
EFFICIENT CLUSTERING OF SHORT TEXT STREAMS WITH
AN APPLICATION TO FIND DUPLICATE QUESTIONS IN

STACK OVERFLOW

by

Md Rashadul Hasan Rakib

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

November 2023

© Copyright by Md Rashadul Hasan Rakib, 2023

Table of Contents

List of Tables . iv

List of Figures . vi

Abstract . vii

Chapter 1 Introduction . 1

Chapter 2 Related Work . 5

2.1 Static Clustering of Short Texts . 5

2.2 Dynamic Clustering of Short Texts 7
2.2.1 Similarity-based Stream Clustering 8
2.2.2 Model-based Stream Clustering 9

2.3 Finding Duplicate Questions in Stack Overflow 11

Chapter 3 Static Clustering of Texts 13

3.1 Short Text Clustering by Similarity Matrix Sparsification 13
3.1.1 Generating Similarity Matrix 13
3.1.2 Sparsify Similarity Matrix . 14
3.1.3 Clustering Sparsified Matrix 16
3.1.4 Experimental Results of Short Text Clustering by Similarity

Matrix Sparsification . 16

3.2 Short Text Clustering by Iterative Classification 20
3.2.1 Algorithm for Enhancement of Clusters by Iterative Classification 20
3.2.2 Stopping Criterion for Iterative Classification 22
3.2.3 Experimental Results of Short Text Clustering by Iterative Clas-

sification . 22

Chapter 4 Dynamic Clustering of Texts 28

4.1 Short Text Stream Clustering via Frequent Word Pairs and Reassign-
ment of Outliers to Clusters . 28
4.1.1 Clustering Texts by Frequent Word Pairs 29
4.1.2 Building the Lexical Clustering Model 29
4.1.3 Clustering the Rest of the Texts 30
4.1.4 Removing Outliers in Clusters 31
4.1.5 Building the Semantic Clustering Model 31

ii

4.1.6 Assigning Outliers to Clusters 32
4.1.7 Deleting Outdated Clusters 32
4.1.8 Experimental Results of Short Text Stream Clustering via Fre-

quent Word Pairs and Reassignment of Outliers to Clusters . . 33

4.2 Efficient Clustering of Short Text Streams using Online-Offline Clus-
tering . 35
4.2.1 Background . 35
4.2.2 Proposed Method . 37
4.2.3 Experimental Results of Efficient Clustering of Short Text Streams

using Online-Offline Clustering 44

Chapter 5 Finding Duplicate Questions using Clustering 53

5.1 Data Preparation for Finding Duplicate Questions 53
5.1.1 Extracting Groups of Duplicate Questions 54
5.1.2 Training and Test Set Generation 56

5.2 Finding Duplicate Question by Clustering 57
5.2.1 Finding Close Clusters . 58
5.2.2 Finding Duplicate Question using Clusters 59

5.3 Experimental Study on Finding Duplicate Questions 60
5.3.1 Statistics of Clustering Stack Overflow Questions in Training Set 60
5.3.2 Experimental Results on Finding Duplicate Questions 61

Chapter 6 Conclusion and Future Work 65

Bibliography . 68

Appendix A Impact of Similarity Matrix Sparsification on Hierarchi-
cal Clustering . 74

Appendix B Justification of Similarity Threshold (µ+σ) for Assigning
Texts to Clusters . 76

iii

List of Tables

3.1 Summary of the short text datasets 17

3.2 Accuracy and NMI for short text clustering. The top part is
for hierarchical clustering using similarity matrix, with the best
result for each combination of similarity and dataset bold. The
bottom part is for state-of-the-art previous methods for short
text clustering. The best overall result for each dataset is shaded. 18

3.3 Run-time in seconds of sparsification based clustering (using
Glove embedding) and STC2-LE 19

3.4 ACC and NMI of different clustering methods, their correspond-
ing enhancements by iterative classification, and state-of-the-art
methods for short text clustering. ∆ indicates that this method
is statistically significantly inferior to its corresponding enhance-
ment obtained by iterative classification. * indicates that this
method is statistically significantly inferior to HAC SD IC. . . 26

3.5 ACC results . 26

3.6 NMI results . 26

4.1 Summary of short text datasets 33

4.2 NMI score of different clustering methods. * indicates that the
proposed method is statistically significantly better than other
methods on a particular dataset in terms of NMI. 34

4.3 Average running times (in seconds) of the algorithms. 34

4.4 Lexical Feature Representation of Text 36

4.5 Notations used in the Algorithm of Online Text Stream Clustering 40

4.6 Normalized Mutual Information (NMI), Homogeneity (Ho.), V-
Measure (VM) score of different clustering methods. * indicates
that the EStream is statistically significantly better than other
methods on a particular dataset in terms of NMI, Ho., or VM.
The highest result for a particular dataset is denoted bold. . . 50

4.7 Average running times (in seconds) of different methods. 51

5.1 Summary of the StackOverflow Questions 54

iv

5.2 Statistics of the Groups of Duplicate Questions for Different Lan-
guages . 55

5.3 Sample Content (Tag, Title, and Body) of a Group of Duplicate
Questions for Java . 56

5.4 Statistics of Training and Test Set 56

5.5 Statistics of clustering questions in Training Set using Proposed
Stream Clustering Method for Different Languages 61

5.6 Experimental results of finding duplicate question for different
languages by Our Method and Lucene 62

A.1 Sample texts from small subset with indices and corresponding
cluster topics for the dendrogram in Figure A.1 75

v

List of Figures

4.1 Proposed short text stream clustering using Online-Offline clus-
tering. 38

4.2 Sample StackOverflow question titles (with PostId) of a cluster
in the dataset SO-T. 46

4.3 NMI results of our short text stream clustering method for dif-
ferent Update-intervals (UI) on dataset Ns-T. 46

5.1 Proposed duplicate question finding system using stream clus-
tering. 57

A.1 Dendrograms for clustering similarity matrix 74

B.1 Distribution of normally distributed similarity values 77

B.2 Distribution of not normally distributed similarity values . . . 77

vi

Abstract

This thesis focuses on the efficient clustering of short texts along with an application

to find duplicate questions in Stack Overflow. In the first part of this thesis, we

discuss static and dynamic clustering methods for short text corpora. In the second

part, we discuss how we can apply static and dynamic clustering of short texts to

find duplicate questions in Stack Overflow.

Short text clustering is an important but challenging task due to the lack of context

contained in short texts. In our first work, we overcome this problem by representing

text using word embedding which allows us to capture similarity between texts sharing

few or no common words. In addition, we investigate the impact of similarity matrix

sparsification on the performance of short text clustering. In our second work, we

improve the clustering result obtained from our first work by removing outliers from

clusters and reclassifying them to proper clusters. This is repeated several times until

the cluster partitions stabilize.

In our first and second work, we cluster static collections of short texts where the

number of clusters to be produced is known. However, in real time, short texts are

continuously being generated in large volumes from different sources. This motivates

us to develop an efficient dynamic clustering method that creates or updates the clus-

ters when text collection changes over time (e.g., new tweets arrive or new questions

are posted on a question-answering site). In this method, we index clusters to reduce

the number of similarity computations while assigning a text to a cluster. Using our

dynamic clustering method along with static clustering, we cluster Stack Overflow

questions as they arrive over time. Using the clusters of questions, we recommend

potential duplicates of a newly posted question.

Experimental studies demonstrate that both our static and dynamic clustering

methods of short texts perform better than that of the existing state-of-the-art meth-

ods in terms of clustering quality and running time on several short text datasets.

We also demonstrate that by using the clusters obtained by our clustering method,

we find more duplicate questions than an existing duplicate question finding system.

vii

Chapter 1

Introduction

Short text clustering is a well known and popular research topic in the area of text

mining. Due to technological advances, short texts are generated at large volumes

from different sources such as micro-blogging, question-answering, and social news

aggregation websites. Organizing these texts (e.g., grouping them by topic) is an es-

sential step towards discovering trends (e.g., political, economic) in conversations and

other data mining tasks, such as data summarization, frequent pattern analysis, and

searching for and filtering information. Clustering texts into groups of similar texts is

the foundation for many of these organizational strategies (Aggarwal and Zhai, 2012).

What makes clustering (grouping) of short texts difficult is the much lower accuracy

in identifying the topic of each text, from the few words it contains. The goal of our

research is to develop novel methods for accurately and efficiently clustering collec-

tions of short texts; and efficiently updating the clusters, if text collection changes

over time.

Due to the lack of context in short texts, traditional text similarities based on

frequency or tf-idf scores is not adequate Xu et al. (2017). In particular, two short

texts may share few common words or no words at all. In our first work Rakib

et al. (2018), we alleviate this problem by using word embedding Pennington et al.

(2014); Mikolov et al. (2013) based text representation. Using this representation,

we generate similarity matrix containing similarity scores between texts. Then we

sparsify the matrix using our proposed method based on similarity distribution (SD)

as characterized by the mean and standard deviation of similarity values in each

row. The objective of sparsification is to reduce noise in similarity matrix so as

to improve clustering performance by keeping similarities between a text and its

most similar (nearest) texts while discarding similarities with less similar ones Kumar

(2000); Gollub and Stein (2010); Rakib et al. (2018). After performing sparsification,

we cluster the sparsified matrix using hierarchical agglomerative clustering Müllner

1

2

(2013) as described in Section 3.1.

In our second work Rakib et al. (2020a), we improve the clustering result obtained

from our first clustering method using iterative classification. The objective of this

research is to improve the cohesion of clusters in a cluster partition produced by an

arbitrary clustering method. To achieve this, we remove outliers from each cluster

and reassign (i.e., reclassify) them to clusters with which they have greater similarity.

This is repeated several times until the cluster partitions stabilize. We demonstrate

that this approach produces more accurate cluster partitions than computationally

more costly state-of-the-art short text clustering methods based on neural networks.

In our first and second work, we outperformed the state-of-the-art methods on

clustering static collections of short texts where the number of texts to be clustered

and number of clusters to be produced are known. In real world, texts are continuously

being generated from different sources (e.g., such as Facebook, Twitter, question-

answering sites, and so on). Organizing this growing number of texts becomes an

inevitable task to solve various kinds of text mining problems. Motivated by this, we

developed clustering methods that can adapt to the changes in the data over time,

aiming for a substantial performance improvement in terms of accuracy and running

time on the clustering of dynamic collections of short texts.

In our third paper Rakib et al. (2020b), we developed a dynamic clustering method

based on a clustering method called MStream Yin et al. (2018) which clusters texts

batch1 by batch as they arrive. Let us briefly describe the main difference between

our method and MStream. MStream assigns a text to a cluster based on the number

of texts in clusters and the number of common words between the text and existing

clusters. Therefore, the probability of a text choosing a large cluster is higher than

choosing a small or new cluster. As a result, a text can be assigned to a large cluster

with which it does not share any common words, that is, it should be removed as

an outlier and should be reassigned to the appropriate cluster. Therefore, we remove

outliers from the clusters and reassign them to appropriate clusters using semantic

similarity as discussed in Section 4.1.

In our fourth work Rakib et al. (2021), we developed an efficient short text stream

1A Batch is defined as a collection of texts Yin et al. (2018). The terms “Batch” and “Stream”
are interchangeably used in our work. “Text stream” and “dynamic collection of texts” are also
interchangeably used in this work.

3

clustering method (called EStream) that outperformed our previous short text stream

clustering method Rakib et al. (2020b) and other existing methods (e.g., MStream Yin

et al. (2018), DP-BMM Chen et al. (2020)) in terms of running time and clustering

accuracy. Prior to EStream, most of the existing short text stream clustering methods

assign a text to a cluster by computing similarity between the text and all clusters.

However, there may be some clusters with which a future text may not share any

common feature, thus we can ignore similarity computations between that text and

those clusters. Therefore, EStream assigns a text to a cluster by computing similar-

ity between a text and a selected number of clusters instead of all clusters and thus

significantly reduces the running time of clustering of short text streams. To improve

clustering accuracy, EStream enhances the distributions of texts of the selected clus-

ters using our clustering enhancement method based on iterative classification Rakib

et al. (2020a).

In this thesis, we also show an application of our short text stream clustering

method in the context of finding duplicate questions in Stack Overflow. Stack Over-

flow is a popular question-answering site where questions are continuously being

posted on various programming problems. Despite detailed guidelines to prevent

posting duplicate questions (i.e., questions that have already been answered), dupli-

cate questions are frequently being posted Ahasanuzzaman et al. (2016). To handle

this problem, Stack Overflow employs users with high reputations (called moderators)

to detect duplicate questions, which is a labor-intensive job and may lead to some

duplicate questions remaining undetected. An automatic duplicate detection system

can alleviate this problem by recommending possible duplicates of a question Zhang

et al. (2015b). Then, the moderators can focus on a smaller set of questions to find

duplicate question for the given question.

Clustering can be a viable tool to provide a limited set of questions to the mod-

erators by selecting questions only from the close clusters (in terms of similarity) of

the given question Manning et al. (2008). Then the question arises, why we are using

stream clustering to cluster Stack Overflow questions. The intuition is that questions

are continuously being posted in Stack Overflow; as a result the number of questions

to be clustered and number of clusters to be produced are unknown. Therefore by

adopting stream clustering algorithm we can cluster the continuously growing number

4

of questions since the stream clustering algorithm does not require neither the number

of questions to be clustered nor the number of clusters to be produced in advance.

Motivated by this we cluster Stack Overflow questions using our dynamic clustering

method (i.e., EStream) to recommend potential duplicates of a newly posted question

using the clusters of questions as described in Section 5.2.2.

The major contributions of this research are as follows.

• We developed two static clustering methods Rakib et al. (2018, 2020a) for short

texts that outperformed state-of-the-art short text clustering methods in terms

of clustering quality and running time.

• We developed two dynamic clustering methods for short text streams. The first

one Rakib et al. (2020b) significantly outperforms the state-of-the-art short text

stream clustering methods in terms of clustering quality. The second one Rakib

et al. (2021) significantly outperforms the state-of-the-art methods in terms of

running time on the datasets built on Stack Overflow questions.

• We have created four datasets for finding duplicate questions in Stack Overflow

using four programming languages (which are R, C#, Python, and Java) com-

prising of 312,829, 1,304,920, 1,347,471 and 1,592,884 questions respectively.

• Experimental study demonstrates that by clustering Stack Overflow questions

using our dynamic clustering method along with static clustering, we can find

more duplicate questions than an existing duplicate finding system.

The remainder of our research is organized as follows. We briefly describe the

work related to our study in chapter 2. The detailed methodology of our static

and dynamic clustering methods of texts and experimental results are described in

chapter 3 and chapter 4 respectively. In chapter 5, we discuss how we apply our

clustering method to find duplicate question as well as the experimental results of

finding duplicate questions. Finally we conclude our research and discuss future

related work in chapter 6.

Chapter 2

Related Work

In this chapter, we discuss related work about static and dynamic clustering of short

texts and finding duplicate questions in Stack Overflow.

2.1 Static Clustering of Short Texts

A major challenge in short text clustering is the sparseness of the vector representa-

tions of these texts resulting from the small number of words in each text. Several

clustering methods have been proposed in the literature to address this challenge,

including methods based on text augmentation Banerjee et al. (2007); Zheng et al.

(2018), neural networks Xu et al. (2017); Hadifar et al. (2019), topic modeling Cheng

et al. (2014), Dirichlet mixture model Yin and Wang (2016), and similarity matrix

sparsification Kumar (2000); Gollub and Stein (2010); Rakib et al. (2018).

A recent method based on text augmentation Zheng et al. (2018) uses topic dif-

fusion to augment each short text by finding words not appearing in the text that

are related to its content. To find related words, this method determines possible

topics for each text using the existing words. Then new words are added to each text;

these new words are closely related to the text’s topics based on the posterior prob-

abilities of the new words given the words in the text. An earlier text augmentation

method Banerjee et al. (2007) finds Wikipedia articles using the short text as query

string and uses the articles’ titles as features.

A short text clustering method based on word embedding and a convolutional

neural network called STC2-LE was proposed in Xu et al. (2017). It uses a convolu-

tional neural network to learn a text representation on which clustering is performed.

Another short text clustering method based on weighted word embedding and au-

toencoder was proposed in Hadifar et al. (2019). For each text, it calculates the

average of the weighted embeddings Mikolov et al. (2013) of its words. The weight of

a word is calculated based on its inverse frequency in the corpus Hadifar et al. (2019)

5

6

which is then multiplied with its embedding to obtain weighted word embedding.

After that, the embeddings of the texts are feed into an autoencoder to obtain the

low dimensional representation of the texts on which clustering is performed.

A method based on locality-sensitive term weighting is introduced in Zheng et al.

(2017). Distances between texts are calculated using weights of terms (e.g., words);

the weights are obtained based on the property that, similar terms are tight together

in terms of their own locality and well-separated from other localities.

Biterm topic modeling (BTM) Cheng et al. (2014) is a topic modeling approach

for short texts that learns topics from word co-occurrence patterns (i.e., biterms).

Given a topic distribution produced by BTM for each text, clustering is performed

by assigning a text to its most probable topic.

Several short text clustering methods were proposed in the literature based on

similarity matrix Sparsification Gollub and Stein (2010) such as global threshold Ku-

mar (2000), nearest neighbors Kumar (2000), and center vectors Gollub and Stein

(2010). Sparsification of the text similarity matrix keeps the association between a

text and its most similar (nearest) texts while breaking associations with less similar

ones by setting the corresponding similarity scores to 0.

Similarity matrix sparsification based on global threshold is the simplest sparsifica-

tion method. It removes all similarity values that are below a given threshold Kumar

(2000). The problem with this method is that some real clusters may be destroyed

or merged because different clusters may have different similarity levels between the

texts they contain. For example, the range of the similarity values between the texts

in one cluster may be between 0.2 and 0.4 while the similarity values in another

cluster may range from 0.5 to 0.8. If we set the global threshold to 0.5, then the

similarity values in the first cluster are set to 0 and the cluster is destroyed. A lower

threshold, such as 0.15, may result in the inclusion of additional documents in the

second cluster.

Nearest neighbors’ based methods for similarity matrix sparsification include k-

nearest neighbor Kumar (2000) and shared nearest neighbor Kanj et al. (2016). k-

nearest neighbor sparsification keeps only the k highest similarity scores for each text;

the shared-nearest neighbor approach adds a condition that texts retaining similarity

7

values with a particular text should share a prescribed number of neighbors. The k-

nearest neighbors sparsification strongly assumes that each cluster contains the same

number of texts. Therefore this sparsification method may not produce expected

clustering result for imbalanced dataset (i.e., some clusters contain large number of

texts and some contain much less).

A similarity matrix sparsification method based on the center vector was proposed

in Gollub and Stein (2010). Texts are represented by tf -idf (term frequency-inverse

document frequency) vectors and a center vector is computed by averaging these vec-

tors. The sparsification of the similarity matrix is performed by removing similarities

between all pairs of texts that are not more similar to each other than the maximum

similarities of these two texts to the center vector.

In our first paper on short text clustering Rakib et al. (2018), we sparsify similarity

matrix using the similarity thresholds computed based on similarity distribution.

In particular, the similarity scores we keep for each text are determined based on

a dynamically computed similarity threshold for that text. Therefore we do not

require user defined similarity threshold to retain similarity scores in the matrix. In

addition, in similarity distribution based sparsification, we do not need to strongly

assume that each cluster contains approximately the same number of texts as the k-

nearest neighbors. Thus similarity distribution based sparsification helps us to cluster

imbalanced dataset more accurately than k-nearest neighbor sparsification.

In our second paper on short text clustering Rakib et al. (2020a), we improve

the clustering result obtained from our first clustering method by removing outliers

from the clusters and reassign them to proper cluster using iterative classification.

We demonstrate that this approach produces more accurate cluster partitions than

computationally expensive state-of-the-art short text clustering methods based on

neural networks.

2.2 Dynamic Clustering of Short Texts

A detailed survey of dynamic clustering of texts can be found in Mahdiraji (2009);

Silva et al. (2013); Nguyen et al. (2015); Aggarwal and Reddy (2013); Carnein and

Trautmann (2019). We can categorize the methods of dynamic clustering of texts

(i.e., text stream clustering) into two categories which are similarity-based stream

8

clustering and model-based stream clustering.

2.2.1 Similarity-based Stream Clustering

In general, similarity-based text stream clustering methods use the vector space

model Erk (2012) to represent the documents. A document is assigned to a new

or one of the existing clusters based on the similarity threshold which needs to be

manually determined by the user Yin et al. (2018).

CluStream Aggarwal et al. (2003) is a stream clustering method consisting of an

online micro-clustering phase and an offline macro-clustering phase. In online phase,

it assigns a data point to a new or an existing micro-cluster based on a manually

determined similarity threshold. In offline phase, it applies k-means clustering on

the micro-clusters and obtain k user specified macro-clusters. Similar to CluStream

our method EStream consists of online and offline clustering phases. However, in the

online phase of EStream, we use the dynamically computed similarity threshold (in

contrast to manually determined similarity threshold) for each text to assign it to

a cluster; and in the offline phase we enhance the distributions of the k number of

clusters where the value of k is dynamically determined.

FuzzStream De Abreu Lopes and De Arruda Camargo (2017), a fuzzy data stream

clustering method consists of online and offline clustering phases. In the online phase

FuzzStream produces micro-clusters using a fuzzy set of examples from data stream.

In the offline phase it applies Weighted Fuzzy C-Means clustering algorithm Li et al.

(2018) to the micro-clusters to obtain a set of macro-clusters based on a user defined

similarity threshold.

Sumblr Shou et al. (2013) is a tweet stream summarization prototype. It consists

of a text stream clustering module that compresses tweets into tweet feature vectors

(TCVs) and assigns future tweets to the clusters based on the statistics of TCVs.

An efficient text stream clustering method using term burst information was pro-

posed in Kalogeratos et al. (2016). Bursty terms are the terms that appear in many

documents during a short period of time. This approach considers the fact that the

documents that are published on a particular topic within a certain time period con-

tain a particular set of bursty terms. An user-defined threshold for the number of

occurrences of terms in documents is used to identify bursty terms.

9

In general, similarity-based text stream clustering methods use user defined simi-

larity threshold to assign a text to a new or to one of the existing clusters Yin et al.

(2018). On the contrary, we dynamically calculate the similarity threshold Rakib et al.

(2020b) for each text based on statistical measure and use this similarity threshold to

assign the text to a new or to one of the existing clusters. Thus our method efficiently

handles the concept drift problem Zhang et al. (2017b) (the problem that topics of

the text streams may change over time).

2.2.2 Model-based Stream Clustering

Several model-based text stream clustering methods were proposed based on multi-

nomial mixture model Yin et al. (2018); Chen et al. (2020); Kumar et al. (2020).

Generally, these algorithms use Gibbs sampling Ishwaran and James (2001) to es-

timate the parameters of the mixture model so as to obtain the clustering of text

streams Yin et al. (2018).

A recent short text stream clustering algorithm based on Dirichlet process multi-

nomial mixture model was proposed in Yin et al. (2018) which uses two Dirichlet

priors α and β. α refers to the prior probability of a text choosing a new cluster and

β corresponds to the prior probability of a text choosing a cluster with which the text

shares more similar content than other clusters. This algorithm has two variants: one

is by retaining all previous clusters (called MStream) and other one is by removing

old clusters (called MStreamF).

A biterm based mixture model for short text stream clustering was proposed

in Chen et al. (2020). Similar to MStream(F) algorithm Yin et al. (2018), the biterm

based clustering method developed two variants: one is by retaining the clusters

obtained in previous batches (called DP-BMM) and other is by discarding the clusters

obtained in previous batches (called DP-BMM-FP). The main difference between

MStream(F) and DP-BMM(-FP) is that DP-BMM(-FP) represents the texts using

biterm features instead of unigrams. In particular, DP-BMM(-FP) represents a text

of n words using n ∗ (n− 1)/2 biterm features.

OSDM Kumar et al. (2020) is a semantic-enhanced Dirichlet model for short

text stream clustering. OSDM extends the MStream Yin et al. (2018) algorithm by

integrating the word to word co-occurrence based semantic information obtained from

10

the common words between a text and a cluster and uses this semantic information

to compute similarity between a text and a cluster.

DCT-L Liang et al. (2016) is a dynamic clustering topic model for short text

streams based on Dirichlet process multinomial mixture model. It assigns a single

topic (i.e., cluster) to each short text at a particular timestamp and uses the resulting

topic distribution as priors for inferring the topics of subsequent documents.

DTM Blei and Lafferty (2006) is a dynamic topic model that analyzes the topics

of a collection of documents over time. This method assumes that a document is rich

enough to contain multiple topics. However, this assumption does not work well for

short texts, which results low quality performance on short text streams.

The Dirichlet process mixture model based clustering algorithms (e.g., MStream(F),

DP-BMM(-FP)) assign a text to a new or an existing cluster based on two factors: the

number of texts in each cluster and the number of common words between the text

and the texts already in the clusters. Therefore, the probability of a text choosing a

large cluster is higher than choosing a small or new cluster. As a result, a text can

be assigned to a large cluster with which it does not share any common words. In

this case, the text may be more meaningfully assigned to a different cluster, that is,

it should be removed as an outlier and should be reassigned to the appropriate clus-

ter. To alleviate this problem, in our first short text stream clustering method Rakib

et al. (2020b), we remove outliers from the clusters and reassign them to appropriate

clusters using the semantic similarity between the outliers and clusters.

The Dirichlet process mixture model based clustering algorithms require tuning

the parameters (i.e., α and β) to obtain the desired clustering performance. For

example, MStream(F) uses α = 0.03 and β = 0.03 to obtain optimal clustering

performance. The DP-BMM(-FP) and OSDM performed grid search to obtain the

optimal values for α and β and set (α = 0.6 and β = 0.02) and (α = 2e−3 and

β = 4e−5) respectively. On the contrary, our second short text stream clustering

method (called EStream) Rakib et al. (2021) does not require this kind of parameter

tuning, instead it uses the dynamically computed similarity threshold Rakib et al.

(2020b) (based on statistical measure) to assign a text to a new or an existing cluster.

The Dirichlet process mixture model based clustering algorithms assign a text to a

cluster by computing similarities between the text and the existing clusters based on

11

the common features (i.e., word, bigram, biterm (defined in Section 4.2.1)). However,

there may be some clusters with which a text may not share any common feature,

thus the similarities between that text and those clusters are zero. Hence, those

similarity computations can be ignored. Motivated by this, the EStream algorithm

adopts inverted index based searching technique Ilic et al. (2014) and selects a specific

set of clusters for a text that share common features with that text. Then EStream

algorithm computes similarity between the text and the selected clusters to assign that

text to a cluster. By limiting the number of similarity computations, we significantly

reduce the running time of our method and thus the running time of our method is

several orders of magnitude faster than that of the state-of-the-art methods.

2.3 Finding Duplicate Questions in Stack Overflow

Several studies have been performed to find duplicate questions in Stack Overflow

which are of mainly two kinds: unsupervised and supervised.

DupPredictor Zhang et al. (2015b) is an unsupervised duplicate question detection

system that identifies potential duplicates of a given question by considering the title,

body and tag similarity of the questions. It computes similarity between the given

question and all the other questions to search the potential duplicates of the given

question. In contrast to computing similarity between the given question and all the

other questions, our proposed system computes similarity between the given question

and the representations of the clusters which helps us to perform limited number of

similarity computations.

CROKAGE da Silva et al. (2020) is a relevant solution finding system from Stack

Overflow. Given a programming task as a query to CROKAGE, it finds relevant

code examples along with description for that programming task. The searching for

relevant code examples by CROKAGE is modeled as an Information Retrieval (IR)

problem da Silva et al. (2020). To search relevant code examples, CROKAGE indexed

solutions by an inverted index Ilic et al. (2014) based search engine (called Lucene).

Then, for a given query, it retrieves top ranked solutions using the index created by

Lucene. After that, it applies word embedding based semantic similarity between the

query and top ranked solutions so as to retrieve the ultimate desired solutions.

Dupe Ahasanuzzaman et al. (2016) is a supervised duplicate question detection

12

system that finds potential duplicates of a given question by detecting the top ranked

duplicate question pairs where a pair consists of the given question, the probable

duplicate question and the level of duplication. Dupe is trained using a number of

duplicate and non-duplicate question pairs. Based on the trained model it detects

the possible duplicate question pairs of the given question.

PCQADup Zhang et al. (2017a) is another supervised duplicate question detection

system based on word embedding and topic modeling. By using word embedding and

topic modeling it captures the semantic relationship between two questions that helps

to efficiently detect whether two questions are duplicate or not.

Another supervised duplicate question detection system based on deep learning

model was proposed in Wang et al. (2020). This method uses Word2Vec representa-

tion for the words in question. It explores various kinds of deep learning models (e.g.,

CNN, RNN, LSTM) and other generalized machine learning models (e.g., Support

Vector Machine, Logic Regression, Random Forest and eXtreme Gradient Boosting)

along with Word2Vec representation to learn semantic relationship between ques-

tions. Based on the experimental results it shows that deep learning based models

can detect more duplicate questions than the generalized machine learning models.

Most of the duplicate question detection systems in literature are supervised which

require manually labelled duplicate questions to predict the future duplicate ques-

tions. On the contrary, our duplication question finding system is unsupervised. In

addition, our method can adapt to continuously growing number of questions over

time and can help to find duplicate questions by searching a limited set of questions

selected from the close clusters of the given question.

Chapter 3

Static Clustering of Texts

In this chapter, we discuss the proposed methods of static clustering of texts and the

experimental results obtained from these methods. Our first method is based on sim-

ilarity matrix sparsification. Our second method is based on iterative classification.

3.1 Short Text Clustering by Similarity Matrix Sparsification

In this work Rakib et al. (2018), we cluster a collection of texts into a given number

of clusters. At first we generate a similarity matrix for all text pairs, then we sparsify

the similarity matrix. After that we cluster the sparsified matrix by hierarchical

agglomerative clustering Müllner (2013).

3.1.1 Generating Similarity Matrix

We generate similarity matrix by computing similarity between all pairs of short texts.

To compute similarity between the texts we use different types of text similarity

measures such as word embedding, word co-occurrence, and Tf-Idf based. Word

Embedding based similarity is the cosine similarity for text vectors, which are averages

of embeddings of words of a given text. We use three types of pretrained word

embeddings: Glove embeddings1 trained by Glove method Pennington et al. (2014)

on Wikipedia dumps, Word2Vec embeddings2 trained by Word2Vec method Mikolov

et al. (2013) on Google News, and BioASQ embeddings3 trained by Word2Vec method

on the abstracts of biomedical publications. BioASQ similarity is applied only to

BioMedical dataset. GTM Islam et al. (2012) is a text similarity based on a word

pair similarity that utilizes information of co-occurrence of the given two words in

Google tri-gram corpus Brants and Franz (2006). Tf-Idf similarity is cosine similarity

1http://nlp.stanford.edu/data/glove.42B.300d.zip
2https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
3bioasq.lip6.fr/tools/BioASQword2vec/

13

14

for text vectors in the bag-of-words vector space model with term frequency-inverse

document frequency weights.

3.1.2 Sparsify Similarity Matrix

Sparsification of text similarity matrix keeps association between a text and its most

similar (nearest) texts, while breaking associations with less similar ones Kumar

(2000). The major objective of sparsification in the context of clustering is to re-

duce noise in similarity matrix so as to improve clustering quality Kumar (2000);

Gollub and Stein (2010).

We investigate the potential of various methods of sparsification (e.g., Similarity

Distribution based sparsification (SD) Rakib et al. (2018), k-Nearest Neighbors spar-

sification (k-NN) Kumar (2000), and Center based sparsification Gollub and Stein

(2010)) for improving short text clustering. A square n × n symmetric similarity

matrix S = (sij) is an input to each sparsification method (n is the number of texts,

sij is the similarity score between texts ti and tj). Some methods require additional

inputs or parameters. Each sparsification method listed below retains some origi-

nal values of similarities, while replacing remaining ones by zeros (self-similarities on

the diagonal are always retained). A sparsification criterion may render a matrix not

symmetric. Such a matrix requires symmetrization: we follow the “sparsification with

exclusion” Kumar (2000) approach, namely in the final matrix an element sij is set

to zero only if the sparsification criterion retains neither sij nor sji. In the following

we discuss the three similarity matrix sparsification techniques.

Similarity Distribution based Sparsification

Definition The Similarity Distribution based (SD) sparsification is a new spar-

sification method that we propose. In contrast to the k-nearest neighbors method,

the number of similarities to keep for each text is not fixed, instead it is based on

the distribution of the similarity values between the text and all other texts. The

parameter of the method, called l, is the average number of retained similarities with

other texts per text (i.e., the average number of non-zero matrix elements outside of

the diagonal per row) in the final, symmetric sparsified matrix.

For each text ti, we calculate mean ui and standard deviation δi of similarities

15

between ti and all other texts, and we sparsify similarities between ti and other texts

based on these statistics. In particular, we define the retaining criterion as follows: a

similarity sij is to be retained if and only if

sij > ui + αδi, (3.1)

for some global factor α, otherwise it is to be replaced by zero.

Factor α is such that after applying the criterion and symmetrization of the matrix,

the average number of non-zero elements outside of the diagonal per row is equal to

the value of parameter l.

Algorithm We design an algorithm to perform the SD sparsification through a

search for an exact value of factor α.

For each similarity value sij in matrix S, we use an auxiliary value aij =
sij−ui

δi
.

Using this notation, our criterion from Eq. 3.1 can be stated as follows: a similarity

sij is to be retained if and only if aij > α. Since we follow “sparsification with

exclusion” approach for symmetrization, we will keep sij in the final symmetric matrix

if the retaining criterion is fulfilled either for sij or for sji (or for both). It follows

that exactly when max(aij, aji) > α, then both sij and sji are retained in the final

sparsified matrix.

Let us also notice that the condition of the average number of non-zero elements

outside of the diagonal per row in the final, symmetric matrix is to be l, is equivalent

to the condition that the total number of non-zero elements above the diagonal is
⌊

n×l
2

⌋

.

Based on these observations, it can be seen that the following algorithm performs

the SD sparsification. Auxiliary values aij are calculated for all elements in S. Then

for each matrix element above the diagonal, i.e., for each pair of indices (i, j) such

that j > i, the maximum of aij and aji is found, and stored in a list L; each value in L

is associated with the corresponding pair of indices (i, j). List L is sorted and
⌊

n×l
2

⌋

largest values from L are retrieved. For each pair of indices (i, j) associated with

the retrieved values, both sij and sji are retained in the final matrix; the remaining

elements outside of the diagonal are set to 0. If factor α is needed explicitly, a value

that is less than the smallest retrieved value from list L, and greater than or equal to

the largest not retrieved value from list L, is a correct value of α.

16

k-Nearest Neighbors sparsification

The k-nearest neighbors (k-NN) method uses the number of nearest neighbors k as

a parameter. The method criterion is to retain, for each text, exactly k highest

similarities with this text outside of the diagonal. After this criterion is applied,

symmetrization is required.

Center based sparsification

The Center method (φ̄) and the Modified Center method (φ̂) Gollub and Stein (2010)

are not parameterized. The Center method uses the mean vector c of all text vectors.

A similarity between two texts ti, tj is retained if and only if it is higher than the

maximum of the similarities between ti, c, and tj, c. The Modified Center method

uses a modified version of vector c. No additional symmetrization is needed.

3.1.3 Clustering Sparsified Matrix

We use hierarchical agglomerative clustering to cluster sparsified matrix. The clus-

tering method starts with each document in its own cluster and repeatedly merges

pairs of most similar clusters until only k (the desired numbers of clusters) clusters

remain. To perform hierarchical clustering we use Ward criterion using fastcluster

implementation Müllner (2013).

3.1.4 Experimental Results of Short Text Clustering by Similarity

Matrix Sparsification

In this section, we discuss the datasets and experimental results obtained by our short

text clustering method based on similarity matrix sparsification Rakib et al. (2018).

Datasets

We used five different datasets of short texts in our experiments. The basic properties

of these datasets are shown in Table 3.1. SearchSnippet is a dataset of search results

from Google’s search engine, containing 12340 snippets distributed into 8 groups Xu

et al. (2017). SearchSnippet-test is a subset of the SearchSnippet dataset consisting

of 2280 search snippets distributed into 8 groups. AgNews is a subset of a dataset

17

Table 3.1: Summary of the short text datasets
Dataset #Clusters #Texts Average #words/text

SearchSnippet 8 12340 17.03
SearchSnippet-test 8 2280 17.18

AgNews 4 8000 22.61
StackOverflow 20 20000 8.23
BioMedical 20 20000 12.88

of news titles Zhang et al. (2015a). It consists of 8000 texts in 4 topic categories (for

each category, we randomly selected 2000 texts). StackOverflow is a subset of the

challenge data published on Kaggle4, where 20000 question titles from 20 groups were

randomly selected Xu et al. (2017). BioMedical is a subset of the challenge data

published on the BioASQ’s website5, where 20000 paper titles from 20 groups were

randomly selected Xu et al. (2017).

Evaluation Metrics

We evaluate whether considered sparsification methods improve clustering results,

using accuracy (ACC) and normalized mutual information (NMI) as evaluation mea-

sures (as in Xu et al. (2017)).

Let ci, ti be the cluster label and human annotated label of a text ti respectively,

then clustering accuracy is defined in Equation 3.2 as follows:

ACC =

∑n

i=1 δ(ti,map(ci))

n
(3.2)

where, n is the total number of texts, map(ci) is the mapping function that maps

each cluster label ci to the equivalent human annotated label, and δ is the indicator

function that equals to one if both values are same otherwise equals to zero.

Normalized mutual information Chen et al. (2011) between human annotated label

set T and cluster label set C is defined in Equation 3.3 as follows:

NMI(T,C) =
MI(T,C)

√

H(T)H(C)
(3.3)

where, MI(T,C) is the mutual information between T and C, H(·) is entropy and

the denominator
√

H(T)H(C) is used for normalizing the mutual information to be

in the range of 0 to 1.

4https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow/download/train.zip
5http://participants-area.bioasq.org/

18

Impact of Similarity Matrix Sparsification

We consider a sparsification method to improve clustering for a given combination

of dataset and similarity, if both evaluation measures increase after the method is

applied to the similarity matrix. Results of the sparsification methods are in the top

part of Table 3.2. The bottom part of Table 3.2 contains the results of state-of-the-art

short short text clustering methods.

Table 3.2: Accuracy and NMI for short text clustering. The top part is for hierar-
chical clustering using similarity matrix, with the best result for each combination of
similarity and dataset bold. The bottom part is for state-of-the-art previous methods
for short text clustering. The best overall result for each dataset is shaded.

Method SearchSnippets-test SearchSnippets StackOverflow AgNews BioMedical

H
ie
ra
rc
h
ic
a
l
A
g
g
lo
m
er
a
ti
v
e
C
lu
st
er
in
g

Similarity Sparsification ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
Glove Without 0.770 0.709 0.765 0.594 0.616 0.544 0.765 0.528 0.353 0.290

SD 0.894 0.787 0.826 0.637 0.648 0.594 0.818 0.545 0.369 0.307
k-NN 0.871 0.764 0.790 0.605 0.581 0.540 0.768 0.524 0.396 0.315

Word2Vec Without 0.665 0.620 0.644 0.472 0.299 0.258 0.742 0.457 0.238 0.173
SD 0.809 0.686 0.761 0.549 0.340 0.287 0.788 0.525 0.263 0.209
k-NN 0.753 0.661 0.720 0.506 0.347 0.279 0.784 0.493 0.280 0.212

Tf-Idf Without 0.271 0.268 0.420 0.298 0.373 0.290 0.438 0.237 0.267 0.243

SD 0.476 0.434 0.518 0.361 0.438 0.319 0.662 0.371 0.304 0.241
k-NN 0.444 0.375 0.486 0.340 0.419 0.291 0.604 0.347 0.294 0.226

GTM Without 0.784 0.685 0.712 0.488 0.633 0.586 0.557 0.324 0.351 0.292
SD 0.815 0.693 0.713 0.490 0.628 0.594 0.719 0.384 0.375 0.304

k-NN 0.806 0.680 0.683 0.455 0.626 0.560 0.608 0.373 0.358 0.293
BioASQ Without 0.388 0.310

SD 0.401 0.335

k-NN 0.397 0.321

st
a
te
-o
f-

th
e-
a
rt

STC2-LE 0.770 0.631 0.511 0.490 0.436 0.380
Topic Diffusion 0.900 0.500

Loc.-Sens. Term Weight. 0.875 0.582
BTM 0.726 0.590 0.508 0.352 0.335 0.244 0.536 0.311 0.288 0.209

The best result (ACC, NMI) for each combination of dataset and similarity is

denoted bold. We can observe that the SD method and the k-NN method improve

clustering performance in most cases (in all except for 2 and 6 dataset/similarity

combinations, respectively). For datasets other than BioMedical, the best hierarchical

clustering results are obtained with the SD sparsification on Glove similarity. For

BioMedical data, the best hierarchical clustering results are achieved also with the

SD sparsification and BioASQ similarity. We further investigated why we obtain

better result by clustering a sparsified matrix than by clustering a dense matrix using

hierarchical agglomerative clustering as discussed in Appendix A.

19

Comparison with State-of-the-Art Methods

Table 3.2 (the bottom part) shows clustering performance (ACC and NMI) by four

state-of-the-art methods for short text clustering, described in Section 2.1: STC2-

LE Xu et al. (2017), Corpus-based Topic Diffusion Zheng et al. (2018), Locality-

Sensitive Term Weighting Zheng et al. (2017) and BTM Cheng et al. (2014). For

BTM, we perform experiments ourselves, and we report the best results over param-

eter search for two parameters of the method, α and β. For the other three state-of-

the-art methods, we list previously published results Xu et al. (2017); Zheng et al.

(2018, 2017) for datasets, for which they are available, because an implementation is

either unavailable or (for STC2-LE) it can not be run on a new set.

For datasets other than BioMedical, results by the SD and k-NN methods with

Glove similarity are competitive with state-of-the-art methods. Namely, the SD

method with Glove similarity produces the best NMI on these sets, and it produces

ACC that is best on three sets (on SearchSnippets-test it is slightly lower than that by

the Topic Diffusion method). The results of the k-NN method with Glove similarity

are on those sets also usually higher than those of state-of-the-art methods (the

exceptions are ACC on SearchSnippets-test and NMI on SearchSnippets).

For BioMedical data, the SD and k-NN sparsification methods perform best with

BioASQ similarity. With respect to both ACC and NMI, they are outperformed on

this set by STC2-LE.

We compare the run-time of clustering using SD and k-NN sparsification with

that of STC2-LE. The runt-time of clustering of a sparsification based method is

computed by the run-time of sparsification of similarity matrix plus the run-time

clustering the sparse matrix. The sparsification based methods are much faster than

STC2-LE by several orders of magnitude, as shown in Table 3.3.

Table 3.3: Run-time in seconds of sparsification based clustering (using Glove em-
bedding) and STC2-LE

Method SearchSnippets StackOverflow BioMedical
SD 137 648 613
k-NN 54 67 63

STC2-LE 8277 8401 8594

20

3.2 Short Text Clustering by Iterative Classification

In this work Rakib et al. (2020a), we improve the clustering result obtained by our

similarity matrix sparsification based method Rakib et al. (2018) by iterative classifi-

cation6. Given a collection of short texts and a partition of these texts into clusters,

iterative classification modifies the given cluster partition by detecting outliers in each

cluster and changing the clusters to which they are assigned. This is repeated several

times, hence the term iterative in the method’s name.

In each iteration, we generate training and test sets containing non-outliers and

outliers respectively. Then we train a classification algorithm using the training set

and classify the test set using the trained model. This iterative process repeats until

the stopping criterion discussed in Section 3.2.2 is satisfied. The details are shown in

Algorithm 1 and are described next.

3.2.1 Algorithm for Enhancement of Clusters by Iterative Classification

In each iteration, we choose a number P that roughly corresponds to the fraction

of texts selected for the training set. P is chosen uniformly at random from an

interval [P1, P2] determined in Section 3.2.3. To generate the training set, we remove

outliers from each of the K clusters defined by the current cluster labels L. To

remove outliers, we use an outlier detection algorithm called Isolation Forest Liu

et al. (2008), which is applied to the tf -idf vector representations of the texts. The

algorithm isolates the texts that exist in the low density region of the tf -idf feature

space. If after removing outliers, a cluster contains more than n
K
× P texts, then we

remove texts from that cluster uniformly at random to reduce the number of texts

in the cluster to n
K
× P . The reason of removing texts from each cluster is that we

want each cluster to consist of roughly the same number of texts so as to reduce the

bias of the classification algorithm. We add the removed texts to the test set and add

the other texts to the training set. We train a classifier (i.e., Multinomial Logistic

Regression Umaña-Hermosilla et al. (2020)) using the non-outliers and their cluster

labels. Then we classify the texts in the test set using the trained classifier. This

defines a new set of cluster labels of the texts in the test set and thus produces an

6https://github.com/rashadulrakib/short-text-clustering-enhancement

21

Algorithm 1 Enhancement of Clustering by Iterative Classification

Require: D = set of n texts, L = initial cluster labels of the texts in D, K = number

of clusters

Ensure: Enhanced cluster labels of the texts

1: maxIteration = 50

2: avgTextsPerCluster = n/K

3: for i = 1 to maxIteration do

4: Choose a parameter P uniformly at random from the interval [P1, P2]. (P1 and

P2 are parameters determined in Section 3.2.3. P bounds the fraction of texts

kept per cluster.)

5: Remove outliers from each of the K clusters defined by L using an outlier

detection algorithm called Isolation Forest Liu et al. (2008)

6: If a cluster contains more than avgTextsPerCluster×P texts, remove texts from

that cluster uniformly at random so that exactly

avgTextsPerCluster×P texts remain in the cluster.

7: testSet = texts removed in Steps 5 and 6

trainingSet = all the texts not in testSet

8: Train a classifier (i.e., Multinomial Logistic Regression Umaña-Hermosilla et al.

(2020)) using the trainingSet and classify the texts in testSet. This assigns a

new cluster label L(t) to each text t ∈ testSet.

9: Stop iterative classification if the per cluster text distribution becomes stable

(as described in Section 3.2.2).

10: end for

11: return L

22

updated cluster partition. The reason to use Multinomial Logistic Regression is that

this classification model performs better when the amount of noise (i.e., outliers) in

data is relatively lower Couronné et al. (2018). Since we remove outliers from clusters

before training the classification model, we choose Multinomial Logistic Regression

as the classification model in our proposed clustering enhancement method.

3.2.2 Stopping Criterion for Iterative Classification

Iterative classification stops when it reaches the maximum number of iterations (i.e.,

50) or the sizes of the clusters become stable. Let C1, ..., Ck and C ′

1, ..., C
′

k be the

clusters before and after an iteration, respectively. We consider the cluster sizes to

be stable if
1

k

k
∑

i=1

||C ′

i| − |Ci|| ≤ 0.05
n

k

For example, consider the problem of partitioning 100 texts into two clusters. Then

the average cluster size is 50. If one iteration assigns 48 texts to the first cluster

and 52 texts to the second cluster and the next iteration assigns 49 and 51 texts to

these clusters, respectively, then the average absolute change of the cluster size is

1
2
(|48−49|+ |52−51|) = 1. Since this is less than 5% of the average cluster size (50),

we consider the cluster sizes to have stabilized.

3.2.3 Experimental Results of Short Text Clustering by Iterative

Classification

In this section, we discuss the experimental results obtained by our clustering enhance-

ment method based on iterative classification Rakib et al. (2020a). We used five short

text datasets that were used in our previous short text clustering method Rakib et al.

(2018) as shown in Table 3.1. The datasets we used are SearchSnippet, SearchSnippet-

test, AgNews, StackOverflow, and BioMedical.

Experimental Setup for Iterative Classification

We preprocessed the texts by removing stop words and converting them to lowercase.

Then we transformed each text into the tf -idf vector representation for a given text

collection.

23

Each iteration of the iterative classification algorithm picks some percentage P of

each cluster as the training set and reassigns the remaining texts to clusters based

on a classifier trained using this training set; P is chosen uniformly at the random

from some interval [P1, P2]. To justify this approach and to determine optimal

choices for P1 and P2, we ran preliminary experiments using a representative dataset

(SearchSnippet-test). Specifically, we considered choosing P uniformly at random

from the interval [P1, P2] or choosing a fixed percentage P in every iteration. For the

former method, we determined the optimal combination of P1 and P2 (P1 = 0.5 and

P2 = 0.95). For the later, we determined the optimal choice of P (P = 0.6). Choosing

P uniformly at random from the interval [0.5, 0.95] resulted in cluster accuracy of

82.21 for the representative dataset. Choosing a fixed percentage P = 0.6 in every

iteration resulted in cluster accuracy of 80.25. Thus we chose P1 = 0.5 and P2 = 0.95

and chose P uniformly at random from this interval in all experiments.

Experimental Setup for Clustering

To perform clustering, we used the preprocessed texts described in Section 3.2.3.

Then, texts were represented as vectors using pretrained word embeddings (i.e.,

Glove Pennington et al. (2014) and BioASQ Du et al. (2018)). The Glove embedding7

was trained using the Glove method Pennington et al. (2014) on Wikipedia dumps.

The BioASQ embedding8 was trained using the Word2Vec method Mikolov et al.

(2013) on abstracts of biomedical publications. We used the Glove embedding for all

datasets except the biomedical dataset since these datasets contained terms related

to general domains such as search snippets. For the biomedical dataset, the BioASQ

embedding was more appropriate due to its specific focus on biomedical terms.

We represented each text by the average of the vectors of all words in the text.

Then, we applied different clustering methods (i.e., k-means, k-means-- Shekhar et al.

(2003), hierarchical clustering) to the text vectors. For the k-means and k-means--

clustering algorithms, we used the text vectors as the points to be clustered. For

hierarchical clustering, we constructed the dense similarity matrix by computing sim-

ilarities between the vectors using cosine similarity for all the text pairs. After that,

7http://nlp.stanford.edu/data/glove.42B.300d.zip
8bioasq.lip6.fr/tools/BioASQword2vec/

24

we sparsified the dense similarity matrix using the k-NN and similarity distribution

based (SD) sparsification methods as described in Section 3.1.2. Then we applied hi-

erarchical agglomerative clustering using dense (HAC) and sparse similarity matrices

(HAC k-NN and HAC SD).

Results

We used accuracy (ACC) and normalized mutual information (NMI) as the evaluation

measures for different clustering algorithms (as in Xu et al. (2017)). The clustering

results (ACC, NMI) of these datasets are shown in Table 3.4. The last two rows of

Tables 3.5 and 3.6 show the ACC and NMI scores obtained using the state-of-the-art

short text clustering methods STC2-LE Xu et al. (2017) and SIF-Auto Hadifar et al.

(2019). The ACC and NMI scores of five clustering algorithms both before and after

iterative classification for the five datasets are shown in these two Tables. The results

with or without the IC suffix are the results with or without iterative classification.

The best result (ACC, NMI) for each dataset is shown in bold.

To compensate for the dependence of k-Means, k-Means-- on the choice of cluster

seeds, we ran the k-Means and k-Means-- clustering algorithms 20 times on the same

dataset and performed iterative classification on the clustering obtained in each run.

After that, we calculated the mean and standard deviation of the 20 clustering results

(ACC, NMI) obtained by k-Means, k-means--, k-Means IC and k-means-- IC for

each dataset. We ran hierarchical agglomerative clustering (HAC), HAC k-NN, and

HAC SD only once since HAC is deterministic. However, the enhancement of the

clustering obtained by iterative classification varies between runs since the training

and test sets are chosen randomly in each iteration. So, we ran iterative classifica-

tion 20 times on the clustering obtained using HAC, HAC k-NN and HAC SD, and

again calculated the mean and standard deviation of each of the 20 clustering results

obtained by HAC IC, HAC k-NN IC and HAC SD IC for each dataset.

Impact of Iterative Classification

We evaluated whether iterative classification improves the initial clustering obtained

using different clustering algorithms. We consider iterative classification to improve

the clustering for a given dataset if both ACC and NMI are increased using iterative

25

classification.

Table 3.4 shows that iterative classification improves the initial clustering of short

texts in terms of both ACC and NMI. For most of the datasets, the best clustering

ACC and NMI were obtained by applying iterative classification to the clustering

obtained by HAC with SD sparsification (HAC SD Rakib et al. (2018)). The reason

is that HAC SD produces better initial clustering than other clustering methods for

these datasets and the enhancement of clustering depends on the initial clustering.

Comparison with State-of-the-Art Methods

Our second comparison aims to assess how the results of iterative classification in con-

junction with the different clustering methods compare to state-of-the-art short text

clustering methods, specifically STC2-LE Xu et al. (2017) and SIF-Auto Hadifar et al.

(2019). Table 3.5 and 3.6 show that HAC SD IC and HAC k-NN IC outperform

STC2-LE9 for the SearchSnippet, StackOverflow and BioMedical datasets in terms

of ACC and NMI. It is also shown that HAC SD IC, HAC k-NN IC, HAC IC, k-

Means IC, and k-means-- IC outperform SIF-Auto for the SearchSnippet and Stack-

Overflow datasets in terms of ACC and NMI. However, on the Biomedical dataset, the

performance of SIF-Auto is better than any clustering method and its corresponding

enhancement by iterative classification.

Statistical Significance Testing of Clustering Performance

Our third comparison aims to investigate whether the clustering improvements achieved

by iterative classification are statistically significant. In particular, we perform two

investigations: a) whether the improved results achieved by iterative classification

are statistically significantly better than the results of their corresponding clustering

methods. b) whether the improved results achieved by our best clustering method

HAC SD IC are statistically significantly better than the results of different cluster-

ing methods (with or without iterative classification and state-of-the-art methods).

For significance testing, we performed a two-tailed paired t-test (with significance

level α = 0.05) using the pairwise differences of clustering results (ACC, NMI) of 20

9We were unable to reproduce the clustering for other short text datasets using STC2-LE and
SIF-Auto.

26

Table 3.4: ACC and NMI of different clustering methods, their corresponding en-
hancements by iterative classification, and state-of-the-art methods for short text
clustering. ∆ indicates that this method is statistically significantly inferior to its
corresponding enhancement obtained by iterative classification. * indicates that this
method is statistically significantly inferior to HAC SD IC.

Datasets
Clustering Search Search AgNews Stack Bio
Methods Snippet SnippetTest Overflow Medical

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)
HAC SD 82.69∆ 89.47∆ 81.84∆ 64.80∆ 40.13∆

HAC SD IC 87.67±0.63 92.16±0.85 84.52±0.50 78.73±0.17 47.78±0.51

HAC k-NN 79.08∆* 87.14∆* 76.83∆* 58.11∆* 39.75∆*
HAC k-NN IC 83.19*±0.61 90.76*±1.79 81.83*±0.35 70.07*±0.11 46.17*±1.10

HAC 76.54∆* 77.06∆* 76.56∆* 61.64∆* 38.86∆*
HAC IC 80.63*±0.69 83.92*±2.66 81.13*±1.22 67.69*±2.12 46.13*±0.92

k-Means 63.89∆*±1.15 63.22∆*±1.79 58.17∆*±1.87 41.54∆*±2.16 36.92∆*±0.81
k-Means IC 83.13*±0.69 82.84*±2.32 78.06*±3.13 69.89*±1.52 43.50*±1.38

k-means-- 47.42∆*±1.13 61.96∆*±1.98 62.48∆*±2.13 43.77∆*±0.39 39.95∆*±1.21
k-means-- IC 79.77*±2.67 75.29*±2.79 77.45*±3.49 69.25*±1.88 45.61*±3.19

STC2-LE 78.29*±2.72 53.81*±3.37 44.81*±1.72
SIF-Auto 79.13*±1.27 59.85*±1.81 55.73±1.97

Table 3.5: ACC results

Datasets
Clustering Search Search AgNews Stack Bio
Methods Snippet SnippetTest Overflow Medical

NMI(%) NMI(%) NMI(%) NMI(%) NMI(%)
HAC SD 63.76∆ 78.73∆ 54.57∆ 59.48∆ 33.51∆

HAC SD IC 71.93±1.04 85.55±1.09 59.07±0.84 73.44±0.35 41.27±0.36

HAC k-NN 60.51∆* 76.42∆* 52.43∆* 54.06∆* 32.19∆*
HAC k-NN IC 65.49*±0.97 83.17*±1.17 56.02*±0.86 68.88*±0.43 38.78*±0.53

HAC 59.41∆* 70.99∆* 52.82∆* 54.46∆* 31.01∆*
HAC IC 63.61*±1.09 77.49*±1.11 56.57*±1.23 61.76*±1.35 38.50*±0.61

k-Means 43.75∆*±1.31 51.54∆*±0.92 35.26∆*±2.01 38.01∆*±2.12 33.71∆*±0.29
k-Means IC 66.27∆±1.00 76.88∆±2.64 52.32∆±2.47 69.84∆±0.66 38.08∆±0.81

k-means-- 47.43∆*±1.65 49.73∆*±2.15 39.68∆*±1.15 41.89∆*±0.86 34.49*±1.93
k-means-- IC 63.01*±1.69 71.11*±2.40 51.05*±3.63 69.64*±1.28 35.63*±2.82

STC2-LE 64.72*±1.37 49.51*±1.63 38.42*±0.87
SIF-Auto 57.72*±1.43 55.59*±1.23 47.21±1.19

Table 3.6: NMI results

27

runs obtained by different pairs of clustering methods.

On all datasets except the BioMedical dataset, and for all clustering methods

tested, the enhancement by iterative classification is statistically significantly better

than the base clustering method, and the former are statistically significantly inferior

to our method HAC SD IC. For the BioMedical dataset, the ACC and NMI scores

achieved by HAC SD IC are statistically significantly better than that of STC2-LE.

However, SIF-Auto outperforms HAC SD IC on the BioMedical dataset.

Chapter 4

Dynamic Clustering of Texts

In this chapter, we discuss our two dynamic clustering methods (i.e., stream clus-

tering) of short texts Rakib et al. (2020b, 2021). The principal difference between

static and dynamic clustering is that in dynamic clustering, the amount of data to

be clustered as well as the number of clusters to be produced are unknown as the

data arrives over time; whereas in static clustering both the number of clusters and

amount of data are known before clustering is being performed.

In our first dynamic clustering method Rakib et al. (2020b), we assign texts to

clusters as they arrive, then remove outliers from the clusters, finally reassign the

outliers to appropriate clusters. In our second method (called EStream Rakib et al.

(2021)), we further improved the clustering result and running time performance than

that of our previous short text stream clustering method. EStream comprises of two

modules: online and offline. In online module, we improve running time performance

by reducing the number of similarity computations by indexing clusters using inverted

index Ilic et al. (2014). In offline module, we improve clustering result by enhancing

the distributions of texts of the selected clusters using our clustering enhancement

method Rakib et al. (2020a). In the following, we discuss each of these two dynamic

clustering methods and experimental results obtained from them.

4.1 Short Text Stream Clustering via Frequent Word Pairs and

Reassignment of Outliers to Clusters

In this work Rakib et al. (2020b), we cluster short text streams based on the frequent

word pairs1 in texts and reassigning outliers to proper clusters. This method clusters

texts batch (collection of texts) by batch as they arrive2.

Given a batch of texts, the proposed method clusters a fraction of texts in the

1Word pair is defined as two words in text not necessarily to be consecutive.
2https://github.com/rashadulrakib/short-text-stream-clustering/tree/master/BatchClustering

28

29

batch that contain frequently occurred word pairs. Then it builds a lexical clustering

model using the cluster assignments obtained by frequently occurred word pairs in

texts and clusters rest of the texts in the batch using the lexical clustering model.

After that it removes outliers from the clusters, then computes semantic clustering

model of the clusters and reassigns the outliers to clusters using the semantic similarity

between the outliers and clusters. Then it deletes the outdated clusters. Finally it

updates the lexical and semantic clustering models to reflect the new composition of

clusters and uses the updated clustering models to cluster the next batch of texts.

4.1.1 Clustering Texts by Frequent Word Pairs

We cluster a fraction of the texts in each batch using the frequent word pairs based

on the assumption that each cluster can be represented by a single frequent word pair.

At first, the word pairs are extracted from texts. Then, for each word pair, we create

a list of document indices3 where the word pair appears. We compute the mean (µ)

and standard deviation (σ) of the number of occurrences of the word pairs. The word

pairs with the number of occurrences greater than the µ+ σ are the word pairs that

frequently appear in the texts.

The frequent word pairs are used to form the clusters based on the assumption

that a frequent word pair will not co-exist with another frequent word pair in a cluster.

In particular, a document should contain only one frequent word pair. However some

documents may contain several frequent word pairs. Therefore we remove the indices

of those documents from the lists of document indices of corresponding word pairs.

Thus the texts in a cluster contain a single frequent word pair. If a frequent word

pair in the texts of the current batch exists in the texts of a previous batch, then we

merge these two lists of document indices.

4.1.2 Building the Lexical Clustering Model

To build the lexical clustering model, we construct cluster feature (CF) vector for

each cluster obtained in Section 4.1.1. The CF vector is constructed using the words

with frequencies in texts, number of texts, and number of words in a cluster. We use

the statistics of CF vectors and adopt the MStream(F) Yin et al. (2018) algorithm

3We use global unique index for each document.

30

to calculate the probabilities for the rest of the texts (i.e., not clustered by frequent

word pairs) in a batch to assign them to clusters.

The reason to construct CF vector using the cluster assignments of texts obtained

in Section 4.1.1 is to minimize the impact of the number of texts in clusters while

calculating the probabilities for upcoming texts to assign them to the clusters since

we adopt the MStream(F) algorithm for probability calculation and MStream(F)

algorithm has the tendency to assign texts to the clusters having larger number of

texts which may lead to an improper assignments of future texts to the clusters.

There may be some words that appear in the texts of different clusters (i.e., multi-

cluster words) which may cause inaccurate similarity score between the texts and

clusters. As a result, some texts may be assigned to inappropriate clusters. Therefore

we keep only the most discriminative words in clusters so that the similarity score

between a text and the cluster becomes more accurate so that the future texts can

be assigned to more appropriate clusters.

To identify the most discriminative words, we compute the entropy Cover and

Thomas (2006) of words using their distributions over the clusters. Higher entropy

implies that the word occurs in more clusters. In particular, a word occurring in only

one cluster has entropy 0. We compute the mean (µ) and standard deviation (σ) of

the entropies of all words and remove the words from clusters (i.e., from CF vectors)

whose entropy is greater than µ + σ. After removing those high-entropy words, we

update the number of words of corresponding CF vectors.

4.1.3 Clustering the Rest of the Texts

We cluster the rest of the texts (i.e., not clustered by frequent word pairs in Sec-

tion 4.1.1) in each batch using our lexical clustering model obtained in Section 4.1.2.

We calculate the probability of a text choosing one of the existing clusters or a new

cluster using the lexical clustering model and samples a cluster index for the text

using these probabilities. When a text is assigned to a new cluster, we construct a

new CF vector using its words. Otherwise, we add the text to an existing cluster and

update the CF vector of the corresponding cluster, that is, we update the frequencies

of words, number of documents, and number of words for that cluster.

31

4.1.4 Removing Outliers in Clusters

We identify outliers in the clusters obtained in each batch and remove them from the

clusters. To identify outliers in clusters, we compute the connected components Cor-

men et al. (2009) of a text graph whose vertex set is the set of texts in the cluster,

with an edge between two texts if they share a word. We consider the vertices in the

smallest connected components to be outliers.

To compute these connected components more efficiently, without constructing

the text graph explicitly, we construct an adjacency matrix representation of the

word co-occurrence graph of the cluster. The vertex set of this graph is the set of all

words that occur in at least one text in the cluster. There is an edge between two

words if they co-occur in a text in the cluster.

Clearly, the words in each text belong to the same connected component of the

word co-occurrence graph and two texts belong to the same connected component of

the text graph if their words belong to the same connected component of the word

co-occurrence graph. Thus, we compute the connected components of the word co-

occurrence graph and then associate each text with the connected component of the

word co-occurrence graph containing an arbitrary word in that text. The result is

the collection of vertex sets of the connected components of the text graph.

To identify outliers, we calculate the mean (µ) size (in number of vertices) of these

connected components and their standard deviation (σ). The texts in a component

are considered to be outliers if the component size is less than µ− σ. In addition, we

consider the text in every cluster containing only one text to be an outlier.

4.1.5 Building the Semantic Clustering Model

When we assign outliers to clusters, there may not be a sufficient number of common

words between an outlier and its appropriate cluster which may result in inaccurate

(even zero) similarity score between them. Therefore we use semantic representations

of the clusters to reassign the outliers to their appropriate clusters.

The texts remaining in the clusters after removing outliers are used to compute

the semantic clustering model of the clusters. The high-entropy words are determined

based on their cluster distributions (described in Section 4.1.2) and removed from the

texts. After removing high-entropy words from texts, we compute the representation

32

of a cluster using the remaining words in texts. We obtain a vector representation of

each word using the pre-trained Glove word embedding Pennington et al. (2014). We

obtain a document vector representing each text by summing up the embeddings of

the words in this text. Then we sum up the embeddings of the texts in each cluster

to obtain a cluster vector which is then divided by the number of texts in the cluster

called cluster center. The cluster vector and cluster center are used for the semantic

clustering model of a cluster.

If the corresponding cluster of a cluster vector in the current batch exists in the

previous batches, then we add that cluster vector with the corresponding cluster

vector obtained in the previous batches and recompute the corresponding cluster

center.

4.1.6 Assigning Outliers to Clusters

For each outlier removed from a cluster during outlier removal (Section 4.1.4), we

compute the cosine similarity between the document vector of that outlier and the

cluster centers of all clusters; then we calculate the µ and σ of the similarities.

We assign the outlier to the cluster with the highest cosine similarity if the highest

similarity is greater than the µ + σ of the similarities. Otherwise, we create a new

cluster containing this outlier. Thus the outliers are assigned to clusters based on

the dynamic similarity thresholds. Why we use µ + σ as the similarity threshold for

assigning a text to a new or existing cluster is described in Appendix B. For every

outlier added to a new or an existing cluster, we create (or update) the CF vector,

cluster vector and cluster center to reflect the addition of this outlier to a new or an

existing cluster.

4.1.7 Deleting Outdated Clusters

We remove the outdated clusters based on their update-timestamps and cluster-sizes

(i.e., number of texts in clusters) except the clusters being created or updated in the

current batch. When a cluster is being created or updated, a new unique cluster id

will be assigned to it. Thus, the recent clusters (created or updated) will be assigned

highers cluster ids. We calculate the µ and σ of the cluster ids and cluster-sizes of

the clusters created or updated in previous batches. If the cluster id is less than the

33

µ − σ of cluster ids and the cluster-size is less than the µ − σ of cluster-sizes, then

we delete the cluster by deleting the corresponding frequent word pair (along with

document indices), CF vector, cluster vector, and cluster center.

4.1.8 Experimental Results of Short Text Stream Clustering via

Frequent Word Pairs and Reassignment of Outliers to Clusters

In this section, we discuss the datasets and experimental results of dynamic clustering

of texts obtained by our method based on frequent word pairs in texts and outlier

reassignments.

Datasets

We used four different datasets of short texts in our experiments. The basic properties

of these datasets are shown in Table 4.1.

Table 4.1: Summary of short text datasets

Dataset #Clusters #Texts Avg. #words/text
Ns-T 152 11,109 6.23
Ts-T 269 30,322 7.97
NT 416 41,429 6.91
NTS 438 61,428 8.13

The datasets Ns-T Yin et al. (2018) and Ts-T Yin et al. (2018) consist of 11,109

news titles and 30,322 tweets and are distributed into 152 and 269 groups respectively.

The dataset NT was constructed by combining the news titles and tweets of the

datasets Ns-T and Ts-T respectively. It consists of 41,429 texts distributed into 416

clusters. The dataset NTS was created by combining the texts of Ns-T, Ts-T and

StackOverflow Xu et al. (2017) datasets consisting of 61,428 texts distributed into

438 clusters.

Comparison with State of the Art Methods

We compare the performance of our proposed method with other state-of-the-art short

text stream clustering methods, MStream(F) Yin et al. (2018), DP-BMM(-FP) Chen

et al. (2020), and OSDM Kumar et al. (2020) using normalized mutual information

(NMI) as shown in Table 4.2.

34

Table 4.2: NMI score of different clustering methods. * indicates that the proposed
method is statistically significantly better than other methods on a particular dataset
in terms of NMI.

Datasets Clustering Methods
Proposed MStream MStreamF DP-BMM DP-BMM-FP OSDM

Ns-T 0.862 0.859 0.852 0.878 0.838 0.857
Ts-T 0.892* 0.867 0.874 0.862 0.875 0.842
NT 0.830* 0.798 0.743 0.762 0.741 0.791
NTS 0.756* 0.716 0.681 0.701 0.693 0.720

We divide each dataset into 16 batches where the texts in each batch are mutually

exclusive. We perform 20 independent trials for each of the six algorithms on each

dataset. The averages of the results (NMI) of these runs are shown in Table 4.2.

Our experimental results show that the proposed method performs better than the

state-of-the methods in terms of NMI on all datasets except Ns-T. Moreover, the

performance of our method is statistically significantly better than the performance

of other state-of-the methods in terms of NMI on all datasets except Ns-T. For

significance testing, we performed a two-tailed paired t-test (with significance level

0.05) using the pairwise differences of clustering results (NMI) of 20 trials obtained

by different pairs of clustering methods.

The average running times (in seconds) of our proposed method and other state-

of-the-art methods are shown in Table 4.7. The running time of our method is less

than that of MStream(F), DP-BMM(-FP), and OSDM on all datasets as we keep only

the discriminative words of texts that belong to the clusters whereas MStream(F) and

OSDM keep all the words of texts and DP-BMM(-FP) keeps all word pairs of texts

that belong to the clusters; and the running time of similarity computation depends

on the number of features (e.g., words, word pairs) in the texts and clusters.

Table 4.3: Average running times (in seconds) of the algorithms.

Datasets Clustering Methods
ProposedMStreamMStreamFDP-BMMDP-BMM-FPOSDM

Ns-T 80 225 175 5019 881 97
Ts-T 165 547 297 12318 2857 191
NT 583 819 695 18217 4728 690
NTS 876 1637 1055 23871 7325 1032

35

4.2 Efficient Clustering of Short Text Streams using Online-Offline

Clustering

In this work Rakib et al. (2021), we address the two major challenges of clustering

short text streams. The first challenge is to cluster text streams within a reasonable

amount of time and; the second challenge is to achieve better clustering result. To

overcome these two challenges, we propose an efficient short text stream clustering

algorithm (called EStream) using online-offline clustering4.

We measure the efficiency of our method in extent of running time and clustering

result. The online module of our method adopts inverted index based data structure to

reduce running time. By adopting inverted index, EStream assigns a text to a cluster

by computing similarity between a text and a selected number of clusters instead of

all clusters and thus significantly reduces the running time of the clustering of short

text streams. The offline module of EStream algorithm enhances the distributions

of texts in the clusters obtained by the online module so that the upcoming short

texts can be assigned to the appropriate clusters. This helps us to achieve better

clustering results. Before we describe our short text stream clustering method, we

briefly discuss the background information related to our method.

4.2.1 Background

In this section, we briefly describe the key concepts used in our short text stream clus-

tering method (i.e., EStream) which are Text Representation, Cluster Representation,

Inverted Index, and Concept Drift.

Text Representation

We use two kinds of representations of texts: lexical and semantic.

Lexical Representation of Text For lexical representation, we represent each

text using three different kinds of lexical features which are unigram, bigram and

biterm and use each representation separately to cluster the streams of texts. Different

feature (f) representation of a text of k words are shown Table 4.4.

4https://github.com/rashadulrakib/short-text-stream-clustering/tree/master/OnlineClustering

36

Table 4.4: Lexical Feature Representation of Text

Feature type Feature representation of text of k words #Features
unigram {wi | i ∈ [1, k]} k
bigram {(wi, wi+1) | i ∈ [1, k − 1]} k − 1

biterm {{wi, wj} | i, j ∈ [1, k] and i 6= j} k×(k−1)
2

The words of a text are considered as the unigram features of that text. The two

consecutive words of a text are considered as the bigram features of that text. For

example, the text “ai improves healthcare system” will be represented by the follow-

ing bigrams: “ai improves”, “improves healthcare”, and “healthcare system”. The

biterm feature is defined as an unordered word pair constructed using the words in a

text Chen et al. (2020). The same text will be represented by the following biterms:

“ai improves”, “ai healthcare”, “ai system”, “improves healthcare”, “improves sys-

tem”, and “healthcare system”.

Semantic Representation of Text For semantic representation, we construct

a document vector representing each text by averaging the embeddings of the words

in the text. Embeddings of the words are obtained from Glove pre-trained word

embedding Pennington et al. (2014).

Cluster Representation

Lexical Representation of Cluster In our method, each cluster is represented

by a cluster feature (CF) vector Yin et al. (2018) consisting of 4 tuples {nf
z , nz,

mz, idz } where nf
z refers to the features (unigram, bigram or biterm) along with

frequencies in cluster z, nz refers to the number of features in cluster z, mz refers to

the number of texts in cluster z, and idz refers to the unique id for cluster z.

Semantic Representation of Cluster To obtain the semantic representation of

cluster, we compute cluster vector by summing up the document vectors of the texts

in each cluster. After that cluster center is computed by dividing the cluster vector by

the number of texts in the cluster. Thus the semantic representation of each cluster

consists of the cluster vector and the cluster center.

37

Inverted Index

Inverted Index is a hashmap like data structure that creates mapping from document-

features (unigram, bigram or biterm) to documents Ilic et al. (2014). To keep track of

which clusters are associated with which features, we adopt the inverted index based

searching technique and create a vector F for each feature defined as a tuple of {lidf }

where lidf refers to the list of cluster ids associated with a feature f .

Concept Drift

Concept drift is a phenomenon in which the characteristics of the data changes in

an arbitrary way over the course of time Lu et al. (2019). In the context of text

stream clustering, concept drift can be defined as the problem that the topics of the

text streams may change over time Zhang et al. (2017b). In particular, when a new

text arrives, we need to decide whether the text will be assigned to a new cluster

(i.e., a new topic has been emerged in the text stream) or the text will be assigned

to one of the existing clusters (i.e., the topic of the text is similar to the topic of an

existing cluster). To decide, whether a new text will be assigned to a new or one

of the existing clusters, we use dynamic similarity threshold Rakib et al. (2020b) as

described in Section 4.2.2.

4.2.2 Proposed Method

Our proposed short text stream clustering method (EStream) consists of two modules:

online and offline as shown in Figure 4.1. In the online module, EStream clusters

each short text one by one as it arrives. In the offline module, EStream enhances

the distributions of the texts of the selected clusters obtained by online module in

every Update-interval (UI). Update-interval is the interval when we perform offline

clustering after clustering a certain number of texts using online clustering. In the

offline module, EStream also deletes the outdated clusters and updates the Lexical and

Semantic clustering models defined in Section 4.2.1. Based on the updated clustering

models the subsequent texts are clustered.

38

Figure 4.1: Proposed short text stream clustering using Online-Offline clustering.

Online Clustering

At first we remove stop words from the text, then we extract features from that text.

At a time, we use only one type of feature representation to cluster the streams of

texts. That means, we extract only either unigram, bigram or biterm features from

the text. After that we select the clusters that contain the features of the text. Then

our method computes similarities between the text and the selected clusters using

common features. Following that it assigns the text to an appropriate cluster (new or

existing) using the dynamically computed similarity thresholds based on statistical

measure. After that it builds a clustering model using the cluster assignment of the

text to reflect the addition of this text to a new or an existing cluster; and uses the

current clustering model to cluster the subsequent text. The details are shown in

Algorithm 2 and are described next. The notations used in Algorithm 2 are shown

in Table 4.5.

39

Algorithm 2 Proposed Online Text Stream Clustering

Require: Texts: t1...t∞

Ensure: Cluster assignments: zt1...t∞

1: for ti in t1...t∞ do

2: Extract features (f) from ti

3: Select L clusters that share common features with ti (described in Section 4.2.2)

4: Compute similarities (sl) between ti and the L selected clusters using Equa-

tion 4.1

5: Compute the maximum (maxl), mean (µl) and standard deviation (σl) of the

sl similarities

6: if maxl > µl + σl then

7: j = cluster index for maxl

8: Assign ti to jth cluster

9: else

10: Assign ti to a new cluster

11: end if

12: Build clustering model (described in Section 4.2.2)

13: end for

40

Table 4.5: Notations used in the Algorithm of Online Text Stream Clustering

Notation Definition
similarity(t, z) Similarity between a text t and cluster z

FIf Feature-Importance (FI) of a feature (f) with respect to cluster z
|f ∈ z| Number of clusters containing feature f
nf
z Number of occurrences of feature f in cluster z

nz Number of occurrences of features in cluster z

N f
t Number of occurrences of feature f in text t

Nt Number of occurrences of features in text t
mz Number of texts in cluster z

Selecting Clusters for the Text

For each text, we select a specific set of clusters (based on inverted index Ilic et al.

(2014)) that share common features with the text. For each feature in a text, we

obtain the cluster ids from the corresponding feature vector F . Then we aggregate

the cluster ids. These aggregated clusters ids are considered as the selected clusters

for the text.

Computing Lexical Similarities between the Text and Selected Clusters

In online clustering, EStream computes similarities between the text and the selected

clusters based on the common features following the notion of Dice similarity Thada

and Jaglan (2013) as shown in Equation 4.1.

similarity(t, z) =

∑

f∈t∧z

(

N f
t + nf

z

)

× FIf

Nt + nz

(4.1)

To compute similarity between a text t and a cluster z, we sum the occurrences of

each common feature between t and z multiplied by the feature-importance of the

corresponding feature denoted by FIf . After that we normalize the value of the

summation by the total number of features in text t and cluster z denoted by Nt

and nz respectively. Here nf
z , N

f
t refer to the features (f) along with frequencies

in cluster z and text t respectively. The feature-importance (FI) of a feature (f)

is calculated following the notion of inverse document frequency Robertson (2004)

defined in Equation 4.2. |z| refers to the total number of existing clusters. |f ∈ z|

41

refers to the number of clusters that contain the feature f .

FIf = log
|z|

|f ∈ z|
(4.2)

The features that occur in many clusters are less discriminative for choosing the

correct cluster than the features that occur in few clusters, ideally a single cluster.

If a feature occurs much more often in one cluster than in other clusters, then this

feature is also highly discriminative in favour of this single cluster. Therefore by

multiplying the feature-importance with the occurrences of features, we obtain more

accurate similarity score between the texts and the clusters which in turn helps us to

assign the texts to the more appropriate clusters.

Assigning Text to Cluster by Lexical Similarity

To assign a text to a cluster, we compute the maximum (max), mean (µ) and standard

deviation (σ) of the similarities between the text t and the selected clusters. We assign

the text to the cluster with the maximum similarity if the maximum similarity is

greater than the µ+σ of the similarities. Otherwise, we create a new cluster containing

this text. Thus the texts are assigned to clusters based on the dynamically computed

similarity thresholds Rakib et al. (2020b). The intuition behind using maximum

similarity greater than µ + σ is that, this maximum similarity is above the average

similarities reflecting that both the text and the target cluster share highly similar

content.

Building Lexical Clustering Model

We build clustering model using the cluster assignment of the text to reflect the

addition of this text to an existing or a new cluster. When a text t is added to

a cluster z, we update the corresponding CF vector by updating its features with

frequencies (nf
z), number of features (nz), and number of texts (mz). The addible

property of the CF vector is described in the following.

Addible Property of Text to Cluster:

nf
z = nf

z +N f
t ∀f ∈ t

nz = nz +Nt

42

mz = mz + 1

idz =

idz; if successive texts are in same cluster

max(idz) + 1, ∀z ∈ Z; otherwise

Here, N f
t and Nt refer to the features with frequencies in text t and the total

number of features in text t respectively. Z is the set of all CF vectors (i.e., Z =

{CF}).

A new id is assigned to the cluster z (new or existing) if the cluster assignment of

the current text is different from that of the previous text, otherwise the cluster id

of the current text remains same as that of the previous text. This implies that the

recently created or updated cluster will have the highest cluster id. For each feature

in the text, we append the cluster id to the corresponding feature vector F .

Offline Clustering

We perform offline clustering in every Update-interval (UI). In every Update-interval,

we select a set of clusters obtained by the online clustering module of EStream algo-

rithm. Then we enhance the distributions of the texts of those clusters. After that

we assign a set of texts to clusters by semantic similarity. Following that we update

both the lexical and semantic clustering models of the clusters. Finally we delete the

outdated clusters.

Selecting Clusters We select a specific set of larger clusters obtained by the online

clustering module based on the cluster-sizes5. In particular, we select the clusters

whose sizes are greater than the mean (µ) and standard deviation (σ) of the sizes of

the clusters. The reason to select larger clusters is that larger clusters tend to have

more outliers than the smaller clusters which may cause improper assignments of the

future texts to the clusters. Therefore by improving the distributions of the texts in

the larger clusters, we can assign the upcoming texts to the appropriate clusters.

5Cluster-size refers to the number of texts in a cluster.

43

Enhancement of Clusters We enhance the distributions of the texts of the se-

lected larger clusters using a state-of-the-art clustering enhancement method as de-

scribed in Section 3.2. The clustering enhancement method requires three input

parameters which are the collection of texts (n), number of target clusters (k) and

the initial clustering labels of the texts (L). We use the texts of the larger clusters

as the collection of texts, the k number of larger clusters as the number of target

clusters, and the corresponding clustering labels of the texts as the initial clustering

labels.

Assigning Texts to Clusters by Semantic Similarity We select the clusters

containing only one text and try to reassign the texts of these clusters to the rest

of the existing clusters. The reason to select the clusters containing only one text is

that the texts of these clusters do not share any common lexical features with other

clusters. However these texts may be semantically similar to other existing clusters.

Therefore we compute the semantic representations of these texts and the semantic

representations of the rest of the existing clusters as described in Section 4.2.1.

For example, the texts “storm boreas barrel east coast leaving wake cancelled

flight” and “causing epic thanksgiving storm” form a cluster since they have common

feature (e.g., storm) between them. If we want to assign the text “rain snow threaten

snarl holiday travel” to this cluster, then we cannot assign it to this cluster since this

text does not have any common feature with the cluster. On the contrary, this text

is semantically similar to the above cluster. Therefore we use semantic similarity to

reassign the texts of clusters with single text to the rest of the existing clusters.

To assign a text to a cluster we compute cosine similarity between the semantic

representations of the text and the clusters. Then we compute the maximum (max),

mean (µ) and standard deviation (σ) of the semantic similarities for a particular text.

If the maximum similarity is grater than the mean µ+ σ of the similarities, then the

text will be reassigned to the cluster with the highest cosine similarity otherwise it will

be kept in the previous cluster obtained by the online clustering module of EStream

algorithm.

Updating Clustering Models We update both the lexical and semantic repre-

sentations of the clusters after a text is reassigned to a cluster. Lexical representation

44

of the cluster is being updated by updating the corresponding cluster feature (CF)

vector as defined in Section 4.2.1. Semantic representation of the cluster is being

updated by updating the corresponding cluster vector and cluster center as defined

in Section 4.2.1.

Deleting Outdated Clusters We remove the outdated clusters based on their

update-timestamps (represented by cluster id) and cluster-sizes. The recently created

or updated clusters will have higher cluster ids.

We remove outdated clusters in every Update-interval. To obtain outdated clus-

ters, we calculate the µ and σ of the cluster ids and cluster-sizes. If the cluster id

is less than the µ − σ of cluster ids and the cluster-size is less than the µ − σ of

cluster-sizes, then we delete the cluster by deleting the corresponding CF vector and

remove the corresponding cluster id from the feature vectors (F) that contain that

particular cluster id.

4.2.3 Experimental Results of Efficient Clustering of Short Text

Streams using Online-Offline Clustering

In this section we describe the experimental results obtained from our proposed short

text stream clustering method (called EStream). At first we discuss the datasets that

we use in our experiments. Then we compare the clustering performance and running

time of EStream with other state-of-the-art short text stream clustering methods.

We have used three datasets from our previous work on short text stream cluster-

ing Rakib et al. (2020b) which are Ns-T, Ts-T, and NT. In addition to these datasets,

we create a new dataset called SO-T using the titles of the StackoverFlow questions

consisting of 123,342 question titles distributed into 10,573 clusters. The average

number of words per text in the datasets Ns-T, Ts-T, NT, and SO-T are 6.23,

7.97, 6.91, and 5.57 respectively. The texts in these four datasets were randomly

shuffled to examine how EStream and the state-of-the-art methods (MStream(F) Yin

et al. (2018), DP-BMM(-FP) Chen et al. (2020), and OSDM Kumar et al. (2020))

perform when dealing with the texts from different topics arriving in random order.

45

Construction of the Dataset SO-T

We create a dataset SO-T using the titles of the duplicate questions posted in Stack-

Overflow6 on various topics such as Java, Python, JQuery, R, and so on. We consider

that duplicate questions are similar to each other and a group of similar questions

can form a cluster.

We obtain the question titles from the file Posts.xml7 and obtain the information

about the duplicate questions from PostLinks.xml. Each item in Posts.xml represents

a single post which can be of different types (e.g., question, answer, and so on).

Each item of the PostLinks.xml contains the information about a pair of duplicate

questions. For instance, the PostLinks.xml contains the questions A and B if they are

duplicate. There are 20,094,655 questions in Posts.xml and 1,009,249 pair of duplicate

questions in PostLinks.xml. Among the 1,009,249 pair of duplicate questions, we

randomly select 400,000 pairs8.

Using the duplicate information in PostLinks.xml, we create a list of directed edges

(e.g., A → B, B → C) which are then used to create a graph. To obtain the clusters

of duplicate questions, we compute connected components9 using the representation

of the graph. In particular, If A and B are duplicate, and B and C are duplicate, then

we obtain the connected component A → B → C which is considered as a cluster of

the duplicate questions of A, B, and C.

We compute the length of the connected components defined as the number of

questions in the component. After that, we compute the mean (µ) and standard

deviation (σ) of the lengths of the connected components and select the components

whose lengths are between the µ± σ which in turn produces 10,573 connected com-

ponents (i.e., clusters) consisting of 123,342 question titles. Sample StackOverflow

question titles (with PostId) of a cluster in the dataset SO-T are shown in Figure 4.2.

6https://stackoverflow.com/
7https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-

public-data-dump-and-sede
8We select this specific number of pairs (400,000) because of the maximum capacity of the com-

puter (Core i5-4200U and 8GB memory) where the experiments were carried out.
9We use the library in https://networkx.github.io/ to compute connected components.

46

– Python Video Framework (1003376)
– Best video manipulation library for Python? (220866)
– Trim (remove frames from) a video using Python
(7291653)

Figure 4.2: Sample StackOverflow question titles (with PostId) of a cluster in the
dataset SO-T.

Optimal Update-interval for Offline Clustering

Our proposed method (EStream) requires only one parameter called Update-interval

(UI) to perform offline clustering to enhance the distributions of the texts in the

clusters and remove the outdated clusters. We set Update-interval to 500 for all the

datasets used in our experiments implying that we enhance the cluster-distributions

and remove outdated clusters after clustering every 500 texts using our online clus-

tering module. How we choose this value is discussed in the following.

To determine the optimal value of Update-interval, we choose the dataset Ns-T.

We determine the value of Update-interval based on the optimal clustering perfor-

mance of our method for the dataset Ns-T; and use this value to perform offline

clustering for other datasets. The clustering performance (in terms of NMI) of our

method for different Update-intervals on the dataset Ns-T is shown in Figure 4.3. To

perform clustering we use biterm features of the texts of the dataset Ns-T.

100 300 500 700 900
70

75

80

85

90

Update-intervals (UI)

N
M
I
(%

)

NMI for Ns-T

Figure 4.3: NMI results of our short text stream clustering method for different
Update-intervals (UI) on dataset Ns-T.

47

Based on the different values of UI, we observe that we achieve the highest NMI

(0.861) for Ns-T when UI=500. Therefore, we choose UI=500 for all datasets used

in our experiments to perform offline clustering.

Baseline Clustering Methods

We compare the performance of EStream with the recent state-of-the-art short text

stream clustering methods as described in the following.

• MStream Yin et al. (2018) algorithm clusters each batch of short texts at a

time. It stores all the clusters produced over the course of time. MStream

has one pass clustering process and update clustering process of each batch.

In update clustering process, it applies Gibbs sampling to the same batch of

texts multiple times to improve the initial clustering result obtained in one pass

clustering process.

• MStreamF Yin et al. (2018) is a variant of MStream algorithm that deletes

the outdated clusters of previous batches and only stores the clusters of the

current batch.

• DP-BMM Chen et al. (2020) is a short text stream clustering algorithm that

adopts the similar approach as MStream and clusters each batch of short texts

at a time as it arrives. The principal difference between DP-BMM and MStream

is that DP-BMM represents the texts using biterm features instead of unigrams

(i.e., words). Therefore, DP-BMM stores the clusters of texts using biterm

features.

• DP-BMM-FP Chen et al. (2020) is a variant of DP-BMM algorithm that

deletes the outdated clusters of previous batches and only stores the clusters of

the current batch similar to MStreamF.

• Rakib et al. (2020b) proposed a short text stream clustering method by

adopting the clustering model of MStream algorithm Yin et al. (2018). The

main difference between this method and MStream algorithm is that this method

removes outliers from the clusters obtained by MStream algorithm and reassigns

the outliers to the clusters using dynamically computed similarity thresholds.

48

• OSDM Kumar et al. (2020) is a short text stream clustering algorithm that

clusters each short text one by one as it arrives. OSDM deletes a cluster if a

cluster becomes outdated, that is, the cluster is not being updated for a while

over time.

For MStream(F), we set the parameters α = 0.03 and β = 0.03 for all the datasets

as defined in Yin et al. (2018). Likewise, for DP-BMM(-FP), we set α = 0.6 and

β = 0.02 as mentioned in Chen et al. (2020). MStream(F) and DP-BMM(-FP) cluster

each batch of texts at a time. We set the batch size10 to 2000 for MStream(F) and DP-

BMM(-FP) for all datasets. We set the number of iterations to 10 for MStream(F)

and DP-BMM(-FP), and number of saved batches to one for MStreamF and DP-

BMM-FP as mentioned in Chen et al. (2020).

For OSDM, we set α = 2e−3, β = 4e−5, and an additional parameter λ = 6e−6 for

all the datasets as defined in Kumar et al. (2020). OSDM used λ as the decay rate

which is used to set lower weights to the clusters which are not being updated over

time and need to be deleted in the future.

Faster Version of Baseline Clustering Methods

• Fast-MStream and Fast-MStreamF are the faster versions of MStream and

MStreamF algorithms that we developed respectively. We apply the inverted

index Ilic et al. (2014) based searching technique using the words of the clusters

produced by the MStream and MStreamF algorithms.

• Fast-DP-BMM and Fast-DP-BMM-FP are the faster versions of DP-BMM

and DP-BMM-FP algorithms respectively. We apply the inverted index based

searching technique using the biterms of the clusters produced by the DP-BMM

and DP-BMM-FP algorithms.

• Fast-Rakib et al. (2020b) is the faster version of Rakib et al. (2020b). We

index the clusters produced by Rakib et al. (2020b) using unigrams following

the notion of Fast-MStream.

10The batch size equal to 2000 was chosen for MStream(F) and DP-BMM(-FP) based on their
optimal performance on the datasets used in this paper.

49

Comparison with State-of-the-art Methods

Comparison of Clustering Results We compare the performance of our pro-

posed method (EStream) with the state-of-the-art short text stream clustering meth-

ods and their corresponding faster versions that we developed. We apply different

types of text representations (unigram, bigram, and biterm) to EStream denoted as

EStream-unigram, EStream-bigram, and EStream-biterm. We use normalized mutual

information (NMI), Homogeneity (Ho.), V-Measure (VM) as the evaluation measures

for evaluating the performance of different clustering methods.

We randomly shuffle each dataset 20 times. Then we perform 20 independent

trials for each of the methods on each dataset. The averages of the results11 (NMI,

Ho. and VM) of these runs are shown in Table 4.6.

Our experimental results show that EStream performs better than the state-of-

the-art methods in terms of NMI, Ho. and VM on the dataset NT and SO-T. More-

over, the performance of our method is statistically significantly better than that of

the state-of-the-art methods on these two datasets. For significance testing, we per-

formed a two-tailed paired t-test Dahiru (2008) (with significance level 0.05) using

the pairwise differences of clustering results (NMI, Ho. and VM) of 20 trials obtained

by different pairs of clustering methods.

The state-of-the-art methods MStream(F), DP-BMM(-FP), Rakib et al. (2020b),

and OSDM perform better than EStream on the datasets Ns-T and Ts-T since these

methods tune the hyper parameters (e.g., α, β) on these datasets to achieve better

assignments of texts to the clusters (new or existing). On the contrary, our method

uses dynamic similarity thresholds Rakib et al. (2020b) to assign texts to the clusters

(new or existing) and does not require this kind of hyper parameter tuning on a

particular dataset.

EStream tunes the only hyper parameter Update-Interval (UI) on a single dataset

(Ns-T) and uses the same value of UI for rest of the datasets. This signifies that

EStream is less sensitive to the hyper parameter. Therefore, the overall performance

of our method is comparable to the performance of the state-of-the-art methods on

the datasets Ns-T and Ts-T. In addition, our method significantly outperforms the

11We could not run DP-BMM(-FP) on the dataset SO-T because of their longer running time
that exceeds the capacity of the experimental computer.

50

Table 4.6: Normalized Mutual Information (NMI), Homogeneity (Ho.), V-Measure
(VM) score of different clustering methods. * indicates that the EStream is statisti-
cally significantly better than other methods on a particular dataset in terms of NMI,
Ho., or VM. The highest result for a particular dataset is denoted bold.

Clustering Eva. Data Sets
Methods Ns-T Ts-T NT SO-T

EStream-unigram 0.826 0.825 0.857* 0.748*
EStream-bigram 0.851 0.848 0.873* 0.781*
EStream-biterm 0.861 0.859 0.884* 0.794*

Fast-MStream 0.858 0.864 0.799 0.609
Fast-MStreamF 0.868 0.873 0.747 0.618
Fast-DP-BMM 0.879 0.868 0.758 –

Fast-DP-BMM-FP 0.832 0.875 0.740 –
Fast-Rakib et al. (2020b) NMI 0.862 0.891 0.833 0.651

MStream 0.859 0.867 0.798 0.608
MStreamF 0.869 0.874 0.743 0.619
DP-BMM 0.878 0.862 0.762 –

DP-BMM-FP 0.838 0.875 0.741 –
OSDM 0.858 0.842 0.791 0.441

Rakib et al. (2020b) 0.862 0.892 0.830 0.654

EStream-unigram 0.858 0.851 0.863* 0.799*
EStream-bigram 0.861 0.882 0.898* 0.819*
EStream-biterm 0.876 0.898 0.915* 0.824*

Fast-MStream 0.901 0.875 0.619 0.618
Fast-MStreamF 0.873 0.895 0.663 0.647
Fast-DP-BMM 0.891 0.864 0.656 –

Fast-DP-BMM-FP 0.848 0.855 0.644 –
Fast-Rakib et al. (2020b) Ho. 0.883 0.942 0.859 0.687

MStream 0.902 0.873 0.621 0.617
MStreamF 0.871 0.897 0.661 0.649
DP-BMM 0.892 0.863 0.659 –

DP-BMM-FP 0.847 0.853 0.642 –
OSDM 0.907 0.939 0.419 0.390

Rakib et al. (2020b) 0.886 0.949 0.858 0.683

EStream-unigram 0.824 0.821 0.858* 0.742*
EStream-bigram 0.855 0.842 0.873* 0.786*
EStream-biterm 0.863 0.852 0.889* 0.799*

Fast-MStream 0.854 0.866 0.784 0.613
Fast-MStreamF 0.864 0.867 0.747 0.618
Fast-DP-BMM 0.878 0.861 0.749 –

Fast-DP-BMM-FP 0.836 0.872 0.744 –
Fast-Rakib et al. (2020b) VM 0.865 0.888 0.835 0.653

MStream 0.854 0.859 0.793 0.612
MStreamF 0.867 0.871 0.745 0.618
DP-BMM 0.879 0.865 0.768 –

DP-BMM-FP 0.836 0.866 0.747 –
OSDM 0.859 0.846 0.790 0.447

Rakib et al. (2020b) 0.865 0.896 0.833 0.658

51

Table 4.7: Average running times (in seconds) of different methods.

Clustering Data Sets
Methods Ns-T Ts-T NT SO-T

EStream-unigram 6 20 35 138
EStream-bigram 6 18 36 137
EStream-biterm 8 24 51 153
Fast-MStream 75 165 358 1290
Fast-MStreamF 63 143 311 998

Fast-Rakib et al. (2020b) 23 69 179 513
MStream 227 541 820 4289
MStreamF 173 295 698 2137
DP-BMM 5016 12307 18220 –

DP-BMM-FP 880 2854 4561 –
OSDM 31 196 690 1882

Rakib et al. (2020b) 80 165 585 1389

state-of-the-art methods on the datasets NT and SO-T as the hyper parameters of

the state-of-the-art methods were not tuned on these two datasets.

Among the three variants of EStream, EStream-biterm performs better than

EStream-unigram and EStream-bigram on all the datasets. The reason is that,

by using biterm features, we can extract sufficient distinctive features for short texts

which in turn help us to partition the texts into proper clusters Chen et al. (2020).

Comparison of Running Time The average running times (in seconds) of ES-

tream, the state-of-the-art methods and their corresponding faster versions (i.e., Fast-

MStream, Fast-MStreamF, and Fast-Rakib et al. (2020b)) are shown in Table 4.7.

The running time of EStream is several orders of magnitude faster than that of

MStream(F), DP-BMM(-FP), and OSDM on all datasets. In addition, we demon-

strate that the faster versions of the state-of-the-art methods (based on inverted

index Ilic et al. (2014) of the clusters) require significantly less amount of running

time than that of the corresponding state-of-the-art methods. The reason is that we

do not compute similarity between a text and all the existing clusters while assigning

a text to a cluster. Instead we select a specific set of clusters using the features of

the text based on inverted index Ilic et al. (2014) and compute similarities between

the text and the selected clusters. We store almost twice the number of features than

52

other methods as we use inverted index to select a specific set of clusters for a par-

ticular text. We consider this as a small price to pay for the significant improvement

in running time of our proposed method (EStream).

Another reason why the running time of MStream(F) and DP-BMM(-FP) is slower

than the running time of EStream is that both MStream(F) and DP-BMM(-FP)

perform Gibbs sampling Ishwaran and James (2001) several times on a single text so

as to assign the text to a cluster which is a time consuming operation. For instance,

if there are N number of texts, K number of clusters, V number of words in each

text, and Gibbs sampling is performed I times for each text, then the total running

time of clustering will be O(IKNV).

On the other hand, the online clustering module of EStream computes similarity

between a text and a selected number of clusters. Thus the online clustering module

of EStream selects a constant (c) factor of V number of clusters (i.e., c× V clusters)

for each text since each text contains V words and for each word EStream selects

approximately c number of clusters. In addition, the online clustering module of ES-

tream requires only one iteration (i.e., I = 1) to find clusters for the texts. Therefore

the approximate running time of EStream will be O(N × cV × V) ≈ O(N × V 2)12.

The running time complexity of EStream shows that EStream is significantly faster

than MStream(F) and DP-BMM(-FP) in the context of clustering streams of short

texts. The reason is that V 2 is significantly less than I×K×V (i.e., V 2 � I×K×V)

because for each text of V words, EStream selects approximately V number of clus-

ters where as MStream(F) and DP-BMM(-FP) select K number of clusters and V is

significantly less than K (i.e., V � K).

Though the running time complexity of EStream is significantly lower in the con-

text of clustering short texts, it may not perform well in the context of clustering

long texts as the number of words per text (i.e., V) will be relatively larger than that

of the short text.

Both DP-BMM and DP-BMM-FP represent each text of n words using n× (n−

1)/2 biterms and store all the biterms of texts that belong to a particular cluster.

Therefore, the running time of DP-BMM(-FP) is quite longer than that of other

methods.

12We ignore the running time of offline clustering module of EStream algorithm since offline
clustering is performed on a small fraction of texts in every update-interval.

Chapter 5

Finding Duplicate Questions using Clustering

At first, we discuss data preparation for finding duplicate questions. Then we describe

how we can find duplicate questions using our clustering method. After that we

discuss the experimental results obtained from our duplicate questions finding system.

5.1 Data Preparation for Finding Duplicate Questions

To prepare dataset, we downloaded a publicly available data dump of Meta Stack

Exchange from archive.org1. The data dump contains all the activities around posted

questions between June, 2009, and August, 2021. The data dump is composed of a set

of XML files containing data about all questions, associated answers, post histories,

post links, comments, and votes. We used two files from this set which are Posts.xml

and PostLinks.xml. Each item in Posts.xml represents a single post which can be

of different types (e.g., question, answer, and so on). Each item in the PostLinks.xml

contains the information about a pair of duplicate questions.

There are about 20 millions of questions posted in StackOverflow on various pro-

gramming languages such as R, C++, C#, Python, Java, JavaScript and so on.

Among them we extract questions on four different programming languages which

are R, C#, Python, and Java. For each question we extract the following contents

which are QuestionId, Tag, Title, and Body. We use the whole content of the Tag and

whole content of the Title of each question. However, for Body, we use the frequent

keywords extracted from the body. The reason to use a list of keywords of body is

that our method is a short text stream clustering method and it cannot cluster the

questions with whole bodies (i.e. long text). To extract the keywords from the body,

we use an existing keyword extraction tool called RAKE2. We apply RAKE to the

body of each question and extract top 10 frequent keywords based on the frequency

1https://archive.org/download/stackexchange
2https://pypi.org/project/rake-nltk/

53

54

of the word and its co-occurance with other words in the text where each keyword

consists of 2 to 4 words. The detailed statistics of the questions of four languages are

shown in Table 5.1.

Table 5.1: Summary of the StackOverflow Questions

Language #Questions Avg. #words/Tag Avg. #words/Title Avg. #words/Body
R 312,829 2.66 9.37 22.30
C# 1,304,920 3.30 8.84 21.68

Python 1,347,471 3.12 9.03 21.87
Java 1,592,884 3.45 9.67 22.14

To examine how our proposed duplicate finding system works, we create two

datasets called training and test set respectively. The test dataset consists of the

duplicate questions and training dataset consists of the duplicate and non-duplicate

questions. To create the datasets, at first we extract the groups of duplicate questions

described in Section 5.1.1. In Section 5.1.2, we discuss how we construct the training

and test sets.

5.1.1 Extracting Groups of Duplicate Questions

In this work, we aim to find duplicate questions of a given question on a particular

language. We consider that duplicate questions are similar to each other and a group

of similar questions can form a cluster. In the following we discuss how we extract

the clusters of duplicate questions.

We obtain the QuestionId, Tag, Title, and Body of the questions from the file

Posts.xml3 and obtain the information about the duplicate questions from PostLinks.xml.

Each item of the PostLinks.xml contains the information about a pair of duplicate

questions. For instance, the PostLinks.xml contains the questions A and B if they

are duplicate. There are about 20 million questions in Posts.xml and 1 million pair

of duplicate questions in PostLinks.xml.

For each pair of questions in PostLinks.xml, we find the base question and the

duplicate question. The base question and duplicate question are defined as the

oldest and newest question within a pair respectively based on their creation time.

3https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-
public-data-dump-and-sede

55

We obtain the creation time of a question from Posts.xml. To extract a group of

duplicate questions we find the duplicate questions for a single base question. In

particular a base question along with the corresponding duplicate questions form a

group of duplicate questions. For example, if B, C, and D are the duplicate questions

for the base question A (i.e., A → B, A → C, A → D); then A, B, C, and D form a

group of duplicate questions. However, a duplicate question (e.g., D) can be a base

question of another duplicate question (e.g., E). In this work, we discard the group

containing the base question which becomes a duplicate question of another group

so as to make sure that no duplicate question can be used as a base question. Thus

we keep the group of duplicate questions A, B, C, and D and discard the group of

duplicate questions D and E. After obtaining the groups of duplicate questions we

label them. In particular, questions in the same group have the same label. The

detail statistics of the groups of duplicate questions for different languages are shown

in Table 5.2.

Table 5.2: Statistics of the Groups of Duplicate Questions for Different Languages

Language #Clusters Avg.CSize Min.CSize Max.CSize Median.CSize
R 6832 3.06 2 424 2
C# 18954 2.64 2 168 2

Python 21987 3.10 2 562 2
Java 24308 3.18 2 781 2

The number of groups of duplicate questions (#Clusters), average number of ques-

tions (Avg.CSize), minimum number of questions (Min.CSize), maximum number of

questions (Max.CSize), and median of the number of questions (Median.CSize) in the

cluster are shown in Table 5.2. Sample Tag, Title, and Body of a group of duplicate

questions for Java language is shown in Table 5.3.

56

Table 5.3: Sample Content (Tag, Title, and Body) of a Group of Duplicate Questions
for Java

Content Type Content (PostId)

Tag
– <java><lucene><spring-batch> (39701195)
– <java><serialization><lucene><spring-batch> (39717584)

Title
– Should I keep Lucene IndexWriter open for entire indexing or close
after each document addition? (39701195)
– Can we make Lucene IndexWriter serializable for ExecutionCon-
text of Spring Batch? (39717584)

Body
– create code indexwriter code code indexwriter code code itempro-
cessor code spring batch job searching please suggest find duplicate
documents opening index writer step completion also lucene indexer
step document addition slow (39701195)
– keep lucene indexwriter open add code indexwriter code code in-
dexwriter code serialize non serializable code executioncontext code
add constructor shown code super code code fields access code super
class (39717584)

5.1.2 Training and Test Set Generation

We generate training and test set using the Tags, Titles, and Bodies of the questions

respectively for a particular language. In particular, for each language we gener-

ate three training and test sets; one by Tags and other two by Titles and Bodies

respectively.

To generate training and test set, we split each group of duplicate questions. From

each group we add the base question to the test set and add the rest of the duplicate

questions to the training set. Therefore the final test set contains the base questions

from the groups of duplicate questions. The final training set is constructed using

the rest of duplicate questions from the groups in conjunction with the ungrouped

questions. The detail statistics of the training and test set for each programming

language are shown in Table 5.4.

Table 5.4: Statistics of Training and Test Set

Language #Training Instances #Test Instances
R 305,997 6,832
C# 1,285,966 18,954

Python 1,325,484 21,987
Java 1,568,576 24,308

57

The number of questions in the Training and Test set of R language are 302410

and 6485 respectively as shown in Table 5.4 implying that we use 6485 base questions

extracted from 6485 clusters as test set and 302410 questions consisting of duplicate

and non-duplicate questions as training set.

5.2 Finding Duplicate Question by Clustering

In this section, we discuss how we find a duplicate question for a given question using

the clusters obtained by our dynamic clustering method (i.e., stream clustering) along

with static clustering Rakib et al. (2021). Since questions are continuously being

posted in Stack Overflow, our text stream clustering method clusters them one by

one as they arrive. At any given time, if an user provides a question to our duplicate

question finding system, it will use the existing clusters obtained by our proposed text

stream clustering method and try to find a duplicate question of the given using the

clusters. Figure 5.1 shows the architecture of our duplicate question finding system

using stream clustering.

Figure 5.1: Proposed duplicate question finding system using stream clustering.

It is shown in Figure 5.1 that our stream clustering method clusters questions one

by one as they arrive. Whenever a question will be given to our duplicate finding

system it will find the close clusters of the given question in terms of similarity between

the question and the clusters. Then our duplicate finding system finds the duplicate

question by searching a set of questions contained in those close clusters.

58

5.2.1 Finding Close Clusters

In the following Algorithm 3, we discuss how we find close clusters of a given question.

The input of the algorithm are the clusters of questions obtained by our stream

clustering method and a given question for which we find a duplicate question. The

output of the algorithm is the close clusters of the given question.

Algorithm 3 Find Close Clusters of a Given Question

Input: Clusters of Questions obtained by Stream Clustering: C1, C2, C3, ..., Cm;

Given Question: Q

Output: Close Clusters of given question: D1, D2, ..., Dn

1: D = φ, list of close clusters

2: S = φ, list of similarity values

3: for Ci in C1...Cm do

4: Compute similarity (si) between Q and the cluster Ci

5: Add si to S

6: end for

7: Compute the mean (µ) and standard deviation (σ) of the similarities in S

8: for Ci in C1...Cm do

9: si = S[i]

10: if si > µ+ σ then

11: Add Ci to D

12: end if

13: end for

14: return D

Given m clusters of StackOverflow questions (C1, C2, C3, ..., Cm), and a question

Q. The above algorithm finds the n close clusters (D1, D2, ..., Dn) for that given

question. To obtain the close clusters, the algorithm computes similarity between the

question Q and existing m clusters as described in the following.

Similarity Computation for Finding Close Clusters To find close clusters

of a given question Q, we use either semantic or lexical similarity. We use semantic

similarity (as described in Section 4.2.2) to find close clusters, when at least one word

59

of the given question Q (after removing stop words) do not appear in any of the

existing clusters (C1, C2, ..., Cm). Otherwise we use lexical similarity (as defined in

Equation 4.1). For example, “How to make an R object immutable” is a duplicate

question of the given question “Declaring a Const Variable in R”. After removing stop

words from the given question (i.e., “Declaring Const Variable”), we observe that the

word “const” does not appear in any of the existing clusters. Therefore, we compute

semantic similarity between the given question and existing clusters to obtain close

clusters so as to find the corresponding duplicate question.

5.2.2 Finding Duplicate Question using Clusters

Using the close clusters obtained from Algorithm 3, we find the corresponding du-

plicate question for the given question Q as shown in Algorithm 4 and described

next.

Algorithm 4 Find Duplicate Question of a Given Question

Input: Clusters of Similar Questions: D1, D2, ..., Dn; Question from Test Set: Q

Output: Corresponding Duplicate Question

1: for Di in D1...Dn do

2: for T in Di do

3: tlabel=label of question T

4: qlabel=label of question Q

5: if tlabel = qlabel then

6: return T

7: end if

8: end for

9: end for

For each close cluster Di, we iterate through the questions of that cluster. After

that for each question T in Di, we extract the label of the question T (how we

obtain label of question discussed in Section 5.1.1) denoted as tlabel. Following that

we compare the label of the question Q (denoted as qlabel) with that of T . If both

labels are same, we consider T as the duplicate question of the given question Q.

60

5.3 Experimental Study on Finding Duplicate Questions

In this section, we perform empirical study on finding duplicate questions using our

proposed duplicate question finding system. We compare the result of our proposed

system with that of an information retrieval system called Lucene Balipa and Ra-

masamy (2015) which is used as a baseline duplicate question finding system. Lucene

is an inverted index Ilic et al. (2014) based search engine that finds the similar doc-

uments of a given document within the corpus.

To perform empirical study using our system, at first we cluster the Stack Overflow

questions in training set using our short text stream clustering method. Then we try

to find the duplicate question of a given question in test set using the duplicate

question finding system as described in Section 5.2. To perform empirical study

using Lucene, at first we index the Stack Overflow questions using Lucene, then we

retrieve similar questions of a given question using Lucene and finally we try to find

a duplicate question of the question among the similar questions. In Section 5.3.2,

we discuss the experimental results obtained by our proposed duplication question

finding system and by Lucene.

5.3.1 Statistics of Clustering Stack Overflow Questions in Training Set

We cluster the Stack Overflow questions in training set using our proposed short text

stream clustering method using Tag, Title, or Body of each question respectively.

In particular, when we use Tag, we cluster the questions using only the Tags of the

questions for a particular language. The detail statistics of clustering Stack Oveflow

questions of different languages (i.e., R, C#, Python, and Java) using Tag, Title, or

Body are shown in Table 5.5.

61

Table 5.5: Statistics of clustering questions in Training Set using Proposed Stream
Clustering Method for Different Languages

Language
#Training
instances

Question Content #Clusters
Min/Max/Avg.
ClusterSize

R 308,567
Tag 978 12/1906/315.50
Title 15451 1/572/19.97
Body 1151 1/701/268.08

C# 1,295,976
Tag 1168 72/1260/1109.56
Title 23575 1/361/54.97
Body 8122 1/1167/159.56

Python 1,336,032
Tag 1297 89/1493/1030.09
Title 26919 1/1084/49.63
Body 9643 1/1051/138.54

Java 1,580,802
Tag 1569 127/1698/1007.52
Title 45901 1/1356/34.43
Body 14701 1/1207/107.53

The number of training instances used in our experiment for R language is 308,567.

The number of clusters (#Clusters), minimum (Min), maximum (Max), and average

(Avg.) size of the clusters are shown in Table 5.5. For example, after clustering

308,567 questions using Tags, we obtain 978 clusters where the Min, Max, and Avg.

size of the clusters are 12, 1906, and 315.50 respectively. The size of a cluster is

determined based on the number of questions in the cluster.

5.3.2 Experimental Results on Finding Duplicate Questions

In this section, we discuss the experimental results on finding duplicate questions by

our proposed duplicate finding system and by Lucene Balipa and Ramasamy (2015).

To find duplicate question by our method, at first, we find the close clusters of the

given question using Algorithm 3. The close clusters contain the similar content as

the content of the given question. Using the questions of the close clusters, we find

duplicate question for the given using Algorithm 4. To find duplicate question by

Lucene, the questions in the training set are ranked based on the similarity values (in

descending order) between the given question and the questions in training set. Then

top ranked ten thousand questions are selected. After that we find a corresponding

duplicate question of the given question among those top ranked questions.

62

The experimental results of finding duplicate question for different languages (i.e.,

R, C#, Python, and Java) by Our Method and by Lucene are shown in Table 5.6.

Table 5.6: Experimental results of finding duplicate question for different languages
by Our Method and Lucene

Lang-
uage

#Testing
instances

Question
Content

Our Method Lucene

#Dupli-
cate
Found

Running
Time
(Secs)

Min/Max/
Median SRank

#Dupli-
cate
Found

Running
Time
(Secs)

Min/Max/
Median SRank

R 1000
Tag 502 135 1/ 4061/ 331 504 29 1/ 9849/ 547.5
Title 763 149 1/ 6154/ 108 692 52 1/ 9954/ 139.5
Body 533 451 1/ 7218/ 495 538 136 1/ 9920/ 551.5

C# 1000
Tag 541 203 1/ 5375/ 309 565 67 1/ 9854/ 355
Title 827 187 1/ 5257/ 48 749 54 1/ 9751/ 74
Body 552 503 1/ 7303/ 139 545 138 1/ 9956/ 154

Python 1000
Tag 559 197 1/ 6495/ 331 577 65 1/ 9792/ 363
Title 755 204 1/ 4829/ 95 708 63 1/ 9768/ 123
Body 509 521 1/ 6703/ 314 516 162 1/ 9903/ 352

Java 1000
Tag 639 213 1/ 6379/ 273 657 69 1/ 9605/ 306
Title 853 232 1/ 6341/ 68.5 755 53 1/ 9921/ 80
Body 546 602 1/ 6761/ 163 551 151 1/ 9962/ 205

To perform this study, we randomly select 1000 questions from test set of a par-

ticular programming language and find duplicate questions of them using the Tags,

Titles, and Bodies of the questions. For example, there are 6832 questions in test set

for the programming language R. Among these 6832 questions we randomly select

1000 questions to find their duplicate questions. Using the Tags of the questions we

are able to find 474 duplicate questions for 1000 given questions using Algorithm 4.

Likewise we are able to find 763 duplicate questions for 1000 given questions using

the Titles of the questions. Using Lucene, we find 504 duplicate questions using the

Tags of the questions. Likewise by Lucene, we find 692 duplicate questions using the

Titles of the questions.

The experimental results in Table 5.6 show that our proposed duplicate question

finding system outperforms Lucene in the context of finding duplicate questions on

all four programming languages using question titles. The reason is that question

titles contain discriminative features that help us to organize the questions in proper

clusters which in turn allow us to select the clusters that share similar titles as the

title of the given question. However, using tags we do not outperform Lucene. The

reason is that most of the questions have same tag; therefore our stream clustering

method puts the questions with same tags into same cluster although those questions

63

are on different topics. Using body we do not perform better than Lucene as we

select a list of keywords from the bodies. Therefore some content in the body might

be missing because of not taking into account the whole content of body which in

turn may produce improper clusters and may affect on finding a duplicate question

of the given question.

The running time (in seconds) for finding duplicate questions by our method and

by Lucene is shown in Table 5.6. For example, the running time of our method

and Lucene to find duplicate questions for 1000 given questions for R language using

Title are 149 and 52 seconds respectively. We observe that the running time of Lucene

is several order of magnitude faster than that of our method for any programming

language. The reason is that we used the Lucene implemented in Java where as our

method is developed in Python and we know that the running time of Java is three

to five times faster than that of Python for similar kind of program since Java is a

compiler based language and Python is an interpreter based language McMaster et al.

(2017).

In Table 5.6, we also show the statistics (minimum (Min), maximum (Max),

and median) of Search Ranks (SRank) in the context of finding duplicate questions.

Search Rank (SRank) is defined as the ranking of a duplicate question for a given

question in terms of content similarity between two questions. The lower the SRank

of a duplicate question, the more similar to the given question and vice versa. The

Min, Max, and Median SRank of finding duplicate questions (using our method) for

R using Title are 1, 6154, and 108 respectively. Likewise the Min, Max, and Median

SRank of finding duplicate questions (using Lucene) for R using Title are 1, 9954,

and 139.5 respectively.

We observe that the SRank of our duplicate finding method is lower than that

of Lucene for any programming language. Let us briefly describe why SRank of our

method is lower than that of Lucene. Our proposed duplicate question finding system

computes similarity between the given question and the clusters of questions instead

of each individual question which limits the number of similarity computation for a

given question Manning et al. (2008). On the contrary, Lucene needs to compute

similarity between the given question and each individual question. By clustering the

questions, we organize the questions with similar content into the same cluster. Our

64

duplicate question finding system selects a set of close clusters for the given question

which helps to find a duplicate question by searching a subset of the whole collection

of questions. Therefore, the Maximum (Max) and Median Search Rank (SRank) of

our method is lower than that of Lucene for any programming language used in our

experiments as shown in Table 5.6.

Chapter 6

Conclusion and Future Work

In this thesis, we developed static and dynamic clustering methods for short texts.

Our first static clustering method improves clustering performance by sparsifying sim-

ilarity matrix using our proposed similarity distribution based sparsification method.

Our second static clustering method is based on iterative classification that enhances

the initial clustering of short texts obtained using an arbitrary clustering method (e.g.,

k-means, k-means–, hierarchical agglomerative clustering) by removing outliers and

reclassifying them to appropriate clusters until the cluster partitions stabilize. This

method is a generic clustering enhancement approach where various classification

algorithms, initial clustering and number of clusters can be easily integrated. Ex-

perimental results demonstrate that our static clustering methods outperform state-

of-the-art short text clustering methods on several datasets in terms of clustering

accuracy and running time.

In our first dynamic clustering method, we have demonstrated that building an

efficient clustering model using initial cluster assignments based on frequent word

pairs and removing outliers from clusters, outperforms the state-of-the-art short text

stream clustering methods in terms of clustering accuracy. Our second dynamic

clustering method significantly reduces the running time than that of the state-of-

the-art methods by limiting the number of similarity computations between the texts

and clusters using inverted index. It also improves clustering accuracy by enhancing

cluster partitions using our clustering enhancement method.

Using our static and dynamic clustering methods of short texts, we developed a

duplicate question finding system that finds duplicate questions in Stack Overflow

based on the clusters produced by our clustering methods. Experimental results

demonstrate that using the titles of questions, our duplicate question finding system

finds more duplicate questions than Lucene. However using the tags and bodies of

questions Lucene finds more duplicate questions than our proposed duplicate finding

65

66

system.

In the future, we will use context based word embedding (e.g., BERT Devlin

et al. (2018)) instead of average-vector based word embedding (as described in Sec-

tion 4.1.5) for the representation of short texts as context based embedding takes into

account the order of words in a text whereas average-vector based embedding ignores

the order of words in a text. For instance, we have two short texts: “boat house” and

“house boat”. The average-vector based embeddings for these two texts will be the

same. However the embeddings of these two texts should be different as the meaning

of these two texts are different from each other. The “boat house” means a house

for sheltering boats, whereas “house boat” refers to a boat that serves as a house.

Therefore we will use context based word embedding for the representations of short

texts in our static and dynamic short text clustering methods since context based

embedding generates embedding based on the order of words in a text which in turn

may produce better clustering results.

We will investigate the impact of hubness in the context of clustering static collec-

tion of texts Feldbauer and Flexer (2019). Hubs are the items that frequently appear

among the k-nearest neighbors of other items. Since hubs have higher similarity with

most of the items, it may be difficult for a clustering algorithm to properly partition

the data into expected clusters due to the hubs. Therefore in the future, we will

take into account the hubness information of an item while sparsifying a matrix using

our similarity distribution based sparsification method Rakib et al. (2018). In the

sparsified matrix, we will keep a similarity value if the retaining criteria is fulfilled

by our sparsification method in conjunction with the hubness retaining criteria (e.g.,

the similarity value is less than a certain hubness threshold).

In Stack Overflow, questions are continuously being posted on different topics over

time that need to be answered in a timely manner. In order to answer the questions,

Stack Overflow needs to find users who have expertise on similar topics Riahi et al.

(2012). One simple approach to find these users is to look for the users who already

answered similar types of questions. Then Stack Overflow can notify those selected

users to answer the questions. Clustering can be a viable tool to recommend a limited

set of expert users to answer the questions Roy et al. (2021). Since the questions are

continuously being posted over time, we plan to use our dynamic clustering method

67

to cluster the questions Rakib et al. (2021) since dynamic clustering methods are

adaptive with the changes in the collection of data (e.g., a new question is posted).

Whenever a new question is posted, we will find the clusters containing similar content

as the content of the question. After that we can notify the users who previously

answered the questions of those clusters.

In this research, we use our dynamic clustering method to cluster a couple of

millions of Stack Overflow questions to find duplicate questions. In order to perform

clustering, we compute similarity between a text and a number of clusters using a

single physical computing unit (i.e., a processor) which prevents us from obtaining

the clusters of questions within a reasonable amount of time. Therefore, we plan to

use multiple physical computing units (as required) so that we can perform multi-

ple similarity computations at the same time. For instance, if we need to compute

similarity between a text and one hundred clusters, then we can use one hundred

physical computing units to compute similarity between that text and one hundred

clusters at the same time which in turn can significantly reduce the running time of

text clustering.

We plan to use our dynamic clustering methods of short texts to find linked

questions in Stack Overflow. A question is called linked question if the question is

referenced in the solution of a given question. We will also explore more programming

languages (e.g., JavaScript, PhP, Perl, Ruby and so on) in the context of finding

duplicate questions as well as linked questions to investigate the robustness of our

static and dynamic clustering methods of short texts.

Bibliography

Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. (2003). A framework for clustering
evolving data streams. In Proceedings of the 29th International Conference on Very
Large Data Bases, pages 81–92.

Aggarwal, C. C. and Reddy, C. K. (2013). Data Clustering: Algorithms and Appli-
cations. Chapman & Hall, 1st edition.

Aggarwal, C. C. and Zhai, C. (2012). A Survey of Text Clustering Algorithms, pages
77–128. Springer US, Boston, MA.

Ahasanuzzaman, M., Asaduzzaman, M., Roy, C. K., and Schneider, K. A. (2016).
Mining duplicate questions in stack overflow. In Proceedings of the 13th Interna-
tional Conference on Mining Software Repositories, MSR ’16, page 402–412, New
York, NY, USA. Association for Computing Machinery.

Balipa, M. and Ramasamy, B. (2015). Search engine using Apache Lucene. Interna-
tional Journal of Computer Applications, 127:27–30.

Banerjee, S., Ramanathan, K., and Gupta, A. (2007). Clustering short texts using
wikipedia. In Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’07, page 787–788,
New York, NY, USA. Association for Computing Machinery.

Blei, D. M. and Lafferty, J. D. (2006). Dynamic topic models. In Proceedings of the
23rd International Conference on Machine Learning, pages 113–120, New York,
USA. ACM.

Brants, T. and Franz, A. (2006). Web 1t 5-gram corpus version 1.1. Linguistic Data
Consortium.

Carnein, M. and Trautmann, H. (2019). Optimizing data stream representation: An
extensive survey on stream clustering algorithms. Business & Information Systems
Engineering, 61(3):277–297.

Chen, J., Gong, Z., and Liu, W. (2020). A dirichlet process biterm-based mixture
model for short text stream clustering. Applied Intelligence, 50(5):1609–1619.

Chen, W.-Y., Song, Y., Bai, H., Lin, C.-J., and Chang, E. Y. (2011). Parallel spectral
clustering in distributed systems. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(3):568–586.

Cheng, X., Yan, X., Lan, Y., and Guo, J. (2014). Btm: Topic modeling over short
texts. IEEE Transactions on Knowledge and Data Engineering, 26(12):2928–2941.

68

69

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition.

Couronné, R., Probst, P., and Boulesteix, A.-L. (2018). Random forest versus logistic
regression: a large-scale benchmark experiment. BMC Bioinformatics, 19(1):270.

Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory. Wiley-
Interscience, New York, NY, USA.

da Silva, R. F. G., Roy, C. K., Rahman, M. M., Schneider, K. A., Paixão, K., Dantas,
C. E. d. C., and Maia, M. d. A. (2020). Crokage: effective solution recommen-
dation for programming tasks by leveraging crowd knowledge. Empirical Software
Engineering, 25(6):4707–4758.

Dahiru, T. (2008). P - value, a true test of statistical significance? a cautionary note.
Annals of Ibadan postgraduate medicine, 6(1):21–26.

De Abreu Lopes, P. and De Arruda Camargo, H. (2017). Fuzzstream: Fuzzy data
stream clustering based on the online-offline framework. In 2017 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–6.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-
training of deep bidirectional transformers for language understanding. cite
arxiv:1810.04805Comment: 13 pages.

Du, Y., Pan, Y., Wang, C., and Ji, J. (2018). Biomedical semantic indexing by deep
neural network with multi-task learning. BMC Bioinformatics, 19(20):502.

Erk, K. (2012). Vector space models of word meaning and phrase meaning: A survey.
Language and Linguistics Compass, 6:635–653.

Feldbauer, R. and Flexer, A. (2019). A comprehensive empirical comparison of hub-
ness reduction in high-dimensional spaces. Knowledge and Information Systems,
59(1):137–166.

Gollub, T. and Stein, B. (2010). Unsupervised sparsification of similarity graphs. In
Locarek-Junge, H. and Weihs, C., editors, Classification as a Tool for Research,
pages 71–79, Berlin, Heidelberg. Springer Berlin Heidelberg.

Hadifar, A., Sterckx, L., Demeester, T., and Develder, C. (2019). A self-training
approach for short text clustering. In Proceedings of the 4th Workshop on Rep-
resentation Learning for NLP (RepL4NLP-2019), pages 194–199, Florence, Italy.
Association for Computational Linguistics.

Ilic, M., Spalevic, P., and Veinovic, M. (2014). Inverted index search in data mining.
In 2014 22nd Telecommunications Forum Telfor (TELFOR), pages 943–946.

Ishwaran, H. and James, L. (2001). Gibbs sampling methods for stick-breaking priors.
Journal of the American Statistical Association, 96(453):161–173.

70

Islam, A., Milios, E., and Kešelj, V. (2012). Text similarity using google tri-grams. In
Proceedings of the 25th Canadian conference on Advances in Artificial Intelligence,
Canadian AI’12, pages 312–317, Berlin, Heidelberg. Springer-Verlag.

Kalogeratos, A., Zagorisios, P., and Likas, A. (2016). Improving text stream clus-
tering using term burstiness and co-burstiness. In Proceedings of the 9th Hellenic
Conference on Artificial Intelligence, SETN ’16, New York, NY, USA. Association
for Computing Machinery.

Kanj, S., Brüls, T., and Gazut, S. (2016). Shared nearest neighbor clustering in a
locality sensitive hashing framework.

Kaptein, M. and van den Heuvel, E. (2022). Statistics for Data Scientists: An In-
troduction to Probability, Statistics, and Data Analysis. Undergraduate Topics in
Computer Science. Springer International Publishing.

Kumar, J., Shao, J., Uddin, S., and Ali, W. (2020). An online semantic-enhanced
Dirichlet model for short text stream clustering. In Proc. of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 766–776, Online.

Kumar, V. (2000). An introduction to cluster analysis for data mining. Technical
report, Dept. of Computer Science, Univ. of Minnesota, Minneapolis, MN.

Li, P., Chen, Z., Hu, Y., Leng, Y., and Li, Q. (2018). A weighted fuzzy c-means
clustering algorithm for incomplete big sensor data. In Li, J., Ma, H., Li, K., Cui,
L., Sun, L., Zhao, Z., and Wang, X., editors, Wireless Sensor Networks, pages
55–63, Singapore. Springer Singapore.

Liang, S., Yilmaz, E., and Kanoulas, E. (2016). Dynamic clustering of streaming short
documents. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 995–1004.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 Eighth
IEEE International Conference on Data Mining, pages 413–422.

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., and Zhang, G. (2019). Learning under
concept drift: A review. IEEE Transactions on Knowledge and Data Engineering,
31(12):2346–2363.

Mahdiraji, A. R. (2009). Clustering data stream: A survey of algorithms. Interna-
tional Journal of Knowledge-based and Intelligent Engineering, 13(2):39–44.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information
Retrieval. Cambridge University Press, Cambridge, UK.

McMaster, K., Sambasivam, S., Rague, B. W., and Wolthuis, S. (2017). Java vs.
python coverage of introductory programming concepts: A textbook analysis. In-
formation Systems Education Journal, 15:4–13.

71

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Burges, C. J. C.,
Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems, volume 26. Curran Associates, Inc.

Müllner, D. (2013). fastcluster: Fast hierarchical, agglomerative clustering routines
for r and python. Journal of Statistical Software, 53(9):1–18.

Nguyen, H.-L., Woon, Y.-K., and Ng, W.-K. (2015). A survey on data stream clus-
tering and classification. Knowledge and Information Systems, 45(3):535–569.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for
word representation. In EMNLP, volume 14, pages 1532–1543.

Rakib, M. R. H., Jankowska, M., Zeh, N., and Milios, E. (2018). Improving short
text clustering by similarity matrix sparsification. In Proceedings of the ACM Sym-
posium on Document Engineering 2018, New York, NY, USA.

Rakib, M. R. H., Zeh, N., Jankowska, M., and Milios, E. (2020a). Enhancement of
short text clustering by iterative classification. In Métais, E., Meziane, F., Ho-
racek, H., and Cimiano, P., editors, Natural Language Processing and Information
Systems, pages 105–117, Cham. Springer International Publishing.

Rakib, M. R. H., Zeh, N., and Milios, E. (2020b). Short text stream clustering via
frequent word pairs and reassignment of outliers to clusters. DocEng ’20, New
York, NY, USA. Association for Computing Machinery.

Rakib, M. R. H., Zeh, N., and Milios, E. (2021). Efficient clustering of short text
streams using online-offline clustering. In Proceedings of the 21st ACM Sympo-
sium on Document Engineering, DocEng ’21, New York, NY, USA. Association for
Computing Machinery.

Riahi, F., Zolaktaf, Z., Shafiei, M., and Milios, E. (2012). Finding expert users in
community question answering. In Proceedings of the 21st International Conference
on World Wide Web, WWW ’12 Companion, page 791–798, New York, NY, USA.
Association for Computing Machinery.

Robertson, S. (2004). Understanding inverse document frequency: on theoretical
arguments for idf. J. Documentation, 60:503–520.

Roy, P. K., Jain, A., Ahmad, Z., and Singh, J. P. (2021). Identifying expert users
on question answering sites. In Goyal, D., Bălaş, V. E., Mukherjee, A., Hugo
C. de Albuquerque, V., and Gupta, A. K., editors, Information Management and
Machine Intelligence, pages 285–291, Singapore. Springer Singapore.

Shekhar, S., Lu, C.-T., and Zhang, P. (2003). A unified approach to detecting spatial
outliers. GeoInformatica, 7(2):139–166.

72

Shou, L., Wang, Z., Chen, K., and Chen, G. (2013). Sumblr: Continuous summa-
rization of evolving tweet streams. In Proceedings of the 36th International ACM
SIGIR Conference on Information Retrieval, pages 533–542.

Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., Carvalho, A. C. P. L. F. d.,
and Gama, J. a. (2013). Data stream clustering: A survey. 46(1).

Thada, V. and Jaglan, D. (2013). Comparison of jaccard, dice, cosine similarity
coefficient to find best fitness value for web retrieved documents using genetic
algorithm. International Journal of Innovations in Engineering and Technology,
2:202–205.

Umaña-Hermosilla, B., de la Fuente-Mella, H., Elórtegui-Gómez, C., and Fonseca-
Fuentes, M. (2020). Multinomial logistic regression to estimate and predict the
perceptions of individuals and companies in the face of the covid-19 pandemic in
the Ñuble region, chile. Sustainability, 12(22).

Wang, L., Zhang, L., and Jiang, J. (2020). Duplicate question detection with deep
learning in stack overflow. IEEE Access, 8:25964–25975.

Xu, J., Xu, B., Wang, P., Zheng, S., Tian, G., Zhao, J., and Xu, B. (2017). Self-
taught convolutional neural networks for short text clustering. Neural Networks,
88:22–31.

Yin, J., Chao, D., Liu, Z., Zhang, W., Yu, X., and Wang, J. (2018). Model-based
clustering of short text streams. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 2634–2642.

Yin, J. and Wang, J. (2016). A model-based approach for text clustering with out-
lier detection. In 2016 IEEE 32nd International Conference on Data Engineering
(ICDE), pages 625–636.

Zhang, W. E., Sheng, Q. Z., Lau, J. H., and Abebe, E. (2017a). Detecting duplicate
posts in programming qa communities via latent semantics and association rules.
In Proceedings of the 26th International Conference on World Wide Web, page
1221–1229.

Zhang, X., Zhao, J., and LeCun, Y. (2015a). Character-level convolutional networks
for text classification. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’15, page 649–657, Cambridge,
MA, USA. MIT Press.

Zhang, Y., Chu, G., Li, P., Hu, X., and Wu, X. (2017b). Three-layer concept drifting
detection in text data streams. Neurocomputing, 260:393–403.

Zhang, Y., Lo, D., Xia, X., and Sun, J.-L. (2015b). Multi-factor duplicate ques-
tion detection in stack overflow. Journal of Computer Science and Technology,
30(5):981–997.

73

Zheng, C., Qian, S., Cao, W., and Wong, H. (2017). Locality-sensitive term weighting
for short text clustering. In Neural Information Processing, pages 434–444.

Zheng, C. T., Liu, C., and Wong, H. S. (2018). Corpus-based topic diffusion for short
text clustering. Neurocomput., 275(C):2444–2458.

Appendix A

Impact of Similarity Matrix Sparsification on Hierarchical

Clustering

To investigate the impact of hierarchical clustering on dense and sparse matrix, we

took a small subset of the original dataset so as to observe the merging steps through

dendrogram Aggarwal and Zhai (2012) during clustering. The dendrogram is a tree

diagram showing the hierarchical relationship between objects. The small subset we

choose for clustering consisting of 16 texts distributed into 8 clusters (i.e., each cluster

contains 2 texts) of the dataset SearchSnippet.

The hierarchical agglomerative clustering starts with each document in its own

cluster and repeatedly merges pairs of most similar clusters until only k (the desired

numbers of clusters) clusters remain. The dendrograms obtained from clustering

dense and sparse similarity matrix for 16 texts respectively are shown in Figure A.1.

Dense matrix contains similarity values for each pairs of texts. On the contrary,

sparse matrix keeps similarity values for some pairs of texts and removes the rest. To

obtain sparse similarity matrix we use our similarity distribution based sparsification

method Rakib et al. (2018).

(a) Dendrogram for dense matrix (b) Dendrogram for sparse matrix

Figure A.1: Dendrograms for clustering similarity matrix

The texts (i.e., documents) we cluster are indexed by 0 to 15 where the texts 0

and 1, 2 and 3, ... , 12 and 13, 14 and 15 are in same cluster. Sample Documents

with indices and corresponding cluster topics are shown in the following Table A.

74

75

Table A.1: Sample texts from small subset with indices and corresponding cluster
topics for the dendrogram in Figure A.1

Index Text Cluster topic
3 lucasfilm marin county california lucasfilm in-

dependent production companies
culture-arts-entertainment

12 epidemic sommaire ral art zoyd dumb lepage
saup granular synthesis jean michel bruy lydie
jean dit pannel dangereuses visions

health

13 monographs iarc eng monographs volume vol-
ume tobacco smoke involuntary smoking to-
bacco smoking causally cancer oesophagus
squamous cell tobacco smoking stomach can-
cer causal dangereuses

health

Let us analyze the dendrograms for dense and sparse matrices in Figure A.1 re-

spectively to investigate the impact of sparsification on hierarchical clustering. One

major difference between these two dendrograms is the merging of documents 12 and

13 which are in the same cluster in source dataset. When we cluster dense matrix

we observe that the text 3 and 12 are being merged together because they have the

closest similarity between them in dense matrix. That means, 12 is the most similar

document for document 3 in dense matrix. However, in source dataset, the most sim-

ilar document for document 12 is document 13. When we sparsify the dense matrix

using our similarity distribution based method, we keep similarity between document

12 and 13 and remove other similarity values for document 12 and 13 as our sparsifi-

cation method keeps similarity values for a pair of texts if they are among the most

similar texts of each other. By analyzing the similarity values we find that 3 is not

within the most similar document of document 12. Therefore in sparse matrix we

remove the similarity value between document 3 and 12 which in turn helps hierar-

chical clustering to merge text 12 and 13 into a single cluster (as shown in Figure A.1

(b)) so as to achieve better clustering performance.

Appendix B

Justification of Similarity Threshold (µ+ σ) for Assigning

Texts to Clusters

At first we briefly discuss the purpose of similarity threshold in the context of dynamic

clustering of texts (i.e., stream clustering). Later, we justify why we use µ+ σ as the

similarity threshold for assigning texts to clusters.

In stream clustering, data arrives over time. Therefore, the amount of data to

be clustered and number of clusters to be produced are unknown. Whenever a new

data arrives, either it will be merged with an existing cluster or a new cluster will be

created containing the new data based on the similarity between the new data and

existing clusters. To quantify how similar a data is with an existing cluster, we use

similarity threshold that ultimately determines whether a new cluster will be created

or not.

In our short text stream clustering methods Rakib et al. (2020b, 2021), we as-

sign a text to a cluster when the similarity between them is higher comparing to

other clusters as well as greater than the similarity threshold. To determine similar-

ity threshold, we compute mean (µ) and standard deviation (σ) of the similarities

between the text and clusters and use µ + σ as the similarity threshold. If the sim-

ilarity between a text and cluster is greater than µ + σ and the similarity is higher

comparing to other clusters, then the text will be assigned to that cluster implying

that the text is highly similar to that particular cluster. Now the question arises, why

we use µ + σ as the similarity threshold. The reason is that in normal distribution,

most of the values tend to be around their center (mean) (i.e., most of them exist

within their µ± σ) and higher values tend to be above µ + σ implying that clusters

having similarities greater than µ+ σ contain very much similar content with that of

an upcoming text. Since we are using µ+σ as similarity threshold, we perform empir-

ical study to investigate whether the similarities between a text and the clusters are

normally distributed or not. We observed that approximately for 56 percent of texts

76

77

the similarities between the texts and clusters are normally distributed1. Sample dis-

tributions (using histogram and quantile-quantile plot) of normally and not normally

distributed similarity values are shown in Figure B.1 and Figure B.2 respectively and

described below.

(a) Distribution of similarity values us-
ing histogram

(b) Distribution of similarity values us-
ing quantile-quantile plot

Figure B.1: Distribution of normally distributed similarity values

(a) Distribution of similarity values us-
ing histogram

(b) Distribution of similarity values us-
ing quantile-quantile plot

Figure B.2: Distribution of not normally distributed similarity values

The histogram in Figure B.1(a) shows that the similarity values are normally

distributed as most of the values tend to be in the center of the curve (i.e., highest

pick at center along y axis) and rest of the values spread equally in the left and

right direction from center. In addition to histogram, we have used another type of

graphical plot called quantile-quantile2 plot (q-q plot) Kaptein and van den Heuvel

(2022) to show whether the similarity values are normally distributed or not. The

q-q plot is a graphical representation for determining if two sets of data come from

similar distribution3. In our experiment, we consider that our first dataset comes from

1We used built-in normality test library (https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.shapiro.html) to check whether a set of similarities are normally distributed or not.

2By quantile, we mean a fraction of values below the given value.
3https://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm

78

an ideal normal distribution (called theoretical distribution) of zero mean and one

standard deviation and other dataset comes from our experimental results comprising

of similarity values between the text and clusters. If we plot quantiles for a set of

normally distributed values, it falls along the 45 degree with x axis which in turn

form a straight line called theoretical quantile line.

To verify whether the similarity values are normally distributed, we compute quan-

tiles of similarity values and plot them along y axis against the theoretical quantiles

along x axis as shown in Figure B.1(b) and Figure B.2(b) respectively. The quantile-

quantile plot in Figure B.1(b) shows that most of the points plotted on the graph lies

on a straight line implying that there is small variance between the theoretical quan-

tile line (i.e., at 45 degree with y axis) and sample quantile line, which is the principle

concept of normally distributed quantile-quantile plot Kaptein and van den Heuvel

(2022). To better understand the difference between normally and not normally dis-

tributed similarity values, we plot the histogram and quantile-quantile plot of not

normally distributed values as shown in Figure B.2(a) and B.2(b) respectively. The

histogram of the similarity values is right skewed as shown in Figure B.2(a) implying

that most samples lie on the right side of curve and left side of the curve contains

very few samples, which is also reflected in the quantile-quantile plot of Figure B.2(b)

since in this plot we observe larger variance between the theoretical quantile line and

sample quantile line at the left side of this plot.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Related Work
	Static Clustering of Short Texts
	Dynamic Clustering of Short Texts
	Similarity-based Stream Clustering
	Model-based Stream Clustering

	Finding Duplicate Questions in Stack Overflow

	Static Clustering of Texts
	Short Text Clustering by Similarity Matrix Sparsification
	Generating Similarity Matrix
	Sparsify Similarity Matrix
	Clustering Sparsified Matrix
	Experimental Results of Short Text Clustering by Similarity Matrix Sparsification

	Short Text Clustering by Iterative Classification
	Algorithm for Enhancement of Clusters by Iterative Classification
	Stopping Criterion for Iterative Classification
	Experimental Results of Short Text Clustering by Iterative Classification

	Dynamic Clustering of Texts
	Short Text Stream Clustering via Frequent Word Pairs and Reassignment of Outliers to Clusters
	Clustering Texts by Frequent Word Pairs
	Building the Lexical Clustering Model
	Clustering the Rest of the Texts
	Removing Outliers in Clusters
	Building the Semantic Clustering Model
	Assigning Outliers to Clusters
	Deleting Outdated Clusters
	Experimental Results of Short Text Stream Clustering via Frequent Word Pairs and Reassignment of Outliers to Clusters

	Efficient Clustering of Short Text Streams using Online-Offline Clustering
	Background
	Proposed Method
	Experimental Results of Efficient Clustering of Short Text Streams using Online-Offline Clustering

	Finding Duplicate Questions using Clustering
	Data Preparation for Finding Duplicate Questions
	Extracting Groups of Duplicate Questions
	Training and Test Set Generation

	Finding Duplicate Question by Clustering
	Finding Close Clusters
	Finding Duplicate Question using Clusters

	Experimental Study on Finding Duplicate Questions
	Statistics of Clustering Stack Overflow Questions in Training Set
	Experimental Results on Finding Duplicate Questions

	Conclusion and Future Work
	Bibliography
	Impact of Similarity Matrix Sparsification on Hierarchical Clustering
	Justification of Similarity Threshold (+) for Assigning Texts to Clusters

