pre-stressor potential, reserve.  

 

5.2 Data and Study Population 

This study employs a longitudinal cohort study design, using data from the Health and Retirement 

Study (HRS). HRS is well suited for this study as it is one of the largest and longest running health 

and aging population-based surveys in the world, offering a nationally representative sample of 

the non-institutionalized population over the age of 50 in the United States. HRS was established 

as a research platform to understand the aging process and the impacts of social and policy 

changes at the national level and has become the model for a network of similar studies around 

the globe, producing harmonized data on the Gateway to Global Aging Data Platform (90). HRS 

collects a breadth of information in four broad topic areas: income and wealth, health and 

healthcare services, work and retirement, and family connections (90). HRS has collected 

information on participants every two years since the first wave in 1992 and includes a detailed 

exit survey and follow-up protocol which provides near-complete mortality capture and has been 

validated using records from the National Death Index (91).   

The original HRS target population for the first wave included all adults residing in households in 

the contiguous United States, born between 1931 and 1941 (aged 51-61 at enrollment). In wave 

two, the original HRS cohort merged with the Asset and Health Dynamics Among the Oldest Old 

(AHEAD) cohort which includes individuals born before 1924 (aged 70+ at enrollment). In wave 

four, HRS added two new cohorts to provide a complete representative sample of the entire 50+ 

age range, including individuals born between 1942 and 1947 (War Babies cohort), and those born 

between 1924 and 1930 (Children of Depression cohort) to fill the previous cohort gap. Since wave 

four, HRS has maintained this representative coverage by replenishing the sample every six years 

(three waves) with the addition of the following six-year birth cohort: Early Baby Boomers (born 

between 1948 and 1953) were added in 2004, Middle Baby Boomers (born between 1954 and 

1959) were added in 2010, Late Baby Boomers (born between 1960 and 1965) were added in 

2016, and most recently, Early Generation X (born between 1966 and 1971) were added in 2022. 
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HRS employs a multi-stage area probability sample design, with oversampling of Black and 

Hispanic respondents as well as respondents from the state of Florida. Sample weights are 

included in datasets to account for differential probability of selection and non-response in each 

wave (92). HRS defines the observational unit as a household financial unit with at least one age-

eligible member of the recruited cohort. A household financial unit consists of related individuals 

living in the same dwelling (e.g., a respondent and their spouse). If the age-eligible recruited 

household member has a spouse, HRS also recruits the spouse regardless of their birth cohort. In 

the event there is more than one financial unit in the same household (i.e., unrelated individuals 

living together), one financial unit is randomly selected for inclusion (93). Institutionalized 

populations, including incarcerated individuals or those in nursing homes or long-term care 

facilities are excluded at recruitment (92). However, recruited individuals continue to be followed 

if they transition into a nursing home or long-term care facility (90). Historically, HRS typically 

conducted baseline interviews in person with follow-up interviews conducted over the phone. In 

2006 HRS began a mixed follow-up procedure in which half of the sample completed the core 

questionnaire over the phone while the other half completed an in-person interview for 

additional data collection, such as physical measures and collection of biological specimens. With 

the release of the wave 15 data (2020), HRS has collected and published publicly available 

longitudinal information on more than 42,000 individuals.  

I used the RAND longitudinal file, randhrs1992_2020v1, as the primary data source, and merged 

additional longitudinal variables from Harmonized HRS D 1992-2021 and individual HRS exit files, 

wave 6 to 13 (1996 to 2016). All data is publicly available from the University of Michigan HRS 

data portal (https://hrsdata.isr.umich.edu/). 

5.3 Analytical Sample 

This study used longitudinal data from waves 3 to 14 of HRS to create two analytical samples: a 

mortality sample and a recovery sample (Figure 9). To be included in the mortality sample 

individuals must be aged 50 or older at the time of interview (e.g., an individual younger than 50 

at recruitment in HRS is included in my mortality sample only when they turn 50), were 

interviewed between waves 3 and 13, have known vital status in wave 14, have a minimum of 

three FI estimates prior to death or survival to wave 14, and not be missing key covariates used 

in growth curve models (described in section 5.4.1). To be included in the recovery sample 
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individuals must be aged 50 or older at the time of interview, observed between waves 3 and 14, 

report a first-time myocardial infarction (MI) between waves 6 and 13, have a minimum of three 

FI estimates prior to their first-reported MI, have available pre- and post-MI information to 

determine whether the individual made a full recovery (i.e., pre-MI function, and post-MI function 

or post-MI death), and not be missing key covariates used in growth curve models. I chose these 

criteria because HRS includes small numbers of individuals below the target population age of 50 

(i.e., spouses of respondents), and one of the unique measures in this study requires a minimum 

of three repeated measures (the DIOR-FI, described in section 5.4.4). Furthermore, I excluded 

waves 1 and 2 due to noncomparability of FI variables, and a substantial proportion of missing 

values for several FI variables, respectively (further described in Appendix C).  

The final analytical sample for the mortality analysis consists of 27,744 individuals with a total of 

190,553 repeated FI observations between waves 3 and 13. This results in an average of 6.87 

observations per individual (standard deviation (SD) = 2.82, range = 3-11). The final analytical 

sample for the recovery analysis consists of 1,905 individuals with a total of 10,085 repeated FI 

observations between waves 3 and 12, resulting in an average of 5.29 repeated observations per 

individual (SD = 2.07, range = 3-10). 

In addition to the main analyses, I conducted a sensitivity analysis using a restricted sample of 

individuals with three consecutive FI measurements prior to the event (incident MI) or outcome 

(death/survival to wave 14) of interest. The purpose of this sensitivity analysis was to check the 

robustness of the results to differential lengths of follow up across individuals and non-

consecutive observations. Applying this criterion resulted in a restricted mortality sample of 

23,644 and a restricted recovery sample of 1,839.  
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Figure 9. Analytical Sample Selection Flow Chart 

Flowchart illustrating the step-by-step process for sample selection, including data exclusion, eligibility 

criteria and participant inclusion for the main and restricted analyses, respectively. 42,406 represents the 

number of individuals in the two main longitudinal analytic files: randhrs1992_2020v1 and Harmonized HRS 

D 1992-2021. MI stands for myocardial infarction. FI stands for frailty index.  
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5.4 Objective 1: Deriving Indicators of Resilience and Descriptive Analyses 

This section describes the methodology used to meet objective 1: operationalize multiple specific 

measures of frailty and physical resilience and provide a descriptive analysis of each measure.  

5.4.1 Mixed Effects Growth Curve Modelling 

Growth curve modelling refers to a set of statistical methods used for analyzing repeated 

measures to estimate between-individual differences in within-individual patterns of change over 

time (94). In general, growth curve modelling can be accomplished via two approaches: mixed 

effect modelling or latent trajectory modelling, a form of structural equation modelling. This 

analysis used a mixed effect approach because this approach has been demonstrated to be more 

advantageous when dealing with complex data structures such as time-unstructured data (i.e., 

not all individuals are measured at the same time or at every wave) and multiple levels of nesting 

(95). HRS employs a rolling enrollment with individuals being measured at different ages and in 

different waves (e.g., not all early cohort members were recruited at ages 50-54, and not all 

individuals have observations in all waves). Additionally, HRS has a three-level nesting structure: 

repeated measures nested within individuals, and individuals nested within households.  

Mixed effects models are models with a mixture of fixed and random effects. The term “fixed 

effects” refers to coefficients that are not allowed to vary by individual: everyone has the same 

coefficients. The term “random effects” refers to coefficients that are allowed to vary by 

individual, allowing for the estimation of individual growth curves.  

Model selection including testing different functional forms of age (i.e., linear, quadratic, cubic), 

random effects (i.e., linear age only, or linear plus polynomial terms), random effect structures, 

and residual correlation structures. Nested models were compared using a likelihood ratio test, 

and non-nested models were compared using the Akaike information criterion (AIC, where lower 

values indicate better model fit). Models estimated for comparison purposes used maximum 

likelihood, while final models were estimated using restricted maximum likelihood. All growth 

curve models estimated in this thesis share the specifications outlined in Table 3. I found these 

parameters to produce the best fitting model with no convergence issues across samples. 

Appendix D provides additional modelling details.  
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Table 3. Common Growth Curve Model Specifications 

Functional form of age Cubic polynomial  

Random effects Intercept and slope of age (linear component 

only, not squared or cubed).  

Random effect structure General positive-definite matrix, with no 

additional structure, using a log-Cholesky 

parameterization. Random effects are not 

assumed to be independent, and the degree 

of covariance is estimated from data.  

Residual correlation structure Continuous autoregressive order-1 correlated 

residuals. 

Estimation method Restricted maximum likelihood (REML). 

 

The mixed effect growth curve models consist of repeated FI observations nested within 

individuals. Given the household sampling design of HRS, I evaluated the household clustering 

effects in both the mortality and recovery samples to determine whether to include household as 

a third level in the models (i.e., individuals nested within households). To make this decision, I 

considered the design effect, model fit, and additional complexity of including the third level. The 

design effect uses the average cluster size and the intraclass correlation coefficient (ICC) to 

determine the magnitude of negative bias on the standard errors resulting from the non-

independence within clusters. 

The mortality sample includes 18,595 households with 27,744 individuals. With an average cluster 

size of 1.49 individuals per household, and an ICC of 0.54, the design effect for household 

clustering is 1.27. Previous literature suggested that it is not necessary to include a random effect 

unless the design effect is greater than two (96). Allowing effects to vary by household did 

however improve fit as evaluated by the AIC and likelihood ratio test, but the added complexity 

also led to convergence errors in some of the sensitivity and subgroup analyses. Considering these 

different factors, I decided to use the simpler two-level model for the main analysis but included 

a sensitivity analysis with the best-fitting household random effects included.  
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The recovery sample includes 1,839 households with 1,905 individuals.11 With an average cluster 

size of 1.04, and an ICC of 0.63, the design effect for household clustering is negligible at 1.02. 

Thus, I did not include a household sensitivity analysis for the recovery sample. Appendix D 

provides further details on the calculation of the design effect.  

I evaluated model assumptions and found that residuals were not normally distributed nor 

homoscedastic (in both samples). Given its distribution, the frailty index is often log transformed 

to improve model residuals. Transforming the dependent variable slightly improved but did not 

fix these violations. After careful consideration of the purpose of these models – to extract 

residuals and/or individual coefficients after explicitly accounting for specific theoretically 

informed variables – I kept the dependent variable on the original scale to favor interpretability 

over improving the residuals. I judged violations of these model assumptions as acceptable given 

the goal of the analysis and the large sample size.  

Model Variables 

Below I describe the variables used in growth models. Briefly, the dependent variable is the frailty 

index, the main independent variable is age, and the control covariates are sex, wave, and nine 

variables used to capture an individual’s disease burden: whether the respondent has ever had 

any of seven diseases, self-rated health, and whether the respondent regularly uses prescription 

medication. These disease burden variables were chosen following Wu et al. (43) to operationalize 

the frailty-disease mismatch (described in section 5.4.3).  

Frailty Index: a continuous, time varying measure of overall health at the time of each interview. 

Specifically, I constructed a 41-item Frailty Index for each individual in each wave following 

guidance from previously published work (20,97). The 41 items span eight domains including self-

rated health, hearing and vision, activities of daily living (ADLs), instrumental activities of daily 

living (IADLs), receiving assistance with ADLs and IADLs (e.g., receives help bathing), other 

functional and mobility limitations (e.g., difficulty picking up a dime), medication use (e.g., takes 

medication for hypertension), signs and symptoms (e.g., urinary incontinence), and equipment 

 
11 Average household size was smaller in the recovery sample due to nature of selection. Everyone with a 
known vital status was included in mortality, while only individuals who had a heart attack were included 
in recovery. Having a household where both spouses had a heart attack was much less common than having 
a household where both members had known vital status. 
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use (e.g., wears hearing aid). I assessed all variables for suitability using criteria from Blodgett 

(97). Variables that meet the criteria are 1) associated with age, 2) do not saturate too early,12 3) 

are not too common (>80%) or too rare (<1%), and 4) have minimal missing data (<5%). Individuals 

must not be missing 20% or more of answers to the deficit questions for an FI to be calculated. In 

addition to these criteria from Blodgett, if any variables are too highly correlated (0.95 or greater), 

I only included one of the pair to avoid redundancy (O Theou, personal communication, June 10, 

2022). Given this project calls for a longitudinal application, chosen variables must be comparable 

across waves, and the FI must be identically constructed across all waves (20). I excluded waves 1 

and 2 due to limitations in creating a comparable frailty index across waves: wave 1 had several 

questions that were asked differently, leading to non-comparable responses, and wave 2 had a 

large proportion of missing on several variables.  

Importantly, I have omitted chronic disease conditions and self-rated health from the 41-item 

frailty index given concerns over using these variables in both the left- and right-hand side of the 

growth curve model equation (i.e., both as independent variables, and components of the 

dependent variable, the frailty index). Given the interchangeable nature of components of the 

frailty index, I hypothesized that the inclusion or exclusion of these variables should not have a 

large impact on results. To confirm this, I also ran a sensitivity analysis with a 51-item frailty index 

which included self-rated health and chronic diseases. Furthermore, since the beginning of this 

project, a more recent article was published which acts as a guide to creating a frailty index, 

formalizing the criteria noted above and providing step-by-step instructions. This published 

example used the same data (HRS), from waves 5 to 12. The major difference in this published FI 

and the current FI is the inclusion of health service utilization variables. I did not consider these 

variables for inclusion in the FI given concerns over health care access and financial implications 

of the US health system. To see if this makes a difference I included a third, 56-item frailty index 

as a sensitivity analysis that is comparable to that published in Theou et al. (98). Appendix C 

provides further details on creation and comparison of all three frailty indices.  

Age: a continuous, time-varying measure of the respondent’s age in years at the date of each 

interview. I created this variable by taking the respondent’s age in months at the end date of the 

 
12 For example, presbyopia would not be a good candidate deficit as it becomes nearly universal by age 55 
(20). 
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interview and dividing it by twelve. The RAND codebook suggests using the age at the end date of 

the interview (rather than the beginning or middle) because if the interview took place over 

multiple dates, the bulk was usually done at the end. The original age in months variable was 

determined by subtracting the respondent’s birthdate from the interview end date.  

Sex: a binary, time-invariant indicator of the respondent’s biological sex with two categories: male 

and female. Female is the reference category.  

Wave: an indicator variable of the interview wave, ranging from 3 to 13. Wave 3 is the reference 

category. I included wave to account for any potential differences between interview waves (e.g., 

different interviewers or modes of interview) and/or period effects (e.g., the 2008 economic 

crisis). Including wave resulted in a better model fit, indicated by a significant likelihood ratio test, 

so it remained in the final adjusted model.  

Disease variables: binary, time-varying indicators of whether the respondent has ever had any of 

the following conditions:  

1. Arthritis or rheumatism 

2. Hypertension or high blood pressure 

3. Stroke or transient ischemic attack 

4. Diabetes or high blood sugar 

5. Cancer or malignant tumor of any kind except skin cancer 

6. Chronic lung disease (excluding asthma, chronic bronchitis, and emphysema)13 

7. Heart problems including heart attack, coronary heart disease, angina, congestive heart 

failure, or other heart problems 

For each of these conditions, “No” is the reference category.  

Self-rated health: a time-varying indicator of how a respondent views their overall health at the 

time of each interview, with response categories: excellent, very good, good, fair, and poor. 

Excellent is the reference category. 

 
13 Disease exclusions such as skin cancer in the cancer variable or emphysema in the chronic lung disease 
variable are present in the HRS data, not imposed by the author. 
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Regularly Takes Prescription Drugs: a binary, time-varying indicator of whether the respondent 

has regularly used prescription medication in the last two years prior to each interview. “No” is 

the reference category. 

Model 1: Unadjusted (age-only) 

I estimated age-based trajectories of the frailty index using a polynomial (cubic) specification. The 

models have two levels: up to 11 repeated measures of the FI (j), nested within individuals (i). Age 

in years at the time of the repeated measure, along with it’s powers (i.e., age-squared and age-

cubed) are the only predictor in this model. The model includes a random intercept and random 

slope for age (but not age-squared or age-cubed). I centred age at 50 so that the intercept (fixed 

and random) represents FI at the lower age limit in the sample.  

FI𝑖𝑗 = 𝛽0 + 𝛽1 × age𝑖𝑗 + 𝛽2 × age𝑖𝑗
2 + 𝛽3 × age𝑖𝑗

3 + 𝑏0𝑖 + 𝑏1𝑖 × age𝑖𝑗 + 𝜖𝑖𝑗                                  (1) 

Where  𝐹𝐼𝑖𝑗  is the FI of individual 𝑖 at the 𝑗th repeated measurement occasion. 𝛽0 is the fixed 

intercept, 𝛽1 to 𝛽3 are the fixed effects of age, age-squared, and age-cubed, respectively. 𝑏0𝑖 is 

the random effect for the intercept, 𝑏1𝑖 is the random effect for the slope of age, and 𝜖𝑖𝑗 is the 

residual.  

Model 2: Adjusted Model 

The disease burden adjusted model expands upon the unadjusted model by adjusting for the fixed 

effects of the sex, wave, and the nine disease burden variables described above, represented by 

the addition of 𝐶δ below: 

FI𝑖𝑗 = 𝛽0 + 𝛽1 × age𝑖𝑗 + 𝛽2 × age𝑖𝑗
2 + 𝛽3 × age𝑖𝑗

3 +  δC𝑖𝑗 + 𝑏0𝑖 + 𝑏1𝑖 × age𝑖𝑗 + 𝜖𝑖𝑗                           (2) 

Where  𝐹𝐼𝑖𝑗  is the FI of individual 𝑖 at the 𝑗th repeated measurement occasion. 𝛽0 is the fixed 

intercept, 𝛽1 to 𝛽3 are the fixed effects of age, age-squared, and age-cubed, respectively. δC𝑖𝑗 

represents the matrix of control covariates (C𝑖𝑗) and their corresponding fixed effects (δ). 𝑏0𝑖 is 

the random effect for the intercept, 𝑏1𝑖 is the random effect for the slope of age, and 𝜖𝑖𝑗 is the 

residual.  
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5.4.2 Frailty-Disease Mismatch (FM) 

The frailty-disease mismatch (FM) is a residual-based measure of physical resilience that describes 

the difference between the expected and observed frailty of an individual based on a population 

model that accounts for age, sex, wave, and disease burden (indicative of an individual’s level of 

cumulative stress) (43). Individuals who have lower frailty than expected are “adapters,” as they 

have been better able to adapt to the cumulative stress of aging and disease burden (i.e., are 

more resilient). Conversely, those with higher-than-expected frailty are “premature frailers.” I 

generated a point estimate of FM for each individual at each measurement occasion by 

subtracting the population predicted value from the observed FI value. I estimated the population 

predicted values for each individual by generating predictions for the adjusted model (equation 

2) using the fixed effects only. Using only the fixed effects emulates the between individual model 

of Wu et al. (43), the original method authors, and mirrors the mixed effects approach for 

longitudinal data used by Milman et al. (69).  

Given that the resulting distribution of FM is not normal, I used the 25th and 75th percentiles to 

determine cut points: individuals equal to or below the 25th percentile are the “adapters” (i.e., 

considered the most resilient), and individuals above the 75th percentile are the “premature 

frailers” (i.e., considered the least resilient). Individuals between the 25th and 75th percentiles 

are “expected agers” and serve as the reference group.  

5.4.3 Rate of Aging (RoA) 

The rate of aging describes an individual’s rate of deficit accumulation. This is operationalized as 

the mean of an individual’s derivatives across all repeated measurement occasions. This reflects 

an individual’s average rate of aging across their non-linear trajectory estimated in the 

unadjusted, age-only model (equation 1). To estimate RoA, I extracted individual coefficients 

(fixed plus random) from the model using a post-estimation command from the nlme package, 

which uses an empirical best linear unbiased prediction approach to estimate random effects. I 

used these individual coefficients in the derivative equation of equation 1: 

RoA𝑖𝑗 = 𝛽1 +  2𝛽2age𝑖𝑗 + 3𝛽3age𝑖𝑗
2  + 𝑏1𝑖                          (3) 
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This equation finds the instantaneous slope of FI based on the respondent’s age at each repeated 

measurement occasion.  

I created two versions of RoA. The first version used the average of all derivatives at each 

interview for each individual. The RoA for individual i is the average over all j (repeated measures) 

for this individual, where n is the total number of repeated measures for individual i: 

𝑅𝑜𝐴𝑖 =
∑ 𝑅𝑜𝐴𝑖𝑗

𝑛
𝑗=1

𝑛
                                 (4) 

However, this first version was found to be problematic after comparing to the main sensitivity 

analysis using only three interviews per individual (described in section 5.7). Thus, I created the 

second version of RoA using the average of the last three derivatives only. The second version 

ensures all individuals have a comparable estimate, regardless of how many interviews they 

completed. The second version of RoA for individual i is the average over the last three j (repeated 

measures) for this individual: 

𝑅𝑜𝐴𝑖 =
∑ 𝑅𝑜𝐴𝑖𝑗

𝑛
𝑗=𝑛−2

3
                   (5) 

Below I present both results, using the first and second versions of ROA, in the order of the 

chronological development of the project: results using the first version of RoA (all derivatives), 

the sensitivity analysis, then results from the second version of RoA (last three derivatives). The 

results from the second version of RoA are the primary results of interest, because the second 

version of RoA provides comparable estimates across individuals with different lengths of 

observation. See sections 5.7 and 6.1.9 for details.  

To remain consistent with the FM, I categorized RoA by the 25th and 75th percentiles: “slow 

agers” are individuals equal to or below the 25th percentile, and “fast agers” are individuals above 

the 75th percentile. “Average agers” fall between the 25th and 75th percentiles and serve as the 

reference group.  

5.4.4 A Dynamical Indicator of Resilience Based on the Frailty Index (DIOR-FI) 

I used the long-term intra-individual variability of the frailty index as a longitudinal macro-scale 

dynamical indicator of resilience (DIOR). As individuals accumulate or recover from deficits over 
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time, they display unique patterns of variation around their mean trajectory. This provides 

dynamic health information that conventional analyses often overlook, and closely resembles the 

microrecovery approach employed by typical DIORs. Similar to what is observed with micro-scale 

DIORs, I hypothesized that given the same average frailty trend, high stability reflects a high level 

of resilience (Figure 10, top row), and low stability reflects a low level of resilience (Figure 10, 

bottom row).  

 

Figure 10. Longitudinal Frailty Index Instability as a Dynamical Indicator of Resilience 

Depicted on the right is blood pressure measurement over the course of days representing a typical, short-
term DIOR. The variation represents fluctuations around an average baseline value. Depicted on the left is 
the proposed longitudinal, macro-scale DIOR: Frailty index over the course of years. Variation represents 
fluctuations around an average trajectory (analogous to the baseline in a short-term DIOR).  

The DIOR-FI is defined as the standard deviation of the raw within-individual residuals in the 

adjusted model (equation 2). In contrast to the population-average prediction residuals used for 

creating the FM (i.e., predictions using the fixed effects only), the DIOR uses the individual 

prediction residuals (i.e., predictions using both fixed and random effects).  
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Following the decisions made for RoA, as explained above, I also estimated a second DIOR-FI using 

only the last three residuals to provide comparable estimates across individuals with different 

lengths of follow-up. Similar to the results of RoA, below I present both results in the order of the 

chronological development of the project, but the results from the DIOR-FI using the last three 

residuals are the primary results of interest. See sections 5.7 and 6.1.9 for details. 

I classified the DIOR following the previous resilience variables: individuals equal to or below the 

25th percentile have high stability (resilient), and individuals above the 75th percentile have low 

stability (non-resilient). Individuals between the 25th and 75th percentiles have average stability 

and function as the reference group.  

5.4.5 Descriptive Analysis 

The descriptive analysis includes non-parametric univariate and bivariate descriptive statistics to 

describe the continuous distribution of each measure (FI, RoA, FM, DIOR-FI), as well as the 

distribution of other variables (age, sex, mortality, recovery, FI, RoA, FM, DIOR-FI) across the 

categories of each measure. I presented univariate descriptive statistics with the median and 

interquartile range (IQR) limits (i.e., the 25th and 75th percentiles) as the variables of interest are 

not normally distributed. I compared continuous variables across categories using the Wilcoxon 

rank sum test for two groups or the Kruskal-Wallis rank sum test for more than two groups. I 

calculated Pearson correlation coefficients for all pairwise continuous measures, and I used 

Cohen’s Kappa (unweighted) to determine the agreement between the resilience categorizations.  

Previous literature proposed 0.03 as the minimal important difference in FI at the conservative 

end (99,100). I used this value when making comparisons in the descriptive analyses. In addition 

to continuous FI, this study also used FI categories for descriptive analyses: less than or equal to 

0.1 is non-frail, greater than 0.1 but less than or equal to 0.21 is vulnerable, greater than 0.21 but 

less than or equal to 0.45 is frail, and greater than 0.45 is most frail (34,101). 

I used the last values for the point estimates (i.e., observed FI and estimated FM at the final 

interview) in the descriptive analysis to maintain consistency with the values used in the 

subsequent logistic models (described in section 5.6). For example, for an individual who died in 

wave 6, point estimates from wave 5 were used (i.e., the most recent FI and FM), along with the 

longitudinal information estimated from all three waves prior (i.e., RoA and DIOR-FI estimated 
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from waves 3-5). Similarly, for an individual who remained alive through the observation period 

(i.e., is still alive at wave 14), the point estimates from wave 13 were used, along with the 

longitudinal information estimated from all observed waves prior. The last/most recent value was 

chosen for point estimates to represent the most up to date (and informative) estimate of health 

before the index event (MI) or outcome (death/survival). In particular, the last observed frailty 

index represents the conventional risk assessment that we are trying to improve with indicators 

of resilience.  

5.5 Summary of Independent Variables Carried Forward to Step 2 

In total, this study evaluated four individual-level variables. These include the frailty index (FI) the 

rate of aging (RoA), the frailty-disease mismatch (FM) and a longitudinal dynamical indicator of 

the frailty index (DIOR-FI). Figure 11 shows a simplified illustration of these four measures. 

Furthermore, Table 4 summarizes the four measures and provides an example interpretation of 

each. I estimated all resilience variables (RoA, FM, and DIOR-FI) separately for each sample 

(mortality and recovery). 

 

Figure 11. Illustration of Frailty and Resilience Measures in Relation to Mortality and Recovery  

This figure shows the temporal relationship of all four independent variables of interest, and the outcomes 

for objectives 2 and 3.  
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Table 4. Summary of Frailty and Resilience Measures 

Variable Categorization Interpretation 

Frailty 
Index 

(FI) 

Continuous FI is the primary measure, 
but descriptive analyses use categories: 

Non-frail < 0.1  

Vulnerable (0.1, 0.21) 

Frail (0.22, 0.45) 

Most Frail >0.45 

Frailty index at a single point in time. A 
threshold minimum important 
difference of 0.03 is used when 

comparing groups (99,100). This is 
equal to 1.23 deficits in the 41-item 
frailty index. I used the most recent 

observation in all analyses. 

Frailty-
Disease 

Mismatch 

(FM) 

Categorized by IQR: 

Adapters (resilient) ≤ Q1 

Expected Agers (reference) (Q1, Q3) 

Premature Frailers (non-resilient) > Q3 

The differential between the observed 
frailty index and the expected frailty 
index given the respondent’s level of 

disease burden at a single point in 
time. Those with higher frailty than 

expected are considered non-resilient, 
and those with lower frailty than 

expected are considered resilient. I 
used the most recent estimate prior to 
the event of interest (MI or death), or 

end of follow up. 

Rate of 
Aging 

(RoA) 

Categorized by IQR: 

Slow Agers (resilient) ≤ Q1 

Average Agers (reference) (Q1, Q3) 

Fast Agers (non-resilient) > Q3 

Unadjusted rate of deficit accumulation 
as measured by the frailty index. This 

estimate reflects individual 𝑖’s average 
non-linear slope of frailty over the 

observation period. E.g., a rate of aging 
of 0.03 would mean a person’s average 
slope over their observation period is 
equal to 0.03 FI per year. I estimated 

RoA using all observations prior to the 
event of interest (MI or death), or end 

of follow up. 

Dynamical 
Indicator of 
Resilience 

(DIOR-FI) 

Categorized by IQR: 

High Stability (resilient) ≤ Q1 

Average Stability (reference) (Q1, Q3) 

Low Stability (non-resilient) > Q3 

DIOR-FI is the standard deviation of the 
residual, which captures the 

intraindividual variability of the frailty 
index over the observation period. 

Higher numbers indicate more 
variability (less resilient) around their 

estimated trajectory, and lower 
numbers indicate lower variability 

(more resilient). 

Note: Q1 is the 25th percentile, and Q3 is the 75th percentile. I used these cut points because no established 
cut points exist, and this makes sense from a distributional perspective as none of the measures were 
normally distributed.  
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5.6 Objectives 2 and 3: Estimating Effects of Frailty and Resilience on Mortality and Recovery 

5.6.1 Mortality Models 

I used logistic regression models to estimate the effects of the independent variables on the odds 

of two-year all-cause mortality. Details of the models are provided below. 

Data 

This analysis compares the last observed/estimated values in survivors vs decedents. This 

corresponds to wave 13 for survivors, and the wave before death for decedents (can be any wave 

between 6 and 13). 

Measures 

The outcome measure in the mortality models is all-cause mortality. I assigned a mortality value 

of 1 to individuals who died by any cause, and 0 to individuals who survived. For both survivors 

and decedents, there is approximately a 2-year window between the ascertainment of the 

independent variables and the reporting of the outcome (survival/death). The control variables 

are age at final interview and sex. The main independent variables of interest are the FI, FM at 

final interview, and the RoA and DIOR-FI estimated using all prior waves (see sections 5.4. and 5.5 

for details).  

Regression Models 

I chose logistic regression (rather than a duration model) so that longitudinal variables (i.e., RoA 

and DIOR-FI) could be estimated and compared between survivors and decedents. I estimated a 

series of logistic regression models predicting mortality in four successive modelling steps: 1) I ran 

unadjusted models for each measure (FI, FM, RoA, DIOR-FI), 2) I accounted for the influence of FI 

by including it as a covariate in the resilience models. The adjustment aimed to isolate specific 

contribution of resilience beyond the effect attributable to frailty. 3) I further refined the 

resilience models by adjusting for age, sex and FI. This adjustment aimed to account for the 

potential influence of age and sex on the relationship between resilience and mortality, while still 

considering the effect of FI as a covariate. 4) I tested for interaction between the resilience 
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indicator and FI within the age-sex adjusted model. This allows for exploring if the relationship 

between resilience and mortality varies across different levels of FI, while considering the effect 

of age and sex. 

I interpreted regression coefficients for each model and compared the discriminatory ability by 

the area under the receiver operating characteristic curve (AUC). To determine the added 

discriminatory value of each resilience indicator, I compared the AUC of the adjusted resilience 

models to the age-sex-adjusted FI model. Finally, I ran a combined model with all resilience 

indicators to determine the maximal increase in AUC. 

5.6.2 Recovery Models 

Similar to the mortality analysis, I used logistic regression models to estimate the effects of the 

independent variables on the odds of full functional recovery after an incident myocardial 

infarction. Details of the models are provided below. 

Data 

Conditioning on first-time MI events between waves 6 and 13, I used data from each individual’s 

pre- and post-MI waves for the recovery analysis. Information from the pre-MI wave is used to 

predict functional recovery in the post-MI wave. I chose MI as the acute stressor because it is a 

common and well characterized major health event that can impact whole-person physical 

functioning. Restricting to first-reported MI events should reduce variability in pre-disposing 

factors that cannot be fully accounted for in the available data (e.g., the number of MI events 

prior to enrollment in HRS). Repeat heart attacks may be more likely to cause more damage than 

a single heart attack and, thus, be more difficult to fully recover from. In absence of other severity 

indicators, I restricted the analysis to first-reported MI events to reduce variability in severity.  

Measures 

The outcome measure in the recovery models is post-MI full functional recovery (see below for 

details). The control variables are pre-MI age and pre-MI physical function (see below for details).  

The main independent variables of interest are the pre-MI FI, FM, RoA, and DIOR-FI (see sections 
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5.4 and 5.5 for details). Sex was not included in the recovery models as it was not statistically 

significant.  

Pre-MI physical function: To remain consistent with previous functional recovery literature, 

physical function was assessed using a modified SF-36 physical function subscale (SF-36 PFS). 

While HRS data does not include the SF-36 PFS, it does ask questions that closely resemble nine 

of the ten items of the physical function subscale (the missing dimension is “walking more than a 

mile” but there is a question elsewhere in the HRS questionnaire on ability to walk several blocks 

that I used as a proxy, see below), allowing a coarse approximation to be calculated (102). A key 

difference is that the SF-36 PFS asks participants to what degree each activity is limited by their 

health (three response categories: “limited a lot”, "limited a little”, “not limited at all”), while the 

HRS variables are binary indicators of difficulty on the items. Following Wei et al., I imputed the 

missing item “walking more than a mile”, using the respondent’s answer for “walking several 

blocks”, with the assumption that individuals who experience difficulty walking several blocks 

would also experience difficulty walking more than a mile (102). The 10 items are added together 

and rescaled for a final score ranging from 0 to 100, with higher scores indicating less functional 

difficulty. The SF-36 PFS is an appropriate tool to identify changes in the level of physical 

functioning as the items cover a wide range of functional ability from basic activities of daily living 

such as bathing or dressing, to vigorous physical activities such as jogging. Following the guidance 

in the SF-36 Manual, I calculated a score if a respondent answered at least half of the items. I 

imputed the missing items with the average score of the answered items (103). Appendix E 

provides a full item comparison of the validated SF-36 PFS and the constructed HRS equivalent. 

Full Functional Recovery (post-MI): I assigned a recovery value of 1 to individuals who returned 

to, or exceeded their pre-MI level of functioning at the wave after the MI was reported. If the 

individual was still below baseline at this wave, or was deceased, I assigned a value of 0. For 

example, if an individual reported their first MI in wave 8, the recovery value would be determined 

by the difference in function between waves 7 and 9 (or alternatively, their vital status in wave 

9). Importantly, the SF-36 PFS has a floor effect: those who start with zero function cannot 

decrease any further. This applies to 243 individuals (12.8%) in the sample. The only way for these 

individuals to demonstrate a lack of full recovery is to die. Thus, full recovery for this subgroup is 

equivalent to survival. To maximize sample size and retain those individuals in poorest health, I 
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included these individuals in the sample, and adjusted all recovery models for baseline (pre-MI) 

function.  

Regression Models 

Similar to the mortality analysis, I estimated a series of logistic regression models predicting 

mortality in four successive modelling steps (see section 5.6.1 for steps and rationale). However, 

the recovery models have two key differences: 1) all models are adjusted for function to account 

for the SF-36 PFS floor effect, and 2) sex is not adjusted for because it was determined to be 

insignificant in the recovery models. 

5.7 Sensitivity Analyses 

I ran a total of ten sensitivity analyses to examine the robustness of the results (Table 5). The main 

sensitivity analysis used a restricted sample of three consecutive FI measurements prior to the 

event of interest (MI/death), or end of follow up. The purpose of this was to check the robustness 

of the resilience variables to differential lengths of follow up and non-consecutive observations. 

Importantly, this led to second sensitivity analysis testing a modification in the estimation of RoA 

and DIOR-FI between the main and restricted sample, which ultimately lead to a change in how 

these variables were estimated (see results section 6.1.9). All subsequent sensitivity analyses used 

the corrected “last three” longitudinal measures, which estimated the RoA and DIOR-FI using only 

the last three time points per individual (while still using all longitudinal information to estimate 

the growth curve model).  

Additional sensitivity analyses included age- and sex-stratified models, alternative cut points for 

resilience variables (top and bottom 15% compared to the original 25%), continuous measure 

models, alternative FI models (51-item and 56-item), and a household random effects model 

(allowing intercept and the slope of age to vary by household). I determined cut points for the 

age-stratified analysis using the 33rd and 67th percentiles to maximize sample size in each group. 

The resulting groups are 52-67 (n = 9,150), 68-79 (n = 9,002), and 80-109 (n = 9,592).14 The final 

sample sizes for the sex-stratified analyses are 11,903 for males, and 15,841 for females. I 

 
14 Note: the youngest age is 52 because this was the age of the youngest individual who happened to be 
interviewed three times above the age of 50 prior to their final observation. This illustrates the variability 
in interview timing for the approximate 2-year wave cycle.  
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performed stratified analyses only in the mortality sample due to the limited sample size and 

power in the recovery sample. Additionally, I included two sensitivity analyses using differently 

constructed frailty indexes: a 51-item FI that includes disease burden variables (originally left out 

due to overlap with the adjusted growth curve model), and a 56-item that includes health service 

utilization, and is comparable to a recently publish guide by Theou et al. (98). Lastly, I estimated 

a cross-sectional FM for individuals in wave 10 aged 70 to 79 who reported no difficulty climbing 

one flight of stairs or walking several blocks (n = 3,173). The purpose of this was to match the 

population used by Wu et al. (43) to see if differences in population can explain differences in 

results. I chose wave 10 to allow enough time for deaths to occur after measurement of FM. Table 

5 lists all sensitivity analyses and the corresponding rationale.  
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Table 5. Sensitivity Analyses 

# Sensitivity Analysis Rationale 

1 Restricted sample to three consecutive FI 
measurements 

To check robustness to differential length 
of follow-up and non-consecutive 
observations 

2 Comparing main vs. restricted samples 
with revised estimation of RoA and DIOR-
FI 

To check if observed differences between 
the main and restricted sample sensitivity 
analysis could be eliminated by revising 
how RoA and DIOR-FI were estimated 

3 Age stratification To check for differences by age 

4 Sex stratification To check for differences by sex 

5 Alternative cut points for categorical 
resilience indicators : top and bottom 
15%  

To check robustness to the cut points 
used for resilience categorization 

6 Continuous resilience indicators To check how much discriminatory ability 
is lost by categorizing the resilience 
indicators 

7 
Alternative FI – 51-item 

To check if results are robust to the 
inclusion of disease variables in the FI 

8 
Alternative FI – 56-item 

To check if results are robust to the 
inclusion of health service utilization 
variables in the FI 

9 Household Random Effects To check if results are robust to the 
specification of household clustering 
effects 

10 Cross-sectional FM – Wu et al. (43) 
sample match 

To check if differences in population can 
explain the disparity between observed 
results and previous literature. 

 

5.8 Sample Weights and Statistical Software 

All estimates are unweighted as the study design does not have a single start or end date where 

the cross-sectional weights can be applied to all participants. Thus, estimates of variance do not 

account for the complex survey design in HRS. I performed all statistical analyses in R version 

4.2.3, and RStudio version 2023.06.0+421 "Mountain Hydrangea." I created data visualizations 

using “ggplot2” (104) and “ggeffects” (105), and summary tables using “gtsummary” (106). I used 

package “nlme” to estimate mixed effect models (107).  
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5.9 Research Ethics 

As this study exclusively involved secondary use of publicly available data, it was exempt from 

research ethics board review as outlined in the Tri-Council Policy Statement Article 2.2. (108). 

Publicly available datasets such as HRS have been de-identified to pose minimal risk to participant 

privacy, and thus there are no anticipated harms due to use of sensitive participant information 

in this project.
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Chapter 6: Results 

A Guide to Chapter 6  

Results are divided into two sections, mortality analysis (section 6.1) and recovery analysis 

(section 6.2). Each of these sections has two main sub-components: main analysis (sections 6.1.1 

to 6.1.8 for mortality analysis and sections 6.2.1 to 6.2.9 for recovery analysis) and main sensitivity 

analysis (sections 6.1.9 to 6.1.14 for mortality analysis and sections 6.2.10 to 6.2.15 for recovery 

analysis). The main sensitivity analysis used a restricted sample of individuals with only three 

consecutive observations. Based on the results of the main sensitivity analysis, I made a decision 

to keep the full, unrestricted sample, but to change the estimation of the two longitudinal 

variables (RoA and DIOR-FI) to make them more comparable across individuals: the estimation 

was changed from using all longitudinal information to estimate RoA and DIOR-FI, to using only 

the last three observations for each person. For this reason, for each mortality and recovery 

analysis, the main analysis was repeated using the corrected estimates of RoA and DIOR-FI. While 

presenting a full picture, this chapter presents results with cumbersome repetitions. Readers 

interested in an abbreviated read of the results can read only section 6.1.5 (for frailty-disease 

mismatch results) and sections 6.1.9 to 6.1.14 (for the corrected RoA and DIOR-FI results) for the 

mortality analysis and section 6.2.6 (for frailty-disease mismatch results) and sections 6.2.10 to 

6.2.15 (for the corrected RoA and DIOR-FI results) for the recovery analysis.  

Each main section (mortality, 6.1, and recovery, 6.2)  presents the results in the same order. The 

sections begin with an overview of the sample used (overall and stratified by outcome), followed 

by the results of the growth curve models used to estimate the resilience variables. Then, an 

analysis of each independent variable of interest (FI, FM, RoA, DIOR-FI) which includes univariate 

and bivariate descriptive analyses and presentation of estimated coefficients in the series of 

logistic regression models. Finally, the main results conclude with the correlation and agreement 

between continuous and categorical independent variables, and a comparison of the 

discrimination (AUC) of all estimated models. Sensitivity analyses present a brief comparison to 

the main results with the full details in the corresponding appendices.  

Individual variable results are presented in the following order: FI, FM, RoA, DIOR-FI. FI is 

presented first as this is the base variable we wish to complement with additional resilience 
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indicators. FM is presented second as this is the only other static measure that can be estimated 

cross-sectionally. RoA is presented third as this represents an individuals longitudinal trajectory. 

DIOR-FI is fourth as this represents the variation around an individual’s estimated trajectory.  

6.1 Mortality Analysis 

6.1.1 Sample Characteristics 

The mortality sample of 27,744 individuals is 57% female with a median age of 74 (IQR bounds = 

64, 82) and a median FI of 0.183 (IQR bounds = 0.085, 0.360) (Table 6). In terms of the indicators 

of resilience, the sample has a median rate of aging of 0.005 FI per year (IQR bounds = 0.003, 

0.012), a median frailty-disease mismatch of -0.026 deviation from the expected frailty (IQR 

bounds = -0.082, 0.068), and a median DIOR-FI of 0.046 (IQR bounds = 0.028, 0.077).  

Of the 27,744 included in the sample, 11,154 (40%) died by wave 14. Survivors and decedents are 

significantly different, both statistically and in terms of the effect size,15 across all variables using 

the Wilcoxon rank sum test for continuous variables and Pearson’s Chi-squared test for 

categorical variables (p < 0.001). Compared to survivors, decedents have a higher median age (81 

years compared to 68 years), a higher median FI (0.331 compared to 0.122), a higher proportion 

of males (46% compared to 41%), a higher median rate of aging (0.012 compared to 0.004), a 

higher median frailty-disease mismatch (0.012 compared to -0.036), and a higher median 

variability captured by the DIOR-FI (0.066 compared to 0.037).  

After categorizing by the 25th and 75th percentiles, all resilience indicators remain statistically 

significantly different between survivors and decedents (p < 0.001). In terms of the RoA, 

decedents have a higher proportion of fast agers (52% compared to 6.6% of survivors) and a lower 

proportion of slow agers (8.2% compared to 36%). In terms of the FM, decedents have a higher 

proportion of premature frailers (39% compared to 16%) but unexpectedly they also have a 

slightly higher proportion of adapters (26% compared to 24%). Lastly, in terms of the DIOR-FI, 

 
15 Minimal important differences in effect sizes for the continuous resilience variables have yet to be 
determined, though the differences between survivors and decedents seem to be of reasonable magnitude. 
This issue is further discussed in Chapter 7.  
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decedents have a higher proportion of individuals with low stability (42% compared to 14%) and 

a lower proportion of individuals with high stability (11% compared to 35%). 

Table 6. Mortality Sample Characteristics by 2018 Vital Status 

 2018 Vital Status   

Characteristic Overall, N = 27,7441 Alive, N = 16,5901 Deceased, N = 11,1541 p-value2 

Age 74 (64, 82) 68 (62, 77) 81 (73, 88) <0.001 
Sex    <0.001 

Female 15,841 (57%) 9,810 (59%) 6,031 (54%)  
Male 11,903 (43%) 6,780 (41%) 5,123 (46%)  

Frailty Index 0.183 (0.085, 0.360) 0.122 (0.067, 0.226) 0.331 (0.183, 0.567) <0.001 
FI Category    <0.001 

Non-frail 8,340 (30%) 7,091 (43%) 1,249 (11%)  
Vulnerable 6,964 (25%) 4,852 (29%) 2,112 (19%)  
Frail 7,405 (27%) 3,591 (22%) 3,814 (34%)  
Most Frail 5,035 (18%) 1,056 (6.4%) 3,979 (36%)  

FM -0.026 (-0.082, 0.068) -0.036 (-0.080, 0.020) 0.012 (-0.086, 0.169) <0.001 
FM Category    <0.001 

Adapter 6,936 (25%) 4,041 (24%) 2,895 (26%)  
Expected Ager 13,872 (50%) 9,949 (60%) 3,923 (35%)  
Premature Frailer 6,936 (25%) 2,600 (16%) 4,336 (39%)  

RoA 0.005 (0.003, 0.012) 0.004 (0.002, 0.006) 0.012 (0.006, 0.020) <0.001 
RoA Category    <0.001 

Slow Ager 6,936 (25%) 6,017 (36%) 919 (8.2%)  
Average Ager 13,872 (50%) 9,475 (57%) 4,397 (39%)  
Fast Ager 6,936 (25%) 1,098 (6.6%) 5,838 (52%)  

DIOR-FI 0.046 (0.028, 0.077) 0.037 (0.023, 0.058) 0.066 (0.042, 0.106) <0.001 
DIOR-FI Category    <0.001 

High Stability 6,936 (25%) 5,747 (35%) 1,189 (11%)  
Average Stability 13,872 (50%) 8,559 (52%) 5,313 (48%)  
Low Stability 6,936 (25%) 2,284 (14%) 4,652 (42%)  

1Median (IQR Bounds); n (%) 
2Wilcoxon rank sum test; Pearson's Chi-squared test 

Age, FI, and FM represent the final values prior to death or end of follow up (wave 13). RoA and DIOR-FI represent 

estimates from all interviews prior to death or end of follow up (wave 13).  
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6.1.2 Growth Curve Models  

I estimated two models to create the resilience variables. The age-only model produces RoA, and 

the adjusted model produces FM and DIOR-FI. 

Age-only Model 

The coefficients and 95% confidence intervals for all model components are presented in Table 7 

below. The fixed (population average) growth is described by a linear, quadratic, and cubic age 

term equal to 0.00673, -0.00040, and 0.00001, respectively. The standard deviation of the linear 

random effect of age is 0.00586, and the autocorrelation of the residuals is 0.74192 (Table 7).  

Table 7. Age-Only Mixed Effects Model Results (Mortality Sample) 

Fixed Effects Estimate Lower 95% Upper 95% 

(Intercept) 0.08838 0.08519 0.09157 

Age 0.00673 0.00619 0.00727 

Age2 -0.00040 -0.00043 -0.00037 

Age3 0.00001 0.00001 0.00001 

Random Effects Estimate Lower 95% Upper 95% 

Intercept (sd) 0.09322 0.08926 0.09737 

Age (sd) 0.00586 0.00567 0.00606 

Correlation (age and intercept) -0.35386 -0.40572 -0.29973 

Correlation Structure  Estimate Lower 95% Upper 95% 

Phi (autocorrelation of residuals) 0.74192 0.73574 0.74801 

Residuals Estimate Lower 95% Upper 95% 

Within-group residuals (standard error) 0.09530 0.09434 0.09627 

Adjusted Model 

In the adjusted model, all nine disease burden components are statistically significantly associated 

with FI (p < 0.001, Table 8). After adjusting for sex, disease burden, and wave, the linear, quadratic, 

and cubic age coefficients changed to 0.00387, -0.00036, and 0.00001, respectively (Table 8). This 

change in age coefficients towards the null is expected as adding disease burden to the model 

would explain some of the change in FI over time, resulting in a smaller contribution of age. The 
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standard deviation of the linear random effect of age was reduced to 0.00464, and the 

autocorrelation of the residuals was reduced to 0.67949.  
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Table 8. Adjusted Mixed Effects Model Results (Mortality Sample) 

Fixed Effects Estimate Lower 95% Upper 95% 

(Intercept) 0.04069 0.03750 0.04388 

Age 0.00387 0.00340 0.00435 

Age2 -0.00036 -0.00038 -0.00033 

Age3 0.00001 0.00001 0.00001 

Sex: Male -0.02347 -0.02548 -0.02147 

SRH: Very Good 0.00718 0.00581 0.00856 

SRH: Good 0.02588 0.02438 0.02738 

SRH: Fair 0.06471 0.06302 0.06640 

SRH: Poor 0.13689 0.13479 0.13899 

Ever had stroke: Yes 0.09571 0.09321 0.09822 

Ever had arthritis: Yes 0.03728 0.03582 0.03874 

Ever had cancer: Yes 0.00864 0.00649 0.01079 

Ever had high blood pressure: Yes 0.02687 0.02537 0.02837 

Ever had diabetes: Yes 0.01671 0.01484 0.01858 

Ever had lung disease: Yes 0.05025 0.04777 0.05273 

Ever had heart problems: Yes 0.02121 0.01946 0.02297 

Regularly Takes Rx Meds: Yes 0.01310 0.01177 0.01442 

Wave 4 -0.00517 -0.00661 -0.00373 

Wave 5 0.00020 -0.00148 0.00189 

Wave 6 0.00280 0.00095 0.00464 

Wave 7 0.00436 0.00244 0.00627 

Wave 8 0.00734 0.00534 0.00935 

Wave 9 0.00349 0.00141 0.00558 

Wave 10 0.00917 0.00706 0.01128 

Wave 11 0.00778 0.00558 0.00998 

Wave 12 0.00923 0.00691 0.01154 

Wave 13 0.00589 0.00340 0.00838 

Random Effects Estimate Lower 95% Upper 95% 

Intercept (sd) 0.06272 0.05983 0.06576 

Age (sd) 0.00464 0.00452 0.00477 

Correlation (age and intercept) -0.55432 -0.58765 -0.51912 

Correlation Structure  Estimate. Lower 95% Upper 95% 

Phi (autocorrelation of residuals) 0.67949 0.67321 0.68571 

Residuals Estimate. Lower 95% Upper 95% 

Within-group residuals (standard error) 0.08382 0.08318 0.08447 

SRH stands for self-rated health. The reference category is “Excellent”. The reference category for Wave is 

3.  
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6.1.3 Frailty Index 

Distribution of the FI 

The frailty index has a right-skewed distribution with a median of 0.183, a 25th percentile of 0.085, 

a 75th percentile of 0.360, a 99th percentile of 0.859,2

16 a skewness of 1.174, and a kurtosis of 0.491 

(Figure 12).  

 

Figure 12. Distribution and Categorization of the Frailty Index (Mortality Sample) 

Vertical lines illustrate categorical cut points: less than 0.1 is non-frail, less than or equal to 0.21 is 
vulnerable, less than or equal to 0.45 is frail, and greater than 0.45 is most frail (34). Note, I used FI 
categorization for descriptive purposes only.  

 

 
16 The 99th percentile of the FI is well above the empirically observed upper limit of 0.7. This corresponds 
to 2,009 individuals with an FI equal to or greater than 0.70 at their final observation. Of these individuals, 
89% (n = 1,779) died before the next wave (within two years). This is consistent with the empirical 
observation that the body will fail soon after reaching this point. The high 99th percentile is likely a result 
of two factors: 1) the sample design capturing a large proportion of decedents, and 2) excluding the disease 
burden variables from the FI. This issue is addressed in the discussion in Chapter 7.  



78 
 

Comparison of FI Categories 

All variables are statistically significantly different across frailty index categories using the Kruskal-

Wallis test for continuous variables and Pearson’s Chi-squared test for categorical variables (p < 

0.001, Table 9). Age, sex, and mortality show the expected gradient across FI categories: the 

median age ranges from 66 years in the non-frail group to 83 years in the most frail group, the 

proportion of females ranges from 50% in the non-frail to 65% in the most frail group, and the 

proportion of deaths ranges from 15% in the non-frail group to 79% in the most frail group (Table 

9).  

Similarly, all resilience variables show the expected gradient across all frailty categories: the 

proportion of DIOR-FI low stability ranges from 3.8% in non-frail to 77% in most frail, and the 

proportion of DIOR-FI high stability ranges from 58% in non-frail to 1% in most frail (Table 9). The 

proportion of RoA fast agers ranges from 1.5% in non-frail to 82% in most frail, and the proportion 

of RoA slow agers ranges from 63% in non-frail to 0.7% in most frail (Table 9). And lastly, the 

proportion of FM premature frailers ranges from 0% in non-frail to 85% in most frail, and the 

proportion of FM adapters ranges from 37% in non-frail to 3.7% in most frail.  



79 
 

Table 9. Comparison of FI Categories (Mortality Sample) 

 FI Category   

Characteristic Non-frail, N = 8,3401 
Vulnerable, N = 

6,9641 
Frail, N = 

7,4051 
Most Frail, N = 5,0351 p-value2 

Age 66 (61, 74) 73 (65, 80) 77 (68, 84) 83 (75, 90) <0.001 
Sex     <0.001 

Female 4,179 (50%) 3,830 (55%) 4,539 (61%) 3,293 (65%)  
Male 4,161 (50%) 3,134 (45%) 2,866 (39%) 1,742 (35%)  

2018 Vital Status     <0.001 
Alive 7,091 (85%) 4,852 (70%) 3,591 (48%) 1,056 (21%)  
Deceased 1,249 (15%) 2,112 (30%) 3,814 (52%) 3,979 (79%)  

FM Category     <0.001 
Adapter 3,061 (37%) 2,315 (33%) 1,374 (19%) 186 (3.7%)  
Expected Ager 5,279 (63%) 4,465 (64%) 3,574 (48%) 554 (11%)  
Premature Frailer 0 (0%) 184 (2.6%) 2,457 (33%) 4,295 (85%)  

RoA Category     <0.001 
Slow Ager 5,257 (63%) 1,378 (20%) 265 (3.6%) 36 (0.7%)  
Average Ager 2,958 (35%) 5,076 (73%) 4,985 (67%) 853 (17%)  
Fast Ager 125 (1.5%) 510 (7.3%) 2,155 (29%) 4,146 (82%)  

DIOR-FI Category     <0.001 
High Stability 4,852 (58%) 1,615 (23%) 419 (5.7%) 50 (1.0%)  
Average Stability 3,169 (38%) 4,687 (67%) 4,917 (66%) 1,099 (22%)  
Low Stability 319 (3.8%) 662 (9.5%) 2,069 (28%) 3,886 (77%)  

1Median (IQR Bounds); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

 

The Effect of FI on Mortality 

The unadjusted analysis shows that for every 0.03 increase in FI, the odds of mortality in the next 

two years increase by 17% (OR = 1.17, 95% CI = 1.17, 1.18) (Table 10). Compared to the non-frail 

reference group, the odds of mortality are 2.47 times higher for vulnerable (95% CI = 2.28, 2.67), 

6.06 times higher for frail (95% CI = 5.59, 6.50), and 21.4 times higher for most frail (95% CI = 19.5, 

23.4) (Table 10).  

In the age and sex-adjusted analysis,  the odds of mortality in the next two years increases by 14% 

for every 0.03 increase in FI (OR = 1.14, 95% CI = 1.13, 1.14) (Table 10). Compared to the non-frail 

reference group, the odds of mortality are 1.85 times higher for vulnerable (95% CI = 1.70, 2.01), 

4.14 times higher for frail (95% CI = 3.82, 4.50), and 11.8 times higher for most frail (95% CI = 10.7, 

13.0) (Table 10).  
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Table 10. Logistic Regression for the Frailty Index and Mortality 

 Unadjusted Age-Sex Adjusted 

Characteristic OR 95% CI p-value OR 95% CI p-value 

Continuous FI 

Frailty Index 1.17 1.17, 1.18 <0.001 1.14 1.13, 1.14 <0.001 

Age    1.08 1.07, 1.08 <0.001 

Sex       

    Female    — —  

    Male    1.81 1.71, 1.92 <0.001 

Categorical FI 

FI Category       

    Non-frail — —  — —  

    Vulnerable 2.47 2.28, 2.67 <0.001 1.85 1.70, 2.01 <0.001 

    Frail 6.03 5.59, 6.50 <0.001 4.14 3.82, 4.50 <0.001 

    Most Frail 21.4 19.5, 23.4 <0.001 11.8 10.7, 13.0 <0.001 

Age    1.08 1.07, 1.08 <0.001 

Sex       

    Female    — —  

    Male    1.82 1.72, 1.94 <0.001 

Note: Continuous FI odds ratio represents a change of 0.03, the proposed minimal important difference 

Figure 13 displays the unadjusted marginal effect of the continuous FI on the predicted probability 

of mortality. As the frailty index increases, the predicted probability of death monotonically 

increases. The shaded area around the lines represents the 95% confidence intervals (though they 

are small and difficult to see given the large sample size). 
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Figure 13. Marginal Effect of the Frailty Index on Mortality 

Visualization of the unadjusted effect of FI on mortality (continuous unadjusted model, Table 10). 

6.1.4 Frailty-Disease Mismatch 

Distribution of the FM 

The frailty-disease mismatch has a right-skewed distribution, with a median of -0.026, a 25th 

percentile of -0.082, a 75th percentile of 0.068, a skewness of 0.988, and a kurtosis of 1.762 (Figure 

14).  
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Figure 14. Distribution and Categorization of FM (Mortality Sample) 

Physical resilience categories are defined by the 25th and 75th percentiles: those below the 25th percentile 
are adapters (resilient), those within the IQR are the expected agers (reference), and those above the 75th 
percentile are premature frailers (non-resilient). 

Comparison of FM Categories 

All variables are statistically significantly different across FM categories using the Kruskal-Wallis 

test for continuous variables and Pearson’s Chi-squared test for categorical variables (p <0.001, 

Table 11). Interestingly, most variables do not show the expected trend across all FM categories 

except frailty. The adapters have the lowest frailty, with a median FI of  0.116 (compared to 0.520 

in the premature frailers). Aside from this frailty trend, adapters are the oldest but never have the 

highest proportion of resilient individuals or the lowest proportion of non-resilient individuals as 

categorized by the RoA and DIOR-FI, as expected. Compared to the adapter and premature frailer 

categories, the expected ager category has a higher proportion of slow agers and individuals with 

high stability, and a lower proportion of fast agers and low stability. Also unexpectedly, the 

adapters have a higher proportion of deaths compared to the expected agers (42% compared to 

28%). Despite the adapters deviating from this expected trend, the comparison between the 

expected agers and premature frailers is consistent across all variables, with premature frailers 

being older (77 years compared to 69 years) and having higher proportion of deceased (63% 
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compared to 28%), fast agers (54% compared to 11%), and individuals with low stability (64% 

compared to 10%).  

Of note, the difference in median FI of 0.018 from FM adapters to expected agers is below the 

minimum important difference threshold of 0.03. 

Table 11. Comparison of FM Categories (Mortality Sample) 

 FM Category   

Characteristic Adapter, N = 6,9361 
Expected Ager, N = 

13,8721 
Premature Frailer, N = 

6,9361 
p-value2 

Age 80 (71, 87) 69 (62, 77) 77 (67, 85) <0.001 
Frailty Index 0.116 (0.067, 0.196) 0.134 (0.073, 0.232) 0.520 (0.372, 0.714) <0.001 
Sex    <0.001 

Female 3,955 (57%) 7,631 (55%) 4,255 (61%)  
Male 2,981 (43%) 6,241 (45%) 2,681 (39%)  

2018 Vital Status    <0.001 
Alive 4,041 (58%) 9,949 (72%) 2,600 (37%)  
Deceased 2,895 (42%) 3,923 (28%) 4,336 (63%)  

RoA Category    <0.001 
Slow Ager 1,967 (28%) 4,782 (34%) 187 (2.7%)  
Average Ager 3,259 (47%) 7,599 (55%) 3,014 (43%)  
Fast Ager 1,710 (25%) 1,491 (11%) 3,735 (54%)  

DIOR-FI Category    <0.001 
High Stability 1,439 (21%) 5,339 (38%) 158 (2.3%)  
Average 
Stability 

4,429 (64%) 7,117 (51%) 2,326 (34%)  

Low Stability 1,068 (15%) 1,416 (10%) 4,452 (64%)  
1Median (IQR Bounds); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

The Effect of FM on Mortality 

Unadjusted logistic regression analysis shows that adapters have 1.82 times greater odds of dying 

compared to the expected agers (95% CI = 1.71, 1.93), and premature frailers have 4.23 times 

greater odds of dying compared to the expected agers (95% CI = 3.98, 4.50) (Table 12). The frailty-

adjusted model shows an increase in the odds ratio for adapters (OR = 2.41, 95% CI = 2.25, 2.57), 

and a large decrease and change in direction in the odds ratio for premature frailers (OR = 0.39, 

95% CI = 0.35, 0.43). Further adjusting for age and sex diminished the effects of both categories, 

with the odds ratio for adapters decreasing to 1.37 (95% CI = 1.27, 1.48), and the odds ratio for 

premature frailers increasing to 0.64 (95% CI = 0.58, 0.71). 
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Table 12. Logistic Regression Models for FM and Mortality 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM Category             

    Expected Ager — —  — —  — —  — —  

    Adapter 1.82 1.71, 
1.93 

<0.001 2.41 2.25, 
2.57 

<0.001 1.37 1.27, 
1.48 

<0.001 1.85 1.62, 
2.12 

<0.001 

    Premature 
Frailer 

4.23 3.98, 
4.50 

<0.001 0.39 0.35, 
0.43 

<0.001 0.64 0.58, 
0.71 

<0.001 1.62 1.34, 
1.95 

<0.001 

Frailty Index    1.25 1.24, 
1.26 

<0.001 1.18 1.17, 
1.19 

<0.001 1.24 1.22, 
1.26 

<0.001 

Age       1.06 1.06, 
1.07 

<0.001 1.06 1.06, 
1.06 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.85 1.75, 
1.97 

<0.001 1.90 1.79, 
2.01 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         0.96 0.94, 
0.98 

<0.001 

    Premature 
Frailer * Frailty 
Index 

         0.92 0.90, 
0.93 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 

4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 

minimal important difference. 

The interaction terms between FI and FM are statistically significant for both FM categories 

(adapters and premature frailers, p < 0.001, Table 12), and Figure 15 below visualizes this 

interaction. At low levels of frailty, adapters start with the highest predicted probability of death, 

which converges with expected agers around an FI of 0.4 (with confidence intervals overlapping 

around 0.3). The premature frailers have the lowest predicted probability of death at higher levels 

of FI, starting around 0.2. 
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Figure 15. Interaction Effects of the Frailty Index and FM on Mortality 

Visualization of the interaction between FI and FM on mortality (Model 4, Table 12). 

This unexpected result prompted further investigation of differences between the FM categories. 

Further descriptive analysis determined that despite having similar levels of frailty, the adapters 

have significantly higher disease burden (Appendix F). Thus, it appears that disease burden may 

be driving this unexpected relationship. As an additional robustness check, I estimated a cross-

sectional FM for wave 10 (n = 3,173) using a sample matching the characteristics of the Health 

ABC Study used by the original method authors, Wu et al. (43). The results of this sensitivity 

analysis are consistent with the main analysis, with the adapter group having the highest 

predicted probability of death in the age, sex, and frailty-adjusted model (Appendix F). As one 

final check I additionally separated FM into four categories by quartiles. Interestingly, only the 

bottom quartile deviates from the expected trend, suggesting that FM has a different association 

with adverse outcomes among those who are the most underestimated by the growth curve 

model (Appendix F).  
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6.1.5 Rate of Aging 

Distribution of the RoA 

The rate of aging has a right-skewed distribution, with a median of 0.005, a 25th percentile of 

0.003, a 75th percentile of 0.012, a skewness of 1.612, and a kurtosis of 2.558 (Figure 16).  

 

Figure 16. Distribution and Categorization of RoA (Mortality Sample) 

Physical resilience categories are defined by the 25th and 75th percentiles: those below the 25th percentile 

are slow agers (resilient), those within the IQR are average agers (reference), and those above the 75th 

percentile are fast agers (non-resilient). 

Comparison of RoA Categories 

All variables are statistically significantly different across RoA categories using the Kruskal-Wallis 

test for continuous variables and Pearson’s Chi-squared test for categorical variables (p <0.001, 

Table 13). Trends across categories follow the expected patterns for all variables except FM 

adapters. Specifically, comparing the RoA slow agers (i.e., resilient) to the RoA fast agers (i.e., non-
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resilient), the slow agers have the lowest median age (66 vs. 87), the lowest median FI at (0.067 

vs. 0. 518), the lowest proportion of females (52% vs. 63%), deaths (13% vs. 84%), FM premature 

frailers (2.7% vs 54%), and DIOR-FI low stability (7.2% vs. 60%), and the highest proportion of 

DIOR-FI high stability (52% vs 3%). FM adapters deviate from this expected trend with the RoA 

average agers having the lowest proportion of FM adapters (23%), followed by the fast agers 

(25%), then the slow agers (28%).  

Table 13. Comparison of RoA Categories (Mortality Sample) 

 RoA Category   

Characteristic Slow Ager, N = 6,9361 Average Ager, N = 13,8721 Fast Ager, N = 6,9361 p-value2 

Age 66 (62, 71) 72 (62, 79) 87 (82, 91) <0.001 
Frailty Index 0.067 (0.046, 0.098) 0.183 (0.111, 0.283) 0.518 (0.338, 0.725) <0.001 
Sex    <0.001 

Female 3,583 (52%) 7,902 (57%) 4,356 (63%)  
Male 3,353 (48%) 5,970 (43%) 2,580 (37%)  

2018 Vital Status    <0.001 
Alive 6,017 (87%) 9,475 (68%) 1,098 (16%)  
Deceased 919 (13%) 4,397 (32%) 5,838 (84%)  

FM Category    <0.001 
Adapter 1,967 (28%) 3,259 (23%) 1,710 (25%)  
Expected Ager 4,782 (69%) 7,599 (55%) 1,491 (21%)  
Premature Frailer 187 (2.7%) 3,014 (22%) 3,735 (54%)  

DIOR-FI Category    <0.001 
High Stability 3,615 (52%) 3,116 (22%) 205 (3.0%)  
Average Stability 2,822 (41%) 8,461 (61%) 2,589 (37%)  
Low Stability 499 (7.2%) 2,295 (17%) 4,142 (60%)  

1Median (IQR Bounds); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

The Effect of RoA on Mortality 

Unadjusted logistic regression analysis shows that fast agers have 11.5 times greater odds of dying 

in the next two years than the average agers (95% CI = 10.6, 12.3), and the odds of dying in slow 

agers are 0.33 times those of the average agers (95% CI = 0.30, 0.36) (Table 14). These effects are 

reduced after adjusting for frailty, and then reduced further after adjusting for age and sex. After 

adjusting for age, sex, and frailty, fast agers have 3.14 times greater odds of dying than the 

average agers (95% CI = 2.83, 3.48), and the odds of slow agers are 0.55 times those of the average 

agers (95% CI = 0.50, 0.60). 
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Table 14. Logistic Regression Models for RoA and Mortality 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 0.33 0.30, 
0.36 

<0.001 0.44 0.41, 
0.48 

<0.001 0.55 0.50, 
0.60 

<0.001 0.55 0.48, 
0.62 

<0.001 

    Fast Ager 11.5 10.6, 
12.3 

<0.001 6.35 5.83, 
6.93 

<0.001 3.14 2.83, 
3.48 

<0.001 6.80 5.66, 
8.19 

<0.001 

Frailty Index    1.07 1.06, 
1.08 

<0.001 1.09 1.08, 
1.09 

<0.001 1.11 1.10, 
1.12 

<0.001 

Age       1.05 1.04, 
1.05 

<0.001 1.05 1.04, 
1.05 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.84 1.74, 
1.96 

<0.001 1.87 1.76, 
1.99 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         1.04 1.01, 
1.07 

0.005 

    Fast Ager * 
Frailty Index 

         0.94 0.93, 
0.95 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 

The interaction term between FI and RoA is statistically significant for both RoA categories (slow 

agers and faster agers, p < 0.001, Table 14). Figure 17 below visualizes this interaction: After 

adjusting for age and sex, the difference between RoA groups is reduced as the FI increases: the 

predicted probabilities for slow agers and average agers converges around an FI of 0.3, while the 

predicted probability for fast agers converges around an FI of 0.6.  
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Figure 17. Interaction Effects of the Frailty Index and RoA on Mortality 

Visualization of the interaction between FI and RoA on mortality (Model 4, Table 14). 

6.1.6 DIOR-FI 

Distribution of the DIOR-FI 

The DIOR-FI has a right-skewed distribution, with a median of 0.046, a 25th percentile of 0.028, a 

75th percentile of 0.077, a skewness of 1.701, and a kurtosis of 3.648 (Figure 18).  
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Figure 18. Distribution and Categorization of DIOR-FI (Mortality Sample) 

Physical resilience categories are defined by the 25th and 75th percentile: those below the 25th percentile 

have high stability (resilient), those within the IQR have average stability (reference), and those above the 

75th percentile have low stability (non-resilient).  

Comparison of DIOR-FI Categories 

All variables are statistically significantly different across DIOR-FI categories using the Kruskal-

Wallis test for continuous variables and Pearson’s Chi-squared test for categorical variables (p < 

0.001, Table 15). Trends across categories follow the expected patterns for all variables except 

FM adapters. Specifically, comparing the DIOR-FI high stability (i.e., resilient) group to the low 

stability (i.e., non-resilient) group, the high stability group has the lowest median age (66 vs. 80), 

the lowest median FI at (0.073 vs. 0. 494), the lowest proportion of females (51% vs. 61%), deaths (17% 

vs 67%), RoA fast agers (3% vs 60%), and FM premature frailers (2.3% vs 64%), and the highest 

proportion of RoA slow agers (52% vs 7.2%). FM adapters deviate from this expected trend with the 

DIOR-FI average stability having a higher proportion than the high stability group (32% compared 

to 21%). 
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Table 15. Comparison of DIOR-FI Categories (Mortality Sample) 

 DIOR-FI Category   

Characteristic 
High Stability, N = 

6,9361 
Average Stability, N = 

13,8721 
Low Stability, N = 

6,9361 
p-

value2 

Age 66 (61, 74) 75 (66, 83) 80 (69, 88) <0.001 
Frailty Index 0.073 (0.043, 0.110) 0.183 (0.107, 0.294) 0.494 (0.305, 0.709) <0.001 
Sex    <0.001 

Female 3,545 (51%) 8,060 (58%) 4,236 (61%)  
Male 3,391 (49%) 5,812 (42%) 2,700 (39%)  

2018 Vital Status    <0.001 
Alive 5,747 (83%) 8,559 (62%) 2,284 (33%)  
Deceased 1,189 (17%) 5,313 (38%) 4,652 (67%)  

FM Category    <0.001 
Adapter 1,439 (21%) 4,429 (32%) 1,068 (15%)  
Expected Ager 5,339 (77%) 7,117 (51%) 1,416 (20%)  
Premature 
Frailer 

158 (2.3%) 2,326 (17%) 4,452 (64%)  

RoA Category    <0.001 
Slow Ager 3,615 (52%) 2,822 (20%) 499 (7.2%)  
Average Ager 3,116 (45%) 8,461 (61%) 2,295 (33%)  
Fast Ager 205 (3.0%) 2,589 (19%) 4,142 (60%)  

1Median (IQR Bounds); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

Unadjusted and Frailty-Adjusted Odds Ratios for Mortality 

Unadjusted logistic regression analysis shows that the odds death in the high stability are 0.33 times 

those of the average stability group (95% CI = 0.31, 0.36), and the low stability group has 3.28 

times greater odds of death compared to the average stability group (95% CI = 3.09, 3.49) (Table 

16). The frailty-adjusted model shows an attenuation of these effects with an increase in the odds 

ratio for the high stability group (OR = 0.59, 95% CI = 0.55, 0.64), and a decrease in the odds ratio 

for the low stability group (OR = 1.12, 95% CI = 1.04, 1.21). Additional adjustment for age and sex 

further reduced the effect of the high stability group (OR = 0.77, 95% CI = 0.71, 0.84), and slightly 

increased the effect of the low stability group (OR = 1.26, 95% CI = 1.16, 1.37). 
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Table 16. Logistic Regression Models for DIOR-FI and Mortality 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 0.33 0.31, 
0.36 

<0.001 0.59 0.55, 
0.64 

<0.001 0.77 0.71, 
0.84 

<0.001 0.45 0.39, 
0.52 

<0.001 

    Low Stability 3.28 3.09, 
3.49 

<0.001 1.12 1.04, 
1.21 

0.004 1.26 1.16, 
1.37 

<0.001 1.82 1.56, 
2.11 

<0.001 

Frailty Index    1.15 1.14, 
1.16 

<0.001 1.12 1.12, 
1.13 

<0.001 1.13 1.12, 
1.14 

<0.001 

Age       1.07 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.82 1.71, 
1.93 

<0.001 1.84 1.73, 
1.95 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         1.16 1.13, 
1.19 

<0.001 

    Low Stability 
* Frailty Index 

         0.97 0.96, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 

4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 

minimal important difference. 

The interaction terms between FI and DIOR-FI are statistically significant for both DIOR-FI 

categories (high stability and low stability, p < 0.001, Table 16), and Figure 19 below visualizes this 

interaction. The high stability group has the lowest predicted probability of death below an FI of 

approximately 0.15, then it crosses over the other categories to have the highest predicted 

probability around an FI of 0.25. However, it should be noted that the 75th percentile of FI in the 

low stability category is 0.110, so this association at higher levels of FI may be driven by a small 

subset of highly stable but frail individuals.  
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Figure 19. Interaction Effects of the Frailty Index and DIOR-FI on Mortality 

Visualization of the interaction between FI and DIOR-FI on mortality (Model 4, Table 16). 

6.1.7 Correlation and Agreement 

Continuous variables show varying degrees of correlation using Pearson’s correlation coefficient 

(Table 17). The resilience indicators have the highest correlations with FI, with coefficients ranging 

from 0.729 (DIOR-FI) to 0.785 (RoA). FM has the lowest correlation with the other resilience 

variables (0.332 and 0.555 for RoA and DIOR-FI, respectively).  

Table 17. Correlation between FI and Resilience Indicators (Mortality Sample) 

 FI FM RoA DIOR-FI 

FI 1.0    

FM 0.757 1.0   

RoA 0.785 0.332 1.0  

DIOR-FI 0.729 0.555 0.573 1.0 

Cells represent Pearson’s correlation coefficients for pairs of continuous variables.  



94 
 

The unweighted Cohen’s Kappa for two raters shows slight to fair agreement between categorical 

resilience indicators, with the highest agreement between RoA and DIOR-FI (0.335), followed by 

RoA and FM (0.167), and lastly DIOR-FI and FM (0.150) (Table 18). A Kappa statistic of less than or 

equal to 0.20 is considered to represent slight agreement, while between 0.21 to 0.40 is 

considered to represent fair agreement (109).  

Table 18. Agreement between Categorical Resilience Indicators (Mortality Sample) 

 FM RoA DIOR-FI 

FM 1.0   

RoA 0.167 1.0  

DIOR-FI 0.150 0.335 1.0 

Cells represent unweighted Cohen’s Kappa statistics for pairs of categorical variables. 

6.1.8 Discrimination  

The AUC for the unadjusted models, frailty-adjusted models, and frailty, age, and sex adjusted 

models are displayed in Table 19. Though interpretations vary, conventionally, AUC values below 

0.6 are considered to be uninformative, above 0.6 but below 0.7 are considered to be poor to fair, 

while those between 0.7 and 0.8 are considered to be fair to good, and those above 0.8 are 

considered to be good to very good (7). The unadjusted models show that all the resilience 

variables have a lower AUC than the FI (0.778). However, the RoA is negligibly lower than the FI 

with an AUC of 0.777. A Delong’s test for two correlated ROC curves confirmed that these two 

models did not have a significantly different AUC (p = 0.5282). The other two resilience variables, 

FM and DIOR-FI based on unadjusted models variables have a much lower AUC: 0.651 for FM and 

0.695 for DIOR-FI. The largest increase when adding a single resilience indicator to the base FI 

model is when adding RoA, which increased the AUC from 0.778 to 0.810. Similarly, in the age, 

sex, and frailty adjusted models, the RoA shows the highest single variable increase over the base 

model (i.e., FI only). Adding RoA increases the AUC from 0.824 to 0.831. The final combined model 

that includes all resilience indicators and interactions shows a maximal AUC of 0.837, a modest 

increase from the base age-sex-adjusted FI model.  

 

 



95 
 

Table 19. Discrimination of Mortality Models 

Model AUC Lower 95% Upper 95% 

Unadjusted Models    

FI Only 0.778 0.772 0.784 

FM Only 0.651 0.645 0.657 

RoA Only 0.777 0.771 0.782 

DIOR Only 0.695 0.689 0.700 

Frailty-Adjusted Models    

FI + FM 0.801 0.796 0.806 

FI + RoA 0.810 0.805 0.816 

FI + DIOR 0.779 0.773 0.784 

Age, sex, and frailty-adjusted models    

FI Only 0.824 0.819 0.829 

FI + FM 0.827 0.822 0.832 

FI + FM Interaction 0.828 0.823 0.833 

FI + RoA 0.831 0.826 0.836 

FI + RoA Interaction 0.832 0.828 0.837 

FI + DIOR 0.825 0.820 0.830 

FI + DIOR Interaction 0.827 0.822 0.832 

FI + FM + RoA + DIOR 0.834 0.830 0.839 

FI + FM + RoA + DIOR + All FI Interactions 0.837 0.832 0.842 

Highest AUC for each category of models is bolded, excluding the combined resilience models (bottom two 

rows). 95% confidence intervals are calculated using the Delong method. 

6.1.9 Restricted Sample Sensitivity Analysis 

In the restricted sample using only individuals with three consecutive FI measurements prior to 

death/survival, FM shows almost identical results, while RoA and DIOR-FI show large differences 

from the full models (Figure 20). In particular, the RoA is no longer the best predictor, and rather, 

is outperformed by the FI in unadjusted models, and FM in the adjusted models (Table 20).  

Appendix G provides the full results for the restricted sample. 
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Figure 20. Interaction Effects in the Full Sample vs Restricted Sample (Mortality) 

Comparison of the interaction models in the full sample (n=27,744) vs the restricted sample with only three 

consecutive final interviews per individual (n=23,644). The X-axis is the level of FI. The Y-axis is the predicted 

probability of mortality. 
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Table 20. Discrimination of Mortality Models in the Main and Restricted Sample 

 Main Sample Restricted Sample 

Model AUC Lower 
95% 

Upper 
95% 

AUC Lower 
95% 

Upper 
95% 

Unadjusted Models       

FI Only 0.778 0.772 0.784 0.782 0.777 0.788 

FM Only 0.651 0.645 0.657 0.653 0.647 0.660 

RoA Only 0.777 0.771 0.782 0.737 0.731 0.743 

DIOR Only 0.695 0.689 0.700 0.684 0.678 0.690 

Frailty-Adjusted Models       

FI + FM 0.801 0.796 0.806 0.812 0.807 0.818 

FI + RoA 0.810 0.805 0.816 0.799 0.793 0.804 

FI + DIOR 0.779 0.773 0.784 0.786 0.780 0.792 

Age and Frailty-Adjusted Models       

FI Only 0.824 0.819 0.829 0.828 0.822 0.833 

FI + FM 0.827 0.822 0.832 0.838 0.832 0.843 

FI + FM Interaction 0.828 0.823 0.833 0.838 0.833 0.843 

FI + RoA 0.831 0.826 0.836 0.828 0.822 0.833 

FI + RoA Interaction 0.832 0.828 0.837 0.828 0.823 0.834 

FI + DIOR 0.825 0.820 0.830 0.831 0.826 0.836 

FI + DIOR Interaction 0.827 0.822 0.832 0.832 0.827 0.837 

FI + FM + RoA + DIOR 0.834 0.830 0.839 0.840 0.835 0.845 

FI + FM + RoA + DIOR + All FI 
Interactions 

0.837 0.832 0.842 0.841 0.836 0.846 

Highest AUC for each category of models is bolded, excluding the combined resilience models (bottom two 

rows). 95% confidence intervals are calculated using the Delong method. 

This difference prompted further investigation into the differences between the three resilience 

variables in each sample. In both samples, the RoA and DIOR-FI are estimated using all available 

data for each individual. In the main sample, this means that if a person is interviewed 10 times, 

they have 10 derivatives contributing to their RoA, and 10 residuals contributing to their DIOR-FI. 

However, if they are only observed 3 times (the minimum), they have only 3 derivatives and 

residuals contributing to their respective measures. In the sensitivity analysis with the restricted 

sample, RoA and DIOR-FI are still estimated using all past derivatives/residuals, but in this case, 

everyone only has 3. Since the rate of FI change and FI stability is related with age, including 

additional derivatives/residuals from younger ages (i.e., a longer follow up period) will decrease 
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the RoA/DIOR-FI. Thus, the results of RoA and DIOR-FI in the main sample are likely an artefact 

resulting from differential lengths of observation. The restricted sample sensitivity analysis clearly 

suggests that corrective measures must be taken, however, truncating the data to the last three 

interviews as done in the restricted sensitivity analysis results in significant loss of information, 

and subsequently, less accurate estimation of the growth curve model. Additionally, there are 

two potential contributing factors to the observed differences: the number of interviews included 

in the estimation of RoA and DIOR-FI, and whether the individual missed any of the final three 

interviews (i.e., the difference in sample size). Before simply removing the 15% of the sample with 

non-consecutive observations, I wanted to see if adjusting the estimation of RoA and DIOR-FI to 

the last three observations (regardless of whether they were consecutive), while still using all 

longitudinal information in the estimation of the growth curve model (rather than truncating the 

observations as done in the restricted sensitivity analysis above) could eliminate the differences 

between the two samples. In this comparison, the only difference between the two sets of results 

is that main analysis includes individuals that missed at least one of their last three interviews (but 

still have a minimum of three interviews total). The results are highly consistent in the two 

samples, suggesting that changing the estimation of RoA and DIOR-FI eliminates discrepancies 

between the samples, and that including the 15% of individuals with non-consecutive 

observations does not impact the results (Figure 21).  
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Figure 21. Alternative Estimation of RoA and DIOR-FI in Main vs. Restricted Sample 

Comparison of the interaction models in the full sample (n=27,744) vs the restricted sample (n=23,644) 

using alternative estimation of RoA and DIOR-FI. Both samples use all longitudinal information for each 

individual in estimation of the growth curve model, but only the last three derivatives/residuals to estimate 

RoA and DIOR-FI. The X-axis is the level of FI. The Y-axis is the predicted probability of mortality. 

Thus, to overcome this artefact and retain the full sample, I revised the estimation of the RoA and 

the DIOR-FI to use the last three derivatives/residuals only. The benefit to this approach is that 1) 

it retains the full sample size, 2) it uses all longitudinal information in the estimation of the growth 

curves, and 3) it makes individual estimates of RoA and DIOR-FI more comparable by using the 

same number of time points per individual (i.e., the last three). The main results are repeated 

below with the corrected estimation of RoA and DIOR-FI. 
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6.1.10 Sample Characteristics (corrected for last three observations only) 

The corrected values for RoA and DIOR-FI are shaded in Table 21 below. As expected, the median 

RoA and DIOR FI are higher after correcting for the number of observations used to derive the 

estimates: RoA now has a median of 0.007 (IQR bounds = 0.003, 0.017), and DIOR-FI now has a 

median of 0.040 (IQR bounds = 0.021, 0.075).  

Table 21. Sample Characteristics by 2018 Vital Status (corrected RoA and DIOR-FI) 

 2018 Vital Status   

Characteristic Overall, N = 27,7441 Alive, N = 16,5901 Deceased, N = 11,1541 p-value2 

Age 74 (64, 82) 68 (62, 77) 81 (73, 88) <0.001 
Sex    <0.001 

Female 15,841 (57%) 9,810 (59%) 6,031 (54%)  
Male 11,903 (43%) 6,780 (41%) 5,123 (46%)  

Frailty Index 0.183 (0.085, 0.360) 0.122 (0.067, 0.226) 0.331 (0.183, 0.567) <0.001 
FI Category    <0.001 

Non-frail 8,340 (30%) 7,091 (43%) 1,249 (11%)  
Vulnerable 6,964 (25%) 4,852 (29%) 2,112 (19%)  
Frail 7,405 (27%) 3,591 (22%) 3,814 (34%)  
Most Frail 5,035 (18%) 1,056 (6.4%) 3,979 (36%)  

FM -0.026 (-0.082, 0.068) -0.036 (-0.080, 0.020) 0.012 (-0.086, 0.169) <0.001 
FM Category    <0.001 

Adapter 6,936 (25%) 4,041 (24%) 2,895 (26%)  
Expected Ager 13,872 (50%) 9,949 (60%) 3,923 (35%)  
Premature Frailer 6,936 (25%) 2,600 (16%) 4,336 (39%)  

RoA 0.007 (0.003, 0.017) 0.004 (0.002, 0.009) 0.016 (0.008, 0.025) <0.001 
RoA Category    <0.001 

Slow Ager 6,936 (25%) 6,077 (37%) 859 (7.7%)  
Average Ager 13,872 (50%) 8,930 (54%) 4,942 (44%)  
Fast Ager 6,936 (25%) 1,583 (9.5%) 5,353 (48%)  

DIOR-FI 0.040 (0.021, 0.075) 0.030 (0.016, 0.054) 0.062 (0.034, 0.108) <0.001 
DIOR-FI Category    <0.001 

High Stability 6,936 (25%) 5,630 (34%) 1,306 (12%)  
Average Stability 13,872 (50%) 8,594 (52%) 5,278 (47%)  
Low Stability 6,936 (25%) 2,366 (14%) 4,570 (41%)  

1Median (IQR Bounds); n (%) 
2Wilcoxon rank sum test; Pearson's Chi-squared test 

Age, FI, and FM represent the final values prior to death or end of follow up (wave 13). RoA and DIOR-FI represent 

estimates using the last three interviews prior to death or end of follow up (wave 13).  

6.1.11 Rate of Aging (corrected for last three observations only) 

Distribution of the RoA 
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The corrected rate of aging has a right-skewed distribution, with a median of 0.007, a 25th 

percentile of 0.003, a 75th percentile of 0.017, a skewness of 1.259, and a kurtosis of 1.106 (Figure 

22).  

 

Figure 22. Distribution and Categorization of RoA (Mortality Sample – last three) 

Physical resilience categories are defined by the 25th and 75th percentiles: those below the 25th percentile 

are slow agers (resilient), those within the IQR are average agers (reference), and those above the 75th 

percentile are fast agers (non-resilient). “Last three” refers to the second (and preferred) version of RoA 

which uses only the last three derivatives in its calculation to ensure all individuals have a comparable 

estimate regardless of how many interviews they completed. 

Comparison of RoA Categories 

All variables are statistically significantly different across RoA categories using the Kruskal-Wallis 

test for continuous variables and Pearson’s Chi-squared test for categorical variables (p <0.001, 

Table 22). Trends across categories follow the expected patterns for all variables except FM 

adapters. Specifically, comparing the RoA slow agers (i.e., resilient) to the RoA fast agers (i.e., non-

resilient), the slow agers have the lowest median age (63 vs. 88), the lowest median FI at (0.073 
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vs. 0. 486), the lowest proportion of females (54% vs. 63%), deaths (12% vs. 77%), FM premature 

frailers (4.3% vs 48%), and DIOR-FI low stability (6.9% vs. 51%), and the highest proportion of 

DIOR-FI high stability (47% vs 6.9%). FM adapters deviate from this expected trend with the RoA 

slow agers having the lowest proportion (21%), followed by the average agers (25%), then the fast 

agers (30%). 

Table 22. Comparison of RoA Categories (Mortality Sample – last three) 

 RoA Category   

Characteristic 
Slow Ager, N = 

6,9361 
Average Ager, N = 

13,8721 
Fast Ager, N = 6,9361 

p-
value2 

Age 63 (61, 67) 74 (66, 79) 88 (84, 91) <0.001 
Frailty Index 0.073 (0.049, 0.110) 0.183 (0.104, 0.294) 0.486 (0.299, 0.713) <0.001 
Sex    <0.001 

Female 3,722 (54%) 7,715 (56%) 4,404 (63%)  
Male 3,214 (46%) 6,157 (44%) 2,532 (37%)  

2018 Vital Status    <0.001 
Alive 6,077 (88%) 8,930 (64%) 1,583 (23%)  
Deceased 859 (12%) 4,942 (36%) 5,353 (77%)  

FM Category    <0.001 
Adapter 1,430 (21%) 3,412 (25%) 2,094 (30%)  
Expected Ager 5,211 (75%) 7,148 (52%) 1,513 (22%)  
Premature 
Frailer 

295 (4.3%) 3,312 (24%) 3,329 (48%)  

DIOR-FI Category    <0.001 
High Stability 3,244 (47%) 3,216 (23%) 476 (6.9%)  
Average Stability 3,211 (46%) 7,758 (56%) 2,903 (42%)  
Low Stability 481 (6.9%) 2,898 (21%) 3,557 (51%)  

1Median (IQR Bounds); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

“Last three” refers to using the second (and preferred) versions of RoA and DIOR-FI, which use only the last 

three derivatives/residuals in their calculation to ensure all individuals have a comparable estimate 

regardless of how many interviews they completed. 

The Effect of RoA on Mortality 

Unadjusted logistic regression analysis shows that fast agers have 6.11 times greater odds of 

dying17 than the average agers (95% CI = 5.72, 6.53), and the odds of dying in slow agers are 0.26 

times those of the average agers (95% CI = 0.24, 0.28) (Table 23). These effects are reduced after 

 
17 This value is almost half of the previous, uncorrected OR of 11.5 shown in Table 14. 
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adjusting for frailty, and then reduced further after adjusting for age and sex, with the fast agers 

becoming insignificant (p = 0.4).  

Table 23. Logistic Regression Models for RoA and Mortality (last three) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 0.26 0.24, 
0.28 

<0.001 0.39 0.36, 
0.42 

<0.001 0.80 0.72, 
0.88 

<0.001 0.87 0.76, 
1.00 

0.047 

    Fast Ager 6.11 5.72, 
6.53 

<0.001 2.95 2.74, 
3.18 

<0.001 0.96 0.86, 
1.07 

0.4 1.38 1.18, 
1.62 

<0.001 

Frailty Index    1.10 1.10, 
1.11 

<0.001 1.14 1.13, 
1.14 

<0.001 1.15 1.14, 
1.16 

<0.001 

Age       1.07 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.81 1.70, 
1.92 

<0.001 1.82 1.72, 
1.93 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         1.00 0.97, 
1.02 

0.8 

    Fast Ager * 
Frailty Index 

         0.97 0.96, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 

4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, the proposed 

minimal important difference. “Last three” refers to the second (and preferred) version of RoA which uses 

only the last three derivatives in its calculation to ensure all individuals have a comparable estimate 

regardless of how many interviews they completed. 

The interaction term between FI and RoA is statistically significant for fast agers (p < 0.001, Table 23), 

and the main effect of fast agers becomes significant again.  Figure 23 below visualizes this interaction. 

This shows that after adjusting for age and sex, there is a small difference between groups at low levels 

of FI, but the groups quickly begin to overlap as FI increases. 
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Figure 23. Interaction Effects of the Frailty Index and RoA on Mortality (last three) 

Visualization of the interaction between FI and RoA on mortality (Model 4, Table 23). “Last three” refers to 

the second (and preferred) version of RoA which uses only the last three derivatives in its calculation to 

ensure all individuals have a comparable estimate regardless of how many interviews they completed. 

6.1.12 DIOR-FI (corrected for last three observations only) 

Distribution of the DIOR-FI 

The DIOR-FI has a right-skewed distribution, with a median of 0.040, a 25th percentile of 0.021, a 

75th percentile of 0.075, a skewness of 2.05, and a kurtosis of 4.977 (Figure 24).  
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Figure 24. Distribution and Categorization of DIOR-FI (Mortality Sample - last three) 

Physical resilience categories are defined by the 25th and 75th percentile: those below the 25th percentile 

have high stability (resilient), those within the IQR have average stability (reference), and those above the 

75th percentile have low stability (non-resilient). “Last three” refers to the second (and preferred) version 

of DIOR-FI which uses only the last three residuals in its calculation to ensure all individuals have a 

comparable estimate regardless of how many interviews they completed. 

Comparison of DIOR-FI Categories 

All variables are statistically significantly different across DIOR-FI categories using the Kruskal-

Wallis test for continuous variables and Pearson’s Chi-squared test for categorical variables (p < 

0.001, Table 24). Trends across categories follow the expected patterns for all variables except 

FM adapters. Specifically, comparing the DIOR-FI high stability (i.e., resilient) group to the low 

stability (i.e., non-resilient) group, the high stability group has the lowest median age (68 vs. 80), 

the lowest median FI at (0.079 vs. 0. 451), the lowest proportion of females (54% vs. 60%), deaths (19% 

vs 66%), RoA fast agers (6.9% vs 51%), and FM premature frailers (5% vs 60%), and the highest 

proportion of RoA slow agers (47% vs 6.9%). FM adapters deviate from this expected trend with the 
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DIOR-FI average stability having a higher proportion than the high stability group (29% compared 

to 24%). 

Table 24. Comparison of DIOR-FI Categories (Mortality Sample - last three) 

 DIOR-FI Category   

Characteristic 
High Stability, N = 

6,9361 
Average Stability, N = 

13,8721 
Low Stability, N = 

6,9361 
p-

value2 

Age 68 (61, 76) 74 (65, 82) 80 (69, 88) <0.001 

Frailty Index 0.079 (0.049, 0.138) 0.177 (0.098, 0.293) 0.451 (0.274, 0.671) <0.001 
Sex    <0.001 

Female 3,711 (54%) 7,963 (57%) 4,167 (60%)  
Male 3,225 (46%) 5,909 (43%) 2,769 (40%)  

2018 Vital Status    <0.001 
Alive 5,630 (81%) 8,594 (62%) 2,366 (34%)  
Deceased 1,306 (19%) 5,278 (38%) 4,570 (66%)  

FM Category    <0.001 

Adapter 1,649 (24%) 4,091 (29%) 1,196 (17%)  
Expected Ager 4,940 (71%) 7,321 (53%) 1,611 (23%)  
Premature 
Frailer 

347 (5.0%) 2,460 (18%) 4,129 (60%)  

RoA Category    <0.001 
Slow Ager 3,244 (47%) 3,211 (23%) 481 (6.9%)  
Average Ager 3,216 (46%) 7,758 (56%) 2,898 (42%)  
Fast Ager 476 (6.9%) 2,903 (21%) 3,557 (51%)  

1Median (IQR Bounds); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

“Last three” refers to using the second (and preferred) versions of RoA and DIOR-FI, which use only the last three 

derivatives/residuals in their calculation to ensure all individuals have a comparable estimate regardless of how many 

interviews they completed. 

Unadjusted and Frailty-Adjusted Odds Ratios for Mortality 

Unadjusted logistic regression analysis shows that the odds of dying in the high stability group are 

0.38 times those of the average stability group (95% CI = 0.35, 0.40), and the low stability group 

has 3.15 times greater odds of dying compared to the average stability group (95% CI = 2.96, 3.34) 

(Table 25). The frailty-adjusted model shows an attenuation of these effects with an increase in 

the odds ratio for the high stability group (OR = 0.58, 95% CI = 0.54, 0.63), and a decrease in the 

odds ratio for the low stability group (OR = 1.23, 95% CI = 1.15, 1.33). Further adjusting for age 

and sex further reduced the effect of the high stability group (OR = 0.64, 95% CI = 0.60, 0.71), and 

slightly increased the effect of the low stability group (OR = 1.29, 95% CI = 1.20, 1.40). 
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Table 25. Logistic Regression Models for DIOR-FI and Mortality (last three) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 0.38 0.35, 
0.40 

<0.001 0.58 0.54, 
0.63 

<0.001 0.65 0.60, 
0.71 

<0.001 0.56 0.49, 
0.63 

<0.001 

    Low Stability 3.15 2.96, 
3.34 

<0.001 1.23 1.15, 
1.33 

<0.001 1.29 1.20, 
1.40 

<0.001 1.83 1.59, 
2.11 

<0.001 

Frailty Index    1.15 1.14, 
1.16 

<0.001 1.12 1.11, 
1.13 

<0.001 1.13 1.12, 
1.14 

<0.001 

Age       1.07 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.81 1.71, 
1.92 

<0.001 1.83 1.73, 
1.95 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         1.04 1.02, 
1.06 

<0.001 

    Low Stability 
* Frailty Index 

         0.97 0.96, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 

4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 

minimal important difference. “Last three” refers to the second (and preferred) version of DIOR-FI which 

uses only the last three residuals in its calculation to ensure all individuals have a comparable estimate 

regardless of how many interviews they completed. 

The interaction terms between FI and DIOR-FI are statistically significant for both DIOR-FI 

categories (high stability and low stability, p < 0.001, Table 25), and Figure 25 below visualizes this 

interaction. The high stability group has the lowest predicted probability of death below an FI of 

approximately 0.35, where it becomes similar to the reference category (average agers). The low 

stability category has the highest predicted probability of death until approximately an FI of 0.5.  
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Figure 25. Interaction Effects of the Frailty Index and DIOR-FI on Mortality (last three) 

Visualization of the interaction between FI and DIOR-FI on mortality (Model 4, Table 25). “Last three” refers 

to the second (and preferred) version of DIOR-FI which uses only the last three residuals in its calculation 

to ensure all individuals have a comparable estimate regardless of how many interviews they completed. 

6.1.13 Correlation and Agreement (corrected for last 3 observations only) 

Continuous variables show varying degrees of correlation using Pearson’s correlation coefficient 

(Table 26). The resilience indicators have the highest correlations with FI, with coefficients ranging 

from 0.757 (FM) to 0.658 (DIOR-FI). FM has the lowest correlation with the other resilience 

variables (0.212 and 0.519 for RoA and DIOR-FI, respectively). 
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Table 26. Correlation between FI and Resilience Indicators (Mortality Sample – last three) 

 FI FM RoA 𝑫𝑰𝑶𝑹-𝑭𝑰𝒊 

FI 1.0    

FM 0.757 1.0   

RoA 0.723 0.212 1.0  

DIOR-FI 0.658 0.519 0.454 1.0 

Cells represent Pearson’s correlation coefficients for pairs of continuous variables. “Last three” refers to 

using the second (and preferred) versions of RoA and DIOR-FI, which use only the last three 

derivatives/residuals in their calculation to ensure all individuals have a comparable estimate regardless of 

how many interviews they completed. 

The unweighted Cohen’s Kappa for two raters shows only slight  to fair agreement between 

categorical resilience indicators, with the highest agreement between RoA and DIOR-FI (0.240), 

followed by FM and DIOR-FI (0.155), and lastly RoA and FM (0.087) (Table 27). A Kappa statistic 

of less than or equal to 0.20 is considered to represent slight agreement, while between 0.21 to 

0.40 is considered to represent fair agreement (109). A Kappa statistic of less than or equal to 

0.20 is considered to represent slight agreement, while between 0.21 to 0.40 is considered to 

represent fair agreement (109). 

Table 27. Agreement between Categorical Resilience Indicators (Mortality Sample – last three) 

 FM RoA DIOR-FI 

FM 1.0   

RoA 0.087 1.0  

DIOR-FI 0.155 0.240 1.0 

Cells represent unweighted Cohen’s Kappa statistics for pairs of categorical variables. “Last three” refers to 

using the second (and preferred) versions of RoA and DIOR-FI, which use only the last three 

derivatives/residuals in their calculation to ensure all individuals have a comparable estimate regardless of 

how many interviews they completed. 

6.1.14 Discrimination (corrected for last three observations only) 

Using the corrected RoA and DIOR-FI, FI is the best individual predictor (AUC = 0.778), followed 

by RoA (AUC = 0.753), DIOR-FI (AUC = 0.684), then FM (AUC = 0.651) (Table 28). After adjusting 

for frailty, RoA and FM perform similarly (0.802 and 0.801, respectively), with DIOR-FI being the 

worst (AUC = 0.780). After further adjusting for age and sex, all three perform similarly with very 
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small differences, though RoA (AUC = 0.824) performs the worst compared to the other two (AUC 

= 0.828). The maximum increase in AUC with all resilience indicators included is only 0.007.  

Table 28. Discrimination of Mortality Models (last three) 

Model AUC Lower 95% Upper 95% 

Unadjusted Models    

FI Only 0.778 0.772 0.784 

FM Only 0.651 0.645 0.657 

RoA Only 0.753 0.747 0.758 

DIOR Only 0.684 0.678 0.689 

Frailty-Adjusted Models    

FI + FM 0.801 0.796 0.806 

FI + RoA 0.802 0.796 0.807 

FI + DIOR 0.780 0.775 0.786 

Age, Sex, and Frailty-Adjusted Models    

FI Only 0.824 0.819 0.829 

FI + FM 0.827 0.822 0.832 

FI + FM Interaction 0.828 0.823 0.833 

FI + RoA 0.824 0.819 0.829 

FI + RoA Interaction 0.825 0.820 0.829 

FI + DIOR 0.827 0.822 0.832 

FI + DIOR Interaction 0.828 0.823 0.832 

FI + FM + RoA + DIOR 0.830 0.825 0.834 

FI + FM + RoA + DIOR + All FI Interactions 0.831 0.826 0.836 

Highest AUC for each category of models is bolded, excluding the combined resilience models (bottom two 

rows). 95% confidence intervals are calculated using the Delong method. “Last three” refers to using the 

second (and preferred) versions of RoA and DIOR-FI, which use only the last three derivatives/residuals in 

their calculation to ensure all individuals have a comparable estimate regardless of how many interviews 

they completed. 

6.1.15 Additional Sensitivity Analyses 

All sensitivity analyses presented here use the preferred “last three” estimation of RoA and DIOR-

FI, which ensures all individuals have a comparable estimate regardless of how many interviews 

they completed. 
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Age-Stratified Results 

The age-stratified results (interaction effects between FI and each resilience variable in the model 

predicting mortality, and AUC) revealed heterogeneous effects across all age groups for all three 

resilience indicators (Figure 26).  

 

Figure 26. Age-Stratified Interaction Effects on Mortality 

Pictured from top to bottom: FM, RoA, DIOR-FI. Blue lines indicate the resilient groups, red lines indicate 

the reference groups, and green lines indicate the non-resilient/fast aging groups. Sample size is 9,150 for 

ages 54-67, 9,002 for ages 68-79, and 9,592 for ages 80-109. The X-axis is the level of FI. The Y-axis is the 

predicted probability of mortality. 

The unadjusted effects of RoA are quite similar across all age groups, consistently being the best  

individual predictor after FI (Table 29). In the age and sex-adjusted models the interaction differs 

across age groups, but the effects are quite small (middle row, Figure 26). After adjusting for age 

and sex, RoA becomes the worst predictor of the three resilience indicators regardless of the age 

group (Table 29). DIOR-FI shows more clear separation between resilience categories in the oldest 

age group: the convergence in predicted probabilities happens at a higher FI, with no crossover 

as seen in the younger groups (bottom row, Figure 26). FM shows the opposite of this with more 
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separation between resilience categories in the youngest and middle age groups (top row, Figure 

26).  

Table 29. Discrimination of Age-Stratified Models 

 52-67 68-79 80-109 

 AUC Lower 
95% 

Upper 
95% 

AUC Lower 
95% 

Upper 
95% 

AUC Lower 
95% 

Upper 
95% 

Unadjusted Models          

FI Only 0.727 0.712 0.742 0.717 0.706 0.728 0.737 0.727 0.747 

FM Only 0.625 0.610 0.640 0.616 0.605 0.628 0.603 0.592 0.613 

RoA Only 0.686 0.672 0.700 0.673 0.662 0.684 0.697 0.687 0.707 

DIOR Only 0.642 0.628 0.656 0.650 0.640 0.661 0.659 0.648 0.669 

Frailty-Adjusted Models          

FI + FM 0.753 0.739 0.767 0.754 0.744 0.765 0.749 0.739 0.759 

FI + RoA 0.727 0.712 0.742 0.718 0.707 0.729 0.743 0.733 0.753 

FI + DIOR 0.728 0.714 0.742 0.724 0.713 0.734 0.743 0.733 0.754 

Age and Sex Adjusted Models 

FI Only 0.744 0.730 0.758 0.735 0.725 0.746 0.760 0.750 0.770 

FI + FM 0.765 0.751 0.779 0.774 0.764 0.784 0.763 0.753 0.773 

FI + FM Interaction 0.772 0.759 0.786 0.774 0.764 0.784 0.763 0.753 0.773 

FI + RoA 0.745 0.731 0.759 0.735 0.724 0.746 0.760 0.751 0.770 

FI + RoA Interaction 0.747 0.733 0.761 0.736 0.725 0.747 0.761 0.751 0.770 

FI + DIOR 0.748 0.734 0.762 0.741 0.731 0.752 0.763 0.754 0.773 

FI + DIOR Interaction 0.751 0.737 0.765 0.744 0.733 0.754 0.764 0.755 0.774 

FI + FM + RoA + DIOR 0.768 0.754 0.782 0.776 0.766 0.786 0.766 0.757 0.776 

FI + FM + RoA + DIOR + 
All FI Interactions 

0.774 0.761 0.788 0.780 0.771 0.790 0.767 0.758 0.777 

AUCs for each age stratified model. Highest AUC for each category of models is bolded, excluding the 

combined resilience models (bottom two rows). 95% confidence intervals are calculated using the Delong 

method. 

Interestingly, the youngest and middle age group show larger increases in AUC by adding the 

resilience variables compared to the oldest age group and the main analysis including all ages. 

The maximum increase by adding all resilience variables (i.e., the final combined model, bottom 

row in Table 29) is 0.030 in the 52-67 age group, and 0.045 in the 68-79 group. Appendix H has 

full result tables for each model.  
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Sex-Stratified Results 

In the sex-stratified results, males (n = 11,903) and females (n = 15,841) show similar overall 

trends with some minor differences. Females overall have a lower predicted probability of death, 

and more separation between resilience categories (Figure 27). Notably, the DIOR-FI groups in 

males converge at a lower FI and display a crossover effect where the highest stability group has 

the lowest predicted probability at low FI, and the highest predicted probability at high FI (bottom 

row, Figure 27). This effect is not seen in females.   

 

Figure 27. Sex-Stratified Interaction Effects on Mortality 

Pictured from top to bottom: FM, RoA, DIOR-FI. Blue lines indicate the resilient/slow aging groups, red lines 
indicated the reference groups, and green lines indicate the non-resilient group. X-axis is the level of FI. Y-
axis is the predicted probability of mortality. Appendix I provides the accompanying regression coefficients. 
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In terms of AUC, female models consistently have higher AUC than male models, though both 

groups show similar patterns: FI is the single best predictor, and RoA is the best resilience variable 

in the unadjusted, frailty-adjusted, and frailty, age, and sex-adjusted models (Table 30). Though 

the differences between the resilience model AUCs are negligible in the frailty, age, and sex-

adjusted models. The maximal increase in the frailty, age, and sex-adjusted AUC for males was 

0.012, and for females was 0.011. 

Table 30. Discrimination of Sex-Stratified Models 

 Females Males 

Model AUC Lower 
95% 

Upper 
95% 

AUC Lower 
95% 

Upper 
95% 

Unadjusted Models 

FI Only 0.799 0.792 0.806 0.767 0.759 0.776 

FM Only 0.658 0.650 0.666 0.647 0.638 0.656 

RoA Only 0.797 0.790 0.803 0.757 0.749 0.765 

DIOR Only 0.706 0.699 0.714 0.686 0.678 0.695 

Frailty-Adjusted Models 

FI + FM 0.823 0.817 0.830 0.789 0.781 0.798 

FI + RoA 0.833 0.827 0.840 0.795 0.787 0.803 

FI + DIOR 0.800 0.793 0.807 0.767 0.759 0.776 

Frailty, Age, and Sex-Adjusted Models 

FI Only 0.835 0.828 0.841 0.808 0.800 0.815 

FI + FM 0.838 0.832 0.845 0.810 0.803 0.818 

FI + FM Interaction 0.839 0.833 0.845 0.812 0.805 0.820 

FI + RoA 0.841 0.834 0.847 0.812 0.804 0.819 

FI + RoA Interaction 0.842 0.835 0.848 0.814 0.807 0.822 

FI + DIOR 0.836 0.829 0.842 0.809 0.801 0.816 

FI + DIOR Interaction 0.837 0.831 0.844 0.811 0.804 0.819 

FI + FM + RoA + DIOR 0.845 0.838 0.851 0.815 0.808 0.823 

FI + FM + RoA + DIOR + All FI 
Interactions 

0.847 0.840 0.853 0.819 0.812 0.827 

Highest AUC for each category of models is bolded, excluding the combined resilience models (bottom two 

rows). 95% confidence intervals are calculated using the Delong method. 
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Alternative Cut Points Analysis 

The alternative cut point sensitivity analysis using the top and bottom 15% (compared to 25% in 

the main analysis) shows the same trends with slightly larger effect sizes across all variables 

(Appendix J). In terms of discrimination, the alternative cut points resulted in slightly lower AUC 

values. Appendix J provides the full results for the alternative cut point analysis.  

Continuous Variable Sensitivity Analysis 

Continuous variable sensitivity analysis shows that the RoA predicts better than the FI when used 

as a continuous variable (FI AUC = 0.778, RoA AUC = 0.801). However, RoA adds nothing to the 

frailty, age and sex-adjusted models. Out of the resilience indicators, FM provides the best 

increase in AUC in the frailty, age, and sex-adjusted models. However, the differences in AUC 

between the different resilience models are negligible. Appendix K presents full results for the 

continuous sensitivity. 

Alternative FI and Household Slope Sensitivity Analyses 

The results of the alternative FI sensitivity analyses and the household random effect sensitivity 

analyses are highly consistent with the main results. Appendices L and M show the full results for 

the alternative FI and household random effect sensitivity analyses, respectively.  

6.1.16 Summary of Mortality Analysis Results 

Key takeaways from the mortality analysis results are listed below.  

1. The restricted sample sensitivity analysis suggested that longitudinal variables (i.e., RoA 

and DIOR-FI) need to be estimated on equal time points to ensure estimates are 

comparable across individuals.  

2. Before adjusting for age, RoA typically performs better than DIOR-FI and FM in the 

unadjusted and frailty-adjusted models. However, RoA loses its performance edge after 

adjusting for age. When used as a continuous variable, RoA predicts even better than the 

FI in unadjusted models. But again, the adjustment for FI and age seems to largely 

eliminate the effect of RoA.  
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3. Age-stratified results show that AUC improvements are largest in the youngest (52-67) 

and middle (68-79) age groups. 

4. Sex-stratified results show similar patterns in males and females, with larger effect sizes 

and better AUC in females. DIOR-FI shows a crossover effect in males but not females. 

This crossover effect shows the high stability group having the lowest predicted 

probability of mortality at low levels of FI, but the highest predicted probability at high 

levels of FI. 

5. FM unexpectedly shows an effect opposite to expectations with the adapters (the 

resilient group) having the highest predicted probability of death. Further exploratory 

analysis indicates that compared to the expected agers (reference group), the adapters 

are older and have higher disease burden despite having approximately the same level of 

frailty. Thus, given the distribution of risk factors between the groups, this result makes 

sense. With four categories, as opposed to three categories, the association holds in the 

expected direction if those with the very lowest FM (i.e., those most underestimated by 

the model, the largest outliers on the negative end) are separated.  

6. There is generally low agreement between FM, RoA, and DIOR-FI categories (kappa ≤ 

0.24).  

7. Results are robust to different cut points, frailty indexes constructed with alternative 

variables, and clustering specification of the growth curve model. 

6.2 Recovery Analysis 

6.2.1 Sample Characteristics 

The recovery sample of 1,905 individuals is 50% female with a median age of 74 (IQR bounds = 

67, 82), a median FI of 0.197 (IQR bounds = 0.104, 0.345), and a median modified SF-36 PFS of 50 

(IQR bounds = 20, 80) (Table 31). In terms of the resilience indicators in the study, the sample has 

a median rate of aging of 0.005 FI per year (IQR bounds = 0.003, 0.011), a median frailty-disease 

mismatch of -0.022 deviation from the expected frailty (IQR bounds = -0.083, 0.061), and a median 

DIOR-FI of 0.046 (IQR bounds = 0.029, 0.073). 

Of the 1,905 individuals included in the sample, 506 (26.6%) fully recovered by the next wave. 

Those who fully recovered are significantly younger (p < 0.001) and less frail (p = 0.004) compared 
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to those who did not (Table 31). There is no significant difference between the groups in terms of 

sex (p = 0.7) or baseline modified SF-36 PFS (p = 0.8). In terms of the continuous resilience 

indicators, those who recovered have a significantly lower frailty-disease mismatch (p = 0.004), 

lower RoA (p<0.001), and a lower DIOR-FI (p < 0.001). After categorizing each of these measures 

by the 25th and 75th percentiles, all three measures remain statistically significantly different 

between those who did and did not recover (p < 0.001, p < 0.001, and p = 0.003, respectively).  

Table 31. Sample Characteristics by Recovery Status 

 Full Recovery   

Characteristic Overall, N = 1,9051 Not Recovered, N = 1,3991 Recovered, N = 5061 p-value2 

Age 74 (67, 82) 77 (68, 83) 70 (64, 77) <0.001 
Sex    0.7 

Female 953 (50%) 703 (50%) 250 (49%)  
Male 952 (50%) 696 (50%) 256 (51%)  

Frailty Index 0.197 (0.104, 0.345) 0.207 (0.110, 0.348) 0.177 (0.091, 0.334) 0.004 
Modified SF-36 PFS 50 (20, 80) 50 (20, 80) 50 (20, 80) 0.8 
FI Category    0.007 

Non-frail 443 (23%) 299 (21%) 144 (28%)  
Vulnerable 564 (30%) 417 (30%) 147 (29%)  
Frail 618 (32%) 464 (33%) 154 (30%)  
Most Frail 280 (15%) 219 (16%) 61 (12%)  

FM -0.022 (-0.083, 0.061) -0.026 (-0.089, 0.058) -0.017 (-0.065, 0.067) 0.004 
FM Category    <0.001 

Adapter 477 (25%) 382 (27%) 95 (19%)  
Expected Ager 952 (50%) 673 (48%) 279 (55%)  
Premature Frailer 476 (25%) 344 (25%) 132 (26%)  

RoA 0.005 (0.003, 0.011) 0.006 (0.003, 0.012) 0.004 (0.002, 0.007) <0.001 
RoA Category    <0.001 

Slow Ager 477 (25%) 315 (23%) 162 (32%)  
Average Ager 952 (50%) 682 (49%) 270 (53%)  
Fast Ager 476 (25%) 402 (29%) 74 (15%)  

DIOR-FI 0.046 (0.029, 0.073) 0.048 (0.030, 0.076) 0.041 (0.027, 0.064) <0.001 
DIOR-FI Category    0.003 

High stability 477 (25%) 323 (23%) 154 (30%)  
Average Stability 952 (50%) 711 (51%) 241 (48%)  
Low Stability 476 (25%) 365 (26%) 111 (22%)  

1Median (IQR Bounds); n (%) 
2Wilcoxon rank sum test; Pearson's Chi-squared test 

Age, Modified SF-36 PFS, FI, and FM represent the final values prior to first reported myocardial infarction. RoA and 

DIOR-FI represent estimates from all interviews prior to first reported myocardial infarction.  

6.2.2 Growth Curve Models 

I estimated two models to create the resilience variables. The age-only model produces RoA, and 

the adjusted model produces FM and DIOR-FI. 
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Age-Only Model 

The coefficients and 95% confidence intervals for all model components are presented in Table 

32 below. The fixed (population average) growth is described by a linear, quadratic, and cubic 

term equal to 0.01066, -0.00065, and 0.00002, respectively. The standard deviation of the linear 

random effect is 0.00670, and the autocorrelation of the residuals is 0.71847 (Table 32). 

Table 32. Age-Only Mixed Effects Model Results (Recovery Sample) 

Fixed Effects Estimate Lower 95% Upper 95% 

(Intercept) 0.09308 0.07362 0.11254 

Age 0.01066 0.00761 0.01372 

Age2 -0.00065 -0.00080 -0.00049 

Age3 0.00002 0.00001 0.00002 

Random Effects Estimate Lower 95% Upper 95% 

Intercept (sd) 0.13556 0.12170 0.15100 

Age (sd) 0.00670 0.00600 0.00748 

Correlation (age and intercept) -0.66423 -0.73711 -0.57607 

Correlation Structure  Estimate Lower 95% Upper 95% 

Phi (autocorrelation of residuals) 0.71847 0.68676 0.74814 

Residuals Estimate Lower 95% Upper 95% 

Within-group residuals (standard error) 0.09476 0.09053 0.09918 

 

Adjusted Model 

In the adjusted model, all nine disease burden components are statistically significantly associated 

with FI (p < 0.001, Table 33). After adjusting for sex, disease burden, and wave, the linear, 

quadratic, and cubic age coefficients changed to 0.00420, -0.00039, and 0.00001, respectively 

(Table 33). This change in age coefficients towards the null is expected as adding disease burden 

to the model will explain some of the change in FI over time, resulting in a smaller contribution of 

age. The standard deviation of the linear random effect of age was reduced to  0.00468, and the 

autocorrelation of the residuals was reduced to 0.64793.  
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Table 33. Adjusted Mixed Effects Model Results (Recovery Sample) 

Fixed Effects Estimate Lower 95% Upper 95% 

(Intercept) 0.05229 0.03489 0.06969 

Age 0.00420 0.00163 0.00677 

Age2 -0.00039 -0.00052 -0.00026 

Age3 0.00001 0.00001 0.00001 

Sex: Male -0.03651 -0.04471 -0.02831 

SRH: Very Good 0.00836 0.00131 0.01541 

SRH: Good 0.02791 0.02054 0.03529 

SRH: Fair 0.06280 0.05477 0.07083 

SRH: Poor 0.13721 0.12782 0.14661 

Ever had stroke: Yes 0.07611 0.06692 0.08530 

Ever had arthritis: Yes 0.04478 0.03849 0.05107 

Ever had cancer: Yes 0.00986 0.00071 0.01901 

Ever had high blood pressure: Yes 0.02627 0.01982 0.03271 

Ever had diabetes: Yes 0.01733 0.00987 0.02480 

Ever had lung disease: Yes 0.04292 0.03299 0.05284 

Ever had heart problems: Yes 0.02258 0.01593 0.02923 

Regularly takes Rx meds: Yes 0.01483 0.00861 0.02106 

Wave 4 -0.00250 -0.00729 0.00229 

Wave 5 0.00175 -0.00395 0.00746 

Wave 6 0.00774 0.00118 0.01429 

Wave 7 0.01286 0.00560 0.02013 

Wave 8 0.01863 0.01046 0.02679 

Wave 9 0.01342 0.00418 0.02266 

Wave 10 0.02410 0.01343 0.03477 

Wave 11 0.02444 0.01219 0.03669 

Wave 12 0.03096 0.01614 0.04579 

Random Effects Estimate Lower 95% Upper 95% 

Intercept (sd) 0.08143 0.07055 0.09400 

Age (sd) 0.00468 0.00416 0.00526 

Correlation (age and intercept) -0.68668 -0.76752 -0.58433 

Correlation Structure  Estimate Lower 95% Upper 95% 

Phi (autocorrelation of residuals) 0.64793 0.61750 0.67720 

Residuals Estimate Lower 95% Upper 95% 

Within-group residuals (standard error) 0.08340 0.08074 0.08615 

SRH stands for self-rated health. The reference category is “Excellent”. The reference category for Wave is 

3. 
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6.2.3 Modified SF-36 Physical Function Subscale 

Univariate Descriptive Statistics 

The modified SF-36 PFS has an asymmetrical concave distribution with 0, 100, and 90 being the 

most frequently observed scores, respectively (Figure 28).  

 

Figure 28. Distribution of the Modified SF-36 PFS (Recovery Sample) 

Note: The smaller bars between increments of 10 represent imputed missing values following the guidance 

in the SF-36 manual (103). 

The effect of pre-event physical function is not statistically significantly associated with full 

recovery with an odds ratio of 1.00 (95% CI = 0.97, 1.03) for a ten-unit change in the modified SF-

36 PFS (Table 34).  
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Table 34. Univariate Logistic Regression for the Modified SF-36 PFS and Recovery 

Characteristic OR 95% CI p-value 

Modified SF-36 PFS 1.00 0.97, 1.03 0.887 

Note: Odds ratio represents a SF-36 PFS change of 10, equal to one functional difficulty variable. 

6.2.4 Frailty Index 

Distribution of the FI 

The frailty index has a right-skewed distribution with a median of 0.197, a 25th percentile of 0.104, 

a 75th percentile of 0.345, a 99th percentile of 0.837, a skewness of 1.244, and a kurtosis of 1.048 

(Figure 29).  

 

Figure 29. Distribution and Categorization of the Frailty Index (Recovery Sample) 

Vertical lines illustrate categorical cut points: less than 0.1 is non-frail, less than or equal to 0.21 is 

vulnerable, less than or equal to 0.45 is frail, and greater than 0.45 is most frail. 
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Comparison of FI Categories 

All variables are statistically significantly different across frailty index categories using the Kruskal-

Wallis test for continuous variables and Pearson’s Chi-squared test for categorical variables (p < 

0.01, Table 35). Age, sex, physical function, and recovery show the expected gradient across FI 

categories: comparing the non-frail group to the most frail, the median age ranges from 70 to 80, 

the proportion of females ranges from 33% to 67%, and the median modified SF-36 PFS ranges 

from 90 to 0, and the proportion of full recovery ranges from 33% to 22%. 

All resilience variables show the expected gradient across all frailty categories: the proportion of 

DIOR-FI low stability ranges from 6.1% in non-frail to 77% in most frail, and the proportion of 

DIOR-FI high stability ranges from 48% in non-frail to 1.4% in most frail (Table 35). Similarly, the 

proportion of RoA fast agers ranges from 2.9% in non-frail to 74% in most frail, and the proportion 

of RoA slow agers ranges from 47% in non-frail to 8.6% in most frail (Table 35). Lastly, the 

proportion of FM premature frailers ranges from 0% to 92%, and the proportion of FM adapters 

ranges from 49% to 0.7%. These patterns are consistent with those observed in the mortality 

sample.  
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Table 35. Comparison of FI Categories (Recovery Sample) 

 FI Category   

Characteristic 
Non-frail, N = 

4431 
Vulnerable, N = 

5641 
Frail, N = 

6181 
Most Frail, N = 

2801 
p-

value2 

Age 70 (64, 77) 73 (66, 80) 77 (68, 83) 80 (72, 88) <0.001 
Sex     <0.001 

Female 144 (33%) 250 (44%) 372 (60%) 187 (67%)  
Male 299 (67%) 314 (56%) 246 (40%) 93 (33%)  

Modified SF-36 PFS 90 (89, 100) 70 (50, 80) 30 (10, 40) 0 (0, 10) <0.001 
Full Recovery     0.007 

Not Recovered 299 (67%) 417 (74%) 464 (75%) 219 (78%)  
Recovered 144 (33%) 147 (26%) 154 (25%) 61 (22%)  

FM Category     <0.001 
Adapter 219 (49%) 179 (32%) 77 (12%) 2 (0.7%)  
Expected Ager 224 (51%) 369 (65%) 338 (55%) 21 (7.5%)  
Premature 
Frailer 

0 (0%) 16 (2.8%) 203 (33%) 257 (92%)  

RoA Category     <0.001 
Slow Ager 206 (47%) 156 (28%) 91 (15%) 24 (8.6%)  
Average Ager 224 (51%) 359 (64%) 319 (52%) 50 (18%)  
Fast Ager 13 (2.9%) 49 (8.7%) 208 (34%) 206 (74%)  

DIOR-FI Category     <0.001 
High Stability 212 (48%) 184 (33%) 77 (12%) 4 (1.4%)  
Average Stability 204 (46%) 327 (58%) 360 (58%) 61 (22%)  
Low Stability 27 (6.1%) 53 (9.4%) 181 (29%) 215 (77%)  

1Median (IQR Bounds); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

The Effect of FI on Recovery 

The function-adjusted analysis shows that for every 0.03 increase in FI, the odds of full recovery 

after incident MI decrease by 9% (OR = 0.91, 95% CI = 0.88, 0.95) (Table 36). The odds of full 

recovery are 0.39 times those of the non-frail reference group among the vulnerable (95% CI = 

0.28, 0.55), 0.15 among the frail (95% CI = 0.09, 0.26), and 0.08 among the most frail (95% CI = 0.04, 

0.15) (Table 36).  

In the age-adjusted analysis, the odds of full recovery decreases by 7% for every 0.03 increase in 

FI (OR = 0.93, 95% CI = 0.90, 0.97) (Table 36). The odds of full recovery are 0.45 times those of the 

non-frail reference group among the vulnerable (95% CI = 0.32, 0.63), 0.19 among the frail (95% 

CI = 0.11, 0.33), and 0.11 among the most frail (95% CI = 0.06, 0.23) (Table 36). Unlike the mortality 

models, I did not adjust for sex as it was not statistically significant in the recovery models.   
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Table 36. Logistic Regression Models for the Frailty Index and Recovery 

 Model 1 Model 2 

Characteristic OR 95% CI p-value OR 95% CI p-value 

Continuous FI 

Modified SF-36 PFS 0.99 0.98, 0.99 <0.001 0.99 0.98, 0.99 <0.001 

Frailty Index 0.91 0.88, 0.95 <0.001 0.93 0.90, 0.97 <0.001 

Age    0.95 0.94, 0.97 <0.001 

Categorical FI 

Modified SF-36 PFS 0.98 0.97, 0.98 <0.001 0.98 0.97, 0.98 <0.001 

FI Category       

    Non-frail — —  — —  

    Vulnerable 0.39 0.28, 0.55 <0.001 0.45 0.32, 0.63 <0.001 

    Frail 0.15 0.09, 0.26 <0.001 0.19 0.11, 0.33 <0.001 

    Most Frail 0.08 0.04, 0.15 <0.001 0.11 0.06, 0.23 <0.001 

Age    0.96 0.94, 0.97 <0.001 

Model 1 is adjusted for function. Model 2 is further adjusted for age. Note: Continuous FI odds ratio 

represents a change of 0.03, the proposed minimal important difference 

Figure 30 displays the function-adjusted effect of the frailty index on the predicted probability of 

full recovery. As the frailty index increases, the predicted probability of full recovery 

monotonically decreases. The shaded area around the lines represents the 95% confidence 

intervals. 
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Figure 30. Function-Adjusted Effect of the Frailty Index on Full Recovery 

Visualization of the function-adjusted effect of FI on full recovery (continuous Model 1, Table 36). 

6.2.5 Frailty-Disease Mismatch 

Distribution of the FM 

The frailty-disease mismatch has a right-skewed distribution, with a median of -0.022, a 25th 

percentile of -0.083, a 75th percentile of 0.061, a skewness of 1.151, and a kurtosis of 2.044 (Figure 

31).  
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Figure 31. Distribution and Categorization of FM (Recovery Sample) 

Physical resilience categories are defined by the 25th and 75th percentiles: those below the 25th percentile 

are adapters (resilient), those within the IQR are expected agers (reference), and those above the 75th 

percentile are premature frailers (non-resilient). 

Comparison of FM Categories 

All variables are statistically significantly different across FM categories using the Kruskal-Wallis 

test for continuous variables and Pearson’s Chi-squared test for categorical variables (p <0.001, 

Table 37). Mirroring the mortality analysis, most variables do not show the expected trend across 

FM categories except frailty and physical function. The adapters have the lowest frailty, with a 

median FI of 0.116 (compared to 0.520 in the premature frailers), and the highest physical 

function, with a median SF-36 PFS of 80 (compared to 10 in the premature frailers). Aside from 

frailty and physical function, the adapters are the oldest (median age of 78) and have the lowest 

proportion of fully recovered (20%). Additionally, FM adapters never have the highest or lowest 

proportion of resilient or non-resilient individuals as categorized by the RoA and DIOR-F: the 

expected ager category has a higher proportion of slow agers and individuals with high stability, 

and a lower proportion of fast agers and low stability. Despite the adapters deviating from this 
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expected trend, the comparison between the expected agers and premature frailers is consistent 

across all variables, with premature frailers being older (76 years compared to 73 years) having 

lower proportion of fully recovered (28% compared to 29%), and a higher proportion of fast agers 

(49% compared to 15%), and individuals with low stability (61% compared to 11%). These patterns 

are consistent with those observed in the mortality analysis. 

Table 37. Comparison of FM Categories (Recovery Sample) 

 FM Category   

Characteristic Adapter, N = 4771 Expected Ager, N = 9521 Premature Frailer, N = 4761 p-value2 

Age 78 (68, 85) 73 (66, 80) 76 (67, 83) <0.001 
Frailty Index 0.104 (0.067, 0.171) 0.174 (0.104, 0.262) 0.470 (0.356, 0.646) <0.001 
Modified SF-36 PFS 80 (60, 90) 60 (30, 80) 10 (0, 20) <0.001 
Sex    <0.001 

Female 261 (55%) 413 (43%) 279 (59%)  
Male 216 (45%) 539 (57%) 197 (41%)  

Full Recovery    <0.001 
Not Recovered 382 (80%) 673 (71%) 344 (72%)  
Recovered 95 (20%) 279 (29%) 132 (28%)  

RoA Category    <0.001 
Slow Ager 133 (28%) 279 (29%) 65 (14%)  
Average Ager 246 (52%) 528 (55%) 178 (37%)  
Fast Ager 98 (21%) 145 (15%) 233 (49%)  

DIOR-FI Category    <0.001 
High Stability 118 (25%) 341 (36%) 18 (3.8%)  
Average Stability 282 (59%) 503 (53%) 167 (35%)  
Low Stability 77 (16%) 108 (11%) 291 (61%)  

1Median (IQR Bounds); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

The Effect of FM on Recovery 

The function-adjusted logistic regression analysis shows that the odds full recovery after incident MI 

for the adapters are 0.57 times those of the expected agers (95% CI = 0.43, 0.75), while premature 

frailers do not significantly differ from the expected agers (OR = 1.05, 95% CI = 0.77, 1.41) (Table 

38). Adjusting for frailty does not change the effect of adapter group, but it does increase the 

effect of the premature frailer group to 1.84 times higher odds of full recovery after incident MI, 

becoming statistically significant (95% CI = 1.31, 2.59). Further adjusting for age diminishes these 

effects, but they remain statistically significant (p < 0.05). 
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Table 38. Logistic Regression Models for FM and Recovery 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

1.00 1.00, 
1.01 

0.2 0.99 0.98, 
0.99 

<0.001 0.99 0.98, 
0.99 

<0.001 0.97 0.97, 
0.98 

<0.001 

FM Category             

    Expected 
Ager 

— —  — —  — —  — —  

    Adapter 0.57 0.43, 
0.75 

<0.001 0.57 0.43, 
0.74 

<0.001 0.69 0.52, 
0.91 

0.010 0.55 0.33, 
0.92 

0.022 

    Premature 
Frailer 

1.05 0.77, 
1.41 

0.8 1.84 1.31, 
2.59 

<0.001 1.43 1.00, 
2.04 

0.048 0.18 0.07, 
0.41 

<0.001 

Frailty Index    0.88 0.85, 
0.92 

<0.001 0.91 0.88, 
0.95 

<0.001 0.76 0.70, 
0.82 

<0.001 

Age       0.96 0.95, 
0.97 

<0.001 0.96 0.95, 
0.97 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         1.03 0.92, 
1.14 

0.6 

    Premature 
Frailer * Frailty 
Index 

         1.23 1.14, 
1.33 

<0.001 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 

proposed minimal important difference. 

The interaction term between FI and FM is statistically significant for the premature frailer group 

(Table 38). Figure 32 visualizes the interaction below. The interaction shows that expected agers 

have the highest predicted probability of full recovery at low levels of FI, while the premature 

frailers have the highest predicted probability of full recovery at high levels of FI.  
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Figure 32. Interaction Effects of the Frailty Index and FM on Recovery 

Visualization of the interaction between FI and FM on recovery (Model 4, Table 38). 

Comparison of the disease burden variables across FM categories shows that similar to the 

mortality sample, the adapters have consistently higher levels of disease burden compared to the 

expected agers, in addition to being older (Appendix F).  

6.2.6 Rate of Aging 

Distribution of the RoA 

The rate of aging has a right-skewed distribution, with a median of 0.005, a 25th percentile of 

0.003, a 75th percentile of 0.011, a skewness of 1.672, and a kurtosis of 3.538 (Figure 33).  
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Figure 33. Distribution and Categorization of the RoA (Recovery Sample) 

Physical resilience categories are defined by the 25th and 75th percentiles: those below the 25th percentile 

are slow agers (resilient), those within the IQR are average agers (reference), and those above the 75th 

percentile are fast agers (non-resilient). 

Comparison of RoA Categories 

All variables are statistically significantly different across RoA categories using the Kruskal-Wallis 

test for continuous variables and Pearson’s Chi-squared test for categorical variables (p <0.001, 

Table 39). Trends across categories follow the expected patterns for all variables. Specifically, 

comparing the DIOR-FI high stability (i.e., resilient) group to the low stability (i.e., non-resilient) 

group, the high stability group has the lowest median age (68 vs. 85), the lowest median FI at 

(0.116 vs. 0. 407), the lowest proportion of females (44% vs. 63%), FM premature frailers (14% vs. 

49%), and DIOR-FI low stability (16% vs. 49%), the highest median SF-36 PFS (78 vs. 11), and the 

highest proportion of fully recovered (34% vs. 16%), FM adapters (28% vs. 21%), and DIOR-FI high 

stability (34% vs. 10%).   



131 
 

Table 39. Comparison of RoA Categories (Recovery Sample) 

 RoA Category   

Characteristic Slow Ager, N = 4771 Average Ager, N = 9521 Fast Ager, N = 4761 p-value2 

Age 68 (65, 72) 73 (64, 79) 85 (82, 89) <0.001 

Frailty Index 0.116 (0.067, 0.201) 0.177 (0.104, 0.268) 0.407 (0.287, 0.605) <0.001 

Modified SF-36 PFS 78 (40, 90) 60 (30, 80) 11 (0, 33) <0.001 

Sex    <0.001 
Female 212 (44%) 442 (46%) 299 (63%)  
Male 265 (56%) 510 (54%) 177 (37%)  

Full Recovery    <0.001 
Not Recovered 315 (66%) 682 (72%) 402 (84%)  
Recovered 162 (34%) 270 (28%) 74 (16%)  

FM Category    <0.001 
Adapter 133 (28%) 246 (26%) 98 (21%)  
Expected Ager 279 (58%) 528 (55%) 145 (30%)  
Premature Frailer 65 (14%) 178 (19%) 233 (49%)  

DIOR-FI Category    <0.001 
High Stability 163 (34%) 266 (28%) 48 (10%)  
Average Stability 236 (49%) 522 (55%) 194 (41%)  
Low Stability 78 (16%) 164 (17%) 234 (49%)  

1Median (IQR Bounds); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

The Effect of RoA on Recovery 

The function-adjusted logistic regression analysis shows that slow agers have 1.40 times greater odds 

of full recovery after incident MI compared to average agers (95% CI = 1.10, 1.77), and the odds of 

full recovery in fast agers are 0.37 times those of the average agers (95% CI = 0.27, 0.51). After 

adjusting for frailty, the effect of slow agers remains the same, while the effect of fast agers 

decreases slightly to 0.45 times the odds of the average agers (95% CI = 0.32, 0.62). Further 

adjusting for age results in the effects of both categories becoming insignificant (Table 40).  
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Table 40. Logistic Regression Models for RoA and Recovery 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

0.99 0.99, 
1.00 

<0.001 0.99 0.98, 
0.99 

<0.001 0.99 0.98, 
0.99 

<0.001 0.98 0.98, 
0.99 

<0.001 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 1.40 1.10, 
1.77 

0.007 1.40 1.10, 
1.78 

0.006 1.20 0.94, 
1.54 

0.14 1.45 0.97, 
2.17 

0.069 

    Fast Ager 0.37 0.27, 
0.51 

<0.001 0.45 0.32, 
0.62 

<0.001 0.84 0.57, 
1.25 

0.4 0.50 0.23, 
1.06 

0.076 

Frailty Index    0.95 0.92, 
0.98 

0.004 0.94 0.91, 
0.97 

<0.001 0.92 0.88, 
0.97 

0.002 

Age       0.96 0.95, 
0.97 

<0.001 0.96 0.94, 
0.97 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         0.97 0.91, 
1.02 

0.2 

    Fast Ager * 
Frailty Index 

         1.04 0.99, 
1.10 

0.2 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 

proposed minimal important difference. 

The interaction model shows a no statistically significant interaction between FI and RoA. For 

completeness, this interaction is visualized in Figure 34 below. 
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Figure 34. Interaction Effects of the Frailty Index and RoA on Recovery 

Visualization of the interaction between FI and RoA on recovery (Model 4, Table 40). 

6.2.7 DIOR-FI 

Distribution of the DIOR-FI 

The DIOR-FI has a right-skewed distribution, with a median of 0.046, a 25th percentile of 0.029, a 

75th percentile of 0.073, a skewness of 1.970, and a kurtosis of 4.700 (Figure 35). 
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Figure 35. Distribution and Categorization of DIOR-FI (Recovery Sample) 

Physical resilience categories are defined by the 25th and 75th percentiles: those below the 25th percentile 

have high stability (resilient), those within the IQR have average stability (reference), and those above the 

75th percentile have low stability (non-resilient).  

Comparison of DIOR-FI Categories 

All variables are statistically significantly different across DIOR-FI categories using the Kruskal-

Wallis test for continuous variables and Pearson’s Chi-squared test for categorical variables (p < 

0.01, Table 41). Trends across categories follow the expected patterns for all variables except FM 

adapters. Specifically, comparing the DIOR-FI high stability (i.e., resilient) group to the low stability 

(i.e., non-resilient) group, the high stability group has the lowest median age (72 vs. 78), the 

lowest median FI at (0.110 vs. 0. 415), the lowest proportion of females (41% vs. 58%), RoA fast 

agers (10% vs. 49%), and FM premature frailers (3.8% vs. 61%), the highest median SF-36 PFS (80 

vs. 10), and the highest proportion of fully recovered (32% vs. 23%), and RoA slow agers (34% vs 

16%). FM adapters deviate from this expected trend with the DIOR-FI average stability having a 

higher proportion than the high stability group (30% compared to 25%). 
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Table 41. Comparison of DIOR-FI Categories (Recovery Sample) 

 DIOR-FI Category   

Characteristic High Stability, N = 4771 Average Stability, N = 9521 Low Stability, N = 4761 p-value2 

Age 72 (65, 79) 75 (67, 82) 78 (67, 85) <0.001 
Frailty Index 0.110 (0.067, 0.175) 0.189 (0.116, 0.287) 0.415 (0.269, 0.624) <0.001 
Modified SF-36 PFS 80 (60, 90) 50 (30, 80) 10 (0, 35) <0.001 
Sex    <0.001 

Female 195 (41%) 484 (51%) 274 (58%)  
Male 282 (59%) 468 (49%) 202 (42%)  

Full Recovery    0.003 
Not Recovered 323 (68%) 711 (75%) 365 (77%)  
Recovered 154 (32%) 241 (25%) 111 (23%)  

FM Category    <0.001 
Adapter 118 (25%) 282 (30%) 77 (16%)  
Expected Ager 341 (71%) 503 (53%) 108 (23%)  
Premature Frailer 18 (3.8%) 167 (18%) 291 (61%)  

RoA Category    <0.001 
Slow Ager 163 (34%) 236 (25%) 78 (16%)  
Average Ager 266 (56%) 522 (55%) 164 (34%)  
Fast Ager 48 (10%) 194 (20%) 234 (49%)  

1Median (IQR Bounds); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

The Effect of DIOR-FI on Recovery 

The function-adjusted logistic regression analysis shows the high stability group has 1.51 times 

greater odds of full recovery after incident MI compared to the average stability group (95% CI = 

1.17, 1.94, Table 42). The low stability group was not statistically significantly different compared 

to the average stability group (p = 0.14). The effects remained largely unchanged after adjusting 

for both frailty and age, with only a slight reduction in the odds ratio for the high stability group 

(OR = 1.44, 95% CI = 1.11, 1.86), and the low stability group remaining insignificant (p = 0.8). 
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Table 42. Logistic Regression Models for DIOR-FI and Recovery 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

1.00 0.99, 
1.00 

0.054 0.98 0.98, 
0.99 

<0.001 0.99 0.98, 
0.99 

<0.001 0.98 0.98, 
0.99 

<0.001 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 1.51 1.17, 
1.94 

0.001 1.50 1.17, 
1.94 

0.002 1.44 1.11, 
1.86 

0.006 1.79 1.13, 
2.83 

0.013 

    Low Stability 0.81 0.61, 
1.07 

0.14 1.08 0.80, 
1.45 

0.6 0.96 0.71, 
1.30 

0.8 0.62 0.33, 
1.14 

0.13 

Frailty Index    0.92 0.88, 
0.95 

<0.001 0.94 0.91, 
0.97 

<0.001 0.91 0.86, 
0.96 

<0.001 

Age       0.95 0.94, 
0.97 

<0.001 0.96 0.94, 
0.97 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         0.95 0.88, 
1.02 

0.2 

    Low Stability * 
Frailty Index 

         1.04 0.99, 
1.10 

0.14 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 

proposed minimal important difference 

The interaction model shows no statistically significant interaction between FI and the DIOR-FI. 

For completeness and comparison to the other figures, this Figure 36 below visualizes this 

interaction.  
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Figure 36. Interaction Effects of the Frailty Index and DIOR-FI on Recovery 

Visualization of the interaction between FI and DIOR-FI on recovery (Model 4, Table 42). 

6.2.8 Correlation and Agreement 

Continuous variables show varying degrees of correlation using Pearson’s correlation coefficient 

(Table 43). The highest correlations are between FI and FM (0.821), followed by FI and DIOR-FI 

(0.665), then FI and RoA (0.641). RoA is overall the least correlated measure in the recovery 

sample (Table 43). 

Table 43. Correlation between FI and Resilience Indicators (Recovery Sample) 

 FI FM RoA DIOR-FI 

FI 1.0    

FM 0.821 1.0   

RoA 0.641 0.338 1.0  

DIOR-FI 0.665 0.544 0.436 1.0 

Cells indicate Pearson’s correlation coefficients for pairs of continuous variables. 
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The unweighted Cohen’s Kappa for two raters shows only slight agreement (109) between 

categorical indicators of resilience, with the highest agreement between RoA and DIOR-FI (0.172), 

followed by DIOR-FI and FM (0.166), and lastly, FM and RoA (0.151) (Table 44).  

Table 44. Agreement between Categorical Resilience Indicators (Recovery Sample) 

 FM RoA DIOR-FI 

FM 1.0   

RoA 0.151 1.0  

DIOR-FI 0.166 0.172 1.0 

Cells represent unweighted Cohen’s Kappa statistics for pairs of categorical variables. 

6.2.9 Discrimination 

In contrast to the mortality analysis, the AUC values for predicting full recovery are relatively low 

(Table 45). Below 0.6 is generally considered to be the poor to non-informative range (7). RoA is 

the best individual predictor in the function-adjusted models (AUC = 0.614), outperforming the 

frailty index (AUC = 0.581). In the function and frailty adjusted models, RoA and FM performed 

similarly (AUC = 0.618). FM is the strongest predictor in the age-adjusted models (AUC = 0.672 

with interaction). No other predictors are statistically significant after including the interaction 

term between FI and FM, leaving the best model to be the FM model with interaction, rather than 

the combined model. 
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Table 45. Discrimination of Recovery Models 

Model AUC Lower 95% Upper 95% 

Function-Adjusted Models    

FI Only 0.581 0.553 0.610 

FM Only 0.556 0.527 0.585 

RoA Only 0.614 0.586 0.641 

DIOR Only 0.558 0.530 0.587 

Function and Frailty-Adjusted Models     

FI + FM 0.618 0.591 0.646 

FI + RoA 0.618 0.590 0.646 

FI + DIOR 0.594 0.566 0.622 

Function, Frailty, Age-Adjusted Models    

FI Only 0.643 0.616 0.670 

FI + FM 0.651 0.624 0.678 

FI + FM Interaction 0.672 0.646 0.698 

FI + RoA 0.645 0.618 0.672 

FI + RoA Interaction 0.648 0.622 0.675 

FI + DIOR 0.649 0.622 0.676 

FI + DIOR Interaction 0.653 0.627 0.680 

FI + FM + DIOR 0.656 0.629 0.683 

Highest AUC for each category of models is bolded, excluding the combined resilience model (bottom row). 

95% confidence intervals are calculated using the Delong method. 

6.2.10 Restricted Sample Sensitivity Analysis 

In contrast to the mortality results, the restricted sample results are very similar to those of the 

unrestricted sample (Figure 37, Table 46). Regardless, to remain consistent with the mortality 

analysis, I kept the full sample as the primary sample but corrected the estimates of RoA and 

DIOR-FI to incorporate only the last three derivatives/residuals. This ensures that estimates are 

comparable, while still using the full sample size and all longitudinal data to estimate the frailty 

index growth curve model. The corrected results for RoA and DIOR-FI are provided below (FI and 

FM remain unchanged), and all subsequent sensitivity analyses use these corrected measures. 
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Figure 37. Recovery Main and Restricted Sample Comparison 

Comparison of the interaction models in the full sample (n=1,905) vs the restricted sample with only three 

consecutive final interviews per individual (n=1,839). The X-axis is the level of FI. The Y-axis is the predicted 

probability of recovery. 
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Table 46. Discrimination of Recovery Models (Restricted Sample) 

 Main Sample Restricted Sample 

Model AUC Lower 
95% 

Upper 
95% 

AUC Lower 
95% 

Upper 
95% 

Unadjusted Models       

FI Only 0.581 0.553 0.610 0.578 0.549 0.607 

FM Only 0.556 0.527 0.585 0.563 0.533 0.592 

RoA Only 0.614 0.586 0.641 0.618 0.590 0.646 

DIOR Only 0.558 0.530 0.587 0.559 0.530 0.589 

Frailty-Adjusted Models       

FI + FM 0.618 0.591 0.646 0.619 0.591 0.647 

FI + RoA 0.618 0.590 0.646 0.622 0.594 0.650 

FI + DIOR 0.594 0.566 0.622 0.596 0.568 0.625 

Age and Frailty-adjusted models       

FI Only 0.643 0.616 0.670 0.642 0.614 0.669 

FI + FM 0.651 0.624 0.678 0.654 0.626 0.681 

FI + FM Interaction 0.672 0.646 0.698 0.671 0.644 0.697 

FI + RoA 0.645 0.618 0.672 0.645 0.617 0.672 

FI + RoA Interaction 0.648 0.622 0.675 0.651 0.623 0.678 

FI + DIOR 0.649 0.622 0.676 0.651 0.624 0.678 

FI + DIOR Interaction 0.653 0.627 0.680 0.659 0.632 0.686 

FI + FM + DIOR 0.656 0.629 0.683 0.661 0.634 0.688 

Highest AUC for each category of models is bolded, excluding the combined resilience model (bottom row). 

95% confidence intervals are calculated using the Delong method. 

 

6.2.11 Sample Characteristics (corrected for last three observations only) 

The corrected values for RoA and FI are shaded in Table 47 below. As expected, the median RoA 

and DIOR FI are higher after correcting for the number of observations used to derive the 

estimates: RoA now has a median of 0.006 (IQR bounds = 0.003, 0.014), and DIOR-FI now has a 

median of 0.043 (IQR bounds = 0.024, 0.071).  
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Table 47. Sample Characteristics by Recovery Status (corrected RoA and DIOR-FI) 

 Full Recovery   

Characteristic Overall, N = 1,9051 Not Recovered, N = 1,3991 Recovered, N = 5061 p-value2 

Age 74 (67, 82) 77 (68, 83) 70 (64, 77) <0.001 
Sex    0.7 

Female 953 (50%) 703 (50%) 250 (49%)  
Male 952 (50%) 696 (50%) 256 (51%)  

Frailty Index 0.197 (0.104, 0.345) 0.207 (0.110, 0.348) 0.177 (0.091, 0.334) 0.004 
Modified SF-36 PFS 50 (20, 80) 50 (20, 80) 50 (20, 80) 0.8 
FI Category    0.007 

Non-frail 443 (23%) 299 (21%) 144 (28%)  
Vulnerable 564 (30%) 417 (30%) 147 (29%)  
Frail 618 (32%) 464 (33%) 154 (30%)  
Most Frail 280 (15%) 219 (16%) 61 (12%)  

FM -0.022 (-0.083, 0.061) -0.026 (-0.089, 0.058) -0.017 (-0.065, 0.067) 0.004 
FM Category    <0.001 

Adapter 477 (25%) 382 (27%) 95 (19%)  
Expected Ager 952 (50%) 673 (48%) 279 (55%)  
Premature Frailer 476 (25%) 344 (25%) 132 (26%)  

RoA 0.006 (0.003, 0.014) 0.007 (0.003, 0.015) 0.004 (0.002, 0.009) <0.001 
RoA Category    <0.001 

Slow Ager 477 (25%) 304 (22%) 173 (34%)  
Average Ager 952 (50%) 691 (49%) 261 (52%)  
Fast Ager 476 (25%) 404 (29%) 72 (14%)  

DIOR-FI 0.043 (0.024, 0.071) 0.045 (0.025, 0.074) 0.037 (0.020, 0.063) <0.001 
DIOR-FI Category    <0.001 

High Stability 477 (25%) 318 (23%) 159 (31%)  
Average Stability 952 (50%) 711 (51%) 241 (48%)  
Low Stability 476 (25%) 370 (26%) 106 (21%)  

1Median (IQR Bounds); n (%) 
2Wilcoxon rank sum test; Pearson's Chi-squared test 

Age, Modified SF-36 PFS, FI, and FM represent the final values prior to first reported myocardial infarction. RoA and 

DIOR-FI represent estimates using only the last three interviews prior to first reported myocardial infarction.  

 

6.2.12 Rate of Aging (corrected for last three observations only) 

Distribution of the RoA 

The rate of aging has a right-skewed distribution, with a median of 0.006, a 25th percentile of 

0.003, a 75th percentile of 0.014, a skewness of 1.416, and a kurtosis of 2.077 (Figure 38).  
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Figure 38. Distribution and Categorization of the RoA (Recovery Sample - last three) 

Physical resilience categories are defined by the 25th and 75th percentiles: those below the 25th percentile 

are slow agers (resilient), those within the IQR are average agers (reference), and those above the 75th 

percentile are fast agers (non-resilient). “Last three” refers to the second (and preferred) version of RoA 

which uses only the last three derivatives in its calculation to ensure all individuals have a comparable 

estimate regardless of how many interviews they completed. 

Comparison of RoA Categories 

All variables are statistically significantly different across RoA categories using the Kruskal-Wallis 

test for continuous variables and Pearson’s Chi-squared test for categorical variables (p <0.001, 

Table 48). Trends across categories follow the expected patterns for all variables except sex and 

FM adapters. Specifically, comparing the DIOR-FI high stability (i.e., resilient) group to the low 

stability (i.e., non-resilient) group, the high stability group has the lowest median age (67 vs. 86), 

the lowest median FI at (0.122 vs. 0. 396), FM premature frailers (15% vs. 44%), and DIOR-FI low 

stability (15% vs. 46%), the highest median SF-36 PFS (70 vs. 20), and the highest proportion of 

fully recovered (36% vs. 15%), and DIOR-FI high stability (36% vs. 10%). Sex and FM adapters 
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deviate from this trend with the RoA average agers having the lowest proportion of females (45%), 

and all three RoA categories having an equal proportion of FM adapters (25%).  

 

Table 48. Comparison of RoA Categories (Recovery Sample -  last three) 

 RoA Category   

Characteristic Slow Ager, N = 4771 Average Ager, N = 9521 Fast Ager, N = 4761 p-value2 

Age 67 (63, 69) 75 (67, 79) 86 (83, 89) <0.001 
Frailty Index 0.122 (0.067, 0.213) 0.177 (0.104, 0.274) 0.396 (0.264, 0.597) <0.001 
Modified SF-36 PFS 70 (40, 90) 60 (30, 89) 20 (0, 40) <0.001 
Sex    <0.001 

Female 223 (47%) 432 (45%) 298 (63%)  
Male 254 (53%) 520 (55%) 178 (37%)  

Full Recovery    <0.001 
Not Recovered 304 (64%) 691 (73%) 404 (85%)  
Recovered 173 (36%) 261 (27%) 72 (15%)  

FM Category    <0.001 
Adapter 120 (25%) 239 (25%) 118 (25%)  
Expected Ager 286 (60%) 518 (54%) 148 (31%)  
Premature Frailer 71 (15%) 195 (20%) 210 (44%)  

DIOR-FI Category    <0.001 
High Stability 171 (36%) 258 (27%) 48 (10%)  
Average Stability 235 (49%) 507 (53%) 210 (44%)  
Low Stability 71 (15%) 187 (20%) 218 (46%)  

1Median (IQR Bounds); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

“Last three” refers to using the second (and preferred) versions of RoA and DIOR-FI, which use only the last 

three derivatives/residuals in their calculation to ensure all individuals have a comparable estimate 

regardless of how many interviews they completed. 

The Effect of RoA on Recovery 

The function-adjusted logistic regression analysis shows that slow agers have 1.59 times greater odds 

of full recovery after incident MI compared to average agers (95% CI = 1.25, 2.02), and the odds of 

full recovery in fast agers are 0.39 times those of the average agers (95% CI = 0.29, 0.53). After 

adjusting for frailty, the effect of slow agers remains the same, while the effect of fast agers 

decreases slightly to 0.46 times the odds of the average agers (95% CI = 0.33, 0.64). Further 

adjusting for age results in the effects of both categories becoming insignificant (Table 49).  
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Table 49. Logistic Regression Models for RoA and Recovery (last three) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

0.94 0.91, 
0.97 

<0.001 0.87 0.82, 
0.93 

<0.001 0.88 0.82, 
0.93 

<0.001 0.86 0.80, 
0.91 

<0.001 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 1.59 1.25, 
2.02 

<0.001 1.59 1.25, 
2.01 

<0.001 1.25 0.97, 
1.62 

0.086 1.71 1.14, 
2.56 

0.009 

    Fast Ager 0.39 0.29, 
0.53 

<0.001 0.46 0.33, 
0.64 

<0.001 0.83 0.55, 
1.23 

0.4 0.59 0.28, 
1.21 

0.2 

Frailty Index    0.95 0.91, 
0.98 

0.003 0.94 0.91, 
0.97 

<0.001 0.94 0.89, 
0.98 

0.009 

Age       0.96 0.95, 
0.98 

<0.001 0.96 0.95, 
0.98 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         0.95 0.90, 
1.00 

0.043 

    Fast Ager * 
Frailty Index 

         1.02 0.97, 
1.08 

0.4 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 

proposed minimal important difference. “Last three” refers to the second (and preferred) version of RoA 

which uses only the last three derivatives in its calculation to ensure all individuals have a comparable 

estimate regardless of how many interviews they completed. 

The interaction model shows a statistically significant interaction between FI and RoA slow agers, 

with the main effect for slow agers becoming significant again (Table 49). Figure 39 below 

illustrates this interaction. This shows the differences between groups decreasing as FI increases.  
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Figure 39. Interaction Effects of the Frailty Index and RoA on Recovery  (last three) 

Visualization of the interaction between FI and RoA on recovery (Model 4, Table 49). “Last three” refers to 

the second (and preferred) version of RoA which uses only the last three derivatives in its calculation to 

ensure all individuals have a comparable estimate regardless of how many interviews they completed. 

6.2.13 DIOR-FI (corrected for last three observations only) 

Distribution of the DIOR-FI 

The DIOR-FI has a right-skewed distribution, with a median of 0.043, a 25th percentile of 0.024, a 

75th percentile of 0.071, a skewness of 2.242, and a kurtosis of 6.484 (Figure 40). 
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Figure 40. Distribution and Categorization of DIOR-FI (Recovery Sample - last three) 

Physical resilience categories are defined by the 25th and 75th percentiles: those below the 25th percentile 

have high stability (resilient), those within the IQR have average stability (reference), and those above the 

75th percentile have low stability (non-resilient). “Last three” refers to the second (and preferred) version 

of DIOR-FI which uses only the last three residuals in its calculation to ensure all individuals have a 

comparable estimate regardless of how many interviews they completed. 

Comparison of DIOR-FI Categories 

All variables are statistically significantly different across DIOR-FI categories using the Kruskal-

Wallis test for continuous variables and Pearson’s Chi-squared test for categorical variables (p < 

0.01, Table 50). Trends across categories follow the expected patterns for all variables except FM 

adapters. Specifically, comparing the DIOR-FI high stability (i.e., resilient) group to the low stability 

(i.e., non-resilient) group, the high stability group has the lowest median age (71 vs. 78), the 

lowest median FI at (0.116 vs. 0. 396), the lowest proportion of females (41% vs. 57%), RoA fast 

agers (10% vs. 46%), and FM premature frailers (5.9% vs. 58%), the highest median SF-36 PFS (80 

vs. 11), and the highest proportion of fully recovered (33% vs. 22%), and RoA slow agers (36% vs 
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15%). FM adapters deviate from this expected trend with the DIOR-FI average stability having a 

higher proportion than the high stability group (29% compared to 26%). 

Table 50. Comparison of DIOR-FI Categories (Recovery Sample - last three) 

 DIOR-FI Category   

Characteristic High Stability, N = 4771 Average Stability, N = 9521 Low Stability, N = 4761 p-value2 

Age 71 (65, 78) 75 (67, 82) 78 (68, 85) <0.001 
Frailty Index 0.116 (0.063, 0.183) 0.186 (0.104, 0.288) 0.396 (0.262, 0.593) <0.001 
Modified SF-36 PFS 80 (50, 90) 56 (30, 80) 11 (0, 40) <0.001 
Sex    <0.001 

Female 196 (41%) 488 (51%) 269 (57%)  
Male 281 (59%) 464 (49%) 207 (43%)  

Full Recovery    <0.001 
Not Recovered 318 (67%) 711 (75%) 370 (78%)  
Recovered 159 (33%) 241 (25%) 106 (22%)  

FM Category    <0.001 
Adapter 124 (26%) 274 (29%) 79 (17%)  
Expected Ager 325 (68%) 504 (53%) 123 (26%)  
Premature Frailer 28 (5.9%) 174 (18%) 274 (58%)  

RoA Category    <0.001 
Slow Ager 171 (36%) 235 (25%) 71 (15%)  
Average Ager 258 (54%) 507 (53%) 187 (39%)  
Fast Ager 48 (10%) 210 (22%) 218 (46%)  

1Median (IQR Bounds); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

“Last three” refers to using the second (and preferred) versions of RoA and DIOR-FI, which use only the last three 

derivatives/residuals in their calculation to ensure all individuals have a comparable estimate regardless of how many 

interviews they completed. 

The Effect of DIOR-FI on Recovery 

The function-adjusted logistic regression analysis shows the high stability group has 1.58 greater 

odds of full recovery after incident MI compared to the average stability group (95% CI = 1.23, 

2.02, Table 51). The low stability group was not statistically significantly different compared to the 

average stability group (p = 0.053). The effects remained largely unchanged after adjusting for 

both frailty and age, with only a slight reduction in the odds ratio for the high stability group (OR 

= 1.48, 95% CI = 1.15, 1.91), and the low stability group remaining insignificant (p = 0.3). 
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Table 51. Logistic Regression Models for DIOR-FI and Recovery (last three) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

0.96 0.93, 
1.00 

0.031 0.86 0.81, 
0.91 

<0.001 0.87 0.81, 
0.92 

<0.001 0.83 0.77, 
0.88 

<0.001 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 1.58 1.23, 
2.02 

<0.001 1.57 1.22, 
2.01 

<0.001 1.48 1.15, 
1.91 

0.003 3.03 1.93, 
4.77 

<0.001 

    Low Stability 0.76 0.57, 
1.00 

0.053 0.94 0.70, 
1.26 

0.7 0.86 0.64, 
1.16 

0.3 0.68 0.37, 
1.23 

0.2 

Frailty Index    0.92 0.89, 
0.95 

<0.001 0.94 0.91, 
0.98 

0.001 0.93 0.89, 
0.98 

0.006 

Age       0.95 0.94, 
0.97 

<0.001 0.96 0.94, 
0.97 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         0.87 0.80, 
0.93 

<0.001 

    Low Stability 
* Frailty Index 

         1.01 0.97, 
1.06 

0.6 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 

proposed minimal important difference. “Last three” refers to the second (and preferred) version of DIOR-

FI which uses only the last three residuals in its calculation to ensure all individuals have a comparable 

estimate regardless of how many interviews they completed. 

The interaction model shows a statistically significant interaction between FI and the DIOR-FI high 

stability group. Figure 41 below visualizes this interaction. At low levels of FI, the high stability 

group has the highest predicted probability of full recovery. This converges with and eventually 

crosses over the other two groups around an FI of 0.3, where the high stability group has the 

lowest predicted probability of full recovery (though the confidence intervals still slightly overlap).  
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Figure 41. Interaction Effects of the Frailty Index and DIOR-FI on Recovery (last three) 

Visualization of the interaction between FI and DIOR-FI on recovery (Model 4, Table 51). “Last three” refers 

to the second (and preferred) version of DIOR-FI which uses only the last three residuals in its calculation 

to ensure all individuals have a comparable estimate regardless of how many interviews they completed. 

6.2.14 Correlation and Agreement (corrected for last three observations only) 

Continuous variables show varying degrees of correlation using Pearson’s correlation coefficient 

(Table 52). The highest correlations are between FI and FM (0.821), followed by FI and DIOR-FI 

(0.622), then FI and RoA (0.595). RoA is overall the least correlated measure in the recovery 

sample. 
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Table 52. Correlation between FI and Resilience Indicators (Recovery Sample – last three) 

 FI FM RoA DIOR-FI 

FI 1.0    

FM 0.821 1.0   

RoA 0.595 0.253 1.0  

DIOR-FI 0.622 0.531 0.369 1.0 

Cells indicate Pearson’s correlation coefficients for pairs of continuous variables. “Last three” refers to using 

the second (and preferred) versions of RoA and DIOR-FI, which use only the last three derivatives/residuals 

in their calculation to ensure all individuals have a comparable estimate regardless of how many interviews 

they completed. 

The unweighted Cohen’s Kappa for two raters shows only slight agreement (109) between 

categorical indicators of resilience, with the highest agreement between FM and DIOR-FI (0.158), 

followed by DIOR-FI and RoA (0.153), and lastly, FM and RoA (0.112) (Table 53).  

Table 53. Agreement between Categorical Resilience Indicators (Recovery Sample – last three) 

 FM RoA DIOR-FI 

FM 1.0   

RoA 0.112 1.0  

DIOR-FI 0.158 0.153 1.0 

Cells represent unweighted Cohen’s Kappa statistics for pairs of categorical variables. “Last three” refers to 

using the second (and preferred) versions of RoA and DIOR-FI, which use only the last three 

derivatives/residuals in their calculation to ensure all individuals have a comparable estimate regardless of 

how many interviews they completed. 

 

6.2.15 Discrimination (corrected for last three observations only) 

RoA is the best individual predictor in the function-adjusted models (AUC = 0.625), beating the 

frailty index (AUC = 0.581, Table 54). In the function and frailty adjusted models, RoA is the best 

again (AUC = 0.628), followed by FM (AUC = 0.618). However, FM is the strongest predictor in the 

age-adjusted models (AUC = 0.672 with interaction). No other predictors are statistically 

significant after including the interaction term between FI and FM, leaving the best model to be 

the FM model with interaction, rather than the combined model. The largest possible increase in 

AUC in the fully adjusted model was 0.017.  
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Table 54. Discrimination of Recovery Models (last three) 

Model AUC Lower 95% Upper 95% 

Function-Adjusted Models    

FI Only 0.581 0.553 0.610 

FM Only 0.556 0.527 0.585 

RoA Only 0.625 0.597 0.652 

DIOR Only 0.573 0.544 0.601 

Function and Frailty-Adjusted Models     

FI + FM 0.618 0.591 0.646 

FI + RoA 0.628 0.601 0.655 

FI + DIOR 0.604 0.576 0.632 

Function, Frailty, Age-Adjusted Models    

FI Only 0.643 0.616 0.670 

FI + FM 0.651 0.624 0.678 

FI + FM Interaction 0.672 0.646 0.698 

FI + RoA 0.647 0.620 0.674 

FI + RoA Interaction 0.652 0.625 0.679 

FI + DIOR 0.654 0.627 0.680 

FI + DIOR Interaction 0.666 0.639 0.693 

FI + FM + DIOR 0.660 0.633 0.686 

Highest AUC for each category of models is bolded, excluding the combined resilience model (bottom row). 

95% confidence intervals are calculated using the Delong method. “Last three” refers to using the second 

(and preferred) versions of RoA and DIOR-FI, which use only the last three derivatives/residuals in their 

calculation to ensure all individuals have a comparable estimate regardless of how many interviews they 

completed. 

6.2.16 Additional Sensitivity Analysis Results 

Following the structure of the mortality analyses, all sensitivity analyses presented here use the 

preferred “last three” estimation of RoA and DIOR-FI, which ensures all individuals have a 

comparable estimate regardless of how many interviews they completed. 

Alternative Cut Points Analysis 

The alternative cut point sensitivity analysis using the top and bottom 15% (compared to 25% in 

the main analysis) revealed similar same overall trends, but many variables lose significance in 
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the interaction models, likely due to the reduced size of the resilient and non-resilient categories 

(Appendix J).  

Continuous Sensitivity Analysis 

Continuous resilience variables (FM, RoA, DIOR-FI) show slightly higher AUC compared to 

categorical. RoA remains the best individual predictor, however, after adjusting for frailty, FM 

becomes the best (Appendix K).  

Alternative FI Sensitivity Analysis 

The results of the alternative FI sensitivity analyses are highly consistent with the main results 

(Appendix L).  

6.2.17 Summary of Recovery Analysis Results 

Key takeaways from the recovery analysis results are listed below.  

1. The results are consistent with mortality results. 

2. FM again shows the opposite effect than expected with the adapters (the resilient group) 

having the lowest predicted probability of full recovery. Additional exploratory analysis 

again indicates that compared to the expected agers (reference group), the adapters are 

older and have higher disease burden.  

3. RoA is the best individual predictor until adjusting for age (in categorical models) or frailty 

(in continuous models).  

4. DIOR-FI shows convergence and crossover at high levels of FI. This shows the high stability 

group having the highest predicted probability of full recovery at low levels of FI, but the 

lowest predicted probability at high levels of FI.  

5. Similar to the mortality analysis, there is low agreement between the resilience indicators 

(kappa ≤ 0.158).  

6. Stratified analyses were not performed due to the lower sample size.  

7. Results are robust to alternative frailty indexes constructed with alternative variables. 

Alternative cut point results were consistent, but many terms lost significance due to the 

small group sizes.  
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6.3 Comparison of Mortality and Recovery Analyses 

Overall, the two analyses show similar patterns: For RoA (middle row, Figure 42), the fast agers 

(green line) start with the highest (lowest) predicted probability of mortality (recovery), but the 

three groups converge at higher levels of FI. For FM (top row, Figure 42), the premature frailers 

(green line) show the lowest (highest) predicted probability of morality (recovery) at high levels 

of FI. Lastly, DIOR-FI (bottom row, Figure 42) shows the expected gradient with high stability (blue 

line) having the lowest (highest) predicted probability of mortality (recovery), but three groups 

converge as FI increases, eventually high stability becoming the highest (lowest) at high levels of 

FI.  

 

Figure 42. A Comparison of the Mortality and Recovery Analysis Results 

The main results for the mortality and recovery analyses are presented-side by-side using the preferred 

“last three” estimation of RoA and DIOR-FI. X-axis is the level of FI. Y-axis is the predicted probability of 

mortality (left) or recovery (right). 
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In terms of AUC, the mortality and recovery models show similar results with the main difference 

being that the recovery models start with a lower AUC and, thus, are improved more by adding 

the resilience variables (Table 55).  

Table 55. Comparison of Mortality and Recovery Model AUC 

 Mortality Recovery 

Model AUC Lower 
95% 

Upper 
95% 

AUC Lower 
95% 

Upper 
95% 

Unadjusted/Function-Adjusted Models 

FI Only 0.778 0.772 0.784 0.581 0.553 0.610 

ROA Only 0.753 0.747 0.758 0.625 0.597 0.652 

FM Only 0.651 0.645 0.657 0.556 0.527 0.585 

DIOR Only 0.684 0.678 0.689 0.573 0.544 0.601 

Function and Frailty-Adjusted Models  

FI + ROA 0.802 0.796 0.807 0.628 0.601 0.655 

FI + FM 0.801 0.796 0.806 0.618 0.591 0.646 

FI + DIOR 0.780 0.775 0.786 0.604 0.576 0.632 

Function, Frailty, Age and Sex-Adjusted Models 

FI Only 0.824 0.819 0.829 0.643 0.616 0.670 

FI + ROA 0.824 0.819 0.829 0.647 0.620 0.674 

FI + ROA Interaction 0.825 0.820 0.829 0.652 0.625 0.679 

FI + FM 0.827 0.822 0.832 0.651 0.624 0.678 

FI + FM Interaction 0.828 0.823 0.833 0.672 0.646 0.698 

FI + DIOR 0.827 0.822 0.832 0.654 0.627 0.680 

FI + DIOR Interaction 0.828 0.823 0.832 0.666 0.639 0.693 

Final combined model  0.831 0.826 0.836 0.660 0.633 0.686 

Highest AUC for each category of models is bolded, excluding the combined resilience model (bottom row). 

95% confidence intervals are calculated using the Delong method. Key modelling differences between 

mortality and recovery are that all recovery models are adjusted for function (while mortality models are 

not), and sex is only adjusted for in the mortality models (insignificant in recovery models).  
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Chapter 7: Discussion 

This thesis started with a simple question: how can we improve risk estimation in aging 

populations? More specifically, how can we improve risk estimation based on frailty, the most 

prominent concept to date used for risk assessment? To address this question, I explored the 

relatively recently introduced concept of physical resilience. This exploration led to the 

identification of diverse concepts and empirical approaches. Currently, the first major clinical 

studies, such as SPRING (52) and PRIME-KNEE (48), are underway supported by new conceptual 

frameworks. However, these frameworks focus on clinical settings in the short term and do not 

incorporate alternative concepts of resilience, such as resilience as adaptation. To complement 

these ongoing clinical studies by taking a population approach, I proposed the Integrated Stress 

Response Framework for Frailty and Physical Resilience (ISRF-FPR). This framework helps to 

understand how different concepts relate to different measurement approaches in longitudinal 

population data by explicitly acknowledging the longitudinal cycle of stress and the influence of 

frailty and resilience on this cycle. As the SPRING (52) and PRIME-KNEE (48) conceptual 

frameworks provide a basis for clinical investigation of physical resilience, the ISRF-FPR facilitates 

concurrent examinations of frailty and physical resilience using longitudinal population data.  

Importantly, the ISRF-FPR is flexible and can be operationalized in many ways. The empirical 

demonstration in this thesis is by no means definitive, as it represents only one possibility for 

operationalization in one context (HRS). However, the empirical results do provide support for 

these methodological approaches. Overall, the key findings from the empirical work are: 1) All 

resilience variables (FM, RoA, and DIOR-FI) show significant unadjusted associations with 

mortality and recovery, supporting the idea that these can be used to indicate resilience; 2) FM 

requires careful evaluation and interpretation but also shows the greatest promise for adding 

predictive ability beyond what age, sex, and frailty can offer; 3) Continuous RoA, as currently 

operationalized, is the best individual predictor, surpassing even the frailty index. However, its 

contribution to predictive power is negligible when both frailty and age are accounted for 

(increase in AUC < 0.01); and 4) DIOR-FI interactions with frailty highlight a potential crossover 

effect, where the high stability group is the healthiest at low levels of FI (i.e., lowest predicted 

probability of death and highest predicted probability of full recovery), but the unhealthiest at 

high levels of FI (i.e., highest predicted probability of death and lowest predicted probability of 
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full recovery). This effect was more prominent in younger age groups and males. Taken together, 

these analyses demonstrate key insights and lessons learned for future analyses of frailty and 

physical resilience. Below I discuss the results for each of the three resilience variables and the 

implications of the key analytic decisions made in my analyses.  

7.1 The Unexpected Results and Predictive Potential of the Frailty Disease Mismatch (FM) 

Interestingly, the results for the frailty-disease mismatch do not support the previous findings by 

the original method authors. In Wu et al. the measure showed the expected gradient across FM 

categories, with the adapters, i.e., the resilient group, having the highest (lowest) indicators of 

good (poor) health, and the premature frailers having the lowest (highest) indicators of good 

(poor) health, including mortality (43). In this thesis, the adapters were older and had higher 

disease burden compared to the average agers (reference group), despite having similar levels of 

frailty. This distribution of risk factors is consistent with the concept behind the frailty-disease 

mismatch: individuals who are older with higher disease burden would be expected to have higher 

levels of frailty. If they had lower frailty than expected, they would be considered adapters. This 

thesis revealed a group who appeared to fit this description of an adapter but had the highest 

predicted probability of mortality and the lowest predicted probability of recovery. This 

association was robust to all sensitivity analyses, including additional post-hoc sensitivity analyses 

to specifically test the FM.  

One key difference between this thesis and Wu et al. is the study population. Wu et al. used a 

sample of 2457 initially well-functioning older adults aged 70 to 79 from the Health ABC Study. In 

contrast, this thesis used adults aged 52 to 109 spanning all levels of function. The Health ABC 

Study participants were selected to have no difficulty walking a quarter mile or climbing ten steps 

at baseline (110). To investigate if this was the source of the discrepancy, I ran a sensitivity analysis 

to mirror this population within HRS by estimating FM using individuals in wave 10 aged 70 to 79 

who reported no difficulty climbing one flight of stairs or walking several blocks. Using this sample 

to match Wu et al. still resulted in the adapters having the highest predicted probability of death. 

For comparison, my linear cross-sectional FM model had a coefficient of determination (R2) of 

0.27. This value is larger than the R2 of 0.17 reported by Wu et al. for their linear model of the 

SAVE frailty scale. 
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In light of these unexpected results, I also considered modelling issues: model assumptions such 

as normality of the residuals and heteroscedasticity were violated. However, the purpose of this 

thesis was to quantify the residuals after using theoretically informed variables. Wu et al. also 

provided a figure of their residuals, which visually do not appear to be normally distributed but 

are more symmetrical than the residuals in this thesis. Alternatively, it is possible that small 

differences in disease burden operationalization could make a large impact. Given that this study 

was longitudinal and aimed to include as many waves as possible with comparable FI variables, 

fewer clinical diseases were used. In comparison, Wu et al. additionally included osteoporosis, 

kidney disease, depression, and Parkinson’s disease, as well as the number of medications taken. 

However, perhaps the more likely cause of this discrepancy is the use of a different frailty 

measure. Wu et al. used the SAVE frailty scale, a discrete 10-point scale based on the frailty 

phenotype (66). In contrast, this thesis used the frailty index. These two measures have different 

distributions and likely identify different (but related) groups of individuals as robust or frail, as 

previously discussed regarding the frailty phenotype and the frailty index (see section 2.1.2). Thus, 

it is possible that using the frailty phenotype for estimation of the FM would lead to a different 

distribution of risk factors between resilience categories, and subsequently result in the expected 

gradient of health indicators (or in the case of this thesis, result in adapters having the lowest 

predicted probability of death and the highest predicted probability of full recovery). A key 

consideration here is that the frailty phenotype reflects signs and symptoms, while the frailty 

index reflects multiple domains including clinical disease. I took this into consideration when 

creating the frailty index for this thesis: for the main analysis, disease burden variables were not 

included in the frailty index to prevent any strange regression results from regressing components 

of the FI on the FI. However, after testing multiple frailty indices, this appears to not make a 

difference in the behaviour of the FM.  

As a final check, I further categorized FM into four categories using quartiles. Removing the 

bottom quartile (i.e., the most “resilient”), produced the expected association between the 

remaining three categories: as FM increases, so does the odds of death. Thus, it appears that 

those individuals who were most overestimated by the growth curve model demonstrated a 

different risk profile. These individuals had highly discrepant age and disease burden for their level 

of frailty. This still appears to fit the definition of resilience as adaptation, but it seems in the most 

extreme cases, the effects of age and disease burden trump the effects of frailty. In light of this, 
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attention to detail is necessary when implementing residual-based approaches to physical 

resilience. The resulting categories (or continuous variable) should be carefully assessed for a non-

linear relationship with the outcome variables of interest. Future analyses should investigate 

these potential issues by comparing the frailty phenotype and the frailty index in the same 

population, comparing different operationalizations of disease burden, or perhaps using a 

different operationalization of stress entirely, such as a simple chronological age-biological age 

mismatch, as suggested by Whitson et al. (9).  

Despite this abnormality, FM still consistently performed equal to or better than the other two 

measures in the frailty, age, and sex-adjusted models in terms of improvement in discriminatory 

ability. In fact, FM shows the most promise of all measures for improving AUC when estimated in 

age-stratified models (this is further discussed in the discriminatory ability section below). 

7.2 Rate of Aging (RoA) – the Best Individual Predictor but not in Adjusted Models 

RoA showed great initial promise until the restricted sample sensitivity analyses revealed that this 

large effect was an artifact resulting from individuals having different numbers of observations. 

This prompted me to change the way that both longitudinal measures (RoA and DIOR-FI) were 

estimated: rather than using all past estimates (i.e., derivatives for RoA and residuals for DIOR-FI) 

in creating these variables, I used only the last three. This ensured estimates were proximal to 

outcome/event of interest and comparable across all individuals. After doing this, RoA still 

performed quite well in the unadjusted models, being the best individual predictor among the 

univariate models in both the recovery and mortality analyses when the continuous variable was 

used, and even remained the best in the recovery analysis when the categorical variable was used. 

Additionally, RoA increased the AUC by a small but non-negligible amount when added to FI. 

However, the benefit of adding RoA was reduced to a negligible amount (<0.01) in the frailty, age, 

and sex-adjusted models. Estimation of variance inflation factors for the continuous logistic 

regression model predictors flagged RoA and age as having problematic multicollinearity, 

suggesting the two measures are too highly correlated to produce reliable estimates. This 

supports the idea that RoA captures the aging process and thus the effect is largely diminished 

after accounting for age and frailty.  
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This collinearity could possibly be a result of the random effect structure of the mixed effect 

model: only the linear effect was allowed to vary by individual. All individuals were forced to have 

the same curvature, defined by the fixed polynomial age terms. It is possible that this did not allow 

for enough variability between individuals. However, I was unable to get a model with a 

polynomial term in the random effects to converge. If this had been possible, it would have been 

interesting to see how the model with random effects affected the performance of RoA. Of 

course, it would be possible to impose a simpler linear specification for age. In this case, the 

random effects would be easily estimated for every individual, allowing individuals’ rates of aging 

to vary completely. However, this would need to be estimated in a sample with the same number 

of data points to avoid any bias introduced by differing lengths of follow up. This would result in 

an undesirable trade off: losing many repeated measures or losing many individuals. Additionally, 

imposing a linear specification to a non-linear phenomenon may not accurately reflect the aging 

process. 

Though many studies have investigated frailty trajectories, only a few have examined the 

individual rate of change in FI and its potential in terms of mortality prediction. Bai et al. (111) 

examined frailty trajectories by age at death and found that most recent FI was a stronger 

predictor than the rate of change18 when estimated individually, and that the rate of change was 

no longer significant when estimated together. Bai et al. suggested that the reason previous 

research found that the change in FI is independently predictive of mortality is because previous 

studies were only comparing to baseline frailty, not most recent. In contrast to these results, Stolz 

et al. (112) found that the rate of change in FI is more important than the current FI when 

predicting short-term mortality in a cohort of older adults aged 75 and older. The results of this 

thesis are more in line with Bai et al., as RoA added little beyond the most recent FI and age. Bai 

et al. and Stolz et al. have key methodological differences from this thesis which may explain the 

different results. Stolz et al. examined one and two-year survival over a 4.5-year follow-up, with 

data that included repeated measures every nine months. In comparison to Bai et al. and this 

thesis, Stolz et al.’s finding may reflect the length of time and the frequency of observations. More 

repeated measures over a shorter time period may be more predictive, particularly in the oldest 

individuals where a terminal decline may happen over a relatively short period. Additionally, it is 

 
18 Though these studies do not label their measure as the “rate of aging”, the “rate of change” (in FI) 
similarly refers to the rate of deficit accumulation over time. 
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worth noting that all three studies used a different modelling approach: Stolz et al. used joint 

longitudinal and time-to-event models, Bai et al. used cox regression models, and this thesis used 

a two-stage approach with a longitudinal (mixed effect) model and logistic regression. This 

comparison highlights the importance of temporal resolution when estimating the effects of RoA. 

Future investigations of RoA should use data with more frequent observations than every two 

years. 

7.3 Using Frailty Index Instability as a Dynamical Indicator of Resilience 

As discussed in Sections 2.2.1 and 2.3.4, the idea behind DIORs is that variability can indicate 

proximity to failure and, thus, is thought to be an indicator of the resilience of the system under 

study. This concept has most often been operationalized at the subsystem-level in the existing 

literature, whereas, in this thesis, this concept was operationalized at the whole person level. To 

the best of my knowledge, this study is the first to apply this concept directly to the whole person 

level using an overall marker of health that covers multiple body systems and domains. In 

addition, this approach covers a much longer observation period than previous implementations.  

The descriptive results of this study support the work of Stolz et al. (79), who found that FI 

instability increases with age and frailty and is higher among women and those who died. This 

study builds upon Stolz et al. to relate the instability of the frailty index to the physical resilience 

literature and evaluates its discriminatory ability to predict mortality and functional recovery. 

Unfortunately, the increase in AUC beyond what frailty and age provided was minimal. In contrast, 

Gijzel et al. (64), found that including multiple different DIORs increased the AUC for prediction 

of three-month recovery from 0.70 to 0.79, a larger increase than seen by any measure in this 

thesis. However, the improvement in Gijzel et al. included adding the mean and variability of 

multiple physical and mental responses, such as heart rate, physical activity, life satisfaction, 

anxiety, and discomfort (64). Additionally, looking at three-month recovery is quite different than 

a coarse measure of full recovery over approximately two years. Despite the lacklustre increase 

in discriminatory ability of the DIOR-FI developed in this thesis, the statistically significant 

association with recovery and mortality support the potential for repeated measures of the FI to 

be used in estimation of a DIOR, particularly when contrasted to the numerous other studies 

highlighting negative results for different variables. For example, a previous study found that 

variability in step count, pain, and fatigue were not associated with decline and recovery (74) (see 
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Section 2.3.5 for more details). Still, further research is needed to determine which variables and 

timescales provide the most effective dynamical indicators of resilience. Future studies may 

benefit from using high temporal resolution data and including multiple DIORs rather than the 

single DIOR-FI. In fact, Gijzel et al. advocates for linking the psychological and physiological 

subsystems in the estimation of resilience (47) and included the variation of such measures to 

obtain the AUC increase of 0.09 (64). This presents a potential opportunity for future 

investigations.  

Lastly, in some subgroups, there was a pronounced cross-over effect of DIOR-FI at high levels of 

frailty. This suggests that for some groups the level of frailty matters for the interpretation of 

DIOR-FI resilience. For males and younger age groups (<80), the highly stable group has the 

highest predicted probability of death at high levels of FI. However, this effect was much less 

prominent in females and the oldest age group (80+). This finding should be further investigated 

in future studies.  

7.4 Discriminatory Ability – How Much of an Increase is Meaningful? 

Overall, the increase in discriminatory ability across models was quite low, with a few notable 

exceptions. The base FI mortality model had an AUC of 0.778, consistent with previous literature 

(3). Adding ROA or FM to the FI model added approximately 0.02 to the AUC. The age and sex 

adjusted FI model had an AUC of 0.824, and adding all resilience variables only increased the AUC 

by 0.007, despite statistical significance of the model predictors. 

In contrast to the mortality results, the base FI recovery model had an AUC of 0.581. This was 

quite low, and generally considered to be in the non-informative range (7). Adding ROA or FM to 

the FI model added approximately 0.04 or 0.03 to the AUC, respectively. The age and sex adjusted 

FI model had an AUC of 0.643, and only FM remained statistically significant in the combined 

model with all resilience variables, with an increase of 0.017. This was larger than the mortality 

analysis, but still quite small.  

The larger increase in AUCs for the recovery models may simply be due to a lower baseline AUC: 

it is easier to add predictive power when the starting point is lower. Additionally, the low AUC in 

the recovery analysis is likely a result of the coarse nature of the outcome variable. Though I could 

not find any studies specifically reporting a frailty index model AUC for functional recovery after 
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incident myocardial infarction, I did find one study reporting the AUC of a logistic regression 

model predicting death or poor functional recovery after transcatheter and surgical aortic valve 

replacement (113): 19  the frailty index showed an AUC of 0.74, which is relatively high in 

comparison to 0.581 estimated in this thesis. A key difference is that this aortic valve replacement 

study examined a short 6-month follow up period. This again points to the potential limitation of 

using data with longer time between repeated measurements.  

Interestingly, the age-stratified mortality analysis showed higher increases in AUC for the frailty, 

age, and sex-adjusted models. The maximum increase in AUC was 0.030 for the 52-67 age group, 

and 0.045 for the 68-79 age group. However, this was much lower for the oldest age group, with 

a maximum increase of 0.007. Importantly, the FM was responsible for most of this increase in 

the younger age groups, and it is likely that this categorization did not have optimal cut points 

given the discovered non-linear association. In fact, rerunning the 68-79 age group model with 

the continuous variables led to the frailty, age, and sex-adjusted FM model having an AUC of 

0.799, an increase of 0.064 over the age, sex, and FI model (AUC = 0.735). In terms of differences 

in AUC, age-stratification appears to make a difference for FM, but not so much for the other RoA 

and DIORs. It appears that the residuals provide more information after reducing the variability 

introduced by age (except in the oldest age group), potentially reflecting different effects of the 

disease burden variables on frailty in different age groups.  

What do we make of these small differences in AUC? While there is no established standard for a 

minimally important difference in AUC, a few studies have addressed the question of whether 

small differences in AUC are meaningful. Martens et al. (114) provided a simulation study that 

illustrates that minimal changes in AUC (e.g., 0.01 to 0.03) correspond to minimal changes in 

predicted risks. The exception to this is when the AUC of the baseline model is very high (greater 

than 0.90), in which case there is a more substantial improvement in predicted risks. Baker et al. 

(115) suggested that the best way to determine whether a small change in AUC is worth including 

additional predictors is through a decision analysis. This requires a relevant risk threshold at which 

an individual would be indifferent regarding a clinical decision. In their case, they used the risk of 

later non-elective operative delivery at which the patient is indifferent in choosing between 

 
19 This paper made no mention of resilience or physical resilience and, thus, was not captured in the 
literature review. 
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proceeding with usual care or an early elective cesarian section. The authors then determined the 

test trade-off: the minimum number of individuals who need to take a test for an additional 

marker to gain one additional correct prediction. For a range of risk thresholds, the authors found 

that 68 to 124 women need to be tested for every additional correct prediction, which they 

deemed as acceptable given that the data collection is non-invasive.  

This strategy is an excellent way to determine the utility of additional prediction markers, 

unfortunately, such risk thresholds are based on clinical decisions, and thus are not directly 

applicable to the current population-based analyses. However, decision analysis is highly 

applicable to physical resilience studies evaluating recovery after clinical stressors such as elective 

surgery. For interpretation of the results of this thesis, if data was routinely collected and available 

for clinical settings, then determination of such measures would be of relatively low cost (i.e., no 

additional testing would be needed), and even small increases in predictive ability may be deemed 

worthwhile. Future studies of frailty and physical resilience should aim to incorporate decision 

analysis if applicable. 

I believe it is safe to assume that the increase in discrimination in the main mortality model is 

negligible (<0.01). The increases in the recovery model are also small, but perhaps more than 

negligible (0.017). On the population scale, small differences can result in a sizable number of 

additional correct assignments. By far the most promising results are seen when using the FM in 

the age stratified models. In these cases, especially when using the continuous variable, adding 

FM to the age, sex, and frailty model produced a reasonable increase in AUC (up to 0.064).  

7.5 Using the Frailty Index as a Tool to Investigate Physical Resilience 

The decision to base the analysis on the frailty index in this thesis has both conceptual and 

empirical implications. In addition to obvious advantages (e.g., continuous variable, strong 

association with mortality, and is considered by some to indicate biological age), the frailty index 

is a particularly relevant measure for the investigation of physical resilience. This is because there 

is an intrinsic link between the theory of deficit accumulation and recovery. Mitnitski et al. (30) 

describe a stochastic model in which deficit accumulation is the net result of environmental stress 

and damage control/recovery. Put simply, if the rate of damage from environmental stress 

exceeds the rate of recovery, then deficits will accumulate. Under this perspective, individuals 
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with better damage mitigation/recovery capacity (i.e., resilient individuals) would accumulate less 

deficits over time. Interestingly, a recent article by Farrell et al. (116) expands on this idea by using 

longitudinal changes in the frailty index to extract damage and repair rates from state transitions 

of binary deficits. They use these damage and repair rates to represent robustness and resilience, 

respectively. This approach appears to suggest that the processes of robustness and resilience 

over time determine the level of frailty, an idea that is compatible with the ISRF-FPR. This recent 

work, along with this thesis, illustrates the flexibility and potential of the frailty index to be used 

as a tool to explore and operationalize multiple different vulnerability-related concepts.  

An important consideration is whether the performance of the resilience indicators in this study 

is tied to the performance of the frailty index. Two possibilities exist: a “worse” frailty measure 

could also mean a worse resilience indicator, or in contrast, a “worse” frailty measure could allow 

the resilience indicators to compensate for the performance of the “worse” frailty measure. When 

comparing different frailty indexes, the 51-item FI shows the best prediction in both the recovery 

and mortality samples. However, the differences between the mortality models using different 

FIs was quite small (<0.01), so it is difficult to discern patterns of change in the AUC of resilience 

indicators for the different FIs. Though in the recovery sample where the 51-item FI had a higher 

AUC of 0.03, the difference in the AUC of the resilience indicators was negligible. These 

differences may suggest that the predictive ability of the frailty index does not influence the 

predictive ability of the resilience indicators. This is not definitive, as this result may not hold if 

the difference in predictive ability of the different FIs was larger.  

Despite the many reasons to advocate for the frailty index as the best option to investigate 

physical resilience, research implementing and comparing alternatives would offer valuable 

insight, such as determining whether the characteristics of the FM depend on the frailty measure. 

Future studies should investigate these potential issues by comparing multiple 

operationalizations based on different frailty measures as well as some operationalizations that 

are not based on frailty. 

A final notable result regarding the frailty index is that the contents of the frailty index did not 

have a major impact on results: all conclusions remain the same whether including chronic disease 

or health service utilization variables in the index (Appendix L). The only difference when using 

different FIs was a small change in regression coefficients. Interestingly, all three FIs, based on 
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different sets of variables, had a 99th percentile above 0.7, the empirically observed upper limit. 

This violation showed a dose-response with the number of items included, with the 41-item 

having the highest 99th percentile, and the 56-item having the lowest. As briefly mentioned in a 

footnote in the results (footnote 15), this is likely due to the nature of sample selection. The 

mortality analysis included a large proportion of decedents, and the recovery analysis selected 

individuals who experienced a heart attack. In both cases, the sample was less healthy than the 

overall HRS sample at any one point in time. Additionally, in the mortality analysis, 89% of 

individuals above 0.7 were individuals who died before the next interview. 

7.6 Strengths and Limitations 

Aside from the large sample size in the mortality analyses, the main strengths of this study are 

the conceptual framework and the breadth of empirical analyses. This thesis connected and 

integrated numerous often discussed, but rarely synthesized, ideas and distills them into an 

integrated framework to aid our understanding of vulnerability in aging populations. Importantly, 

this allowed for multiple concepts of physical resilience and application to longitudinal population 

data. The ISRF-FPR guided the empirical analysis, ensuring the empirical work was grounded in 

theory. This is an important contribution of this thesis as previous literature pointed out the lack 

of an underlying theory or framework as a frequent weakness in the empirical frailty literature 

(13). The proposed framework is flexible and, together with the empirical work, offers guidance 

for future investigations. In terms of the breadth of analysis, this study compared the FI with three 

resilience indicators (i.e., RoA, FM, DIOR-FI) and evaluated two outcomes (i.e., mortality and 

recovery). To the best of my knowledge, this is the first study to provide such a comprehensive 

empirical comparison of frailty and physical resilience. Furthermore, I included several sensitivity 

analyses to evaluate the robustness of these results. Together, these empirical results combined 

with the ISRF-FPR represent a comprehensive body of work that sets the stage for future research 

by generating new insights and providing guidance for the concurrent investigation of frailty and 

resilience in longitudinal population data.  

The main limitations of this study are the lack of statistical power in the recovery analyses and the 

use of biennial data for operationalizing recovery and estimating variability (DIOR-FI).  
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First, the limited statistical power in the recovery analyses resulted in imprecise estimation of 

coefficients and did not allow for subgroup analyses (i.e., age- and sex-stratified analyses). This is 

likely the result of the smaller sample size (compared to the mortality analysis) and the nature of 

the predictor and response variables. Having unbalanced categorical predictors and response 

variables combined with a smaller sample size led to inadequate representation for a specific 

group. Partitioning of the sample for individual groups requires larger sample sizes to detect 

effects. For example, having a three-category predictor and a two-category outcome effectively 

splits the sample into six groups. If the categories are unbalanced, then the group representing 

the intersection of the smallest predictor and outcome categories may have a very low sample 

size. Additionally, the coarseness of the response variable may make prediction difficult. For 

example, it may be more difficult to predict the coarse binary outcome of full recovery than the 

amount of function regained over a shorter period. We may thus be limited to small effect sizes 

given the suboptimal operationalization of recovery.  

Second, biennial data collection in HRS limits the ascertainment of recovery. Given the temporal 

resolution of the data, this study cannot determine how much functional decline and subsequent 

recovery had taken place. Rather, the only certainty was how the individual’s function had 

changed at subsequent data collections. Thus, given the limitations in the data, the most accurate 

(though restrictive) benchmark of recovery was return to baseline (i.e., full recovery). This was a 

coarse operationalization that did not allow for differentiation among those who did not return 

to baseline. There is likely informative heterogeneity among those who did not fully recover. For 

example, this study put someone who recovered 75% of lost function and someone who 

recovered 10% into the same category despite the two likely having different levels of physical 

resilience. Additionally, reports of myocardial infarction were taken from the surviving 

respondent or captured in an exit interview with a spouse or relative if the respondent died. HRS 

obtains exit interviews for approximately 80% of deaths, so it is likely that some of the least 

resilient individuals were not captured (i.e., those who had an MI and died, but no exit interview 

was provided). This likely resulted in a healthier sample, potentially underestimating the true 

association between the independent variables and recovery. Additionally, HRS lacks information 

on the severity of the MI.  To try to reduce variability in predisposing factors and severity, I limited 

my sample to first-time MIs. Despite this attempt, there is likely still significant unaccounted 

variation in severity in the sample. Individuals with a more severe MI would be less likely to fully 
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recover, and it is not possible to disentangle whether the resilience indicators are associated with 

recovery or whether they are associated with disease severity.  

Third, biennial data collection in HRS may not provide adequate temporal resolution to accurately 

capture variability to estimate DIOR-FI. There could be significant variation in the two-year period 

between observations which is not captured. Given the positive association between frailty and 

instability observed in this thesis and previous work by Stolz et al. (79), it is reasonable to expect 

that it is more likely for unobserved fluctuations to occur in frail individuals in between waves. 

This could lead to systematic measurement error where frail individuals’ variability may be 

underestimated, potentially resulting in the underestimation of the association of the DIOR-FI 

with recovery and mortality. Additionally, estimates of variability would be improved not only by 

reducing the time between measurements, but also increasing the number of repeated measures 

used. Only three time points were used in this study (after correcting for the different number of 

observations), giving a coarse approximation of the true variability. Future studies should aim to 

overcome these limitations by using data with more frequent observations and additional 

measures of stressor severity, and a more sensitive measure of recovery.  

In addition to these main limitations, there are four further considerations worth noting. These 

include: the possibility of selection bias introduced by requiring individuals to have three repeated 

measures, variability in the age range used to estimate RoA and DIOR-FI, the choice of analytical 

model and approach used (i.e., logistic regression in a two-stage approach), and the use of 

categorical variables over continuous for the primary analyses. I elaborate on each of these points 

below.  

First, by selecting individuals with at least three FI observations, it is possible the sample 

systematically excluded individuals who were too sick to complete at least three interviews (or 

were too sick to answer at least 80% of FI variable questions). To assess the potential impact of 

using this inclusion criterion, I compared the characteristics of those excluded from the sample to 

those included to see if they differ. Compared to those included in the sample, those excluded 

had a lower median age (56 vs. 74), a lower median frailty index (0.122 vs. 0.183), a lower 

proportion of females (52% vs. 57%), and a similar proportion of deaths (41% vs. 40%). These 

differences are unexpectedly in the opposite direction, with those excluded being younger and 

less frail, despite having a similar proportion of deaths. This result is likely due to the rolling 
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enrollment in HRS: newly recruited younger and healthier individuals who have not been present 

for three waves were also excluded in addition to those who were too unhealthy to continue. 

Second, differences in the age range in the last three waves used for both DIOR-FI and RoA could 

lead to some imprecision in estimates. For example, though HRS data collections are on a two-

year cycle, not all interviews are spaced by exactly two years. This is illustrated by the example of 

the youngest individual included in the sample being age 52 – this individual was interviewed 

three times between the age of 50 and 52. If interviews had taken place exactly two years apart, 

this individual should have been age 54 in the third interview. This is an example where the first 

interview was very late in the cycle, and the third interview was very early in the cycle, resulting 

in a timespan of less than three years for their last three interviews. However, I would not expect 

there to be any systematic association between proximity of interviews and other variables, so 

overall I would expect this non-systematic measurement error to dilute the results towards the 

null rather than systematically bias them in any particular direction.  

Additionally, after finding the artefact with the number of observations, I chose to limit the 

estimation of RoA and DIOR to the last three derivatives/residuals, while still using the full sample. 

The choice of using the full sample rather than the restricted sensitivity sample means that some 

of the individuals in the full sample (approximately 15% - the amount dropped to create the 

restricted sample) did not have three consecutive final interviews. This means that the three 

values used to estimate their RoA and DIOR-FI did not come from the last three interviews, but 

rather cover a timespan of at least four interviews. For example, if an individual died in wave 10, 

but missed wave 8, they are still included in the sample. However, their RoA and DIOR-FI are 

estimated based on their derivatives/residuals from waves 6, 7 and 9 (approximately a 6-year 

window) rather than 7, 8 and 9 (approximately a 4-year window) if they had been observed every 

wave. The benefit to this approach is that we do not lose individuals who missed an interview. 

The drawback, however, is that the age range for estimating RoA and DIOR-FI will be 

systematically longer than those with three consecutive measures (the remaining 85%). I would 

expect longer estimation periods to underestimate RoA and DIOR-FI (compared to shorter 

periods), as both rate of change and variability increase with age, and having a longer estimation 

period means estimates at younger ages are being included in the creation of RoA and DIOR-FI. 

To check the impact of non-consecutive observations I compared the restricted sample (using all 

longitudinal data in the growth curve model) to the full sample using only the last three 
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observations to estimate RoA and DIOR-FI (see Figure 21, section 6.1.9). The results were highly 

consistent in the two samples, suggesting that including the 15% of individuals with non-

consecutive observations does not impact the results. Thus, I opted to retain them in the analysis. 

In summary, while non-consecutive observations and variation in the age range used to estimate 

RoA and DIOR-FI is a concern that needs to be evaluated, it does not appear to have influenced 

the results presented.   

Third, the choice of logistic regression over survival models has important implications. I chose 

logistic regression to compare the most recently estimated resilience profiles among those who 

died vs. those who did not, and those who full recovered after incident MI vs. those who did not. 

Importantly, this approach does not allow for the investigation of within-person changes in 

resilience over time. In contrast, survival models offer the advantages of retaining the information 

from individuals lost to follow-up and accommodating time-varying covariates. However, 

incorporating longitudinal estimates of stability in survival models is less straight forward. Thus, 

to compare the three measures operationalized in this study I opted for the simpler logistic 

models as a proof of concept. Future studies should explore the opportunity to expand upon the 

current work by implementing survival models or other modelling approaches that allow 

estimation of the effects of within-person change in indicators of physical resilience.  

Additionally, the choice of a two-stage analytic approach (i.e., estimating separate longitudinal 

and logistic models) has its drawbacks compared to joint modelling approaches (i.e., estimating 

both models simultaneously). I chose the two-stage analytic approach so that I could estimate 

and assess the predictive ability of the frailty index and the three resilience indicators together. 

While joint models exist for analyzing longitudinal and time to event data, or longitudinal and 

variability models (e.g., the location-scale model used by Stolz et al. (79)), to my knowledge, there 

is no joint modelling framework that can accomplish the goal of this study: estimating the effects 

of FI, RoA, FM, and DIOR-FI on mortality/recovery using a single model. Joint modelling 

approaches have the advantage of improving accuracy of statistical inference by retaining 

uncertainty in estimates and accounting for the correlation structure between survival and 

longitudinal outcomes. However, the empirical analysis in this thesis is meant to be exploratory, 

not definitive. What the empirical results in this thesis show is a proof of concept. The three 

resilience indicators are clearly indicating what they were hypothesized to. The exact coefficients 

estimated would of course vary depending on the relationship between variables in the chosen 
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data. The empirical analyses presented in this thesis will serve as a foundation for future research 

on frailty and physical resilience.  

Fourth, this thesis used somewhat arbitrary categorizations of the resilience indicators. Cut points 

in this thesis were determined simply based on the non-normal distribution of the variables and 

were not optimized for sensitivity or specificity. This limitation is not specific to this study; it is a 

recurring theme in the physical resilience literature. Many studies use plus or minus one standard 

deviation to define three resilience categories. Given that the resilience variables in this study are 

not normally distributed, I used the non-parametric equivalent of the 25th and 75th percentiles 

to try to remain consistent with this previous work. Results from the alternative cut points 

sensitivity analysis (top and bottom 15%) remained consistent with the main analysis, suggesting 

that the observed associations are robust to this somewhat arbitrary decision (Appendix J). The 

benefits of categorization include a meaningful comparison between groups and accommodation 

of non-linear effects (as seen with FM). However, categorization suffers from the loss of 

potentially informative heterogeneity, illustrated by the higher AUC values in the continuous 

sensitivity analyses (Appendix K). An interesting avenue for future research would be to 

characterize minimal important differences in these continuous measures. This would allow for 

the interpretation of meaningful results without the need for categorization.  

7.7 Implications 

This thesis offers a comprehensive conceptual and empirical comparison of frailty and physical 

resilience, supported by a flexible framework suitable for the use of longitudinal population data. 

The empirical work is an exploratory investigation of different methods and provides one 

operationalization of the ISRF-FPR based on the cumulative deficit model. Many other 

opportunities for operationalization exist and should be explored in future analyses to further 

elucidate the empirical relationship between the concepts of frailty and physical resilience. Future 

studies can take the lessons learned from this thesis to improve methodology for more effective 

operationalization of resilience indicators. Promising avenues for future research are listed below.  

1. Repeat the empirical analyses presented in this thesis using data with shorter time 

between observations. Using such data should improve estimates of RoA and DIOR-FI, 

particularly among older individuals.  



172 
 

2. Investigate whether stratifying by age and sex to examine resilience indicators would 

have an effect on AUCs (rather than always age- and sex-stratify examination of resilience 

indicators, particularly for FM and DIOR-FI).  

3. Investigate FM with different variables (e.g., frailty phenotype) and the FI in different 

datasets to provide insights about the unexpected results in this thesis.  

4. Compare the use of the frailty index, as a whole-person level measure of reserve, in this 

thesis, to the use of multiple specific measures of reserve (e.g., measures of function in 

different subsystems). Explore the possibility to measure reserve at the subsystems level 

in population surveys.  

5. Explore the effect of alternative modelling strategies, such as time-to-event models 

instead of logistic regression and joint models, instead of two-stage approaches. 

Modelling strategies that can accommodate within-person change in resilience will be 

beneficial. 

7.8 Conclusion  

Exploring the world of resilience offers exciting opportunities to better understand the dynamics 

of health in aging populations and leads to many interesting methodological and philosophical 

questions. This thesis builds the foundation upon which we can further explore the relationship 

between frailty and physical resilience and various measurement approaches using population-

level data. Results of this thesis demonstrate that resilience indicators have potential to improve 

predictive ability over what age and frailty can offer and further investigation is warranted. In 

particular, continuous FM shows the most promise in age-stratified mortality models, with an 

improvement in AUC of 0.064 when added to the age, sex, and frailty-adjusted model for the 68-

79 age group. Overcoming methodological challenges, performance of RoA and DIOR-FI may also 

improve. With further refinement of the methods proposed in this thesis, the combination of 

population data (for estimating FM) and routinely collected health data (for estimating RoA and 

DIOR-FI) offer promising opportunities to improve risk estimation in aging populations. 

Ultimately, this avenue of research can help identify vulnerable groups and individuals, which can 

in turn support health policy, beyond clinical settings. Furthermore, if successful, there is potential 

to integrate these longitudinal and population-based approaches to improve individual risk 

assessment in clinical settings.  
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APPENDICES 

Appendix A. PubMed Search 

Search terms for Figure 1: 

(((((((((("physical resilience"[Title/Abstract]) OR ("physical resiliency"[Title/Abstract])) OR 

("physical resiliencies"[Title/Abstract])) OR ("physiologic resilience"[Title/Abstract])) OR 

("physiologic resiliency"[Title/Abstract])) OR ("physiologic resiliencies"[Title/Abstract])) OR 

("physiological resilience"[Title/Abstract])) OR ("physiological resiliency"[Title/Abstract])) OR 

("physiological resiliencies"[Title/Abstract])) AND ((older[Title/Abstract]) OR 

(gerontol*[Title/Abstract]) OR (geriatr*[Title/Abstract]) OR aging[Title/Abstract] OR 

ageing[Title/Abstract]))  

The search was last run on January 3rd, 2024. Search terms were optimized to balance between 

sensitivity and specificity of literature pertaining to physical resilience in older adults. These 

results are an underestimate of the true number of publications on the topic. For example, a 

number of recent review articles cited in this thesis only use the term resilience in the 

title/abstract but discuss overall resilience (including physical and psychological) in the body of 

the paper (e.g., Hamaker 2023, Abadir 2023, Cesari 2022). Removing the physical/physiological 

term results in an excess of irrelevant articles given the broad nature of the term resilience.  
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Appendix B. Empirical Literature Review Table 

Table 56. Summary of the Empirical Literature Measuring Physical Resilience 

Author and Year Physical Resilience 
Measure 

Stressor Accounted for 
severity? 

Outcome Measure Time Scale Population vs 
Clinical Sample (N) 

Measures of Post-Stressor Change 

Calle et al. 2018 
(58) 

Relative and 
absolute functional 
gain (AFG, RFG) 

Acute - orthopaedic 
surgery (hip fracture 
and hip or knee 
replacement) and 
stroke (ischemic or 
hemorrhagic 

Stratified by 
orthopedics or 
stroke, but no 
further 
differentiation of 
stressor. 

Barthel Index 

(Functional 
independence) 

Baseline plus 2 
measurements with 
30 days in between 

Clinical – SAFARI 
Study (n=450), aged 
65+, Spain and Italy 

Colon-Emeric et al. 
2019 (59) 

Recovery Phenotype 
– Latent Class 
Analysis (LCA) using 
multiple outcomes 
to determine high, 
medium, and low 
resilience 

 

Acute - Hip fracture Yes - Stressor 
characteristics 
included anesthesia 
type, duration of 
surgery, partial vs 
total arthroplasty, 
and post-operative 
complications 

Hip fracture: LCA of 
10 Self-reported 
physical functioning 
and activity 
measures  

Baseline, 2, 6 and 10 
months  

 

Clinical – Baltimore 
Hip Studies cohorts 
(n=541), Aged 60+, 
USA 

 

Colon-Emeric et al. 
2020 (44) 

Recovery Phenotype 
– Latent Class 
Analysis (LCA) using 
multiple outcomes 
OR Principal 
Component Analysis 
(PCA) for multiple 
classification 
variables  

Expected Recovery 
Differential 

Acute - Hip fracture, 
pneumonia 

Yes - Restricted to 
known probable 
viral infection 
(excluded bacterial 
to reduce stressor 
variability). Also 
excluded individuals 
with known or 
suspected 
coinfection at any 
other site.  

Hip fracture: LCA of 
10 Self-reported 
physical functioning 
and activity 
measures  

Pneumonia: a 
variety of factors 
such as length of 
hospital stay and 
ICU admission 

Hip fracture: 
Baseline, 2, 6 and 10 
months  

 

Pneumonia: 28 day 
follow up  

Clinical – Baltimore 
Hip Studies cohorts 
(n=541) 

And 

Community 
Acquired 
Pneumonia and 
Sepsis Outcome 
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Author and Year Physical Resilience 
Measure 

Stressor Accounted for 
severity? 

Outcome Measure Time Scale Population vs 
Clinical Sample (N) 

(expected vs 
observed based on 
population) 

Mentioned stressor 
characteristics 
(mentioned above 
for hip fracture) and 
laboratory findings 

Diagnostics (n=185), 
Aged 60+, USA 

 

Hladek et al. 2022 
(60) 

Phenotypic 
trajectory of 4 
variables (not 
recovery- 
improving, stable, 
declining) 

Chronic - incident 
hemodialysis 

Yes – accounted for 
disease severity 
with disease-specific 
markers and dialysis 
details such as 
access type 

SF-36: Physical 
function, mental 
health, vitality, and 
general health 

Baseline, 3, 6 12 
months 

Clinical - CHOICE 
Cohort (n=394), 
Aged 55+, USA 

Presley et al. 2022 
(61) 

Maintenance or 
improvement in 
disability scores 

Chronic - newly 
diagnosed lung 
cancer, just starting 
treatment 

Yes – Restricted 
recruitment to stage 
4, limiting variation 
in disease severity. 
Treatment type 
considered. 

Disability measured 
using EQ-5D-5L 

Monthly for 8 
months 

Clinical – Beating 
Lung cancer in Ohio 
cohort (n=207), 
aged 34-91, USA 

Pedone et al. 2020 
(62) 

Categorization 
based on observed 
decline (resilient, 
non-resilient, 
decliners)  

Non-specific “major 
health event” (could 
be acute or 
initiation of chronic/ 
recurrent) 

No Short physical 
performance 
battery (SBBP) 

Baseline plus follow-
up at three years 
after baseline, with 
or without a major 
health event in 
between. 

Population - 
InCHIANTI Study 
(n=726 for mortality 
outcome, n=567 for 
functional status 
outcome), Aged 
65+, Italy 

Duan-porter et al. 
2016 (63) 

Regaining at least 
50% of lost function 
after decline 

Unspecified decline 
in a sample of 
cancer survivors 

Accounted for years 
since diagnosis and 
treatment type. 
Included prostate, 
breast, and 
colorectal – type 
and stage not 
accounted for in 
analyses. 

SF-36 physical 
function subscale 

Quarterly over two 
years 

Clinical – RENEW 
RCT (n=594) 

Overweight cancer 
survivors, 65+, at 
least 5 years post 
diagnosis, USA 



 

 
  

1
88

 

Author and Year Physical Resilience 
Measure 

Stressor Accounted for 
severity? 

Outcome Measure Time Scale Population vs 
Clinical Sample (N) 

Stimulus Response Measures 

Koivunen et al. 
2023 (64) 

Stimulus response Orthostatic 
challenge - change 
from prone to 
supine 

N/A (stimulus 
response measures 
are standardized by 
definition) 

Several 
hemodynamic and 
postural sway 
indices 

N/A Population - 
Community dwelling 
Finnish older adults 
aged 75, 80, and 85 
at baseline (n=689) 

Whitson et al. 2021 
(PRIME-KNEE) (48) 

Stimulus response Physical, 
immunological, and 
cognitive tests 

PBMC ex vivo 
response to LPS, 
influenza vaccine, 
cerebrovascular 
reactivity, dual task 
effect of gait speed 

N/A Clinical - (n=250), 
aged 60+, USA 

Walston et al. 2023 
(SPRING) (52) 

Stimulus response Physical and 
endocrine tests 

Orthostatic blood 
pressure, ACTH 
stimulation, oral 
glucose tolerance 
test 

N/A Clinical – (pilot 
n=32, 22, and 23 for 
bonemarrow, 
dialysis, and knee 
substudies, 
respectively), aged 
55+, USA 

Residual-based Measures 

Wu et al. 2019 (43) Frailty-disease 
Mismatch: 
mismatch between 
frailty and disease 
burden: adapters, 
expected agers, 
premature frailers 

Existing chronic 
disease and disease 
burden 

Used self-rated 
health and number 
of medications as 
indictors of disease 
burden (stand-in for 
severity) 

Residuals of linear 
regression of SAVE 
Frailty Scale 

 

Estimated using 
data from second 
annual clinic visit 

Population – Health 
ABC Study 
(n=2,457), Aged 70-
79, USA 

Wu et al. 2022 (67) Simplified frailty-
disease mismatch: 
mismatch between 
frailty and disease 
burden: adapters, 

Existing chronic 
disease  

No Follow up simplified 
approach not using 
regression, bur 
rather using group 

Estimated using 
data from second 
annual clinic visit 

Population – Health 
ABC Study 
(n=2,457), Aged 70-
79, USA 
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Author and Year Physical Resilience 
Measure 

Stressor Accounted for 
severity? 

Outcome Measure Time Scale Population vs 
Clinical Sample (N) 

expected agers, 
premature frailers 

means and cut 
points 

Zhang et al. 2023 
(68) 

Residuals of Short 
physical 
performance 
battery (SBBP) 
model 

Existing chronic 
diseases, age, sex, 
race, self-rated 
health 

Not explicitly stated, 
but similar to Wu et 
al., self-rated health 
may indicate 
burden. 

Residuals of linear 
regression on SBBP 

Estimated using 
baseline data 

Population – 
National Health and 
Aging Trends Study 
(n=6508), Aged 65+, 
USA 

Milman et al. 2023 
(69) 

Frailty Resilience 
Scale: mismatch 
between frailty and 
polygenic risk score 

Polygenic risk score No Residual of linear 
mixed model of 41-
item frailty index. 
Residual based on 
predictions using 
fixed effects only 

Average residual 
across earliest three 
visits  

Population - 
LonGenity Cohort 
(n=467), mean age 
of 74.4, USA 

Sotos-Prieto et al. 
2021 (70) 

Resilience defined 
as accumulating 
fewer deficits than 
expected (based on 
cohort average) 
despite exposure to 
chronic stressors 

No, but limited to 
those above median 
number of deficits, 
suggesting exposure 
to chronic stressors 

No  52-item “deficit 
accumulation index” 
– essentially FI 

3.2 year follow up 
(accumulated more 
or less than 
expected based on 
the cohort average) 

Population – 
Seniors-ENRICA 
cohort (n=1301), 
Aged 60+, Spain 

Dynamical Indicators of Resilience 

Gijzel et al. 2017 
(37) 

DIOR – variance, 
cross-correlation, 
and temporal 
autocorrelation 

No N/A Self-rated physical, 
mental, and social 
health 

daily for 100 days  

 

Clinical 
(institutionalized) – 
residential care 
facilities (n=22), 
Aged 70+, Italy 

Gijzel et al. 2019 
(72) 

DIOR – variance, 
cross-correlation, 
and temporal 
autocorrelation 

No N/A Postural balance 30 second 
continuous feed  

Population – 
(n=212), aged 80-94, 
Netherlands  
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Author and Year Physical Resilience 
Measure 

Stressor Accounted for 
severity? 

Outcome Measure Time Scale Population vs 
Clinical Sample (N) 

Gijzel et al. 2020 
(73) 

DIOR – variance, 
cross-correlation, 
and temporal 
autocorrelation 

No N/A Heart rate and 
physical activity, 
well being 

Continuous 
monitoring of heart 
rate and physical 
activity during 
hospitalization 
(mean stay of 7.4 
days), as well as 
momentary well 
being 4x per day 

Clinical – patients 
admitted to geriatric 
ward for acute 
illness (n=121), aged 
65+,  Netherlands 

Kolk et al. 2021 (74) DIOR: variance No -  but estimated 
in a sample of 
acutely hospitalized 
individuals to see 
relationship with 
recovery  

N/A Step count, self-
rated levels of pain, 
fatigue, fear of 
falling. Coefficient 
of variation for DIOR 
rather than SD. 
(KATZ 15-tem ADL 
as recovery 
outcome) 

3 months of 
observations- 
continuous for 
steps, daily for self-
rated measures. 
Minimum of three 
days of observations 

Clinical – Hospital-
ADL study  (n=207), 
Aged 70+, 
Netherlands 

 

Rector et al. 2021 
(75) 

DIOR: Critical 
slowing down 

No N/A Heart rate and 
physical activity 
(measured via 
accelerometer) 

11 hours of 
recording 

Clinical – Wellbeing 
and Resilience Study 
(n=121), geriatric 
inpatients aged 65+, 
Netherlands 

Lucas et al. 2023 
(76) 

DIOR: physiological 
complexity 

No N/A Step counts and 
step count 
variability  

4-hour blocks of 
accelerometer data 

Clinical - ambulatory 
older adults 
receiving 
hemodialysis (n=37), 
mean age of 70.6, 
USA 

Self-reported Measures 
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Author and Year Physical Resilience 
Measure 

Stressor Accounted for 
severity? 

Outcome Measure Time Scale Population vs 
Clinical Sample (N) 

Park et al. 2022 (81) The Physical 
Resilience 
Instrument 

No N/A Questionnaire Cross-sectional Clinical – individuals 
with osteoarthritic 
symptoms (n=235), 
Aged 65-92, Korea 

Hu et al. 2021 (83) The Physical 
Resilience 
Instrument for 
Older Adults 
(PRIFOR) 

No N/A Questionnaire Cross-sectional 
ascertainment, but 
followed over time 
to validate 
outcomes (baseline 
then one month 
after discharge) 

Clinical – patients 
admitted to medical 
ward of tertiary 
medical centres 
(n=192), Aged 65+, 
Taiwan 

Static Surrogates, Proxies, and Aggregate Measures 

Walston et al. 2023 

(SPRING) (52) 
Static surrogates – 
phenotypic frailty, 
SF-36, nutrition, 
Karnofsky 
performance 
measures, specific 
measures for 
outcomes 

N/A N/A N/A Static  Clinical – (pilot 
n=32, 22, and 23 for 
bonemarrow, 
dialysis, and knee 
substudies, 
respectively), aged 
55+, USA 

Arbeev et al. 2019 
(86) 

Proxy measures: 
onset of “unhealthy 
life” and survival 
following 
onset/avoid 
diseases at age 65+, 
and survival to 
extreme ages 

N/A N/A Unhealthy life: first 
occurrence of a 
major complex 
disease including 
cancer, CVD, and 
type II diabetes. 

2-year resolution for 
Framingham and 1 
year for CHS.  

Population – 
Framingham Cohort 
(n=5079), aged 30-
62 at recruitment, 
USA 

Cardiovascular 
Health Study 
(n=5795), Aged 65+, 
USA 
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Author and Year Physical Resilience 
Measure 

Stressor Accounted for 
severity? 

Outcome Measure Time Scale Population vs 
Clinical Sample (N) 

Galvin et al. 2020 
(87) 

Proxy measures: 
onset of “unhealthy 
life” and survival 
following 
onset/avoid 
diseases at age 65+, 
and survival to 
extreme ages 

N/A N/A Unhealthy life: first 
occurrence of a 
major complex 
disease including 
cancer, CVD, and 
type II diabetes. 

Followed since 1968 Population - Danish 
national population 
registers. Female 
siblings (n=1156) 
and controls 
(n=1156), Aged 68+, 
Denmark  

Galvin et al. 2021 
(88) 

Survival after onset 
of CVD 

N/A N/A Mortality Followed since 1968 Population - Same 
as above – national 
registers (n=1206) 
(offspring and 
controls 1:2 ratio) 
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Appendix C. Creation of the HRS Frailty Index 

Table 57 includes 59 items that meet criteria for inclusion in the Frailty Index. These criteria are 

1) associated with age, 2) do not saturate too early,  3) are not too common (>80%) or too rare 

(<1%), 4) have minimal missing data (<5%), 5) are not too highly correlated with other variables 

(<0.95), and 6) are comparable across all waves considered (3-13).  

FI-41: Main FI that excludes the clinical disease domain and self-rated health (so the FI is 

compatible with the adjusted FI model), as well as health care utilization (left out over concerns 

regarding access in the United States). 

FI-51: Sensitivity analysis that only excludes health care utilization variables. 

FI-56: Sensitivity analysis that includes health care utilization variables, but drops assistance with 

IADLs. This was created to be comparable with a recently published guide by Theou et al. (98). 

Assumptions regarding missing values in FI: 

The equipment use questions, bede and walkre, were skipped and assigned a special missing code 

if the ADL question was skipped due to prior answers indicating no ADL difficulties.  I coded “skip” 

as no difficulty (0), because the only reason for skips is the assumption of no difficulty.  

For ADLs, IADLs, and functional limitations and mobility, “don’t do” was assumed to correspond 

to difficulty (1). This only applied to a small fraction of answers. The only variables this was not 

assumed for were jogging and using a map (neither of which were included). 

Help variables are set to no help (0) if the difficulty variable was 0, as this question is not asked if 

the respondent does not report difficulty.  

Variable Notes: 

There are two options for chronic condition variables in HRS: one that corresponds to the 

individual ever having the condition, and one that corresponds to the raw response of reporting 

the condition in the last two years. The ever variables created by RAND were deemed a better 

choice than the variables corresponding to the last two years due to uncertainty in the answers 

due to disputes at following waves. The ever variables have been corrected for disputes, but also 

assume any refusal or don’t know is a 0, does not have condition.  
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The ever variables for cardiovascular diseases are different – not available in early waves, but the 

last two years are available. Angina excluded due to cross wave differences (change in question 

wording in wave 10). 

Similarly, any medications with uncertainty in when it was and was not asked across waves were 

left out (e.g., diabetes in wave 13, cardiovascular conditions for all waves). 
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Table 57. Variables Meeting FI Inclusion Criteria Waves 3-14 

Domain Variable 
Variable 

Name 
FI-
41 

FI-
51 

FI-
56 

Self-rated health, hearing, and vision 

Self-rated health shlt  ✓ ✓ 

Self-rated eyesight sight ✓ ✓ ✓ 

Self-rated near eyesight nsight ✓ ✓ ✓ 

Self-rated distal eyesight dsight ✓ ✓ ✓ 

Self-rated hearing hearing ✓ ✓ ✓ 

Activities of daily living (ADLs) 

Difficulty bathing or showering bath ✓ ✓ ✓ 

Difficulty getting in or out of bed bed ✓ ✓ ✓ 

Difficulty dressing dress ✓ ✓ ✓ 

Difficulty eating eat ✓ ✓ ✓ 

Difficulty walking across room walkr ✓ ✓ ✓ 

Difficulty using toilet toilt ✓ ✓ ✓ 

Instrumental activities of daily living (IADLS) 

Difficulty using a phone phone ✓ ✓ ✓ 

Difficulty managing money money ✓ ✓ ✓ 

Difficulty shopping for groceries shop ✓ ✓ ✓ 

Assistance with ADLs and IADLs 

Help walking walkrh ✓ ✓ ✓ 

Help bathing or showering bathh ✓ ✓ ✓ 

Help dressing dressh ✓ ✓ ✓ 

Help eating eath ✓ ✓ ✓ 

Help getting in/out of bed bedh ✓ ✓ ✓ 

Help using toilet toilth ✓ ✓ ✓ 

Help managing money moneyh ✓ ✓  

Help shopping shoph ✓ ✓  

Help using phone phoneh ✓ ✓  
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Domain Variable 
Variable 

Name 
FI-
41 

FI-
51 

FI-
56 

Other functional/ mobility limitations 

Difficulty getting up from chair chair ✓ ✓ ✓ 

Difficulty climbing one flight of stairs clim1 ✓ ✓ ✓ 

Difficulty climbing several slights of stairs  ✓ ✓ ✓ 

Difficulty picking up a dime dime ✓ ✓ ✓ 

Difficulty Reach/extend arms up arms ✓ ✓ ✓ 

Difficulty Lift/carry 10lbs lift ✓ ✓ ✓ 

Difficulty push/pull large object push ✓ ✓ ✓ 

Difficulty Stoop/Kneel/Crouch stoop ✓ ✓ ✓ 

Difficulty walking several blocks walks ✓ ✓ ✓ 

Difficulty walking one block walk1 ✓ ✓ ✓ 

Clinical Disease 

Ever had arthritis or rheumatism (ever) arthre  ✓ ✓ 

Ever had diabetes or high blood sugar (ever) diabe  ✓ ✓ 

Ever had high blood pressure/hypertension (ever) hibpe  ✓ ✓ 

Ever had cancer or malignant tumor of any kind except skin cancer (ever) cancre  ✓ ✓ 

Ever had chronic lung disease except asthma, chronic bronchitis, or emphysema lunge  ✓ ✓ 

Ever had heart problems hearte  ✓ ✓ 

Heart attack (last two years) hrtatt  ✓ ✓ 

Congestive heart failure (last two years) conhrtf  ✓ ✓ 

Ever had stroke or TIA stroke  ✓ ✓ 

Signs and Symptoms 

Urinary incontinence urinai ✓ ✓ ✓ 

Urinary incontinence frequency urinaif ✓ ✓ ✓ 

Underweight 

bmicat 
(dichotomized 

for 
underweight) 

✓ ✓ ✓ 

Equipment Use Wears hearing aid hearaid ✓ ✓ ✓ 
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Domain Variable 
Variable 

Name 
FI-
41 

FI-
51 

FI-
56 

Equipment to walk walkre ✓ ✓ ✓ 

Equipment to get into bed bede ✓ ✓ ✓ 

Medication 

Takes meds for high blood pressure rxhibp ✓ ✓ ✓ 

Takes meds for stroke rxstrok ✓ ✓ ✓ 

Takes meds for lung condition rxlung ✓ ✓ ✓ 

Health Care Utilization 

Nursing home stay, last two years nrshom   ✓ 

Home health care, last two years homcar   ✓ 

Outpatient surgery, last two years output   ✓ 

Special health facility, last two years spcfac   ✓ 

Hospital stay, last two years hosp   ✓ 

Lives in nursing home (at time of interview) nhmliv   ✓ 

Heart surgery since last wave hrtsrg   ✓ 

Joint replacement since last wave jointr   ✓ 
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Appendix D. Growth Curve Modelling 

Cubic Specification of age 

A likelihood ratio test indicated that quadratic is a better fit than linear (used ML to compare 

nested models, p < 0.0001). 

Similarly, cubic fits better than quadratic, as expected by the plots below (p < 0.0001). This 

applies to both unadjusted and adjusted models.  

Plots of age and FI in the pooled sample suggesting cubic fit: 
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Assessment of Clustering Effects 

I based my assessment of clustering effects on the design effect: 

   𝐷𝑒𝑠𝑖𝑔𝑛 𝐸𝑓𝑓𝑒𝑐𝑡 = 1 + (𝑛𝑐 − 1)𝐼𝐶𝐶          

Where nc is equal to the average cluster size (i.e., average number of individuals per household) 

(96). The intraclass correlation coefficient (ICC) is a measure of dependence that represents the 

expected correlation between two observations within the same cluster (in this instance, between 

two individuals in the same household). The ICC is equal to the between-cluster variance divided 

by the total variance: 

              𝐼𝐶𝐶 =  
𝜏00

𝜏00+𝜎2          

Where 𝜏00 is the between cluster variance (i.e., household), and 𝜎2 is the within cluster variance 

(i.e., individual) (96).  
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Mortality clustering: 

Individual level ICC of 0.62175 

N = 27,744, with a mean of 6.87 observations per person. Minimum of 3, maximum of 11. 

190553 observations total.  

 

Household ICC of 0.54138 

N = 18,595, with a mean of 10.25 repeated observations per household. Average of 1.49 

individuals per household 

27,744/18,595 = 1.49 

 

Design Effect=1+(nc-1)ICC 

= 1+(1.49-1)0.54138 = 1.265. 

➔ Below 2, don’t need to include given addition complexity added.  

 

Recovery clustering: 

Individual level ICC of 0.64108 

N = 1905, with a mean of 5.29 observations per person. Minimum of 3, maximum of 10. 10,085 

observations total. 

 

Household ICC of 0.62671 

N = 1,839, with a mean of 5.48 observations per household. Minimum of 3, maximum of 20. 

Average of 1.04 individuals per household. 

1,839/1,905 = 1.036 

 

Design Effect=1+(nc-1)ICC 

= 1+(1.036-1)0.62671 = 1.023 

➔ Negligible  

 

Residual Correlation Structure: 

I tried the following: 

• uncorrelated (default)  
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• AR1 – similar fit to CAR1, but given that some individuals are not observed every wave, 

CAR1 is more appropriate 

• CAR1 

• ARMA – convergence issues 

• Compound symmetry 

• Unstructured – would not converge 

 

To determine what residual correlation fit best, I estimated models with identical fixed and 

random effects, but different residual correlation using ML. The model with the lowest AIC was 

considered the better fitting model.  Continuous autoregressive order 1 fit the best. I confirmed 

this in both the age-only mixed effect model, and the adjusted model.  Final models were re-

estimated using REML.  

 

Random Effect Structure: 

Using the same approach described above, a general positive-definite matrix, with no additional 

structure using a log-Cholesky parameterization, fit better than the general positive-definite 

matrix, with no additional structure (with no log-Cholesky parameterization). 
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Appendix E. Comparison of SF-36 Physical Function Subscale and HRS Equivalent 

Table 58. Comparison of SF-36 Physical Function Subscale and HRS Equivalent 

SF-36 Item 
# 

SF-36 Question 

“The following items are about 
activities you might do during a 
typical day. Does your health now 
limit you in these activities? If so, 
how much?” 

HRS Equivalent 

"Because of a health problem do you 
have any difficulty with..” 

3 Vigorous activities, such as running, 
lifting heavy objects, participating in 
strenuous sports 

Running or jogging about a mile 

4 Moderate activities, such as moving a 
table, pushing a vacuum cleaner, 
bowling, or playing golf 

Pulling or pushing large objects like a 
living room chair 

5 Lifting or carrying groceries Lifting or carrying weights over 10 
pounds, like a heavy bag of groceries 

6 Climbing several flights of stairs Climbing several flights of stairs without 
resting 

7 Climbing one flight of stairs Climbing one flight of stairs without 
resting 

8 Bending, kneeling, or stooping Stooping, kneeling, or crouching 

9 Walking more than a mile Imputed assuming those with difficulty 
walking several blocks would also have 
difficulty walking more than a mile.  

10 Walking several blocks Walking several blocks 

11 Walking one block Walking one block 

12 Bathing or dressing yourself Bathing or showering 
And 
Dressing, including putting on shoes 
and socks 

SF-36 responses are three categories: “Yes, limited a lot”, “Yes, limited a little”, and “No, not 
limited at all”. The HRS equivalent responses are “yes”,  “no.” Binary indicators of any difficulty 
coded 0, 1, where a higher score indicates more functional ability (i.e., coded opposite as FI items, 
where 0 = difficulty while 1 = no difficulty). Following the guidance in the SF-36 Manual (103), I 
calculated a score as long as a respondent answered half of the items. I used the average score of 
the answered items to impute the missing items (see page 6:16 or 79 of the manual). The final 
imputed score sum is then divided by 10 to yield an approximation of the SF-36 PFS, which ranges 
from 0-100, where a higher score indicates higher functional ability.  

The SF-36 Questionnaire can be viewed here: 36-Item Short Form Survey Instrument (SF-36) | RAND.

https://www.rand.org/health-care/surveys_tools/mos/36-item-short-form/survey-instrument.html
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Appendix F. Additional FM Exploration  

FM Category Comparison of Disease Burden (Mortality and Recovery) 

Table 59. Disease Burden Comparison (Mortality Sample) 

 FM Category   

Characteristic 
Adapter, N = 

6,9361 
Expected Ager, N = 

13,8721 
Premature Frailer, N = 

6,9361 
p-

value2 

Age 80 (71, 87) 69 (62, 77) 77 (67, 85) <0.001 
Frailty Index 0.12 (0.07, 0.20) 0.13 (0.07, 0.23) 0.52 (0.37, 0.71) <0.001 
Ever had Arthritis 5,027 (72%) 7,952 (57%) 5,386 (78%) <0.001 
Ever had Diabetes 2,000 (29%) 3,420 (25%) 2,434 (35%) <0.001 
Ever had High Blood Pressure 4,941 (71%) 8,395 (61%) 5,166 (74%) <0.001 
Ever had Cancer 1,729 (25%) 2,380 (17%) 1,533 (22%) <0.001 
Ever had Lung Disease 1,154 (17%) 1,553 (11%) 1,399 (20%) <0.001 
Ever had Heart Problems 3,026 (44%) 3,578 (26%) 3,038 (44%) <0.001 
Ever had a Stroke 1,517 (22%) 1,034 (7.5%) 1,721 (25%) <0.001 
Regularly Takes Prescription 
Drugs 

6,377 (92%) 11,266 (81%) 6,547 (94%) <0.001 

Self-rated Health    <0.001 
Excellent 388 (5.6%) 1,134 (8.2%) 121 (1.7%)  
Very Good 1,611 (23%) 4,063 (29%) 517 (7.5%)  
Good 2,261 (33%) 4,632 (33%) 1,531 (22%)  
Fair 1,813 (26%) 2,863 (21%) 2,459 (35%)  
Poor 863 (12%) 1,180 (8.5%) 2,308 (33%)  

1Median (IQR); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

 

Table 60. Disease Burden Comparison (Recovery Sample) 

 FM Category   

Characteristic 
Adapter, N = 

4771 
Expected Ager, N = 

9521 
Premature Frailer, N = 

4761 
p-

value2 

Age 78 (68, 85) 73 (66, 80) 76 (67, 83) <0.001 
Frailty Index 0.10 (0.07, 0.17) 0.17 (0.10, 0.26) 0.47 (0.36, 0.65) <0.001 
Ever had Arthritis 360 (75%) 577 (61%) 376 (79%) <0.001 
Ever had Diabetes 143 (30%) 267 (28%) 180 (38%) <0.001 
Ever had High Blood Pressure 343 (72%) 628 (66%) 366 (77%) <0.001 
Ever had Cancer 104 (22%) 159 (17%) 83 (17%) 0.055 
Ever had Lung Disease 72 (15%) 120 (13%) 87 (18%) 0.016 
Ever had Heart Problems 237 (50%) 346 (36%) 229 (48%) <0.001 
Ever had a Stroke 116 (24%) 104 (11%) 118 (25%) <0.001 
Regularly Takes Prescription 
Drugs 

443 (93%) 822 (86%) 460 (97%) <0.001 

Self-rated Health    <0.001 
Excellent 26 (5.5%) 53 (5.6%) 10 (2.1%)  
Very Good 117 (25%) 206 (22%) 40 (8.4%)  
Good 164 (34%) 333 (35%) 91 (19%)  
Fair 105 (22%) 264 (28%) 173 (36%)  
Poor 65 (14%) 96 (10%) 162 (34%)  

1Median (IQR); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 
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Table 61. Comparison of FM Categories (Mortality - Four Category FM) 

 FM Category   

Characteristic 
Most resilient, N = 

6,9361 
Resilient, N = 

6,9361 
Less Resilient, N = 

6,9361 
Least Resilient, N = 

6,9361 
p-

value2 

Age 80 (71, 87) 68 (62, 77) 69 (62, 78) 77 (67, 85) <0.001 
Sex     <0.001 

Female 3,955 (57%) 3,926 (57%) 3,705 (53%) 4,255 (61%)  
Male 2,981 (43%) 3,010 (43%) 3,231 (47%) 2,681 (39%)  

2018 Vital 
Status 

    <0.001 

Alive 4,041 (58%) 5,257 (76%) 4,692 (68%) 2,600 (37%)  
Deceased 2,895 (42%) 1,679 (24%) 2,244 (32%) 4,336 (63%)  

Frailty Index 0.116 (0.067, 
0.196) 

0.091 (0.055, 
0.165) 

0.183 (0.110, 
0.280) 

0.520 (0.372, 0.714) <0.001 

RoA Category     <0.001 
Slowest Ager 1,430 (21%) 3,119 (45%) 2,092 (30%) 295 (4.3%)  
Slow Ager 1,304 (19%) 1,953 (28%) 2,369 (34%) 1,310 (19%)  
Fast Ager 2,108 (30%) 1,256 (18%) 1,570 (23%) 2,002 (29%)  
Fastest Ager 2,094 (30%) 608 (8.8%) 905 (13%) 3,329 (48%)  

DIOR-FI 
Category 

    <0.001 

Highest 
Stability 

1,649 (24%) 3,035 (44%) 1,905 (27%) 347 (5.0%)  

High Stability 2,051 (30%) 2,090 (30%) 2,039 (29%) 756 (11%)  
Low Stability 2,040 (29%) 1,251 (18%) 1,941 (28%) 1,704 (25%)  
Lowest 
Stability 

1,196 (17%) 560 (8.1%) 1,051 (15%) 4,129 (60%)  

1Median (IQR Bounds); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 
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Table 62. Logistic Regression Models for FM and Mortality (Four Category FM) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM Category             

    Most resilient — —  — —  — —  — —  

    Resilient 0.45 0.41, 
0.48 

<0.001 0.46 0.43, 
0.50 

<0.001 0.74 0.68, 
0.81 

<0.001 0.50 0.43, 
0.59 

<0.001 

    Less Resilient 0.67 0.62, 
0.72 

<0.001 0.37 0.34, 
0.40 

<0.001 0.72 0.66, 
0.79 

<0.001 0.52 0.44, 
0.61 

<0.001 

    Least 
Resilient 

2.33 2.17, 
2.49 

<0.001 0.16 0.14, 
0.17 

<0.001 0.46 0.41, 
0.53 

<0.001 0.86 0.70, 
1.05 

0.14 

Frailty Index    1.26 1.25, 
1.27 

<0.001 1.18 1.17, 
1.19 

<0.001 1.19 1.17, 
1.21 

<0.001 

Age       1.06 1.06, 
1.07 

<0.001 1.06 1.06, 
1.06 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.86 1.75, 
1.97 

<0.001 1.90 1.79, 
2.02 

<0.001 

FM Category * 
Frailty Index 

            

    Resilient * 
Frailty Index 

         1.08 1.05, 
1.10 

<0.001 

    Less Resilient 
* Frailty Index 

         1.04 1.01, 
1.06 

0.003 

    Least 
Resilient * 
Frailty Index 

         0.95 0.94, 
0.97 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Table 63. Disease Burden Comparison (Mortality Sample - Four Category FM) 

 FM Category   

Characteristic 
Most resilient, N 

= 6,9361 
Resilient, N = 

6,9361 
Less Resilient, N 

= 6,9361 
Least Resilient, N 

= 6,9361 
p-

value2 

Age 80 (71, 87) 68 (62, 77) 69 (62, 78) 77 (67, 85) <0.001 
Frailty Index 0.12 (0.07, 0.20) 0.09 (0.05, 

0.16) 
0.18 (0.11, 0.28) 0.52 (0.37, 0.71) <0.001 

Ever had Arthritis 5,027 (72%) 3,832 (55%) 4,120 (59%) 5,386 (78%) <0.001 
Ever had Diabetes 2,000 (29%) 1,717 (25%) 1,703 (25%) 2,434 (35%) <0.001 
Ever had High Blood 
Pressure 

4,941 (71%) 4,261 (61%) 4,134 (60%) 5,166 (74%) <0.001 

Ever had Cancer 1,729 (25%) 1,191 (17%) 1,189 (17%) 1,533 (22%) <0.001 
Ever had Lung Disease 1,154 (17%) 647 (9.3%) 906 (13%) 1,399 (20%) <0.001 
Ever had Heart 
Problems 

3,026 (44%) 1,681 (24%) 1,897 (27%) 3,038 (44%) <0.001 

Ever had a Stroke 1,517 (22%) 441 (6.4%) 593 (8.5%) 1,721 (25%) <0.001 
Regularly Takes 
Prescription Drugs 

6,377 (92%) 5,713 (82%) 5,553 (80%) 6,547 (94%) <0.001 

Self-rated Health     <0.001 
Excellent 388 (5.6%) 663 (9.6%) 471 (6.8%) 121 (1.7%)  
Very Good 1,611 (23%) 2,231 (32%) 1,832 (26%) 517 (7.5%)  
Good 2,261 (33%) 2,349 (34%) 2,283 (33%) 1,531 (22%)  
Fair 1,813 (26%) 1,252 (18%) 1,611 (23%) 2,459 (35%)  
Poor 863 (12%) 441 (6.4%) 739 (11%) 2,308 (33%)  

1Median (IQR); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 
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Cross-sectional FM Test (Mortality) 

This model is a simple linear version of the main model using cross sectional data from Wave 10. 
Individuals are included if they are between ages 70 to 79 and report no difficulty climbing one 
flight of stairs or walking several blocks (n = 3,173). Adjusted R2 is 0.2722.  

Table 64. Logistic Regression Models for FM and Mortality (Cross-sectional, ABC Match) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM Category             

    Expected Ager — —  — —  — —  — —  

    Adapter 1.46 1.19, 
1.80 

<0.001 1.98 1.58, 
2.48 

<0.001 2.08 1.65, 
2.61 

<0.001 1.32 0.75, 
2.32 

0.3 

    Premature 
Frailer 

1.41 1.14, 
1.73 

0.001 0.67 0.51, 
0.89 

0.006 0.65 0.49, 
0.87 

0.004 0.53 0.27, 
1.05 

0.073 

Frailty Index    1.29 1.21, 
1.38 

<0.001 1.31 1.23, 
1.40 

<0.001 1.24 1.10, 
1.39 

<0.001 

Age       1.11 1.07, 
1.14 

<0.001 1.11 1.07, 
1.15 

<0.001 

Sex             

    Female       — —  — —  

    Male       2.17 1.81, 
2.61 

<0.001 2.16 1.80, 
2.60 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         1.21 0.98, 
1.49 

0.084 

    Premature 
Frailer * Frailty 
Index 

         1.06 0.92, 
1.23 

0.4 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Figure 43. Interaction Effects of FI and FM on Mortality (Cross-sectional, ABC Match) 

Visualization of the interaction between FI and FM on mortality (Model 4, Table 64).



 

209 
 

 

Table 65. Disease Burden Comparison  (Cross-sectional, ABC Match) 

 FM Category   

Characteristic 
Adapter, N = 

7941 
Expected Ager, N = 

1,5861 
Premature Frailer, N = 

7931 
p-

value2 

Age 74.08 (72.00, 
76.83) 

73.92 (71.77, 76.50) 74.17 (72.08, 76.92) 0.085 

Frailty Index 0.05 (0.04, 0.07) 0.09 (0.07, 0.12) 0.16 (0.13, 0.20) <0.001 
Ever had Arthritis 519 (65%) 843 (53%) 495 (62%) <0.001 
Ever had Diabetes 182 (23%) 280 (18%) 181 (23%) 0.001 
Ever had High Blood Pressure 501 (63%) 942 (59%) 492 (62%) 0.2 
Ever had Cancer 156 (20%) 263 (17%) 150 (19%) 0.13 
Ever had Lung Disease 70 (8.8%) 91 (5.7%) 60 (7.6%) 0.016 
Ever had Heart Problems 221 (28%) 340 (21%) 209 (26%) <0.001 
Ever had a Stroke 75 (9.4%) 74 (4.7%) 53 (6.7%) <0.001 
Regularly Takes Prescription 
Drugs 

705 (89%) 1,362 (86%) 703 (89%) 0.055 

Self-rated Health    <0.001 
Excellent 73 (9.2%) 226 (14%) 86 (11%)  
Very Good 276 (35%) 704 (44%) 300 (38%)  
Good 290 (37%) 534 (34%) 270 (34%)  
Fair 131 (16%) 115 (7.3%) 117 (15%)  
Poor 24 (3.0%) 7 (0.4%) 20 (2.5%)  

1Median (IQR); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test 

 

 



 

210 
 

 

Appendix G. Restricted Sample Results  

Mortality 

Frailty-disease Mismatch (FM) 

 

Table 66. Logistic Regression Models for FM and Mortality (Restricted Sample) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM Category             

    Expected Ager — —  — —  — —  — —  

    Adapter 2.18 2.04, 
2.32 

<0.001 2.87 2.68, 
3.09 

<0.001 1.94 1.79, 
2.10 

<0.001 2.72 2.35, 
3.16 

<0.001 

    Premature 
Frailer 

4.13 3.87, 
4.42 

<0.001 0.37 0.33, 
0.41 

<0.001 0.49 0.43, 
0.54 

<0.001 1.30 1.05, 
1.59 

0.015 

Frailty Index    1.26 1.25, 
1.27 

<0.001 1.21 1.20, 
1.22 

<0.001 1.27 1.26, 
1.29 

<0.001 

Age       1.06 1.05, 
1.06 

<0.001 1.05 1.05, 
1.06 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.99 1.87, 
2.13 

<0.001 2.04 1.91, 
2.18 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         0.95 0.93, 
0.97 

<0.001 

    Premature 
Frailer * Frailty 
Index 

         0.91 0.90, 
0.93 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Rate of Aging (RoA) 

 

Table 67. Logistic Regression Models for RoA and Mortality (Restricted Sample) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 0.35 0.32, 
0.38 

<0.001 0.62 0.57, 
0.67 

<0.001 0.99 0.90, 
1.09 

0.8 0.70 0.59, 
0.83 

<0.001 

    Fast Ager 6.23 5.80, 
6.70 

<0.001 3.09 2.86, 
3.35 

<0.001 0.93 0.83, 
1.04 

0.2 1.40 1.18, 
1.65 

<0.001 

Frailty Index    1.12 1.11, 
1.13 

<0.001 1.15 1.14, 
1.15 

<0.001 1.16 1.15, 
1.17 

<0.001 

Age       1.08 1.07, 
1.08 

<0.001 1.08 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.88 1.76, 
2.01 

<0.001 1.90 1.78, 
2.02 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         1.12 1.08, 
1.17 

<0.001 

    Fast Ager * 
Frailty Index 

         0.96 0.95, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Dynamical Indicator of Resilience (DIOR-FI) 

 

Table 68. Logistic Regression Models for DIOR-FI and Mortality (Restricted Sample) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 0.38 0.35, 
0.41 

<0.001 0.58 0.53, 
0.63 

<0.001 0.62 0.57, 
0.67 

<0.001 0.52 0.45, 
0.59 

<0.001 

    Low Stability 3.18 2.98, 
3.40 

<0.001 1.27 1.18, 
1.38 

<0.001 1.31 1.20, 
1.42 

<0.001 2.02 1.73, 
2.36 

<0.001 

Frailty Index    1.15 1.15, 
1.16 

<0.001 1.13 1.12, 
1.13 

<0.001 1.14 1.13, 
1.15 

<0.001 

Age       1.07 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.89 1.77, 
2.01 

<0.001 1.91 1.79, 
2.04 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         1.04 1.02, 
1.06 

<0.001 

    Low Stability 
* Frailty Index 

         0.96 0.95, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 

 



 

213 
 

 

Recovery 

 

Frailty-disease Mismatch (FM) 

 

Table 69. Logistic Regression Models for FM and Recovery (Restricted Sample) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

1.03 0.99, 
1.07 

0.12 0.89 0.84, 
0.95 

<0.001 0.89 0.84, 
0.95 

<0.001 0.79 0.73, 
0.85 

<0.001 

FM Category             

    Expected 
Ager 

— —  — —  — —  — —  

    Adapter 0.55 0.42, 
0.73 

<0.001 0.55 0.41, 
0.72 

<0.001 0.65 0.48, 
0.86 

0.003 0.57 0.34, 
0.98 

0.042 

    Premature 
Frailer 

1.08 0.80, 
1.47 

0.6 1.81 1.29, 
2.54 

<0.001 1.50 1.06, 
2.13 

0.023 0.26 0.11, 
0.58 

0.001 

Frailty Index    0.89 0.85, 
0.92 

<0.001 0.91 0.88, 
0.95 

<0.001 0.78 0.72, 
0.84 

<0.001 

Age       0.96 0.95, 
0.97 

<0.001 0.96 0.95, 
0.97 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         1.00 0.90, 
1.11 

>0.9 

    Premature 
Frailer * Frailty 
Index 

         1.19 1.11, 
1.29 

<0.001 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 
age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 
proposed minimal important difference. 
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Rate of Aging (RoA) 

 

Table 70. Logistic Regression Models for RoA and Recovery (Restricted Sample) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

0.95 0.92, 
0.98 

0.003 0.88 0.83, 
0.94 

<0.001 0.88 0.83, 
0.94 

<0.001 0.87 0.81, 
0.93 

<0.001 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 1.39 1.09, 
1.77 

0.007 1.39 1.09, 
1.77 

0.007 1.21 0.94, 
1.55 

0.13 1.69 1.13, 
2.51 

0.010 

    Fast Ager 0.37 0.27, 
0.51 

<0.001 0.43 0.31, 
0.59 

<0.001 0.79 0.53, 
1.19 

0.3 0.65 0.32, 
1.31 

0.2 

Frailty Index    0.95 0.91, 
0.98 

0.003 0.94 0.91, 
0.98 

0.001 0.95 0.90, 
0.99 

0.018 

Age       0.96 0.95, 
0.98 

<0.001 0.96 0.94, 
0.97 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         0.95 0.90, 
1.00 

0.034 

    Fast Ager * 
Frailty Index 

         1.01 0.96, 
1.07 

0.6 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 
age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 
proposed minimal important difference. 
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Dynamical Indicator of Resilience (DIOR-FI)  

 

Table 71. Logistic Regression Models for DIOR-FI and Recovery (Restricted Sample) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

0.97 0.94, 
1.01 

0.12 0.87 0.82, 
0.92 

<0.001 0.87 0.82, 
0.93 

<0.001 0.84 0.78, 
0.90 

<0.001 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 1.58 1.22, 
2.03 

<0.001 1.56 1.21, 
2.01 

<0.001 1.50 1.16, 
1.94 

0.002 2.28 1.45, 
3.60 

<0.001 

    Low Stability 0.89 0.67, 
1.17 

0.4 1.09 0.82, 
1.45 

0.6 1.02 0.76, 
1.38 

0.9 0.68 0.37, 
1.22 

0.2 

Frailty Index    0.92 0.89, 
0.95 

<0.001 0.94 0.91, 
0.98 

<0.001 0.92 0.87, 
0.97 

0.001 

Age       0.95 0.94, 
0.97 

<0.001 0.96 0.94, 
0.97 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         0.92 0.85, 
0.98 

0.018 

    Low Stability 
* Frailty Index 

         1.03 0.98, 
1.09 

0.2 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 
age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 
proposed minimal important difference. 
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Appendix H. Age-Stratified Results 

Note: provided for mortality only 

 

Table 72. Age-Only Mixed Effects Model Results (52-67) 

Fixed Effects Lower 95% Estimate Upper 95% 

(Intercept) 0.10162 0.10592 0.11022 

Age 0.00289 0.00457 0.00626 

Age2 -0.00026 -0.00003 0.00019 

Age3 0.00000 0.00000 0.00001 

Random Effects Lower 95% Estimate Upper 95% 

Intercept (sd) 0.09746 0.10058 0.10379 

Age (sd) 0.00699 0.00739 0.00782 

Correlation (age and intercept) 0.00379 0.09234 0.17946 

Correlation Structure  Lower 95% Estimate Upper 95% 

Phi (autocorrelation of residuals) 0.49869 0.53239 0.56579 

Residuals Lower 95% Estimate Upper 95% 

Within-group residuals (standard error) 0.06625 0.06771 0.06920 
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Table 73. Adjusted Mixed Effects Model Results (52-67) 

Fixed Effects Lower 95% Estimate Upper 95% 

(Intercept) 0.04669 0.05372 0.06075 

Age 0.00002 0.00165 0.00327 

Age2 -0.00024 -0.00003 0.00018 

Age3 0.00000 0.00000 0.00001 

Sex: Male -0.02312 -0.01967 -0.01621 

SRH: Very Good 0.00243 0.00503 0.00763 

SRH: Good 0.02109 0.02396 0.02682 

SRH: Fair 0.06223 0.06547 0.06871 

SRH: Poor 0.13213 0.13619 0.14025 

Ever had stroke: Yes 0.08321 0.08886 0.09451 

Ever had arthritis: Yes 0.03839 0.04094 0.04349 

Ever had cancer: Yes 0.00657 0.01099 0.01540 

Ever had high blood pressure: Yes 0.02692 0.02963 0.03235 

Ever had diabetes: Yes 0.00726 0.01049 0.01371 

Ever had lung disease: Yes 0.05113 0.05582 0.06052 

Ever had heart problems: Yes 0.02310 0.02680 0.03049 

Regularly Takes Rx Meds: Yes 0.01201 0.01428 0.01654 

Wave 4 -0.01827 -0.01277 -0.00726 

Wave 5 -0.01090 -0.00499 0.00091 

Wave 6 -0.01144 -0.00518 0.00107 

Wave 7 -0.01152 -0.00551 0.00050 

Wave 8 -0.00959 -0.00343 0.00272 

Wave 9 -0.01797 -0.01165 -0.00533 

Wave 10 -0.01390 -0.00759 -0.00128 

Wave 11 -0.01656 -0.00997 -0.00338 

Wave 12 -0.01912 -0.01215 -0.00518 

Wave 13 -0.02670 -0.01912 -0.01154 

Random Effects Lower 95% Estimate Upper 95% 

Intercept (sd) 0.06289 0.06691 0.07118 

Age (sd) 0.00548 0.00600 0.00658 

Correlation (age and intercept) -0.22322 -0.09763 0.03115 

Correlation Structure  Lower 95% Estimate Upper 95% 

Phi (autocorrelation of residuals) 0.41181 0.44319 0.47503 

Residuals Lower 95% Estimate Upper 95% 

Within-group residuals (standard error) 0.06066 0.06186 0.06308 

SRH stands for self-rated health. The reference category is “Excellent”. The reference category for Wave is 

3. 
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Table 74. Age-Only Mixed Effects Model Results (68-79) 

Fixed Effects Lower 95% Estimate Upper 95% 

(Intercept) 0.07161 0.07729 0.08297 

Age 0.00636 0.00761 0.00885 

Age2 -0.00053 -0.00044 -0.00035 

Age3 0.00001 0.00002 0.00002 

Random Effects Lower 95% Estimate Upper 95% 

Intercept (sd) 0.08433 0.08807 0.09197 

Age (sd) 0.00662 0.00684 0.00706 

Correlation (age and intercept) -0.38516 -0.34138 -0.29607 

Correlation Structure  Lower 95% Estimate Upper 95% 

Phi (autocorrelation of residuals) 0.62835 0.63928 0.65005 

Residuals Lower 95% Estimate Upper 95% 

Within-group residuals (standard error) 0.07386 0.07475 0.07566 
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Table 75. Adjusted Mixed Effects Model Results (68-79) 

Fixed Effects Lower 95% Estimate Upper 95% 

(Intercept) 0.04876 0.05422 0.05967 

Age 0.00151 0.00269 0.00387 

Age2 -0.00037 -0.00028 -0.00020 

Age3 0.00001 0.00001 0.00001 

Sex: Male -0.02750 -0.02437 -0.02125 

SRH: Very Good 0.00516 0.00711 0.00907 

SRH: Good 0.02336 0.02552 0.02767 

SRH: Fair 0.05912 0.06160 0.06407 

SRH: Poor 0.12940 0.13254 0.13568 

Ever had stroke: Yes 0.08479 0.08879 0.09279 

Ever had arthritis: Yes 0.02898 0.03109 0.03320 

Ever had cancer: Yes 0.00265 0.00581 0.00897 

Ever had high blood pressure: Yes 0.01861 0.02077 0.02294 

Ever had diabetes: Yes 0.00932 0.01203 0.01474 

Ever had lung disease: Yes 0.03409 0.03766 0.04124 

Ever had heart problems: Yes 0.01372 0.01634 0.01897 

Regularly Takes Rx Meds: Yes 0.00945 0.01135 0.01324 

Wave 4 -0.00815 -0.00610 -0.00404 

Wave 5 -0.00280 -0.00034 0.00211 

Wave 6 -0.00452 -0.00170 0.00112 

Wave 7 -0.00443 -0.00130 0.00182 

Wave 8 -0.00411 -0.00058 0.00296 

Wave 9 -0.01058 -0.00659 -0.00260 

Wave 10 -0.00941 -0.00483 -0.00026 

Wave 11 -0.01871 -0.01360 -0.00848 

Wave 12 -0.02467 -0.01892 -0.01318 

Wave 13 -0.04054 -0.03394 -0.02735 

Random Effects Lower 95% Estimate Upper 95% 

Intercept (sd) 0.05649 0.06033 0.06443 

Age (sd) 0.00528 0.00548 0.00568 

Correlation (age and intercept) -0.52906 -0.48397 -0.43615 

Correlation Structure  Lower 95% Estimate Upper 95% 

Phi (autocorrelation of residuals) 0.55327 0.57127 0.58908 

Residuals Lower 95% Estimate Upper 95% 

Within-group residuals (standard error) 0.06668 0.06761 0.06855 

SRH stands for self-rated health. The reference category is “Excellent”. The reference category for Wave is 

3. 
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Table 76. Age-Only Mixed Effects Model Results (80+) 

Fixed Effects Lower 95% Estimate Upper 95% 

(Intercept) 0.08070 0.10442 0.12814 

Age -0.00051 0.00227 0.00506 

Age2 -0.00041 -0.00031 -0.00021 

Age3 0.00001 0.00001 0.00001 

Random Effects Lower 95% Estimate Upper 95% 

Intercept (sd) 0.10715 0.11813 0.13024 

Age (sd) 0.00761 0.00791 0.00822 

Correlation (age and intercept) -0.94799 -0.93481 -0.91842 

Correlation Structure  Lower 95% Estimate Upper 95% 

Phi (autocorrelation of residuals) 0.74669 0.75553 0.76416 

Residuals Lower 95% Estimate Upper 95% 

Within-group residuals (standard error) 0.10766 0.10931 0.11098 
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Table 77. Adjusted Mixed Effects Model Results (80+) 

Fixed Effects Lower 95% Estimate Upper 95% 

(Intercept) 0.02674 0.04855 0.07035 

Age 0.00092 0.00351 0.00610 

Age2 -0.00050 -0.00040 -0.00031 

Age3 0.00001 0.00001 0.00001 

Sex: Male -0.03113 -0.02774 -0.02436 

SRH: Very Good 0.00805 0.01056 0.01308 

SRH: Good 0.02704 0.02972 0.03240 

SRH: Fair 0.06574 0.06873 0.07171 

SRH: Poor 0.13655 0.14019 0.14383 

Ever had stroke: Yes 0.08735 0.09124 0.09512 

Ever had arthritis: Yes 0.03379 0.03639 0.03899 

Ever had cancer: Yes 0.00258 0.00613 0.00968 

Ever had high blood pressure: Yes 0.02362 0.02626 0.02890 

Ever had diabetes: Yes 0.01273 0.01632 0.01991 

Ever had lung disease: Yes 0.03971 0.04424 0.04877 

Ever had heart problems: Yes 0.01401 0.01685 0.01969 

Regularly Takes Rx Meds: Yes 0.01180 0.01434 0.01688 

Wave 4 -0.00660 -0.00434 -0.00207 

Wave 5 -0.00354 -0.00077 0.00201 

Wave 6 0.00080 0.00398 0.00716 

Wave 7 0.00159 0.00510 0.00862 

Wave 8 0.00417 0.00806 0.01194 

Wave 9 0.00007 0.00437 0.00868 

Wave 10 0.00305 0.00795 0.01285 

Wave 11 0.00120 0.00661 0.01201 

Wave 12 0.00189 0.00795 0.01400 

Wave 13 -0.00404 0.00294 0.00992 

Random Effects Lower 95% Estimate Upper 95% 

Intercept (sd) 0.09219 0.10080 0.11022 

Age (sd) 0.00626 0.00650 0.00675 

Correlation (age and intercept) -0.98914 -0.97932 -0.96077 

Correlation Structure  Lower 95% Estimate Upper 95% 

Phi (autocorrelation of residuals) 0.69124 0.70066 0.70991 

Residuals Lower 95% Estimate Upper 95% 

Within-group residuals (standard error) 0.09497 0.09615 0.09734 

SRH stands for self-rated health. The reference category is “Excellent”. The reference category for Wave is 

3. 
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Frailty-disease Mismatch (FM) 

 

Table 78. Logistic Regression Models for FM and Mortality (Ages 52-67) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM Category             

    Expected Ager — —  — —  — —  — —  

    Adapter 1.73 1.50, 
2.00 

<0.001 2.13 1.83, 
2.48 

<0.001 2.01 1.72, 
2.34 

<0.001 2.24 1.67, 
2.99 

<0.001 

    Premature 
Frailer 

3.04 2.66, 
3.48 

<0.001 0.48 0.39, 
0.59 

<0.001 0.50 0.41, 
0.62 

<0.001 2.15 1.55, 
2.98 

<0.001 

Frailty Index    1.22 1.20, 
1.24 

<0.001 1.22 1.20, 
1.24 

<0.001 1.38 1.34, 
1.43 

<0.001 

Age       1.07 1.05, 
1.09 

<0.001 1.06 1.04, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.78 1.57, 
2.01 

<0.001 1.84 1.63, 
2.09 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         1.02 0.96, 
1.09 

0.5 

    Premature 
Frailer * Frailty 
Index 

         0.83 0.80, 
0.86 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Rate of Aging (RoA) 

 

Table 79. Logistic Regression Models for FM and Mortality (Ages 68-79) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM Category             

    Expected Ager — —  — —  — —  — —  

    Adapter 1.46 1.31, 
1.63 

<0.001 2.43 2.16, 
2.73 

<0.001 2.81 2.47, 
3.20 

<0.001 3.65 2.82, 
4.73 

<0.001 

    Premature 
Frailer 

3.03 2.73, 
3.37 

<0.001 0.35 0.30, 
0.41 

<0.001 0.30 0.25, 
0.36 

<0.001 1.54 1.12, 
2.12 

0.008 

Frailty Index    1.25 1.24, 
1.27 

<0.001 1.29 1.27, 
1.31 

<0.001 1.41 1.38, 
1.45 

<0.001 

Age       0.96 0.95, 
0.98 

<0.001 0.95 0.94, 
0.97 

<0.001 

Sex             

    Female       — —  — —  

    Male       2.06 1.87, 
2.28 

<0.001 2.16 1.96, 
2.39 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         1.00 0.95, 
1.05 

>0.9 

    Premature 
Frailer * Frailty 
Index 

         0.85 0.82, 
0.87 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Table 80. Logistic Regression Models for FM and Mortality (Ages 80-109) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM Category             

    Expected Ager — —  — —  — —  — —  

    Adapter 1.0 0.90, 
1.10 

>0.9 1.85 1.66, 
2.08 

<0.001 1.44 1.26, 
1.64 

<0.001 1.68 1.34, 
2.11 

<0.001 

    Premature 
Frailer 

3.63 3.21, 
4.12 

<0.001 0.51 0.42, 
0.61 

<0.001 0.62 0.51, 
0.75 

<0.001 1.13 0.67, 
1.92 

0.6 

Frailty Index    1.18 1.17, 
1.19 

<0.001 1.16 1.15, 
1.18 

<0.001 1.18 1.16, 
1.19 

<0.001 

Age       1.06 1.04, 
1.07 

<0.001 1.06 1.04, 
1.07 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.81 1.64, 
1.99 

<0.001 1.81 1.64, 
2.00 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         0.98 0.95, 
1.01 

0.2 

    Premature 
Frailer * Frailty 
Index 

         0.96 0.94, 
0.99 

0.010 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Table 81. Logistic Regression Models for RoA and Mortality (Ages 52-67) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 0.52 0.43, 
0.63 

<0.001 0.66 0.54, 
0.80 

<0.001 0.64 0.52, 
0.77 

<0.001 0.82 0.59, 
1.12 

0.2 

    Fast Ager 3.64 3.22, 
4.13 

<0.001 1.40 1.15, 
1.69 

<0.001 1.34 1.11, 
1.63 

0.003 2.29 1.68, 
3.13 

<0.001 

Frailty Index    1.11 1.09, 
1.13 

<0.001 1.12 1.10, 
1.13 

<0.001 1.21 1.16, 
1.26 

<0.001 

Age       1.09 1.07, 
1.11 

<0.001 1.09 1.07, 
1.11 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.72 1.52, 
1.95 

<0.001 1.76 1.55, 
1.99 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         0.97 0.86, 
1.08 

0.6 

    Fast Ager * 
Frailty Index 

         0.91 0.87, 
0.95 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Table 82. Logistic Regression Models for RoA and Mortality (Ages 68-79) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 0.52 0.46, 
0.58 

<0.001 0.72 0.63, 
0.82 

<0.001 0.74 0.63, 
0.86 

<0.001 1.00 0.77, 
1.29 

>0.9 

    Fast Ager 3.55 3.19, 
3.94 

<0.001 1.29 1.11, 
1.49 

<0.001 1.26 1.07, 
1.49 

0.006 1.81 1.37, 
2.39 

<0.001 

Frailty Index    1.12 1.11, 
1.13 

<0.001 1.13 1.11, 
1.14 

<0.001 1.16 1.14, 
1.19 

<0.001 

Age       1.00 0.99, 
1.02 

0.6 1.01 0.99, 
1.03 

0.2 

Sex             

    Female       — —  — —  

    Male       1.94 1.76, 
2.13 

<0.001 1.95 1.78, 
2.15 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         0.94 0.89, 
1.00 

0.038 

    Fast Ager * 
Frailty Index 

         0.96 0.93, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Table 83. Logistic Regression Models for RoA and Mortality (Ages 80-109) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 0.33 0.29, 
0.36 

<0.001 0.60 0.53, 
0.67 

<0.001 0.99 0.85, 
1.15 

>0.9 0.77 0.60, 
1.00 

0.047 

    Fast Ager 3.39 2.97, 
3.90 

<0.001 1.45 1.23, 
1.71 

<0.001 0.72 0.58, 
0.88 

0.002 0.73 0.47, 
1.13 

0.2 

Frailty Index    1.10 1.09, 
1.11 

<0.001 1.13 1.12, 
1.14 

<0.001 1.13 1.11, 
1.14 

<0.001 

Age       1.09 1.08, 
1.11 

<0.001 1.09 1.08, 
1.11 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.75 1.59, 
1.93 

<0.001 1.76 1.59, 
1.94 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         1.05 1.01, 
1.09 

0.014 

    Fast Ager * 
Frailty Index 

         1.00 0.98, 
1.02 

>0.9 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Table 84. Logistic Regression Models for DIOR-FI and Mortality (Ages 52-67) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 0.47 0.39, 
0.56 

<0.001 0.65 0.54, 
0.78 

<0.001 0.65 0.54, 
0.78 

<0.001 0.51 0.39, 
0.67 

<0.001 

    Low Stability 2.28 2.01, 
2.58 

<0.001 1.17 1.01, 
1.35 

0.037 1.18 1.02, 
1.36 

0.029 1.72 1.35, 
2.18 

<0.001 

Frailty Index    1.13 1.12, 
1.14 

<0.001 1.13 1.12, 
1.15 

<0.001 1.15 1.13, 
1.17 

<0.001 

Age       1.09 1.07, 
1.11 

<0.001 1.09 1.07, 
1.11 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.73 1.53, 
1.96 

<0.001 1.75 1.55, 
1.98 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         1.09 1.03, 
1.14 

0.001 

    Low Stability 
* Frailty Index 

         0.96 0.94, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Table 85. Logistic Regression Models for DIOR-FI and Mortality (Ages 68-79) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 0.47 0.42, 
0.53 

<0.001 0.63 0.55, 
0.71 

<0.001 0.62 0.55, 
0.71 

<0.001 0.42 0.34, 
0.52 

<0.001 

    Low Stability 2.52 2.27, 
2.79 

<0.001 1.27 1.13, 
1.43 

<0.001 1.24 1.10, 
1.41 

<0.001 1.59 1.28, 
1.98 

<0.001 

Frailty Index    1.12 1.11, 
1.13 

<0.001 1.13 1.12, 
1.14 

<0.001 1.13 1.12, 
1.15 

<0.001 

Age       1.03 1.02, 
1.04 

<0.001 1.03 1.01, 
1.04 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.93 1.76, 
2.13 

<0.001 1.96 1.78, 
2.16 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         1.09 1.05, 
1.13 

<0.001 

    Low Stability 
* Frailty Index 

         0.98 0.96, 
1.00 

0.034 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Table 86. Logistic Regression Models for DIOR-FI and Mortality (Ages 80-109) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 0.45 0.41, 
0.50 

<0.001 0.64 0.58, 
0.71 

<0.001 0.68 0.61, 
0.76 

<0.001 0.62 0.51, 
0.76 

<0.001 

    Low Stability 2.89 2.55, 
3.29 

<0.001 1.26 1.09, 
1.46 

0.002 1.25 1.08, 
1.45 

0.003 2.23 1.62, 
3.09 

<0.001 

Frailty Index    1.11 1.10, 
1.12 

<0.001 1.11 1.10, 
1.12 

<0.001 1.12 1.10, 
1.13 

<0.001 

Age       1.08 1.07, 
1.09 

<0.001 1.08 1.07, 
1.09 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.75 1.58, 
1.93 

<0.001 1.77 1.60, 
1.95 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         1.02 0.99, 
1.04 

0.2 

    Low Stability 
* Frailty Index 

         0.96 0.95, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Appendix I. Sex-Stratified Results 

Note: provided for mortality only 

 

Table 87. Age-Only Mixed Effects Model Results (Males) 

Fixed Effects Lower 95% Estimate Upper 95% 

(Intercept) 0.06710 0.07217 0.07724 

Age 0.00615 0.00703 0.00791 

Age2 -0.00047 -0.00043 -0.00038 

Age3 0.00001 0.00001 0.00001 

Random Effects Lower 95% Estimate Upper 95% 

Intercept (sd) 0.08106 0.08690 0.09317 

Age (sd) 0.00607 0.00635 0.00664 

Correlation (age and intercept) -0.54281 -0.48401 -0.42049 

Correlation Structure  Lower 95% Estimate Upper 95% 

Phi (autocorrelation of residuals) 0.73166 0.74191 0.75191 

Residuals Lower 95% Estimate Upper 95% 

Within-group residuals (standard error) 0.09079 0.09231 0.09385 
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Table 88. Adjusted Mixed Effects Model Results (Males) 

Fixed Effects Lower 95% Estimate Upper 95% 

(Intercept) 0.02068 0.02552 0.03036 

Age 0.00313 0.00390 0.00467 

Age2 -0.00040 -0.00036 -0.00032 

Age3 0.00001 0.00001 0.00001 

SRH: Very Good 0.00384 0.00584 0.00784 

SRH: Good 0.02075 0.02291 0.02508 

SRH: Fair 0.05393 0.05638 0.05882 

SRH: Poor 0.13013 0.13324 0.13634 

Ever had stroke: Yes 0.08812 0.09178 0.09544 

Ever had arthritis: Yes 0.03285 0.03500 0.03715 

Ever had cancer: Yes 0.00724 0.01031 0.01338 

Ever had high blood pressure: Yes 0.02178 0.02401 0.02623 

Ever had diabetes: Yes 0.01237 0.01505 0.01774 

Ever had lung disease: Yes 0.04521 0.04891 0.05261 

Ever had heart problems: Yes 0.01268 0.01517 0.01766 

Regularly Takes Rx Meds: Yes 0.00999 0.01190 0.01381 

Wave 4 -0.00717 -0.00502 -0.00288 

Wave 5 -0.00226 0.00026 0.00278 

Wave 6 0.00042 0.00317 0.00593 

Wave 7 0.00190 0.00476 0.00762 

Wave 8 0.00416 0.00716 0.01016 

Wave 9 -0.00047 0.00265 0.00576 

Wave 10 0.00572 0.00887 0.01202 

Wave 11 0.00466 0.00794 0.01121 

Wave 12 0.00764 0.01109 0.01454 

Wave 13 0.00417 0.00788 0.01159 

Random Effects Lower 95% Estimate Upper 95% 

Intercept (sd) 0.05643 0.06063 0.06514 

Age (sd) 0.00474 0.00493 0.00512 

Correlation (age and intercept) -0.68321 -0.64558 -0.60452 

Correlation Structure  Lower 95% Estimate Upper 95% 

Phi (autocorrelation of residuals) 0.66923 0.67965 0.68989 

Residuals Lower 95% Estimate Upper 95% 

Within-group residuals (standard error) 0.08007 0.08108 0.08210 

SRH stands for self-rated health. The reference category is “Excellent”. The reference category for Wave is 

3. 
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Table 89. Age-Only Mixed Effects Model Results (Females) 

Fixed Effects Lower 95% Estimate Upper 95% 

(Intercept) 0.09528 0.09939 0.10350 

Age 0.00609 0.00678 0.00747 

Age2 -0.00044 -0.00040 -0.00036 

Age3 0.00001 0.00001 0.00001 

Random Effects Lower 95% Estimate Upper 95% 

Intercept (sd) 0.09037 0.09659 0.10324 

Age (sd) 0.00527 0.00557 0.00588 

Correlation (age and intercept) -0.37918 -0.28436 -0.18364 

Correlation Structure  Lower 95% Estimate Upper 95% 

Phi (autocorrelation of residuals) 0.73497 0.74218 0.74927 

Residuals Lower 95% Estimate Upper 95% 

Within-group residuals (standard error) 0.09621 0.09740 0.09859 
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Table 90. Adjusted Mixed Effects Model Results (Females) 

Fixed Effects Lower 95% Estimate Upper 95% 

(Intercept) 0.02982 0.03386 0.03790 

Age 0.00306 0.00366 0.00426 

Age2 -0.00037 -0.00034 -0.00031 

Age3 0.00001 0.00001 0.00001 

SRH: Very Good 0.00649 0.00839 0.01028 

SRH: Good 0.02629 0.02836 0.03043 

SRH: Fair 0.06889 0.07121 0.07354 

SRH: Poor 0.13751 0.14035 0.14320 

Ever had stroke: Yes 0.09564 0.09905 0.10245 

Ever had arthritis: Yes 0.03677 0.03874 0.04071 

Ever had cancer: Yes 0.00505 0.00805 0.01105 

Ever had high blood pressure: Yes 0.02617 0.02819 0.03022 

Ever had diabetes: Yes 0.01543 0.01801 0.02059 

Ever had lung disease: Yes 0.04766 0.05098 0.05430 

Ever had heart problems: Yes 0.02432 0.02677 0.02922 

Regularly Takes Rx Meds: Yes 0.01349 0.01533 0.01717 

Wave 4 -0.00719 -0.00526 -0.00333 

Wave 5 -0.00200 0.00027 0.00253 

Wave 6 0.00019 0.00266 0.00512 

Wave 7 0.00159 0.00415 0.00672 

Wave 8 0.00491 0.00760 0.01028 

Wave 9 0.00144 0.00423 0.00701 

Wave 10 0.00671 0.00954 0.01236 

Wave 11 0.00494 0.00788 0.01082 

Wave 12 0.00507 0.00817 0.01126 

Wave 13 0.00143 0.00476 0.00808 

Random Effects Lower 95% Estimate Upper 95% 

Intercept (sd) 0.05960 0.06332 0.06727 

Age (sd) 0.00428 0.00444 0.00460 

Correlation (age and intercept) -0.54119 -0.49344 -0.44251 

Correlation Structure  Lower 95% Estimate Upper 95% 

Phi (autocorrelation of residuals) 0.67052 0.67829 0.68596 

Residuals Lower 95% Estimate Upper 95% 

Within-group residuals (standard error) 0.08480 0.08561 0.08643 

SRH stands for self-rated health. The reference category is “Excellent”. The reference category for Wave is 

3. 
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Frailty-disease Mismatch (FM) 

 

Table 91. Logistic Regression Models for FM and Mortality (Males) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM Category             

    Expected Ager — —  — —  — —  — —  

    Adapter 1.83 1.68, 
2.01 

<0.001 2.24 2.03, 
2.47 

<0.001 1.22 1.09, 
1.36 

<0.001 1.73 1.41, 
2.12 

<0.001 

    Premature 
Frailer 

4.08 3.71, 
4.47 

<0.001 0.39 0.34, 
0.45 

<0.001 0.65 0.56, 
0.76 

<0.001 1.83 1.40, 
2.38 

<0.001 

Frailty Index    1.26 1.25, 
1.28 

<0.001 1.17 1.16, 
1.19 

<0.001 1.27 1.24, 
1.29 

<0.001 

Age       1.07 1.06, 
1.08 

<0.001 1.06 1.06, 
1.07 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         0.94 0.91, 
0.98 

0.003 

    Premature 
Frailer * Frailty 
Index 

         0.89 0.87, 
0.91 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Table 92. Logistic Regression Models for FM and Mortality (Females) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM Category             

    Expected Ager — —  — —  — —  — —  

    Adapter 1.83 1.69, 
1.98 

<0.001 2.65 2.41, 
2.90 

<0.001 1.47 1.33, 
1.64 

<0.001 1.98 1.63, 
2.40 

<0.001 

    Premature 
Frailer 

4.52 4.17, 
4.90 

<0.001 0.36 0.31, 
0.41 

<0.001 0.62 0.54, 
0.71 

<0.001 1.53 1.16, 
2.02 

0.002 

Frailty Index    1.27 1.26, 
1.28 

<0.001 1.18 1.17, 
1.19 

<0.001 1.23 1.21, 
1.25 

<0.001 

Age       1.06 1.06, 
1.07 

<0.001 1.06 1.05, 
1.06 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         0.96 0.94, 
0.99 

0.007 

    Premature 
Frailer * Frailty 
Index 

         0.93 0.91, 
0.95 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Rate of Aging (RoA) 

 

Table 93. Logistic Regression Models for RoA and Mortality (Males) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 0.40 0.35, 
0.44 

<0.001 0.50 0.45, 
0.56 

<0.001 0.64 0.57, 
0.72 

<0.001 0.66 0.55, 
0.79 

<0.001 

    Fast Ager 10.4 9.30, 
11.7 

<0.001 5.70 4.99, 
6.52 

<0.001 2.59 2.22, 
3.03 

<0.001 6.12 4.68, 
8.03 

<0.001 

Frailty Index    1.07 1.06, 
1.08 

<0.001 1.09 1.08, 
1.10 

<0.001 1.13 1.11, 
1.14 

<0.001 

Age       1.06 1.05, 
1.06 

<0.001 1.05 1.05, 
1.06 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         1.03 0.99, 
1.07 

0.11 

    Fast Ager * 
Frailty Index 

         0.92 0.91, 
0.94 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Table 94. Logistic Regression Models for RoA and Mortality (Females) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 0.26 0.23, 
0.29 

<0.001 0.38 0.34, 
0.43 

<0.001 0.48 0.42, 
0.54 

<0.001 0.50 0.41, 
0.61 

<0.001 

    Fast Ager 13.0 11.8, 
14.4 

<0.001 6.83 6.10, 
7.65 

<0.001 3.55 3.10, 
4.08 

<0.001 8.73 6.79, 
11.3 

<0.001 

Frailty Index    1.08 1.07, 
1.09 

<0.001 1.08 1.08, 
1.09 

<0.001 1.11 1.10, 
1.12 

<0.001 

Age       1.04 1.04, 
1.05 

<0.001 1.04 1.04, 
1.05 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         1.03 0.99, 
1.07 

0.14 

    Fast Ager * 
Frailty Index 

         0.93 0.92, 
0.95 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Dynamical Indicator of Resilience (DIOR-FI) 

 

Table 95. Logistic Regression Models for DIOR-FI and Mortality (Males) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 0.33 0.29, 
0.36 

<0.001 0.53 0.48, 
0.60 

<0.001 0.74 0.65, 
0.83 

<0.001 0.46 0.37, 
0.56 

<0.001 

    Low Stability 2.90 2.65, 
3.18 

<0.001 1.02 0.91, 
1.15 

0.7 1.22 1.08, 
1.37 

0.002 1.93 1.56, 
2.38 

<0.001 

Frailty Index    1.15 1.14, 
1.17 

<0.001 1.12 1.11, 
1.13 

<0.001 1.14 1.12, 
1.16 

<0.001 

Age       1.08 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         1.18 1.12, 
1.24 

<0.001 

    Low Stability 
* Frailty Index 

         0.96 0.94, 
0.97 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Table 96. Logistic Regression Models for DIOR-FI and Mortality (Females) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 0.31 0.28, 
0.35 

<0.001 0.62 0.56, 
0.69 

<0.001 0.81 0.72, 
0.90 

<0.001 0.48 0.39, 
0.59 

<0.001 

    Low Stability 3.61 3.34, 
3.92 

<0.001 1.15 1.04, 
1.28 

0.006 1.30 1.17, 
1.44 

<0.001 1.96 1.59, 
2.42 

<0.001 

Frailty Index    1.16 1.15, 
1.17 

<0.001 1.12 1.11, 
1.13 

<0.001 1.13 1.12, 
1.14 

<0.001 

Age       1.07 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         1.13 1.09, 
1.17 

<0.001 

    Low Stability 
* Frailty Index 

         0.97 0.96, 
0.99 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Appendix J. Alternative Cut Point Sensitivity Analysis (Mortality) 

Mortality 

 

Frailty-disease Mismatch (FM) 

 

Table 97. Logistic Regression Models for FM and Mortality (Alternative Cut Point) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM Category             

    Expected Ager — —  — —  — —  — —  

    Adapter 2.00 1.87, 
2.14 

<0.001 3.04 2.82, 
3.28 

<0.001 1.50 1.38, 
1.64 

<0.001 1.88 1.62, 
2.18 

<0.001 

    Premature 
Frailer 

5.08 4.73, 
5.47 

<0.001 0.28 0.25, 
0.32 

<0.001 0.48 0.42, 
0.54 

<0.001 1.01 0.74, 
1.38 

>0.9 

Frailty Index    1.25 1.24, 
1.25 

<0.001 1.18 1.18, 
1.19 

<0.001 1.20 1.19, 
1.21 

<0.001 

Age       1.06 1.06, 
1.07 

<0.001 1.06 1.06, 
1.07 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.87 1.76, 
1.99 

<0.001 1.88 1.77, 
2.00 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         0.96 0.94, 
0.98 

<0.001 

    Premature 
Frailer * Frailty 
Index 

         0.95 0.94, 
0.97 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 

 



 

242 
 

 

Rate of Aging (RoA) 

 

Table 98. Logistic Regression Models for RoA and Mortality (Alternative Cut Point) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 0.21 0.19, 
0.23 

<0.001 0.38 0.34, 
0.42 

<0.001 0.76 0.68, 
0.85 

<0.001 0.77 0.66, 
0.89 

<0.001 

    Fast Ager 8.28 7.60, 
9.03 

<0.001 2.95 2.67, 
3.25 

<0.001 0.87 0.77, 
0.97 

0.017 1.38 1.11, 
1.72 

0.004 

Frailty Index    1.13 1.12, 
1.13 

<0.001 1.14 1.13, 
1.14 

<0.001 1.15 1.14, 
1.15 

<0.001 

Age       1.08 1.07, 
1.08 

<0.001 1.08 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.81 1.70, 
1.92 

<0.001 1.82 1.71, 
1.93 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         1.01 0.98, 
1.04 

0.7 

    Fast Ager * 
Frailty Index 

         0.97 0.96, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Dynamical Indicator of Resilience (DIOR-FI)  

 

Table 99. Logistic Regression Models for DIOR-FI and Mortality (Alternative Cut Point) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 0.33 0.30, 
0.36 

<0.001 0.56 0.51, 
0.62 

<0.001 0.64 0.58, 
0.71 

<0.001 0.52 0.44, 
0.60 

<0.001 

    Low Stability 4.11 3.82, 
4.42 

<0.001 1.16 1.06, 
1.27 

0.001 1.23 1.12, 
1.36 

<0.001 2.17 1.79, 
2.63 

<0.001 

Frailty Index    1.16 1.15, 
1.16 

<0.001 1.13 1.12, 
1.13 

<0.001 1.13 1.13, 
1.14 

<0.001 

Age       1.08 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.81 1.70, 
1.92 

<0.001 1.83 1.72, 
1.94 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         1.05 1.03, 
1.08 

<0.001 

    Low Stability 
* Frailty Index 

         0.96 0.95, 
0.97 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. 
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Interaction Figures 

 

 

Figure 44. Mortality Main and Alternative Cut Point Comparison 

Visualized interactions correspond to the frailty, age, and sex adjusted models. X-axis is the level of FI. Y-

axis is the predicted probability of mortality.  
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Model AUC 

 

Table 100. Discrimination of Mortality Models (Alternative Cut Point) 

Model AUC Lower 95% Upper 95% 

Unadjusted Models    

FI Only 0.778 0.772 0.784 

FM Only 0.631 0.625 0.636 

RoA Only 0.691 0.686 0.696 

DIOR Only 0.646 0.641 0.651 

Frailty-Adjusted Models    

FI + FM 0.799 0.794 0.805 

FI + RoA 0.791 0.786 0.797 

FI + DIOR 0.779 0.773 0.784 

Age, sex, and frailty-adjusted models    

FI Only 0.824 0.819 0.829 

FI + FM 0.828 0.823 0.833 

FI + FM Interaction 0.828 0.823 0.833 

FI + RoA 0.824 0.819 0.829 

FI + RoA Interaction 0.824 0.820 0.829 

FI + DIOR 0.826 0.821 0.831 

FI + DIOR Interaction 0.826 0.822 0.831 

FI + FM + RoA + DIOR 0.829 0.824 0.834 

FI + FM + RoA + DIOR + All FI Interactions 0.829 0.824 0.834 

Highest AUC for each category of models is bolded, excluding the combined resilience models (bottom two 

rows). 95% confidence intervals are calculated using the Delong method. 
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Recovery 

 

Frailty-disease Mismatch (FM) 

 

Table 101. Logistic Regression Models for FM and Recovery (Alternative Cut Point) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

1.02 0.99, 
1.06 

0.2 0.85 0.80, 
0.90 

<0.001 0.86 0.81, 
0.91 

<0.001 0.81 0.75, 
0.88 

<0.001 

FM Category             

    Expected 
Ager 

— —  — —  — —  — —  

    Adapter 0.47 0.33, 
0.66 

<0.001 0.45 0.32, 
0.63 

<0.001 0.58 0.41, 
0.83 

0.003 0.40 0.21, 
0.77 

0.006 

    Premature 
Frailer 

1.09 0.78, 
1.53 

0.6 3.33 2.14, 
5.23 

<0.001 2.40 1.51, 
3.84 

<0.001 0.59 0.18, 
1.91 

0.4 

Frailty Index    0.85 0.81, 
0.89 

<0.001 0.88 0.84, 
0.92 

<0.001 0.83 0.78, 
0.88 

<0.001 

Age       0.96 0.95, 
0.97 

<0.001 0.96 0.95, 
0.97 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         1.08 0.95, 
1.22 

0.2 

    Premature 
Frailer * Frailty 
Index 

         1.11 1.03, 
1.20 

0.010 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 
age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 
proposed minimal important difference. 
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Rate of Aging (RoA) 

 

Table 102. Logistic Regression Models for RoA and Recovery (Alternative Cut Point) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

0.96 0.93, 
0.99 

0.008 0.89 0.84, 
0.94 

<0.001 0.88 0.83, 
0.93 

<0.001 0.87 0.82, 
0.93 

<0.001 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 1.56 1.18, 
2.04 

0.001 1.55 1.18, 
2.03 

0.002 1.14 0.85, 
1.51 

0.4 1.41 0.91, 
2.18 

0.12 

    Fast Ager 0.34 0.23, 
0.49 

<0.001 0.43 0.28, 
0.64 

<0.001 0.87 0.54, 
1.38 

0.6 0.60 0.22, 
1.57 

0.3 

Frailty Index    0.95 0.91, 
0.98 

0.002 0.94 0.90, 
0.97 

<0.001 0.94 0.90, 
0.98 

0.003 

Age       0.96 0.94, 
0.97 

<0.001 0.96 0.94, 
0.97 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         0.97 0.91, 
1.02 

0.2 

    Fast Ager * 
Frailty Index 

         1.02 0.96, 
1.09 

0.5 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 
age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 
proposed minimal important difference. 
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Dynamical Indicator of Resilience (DIOR-FI)  

 

Table 103. Logistic Regression Models for DIOR-FI and Recovery (Alternative Cut Point) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

0.97 0.94, 
1.01 

0.12 0.86 0.81, 
0.92 

<0.001 0.87 0.82, 
0.93 

<0.001 0.83 0.77, 
0.89 

<0.001 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 1.48 1.11, 
1.95 

0.007 1.45 1.09, 
1.93 

0.010 1.34 1.00, 
1.79 

0.045 2.71 1.63, 
4.55 

<0.001 

    Low Stability 0.72 0.52, 
0.99 

0.045 0.99 0.69, 
1.39 

>0.9 0.92 0.64, 
1.30 

0.6 0.40 0.17, 
0.88 

0.027 

Frailty Index    0.92 0.88, 
0.95 

<0.001 0.94 0.90, 
0.97 

<0.001 0.91 0.87, 
0.95 

<0.001 

Age       0.95 0.94, 
0.97 

<0.001 0.96 0.94, 
0.97 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         0.85 0.77, 
0.94 

0.001 

    Low Stability * 
Frailty Index 

         1.06 1.00, 
1.12 

0.034 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 
age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 
proposed minimal important difference. 
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Interaction Figures 

 

 

Figure 45. Recovery Main and Alternative Cut Point Comparison 

Visualized interactions correspond to the frailty, age, and sex adjusted models. X-axis is the level of FI. Y-

axis is the predicted probability of recovery.  
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Model AUC 

 

Table 104. Discrimination of Recovery Models (Alternative Cut Point) 

Model AUC Lower 95% Upper 95% 

Unadjusted Models    

FI Only 0.581 0.553 0.610 

FM Only 0.560 0.531 0.589 

RoA Only 0.597 0.569 0.626 

DIOR Only 0.555 0.526 0.584 

Frailty-Adjusted Models    

FI + FM 0.627 0.600 0.654 

FI + RoA 0.607 0.579 0.635 

FI + DIOR 0.592 0.564 0.621 

Age, Sex, and Frailty-Adjusted models    

FI Only 0.643 0.616 0.670 

FI + FM 0.656 0.629 0.683 

FI + FM Interaction 0.662 0.636 0.689 

FI + RoA 0.644 0.617 0.671 

FI + RoA Interaction 0.645 0.618 0.672 

FI + DIOR 0.647 0.620 0.674 

FI + DIOR Interaction 0.659 0.632 0.686 

FI + FM + DIOR 0.659 0.633 0.686 

Highest AUC for each category of models is bolded, excluding the combined resilience model (bottom row). 

95% confidence intervals are calculated using the Delong method. 
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Appendix K. Continuous Sensitivity Analysis 

Mortality 

FM 

Table 105. Logistic Regression Models for FM and Mortality (Continuous) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM 1.03 1.03, 
1.03 

<0.001 0.94 0.94, 
0.94 

<0.001 0.97 0.96, 
0.97 

<0.001 0.97 0.96, 
0.97 

<0.001 

Frailty Index     1.32 1.31, 
1.33 

<0.001 1.23 1.21, 
1.24 

<0.001 1.23 1.22, 
1.24 

<0.001 

Age       1.05 1.05, 
1.06 

<0.001 1.05 1.05, 
1.06 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.94 1.82, 
2.06 

<0.001 1.94 1.83, 
2.06 

<0.001 

FM * Frailty 
Index  

         1.00 1.00, 
1.00 

0.032 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. FM odds ratio represents a change of 0.01. 
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RoA 

Table 106. Logistic Regression Models for RoA and Mortality (Continuous) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

RoA 3.65 3.52, 
3.78 

<0.001 2.48 2.38, 
2.59 

<0.001 0.89 0.80, 
0.98 

0.018 1.12 0.99, 
1.26 

0.066 

Frailty Index     1.08 1.08, 
1.09 

<0.001 1.15 1.14, 
1.15 

<0.001 1.17 1.16, 
1.18 

<0.001 

Age       1.08 1.08, 
1.09 

<0.001 1.08 1.07, 
1.09 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.81 1.70, 
1.92 

<0.001 1.82 1.71, 
1.93 

<0.001 

RoA * Frailty 
Index 

         0.98 0.98, 
0.99 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. RoA odds ratio represents a change of 0.01.  

 

Note: there was problematic multicollinearity (indicated by variance inflation factor greater than 

5) in models 3 and 4 between age and RoA, so these coefficients should not be interpreted. 

Rather, these models are used for comparing AUC only.  
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DIOR-FI 

Table 107. Logistic Regression Models for DIOR-FI and Mortality (Continuous) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

DIOR-FI 1.17 1.16, 
1.17 

<0.001 1.04 1.03, 
1.05 

<0.001 1.04 1.03, 
1.05 

<0.001 1.11 1.09, 
1.12 

<0.001 

Frailty Index 
(41-item) 

   1.15 1.14, 
1.16 

<0.001 1.12 1.11, 
1.12 

<0.001 1.15 1.14, 
1.16 

<0.001 

Age       1.08 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.79 1.69, 
1.90 

<0.001 1.83 1.72, 
1.94 

<0.001 

DIOR-FI * 
Frailty Index 
(41-item) 

         1.00 1.0, 
1.00 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 
4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 
minimal important difference. DIOR-FI odds ratio represents a change of 0.01. 
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AUC 

 

Table 108. Discrimination of Mortality Models (Continuous) 

Model AUC Lower 95% Upper 95% 

Unadjusted Models    

FI Only 0.778 0.772 0.784 

RoA Only 0.801 0.795 0.806 

FM Only 0.597 0.590 0.604 

DIOR Only 0.716 0.710 0.722 

Frailty-Adjusted Models    

FI + RoA 0.812 0.807 0.817 

FI + FM 0.811 0.806 0.816 

FI + DIOR 0.783 0.778 0.789 

Age, Sex, and Frailty-Adjusted models    

FI Only 0.824 0.819 0.829 

FI + RoA 0.824 0.819 0.829 

FI + RoA Interaction 0.824 0.819 0.829 

FI + FM 0.830 0.826 0.835 

FI + FM Interaction 0.830 0.826 0.835 

FI + DIOR 0.826 0.821 0.831 

FI + DIOR Interaction 0.828 0.823 0.833 

FI + FM + RoA + DIOR 0.832 0.828 0.837 

FI + FM + RoA + DIOR + All FI Interactions 0.833 0.828 0.838 

Highest AUC for each category of models is bolded, excluding the combined resilience models (bottom two 

rows). 95% confidence intervals are calculated using the Delong method. 
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Recovery 

FM 

Table 109. Logistic Regression Models for FM and Recovery (Continuous) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

1.00 1.00, 
1.01 

0.10 0.98 0.98, 
0.99 

<0.001 0.98 0.98, 
0.99 

<0.001 0.98 0.97, 
0.99 

<0.001 

FM 1.01 1.00, 
1.02 

0.008 1.06 1.05, 
1.08 

<0.001 1.05 1.03, 
1.06 

<0.001 1.04 1.02, 
1.06 

<0.001 

Frailty Index    0.80 0.76, 
0.84 

<0.001 0.84 0.80, 
0.88 

<0.001 0.82 0.77, 
0.87 

<0.001 

Age       0.97 0.96, 
0.98 

<0.001 0.97 0.96, 
0.98 

<0.001 

FM * Frailty 
Index 

         1.00 1.00, 
1.00 

0.2 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age and sex. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, 

the proposed minimal important difference. 
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RoA 

Table 110. Logistic Regression Models for RoA and Recovery (Continuous) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-
36 PFS 

0.99 0.99, 
1.00 

<0.001 0.99 0.98, 
0.99 

<0.001 0.99 0.98, 
0.99 

<0.001 0.98 0.98, 
0.99 

<0.001 

RoA 0.50 0.43, 
0.59 

<0.001 0.53 0.45, 
0.63 

<0.001 0.79 0.60, 
1.04 

0.10 0.56 0.37, 
0.84 

0.006 

Frailty Index    0.96 0.93, 
1.00 

0.046 0.95 0.91, 
0.98 

0.004 0.92 0.87, 
0.96 

<0.001 

Age       0.97 0.95, 
0.98 

<0.001 0.97 0.95, 
0.99 

0.003 

RoA * Frailty 
Index 

         1.02 1.00, 
1.04 

0.021 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age and sex. Model 4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, 

the proposed minimal important difference. 
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DIOR-FI 

Table 111. Logistic Regression Models for DIOR-FI and Recovery (Continuous) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

1.00 0.99, 
1.00 

0.043 0.99 0.98, 
0.99 

<0.001 0.99 0.98, 
0.99 

<0.001 0.98 0.98, 
0.99 

<0.001 

DIOR-FI 0.95 0.93, 
0.98 

<0.001 0.98 0.95, 
1.00 

0.094 0.97 0.94, 
1.00 

0.055 0.90 0.85, 
0.95 

<0.001 

Frailty Index    0.93 0.89, 
0.96 

<0.001 0.95 0.91, 
0.98 

0.006 0.90 0.85, 
0.94 

<0.001 

Age       0.95 0.94, 
0.96 

<0.001 0.95 0.94, 
0.97 

<0.001 

DIOR-FI * 
Frailty Index 

         1.01 1.00, 
1.01 

<0.001 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age and sex. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, 

the proposed minimal important difference. 
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AUC 

 

Table 112. Discrimination of Recovery Models (Continuous) 

Model AUC Lower 95% Upper 95% 

Unadjusted Models    

FI Only 0.581 0.553 0.610 

RoA Only 0.632 0.605 0.659 

FM Only 0.548 0.519 0.576 

DIOR Only 0.559 0.531 0.587 

Frailty-Adjusted Models    

FI + RoA 0.632 0.605 0.659 

FI + FM 0.645 0.619 0.672 

FI + DIOR 0.587 0.559 0.615 

Age, Sex, and Frailty-Adjusted models    

FI Only 0.643 0.616 0.670 

FI + RoA 0.643 0.616 0.670 

FI + RoA Interaction 0.646 0.619 0.673 

FI + FM 0.663 0.637 0.690 

FI + FM Interaction 0.665 0.638 0.692 

FI + DIOR 0.644 0.618 0.671 

FI + DIOR Interaction 0.653 0.627 0.680 

FI + FM + RoA + DIOR 0.666 0.640 0.693 

Highest AUC for each category of models is bolded, excluding the combined resilience model (bottom row). 

95% confidence intervals are calculated using the Delong method. 
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Appendix L. Alternative Frailty Index Sensitivity Analyses  

51-item FI Results (Mortality) 

FM 

Table 113. Logistic Regression Models for FM and Mortality (51-item FI) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM Category             

    Expected Ager — —  — —  — —  — —  

    Adapter 1.81 1.71, 
1.93 

<0.001 2.08 1.94, 
2.22 

<0.001 1.19 1.11, 
1.28 

<0.001 1.50 1.28, 
1.75 

<0.001 

    Premature 
Frailer 

4.27 4.02, 
4.54 

<0.001 0.49 0.45, 
0.54 

<0.001 0.75 0.68, 
0.82 

<0.001 1.60 1.30, 
1.96 

<0.001 

Frailty Index    1.26 1.25, 
1.27 

<0.001 1.19 1.18, 
1.20 

<0.001 1.23 1.21, 
1.24 

<0.001 

Age       1.07 1.06, 
1.07 

<0.001 1.07 1.06, 
1.07 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.80 1.70, 
1.91 

<0.001 1.82 1.72, 
1.94 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         0.97 0.95, 
0.99 

0.005 

    Premature 
Frailer * Frailty 
Index 

         0.94 0.92, 
0.95 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 

4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 

minimal important difference. 
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RoA 

Table 114. Logistic Regression Models for RoA and Mortality (51-item FI) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 0.21 0.20, 
0.23 

<0.001 0.37 0.34, 
0.40 

<0.001 0.78 0.70, 
0.86 

<0.001 0.77 0.65, 
0.92 

0.003 

    Fast Ager 5.96 5.58, 
6.36 

<0.001 3.00 2.78, 
3.23 

<0.001 0.99 0.89, 
1.10 

0.8 1.48 1.24, 
1.76 

<0.001 

Frailty Index    1.12 1.11, 
1.12 

<0.001 1.15 1.15, 
1.16 

<0.001 1.17 1.16, 
1.18 

<0.001 

Age       1.07 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.79 1.68, 
1.90 

<0.001 1.80 1.69, 
1.91 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         1.02 0.99, 
1.05 

0.2 

    Fast Ager * 
Frailty Index 

         0.96 0.95, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 

4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, the proposed 

minimal important difference. 
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DIOR-FI 

Table 115. Logistic Regression Models for DIOR-FI and Mortality (51-item FI) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 0.38 0.35, 
0.41 

<0.001 0.62 0.58, 
0.67 

<0.001 0.68 0.63, 
0.74 

<0.001 0.57 0.49, 
0.66 

<0.001 

    Low Stability 3.20 3.02, 
3.40 

<0.001 1.25 1.16, 
1.35 

<0.001 1.29 1.20, 
1.40 

<0.001 1.82 1.55, 
2.14 

<0.001 

Frailty Index    1.17 1.17, 
1.18 

<0.001 1.14 1.13, 
1.15 

<0.001 1.15 1.14, 
1.16 

<0.001 

Age       1.07 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.79 1.69, 
1.90 

<0.001 1.80 1.70, 
1.91 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         1.03 1.02, 
1.05 

<0.001 

    Low Stability 
* Frailty Index 

         0.97 0.96, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 

4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 

minimal important difference. 
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51-item FI Results (Recovery) 

FM 

Table 116. Logistic Regression Models for FM and Recovery (51-item FI) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

1.03 0.99, 
1.07 

0.2 0.86 0.81, 
0.91 

<0.001 0.85 0.80, 
0.91 

<0.001 0.74 0.68, 
0.80 

<0.001 

FM Category             

    Expected 
Ager 

— —  — —  — —  — —  

    Adapter 0.56 0.43, 
0.74 

<0.001 0.63 0.47, 
0.82 

<0.001 0.75 0.57, 
1.00 

0.051 0.80 0.44, 
1.46 

0.5 

    Premature 
Frailer 

1.05 0.77, 
1.42 

0.8 1.74 1.25, 
2.41 

<0.001 1.42 1.01, 
1.99 

0.043 0.13 0.05, 
0.32 

<0.001 

Frailty Index    0.86 0.82, 
0.89 

<0.001 0.88 0.84, 
0.92 

<0.001 0.75 0.69, 
0.80 

<0.001 

Age       0.96 0.95, 
0.97 

<0.001 0.96 0.95, 
0.97 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         0.99 0.90, 
1.09 

0.9 

    Premature 
Frailer * Frailty 
Index 

         1.23 1.15, 
1.33 

<0.001 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 

proposed minimal important difference. 

 



 

263 
 

 

RoA 

Table 117. Logistic Regression Models for RoA and Recovery (51-item FI) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

0.94 0.91, 
0.97 

<0.001 0.83 0.78, 
0.88 

<0.001 0.83 0.78, 
0.88 

<0.001 0.81 0.76, 
0.86 

<0.001 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 1.59 1.25, 
2.02 

<0.001 1.56 1.22, 
1.98 

<0.001 1.24 0.96, 
1.60 

0.10 1.74 1.11, 
2.74 

0.016 

    Fast Ager 0.38 0.27, 
0.51 

<0.001 0.47 0.34, 
0.65 

<0.001 0.84 0.56, 
1.26 

0.4 0.47 0.20, 
1.06 

0.075 

Frailty Index    0.91 0.87, 
0.94 

<0.001 0.90 0.86, 
0.94 

<0.001 0.89 0.84, 
0.94 

<0.001 

Age       0.96 0.95, 
0.98 

<0.001 0.96 0.95, 
0.98 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         0.95 0.89, 
1.00 

0.061 

    Fast Ager * 
Frailty Index 

         1.04 0.98, 
1.11 

0.2 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 

proposed minimal important difference. 

 



 

264 
 

 

DIOR-FI 

Table 118. Logistic Regression Models for DIOR-FI and Recovery (51-item FI) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

0.97 0.93, 
1.00 

0.044 0.82 0.77, 
0.87 

<0.001 0.82 0.77, 
0.88 

<0.001 0.79 0.74, 
0.85 

<0.001 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 1.56 1.22, 
2.00 

<0.001 1.52 1.18, 
1.95 

0.001 1.44 1.12, 
1.86 

0.005 3.09 1.88, 
5.12 

<0.001 

    Low Stability 0.79 0.59, 
1.04 

0.091 1.04 0.78, 
1.39 

0.8 0.97 0.72, 
1.30 

0.8 0.66 0.33, 
1.31 

0.2 

Frailty Index    0.88 0.84, 
0.91 

<0.001 0.90 0.86, 
0.94 

<0.001 0.89 0.85, 
0.94 

<0.001 

Age       0.96 0.94, 
0.97 

<0.001 0.96 0.95, 
0.97 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         0.87 0.81, 
0.94 

<0.001 

    Low Stability 
* Frailty Index 

         1.02 0.97, 
1.08 

0.4 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 

proposed minimal important difference. 
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56-item FI Results (Mortality) 

FM 

Table 119. Logistic Regression Models for FM and Mortality (56-item FI) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM Category             

    Expected Ager — —  — —  — —  — —  

    Adapter 1.67 1.57, 
1.78 

<0.001 2.01 1.88, 
2.15 

<0.001 1.17 1.09, 
1.26 

<0.001 1.27 1.08, 
1.50 

0.003 

    Premature 
Frailer 

3.94 3.71, 
4.19 

<0.001 0.47 0.43, 
0.52 

<0.001 0.71 0.64, 
0.78 

<0.001 1.28 1.04, 
1.58 

0.018 

Frailty Index    1.29 1.28, 
1.30 

<0.001 1.21 1.20, 
1.22 

<0.001 1.23 1.22, 
1.25 

<0.001 

Age       1.07 1.06, 
1.07 

<0.001 1.07 1.06, 
1.07 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.80 1.70, 
1.91 

<0.001 1.81 1.71, 
1.92 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         0.99 0.97, 
1.01 

0.5 

    Premature 
Frailer * Frailty 
Index 

         0.95 0.93, 
0.96 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 

4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 

minimal important difference. 
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RoA 

Table 120. Logistic Regression Models for RoA and Mortality (56-item FI) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 0.20 0.18, 
0.22 

<0.001 0.35 0.32, 
0.38 

<0.001 0.74 0.67, 
0.83 

<0.001 0.76 0.64, 
0.91 

0.003 

    Fast Ager 5.84 5.47, 
6.24 

<0.001 2.99 2.78, 
3.23 

<0.001 1.00 0.90, 
1.12 

>0.9 1.48 1.24, 
1.77 

<0.001 

Frailty Index    1.12 1.12, 
1.13 

<0.001 1.17 1.16, 
1.17 

<0.001 1.18 1.17, 
1.19 

<0.001 

Age       1.07 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.78 1.68, 
1.89 

<0.001 1.79 1.69, 
1.90 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         1.01 0.98, 
1.05 

0.4 

    Fast Ager * 
Frailty Index 

         0.96 0.95, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 

4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, the proposed 

minimal important difference. 
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DIOR-FI 

Table 121. Logistic Regression Models for DIOR-FI and Mortality (56-item FI) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 0.42 0.39, 
0.45 

<0.001 0.70 0.65, 
0.75 

<0.001 0.76 0.71, 
0.82 

<0.001 0.61 0.53, 
0.71 

<0.001 

    Low Stability 3.03 2.86, 
3.22 

<0.001 1.20 1.12, 
1.29 

<0.001 1.22 1.13, 
1.32 

<0.001 1.57 1.33, 
1.85 

<0.001 

Frailty Index    1.20 1.19, 
1.20 

<0.001 1.16 1.15, 
1.17 

<0.001 1.16 1.15, 
1.17 

<0.001 

Age       1.07 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.78 1.68, 
1.89 

<0.001 1.79 1.69, 
1.90 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         1.04 1.02, 
1.06 

<0.001 

    Low Stability 
* Frailty Index 

         0.98 0.97, 
0.99 

0.003 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 

4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 

minimal important difference. 
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56-item FI Results (Recovery) 

FM 

Table 122. Logistic Regression Models for FM and Recovery (56-item FI) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

1.03 0.99, 
1.07 

0.2 0.86 0.81, 
0.91 

<0.001 0.85 0.80, 
0.90 

<0.001 0.76 0.71, 
0.82 

<0.001 

FM Category             

    Expected 
Ager 

— —  — —  — —  — —  

    Adapter 0.62 0.47, 
0.81 

<0.001 0.67 0.51, 
0.88 

0.004 0.81 0.61, 
1.07 

0.13 0.91 0.49, 
1.67 

0.8 

    Premature 
Frailer 

1.07 0.80, 
1.45 

0.6 1.74 1.26, 
2.40 

<0.001 1.44 1.03, 
2.01 

0.033 0.19 0.08, 
0.45 

<0.001 

Frailty Index    0.85 0.81, 
0.89 

<0.001 0.87 0.83, 
0.91 

<0.001 0.76 0.71, 
0.82 

<0.001 

Age       0.96 0.95, 
0.97 

<0.001 0.96 0.95, 
0.97 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         0.98 0.88, 
1.08 

0.7 

    Premature 
Frailer * Frailty 
Index 

         1.20 1.12, 
1.30 

<0.001 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 

proposed minimal important difference. 
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RoA 

Table 123. Logistic Regression Models for RoA and Recovery (56-item FI) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

0.94 0.91, 
0.97 

<0.001 0.83 0.78, 
0.88 

<0.001 0.83 0.79, 
0.89 

<0.001 0.82 0.77, 
0.87 

<0.001 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 1.55 1.22, 
1.97 

<0.001 1.51 1.18, 
1.91 

<0.001 1.17 0.90, 
1.52 

0.2 1.68 1.06, 
2.68 

0.027 

    Fast Ager 0.37 0.27, 
0.51 

<0.001 0.46 0.33, 
0.63 

<0.001 0.83 0.55, 
1.23 

0.3 0.50 0.21, 
1.14 

0.10 

Frailty Index    0.90 0.87, 
0.94 

<0.001 0.89 0.86, 
0.93 

<0.001 0.89 0.84, 
0.94 

<0.001 

Age       0.96 0.95, 
0.98 

<0.001 0.96 0.95, 
0.98 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         0.94 0.88, 
1.00 

0.051 

    Fast Ager * 
Frailty Index 

         1.04 0.98, 
1.11 

0.2 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 

proposed minimal important difference. 
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DIOR-FI 

Table 124. Logistic Regression Models for DIOR-FI and Recovery (56-item FI) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

Modified SF-36 
PFS 

0.96 0.93, 
1.00 

0.025 0.83 0.78, 
0.88 

<0.001 0.83 0.78, 
0.88 

<0.001 0.81 0.76, 
0.86 

<0.001 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 1.30 1.01, 
1.66 

0.039 1.29 1.01, 
1.65 

0.044 1.20 0.93, 
1.55 

0.2 2.15 1.31, 
3.53 

0.003 

    Low Stability 0.60 0.45, 
0.80 

<0.001 0.78 0.58, 
1.04 

0.095 0.72 0.53, 
0.97 

0.033 0.51 0.25, 
1.03 

0.063 

Frailty Index    0.88 0.84, 
0.92 

<0.001 0.90 0.86, 
0.94 

<0.001 0.90 0.85, 
0.95 

<0.001 

Age       0.95 0.94, 
0.97 

<0.001 0.96 0.94, 
0.97 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         0.91 0.84, 
0.97 

0.007 

    Low Stability 
* Frailty Index 

         1.02 0.97, 
1.09 

0.4 

Model 1 is adjusted for function. Model 2 is further adjusted for frailty. Model 3 is further adjusted for 

age. Model 4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the 

proposed minimal important difference. 
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Comparison of 41, 51, and 56 (Mortality) 

 

Table 125. Comparison of Model Discrimination Using Different Frailty Indexes (Mortality) 

 41-Item FI 51-Item FI 56-Item FI 

 AUC Lower 
95% 

Upper 
95% 

AUC Lower 
95% 

Upper 
95% 

AUC Lower 
95% 

Upper 
95% 

Unadjusted Models          

FI Only 0.778 0.772 0.784 0.784 0.779 0.789 0.784 0.779 0.789 

FM Only 0.651 0.645 0.657 0.652 0.646 0.658 0.643 0.636 0.649 

RoA Only 0.753 0.747 0.758 0.759 0.754 0.764 0.761 0.756 0.766 

DIOR Only 0.684 0.678 0.689 0.685 0.679 0.690 0.673 0.667 0.679 

Frailty-Adjusted Models          

FI + FM 0.801 0.796 0.806 0.799 0.794 0.804 0.799 0.793 0.804 

FI + RoA 0.802 0.796 0.807 0.806 0.801 0.812 0.807 0.802 0.813 

FI + DIOR 0.780 0.775 0.786 0.786 0.781 0.792 0.785 0.780 0.791 

Age and Sex Adjusted Models 

FI Only 0.824 0.819 0.829 0.828 0.823 0.832 0.828 0.823 0.833 

FI + FM 0.827 0.822 0.832 0.829 0.824 0.834 0.829 0.824 0.834 

FI + FM Interaction 0.828 0.823 0.833 0.829 0.825 0.834 0.829 0.825 0.834 

FI + RoA 0.824 0.819 0.829 0.828 0.823 0.832 0.828 0.823 0.833 

FI + RoA Interaction 0.825 0.820 0.829 0.828 0.823 0.833 0.828 0.823 0.833 

FI + DIOR 0.827 0.822 0.832 0.830 0.825 0.835 0.829 0.824 0.834 

FI + DIOR Interaction 0.828 0.823 0.832 0.830 0.825 0.835 0.829 0.824 0.834 

FI + FM + RoA + DIOR 0.830 0.825 0.834 0.831 0.826 0.836 0.830 0.826 0.835 

FI + FM + RoA + DIOR + 
All FI Interactions 

0.831 0.826 0.836 0.832 0.827 0.836 0.831 0.826 0.836 

Highest AUC for each category of models is bolded, excluding the combined resilience models (bottom two 

rows). 95% confidence intervals are calculated using the Delong method. 
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Figure 46. Comparison of Interactions Using Different Frailty Indexes (Mortality) 

Visualized interactions correspond to the frailty, age, and sex adjusted models. X-axis is the level of FI. Y-

axis is the predicted probability of mortality.  
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Comparison of 41, 51, and 56 (Recovery) 

 

Table 126. Comparison of Model AUC using Different Frailty Indexes (Recovery) 

 41-Item FI 51-Item FI 56-Item FI 

 AUC Lower 
95% 

Upper 
95% 

AUC Lower 
95% 

Upper 
95% 

AUC Lower 
95% 

Upper 
95% 

Unadjusted Models          

FI Only 0.581 0.553 0.610 0.611 0.583 0.639 0.608 0.580 0.636 

FM Only 0.556 0.527 0.585 0.558 0.529 0.587 0.549 0.520 0.579 

RoA Only 0.625 0.597 0.652 0.628 0.600 0.655 0.625 0.598 0.653 

DIOR Only 0.573 0.544 0.601 0.568 0.539 0.597 0.569 0.540 0.597 

Frailty-Adjusted Models          

FI + FM 0.618 0.591 0.646 0.634 0.606 0.661 0.628 0.601 0.655 

FI + RoA 0.628 0.601 0.655 0.643 0.616 0.670 0.640 0.613 0.667 

FI + DIOR 0.604 0.576 0.632 0.625 0.597 0.653 0.616 0.589 0.644 

Frailty and Age-Adjusted Models 

FI Only 0.643 0.616 0.670 0.655 0.628 0.682 0.654 0.628 0.681 

FI + FM 0.651 0.624 0.678 0.662 0.636 0.689 0.660 0.633 0.687 

FI + FM Interaction 0.672 0.646 0.698 0.687 0.661 0.713 0.679 0.653 0.705 

FI + RoA 0.647 0.620 0.674 0.659 0.632 0.685 0.656 0.629 0.683 

FI + RoA Interaction 0.652 0.625 0.679 0.665 0.638 0.691 0.663 0.636 0.690 

FI + DIOR 0.654 0.627 0.680 0.663 0.636 0.689 0.659 0.632 0.685 

FI + DIOR Interaction 0.666 0.639 0.693 0.675 0.649 0.702 0.667 0.641 0.694 

FI + FM + DIOR 0.660 0.633 0.686 0.669 0.642 0.695 0.664 0.638 0.690 

Highest AUC for each category of models is bolded, excluding the combined resilience model (bottom row). 

95% confidence intervals are calculated using the Delong method. 
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Figure 47. Comparison of Interactions Using Different Frailty Indexes (Recovery) 

Visualized interactions correspond to the function, frailty, and age-adjusted models. X-axis is the level of FI. 

Y-axis is the predicted probability of full recovery.  
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Appendix M. Household Random Effects Sensitivity Analysis 

Run for mortality only (not necessary in recovery sample due to negligible design effect, see 

section 6.1.2). 

 

FM 

Table 127. Logistic Regression Models for FM and Mortality (Household Clustering) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

FM Category             

    Expected Ager — —  — —  — —  — —  

    Adapter 1.81 1.70, 
1.92 

<0.001 2.40 2.25, 
2.57 

<0.001 1.36 1.26, 
1.47 

<0.001 1.85 1.61, 
2.12 

<0.001 

    Premature 
Frailer 

4.21 3.96, 
4.48 

<0.001 0.38 0.35, 
0.42 

<0.001 0.63 0.57, 
0.70 

<0.001 1.58 1.30, 
1.91 

<0.001 

Frailty Index    1.25 1.24, 
1.26 

<0.001 1.18 1.17, 
1.19 

<0.001 1.24 1.22, 
1.26 

<0.001 

Age       1.06 1.06, 
1.07 

<0.001 1.06 1.06, 
1.06 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.85 1.74, 
1.97 

<0.001 1.89 1.78, 
2.01 

<0.001 

FM Category * 
Frailty Index 

            

    Adapter * 
Frailty Index 

         0.96 0.94, 
0.98 

<0.001 

    Premature 
Frailer * Frailty 
Index 

         0.92 0.90, 
0.93 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 

4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 

minimal important difference. 
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RoA 

Table 128. Logistic Regression Models for RoA and Mortality (Household Clustering) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

RoA Category             

    Average Ager — —  — —  — —  — —  

    Slow Ager 0.27 0.25, 
0.29 

<0.001 0.41 0.37, 
0.44 

<0.001 0.84 0.76, 
0.92 

<0.001 0.88 0.76, 
1.01 

0.060 

    Fast Ager 6.22 5.83, 
6.65 

<0.001 2.99 2.77, 
3.22 

<0.001 0.96 0.87, 
1.07 

0.5 1.40 1.20, 
1.64 

<0.001 

Frailty Index    1.10 1.10, 
1.11 

<0.001 1.14 1.13, 
1.14 

<0.001 1.15 1.14, 
1.16 

<0.001 

Age       1.07 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.81 1.71, 
1.92 

<0.001 1.82 1.72, 
1.94 

<0.001 

RoA Category * 
Frailty Index 

            

    Slow Ager * 
Frailty Index 

         1.01 0.98, 
1.03 

0.5 

    Fast Ager * 
Frailty Index 

         0.97 0.95, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 

4 further includes a frailty interaction Note: FI odds ratio represents a change of 0.03, the proposed 

minimal important difference. 
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DIOR-FI 

Table 129. Logistic Regression Models for DIOR-FI and Mortality (Household Clustering) 

 Model 1 Model 2 Model 3 Model 4 

Characteristic OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

OR 95% 
CI 

p-
value 

DIOR-FI 
Category 

            

    Average 
Stability 

— —  — —  — —  — —  

    High Stability 0.38 0.35, 
0.40 

<0.001 0.58 0.54, 
0.62 

<0.001 0.65 0.60, 
0.71 

<0.001 0.55 0.49, 
0.63 

<0.001 

    Low Stability 3.15 2.96, 
3.34 

<0.001 1.23 1.15, 
1.33 

<0.001 1.29 1.20, 
1.40 

<0.001 1.83 1.59, 
2.11 

<0.001 

Frailty Index    1.15 1.14, 
1.16 

<0.001 1.12 1.11, 
1.13 

<0.001 1.13 1.12, 
1.14 

<0.001 

Age       1.07 1.07, 
1.08 

<0.001 1.07 1.07, 
1.08 

<0.001 

Sex             

    Female       — —  — —  

    Male       1.81 1.71, 
1.92 

<0.001 1.83 1.73, 
1.95 

<0.001 

DIOR-FI 
Category * 
Frailty Index 

            

    High Stability 
* Frailty Index 

         1.04 1.02, 
1.06 

<0.001 

    Low Stability 
* Frailty Index 

         0.97 0.96, 
0.98 

<0.001 

Model 1 is unadjusted. Model 2 is adjusted for frailty. Model 3 is further adjusted for age and sex. Model 

4 further includes a frailty interaction. Note: FI odds ratio represents a change of 0.03, the proposed 

minimal important difference. 
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AUC 

 

Table 130. Discrimination of Mortality Models (Household Clustering) 

Model AUC Lower 95% Upper 95% 

Unadjusted Models    

FI Only 0.778 0.772 0.784 

FM Only 0.650 0.644 0.657 

RoA Only 0.751 0.746 0.757 

DIOR Only 0.684 0.678 0.690 

Frailty-Adjusted Models    

FI + FM 0.801 0.796 0.806 

FI + RoA 0.801 0.796 0.806 

FI + DIOR 0.781 0.775 0.786 

Age, sex, and frailty-adjusted models    

FI Only 0.824 0.819 0.829 

FI + FM 0.827 0.823 0.832 

FI + FM Interaction 0.828 0.824 0.833 

FI + RoA 0.824 0.819 0.829 

FI + RoA Interaction 0.824 0.819 0.829 

FI + DIOR 0.827 0.822 0.832 

FI + DIOR Interaction 0.828 0.823 0.832 

FI + FM + RoA + DIOR 0.830 0.825 0.834 

FI + FM + RoA + DIOR + All FI Interactions 0.831 0.826 0.836 

Highest AUC for each category of models is bolded, excluding the combined resilience models (bottom two 

rows). 95% confidence intervals are calculated using the Delong method. 
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Figure 48. Comparison of Interactions Effects on Mortality (Household Clustering) 

Visualized interactions correspond to the frailty, age, and sex adjusted models. X-axis is the level of FI. Y-

axis is the predicted probability of mortality.  
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