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Abstract

We study the connection between a special class of monomial ideals and CW com-

plexes. Let I denote the ideal It(L2t+1), i.e., a path ideal of line graph of projective

dimension 2. We study cellular resolutions and discrete Morse theory as a tool to find

a CW complex that supports the minimal free resolution of I. As a result, we have

constructed an explicit Morse matching that induces a CW complex supporting the

minimal free resolution of I. We also used the results from Bayer and Sturmfels [6]

to prove that the minimal free resolution of I is supported on a solid (t+ 2)-gon.
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Chapter 1

Introduction

Monomial ideals and CW (or cell) complexes are common objects in algebra and

topology, respectively. In this research, we study the connection between free resolu-

tions of monomial ideals and CW complexes. A free resolution of a monomial ideal I

is a sequence of free modules connected by module homomorphisms, i.e., differentials,

which describes relations among elements in I. A chain complex of a CW complex

has exactly the same structure with different terminologies. Thus, one can observe

some correspondence between monomial ideals and CW complexes. For example, the

projective dimension and generators of a monomial ideal correspond to the dimension

and vertices of a CW complex, respectively. Moreover, we can construct a free resolu-

tion of a monomial ideal I from the chain complex of some CW complex X, through

a process called homogenization. In this case, we say that I has a free resolution

supported on X, or that I has a cellular resolution. We will discuss this in detail in

Chapter 4.

The concept of describing monomial ideals using topological objects was first

introduced by Taylor [25] in the case of simplicial complexes, which are a special

class of CW complexes. Taylor concluded that every monomial ideal has a simplicial

resolution, i.e., a free resolution supported on a simplicial complex. In particular,

any monomial ideal with r generators has a free resolution supported on an (r − 1)-

simplex, which we call the Taylor complex, and this free resolution is called the Taylor

resolution [25]. Another famous simplicial resolution is the Lyubeznik resolution [21],

which is “smaller” than the Taylor resolution as the chosen simplicial complex is a

subcomplex of the Taylor complex. However, both Taylor and Lyubeznik resolutions

are not minimal in general. The minimal free resolution is important, because it is

unique (up to isomorphism) and therefore reveals the most amount of information of

a monomial ideal, compared to other free resolutions. Thus, people started looking

for simplicial complexes that support the minimal free resolution of a monomial ideal
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after Taylor’s study.

In 1998, Bayer, Peeva, and Sturmfels [5] provided criteria for a simplicial resolution

to be minimal. Based on this result, it is not hard to conclude that not every monomial

ideal has a minimal simplicial resolution, e.g., path ideals of line graphs and cycles of

projective dimension 2 [27]. Later in the same year, Bayer and Sturmfels [6] extended

the study from simplicial complexes to (regular) CW complexes. In particular, they

introduced the concept of cellular resolutions and generalized the criteria in [5] to

CW complexes. This allows us to explore minimal cellular resolutions of monomial

ideals, especially those that do not have minimal simplicial resolution. Although CW

complexes are much more general than simplicial complexes, they are not enough to

describe all monomial ideals, because we know from Velasco [26] that some monomial

ideals do not have a minimal free resolution supported even on a CW complex. Based

on the study of Bayer and Sturmfels [6], people have been trying to find out what

classes of monomial ideals have a minimal cellular resolution. Below are some results

from relevant studies.

In 2002, Batzies and Welker [4] constructed minimal cellular resolutions for two

special classes of monomial ideals (i.e., generic and shellable ideals) based on Chari’s

reformulation [9] of Forman’s discrete Morse theory [14]. In 2017, Faridi and Hersey [13]

found that every monomial ideal with projective dimension 1 has a minimal simplicial

resolution. In 2020, Fernández-Ramos and Gimenez [1] also used discrete Morse the-

ory to develop a pruning algorithm that produces a cellular resolution, which is not

always minimal, from the Taylor resolution. In the same year, Barile and Macchia [3]

presented a construction of minimal free resolutions for edge ideals of forests using

discrete Morse theory. Later on, we [27] attempted to extend the result from [13] to

projective dimension 2, but instead, we concluded that path ideals of line graphs and

cycles with projective dimension 2 do not have minimal simplicial resolution.

This research is a continuation of [27]. We want to know whether these latter two

classes of monomial ideals have minimal cellular resolutions. In this thesis, we focus

on path ideals of line graphs of projective dimension 2 (i.e., It(L2t+1)). We will also

implement discrete Morse theory, which provides us with a process to obtain a cellular

resolution by reducing the Taylor complex using homogeneous acyclic matchings. We

will then determine whether the obtained cellular resolution is minimal.
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We start with preliminaries in Chapter 2. In this chapter, we define graded mod-

ules and (minimal) free resolutions. We will also introduce some invariants of mono-

mial ideals (e.g., projective dimension and graded Betti numbers). Chapter 3 focuses

on basics of Algebraic topology, which includes the construction of CW complexes and

chain complexes of regular CW complexes. We will also provide examples for better

illustration. In Chapter 4, we connect CW chain complexes with free resolutions of

monomial ideals by constructing cellular resolutions. Then we build a homogeneous

acyclic matching and conclude that this matching produces the minimal cellular reso-

lution of It(L2t+1). Based on the critical cells, which we obtained from our matching,

we believe that the minimal free resolution of It(L2t+1) is supported on a solid (t+2)-

gon, which we verified in the final section of Chapter 4 using the criterion from Bayer

and Sturmfels [6]. In summary, we have found a homogeneous acyclic matching that

induces the minimal cellular resolution, which is supported on a solid polygon, of

path ideals of line graphs with projective dimension 2.



Chapter 2

Graded Objects

2.1 Graded polynomial rings and modules

Definition 2.1.1 ([2], p.102). A (N-) graded ring is a ring A that has a direct sum

decomposition A = ⊕∞
i=0Ai where (Ai)

∞
i=0 is a family of additive subgroups of A such

that AiAj ⊂ Ai+j for all i, j ≥ 0. Let A be a graded ring and M an A-module.

Then M is graded if it has a direct sum decomposition M = ⊕∞
i=0Mi where (Mi)

∞
i=0

is a family of subgroups of M such that AiMj ⊂ Mi+j for all i, j ≥ 0. An element

x ∈ M is homogeneous of degree i if x ∈ Mi for some i ≥ 0. Every element y ∈ M

can be uniquely written as
∑

i yi where all but finitely many yi’s are 0. The non-zero

components in the sum are the homogeneous components of y.

For any polynomial ring S = k[x1, . . . , xn] over a field k, we introduce a standard

grading from Peeva ([24], p. 1-2): For any monomial m = xc1
1 · · · xcn

n , we define

deg(m) = c1 + · · · + cn. We have S = ⊕∞
i=0Si where each Si is the k-vector space

spanned by all monomials of degree i. For any polynomial f ∈ S, we say that f is

homogeneous of degree i if f ∈ Si for some i ≥ 0. Also, f can be uniquely written

as a finite sum
∑

i fi, and the non-zero components in the sum are the homogeneous

components of f (of degree i).

The polynomial ring S = k[x1, . . . , xn] is also Nn-graded by

mdeg(xi) = ei

where the symbol mdeg represents multidegree and ei is the i-th standard vector in Nn

([24], p. 101). We have S = ⊕m is a monomialSm and SmSm′ = Smm′ for all monomials

m,m′, where each Sm is a k-vector space spanned by the monomial m. In this case,

we say that S is multigraded, instead of Nn-graded.

Similarly, an S-module M is multigraded if it has a direct sum decomposition

M = ⊕m is a monomialMm where (Mm)m is a monomial is a family of subgroups of M such

that SmTm′ ⊂ Mmm′ for all monomials m,m′.

4
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Example 2.1.2. Let A = k[x, y, z], f = xyz + 3x2y, and g = yz + x3 + 2x2y − 5z4.

Then f is homogeneous of degree 3, but g is not homogeneous. The homogeneous

components of g are yz, x3 + 2x2y, and −5z4. Moreover, mdeg(xyz) = (1, 1, 1) and

mdeg(x2y) = (2, 1, 0).

Definition 2.1.3 ([24], p.6). Let A be a ring and M be a finitely generated graded

A-module. For any p ∈ N, we denote by M(−p) the graded A-module such that

M(−p)i = Mi−p for all i. Then M(−p) is called the module M shifted p degrees, and

p is the shift.

In the case of multigrading, we denote by M(m) the graded S-module such that

M(m)m′ = Mm′/m where Mm′/m = 0 if m � m′.

Proposition 2.1.4 ([24], p.2). The following are equivalent.

(1) For each f ∈ J , all homogeneous components of f also belong to J .

(2) J = ⊕∞
i=0Ji, where Ji = J ∩ Si.

(3) If J̃ is the ideal generated by all homogeneous elements in J , then J = J̃ .

(4) J has a system of homogeneous generators.

Proof. (1) =⇒ (2): (1) implies J ⊂ ⊕∞
i=0Ji, and the other inclusion is clear.

(2) =⇒ (3): (2) implies J ⊂ J̃ . Since J contains the generators of J̃ , J̃ ⊂ J .

(3) =⇒ (4): The homogeneous generators of J̃ also generate J as J = J̃ .

(4) =⇒ (1): Every homogeneous component of f is generated by the system of

homogeneous generators in (4) and therefore in J .

Definition 2.1.5. A proper ideal J in S is graded if it satisfies any of the four

conditions in Proposition 2.1.4.

Let S = k[x1, . . . , xn], where k is a field. From now on, we denote the quotient

ring S/I by R, where I is a graded ideal in S. Also, when we say “module”, we mean

R-module, unless otherwise specified.
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2.2 Graded homomorphisms and free resolutions

Definition 2.2.1 ([24], p.6-7). Let R be a ring and M,N graded R-modules. A

homomorphism φ : M → N has degree i if deg(φ(x)) = i+ deg(x) for every homoge-

neous element x ∈ M − ker(φ). Let Homi(M,N) denote the set of homomorphisms

from M to N that have degree i. Then a homomorphism φ ∈ Hom(M,N) is graded

or homogeneous if φ ∈ Homi(M,N) for some i ∈ N.

Example 2.2.2. Let A = k[x, y, z]. The homomorphism

A⊕ A(−1)⊕ A(−2)

(
x3 y4 z5

)

−−−−−−−−−−→ A

has degree 3.

Definition 2.2.3. Let M be a finitely generated R-module. A free resolution of M

is an exact sequence

F : . . . −→ Fi
di−→ Fi−1 −→ . . . −→ F1

d1−→ F0
d0−→ M −→ 0

such that each Fi is a finitely generated free R-module. We say that F is graded if

M is graded and each di have degree 0.

A graded free resolution can be constructed by induction as follows.

Construction 2.2.4 ([24], p.17-18). Let M be a finitely generated graded R-module.

Step 0: Pick a set of homogeneous generators m1, . . . ,mr of M with degree

α1, . . . , αr, respectively. Set F0 = R(−α1)⊕ · · · ⊕R(−αr) and define d0 : F0 → M by

1j �→ mj for each 1 ≤ j ≤ r, where 1j denotes the 1-generator of R(−αj).

Step 1: Pick a set of homogeneous generators f1, . . . , f� of ker(d0) with degree

ξ1, . . . , ξ�, respectively. Set F1 = R(−ξ1) ⊕ · · · ⊕ R(−ξ�) and define d1 : F1 → F0 by

1j → fj for each 1 ≤ j ≤ �, where 1j denotes the 1-generator of R(−ξj).

Now assume by induction that Fi and di are defined in Step i.

Step i+ 1: Pick a set of homogeneous generators g1, . . . , gs of ker(di) with degree

γ1, . . . , γs, respectively. Set Fi+1 = R(−γ1)⊕· · ·⊕R(−γs) and define di+1 : Fi+1 → Fi

by 1j �→ gj for each 1 ≤ j ≤ s, where 1j denotes the 1-generator of R(−γj).

One can check with definition that the above construction indeed gives us a graded

free resolution of M .
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Example 2.2.5. Let A = k[x, y, z] and B = (y, xz, x3). Then

A(−5)

⎛
⎜⎜⎜⎜⎜⎜⎝

x2

−z

y

⎞
⎟⎟⎟⎟⎟⎟⎠

−−−−→

A(−3)

⊕
A(−4)

⊕
A(−4)

⎛
⎜⎜⎜⎜⎜⎜⎝

xz x3 0

−y 0 x2

0 −y −z

⎞
⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−→

A(−1)

⊕
A(−2)

⊕
A(−3)

(
y xz x3

)

−−−−−−−−−→ A → A/B → 0

is a free resolution of A/B (as an A-module).

Given a monomial ideal J , similar to Construction 2.2.4, we can construct a free

resolution of J in the multigraded setting. The only difference is the notation of the

graded R-modules.

Construction 2.2.6 (Multigraded free resolution). Let J be a finitely generated

monomial ideal in S.

Step 0: Pick a (minimal) set of generators m1, . . . ,mr of J . Set F0 = R(m1) ⊕
· · ·⊕R(mr) and define d0 : F0 → M by 1j �→ mj for each 1 ≤ j ≤ r, where 1j denotes

the 1-generator of R(mj).

Step 1: Pick a set of generators f1, . . . , f� of ker(d0). Set F1 = R(α1)⊕· · ·⊕R(α�),

where αi = lcm{mj : aj = 0} and aj is a coefficient in the expression fi =
∑r

j=1 aj1j.

Define d1 : F1 → F0 by 1′j → fj for each 1 ≤ j ≤ �, where 1′j denotes the 1-generator

of R(αj).

Now assume by induction that Fi and di are defined in Step i.

Step i+ 1: Pick a set of generators g1, . . . , gs of ker(di). Set Fi+1 = R(ξ1)⊕ · · · ⊕
R(ξs), where each ξi is defined similarly as in Step 1. Define di+1 : Fi+1 → Fi by

1′′j �→ gj for each 1 ≤ j ≤ s, where 1j denotes the 1-generator of R(ξj).

Example 2.2.7. The free resolution of Example 2.2.5 in the multigraded setting is

given by

A(x3yz)

⎛
⎜⎜⎜⎜⎜⎜⎝

x2

−z

y

⎞
⎟⎟⎟⎟⎟⎟⎠

−−−−→

A(xyz)

⊕
A(x3y)

⊕
A(x3z)

⎛
⎜⎜⎜⎜⎜⎜⎝

xz x3 0

−y 0 x2

0 −y −z

⎞
⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−→

A(y)

⊕
A(xz)

⊕
A(x3)

(
y xz x3

)

−−−−−−−−−→ A → A/B → 0.
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Definition 2.2.8 ([24], p.29). A graded free resolution F of a finitely generated

graded R-module M is minimal if for all i ≥ 0, di+1(Fi+1) ⊂ mFi, where m denotes

the maximal ideal (x1, . . . , xn) in S. Equivalently, the chosen set of homogeneous

generators of ker(di) is minimal at each step in Construction 2.2.4.

In fact, the graded free resolution in Example 2.2.5 is minimal.

Definition 2.2.9. LetM and N be R-modules with free resolutions F andG, respec-

tively. We say that F and G are isomorphic if there is a collection of isomorphisms

φi : Fi → Gi such that φi−1di = ∂iφi for each i. In other words, the following diagram

commutes.

F:

G:

· · ·

· · ·

· · ·

· · · di+1
Fi

di
Fi−1

di−1 d1
F0

d0
M 0

· · · ∂i+1
Gi

∂i
Gi−1

∂i−1 ∂1
G0

∂0
N 0

φi φi−1 φ0 φ−1

Theorem 2.2.10 ([16]). Let M be a finitely generated graded R-module. Then there

is a unique minimal graded free resolution of M , up to isomorphism.

By “uniqueness” from the above theorem, for a finitely generated graded R-module

M , we may say “the” minimal graded free resolution of M . Furthermore, we can now

introduce some numerical invariants of the minimal graded free resolution, such as

Betti numbers.

2.3 Graded Betti numbers

Definition 2.3.1. LetM be a finitely generated graded R-module and F the minimal

graded free resolution of M . The i-th Betti number of M over R is defined as

βR
i (M) = rank(Fi).

The graded Betti numbers of M are defined as

βR
i,j(M) = the number of summands in Fi of the form R(−j).
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The multigraded Betti numbers of M are defined as

βR
i,m(M) = the number of summands in Fi of the form R(m),

where m is a monomial.

When there is no ambiguity aboutM and R, we simply write βi, instead of βR
i (M),

similar for βi,j and βi,m.

Remark 2.3.2. If our graded free resolution also admits a multigrading, by definition,

we have

βi =
∑
j

βi,j =
∑
j

∑
deg(m)=j

βi,m.

We usually summarize the Betti numbers as a table called the Betti diagram.

β0 β1 β2 . . .
0 β0,0 β1,1 β2,2 . . .
1 β0,1 β1,2 β2,3 . . .
2 β0,2 β1,3 β2,4 . . .
3 β0,3 β1,4 β2,5 . . .
...

...
...

...
...

Table 2.1: The Betti diagram

The number at the j-th row and i-th column represents the graded Betti number

βi,i+j. A zero is denoted by “-”. Notice that we do not have βi,j for j < i in the

diagram, because they are all 0 (see [24], p.43).

In general, it is not easy to compute these Betti numbers by hand. One reason

is that the minimal graded free resolution is hard to construct, since we need to

determine at each step whether the generating set we pick is minimal. Thus, we

usually need to use softwares to compute the free resolutions, as well as the Betti

numbers. In particular, we use Macaulay2 [15] for most computation in this research.

Another invariant of a minimal graded free resolution is its “length”, which is

called “projective dimension”. In other words, if we are building a minimal graded

free resolution by Construction 2.2.4, the “length” represents the number of steps

needed until we get ker(di) = 0 (therefore Fi+1 = 0) for some i. By Hilbert’s syzygy

theorem [16], we know that this number is finite, and in fact, at most n (recall

S = k[x1, . . . , xn]). This gives rise to the following definition.
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Definition 2.3.3. LetM be a finitely generated graded R-module and F the minimal

graded free resolution of M . The projective dimension of M is defined as

pd(M) = max{i : βR
i (M) = 0}.

Sometimes, pd(M) is also called the length of F.

Remark 2.3.4. Let I be a monomial ideal (as an S-module). Let F and G be the

minimal graded free resolution of I and S/I, respectively. The only difference between

F and G is that G has one extra component S → S/I, while the rest are exactly the

same as F, i.e., Fi = Gi+1 for all i ≥ 0. It follows that

βS
i,j(I) = βS

i+1,j(S/I) and pd(I) = pd(S/I)− 1,

for all i, j with i ≥ 0. Furthermore, we always have βS
0,0(S/I) = 1.

Since either of F or G will provide all information of the other, we may say that

computing the minimal graded free resolutions of I and S/I are equivalent.

Example 2.3.5. Consider the graded free resolution from Example 2.2.5, which, we

know, is minimal. The graded Betti numbers are

β0,0 = β1,1 = β1,2 = β1,3 = β2,3 = β3,5 = 1, β2,4 = 2.

We have pd(A/B) = 3. The Betti diagram is given by:

1 3 3 1
0 1 1 - -
1 - 1 1 -
2 - 1 2 1

Table 2.2: Betti diagram of A/B

For B, it follows that pd(B) = 2 and the Betti diagram for B is:

3 3 1
1 1 - -
2 1 1 -
3 1 2 1

Table 2.3: Betti diagram of B
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Resolutions are useful because they give algebraic invariants of monomial ideals.

An effective method to calculate them is to homogenize the chain complex of topo-

logical objects, and then use discrete homotopy theory to “shrink” them. We will see

more details in Chapter 4.

Next, we introduce the basic concepts of topological objects that are needed in

this research.



Chapter 3

Basics from Algebraic Topology

3.1 Topological space

Definition 3.1.1. A topology on a set X is a collection T of subsets of X having

the following properties:

(1) ∅, X ∈ T .

(2) T is closed under arbitrary union and finite intersection.

A set X together with a specified topology T is called a topological space. A subset

U of X is an open set if U ∈ T . In this case, we say that U is open in X.

Example 3.1.2. Let X = {a,∞,∅}. The following are topologies on X.

(a) T1 = {∅, X}

(b) T2 = {∅, {a}, X}

(c) T3 = {∅, {∞,∅}, X}

(d) T4 = {∅, {a}, {∞}, {∅}, {a,∞}, {a,∅}, {∞,∅}, X}

Definition 3.1.3. Let X be a set and B a collection of subsets of X such that:

(1) For each x ∈ X, there is a B ∈ B containing x.

(2) If x ∈ B1 ∩B2, where B1, B2 ∈ B, then there exists B3 ∈ B such that x ∈ B3 ⊂
B1 ∩ B2.

We define the topology T generated by B as follows: A subset U of X is open in X if

for each x ∈ U , there exists B ∈ B such that x ∈ B ⊂ U . The collection B is called

the basis for T , and the elements in B are called the basis elements.

12
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It is not hard to check that the set T constructed in the above definition is indeed

a topology on X.

Example 3.1.4. Given any x = (x1, . . . , xn) ∈ Rn, define ||x|| = √∑n
i=1 x

2
i . The

Euclidean space Rn is the topological space generated by the open balls B(a, δ) =

{x ∈ Rn : ||x− a|| < δ}, where δ > 0.

Definition 3.1.5. Let X be a topological space and Y a subset of X, then the

collection {U ∩ Y : U is open in X} is a topology on Y , which is called the subspace

topology. With this topology, Y is called a subspce of X.

Again, one can verify that the collection in the above definition is indeed a topology

on Y using the following equations.

⋃
α∈A

(Y ∩ Uα) = Y ∩
(⋃

α∈A
Uα

)

n⋂
j=1

(Y ∩ Uj) = Y ∩
(

n⋂
j=1

Uj

)

Example 3.1.6. The n-sphere Sn = {x ∈ Rn+1 : ||x|| = 1} is a subspace of the

Euclidean space Rn+1.

Definition 3.1.7. Let X, Y be topological spaces. A function f : X → Y is contin-

uous if for any open set V in Y , the set f−1(V ) is open in X. If f is invertible and

both f and f−1 are continuous, f is called a homeomorphism. Furthermore, if there

is a homeomorphism between X and Y , we say that X and Y are homeomorphic and

denote this by X ∼= Y .

Definition 3.1.8. A topological space that is homeomorphic to a (closed unit) n-

dimensional ball, i.e., Bn = {x ∈ Rn : ||x|| ≤ 1}, is called an n-cell.

Another version of the above definition uses open balls. In this research, we use

the “closed” version as it makes the construction of a CW complex easier to explain.

Example 3.1.9. The space [−10, 10] ⊂ R is a 1-cell, as it is homeomorphic to

B1 = [−1, 1] (with homeomorphism x �→ x/10).
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Proposition 3.1.10. Let X be a topological space and ∼ an equivalence relation on

X. Let [x] denote the equivalence class of x ∈ X. Define X/∼ = {[x] : x ∈ X}
and π : X → X/∼ by x �→ [x]. Then T = {U ⊂ X/∼ : π−1(U) is open in X} is a

topology on X/∼.

Proof. Notice that∅ ∈ T is vacuously true andX/∼ ∈ T by the fact that π−1(X/∼) =

X. Also, T is closed under arbitrary union and finite intersection because the topol-

ogy on X is.

The topological space X/∼ is called the quotient space of X under ∼, and the

topology T on X/∼ is called the quotient topology.

Example 3.1.11. Consider X = [0, 1] and ∼ defined by x ∼ y ⇐⇒ x−y ∈ Z. Then

X/∼ ∼= S1 with homeomorphism f : X/∼ → S1 defined as [x] �→ (cos 2πx, sin 2πx).

This can be illustrated as follows.

0 1

/∼

0 ∼ 1

Figure 3.1: The quotient space of [0, 1] under ∼

Definition 3.1.12 ([19], p.63). Let X, Y be disjoint topological spaces, A ⊂ X, and

f : A → Y a continuous function. Let ∼ be the equivalence relation generated by

x ∼ f(x) for all x ∈ A. Then the topological space Z = (X ∪ Y )/∼ is said to be

obtained by attaching X to Y over f , denoted by Y ∪f X. The space Z is called the

adjunction space.

Example 3.1.13. Let X = Y = B2. Below picture illustrates the space obtained by

attaching X to Y over the (identity) embedding id : ∂B2 = S1 ↪→ Y .

X

Y

XXXXXX

YYYYYY

X

Y

/∼

Figure 3.2: Topological space obtained by attaching two disks over the identity map
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3.2 CW complexes

Now we are ready to construct a CW complex.

Construction 3.2.1 ([19], p.65). The construction of a CW complex X is by induc-

tion on the dimension n.

Step 0: Let X0 be a non-empty discrete (i.e., finite or countably infinite) set of

points (i.e., 0-cells).

Assume by induction that Xn has been constructed from Xn−1 in Step n.

Step n+1: LetXn+1 be the topological space obtained by simultaneously attaching

(n+1)-cells (i.e., each homeomorphic to Bn+1) to Xn along the boundaries (i.e., over

continuous map Sn → Xn).

Finally, we defineX =
⋃

n Xn. This procedure can either stop after a finite number

of steps or continue infinitely. The dimension of X is the same as the dimension of

the cell in X that has the highest dimension. Each Xn constructed in Step n is called

the n-skeleton (of X).

The j-cells in X are called faces of X, also, we say that ∅ is a face of X of

dimension −1. If σ, τ are two faces of X such that σ ⊂ τ , we say that σ is a subface

of τ , which we denote by σ ≤ τ . If σ � τ , we say that σ is a proper subface of τ ,

denoted by σ < τ . A CW complex is regular if at each step j of Construction 3.2.1,

the j-cells are attached to Xj−1 via homeomorphisms.

By construction, we have

X0 ⊂ X1 ⊂ X2 ⊂ · · ·

and in general, the dimension of X can be infinite. To distinguish from the n-skeleton,

we denote by Xn the collection of n-dimensional faces of X.

Notice that by our definition, “σ ⊂ τ” is equivalent to “σ ≤ τ”. If the j-cells

are defined as the open balls, then we say that σ ≤ τ if σ̄ ⊂ τ̄ , where σ̄ denotes the

closure of σ, i.e., σ̄ = σ ∪ ∂σ.

Example 3.2.2 (A non-regular CW complex). The 2-sphere S2 is a 2-dimensional

CW complex obtained by attaching B2 along the boundary to a point via the constant

map.
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B2

Figure 3.3: S2 obtained by attaching the boundary of B2 to a point

The S2 is this example is not regular, since the (constant) attaching map is not

one-to-one (therefore not a homeomorphism).

Observe that S2 can also be regular, depending on its CW structure (i.e., con-

struction), if we obtain S2 by attaching 2 vertices, 2 edges, and 2 disks together via

(identity) embeddings (see Kozlov [18], p.35, for a detailed discussion about Sn).

Example 3.2.3. A solid square is a 2-dimensional CW complex attached by identity

maps (the 2-cell is chosen to be a closed square, as it is homeomorphic to D2).

Figure 3.4: A solid square as a CW complex homeomorphic to a 2-cell

Furthermore, this is a regular CW complex.

The most commonly known example of a regular CW complex is a (non-empty)

simplicial complex.

Definition 3.2.4 (Abstract simplicial complex). Let V be a finite set and Δ a subset

of the power set of V . Then Δ is called an (abstract) simplicial complex if for every
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F ∈ Δ, G ⊂ F implies G ∈ Δ. Every F ∈ Δ is called a face of Δ. The dimension of

F is defined by

dim(F ) = |F | − 1

and

dim(Δ) = max{dim(F ) : F ∈ Δ}.

Further, let n = |V |, then Δ is called an (n − 1)-simplex if it contains exactly one

maximal face.

Example 3.2.5. Every non-empty simplicial complex X is a regular CW complex.

The n-skeleton of X consists of all i-simplices in X for i ≤ n.

Definition 3.2.6 ([23], p.114). Let X be a CW-complex and σ a face of X. A face

σ′ < σ in X is called a facet of σ if there is no face τ of X such that σ′ < τ < σ. If

there is no face τ of X such that σ < τ , then σ is called a facet of X.

Below is a supplementary lemma for the definition of an incidence function.

Lemma 3.2.7 ([8], p.264). Let X be a regular CW complex. Let σ, τ be two faces of

X such that τ ≤ σ and dim(σ) − dim(τ) = 2, then there are exactly two facets of σ

(with dimension dim(σ)− 1) that contain τ .

3.3 Cellular chain complex of regular CW complexes

We first define as follows the incidence function ε on a CW complex, which is essential

for defining boundary maps.

Definition 3.3.1 ([8], p.264-265). Let X be a regular CW complex with vertex set

V and Γ the set of faces of X. We say that ε : Γ × Γ → {−1, 0, 1} is an incidence

function on X if:

(1) For all v ∈ V , ε({v},∅) = 1.

(2) For any two faces F,G of X, ε(F,G) = 0 if and only if G ≤ F and dim(F ) −
dim(G) = 1.
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(3) For any two faces F,G of X with G ≤ F and dim(F )− dim(G) = 2,

ε(F,H1)ε(H1, G) + ε(F,H2)ε(H2, G) = 0,

where H1, H2 are the two facets of F that contain G.

Lemma 3.3.2 ([8], p.265). Every regular CW complex can be equipped with an inci-

dence function.

Definition 3.3.3 ([6]). Let X be a regular CW complex equipped with an incidence

function ε. Define the free k-module

Ci(X; k) =
⊕
F∈Xi

kF,

where kF denotes the k-module generated by the face F and k is an arbitrary field.

Let i ≥ 1 and define the boundary map ∂j : Ci(X; k) → Ci−1(X; k) by

∂i(F ) =
∑

G∈Xi−1

ε(F,G)G,

where F ∈ X i. Then the chain connected by the boundary maps

C(X; k) : · · · ∂i+1−−→ Ci(X; k)
∂i−→ Ci−1(X; k)

∂i−1−−→ · · · ∂2−→ C1(X; k)
∂1−→ C0(X; k) → 0

is called the (oriented) chain complex of X. The chain

C̃(X; k) : · · · ∂i+1−−→ Ci(X; k)
∂i−→ Ci−1(X; k)

∂i−1−−→ · · · ∂1−→ C0(X; k)
∂0−→ C−1(X; k) → 0,

where ∂0 is defined by {v} �→ ∅ for each {v} ∈ X0, is called the augmented chain

complex of X, where C−1(X; k) = k∅, i.e., the k-module generated by the element

∅. For each integer i ≥ −1, the i-th homology H̃i(X; k) = ker ∂i/im∂i+1 of C̃(X; k) is

called the reduced cellular homology group of degree i. If H̃i(X; k) = 0 for all i ≥ −1,

we say that X is acyclic.

The only difference between the chain complex and augmented chain complex of

X is that the latter contains an additional k-module C−1(X; k). Moreover, it is not

hard to verify that ∂2 = 0 by the definition of an incidence function.

Remark 3.3.4. Let X be a CW complex. Then H̃−1(X; k) = 0 because the ∂0 is

onto as X0 = ∅.
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In fact, when X is a simplicial complex, then ([22], p.9)

H̃−1(X; k) =

⎧⎨
⎩k X = {∅},
0 otherwise,

where {∅} is called the empty (abstract) simplicial complex, which is not a CW

complex by Construction 3.2.1.

Example 3.3.5. Consider the solid square from Example 3.2.3, which we denote by

X.

a

e4

d e3 c

e2

be1

F

Figure 3.5: A solid square as a 2-dimensional CW complex

The following defines an incidence function ε on X:

ε({a},∅) = ε({b},∅) = ε({c},∅) = ε({d},∅) = 1,

ε(e1, {a}) = ε(e2, {b}) = ε(e3, {c}) = ε(e4, {d}) = −1,

ε(e1, {b}) = ε(e2, {c}) = ε(e3, {d}) = ε(e4, {a}) = 1,

ε(F, e1) = ε(F, e2) = ε(F, e3) = ε(F, e4) = 1.

The oriented chain complex C(X; k) is given by

0 → kF

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−→

ke1

⊕
ke2

⊕
ke3

⊕
ke4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 1

1 −1 0 0

0 1 −1 0

0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−→

k{a}
⊕

k{b}
⊕

k{c}
⊕

k{d}

→ 0.
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The augmented chain complex C̃(X; k) is given by

0 → kF

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−→

ke1

⊕
ke2

⊕
ke3

⊕
ke4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 1

1 −1 0 0

0 1 −1 0

0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−→

k{a}
⊕

k{b}
⊕

k{c}
⊕

k{d}

(
1 1 1 1

)

−−−−−−−−−−→ k∅ → 0.

Furthermore, one can show that X is acyclic by verifying ker ∂i = im∂i+1.

Lemma 3.3.6. The line graph Ln and solid n-gon are acyclic for any integer n ≥ 2.

Proof. We will prove this lemma directly using the definition. Consider any solid

n-gon (see below), which we denote by X.

e1

e2

e3

e4

en

v1 v2

v3

v4v5

vn F

Figure 3.6: A solid n-gon as a 2-dimensional CW complex

Define the incidence function ε on X by

1 = ε({vi},∅) for each i = 1, . . . n,

−1 = ε(ei, {vi}) for each i = 1, . . . , n,

1 = ε(en, {v1}) = ε(ei, {vi+1}) for each i = 1, . . . , n− 1,

1 = ε(F, ei) for each i = 1, . . . , n.
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Then the augmented chain complex of X is given by

0 → kF

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−→

ke1

⊕
ke2

⊕
...

⊕
ken

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 · · · 1

1 −1 · · · 0

0 1 · · · 0

0 0 · · · −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−→

k{v1}
⊕

k{v2}
⊕
...

⊕
k{vn}

(
1 1 · · · 1

)

−−−−−−−−−−−→ k∅ → 0.

By Remark 3.3.4, H̃−1(X; k) = 0. It remains to check that ker ∂i ⊂ im∂i+1 for

i = 0, 1, 2. Using matrix algebra, we can calculate the explicit forms of the kernels:

ker ∂0 = {(−a1 − · · · − an−1){v1}+ a1{v2}+ · · ·+ an−1{vn} : a1, . . . , an−1 ∈ k},
ker ∂1 = {b(e1 + e2 + · · ·+ en) : b ∈ k},
ker ∂2 = 0 = im∂3.

Let a1, . . . , an−1, b ∈ k. Observe that

∂1

(
n−1∑
i=1

n−1∑
j=i

ajei

)
= (−a1 − · · · − an−1){v1}+ a1{v2}+ · · ·+ an−1{vn},

∂2(bF ) = b(e1 + e2 + · · ·+ en),

which shows that ker ∂0 ⊂ im∂1 and ker ∂1 ⊂ im∂2. This completes the proof for solid

n-gon. We know that Ln, as a 1-dimensional simplicial complex, is acyclic, since it is

a tree graph.

3.4 Polyhedral cell complex

A polyhedral cell complex X, which consists of convex polytopes, is a special case of

(regular) CW complex, since we can build it using Construction 3.2.1 by choosing the

n-cells in X to be the n-polytopes and attaching them using certain homeomorphisms

(see Kozlov [18], p.25, for details).

Instead of constructing a polyhedral cell complex as a CW complex, we can define

it in a way that is easier to understand, i.e., less abstract.
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Definition 3.4.1. (1) ([8], p.223) The convex hull of a finite set A ⊂ Rn, i.e., the

smallest convex set that contains A, is called a polytope.

(2) ([22], p.62) A (finite) collection X of polytopes is called a polyhedral cell complex

if it satisfies the following properties.

(a) If P ∈ X, then every face of P belongs to X.

(b) For all P,Q ∈ X, P ∩Q is a face of both P and Q.

Each polytope in X is called a face of X. The dimension of X is defined as

dim(X) = max{dim(P ) : P ∈ X}.

By convention, dim(∅) = −1.

Example 3.4.2. A solid square is a 2-dimensional polyhedral cell complex. In fact,

it can be represented as

X = {{a, b, c, d}, {a, b}, {b, c}, {c, d}, {a, d}, {a}, {b}, {c}, {d},∅}.

{a, d}

{c, d}

{b, c}

{a, b}a b

cd

{a, b, c, d}

Figure 3.7: A solid square as a 2-dimensional polyhedral cell complex

Example 3.4.3. Every (finite) simplicial complex is a polyhedral cell complex.



Chapter 4

Cellular Resolutions of Monomial Ideals

Now we improve this study by exploring more general topological objects, namely,

CW complexes. In this research, we want to determine whether I has minimal cellular

resolutions, based on the idea from Bayer and Sturmfels [6].

Throughout this thesis, I = (m1, . . . ,mr) means that {m1, . . . ,mr} is the minimal

monomial generating set of I.

4.1 Cellular Resolutions

In this section, we introduce the connection between cellular chain complex of regular

CW complexes and free resolutions of monomial ideals by defining a free resolution

supported on a regular CW complex.

We start by constructing a chain complex of a monomial ideal from a regular CW

complex.

Construction 4.1.1 (Homogenization [6, 7]). Let I = (m1, . . . ,mr) be a monomial

ideal in S and X a (finite) regular CW complex with r vertices v1, . . . , vr labeled by

the monomials m1, . . . ,mr, respectively. For each face F of X, we label F by the

monomial

mF = lcm{mi : {vi} ≤ F}.

We also say that F has multidegree mF .

Consider any chain complex C(X; k) of X.

C(X; k) : · · · ∂i+1−−→ Ci(X; k)
∂i−→ Ci−1(X; k)

∂i−1−−→ · · · ∂1−→ C0(X; k) → 0

For each i ≥ 0, define

Ci =
⊕
F∈Xi

S(mF ),

23
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i.e., the free S-module with basis {F : F ∈ X i}. Also, define the map di : Ci → Ci−1

(where i ≥ 1) by

di(F ) =
∑

G∈Xi−1

ε(F,G)
mF

mG

1G,

where F is a basis element of Ci, ε is the incident function for C(X; k) on X, and 1G

denotes the 1-generator of S(−mG), which is a summand of Ci−1 =
⊕

F∈Xi−1 S(mF ).

Finally, the sequence of S-modules

CX : · · · di+1−−→ Ci
di−→ Ci−1

di−1−−→ · · · d1−→ C0
d0−→ I → 0,

where d0 =
(
m1 m2 · · · mr

)
, is a (multigraded) chain complex of I. We also

call it a cellular complex of I. The above process is called homogenization of cellular

chain complex.

If the cellular complex CX in Construction 4.1.1 is a free resolution of I, we say

that X supports a free resolution of I or I has a free resolution supported on X. In

this case, CX is called a cellular resolution of I.

Example 4.1.2. Consider the chain complex in Example 3.3.5 and recall Figure 3.5.

0 → kF

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−→

ke1

⊕
ke2

⊕
ke3

⊕
ke4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 1

1 −1 0 0

0 1 −1 0

0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−→

k{a}
⊕

k{b}
⊕

k{c}
⊕

k{d}

→ 0.

To construct a cellular complex of I = (xy, yz, zw, wu), we start by labeling the faces

of X.
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xy

xywu

wu zwu zw

yzw

yzxyz

xyzwu

Figure 4.1: A solid square with faces labeled by monomials

The cellular complex CX obtained from Construction 4.1.1 is

0 → S(xyzwu)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wu

xu

xy

z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−→

S(xyz)

⊕
S(yzw)

⊕
S(zwu)

⊕
S(xywu)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z 0 0 wu

x −w 0 0

0 y −u 0

0 0 z −xy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−−−−→

S(xy)

⊕
S(yz)

⊕
S(zw)

⊕
S(wu)

(
xy yz zw wu

)

−−−−−−−−−−−−−−→ I → 0.

In fact, this is the (multigraded) minimal free resolution of I. Therefore, we conclude

that X supports the minimal free resolution of I.

In general, it is not easy to determine whether a regular CW complex supports

a free resolution of a monomial ideal, especially when we need to further verify the

minimality of the free resolution, as we have to go through complicated calculation.

Therefore, we will introduce a theorem that helps us simplify the problem, as well as

the criterion for the minimality of the cellular resolution.

First, we need the concept of “induced subcomplex”. Let I = (m1, . . . ,mr) and

X a regular CW complex on r vertices, whose faces are labeled by monomials (the

same way in Construction 4.1.1).
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Definition 4.1.3. Let m be a monomial in S. The induced subcomplex X≤m ⊂ X is

defined as

X≤m = {F : F is a face of X such that mF | m},

which is a CW complex that is contained in X and consists of the faces of X whose

label divides m.

Example 4.1.4. Recall the labeled solid square X from Example 4.1.2 and consider

m = xyzw. We have

m{a} = xy,m{b} = yz,m{c} = zw,me1 = xyz,me2 = yzw,

which are all faces of X with multidegrees dividing xyzw, so Xxyzw = {{a}, {b}, {c},
e1, e2}, which is illustrated below.

a e1 b

e2

c

Figure 4.2: The induced subcomplex X≤xyzw

Theorem 4.1.5 ([6]). The regular CW complex X supports a free resolution of I if

and only if the subcomplex X≤m is either acyclic or empty for every monomial m ∈ S.

Moreover, the free resolution of I supported on X is minimal if and only if for all

faces F,G of X such that G < F , we have mF = mG.

Note that this theorem generalizes Lemma 2.1 in [5] from simplical complexes to

regular CW complexes.

Remark 4.1.6. To determine whether a regular CW complex supports a free reso-

lution of a monomial ideal I using Theorem 4.1.5, it suffices to check that X≤m is

acyclic for all monomials m in the lcm lattice (see Definition 4.1.7) of I.
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Definition 4.1.7. Let P be a poset. Then P is called a lattice if for any a, b ∈ P , the

set {a, b} has a join (i.e., least upper bound) and a meet (i.e., greatest lower bound).

Let I be a monomial ideal in S. The lcm lattice of I is the poset of lcm’s among

the (minimal) monomial generators of I with the partial order “|”. It is usually

represented as a Hasse diagram.

Example 4.1.8. Let I = (x1x2, x2x3, x3x4).

x1x2x3x4

x1x2x3 x2x3x4

x1x2 x3x4 x2x3

1

Figure 4.3: The lcm lattice of I

Example 4.1.9. The CW complex from Example 4.1.2 satisfies the conditions in

Theorem 4.1.5.

If we know that the minimal free resolution of a monomial ideal I is supported

on a CW complex X, then we can directly read all the Betti numbers of I from the

labeling of X.

Example 4.1.10. Recall the solid square X (Figure 4.1) labeled by the generators

of I2(L5) from Example 4.1.2. We know that X has one 2-dimensional face labeled

by xyzwu, which corresponds to S(xyzwu) in the minimal free resolution of I2(L5).

This tells us that

β2,xyzwu = β2,5 = 1.

Similarly, the four 1-dimensional faces, i.e., edges, ofX labeled by xyz, yzw, zwu, xyuw

corresponds to the Betti numbers

β1,xyz, β1,yzw, β1,zwu, β1,xywu = 1,
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respectively, which tells us β1,3 = 3 and β1,4 = 1, and so on. From the labeling of X,

we can directly obtain the Betti diagram of I2(L5):

4 4 1
1 - - -
2 4 3 -
3 - 1 1

Table 4.1: Betti diagram of I2(L5)

Simplicial complexes are a special class of CW complexes, and they are useful for

calculating algebraic invariants of monomial ideals. As we previously mentioned, a

simplicial complex Δ supporting the minimal free resolution of I implies that Δ is

acyclic and the (graded) Betti numbers of I agree with the labels of Δ.

Example 4.1.11. Recall the ideal B from Example 2.2.5. We knew that the graded

Betti numbers of B are

β0,1 = β0,2 = β0,3 = β1,3 = β2,5 = 1, β1,4 = 2.

The minimal free resolution of B is supported on the following simplicial complex Δ,

which we know to be acyclic.

x3y

xyzx3z

x3 y

xz

x3yz

Figure 4.4: (Labeled) Δ that supports the minimal free resolution of B

The Betti numbers agree with the labels of Δ because β0,1 = 1 corresponds to Δ

having 1 vertex of degree 1, namely, deg(y) = 1; β1,4 = 2 corresponds to Δ having

2 edges of degree 4, namely, deg(x3y) = deg(x3z) = 4, and so on. In other words,

given a graded Betti number βi,j, the integers i and j correspond to the dimension

and degree, respectively, of a face of Δ.
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In 1966, Taylor [25] found that for any monomial ideal I = (m1, . . . ,mr), I has a

free resolution, which we call the Taylor resolution, supported on an (r− 1)-simplex.

This result can also be verified by Theorem 4.1.5, since X≤m is always a simplex,

therefore acyclic. The free resolution from Example 4.1.11 is a Taylor resolution.

However, in general, the Taylor resolution is not minimal. In other words, a sim-

plex “resolves everything”, but it does not always give the minimal free resolution.

Then we want to know what simplicial complexes do and what classes of monomial

ideals have minimal simplicial resolutions. Faridi and Hersey [13] have partially an-

swered this question. They concluded that all monomial ideals of projective dimension

1 have a minimal free resolution supported on a 1-dimensional simplicial complex (not

necessarily unique).

Example 4.1.12. Let I = (x1x2x3, x1x2x4, x1x3x4, x2x3x4). The minimal free res-

olution of I is supported on both of the below simplicial complexes, in particular,

trees.

x2x3x4

x1x2x3x4 x1x2x3x4

x1x2x4x1x3x4

x1x2x3x4

x1x2x3

Figure 4.5: A tree supporting the minimal free resolution of I

x1x2x3

x1x2x3x4

x1x2x4

x1x2x3x4

x1x3x4

x1x2x3x4

x2x3x4

Figure 4.6: Another tree supporting the minimal free resolution of I

Then a natural follow-up question would be: How about higher projective dimen-

sions, e.g., projective dimension 2?

We [27] gave a negative answer to this question in projective dimension 2. Let I

denote the path ideal of line graphs It(Ln) or cycles It(Cn). In [27], for pd(I) = 2,

we calculated the Betti numbers of I, which are given in the form β0 = β1 = m and
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β2 = 1 for some m ∈ Z. Using the well-known Kruskal-Katona theorem [20, 17] in

combinatorics, which characterizes f -vectors (see Definition 4.1.13) of acyclic simpli-

cial complexes, we found that there exist acyclic simplicial complexes that have the

f -vector of the form (m,m, 1), but none of them support the minimal free resolution

of I. This means that I does not have a minimal simplicial resolution.

Definition 4.1.13. Let Δ be a simplicial complex and r = dim(Δ). The vector

f = (f0, f1, . . . , fr), where fi denotes the number of i-dimensional faces of Δ, is called

the f -vector of Δ.

Example 4.1.14. Let I = (xy, yz, zw, wu). We know from [27] that the Betti dia-

gram of I is given as follows.

4 4 1
1 - - -
2 4 3 -
3 - 1 1

Table 4.2: Betti diagram of I

If the minimal free resolution of I is supported on a simplicial complex Δ, then

the f -vector of Δ would be (4, 4, 1). It is not hard to check that below is only possible

form of Δ.

e1

e2e3

e4v1 v2

v3

v4

F

Figure 4.7: Acyclic Δ with f -vector (4, 4, 1)

Since β2,5 = 1, the 2-dimensional face F of Δ must be labeled by xyzwu, which

is the only monomial of degree 5 in the lcm lattice of generators of I. It follows that

two of the vertices v1, v2, v3 are labeled by xy and wu, respectively. Then one can

check that there is no way to label the third vertex without contradicting the graded

Betti numbers. Hence, I does not have a minimal simplicial resolution.
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4.2 Resolutions from matchings

Now we introduce a method to reduce the Taylor resolution of a monomial ideal.

First consider the example below.

Example 4.2.1. Let I = (xy, yz, zw). By Taylor [25], the 2-simplex Δ below sup-

ports a free resolution of I.

xyz

yzwxyzw

xy yz

zw

xyzw

Figure 4.8: The 2-simplex Δ that supports a free resolution of I

In fact, I has a minimal simplicial resolution, but it is not supported on Δ. Instead,

the minimal free resolution of I is supported on the below 1-dimensional simplicial

complex Γ.

xyz

yzw

xy yz

zw

Figure 4.9: The 1-dimensional simplicial complex Γ

Notice that the facet and an edge of Δ have the same monomial label xyzw, so we

may think of Γ as a smaller simplicial complex that is obtained from Δ by removing

the facet and edge that are both labeled by xyzw.

In other words, we want to obtain a simplicial or CW complex that is smaller than

the Taylor complex of I by “matching out” the faces that have the same monomial
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labels. This idea of reducing a simplex can be interpreted via a method in discrete

homotopy theory, which is called the discrete Morse theory.

Now we start introducing the details with the definition of a matching in a graph.

Definition 4.2.2. Let G = (V,E) be a graph and M ⊂ E. If no edges in M have

common endpoints and M contains no loops, then M is called a matching in G.

Example 4.2.3. Consider the directed graph G = (V,E) with V = {a, b, c, d} and

E = {(a, b), (b, c), (a, c), (c, a), (c, c), (b, d), (d, a)}.

a

b

c

d

Figure 4.10: The picture of the digraph G

Then {(a, c), (b, d)}, {(d, a), (b, c)}, and {(a, b)} are matchings in G.

Terminology 4.2.4 ([12]). Let I = (m1, . . . ,mn) be a monomial ideal and X the

Taylor complex of I, i.e., the simplex on the vertex set {m1, . . . ,mn}. We define GX

to be the directed graph with vertex set

VX = {σ : σ ∈ X}

and edge set

EX = {(σ, σ′) : σ′ ⊂ σ and dim(σ) = dim(σ′) + 1}.

Let M be a matching on GX and define GM
X to be the directed graph with the same

vertex set V and edge set

EM
X = (EX −M) ∪ {(σ′, σ) : (σ, σ′) ∈ M}.

We say that M is homogeneous if for all (σ, σ′) ∈ M , we have lcm(σ) = lcm(σ′),

where lcm(σ) = lcm{m : m ∈ σ}, and that M is acyclic if GM
X contains no directed

cycles. If M is acyclic, a cell σ ∈ X is called M-critical if it does not appear in M .
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A (directed) path from σ to σ′ in the graph GM
X is called a gradient path, denoted

by gpM(σ, σ′).

We can obtain a cellular resolution of a monomial ideal I from homogeneous

acyclic matchings by the following theorem.

Theorem 4.2.5 ([4]). Let X be the Taylor complex of I and M a homogeneous acyclic

matching in GX . Then there exists a CW complex XM that supports a free resolution

of I. Furthermore, the n-cells (faces) of XM are in one-to-one correspondence with

the M-critical n-cells of X.

Below lemma provides us with the inclusion relation among the cells of XM , which

is not covered by Theorem 4.2.5.

Lemma 4.2.6 ([4]). Let σ′′ and σ be two M-critical cells of X such that dim(σ) =

dim(σ′′) + 1, and σ′′
M , σM be their corresponding faces of XM . Then σ′′

M ≤ σM if and

only if (i) σ′′ ⊂ σ, or (ii) there is a gradient path gpM(σ′, σ′′) for some σ′ ⊂ σ with

dim(σ′) = dim(σ′′).

Example 4.2.7. Let I = (xy, yz, zw, wu) and X the Taylor complex of I. Then GX

is given by the graph below.

{xy, yz, zw, wu}

{xy, yz, zw} {xy, yz, wu} {xy, zw, wu} {yz, zw, wu}

{xy, yz} {xy, zw} {xy, wu} {yz, zw} {yz, wu} {zw,wu}

{xy} {yz} {zw} {wu}

∅

Figure 4.11: The graph of GX
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Consider the matching M = {({xy, yz, zw, wu}, {xy, zw, wu}), ({xy, yz, zw},
{xy, zw}), ({yz, zw, wu}, {yz, wu})} in GX . Then GM

X is given by the graph below.

{xy, yz, zw, wu}

{xy, yz, zw} {xy, yz, wu} {xy, zw, wu} {yz, zw, wu}

{xy, yz} {xy, zw} {xy, wu} {yz, zw} {yz, wu} {zw,wu}

{xy} {yz} {zw} {wu}

∅

Figure 4.12: The graph of GM
X

TheM -critical cells are {xy, yz, wu}, {xy, yz}, {xy, wu}, {yz, zw}, {zw,wu}, {xy},
{yz}, {zw}, {wu},∅. For each M -critical cell σ, we denote its corresponding cell in

XM by σM . By Lemma 4.2.6, we have

∅M ≤ {xy}M , {yz}M , {zw}M , {wu}M ,

{xy}M ≤ {xy, yz}M , {xy, wu}M ,

{yz}M ≤ {xy, yz}M , {yz, zw}M ,

{zw}M ≤ {yz, zw}M , {zw,wu}M ,

{wu}M ≤ {xy, wu}M , {zw,wu}M ,

{xy, yz}M , {xy, wu}M , {yz, zw}M , {zw,wu}M ≤ {xy, yz, wu}M .

We have {yz, zw}M ≤ {xy, yz, wu}M because of the gradient path ({yz, wu}, {yz, zw,
wu}, {yz, zw}). By Theorem 4.2.5, I has a free resolution supported on a CW complex

consisting of 4 vertices, 4 edges, and one 2-dimensional face with the above relation.



35

4.3 Homogeneous acyclic matching for It(Ln)

Definition 4.3.1. Let G be a simple graph with vertices v1, . . . , vn. The ideal

It(G) = (xi1 · · · xit : (vi1 , . . . , vit) is a simple path in G)

is called the path ideal of G with length t− 1.

In this research, we focus on It(Ln) with projective dimension 2. By [27], we have

the following results.

Theorem 4.3.2 ([27]). Let I = It(Ln) with t ≥ 2. If pd(I) = 2, we have n = 2t+ 1.

Moreover, the Betti diagram of I is given by:

t+ 2 t+ 2 1
... - - -
t t+ 2 t+ 1 -
... - - -

2t− 1 - 1 1

Table 4.3: Betti diagram of It(L2t+1)

Now we construct a homogeneous acyclic matching using the result that n = 2t+1

to induce the minimal cellular resolution of I.

Construction 4.3.3. Let I = It(L2t+1) and X the Taylor complex of I. Let the

generators of I be

m1 = x1 · · · xt, m2 = x2 · · · xt+1, . . . , mt+2 = xt+2 · · · x2t+1.

We impose the order m1 < m2 < · · · < mt+2 on the generators (i.e., mi < mj ⇐⇒
i < j). For each σ ∈ X, we denote by σ[j] the j-th smallest element in σ. For each

j ∈ Z, define

Uj = {σ ∈ X : dim(σ) = j}.

Now we construct the matching M in GX “from top to bottom”.

Define

Mt+1 = {(σ, σ − {σ[2]}) : σ ∈ Ut+1}.
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For each 2 < j < t+ 1, define

Tj = {σ ∈ Uj : (τ, σ) ∈ Mj+1 for some τ ∈ Uj+1}

and

Mj = {(σ, σ − {σ[2]}) : σ ∈ Uj − Tj}.

Define

M2 = {(σ, σ − {σ[2]}) : σ ∈ U2 − (T2 ∪ {{m1,m2,mt+2}})},

where T2 is defined similarly as above.

Finally, we take

M =
t+1⋃
j=2

Mj.

By construction, we have the following properties about M .

Remark 4.3.4. Let (σ, τ) ∈ M and write σ = {mi1 ,mi2 , . . . ,mip}, τ = {mj1 ,mj2 , . . . ,

mjq}, where i1 < i2 < · · · < ip and j1 < j2 < · · · < jq.

(1) The set M is indeed a matching.

(2) We have i2 − i1 = 1.

(3) We have j2 − j1 > 1.

(4) We have mi1 = mj1 , i.e., σ[1] = τ [1].

In the above remark, (2) is true since otherwise we would have (σ ∪ {mk+1}, σ) ∈
M , i.e., σ becomes an endpoint of an element in M , instead of an initial point. Also

by definition of M , (3) and (4) are true.

Lemma 4.3.5. Let i < j < k. We have mj | lcm{mi,mk} ⇐⇒ k − i ≤ t.

Proof. Assume mj | lcm{mi,mk}. If j > i+ t− 1. Then for each � = j, . . . , j + t− 1,

we have x� � mi. It follows by our assumption that x� | mk, i.e., mj | mk, which

contradicts that m1, . . . ,mt+2 minimally generates I. Hence, j ≤ i+ t− 1. We have

j < i+ t ≤ j + t− 1 =⇒ xi+t | mj
xi+t�mi
====⇒ xi+t | mk =⇒ k ≤ i+ t, i.e., k − i ≤ t.
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Assume conversely that k− i ≤ t, i.e., i ≥ k− t. Then for each � = j, . . . , j+ t−1,

we have

i < j ≤ � ≤ j + t− 1 < k + t− 1 =⇒ i < � < k + t− 1.

If � ≤ i+ t− 1, then x� | mi. If � > i+ t− 1, i.e., � ≥ i+ t, by our assumption,

� ≥ k − t+ t = k =⇒ x� | mk.

Therefore, we have either x� | mi or x� | mk, which means that mj | lcm{mi,mk}.

Proposition 4.3.6. The matching M in Construction 4.3.3 is homogeneous.

Proof. Let (σ, σ − {σ[2]}) ∈ M and write σ = {mi1 ,mi2 , . . . ,mip}, where i1 < i2 <

· · · < ip. By Remark 4.3.4(2), i2 − i1 = 1. Further, it follows by Lemma 4.3.5 that

lcm(σ) = lcm(σ − {σ[2]}) ⇐⇒ i3 − i1 ≤ t.

By the structure of It(L2t+1), we observe that σ = {m1,m2,mt+2} is the only face of

X such that i2 − i1 = 1 and i3 − i1 > t, but it does not appear in our matching.

· · · · · ·
x1 x2 x3 xt+1 xt+2 x2t x2t+1

Figure 4.13: The graph of L2t+1

Proposition 4.3.7. The matching M in Construction 4.3.3 is acyclic.

Proof. By construction of M , the only possible form of directed cycles in GM
X is shown

in Figure 4.14 because we cannot have consecutive edges in GM
X pointing upward by

definition of a matching.

· · ·

· · ·

σ2

σ1 σ3 σn−1

σn

Figure 4.14: The only possible form of a directed cycle in GM
X
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Towards a contradiction, assume that there is a cycle in GM
X of the above form.

Write σ2 = {mi1 ,mi2 ,mi3 , . . . ,mip}, where i1 < i2 < · · · < ip and i2 − i1 = 1.

Then σ1 = {mi1 ,mi3 , . . . ,mip} and σ3 = σ2 − {mij}, where 1 ≤ j ≤ p and j = 2.

Furthermore, σ1 ⊂ σn.

If mi1 ∈ σ3, since mi2 ∈ σ3, we get a contradiction (see Remark 4.3.4(3)). Thus,

mi1 /∈ σ3 and σ3[1] = mi2 = σ4[1]. We will prove that σ2k[1] ≥ mi2 for all 2 ≤ kn/2

by induction on k.

The base case is already shown. Now assume that the σ2k[1] ≥ mi2 for some 2 ≤
k < n/2. Since σ2k+1 ⊂ σ2k, we have σ2k+1[1] ≥ σ2k[1] ≥ mi2 . By Remark 4.3.4(4),

σ2k+2[1] = σ2k+1[1] ≥ mi2 .

σ2k

σ2k+1

σ2k+2

· · ·

· · ·

Therefore, σn[1] ≥ mi2 > mi1 . However, mi1 /∈ σn contradicts that σ1 ⊂ σn. Hence,

the matching M is acyclic.

4.4 CW complex for It(Ln)

Before we prove the results about the M -critical cells of X, we need a supplementary

lemma.

Lemma 4.4.1. For any 2 ≤ k ≤ t, GM
X contains a gradient path from {m2,mt+2} to

{mk,mk+1,mt+2}.

Proof. We prove this lemma by an induction on k. First, we have the gradient path

({m2,mt+2}, {m2,m3,mt+2}),

which proves the base case. Now assume that the lemma is true for some 2 ≤ k ≤
t − 1, i.e., we have a gradient path gpM({m2,mt+2}, {mk,mk+1,mt+2}). Connect-

ing this path with ({mk+1,mt+2}, {mk+1,mk+2,mt+2}) gives us a gradient path from

{m2,mt+2} to {mk+1,mk+2,mt+2}, which completes the induction step.
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· · ·

· · ·

{m2,mt+2}

{m2,m3,mt+2} {mk,mk+1,mt+2}

{mk+1,mt+2}

{mk+1,mk+2,mt+2}

Proposition 4.4.2. (a) Let I = It(L2t+1) = (x1 · · · xt, x2 · · · xt+1, . . . , xt+2 · · · x2t+1)

and X the Taylor complex of I. Let M be the homogeneous acyclic matching built from

Construction 4.3.3. Denote x1 · · · xt, x2 · · · xt+1, . . . , xn−t+1 · · · x2t+1 by m1,m2, . . . ,

mt+2, respectively. Then the M-critical cells of X are

∅,

{m1}, {m2}, . . . , {mt+2},
{m1,m2}, {m2,m3}, . . . , {mt+1,mt+2}, {m1,mt+2}
{m1,m2,mt+2}.

(b) For each M-critical cell σ, we denote its corresponding cell in XM by σM . Then

we have

∅M ≤ {m1}M , {m2}M , . . . , {mt+2}M ,

{m1}M ≤ {m1,m2}M , {m1,mt+2}M ,

{m2}M ≤ {m1,m2}M , {m2,m3}M ,

...

{mt+2}M ≤ {m1,mt+2}M , {mt+1,mt+2}M ,

{m1,m2}M , {m2,m3}M , . . . , {mt+1,mt+2}M , {m1,mt+2}M ≤ {m1,m2,mt+2}M .

Proof. (a) Let S denote the set of the claimed M -critical cells. We want to show

that every cell σ of X is unmatched if and only if σ ∈ S. By construction of M , we

already know that all elements in S are unmatched. Let σ be an n-cell of X that is

not in S and write σ = {mi1 ,mi2 , . . . ,min}, where i1 < i2 < · · · < in.

If i2 − i1 = 1, since σ = {m1,m2,mt+2}, we have (σ, σ − {mi2}) ∈ M .

If i2 − i1 > 1, we have (σ ∪ {mi1+1}, σ) ∈ M .

By construction, σ is matched by M in either case.
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(b) By Lemma 4.2.6(i), we have

∅M ≤ {m1}M , {m2}M , . . . , {mt+2}M ,

{m1}M ≤ {m1,m2}M , {m1,mt+1}M ,

{m2}M ≤ {m1,m2}M , {m2,m3}M ,

...

{mt+2}M ≤ {m1,mt+2}M , {mt+1,mt+2}M ,

{m1,m2}M , {m1,mt+2}M ≤ {m1,m2,mt+2}M .

It remains to show that {m2,m3}M , . . . , {mt+1,mt+2}M ≤ {m1,m2,mt+2}M by

Lemma 4.2.6(ii).

Now consider any 2 ≤ k ≤ t. By Lemma 4.4.1, GM
X contains a gradient path

gpM({m2,mt+2}, {mk,mk+1,mt+2}). Since {mk,mk+1} ≤ {mk,mk+1}, this gradient

path can be extended to {mk,mk+1}.

· · ·

· · ·

{m2,mt+2}

{m2,m3,mt+2} {mk,mk+1,mt+2}

{mk,mk+1}

By Lemma 4.2.6(ii), we have {mk,mk+1}M ≤ {m1,m2,mt+2}. Moreover, Lemma 4.4.1

is also true for k = t in particular, i.e., there is a gradient path

gpM({m2,mt+2}, {mt,mt+1,mt+2}),

which can be extended to {mt+1,mt+2}.

· · ·

· · ·

{m2,mt+2}

{m2,m3,mt+2} {mt,mt+1,mt+2}

{mt+1,mk+2}

Hence, we also have {mt+1,mt+2}M ≤ {m1,m2,mt+2}M by Lemma 4.2.6(ii).
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Based on the information of the critical cells, we naturally conjecture that the CW

complex XM in Proposition 4.4.2 is a solid (t + 2)-gon (see Figure 4.15). Although

we cannot prove that XM is precisely the polygon we claimed it is, this conjecture

provides us with the clue to a CW complex that supports the minimal free resolution

of It(L2t+1).

The reason that we mention “minimal” is that the monomial labels of Figure 4.15

totally agree with the Betti numbers of It(L2t+1). Therefore, with the inspiration of

our conjecture, we come up with Theorem 4.4.3, which we will prove using Theo-

rem 4.1.5.

Theorem 4.4.3. The minimal free resolution of the path ideal I = It(L2t+1) is sup-

ported on a solid (t+ 2)-gon.

Proof. Let I = It(L2t+1) = (m1,m2, . . . ,mt+2), where

m1 = x1 · · · xt,

m2 = x2 · · · xt+1,

...

mt+2 = xt+2 · · · x2t+1.

Let X be a (t+ 2)-gon with vertices labeled by m1,m2, . . . ,mt+2 (see below).

x1 · · · xt+1

x2 · · · xt+2

x3 · · · xt+3

x4 · · · xt+4

x1 · · · xtxt+2 · · · x2t+1

x1 · · · xt x2 · · · xt+1

x3 · · · xt+2

x4 · · · xt+3x5 · · · xt+4

xt+2 · · · x2t+1
x1 · · · x2t+1

Figure 4.15: The solid (t+ 2)-gon labeled by the generators of It(L2t+1)
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Let m be any monomial in the lcm lattice of m1, . . . ,mt+2. In our case, X≤m has

three possible forms: (i) a single vertex, (ii) a line Ln (2 ≤ n ≤ t + 1), and (iii) the

entire complex X, because by the structure of It(L2t+1), we have

X≤lcm{mi,mj} =

⎧⎨
⎩L|i−j|+1 |i− j| < t+ 1,

L2 |i− j| = t+ 1.

In other words, X≤m is always connected.

A single vertex is cyclic, which is clear. Also, cases (ii) and (iii) are covered in

Lemma 3.3.6. Therefore, we conclude that X≤m is acyclic for all monomials m ∈ S.

From the labeling of X, we also have mF = mG for all faces F,G of X with G < F .

By Theorem 4.1.5, X supports the minimal free resolution of I.



Chapter 5

Conclusion

Let I = It(L2t+1), i.e., a path ideal of line graph with projective dimension 2. In

summary, we have found a homogeneous acyclic matching in the graph GX , which

by discrete Morse Theory, gives us a CW complex X that supports a free resolution

of I. Since by Proposition 4.4.2, the number of faces of X matches the Betti number

of I in each dimension, we conclude that our matching gives us the minimal cellular

resolution of I, i.e., the Morse resolution cannot be smaller.

Furthermore, based on Proposition 4.4.2, which tells us some properties of the

structure of the induced Morse complex X, we conjectured that X is a solid (t+ 2)-

gon. Using Bayer and Sturmfels’ criteria (see Theorem 4.1.5), we finally proved that

the (t+ 2)-gon from our conjecture indeed supports the minimal free resolution of I.

As a result of this research, we conclude that path ideals of line graph with pro-

jective dimension 2 have a minimal cellular resolution supported on a solid polygon.

Recall from [27] that path ideals of line graphs and cycles with projective dimen-

sion 2 do not have a minimal simplicial resolution. We wanted to know whether

these two classes of monomial ideals have a minimal cellular resolution. Now we have

solved one part of this problem, while the other part remains unsolved, i.e., the min-

imal cellular resolution of path ideals of cycles. Since we know from [27] that It(Cn)

of projective dimension 2 has Betti numbers n, n, 1, if the minimal free resolution

of It(Cn) is supported on a CW complex X, then X has n vertices, n edges, and

1 2-dimensional face. Thus, we can make a reasonable conjecture that the minimal

cellular resolution of It(Cn) is also supported on a solid polygon (i.e., n-gon). For

example, one can prove the below lemma using Theorem 4.1.5.

Lemma 5.0.1. The minimal free resolutions of I2(C4) and I2(C5) are supported on

a solid square and pentagon, respectively.

However, the case for cycles is not simple, because when having projective dimen-

sion 2, the parameters n and t of It(Cn) are much more flexible than those of It(Ln).
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In particular, we need to consider n such that t + 2 ≤ n ≤ 2t + 1 [27]. This makes

it much harder to check acyclicity of X≤m in Theorem 4.1.5. If we approach this

problem using discrete Morse theory, the homogeneous acyclic matching for It(Cn)

is also hard to build, because the patterns of the matching are difficult to observe

due to the flexibility of n and t. Then it would be worthwhile to try some known

algorithms (e.g., [1] and [10]) to construct the desired matching for It(Cn). We are

currently working on an algorithm based on Barile-Macchia resolution [3] to find a

Morse matching that induces the minimal cellular resolution for general It(Ln) and

It(Cn) [11] and hoping to resolve the difficulties that are previously mentioned.

Moreover, for I = It(L2t+1), there is no reason to believe that the solid polygon we

proposed in Theorem 4.4.3 is the unique CW complex (up to homotopy equivalence)

that supports the minimal free resolution of I, because two different CW complexes

can support the same free resolution (recall Example 4.1.12). For further research, it

would also be interesting to explore other CW complexes that support the minimal

free resolution of It(L2t+1).
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