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Abstract 

Knowledge on the biomass and productivity of ocean phytoplankton is fundamental 
to our understanding of life on Earth. Phytoplankton are autotrophic microbes at the base 
of the marine food web, that, through photosynthesis, produce organic matter that 
sustains higher trophic levels – a rate termed net primary productivity. Conventional 
approaches to measuring the biomass and productivity of phytoplankton often involve the 
use of satellite remote sensing. Satellites provides daily, global images at kilometer-scale 
resolution, offering an unprecedented view of the ocean. However, satellites only observe 
a small portion of the sunlit surface ocean, missing out on biomass and productivity 
below the surface. In this thesis, I investigate the uncertainties relating to subsurface 
biomass and productivity by using the fleet of Biogeochemical-Argo floats. These robotic 
profiling platforms are distributed across the globe and provide proxy bio-optical 
observations of chlorophyll-a (from fluorescence) and carbon biomass (from particle 
backscatter) throughout the water-column. In Chapter 2, I assess the quality and quantity 
of the biogeochemical data collected by the Biogeochemical-Argo program. I provide a 
census of this data for each the primary variables that the program measures, including 
chlorophyll-a fluorescence and particle backscatter. I identify interannual trends in data 
quality, and areas where more data could be collected in the future. In Chapter 3, I design 
a method for estimating net primary productivity from daily cycles of particulate carbon. 
In this approach, I construct the daily cycle of particulate carbon from quality-controlled 
particle backscattering taken at ~5 or 10 days intervals. I demonstrate that the primary 
productivity inferred from daily cycles varies seasonally and regionally, producing 
estimates that are comparable to satellite models. With this chapter, I argue that this 
approach could 1) constrain uncertainties in satellite-based models with regard to the 
vertical structure of productivity, and 2) identify climate-related, basin-scale trends in 
ocean productivity. In Chapter 4, I use the global BGC-Argo array to estimate Earth’s 
stock of phytoplankton. I also describe the phenology and biogeography of phytoplankton 
carbon and chlorophyll-a. I highlight how in the vast majority of the ocean the 
spatiotemporal distribution of carbon substantially differs from the metric of chlorophyll-
a, which is commonly used as a proxy for phytoplankton biomass. With these results, I 
make the point – like others have before – that to properly describe the basic naturalistic 
tendencies of Earth’s phytoplankton stocks, the proper metric of carbon must be used and 
must include information from throughout the water-column. The combination of these 
chapters underscores how profiling robots can provide a more accurate, holistic view of 
ocean phytoplankton.  
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List of Abbreviations and Symbols Used 

Abbreviation Units Description 
bbp m-1 Particle backscattering 
bbp,phyto m-1 Particle backscattering from phytoplankton 
bbp,NAP m-1 Particle backscattering from non-algal particles 
BGC - Biogeochemical 
BGC-Argo - Biogeochemical-Argo 
CAFE - Carbon, absorption, and fluorescence euphotic-resolving 

[productivity model] 
CbPM - Carbon-based productivity model 
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and irradiance at 380, 412, and 490 nm. Units for each can be found 
in this table. 

PER % Percent extracellular release 
POC mmol POC m-3 Particulate organic carbon concentration 
pH dimensionless Potential of hydrogen/acidity/basicity 
PHQ % Percentage of high-quality profiles 
PLQ % Percentage of low-quality profiles 
PNR % Percentage of unresponsive profiles 
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Chapter 1  

 

INTRODUCTION 

 

Despite their small size, phytoplankton play a crucial role in Earth’s ecosystems. 

During the day, phytoplankton produce organic matter and oxygen through 

photosynthesis – a metric referred to as primary productivity. The biomass that is 

produced via photosynthesis sustains higher trophic organisms (Lindeman, 1942) and 

contributes to the long-term sequestration of atmospheric carbon dioxide as the remaining 

organic matter sinks into the deep ocean (Falkowski et al., 2000). 

Monitoring these vital organisms has never been more important given ongoing 

anthropogenic changes making the ocean warmer (Cheng et al., 2022), more acidic  

(Doney et al., 2009), and less oxygenated (Schmidtko et al., 2017). Phytoplankton 

biomass is commonly inferred from satellite images of chlorophyll-a (Chla), a pigment 

unique to all photosynthetic organisms and can be estimated from ocean colour. More 

recently, there has been renewed focus to describe phytoplankton bloom dynamics based 

on carbon biomass (e.g., Behrenfeld et al., 2005; Behrenfeld and Boss, 2018). On the 

other hand, primary productivity is modelled from various environmental inputs, and 

applied to satellite observations to obtain a large-scale view of biological production 

(Eppley et al., 1985; Behrenfeld and Falkowski, 1997). While satellites have helped 

address fundamental questions about phytoplankton biogeography and seasonality 



 2 

 

(Behrenfeld et al., 2005; Platt and Sathyendranath, 2008; Racault et al., 2012; Silsbe et 

al., 2016), and climate-driven trends (Behrenfeld et al., 2006, 2016), satellite ocean 

colour technology has limitations. 

To illustrate this limitation, imagine sitting on a dock staring into a lake during a 

bright, sunny afternoon. The human eye can likely only see a foot or two into the water, 

especially if the water is brown in colour or full of small particles. This is because the 

sunlight penetrating the lake’s surface is absorbed and scattered by phytoplankton and 

decaying material in the water, and by the water itself. Only a tiny amount of light from 

the sun returns back out of the water column and into the eye. In this thought experiment, 

an eye is like the satellite’s radiometer. Both can only “see” so deep before there is too 

little light to sense. In practice, this limitation means that 90% of the reflected light 

comes what is called the first optical depth (Gordon and McCluney, 1975), and in 

satellite observation means that only phytoplankton close to the surface are directly 

observed, missing out on the phytoplankton present far deeper in the ocean. As a rule of 

thumb, phytoplankton generally grow at depths approximately five-times greater than the 

sensing capability of the satellite (Morel, 1988). This limitation is not always considered, 

and when it is, broad assumptions must be made concerning the vertical structure of 

phytoplankton biomass and productivity (Behrenfeld and Falkowski, 1997; Westberry et 

al., 2008; Silsbe et al., 2016). 

The maturation of underwater robotic technology in the past two decades has helped 

solve this observational limitation (Chai et al., 2020). Underwater robots can be deployed 

for long periods to collect detailed measurements hundreds of meters deep. The 

biogeochemical- (BGC-) Argo program, an extension of the Argo program, has deployed 
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robotic profiling “floats” for the past decade, amassing an unprecedented database of 

~250,000 water-column profiles (Roemmich et al., 2019; Claustre et al., 2020; Stoer et 

al., 2023). Alongside temperature, salinity, and depth, BGC-Argo floats aim to measure 

six key metrics in ocean biogeochemistry: dissolved oxygen (O2), pH, nitrate (NO3- ), 

fluorescence from Chla, particle backscatter (bbp), and downwelling light. The program 

aims to sustain an array of 1,000 actively-monitoring floats within a few years. The size 

of such an array would provide more profiles in a couple years than ship-based efforts 

have in the past fifty (Chai et al., 2020). The BGC-Argo monitoring program offers a 

consistent source of information about the ocean’s subsurface biogeochemistry – and 

phytoplankton – that would otherwise not be possible with satellite observation. 

1.1 Objectives 

In this thesis, I utilize three key metrics obtained through the BGC-Argo program, 

specifically O2, Chla fluorescence, and bbp, to enhance our comprehension of subsurface 

phytoplankton within the ocean. Each of these metrics exhibits variation that is tied to 

photosynthetic processes, and through comprehensive analysis, can yield valuable 

insights into standing stocks and productivity of these abundant photosynthetic microbes. 

This thesis is a compendium of research I’ve prepared while studying at Dalhousie 

University. I have kept the introduction intentionally short because most of the necessary 

background information is available in appropriate chapters. With slight modifications, 

each chapter is based on research that is published, accepted, or in preparation for 

submission to a journal. These modifications generally include making symbols and 
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abbreviations consistent between chapters, renumbering figures and tables, removing 

some introductory text, and switching “we” to “I”*.  

I answer three main questions in this thesis, which are: 

1. What is the overall quality and quantity of BGC-Argo Float measurements?  

2. Can net primary productivity be inferred from daily cycles of carbon?  

3. What is the distribution and stock of Earth’s phytoplankton carbon and Chla 

biomass?  

In Chapter 2, I aim to describe the quality and quantity of each biogeochemical 

measurement using the entire BGC-Argo database. A census of the data will help identify 

where BGC data is lacking, where improvements could be made, and contextualize its 

use in later chapters. In Chapter 3, my aim is to estimate daily cycles of particulate 

carbon from bbp to infer depth-resolved primary productivity. This research follows what 

was done by Johnson and Bif (2021) who showed that the daily cycle in dissolved 

oxygen can be extracted the BGC-Argo array and subsequently be used to infer primary 

productivity. In Chapter 4, I focus on constraining global phytoplankton stocks and 

describe the phenology and biogeography of phytoplankton carbon biomass in contrast to 

Chla concentrations at the surface, which is commonly used as a proxy for the stock of 

phytoplankton carbon biomass. 

 

 

  

 

*This latter modification should in no way imply that trivial contributions were made by my co-authors. 
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Chapter 2  

 

A CENSUS OF BIOGEOCHEMICAL DATA 

QUALITY FROM PROFILING ARGO 

FLOATS† 

 

2.1 Introduction 

Assessing the quality and quantity of BGC-Argo observations offers valuable 

information for its use in standard oceanographic research. With the goal of sustaining a 

global network of 1,000 floats, BGC-Argo aims to deploy 250 floats each year equipped 

to measure six key properties: O2, NO3- , pH, Chla (from fluorescence), bbp, and 

downwelling light as photosynthetically available radiation (PAR) and irradiance (Ed). 

The BGC-Argo is designed to deliver this BGC data in real-time and within ~24 hours of 

 

†This chapter and Appendix A are a modified version of the article titled “A Census of Quality-Controlled Biogeochemical Argo Float 
Measurements” by Adam Stoer, Yui Takeshita, Tanya Maurer, Charlotte Begouen Demeaux, Henry Bittig, Emmanuel Boss, Hervé 
Claustre, Giorgio Dall’Olmo, Blair Greenan, Kenneth Johnson, Emanuele Organelli, Raphaëlle Sauzède, Catherine Schmechtig, and 
Katja Fennel published in Frontiers in Marine Science published by Frontiers Media SA on October 27, 2023 under the terms of CC 
BY 4.0, which permits the use, distribution, and reproduction in any medium, provided the original work is properly cited. This 
citation for this work can be found under Stoer et al. (2023). 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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collection. This real-time oceanographic monitoring system thus requires parameter-

specific, quality-control (QC) procedures.  

The data structure and QC procedures, among other aspects, are provided in the 

guide by Bittig et al. (2019). Briefly, profile data received from each BGC-Argo float 

cycle is formatted into two types of files: a core file that includes temperature and salinity 

measurements from the conductivity-temperature-depth (CTD) sensor, and a b-file that 

includes measurements from all BGC sensors available. These two files are combined 

into a synthetic-profile file, which aligns or interpolates each measurement along a 

synthetic pressure axis. This process accounts for any misalignment of the CTD and BGC 

measurements during onboard processing, and thus greatly enhances the usability of the 

data while maintaining the character of the original sample design (Bittig et al., 2022). 

All synthetic-profile files from each float are merged into a single “Sprof” file, which 

contains the CTD and BGC data and associated quality control information. 

The BGC-Argo QC procedures are structured under two main levels (Argo Data 

Management Team, 2022). The first level is real-time QC (RTQC) involving a set of 

automatic tests on each profile, with the goal of screening grossly bad data from the 

system (i.e., global range and spike tests). The second level is referred to as delayed-

mode QC (DMQC), which aims at delivering high-quality data for research purposes, 

such as long-term studies testing for climate-driven changes in ocean biogeochemistry. 

DMQC involves a more detailed set of procedures that are performed by an expert to 

account for shifts in sensor calibration that can occur during storage and post-

deployment. For O2, NO3- , and pH, these adjustments are an essential part of the QC 

process, as they provide significant improvements to the accuracy of the raw data. Users 
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are always advised to use ‘<PARAM>_ADJUSTED’ data fields, such as 

‘DOXY_ADJUSTED’ for adjusted O2 measurements, as described in Johnson et al. 

(2018), Johnson et al. (2021), Bittig et al. (2019), and Thierry et al. (2021). The DMQC 

procedures generally involve re-calibrating the sensor to high-quality reference fields or 

climatologies (Takeshita et al., 2013; Bittig and Körtzinger, 2015; Johnson et al., 2015; 

Maurer et al., 2021). These new calibrations are then propagated forward to provide 

higher-quality real-time data (called real-time adjusted data). 

The DMQC procedures for the bio-optical parameters are currently still under 

development, although various methods have been explored (Organelli et al., 2016, 2017; 

Cornec et al., 2021; Jutard et al., 2021; Begouen Demeaux and Boss, 2022; O’Brien and 

Boss, 2022). However, all bio-optical parameters receive some level of real-time QC at 

this stage (Schmechtig et al., 2015, 2018, 2019; Poteau et al., 2019). The Chla parameter 

also receives an adjustment in real time, which includes a correction for non-

photochemical quenching (NPQ), dark values, and an improved calibration factor 

(Roesler et al., 2017). 

In this study, I report a census of select BGC measurements, and their associated data 

quality based on the Argo QC flagging system. While other variables are available, the 

main analysis focuses on the six key variables, the program aims to measure (NO3- , pH, 

Chla, bbp, PAR, and Ed). When describing both adjusted and unadjusted measurements, I 

refer to the variable name (e.g., “Chla”); otherwise, I specify when adjusted or unadjusted 

data is specifically described (e.g., “adjusted O2”). For O2, NO3- , pH, and Chla, I refer to 

the adjusted data when reporting quality metrics, as the unadjusted data is intentionally 

treated as bad for scientific analysis (e.g., due to storage drift for the O2, NO3- , and pH 
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sensors, or NPQ for Chla). Comparatively, for bbp, PAR, and Ed, data are generally usable 

for scientific analysis without requiring further adjustments. For this analysis, I also only 

consider floats that simultaneously collect Ed at 380, 412, and 490 nm and PAR, which is 

the most common configuration in the BGC-Argo array. For brevity, I refer to these 

simultaneous measurements of PAR and Ed as PAR/Ed. 

This paper describes the current breakdown of BGC profile quality in terms of data 

quality flags, what’s been collected so far, annual trends in data quality, and how close 

BGC-Argo is to reaching its targets. I compare data quality before 2017 with that in the 

last six years to identify improvements in data quality. The density of quality BGC 

profiles is also assessed regionally and in relation to the target density of a 1,000-float 

network. Finally, I also discuss potential strategies for increasing the number of high-

quality profiles in the future. 

2.2 Methodology 

For each profile and BGC parameter used in this study, I recorded the WMO number 

of the float, date and location, cycle number, profile- and depth-level quality flags, and 

the presence of sensor data using Sprof files downloaded from March 16-17, 2023 

(Argo, 2000). I also recorded information about each sensor’s manufacturer and model 

from the metadata file associated with each float (Argo Data Management Team, 2022). 

Data from 2023 was not included in this analysis. With the QC flags BGC-Argo provides, 

I applied two simplified flagging systems I created. I only used ascending profiles (~96% 

of the database) because QC flags and BGC data were not consistently available from 

descending profiles. For the rare occasion where a single float had multiple sensors 

measuring the same BGC property (e.g., 24 floats had more than one O2 sensor), I used 
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the sensor designated as the primary parameter (see pg. 84 in Argo Data Management 

Team, 2022). 

2.2.1 Description of BGC-Argo quality flag system 

First, I provide a description of BGC-Argo’s QC flag system which is based on the 

pre-existing flagging scheme used operationally within the Argo data management 

system. The QC flag system sets depth-level and profile-level quality flags for each BGC 

property (Table 1; Argo Data Management Team, 2022). The depth-level flag system in 

Argo denotes the QC flags as “<PARAM>_QC” or “<PARAM_ADJUSTED>_QC” for 

unadjusted or adjusted measurements, respectively. These QC flags will flag “good” data 

as “1”, "probably good” data as “2”, “probably bad” data as “3”, and “bad” data as “4” 

(Table 1). Data are labeled with a flag of “5” when they are changed (e.g., the correction 

for NPQ of chlorophyll-a fluorescence). If values are interpolated or extrapolated, a label 

of “8” is used. If no QC is performed, a flag of “0” is used, while missing data are 

flagged as “9”. Generally, data with flags “1”, “2”, “5”, and “8” are treated as high-

quality data, while data with flags “3” or “4” are treated as low-quality data. 

Profile-level quality flags, denoted as “PROFILE_<PARAM>_QC” in Argo, 

describe the percentage of high-quality data points out of all the available data points in a 

profile (N). For the calculation of	N, the QC flags associated with the adjusted data (from 

either adjusted RTQC or DMQC) are used. If there are no adjusted data available, the QC 

flags associated with the unadjusted data are used in the calculation instead (from 

unadjusted RTQC processing). Depth-level data points with flags “0” or “9” are not used 

in the determination of the profile-level flag. In Equation 1, the calculation for profile-

level quality flags is as follows: 
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 N	=	 n1	+	n2	+	n5	+	n8
n1	+	n2	+	n3	+	n4	+	n5	+	n8

	×	100%, 1 

where n is the number of QC flags in the profile with the subscript indicating the value of 

the depth-level QC flag. Then, N is categorized as one of seven different flags: flag “A” 

means when 100% of the profile has high-quality data, flag “B” when 75 to 100% of the 

profile has high-quality data, and so on in 25% increments to flag “F” which means that 

0% of the profile data are high quality (Table 1). If no QC is performed or the only depth-

level quality flags are “0” and “9”, then no profile-level flag is given, and an empty value 

is assigned. 

Table 1. Quality control system used by BGC-Argo (Argo Data Management Team, 
2022). Note that depth-level QC flags of “6” and “7” are not used. 

QC Level Flag 
Label 

Quality Control Meaning 

Depth-level 0 No quality control is performed 
 1 Good data. All real-time or delayed-mode tests have been passed 
 2 Probably good data; this data can be used with caution 
 3 Probably bad data; data may require adjustment, or the adjusted data are 

still bad 
 4 Bad data that are unusable or likely cannot be adjusted 
 5 Value changed 
 8 Data estimated from extrapolation, interpolation, or another approach 
 9 Missing value 
Profile-level A 100% of the profile’s data has depth-level flags of 1, 2, 5, or 8 
 B 75 to 100% of the profile’s data has depth-level flags of 1, 2, 5, or 8 
 C 50 to 75% of the profile’s data has depth-level flags of 1, 2, 5, or 8 
 D 25 to 50% of the profile’s data has depth-level flags of 1, 2, 5, or 8 
 E 0 to 25% of the profile’s data has depth-level flags of 1, 2, 5, or 8 
 F 0% of the profile’s data has depth-level flags of 1, 2, 5, or 8 
 “ “ No quality control is performed, or usable depth-level flags are present 
 

2.2.2 Measurement-quality metrics 

For this analysis, I created two simplified systems of flags based on BGC-Argo’s 

quality flag scales described in the previous section. Our first flag classification system is 

important for those interested in scientific analysis as it focuses on the availability of 

high-quality data profiles.  
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The second flag system I created describes the prevalence of functioning sensors, as 

opposed to those that have malfunctioned (e.g., the sensor stops reporting data or reports 

oceanographically inconsistent values entirely). Data profiles from malfunctioning 

sensors cannot be recovered for biogeochemical analysis and may be meaningless. The 

purpose of the second flag classification system is to identify causes of poor-quality data 

that result from an unfixable sensor malfunction, and not from intermittent error or other 

operational limitations. This flag scale is likely of interest to those who are currently 

deploying floats and those who plan to. Both flag scales provide a foundation for tracking 

BGC-Argo data quality and sensor performance through repeated future analyses. 

2.2.2.1 Profile quality flag system 

The first system of flags defines high-quality profiles as profiles where N is greater 

than or equal to 75% (so profile flags “A” and “B” as defined in Table 1). Low-quality 

profiles were defined as profiles where N is less than 75% (or having profile-level flags 

of “C”, “D”, “E”, or “F”).  

I needed to identify the cause of missing QC flags in a profile, which can result from 

either the QC algorithm simply not being applied, or from the sensor no longer reporting 

data due to malfunction. To distinguish between the two possible causes, I checked for 

the presence of BGC data in the profile. If BGC data were missing, the profile was 

categorized as having an unresponsive sensor. If BGC data was present, the profile was 

labelled as having missing QC flags. 

Based on these definitions, I calculated the percentage of high-quality profiles (PHQ) 

by parameter, year, region, or for each float in Equation 2 as: 
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 PHQ	=	
SHQ

SHQ	+	SLQ	+	SNR
×100%, 2 

where SHQ is the number of high-quality profiles, SLQ is the number of low-quality 

profiles, and SNR is the number of profiles where the sensor was no longer reporting data. 

I repeat a similar calculation but for the percentage of low-quality profiles (PLQ) and 

profiles with unresponsive sensors (PNR). Note that the number of profiles without QC 

(SNOQC) is not included in the calculation. 

2.2.2.2 Functioning-sensor flag system 

The second QC flag scheme created for this analysis classifies sensors as either 

functioning or malfunctioning. I use this scheme to describe the prevalence of 

functioning/malfunctioning sensors for each BGC parameter and sensor 

manufacturer/model.  

I defined “malfunctioning sensors” as sensors that produced profiles where all data 

points in the profile had a depth-level flag of “4” or when the sensor reported no data in 

the profile. When data are labeled with a depth-level flag of “4”, BGC data are outside 

the expected range, contain spikes, have unexpected gradients, or the measurements 

remain ‘stuck’ at the same value. Otherwise, if the sensor profile did not follow these 

conditions, the sensor was labeled as functional. 

For this calculation, QC flags were produced from the combination of unadjusted or 

adjusted data for all BGC parameters. Profiles without QC flags and deemed as SNOQC (as 

previously described) were ignored. In Equation 3, I calculated the percentage of 

functioning profiles as PFUNC as: 

 PFUNC	=	
SFUNC

SFAIL	+	SFUNC
	×	100%, 3 
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where SFUNC is the number of profiles with functioning sensors and SFAIL is the number of 

profiles with malfunctioning sensors. 

2.2.2.3 Float survival rate 

The survival rate of floats and their sensors are an important aspect of maintaining 

the BGC-Argo network. Depending on various factors (e.g., power consumption, 

environmental conditions, manufacturing quality), some floats will collect only a few 

profiles before failing, while others will last several years. For similar reasons, sensors 

may stop functioning before the float does. The survival rates of floats (RFloat) can be 

quantified as the number of floats operating at a pre-defined cycle number divided by the 

number of floats originally deployed. As cycle numbers increase, the portion of floats 

remaining declines until no floats are active. Similarly, the portion of remaining floats 

that produce high-quality profiles at a pre-defined cycle number represents a combination 

of float and sensor performance and is termed the high-quality survival rate or RHQ. The 

difference between RFloat and RHQ is therefore representative of sensor performance alone. 

The same concept can be applied to the float profiles I label as ‘functioning’ (termed the 

functioning survival rate or RFUNC). 

I’m interested in estimating RFloat, RHQ, and RFUNC at 36.5 cycles (equivalent to one 

year of profiling at a 10-d profiling frequency). To determine RFloat, I first calculated the 

fraction of floats remaining at cycle numbers between one and thirty and then applied a 

linear regression to extrapolate the survival rate to 36.5 cycles. A similar calculation was 

performed for RHQ and RFUNC but only floats with high-quality profiles and with 

functioning sensors were counted, respectively. At a 10-d sampling interval, floats 

deployed after March 7, 2022, would not have been deployed for long enough to make 30 
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cycles, and are therefore not used in this calculation. Note that for these survival rate 

estimates, I relied on cycle numbers instead of profile numbers because 1) up- and down-

cast profiles (if both were taken) are given the same cycle number, and 2) I only consider 

ascending profiles in this analysis.  

2.2.3 Regional data density and coverage 

The density and spatial coverage of BGC data are important for determining where 

regional biogeochemistry may need to be better constrained. I assessed these metrics in 

different marine regions (Flanders Marine Institute, 2021) which include the North 

Atlantic, South Atlantic, North Pacific, South Pacific, Indian Ocean, Southern Ocean, 

Arctic Ocean, Baltic Sea, Black Sea, and Mediterranean Sea. Floats in the Black, 

Mediterranean, and Baltic seas were also reviewed both individually and as a single 

region I call ‘seas around Europe’.  

I determined the density of high-quality profiles (equal to SHQ divided by surface 

area) from both the total number of profiles available and on a yearly basis. The surface 

area of ocean was calculated for each marine region and from a global ocean grid 

resolved to 5º longitude by 5º latitude. For all regions, except for the seas around Europe, 

areas where the seabed was shallower than 200 m was excluded. I report the average 

number of high-quality profiles from PAR/Ed profiles since this BGC data comes from 

the same sensor and have similar numbers of high-quality profiles.  

For the annual assessments, I compared the density of high-quality profiles with a 

target profile density of a BGC-Argo network of 1,000 active floats (assuming they are 

evenly-spaced). This comparison was made by calculating 1) the region-wide density as a 

percentage of target density, and 2) the percent area of grid cells where high-quality 
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profile density met the target density in each region. A similar calculation was also made 

for the latter but by including areas where profile densities are above 0. The target density 

is equal to ~1.1 profile per 10,000 km2 per year (i.e., ~1 profile per 100 km x 100 km 

square of ocean per year) and is based on a network of 1,000 floats (presumably profiling 

every 10 days) over ~335 million km2 of ocean each year. 

2.3 Results 

2.3.1 Overall BGC-Argo profile quantity 

As of December 2022, the database of Sprof files has accumulated a total of 263,715 

unique BGC profiles from 1,811 BGC-Argo floats (Table A1). The most frequently 

measured property is O2 (251,855 raw profiles from 1,754 floats) while the least 

frequently measured property is pH (39,483 raw profiles from 447 floats) after PAR/Ed 

(46,028 raw profiles from 273 floats). Since 2002, the total number of floats deployed has 

steadily increased, alongside the total number of floats sustained in the array (Figure 1).  
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Figure 1. The number of floats deployed (A) and the size of the float array (B) each year 
since 2002. The solid black line represents floats with at least one BGC parameter, the 
dotted black line represents floats with all six BGC parameters (O2, NO3- , pH, Chla, bbp, 
and PAR/Ed), and the remaining colored lines represent floats with a specific BGC 
parameter. The BGC-Argo targets for annually deployed floats and the size of float array 
are shown in panels (A, B), respectively, as the horizontal dashed lines. 

How close the float array is to the annual float or profile targets is highly dependent 

on the BGC parameter because most floats do not measure the full suite of BGC 

parameters. For example, the number of radiometer-equipped floats deployed each year 

has not surpassed 50, while the other five BGC parameters see a minimum of 100 floats 

deployed per year as of 2022. These discrepancies result from pilot programs that 

prioritized certain parameters. Radiometry has largely been driven by European and 

Australian projects, which focused on regions around Europe, the North Atlantic, and the 

Indian sector of the Southern Ocean.  

Currently, only 39 floats measure all 6 BGC parameters of interest (Figure 1). As of 

2022, PROVOR, one of the three main models of floats used in the BGC-Argo fleet, is 

the only float type that can measure all six variables, restricting the full set of parameters 

from being collected. However, many operational float programs are currently putting 
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effort toward expanding sensor suite capabilities on various platforms. For example, the 

Global Ocean Biogeochemistry (GO-BGC) array plans to begin deploying six-parameter 

APEX floats in the summer of 2023. A 6-parameter Navis float is currently in the later 

stages of development as well. 

2.3.2 Overall BGC-Argo profile quality 

The majority of profiles for each BGC parameter have received QC flags. Almost all 

O2 profiles have undergone QC (PNOQC = <1%). The parameters missing the most QC 

flags are Chla (PNOQC = 12%) and bbp (PNOQC = 15%). This lack of QC on some 

parameters will decline as the program matures. The mode of QC received by each 

property also varies greatly (Figure 2). At least three-quarters of O2, NO3- , pH, and Chla 

profiles have received adjusted or delayed-mode processing. In comparison, >40% of bbp 

and PAR/Ed data contain unadjusted real-time processing (also see Figure A1). Note that 

the RTQC for PAR/Ed only involves a range test and that there is no procedure for real-

time adjustments; if adjustments are made to the radiometry data, then only DMQC has 

been applied. 



 18 

 

 

Figure 2. Percentage of profiles based on the type of quality-control mode, denoted in the 
PARAMETER_DATA_MODE field, for each BGC property: (A) O2, (B) NO3- , (C) pH, 
(D) Chla, (E) bbp, and (F) PAR/Ed. The associated label from Argo notation for each data 
mode is shown in brackets in the legend. Note that some data with real-time unadjusted 
processing do not always have QC flags (also see Supplementary Note). Representations 
for specific downwelling light channels are the same as (F) and are reported in Figure 
A1. 

Due to their specialized QC procedures, which limit the quality flag of “1” to data 

that has been adjusted, I report only the QC metrics derived from adjusted data of O2, 

NO3- , pH, and Chla for the rest of this document, specifically referring to these variables 

as ‘adjusted’. Otherwise, the QC metrics for the other parameters (bbp and PAR/Ed) 

include both adjusted and unadjusted data, unless specifically stated. 

Based on our first classification system, the number of high-quality profiles has 

generally increased each year, except for profiles of PAR/Ed (Figure 3). This lack of 

PAR/Ed profiles is due to no sustained rise in the deployments of floats equipped with 



 19 

 

these sensors (Figure 1). I find that the database-wide PHQ was the highest for PAR/Ed 

(92%, on average) and the lowest for adjusted pH (48%) (Table A2). Adjusted O2 and 

NO3-  profiles have a PHQ equal to ~90% and 87%, respectively, while profiles of bbp and 

adjusted Chla have PHQ equal to 87% and 85%, respectively. For the ~21,000 adjusted 

PAR/Ed profiles that have received DMQC, PHQ increases to ~97% (or 96.7% for PAR; 

97.3% for Ed[380], Ed[412], and Ed[490]). 

 

Figure 3. Profiles with QC collected each year for each BGC property: (A) adjusted O2, 
(B) adjusted NO3- , (C) adjusted pH, (D) adjusted Chla, (E) bbp, and (F) PAR/Ed. Both 
unadjusted and adjusted data profiles are shown in (E, F). Profiles are colored by their 
quality-control flags. The BGC-Argo target for the number of profiles collected each year 
is shown in each panel as a horizontal dashed line. PAR and Ed are collected by the same 
sensor and undergo similar quality control, so, for simplicity, the average number of 
profiles per quality type are shown in (F) instead; the exact number of high/low-quality 
profiles between PAR and Ed profiles vary slightly (Table A2). 

Low-quality data profiles were the least common with PAR/Ed (PLQ = 2.5% for PAR; 

1.8% for Ed[380]; 1.8% for Ed[412]; and 1.9% for Ed[490]). Low-quality adjusted pH 
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profiles are currently the most common (PLQ = ~52%) among the BGC parameters. Other 

BGC sensors tend to report low-quality profiles 7-15% of the time. Profiles with no data 

(i.e., unresponsive sensors) are the most common among PAR/Ed and bbp (PNR = ~6% for 

each), while they are the least common among the adjusted O2, NO3- , pH, and Chla 

profiles (PNR < 1.5%; Table A2). 

Using our secondary classification system, profiles with functioning sensors were the 

least common among pH profiles (PFUNC = 60%; Table A2). This suggests that sensor 

malfunction is the cause of most low-quality pH profiles, rather than correctable 

calibration drift errors. Functioning sensors were present in a higher portion of profiles 

for O2 (91%), NO3-  (91%), Chla (94%), bbp (88%), and PAR/Ed (PFUNC= 93% for PAR, 

Ed[380], Ed[412], and Ed[490]). 

2.3.3 Annual trends in profile quantity and quality 

I first analyzed annual PHQ by the year a profile was collected to summarize temporal 

trends in the BGC data quality available to users (Figure 4). Secondly, I estimated the 

survival rates after one year (RFloat, RHQ, and RFUNC) by year the float was deployed 

(Figure 5; Figure A2). The trends in RFloat, RHQ, and RFUNC by deployment year are useful 

for characterizing similar batches of floats/sensors (Figure 5; Table A3). With both data 

quality and survival rates, I compared pre-2017 values with the period of 2017 to 2022 to 

determine changes in the past six years with respect to the early stages of the program. 

I find that annual PHQ in the past six years was >80% for most BGC parameters, 

except for adjusted pH, which was between 40 and 60% and below pre-2017 levels 

(Figure 4). PAR/Ed profiles have an annual PHQ that is always >85%, even though PHQ in 
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the past six years is below pre-2017 levels. For the remaining parameters, the PHQ values 

between 2017 and 2022 are generally close to or above pre-2017 levels. 

Regarding survival rates, the annual RFloat and RHQ can appreciably vary from year-

to-year (Figure 5). Generally, RFloat is ~90% at 36.5 cycles, meaning that about 9-in-10 

floats survive their first year. RHQ tends to vary more and is more parameter dependent. 

RHQ should always be equal to or less than RFloat because it is not possible for the sensor 

to record data if the float fails (the reverse is possible). The results show that RHQ is 

typically <10% below RFloat. In some cases, RFloat is more than RHQ, which I suspect 

results from sensors that temporarily become unresponsive or report bad data, before 

reporting good data in a successive profile, and the non-linear nature of float/sensor 

survival over time. Furthermore, RFUNC follows the same patterns as RHQ (Figure A2). 

This suggests that the cause of most low-quality profiles is not intermittent error or other 

operational limitations but rather sensor/cable damage, degradation, and/or bio-fouling. 

RFloat for floats with pH sensors is similar to the RFloat of floats measuring other 

parameters. However, RHQ derived from adjusted pH profiles had a distinct drop in 2017 

and 2018 that was not associated with a decline in RFloat. This gap between RFloat and RHQ 

for floats with pH sensors led to the accumulation of low-quality, adjusted pH profiles 

seen one-to-two years later in 2018 and 2019. Since then, the RHQ has improved, resulting 

in an increase in PHQ of adjusted pH profiles in the following years (Figure 4). This 

recovery in PHQ and RHQ, especially in 2022, puts pH on track to have similar data quality 

as the other five BGC properties. 
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Figure 4. Percentage of high-quality profiles (PHQ) for each year: (A) adjusted O2, (B) 
adjusted NO3- , (C) adjusted pH, (D) adjusted Chla, (E) bbp, and (F) PAR/Ed. The solid 
lines represent the annual PHQ from 2017 to 2022. The number of profiles available each 
year is reported as the orange bar plot in each subplot, where the total number of profiles 
is indicated on the top of each bar. The dashed lines in each subplot represent PHQ before 
2017. The number of unique profiles collected before 2017 for ~127k for adjusted O2; 
~17k for NO3- ; ~3.3k for pH; ~32k for Chla; ~32k for bbp; and ~19k for PAR/Ed. DMQC 
for bbp and PAR/Ed has been developed but is not yet fully implemented; a mix of 
adjusted and unadjusted data are shown for bbp and PAR/Ed here. 

A similar case may have occurred with bbp from floats deployed in 2019. The RHQ of 

bbp was ~10% lower than the RFloat in 2019 and 2020 (Figure 5) and was followed by a 

decline in the PHQ of bbp profiles in 2020 and 2021 (Figure 4). This difference suggests 

that bbp sensors failed before the floats did, which led to a disproportionate collection of 

low-quality profiles. However, a similar pattern in RHQ was observed in adjusted Chla, 
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without a similar decline in PHQ in 2020 or 2021. The decline in annual PHQ of bbp 

appears to have been corrected since 2022. 

RFloat is generally close to the RHQ for most parameters in most years. The similarity 

between the two rates explains why there is little variability in the PHQ of adjusted O2 

profiles in the last six years. For the same reason, PHQ for PAR/Ed profiles remains 

generally consistent from 2017 to 2022, despite both RFloat and RHQ declining to ~70% in 

2019/2020. 

2.3.4 Regional profile quality 

The density of accumulated BGC profiles is important to construct global 

climatologies (e.g., Cossarini et al., 2021; Sauzède et al., 2016). The number of float 

profiles, including those of high quality, are available in most marine regions (Figure 6) 

but at greatly varying densities (Table A4). The density of high-quality profiles varies 

among parameters as pilot programs prioritized certain types of sensors early on (e.g., 

radiometry in the North Atlantic and the Mediterranean Sea). 

Generally, the marine regions that have accumulated the highest density of high-

quality profiles are the seas around Europe (Mediterranean Sea, Black Sea, and Baltic 

Sea), the Arctic Ocean, and the Southern Ocean (Figure 6; Table A4), although these 

densities are highly parameter dependent. In the Arctic Ocean, sampling also has not 

occurred evenly throughout the region. There is a lack of floats between the Chukchi Sea 

and Fram Strait, leaving a large portion of the Arctic Ocean under-sampled.  

The Southern Ocean has accumulated high profile densities for each BGC property 

due in large part to the success of the Southern Ocean Carbon and Climate Observations 

and Modelling (SOCCOM) project (Maurer et al., 2021; Sarmiento et al., 2023). 
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However, floats deployed as part of SOCCOM do not include radiometers, explaining the 

low level of PAR/Ed data in this region. Additionally, pH data coverage is also lower than 

the other parameters in this region, due to sensor quality issues highlighted in the 

previous section. 
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Figure 5. Survival rates of floats (RFloat) and high-quality profiles (RHQ) by deployment 
year. Each of the six key BGC variables: (A) adjusted O2, (B) adjusted NO3- , (C) adjusted 
pH, (D) adjusted Chla, (E) bbp, and (F) PAR/Ed. The solid line represents RFloat (grey) and 
RHQ (black) by year from 2017 to 2022. The horizontal dashed line in each subplot 
represents RFloat (grey) and RHQ (black) before 2017. The number of floats with quality-
controlled data (and adjusted data when relevant) deployed each year are reported as the 
bar plot at bottom of each subplot and on the top of each bar. The number of floats 
deployed before 2017 are 817 for O2; 144 for NO3- ; 60 for pH; 249 for Chla; 238 for bbp; 
and 128 for PAR/Ed. Note that only floats deployed for more than 300 days before 
January 1, 2023, were used to standardize float lifetimes for the survival rate calculation 
(see Section 2.2.2.3). 
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Figure 6. Density of high-quality profiles collected from 2002 to 2022 per 5°-by-5° grid 
cell for (A) adjusted O2, (B) adjusted NO3- , (C) adjusted pH, (D) adjusted Chla, (E) bbp, 
and (F) PAR/Ed. The black lines delineate the marine regions defined by Flanders Marine 
Institute (2021). Areas shallower than 200 m were removed, except for the 
Mediterranean, Black, and Baltic seas. Note that the target density for a full BGC-Argo 
network is ~1.1 profiles per 10,000 km² each year. The accumulated density of high-
quality profiles in each marine region is described in Table A4. 

For the major basins (Pacific, Atlantic, and Indian Oceans), the densities of high-

quality profiles are generally lower than polar regions and the seas around Europe (Table 
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A4). Additionally, the high-quality, adjusted O2 profiles are generally high compared to 

other BGC parameters collected in the same major basins. 

With an annual global target density of ~1.1 profiles per 10,000 km2 per year, the 

density of high-quality profiles is assessed on an annual basis to help evaluate the success 

of BGC-Argo (Figure 7; Figure A3; Figure A4). The annual, regional density of high-

quality profiles, expressed as a percentage of the target density, highly varies between 

parameters and regions, although there is a general interannual trend of increasing profile 

densities. The percent area of each region with sufficient sampling also highly varies 

between parameters and regions. While there are significant year-to-year fluctuations, the 

general long-term trend is that profile densities and percent area coverage have been 

increasing since 2012. 
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Figure 7. Density of high-quality profiles as a percentage of the targeted high-quality 
profiles per year with each BGC parameter in the (A) North Atlantic, (B) South Atlantic, 
(C) North Pacific, (D) South Pacific, (E) Indian Ocean, (F) Southern Ocean, (G) Arctic 
Ocean, and (H) seas around Europe. For regions in (A–G), areas shallower than 200 m 
were removed. The average number of high-quality profiles for co-located PAR and Ed 
profiles was used. In each region, sampling efforts are not evenly distributed (see Figure 
8) nor may floats sample at 10-d intervals. Note the change in y-axis limits in (G, H). 

BGC profiles in the seas around Europe far surpassed annual region-wide target 

densities at >100% in recent years (Figure 7) and meet target profile densities in ~70% of 

the area (Figure 8; Figure A4), except for profiles of adjusted pH and adjusted NO3- . For 

the parameters present, profile densities surpassed annual targets in the Mediterranean, 

Black, and Baltic seas individually (Figure A4). Considering that the marginal seas 

around Europe are more variable than much of the open ocean, a higher sampling effort 

may be needed to better constrain uncertainties. The Arctic Ocean has met target 

densities for most parameters in the last two years as well, however, this sampling is 

largely concentrated in an area that consists of 30% or less of the region. The high, 

region-wide densities (in both the Arctic Ocean and the seas around Europe) are partly 

driven by floats profiling more frequently than every 10 days, which leads to more 
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observations than what is expected from an annual target based on 10-d sampling 

intervals. 

 

Figure 8. Percent area coverage where high-quality profile density is above target density 
for each BGC parameter in the (A) North Atlantic, (B) South Atlantic, (C) North Pacific, 
(D) South Pacific, (E) Indian Ocean, (F) Southern Ocean, (G) Arctic Ocean, and (H) seas 
around Europe. For regions in (A–G), areas shallower than 200 m were removed. The 
average density of high-quality profiles for co-located PAR and Ed profiles was used in 
density calculations. 

The Atlantic, Indian, and Pacific oceans generally have reached 10 to 30% of target 

densities, region-wide, for most parameters. In the same regions, about 5 to 30% of the 

area has hit target densities. The ocean surface area in these regions with any amount of 

BGC data is much higher, generally reaching 30 to 60% of a region’s area (Figure A4). 

For O2, profile density and percent area coverage tend to be higher than other parameters. 

O2 profile densities are between 50 to 70% of the target in the North Atlantic, North 

Pacific, and South Atlantic oceans in recent years, while the percent area coverage is 

<30%. 

As is the case for all regions, region-wide profile densities are closer to the target 

density than when evaluating target density in terms of surface area covered. This 
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discrepancy means that the sampling effort is concentrated over a small portion of a 

region’s area. Future float deployments could target these under-sampled regions, 

although, depending on scientific interest, concentrating sampling effort in certain areas 

may be needed for constraining highly variable regions (e.g., the Labrador Sea). 

2.4 Discussion 

The success of BGC-Argo is dependent on collecting and providing high-quality 

BGC observations of the ocean. The data quality summary provided herein was based on 

the pre-existing flagging scheme that is used operationally within the Argo data 

management system. It offers a quick synopsis of the current extent of high-quality BGC-

Argo data directly available to users for scientific applications.  

It is important to note that the various methods used in the QC of different BGC 

parameters, as well as the capability to adopt and implement new methods uniformly 

across Argo Data Assembly Centers (DACs), are still maturing. For example, there 

remain floats within the data system for which QC flags are missing (Figure 2). This lack 

of QC is due, in part, to limited resources in addressing management requirements for 

legacy floats, as one example. Additionally, for a portion of floats, the 

<PARAM>_ADJUSTED field is not filled. While it is advised to use the adjusted data 

when available, a lack of adjusted data does not necessarily mean the sensor is bad, and 

the data may receive an adjustment in the future. For bbp and PAR/Ed, analysis can be 

performed without further adjustments, unlike O2, NO3- , and pH data profiles, which 

require adjustments for proper scientific analysis. Similarly, the adjusted Chla data 

includes improved estimates of Chla. The unadjusted Chla profiles should not be used for 

the analysis of Chla. However, the unadjusted data can still yield other valuable scientific 
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information about the strength of NPQ and the photo-physiology of phytoplankton (e.g., 

Schallenberg et al., 2022; Ryan-Keogh et al., 2023). 

The most efficient way to bolster the number of high-quality profiles available is to 

process existing profiles that have not received QC flags, so such floats should not be 

overlooked. As I reported in the results, QC flags are missing for 4-15% of BGC 

profiles, excluding O2, which has QC flags assigned to almost all profiles. Processing 

these remaining profiles should increase the number of profiles labeled as high-quality, 

yet not significantly alter 𝑃"#. 

Furthermore, efforts should be made to ensure all floats get processed (and 

reprocessed) with the most up-to-date QC procedures across DACs as protocols continue 

to be refined.  This will result in improved consistency across the dataset into the future 

and strengthen its overall value for use in global analyses. 

2.4.1 Parameter-specific improvements 

In addition to refining quality flags through time and initiating data adjustments, 

there are further parameter-specific procedures that should be adopted by the data 

management team to further improve the absolute accuracy of BGC parameters. While 

high-quality profiles already represent more than 90% of adjusted O2 profiles collected 

thus far, O2 optode sensors suffer from slow response times, which are not routinely 

corrected within the data system. Slow sensor response times lead to a lag in true O2 

concentrations and can create errors on the order of ~10 µmol kg-1 (Bittig et al., 2014; 

Gordon et al., 2020). Fortunately, various methods exist for calculating the in situ 

response time of O2 optodes, given the existence of certain ancillary data and/or sampling 

conditions (Bittig et al., 2014; Gordon et al., 2020). Such response time corrections will 
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help reduce uncertainties around the oxycline, although, it would not likely affect the 

assigned QC flags.  

In situations where salinity sensor data are labeled with a flag of “4” (unrecoverable), 

O2 data are given a label of “3” because salinity compensation to the O2 measurements 

cannot be performed. In these cases, utilizing salinity profiles from a high-quality derived 

product may help recover more O2 profiles. This procedure has been explored by the 

Argo community and will likely be implemented in the near future. 

The pH sensors tended to fail far more than the other BGC sensors (Figure 4; Figure 

5; Table A2). Since a significant portion of the processed pH data was given a QC flag of 

“4” or characterized as “malfunctioned”, improvements to the PHQ appear more limited 

by the technology. Accordingly, the community has continued to refine and improve the 

design of the pH sensor, leading to a steady increase in reliability over the past five years. 

Future, repeated analysis of the pH QC time series presented here should be performed to 

ensure that the upward trending pattern in PHQ continues. It is important to note that even 

with relatively high failure rates, BGC-floats now collect substantially more pH profiles 

than shipboard measurements, playing a critical role in understanding the ocean carbon 

cycle. 

Float fluorometers currently rely on a lab-based calibration of fluorescence-to-Chla. 

The conversion of fluorescence to in situ Chla concentration depends on both the 

composition of the phytoplankton community and their physiological status (Cullen, 

1982). Ideally, the relationship between fluorescence and Chla is determined using water 

samples collected at the deployment site. However, this approach is not the most cost-

effective, and any relationships determined at the time of deployment will likely not be 
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the same once seasons change or the float drifts into an ecologically distinct region. 

Currently, each fluorometer is calibrated in a laboratory setting, using a reference 

fluorometer that was initially calibrated to a single culture of Thalassiosira weisflogii. 

This calibration has introduced a bias in the determination of Chla in situ. Roesler et al. 

(2017) quantified this bias with WET Labs ECO sensors and Chla concentrations 

determined by high pressure liquid chromatography (HPLC). Using their analysis, BGC-

Argo adjusts Chla data by dividing unadjusted Chla by two, to reduce this global bias. 

While this adjustment does not account for regional or seasonal changes in the 

fluorescence-Chla relationship, nor greatly affects how QC flags are applied, it is a step 

forward for gaining more accurate estimates.  

An important effort is made by the Argo Data Management Team to calibrate and 

qualify fluorescence data measured from BGC-Argo floats in order to deliver Chla with 

the best possible accuracy. It has been shown that using radiometric data associated with 

fluorescence measurements is an effective way to improve the fluorescence calibration 

(Xing et al., 2011; Xing et al., 2018). However, not all BGC-Argo floats are equipped 

with radiometers, making it impossible to calibrate the entire fleet homogeneously. 

Recently, new methods based on machine learning have made it possible to derive 

radiometric profiles, from merged satellite ocean color observations and hydrological 

data, for any BGC-Argo float, whether equipped with a radiometer or not. These 

synthetic radiometric profiles can thus be assigned to the fluorescence profiles to 

consistently calibrate the whole BGC-Argo fleet. This method is a promising alternative 

to other possible approaches that obtain seasonal/regional adjustments tuned to space-



 34 

 

based estimates at the surface (Boss et al., 2008; Lavigne et al., 2015), or to HPLC Chla 

data. 

Since the global adjustment factor is also only applicable for WET Labs (now 

Seabird) ECO sensors, other sensors may have to be calibrated to Chla following a 

different procedure and may behave differently when compared to WET Labs sensors. 

Subsequently, new sensors will most likely require different adjustment factors. One way 

to assess sensor/model-dependent adjustment factors could be to deploy some floats with 

multiple models of fluorometers to cross-calibrate between sensors. To catch the possibly 

wide range of variability in these adjustments, float deployment should be undertaken in 

various open ocean areas covering a wide range of biogeochemical and trophic conditions 

(e.g., from oligotrophic subtropical gyres to high latitude environments with strong 

seasonal changes in biomass). This cross-calibration could then be used to convert all 

Chla measurements to a common unit, assuming that differences between the same 

models of fluorometers are negligible. Similarly, a standard calibration procedure could 

be developed for BGC-Argo floats to ensure all Chla derived from fluorescence 

measurements from various models are intercomparable (e.g., with diffuse attenuation 

coefficient estimates from irradiance profiles). Regardless of which technique is applied, 

great care will need to be taken to ensure the interoperability of the resulting Chla 

concentration data so that the researchers can leverage the full database at once.  

Measurements of bbp from floats currently have a limited QC procedure that includes 

processing for range filters, data spikes, and bad offsets. Additional real-time QC 

procedures proposed by Dall’Olmo et al. (2023) will be integrated into BGC-Argo data 

processing soon and will likely change the proportion of QC flags in the system. Briefly, 
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this new procedure identifies issues such as noisy bbp data, profiles with a large fraction 

of missing data, and profiles with negative bbp. Potential sensor malfunction or biofouling 

is also identified by setting a threshold for high deep values of bbp, where bbp is expected 

to be very low (but not equal to zero). Dall’Olmo et al. (2023) also describe a procedure 

that identifies biased measurements of bbp resulting from particles that have accumulated 

on the float while the float is parked at depth between casts. For those interested in data 

spikes (e.g., Briggs et al., 2011) or high bbp at depth, both of which could result from real 

oceanographic phenomena, users will likely want to apply custom QC procedures. Once 

implemented, these added real-time QC procedures will reduce the number of falsely 

identified high-quality profiles available, but also erroneously identify good data as bad. 

Efforts should be made in developing a DMQC procedure to improve data quality 

flagging.  

I found that high-quality PAR/Ed profiles represent ~90% of the entire database 

(Table A2). The data from radiometers are generally good without much QC. 

(Radiometry RTQC currently involves a global range test, and all radiometry data are 

given a QC flag of “2” unless the test is failed.) Previously tested improvements to the 

float radiometry processing include a dark offset correction, temperature correction, spike 

removal, and sensor drift detection (Organelli et al., 2016, 2017; Jutard et al., 2021; 

O’Brien and Boss, 2022). About half of the database has DMQC processing correcting 

for temperature and dark values (Jutard et al. 2021) but has not yet been implemented on 

all floats. Future float deployments should prioritize collecting nighttime profiles of 

PAR/Ed, at least once a year by each float, for these temperature and dark offset 

corrections (Jutard et al., 2021). In a similar sense, collecting these nighttime profiles 
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could also prove beneficial for assessing NPQ corrections. To reduce space-time biases in 

such an assessment without changing the standard profiling interval, average daily cycles 

could be extracted (Johnson and Bif, 2021; Stoer and Fennel, 2023). 

Unstable sea states, clouds, and wave focusing can also momentarily alter light 

conditions which can lead to large fluctuations in the downwelling light profile. While 

there is nothing inherently wrong with the sensor during such events (as it represents 

natural light variability), stable light conditions are needed to better characterize the 

optical properties of the water column (e.g., estimation of the light diffuse attenuation 

coefficient). Procedures to identify these effects have been successfully applied to floats 

before (Organelli et al., 2016, 2017) and could be further developed to create a reference 

dataset for use in the ocean optics community. 

2.4.2 Pre-deployment strategies 

A few pre-deployment strategies can also be taken to help improve BGC data quality 

in the future. For one, testing the float from a dock could help identify issues with 

sensors, communications, and mechanics before deployment in the open ocean. Ideally, 

dock testing would prevent the deployment of floats that would otherwise quickly fail in 

the field. This strategy has proven to be very effective for the SOCCOM and GO-BGC 

projects. Secondly, while not always logistically feasible, reducing the time between 

when the float is manufactured and deployed may improve float survival and 

functionality by limiting exposure to possible damage. Finally, larger batteries can also 

be purchased for some float models to increase the float’s lifetime, allowing the float to 

collect more high-quality profiles (assuming all sensors continue to function).  
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2.5 Conclusion 

BGC-Argo is a rapidly expanding global ocean observation network that offers an 

independent, cost-effective approach to studying ocean biogeochemistry. The success of 

BGC-Argo depends on ensuring that scientific-quality data can be retrieved and delivered 

to the user in near-real time. Delivering scientific-quality data requires rigorous QC. 

Alongside increasing profile numbers and spatial coverage, I report that for most of the 

key BGC parameters, high-quality profiles make up at least 80% of all profiles collected 

thus far, with the exception of pH. I find that pH profiles collected over the past five 

years have drastically improved in quality and are on track to have a similar data quality 

as the other BGC parameters. I suggest several ways in which the BGC-Argo data system 

is improving, which should lead to both an increase in the number of high-quality profiles 

available to users, as well as improvements to the absolute accuracy of key parameters in 

the future. These strategies involve ensuring that data from all new and old floats contain 

flags with the most up-to-date QC procedures, advancing parameter-specific corrections, 

and testing the float before deployment. This census provides the foundation necessary to 

monitor measurement quality and quantity in the future as BGC-Argo advances.  
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Chapter 3  

 

ESTIMATES OF NET PRIMARY 

PRODUCTIVITY USING DAILY CYCLES OF 

CARBON BIOMASS FROM PROFILING 

FLOATS† 

 

3.1 Introduction 

Marine net primary productivity (NPP), the rate of photosynthetically produced 

organic carbon available to heterotrophs (Lindeman, 1942), sustains marine life and 

contributes to the sequestration of atmospheric carbon in the deep ocean. Global warming 

may decrease NPP in the ocean because of increased stratification, lower nutrient 

availability, and changes to the phytoplankton community (Henson et al., 2021), altering 

the ocean’s carbon sink and food webs (Riebesell et al., 2009). The traditional approach 

 

†This chapter and Appendix B are a modified version of the article titled “Estimating ocean net primary productivity from daily cycles 
of carbon biomass measured by profiling floats” by Adam Stoer and Katja Fennel in Limnology and Oceanography Letters published 
by Wiley Periodicals LLC on behalf of the Association for Sciences of Limnology and Oceanography on December 1, 2022 under the 
terms of CC BY 4.0, which permits the use, distribution, and reproduction in any medium, provided the original work is properly 
cited. 

https://creativecommons.org/licenses/by/4.0/
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to determining marine NPP is to incubate water samples in bottles with added inorganic, 

radioactively labelled carbon and measure its conversion to biomass (Steemann Nielsen, 

1951). However, this technique is costly, time consuming, and requires the presence of a 

ship thus limiting where and how often the ocean can be measured. In contrast, satellite-

based approaches can provide daily, global images at kilometer-scale resolution but can 

only measure a small portion of the sunlit surface ocean (Gordon and McCluney, 1975) 

and do not observe NPP directly, instead relying on strong assumptions and abundant 

direct measurements for ground truthing (Behrenfeld and Falkowski, 1997). Monitoring 

global changes in NPP requires well-resolved, basin-scale observations spanning 

decades, which neither of the above approaches can provide. 

Phytoplankton photosynthesis depends on sunlight. During the day, photosynthesis 

(measured as gross primary productivity or GPP) typically dominates over autotrophic 

and heterotrophic respiration (termed community respiration or CR), leading to a net 

conversion of CO2 and water to carbon biomass and O2. At night, photosynthesis is 

absent resulting in the net production of CO2 and water from C and O2 via CR. The 

resulting daily pattern in these products is sinusoidal in shape and phase locked to the 

solar light cycle. One can infer GPP and CR by integrating the changes in these 

metabolites over a 24-hr cycle (Siegel et al., 1989; Barone et al., 2019), assuming 

biological processes dominate, and respiration is constant throughout the day (see 

discussion in Barone et al., 2019). While these assumptions are convenient for 

simplifying processes, constant community respiration could be violated (e.g., grazing is 

likely not constant throughout the day due to diel vertical migration). 
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The concentrations of both particulate organic carbon (POC) and O2 are measured 

autonomously by the BGC-Argo array: a global array of floats profiling the top 2,000 m 

of the water column about every 5 or 10 days (Claustre et al., 2020). When profiles are 

collected at intervals that are not a multiple of 24 hours, every hour of the day is 

measured over a float’s lifetime. With sufficient floats deployed, daily cycles of key 

oceanographic variables can be extracted from the ensemble (Gille, 2012; Johnson and 

Bif, 2021). 

Here, I demonstrate that daily cycles of particle backscatter or bbp, a bio-optical 

proxy for POC, can be used to estimate NPP (NPPbbp) using BGC floats. I build on the 

recent work of Johnson and Bif (2021), who estimated gross oxygen productivity (GOP) 

and NPP (NPPΔO2) using daily cycles in oxygen anomaly (DO2) from the BGC-Argo 

array. Bio-optical proxies for particulate organic carbon (POC), such as beam attenuation 

and bbp, are known to exhibit a daily periodicity too (Siegel et al., 1989; Kheireddine and 

Antoine, 2014; Barbieux et al., 2022). These daily particulate cycles have previously 

been used to estimate gross carbon productivity (GCP), but not NPP. Here I apply the 

technique to both float-based POC and DO2 collected for the past decade, providing two 

independent but complementary estimates of NPP for the regions south of 30°S and south 

of 50°S (or the Southern Ocean). 

3.2 Methodology 

3.2.1 Float data 

The BGC-Argo float profiles used for this analysis (Figure 9) came from the 

December 2021 snapshot (Argo, 2021). Only floats equipped to measure either bbp or O2 
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and with a mean latitude (over the float’s lifetime) south of 20°S were processed. I used 

adjusted O2 because it included corrections for sensor drift and calibration error by either 

in-air O2 measurements from the floats (Johnson et al., 2015) or climatological O2 data 

between 1,500 and 2,000 m depth (Takeshita et al., 2013). No attempt was made to 

correct for the response time of the sensor (Bittig et al., 2014; Gordon et al., 2020). Only 

data with quality flags of 1 or 2 (representing ‘good’ and ‘probably good’) for time, CTD 

(conductivity, temperature, and depth), and bbp were used. Adjusted O2 data used here 

had flags 1, 2, or 5. To reduce the influence of spikes, I discarded bbp data greater than 

0.03 m-1 as these would result in highly unlikely POC values. I then applied a 5-point 

running minimum filter followed by a 5-point running maximum filter to each bbp -

profile. Float data were then binned at a 10-m resolution from the surface to 200 m depth. 

Profiles were constructed from the median of each depth bin and then linearly 

interpolated to fill up to 2 missing data points (spanning 20 m); excluding the 

interpolation of surface data when the float did not reach the surface. These steps resulted 

in 56,885 profiles of O2 from 436 floats and 34,318 profiles of bbp from 256 floats 

between 2010 and 2020. 
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Figure 9. The locations of (A) bbp and (B) O2 profiles collected from 2010 to 2020 by 
biogeochemical Argo floats below 30°S. These profiles are used to construct daily cycles 
of POC and ΔO2. Shipborne radiocarbon NPP measurements from Marra et al. (2021) 
and Mattei and Scardi (2021a) are represented by black circles. Circular grid lines 
represent 10° increments in latitude. 

3.2.2 Construction of daily cycles 

For NPPΔO2, I followed Johnson and Bif (2021) in using the ΔO2 instead of O2, and 

calculated ΔO2 as the difference between observed O2 and O2 saturation (O2,sat; Garcia 

and Gordon, 1992):  

 ∆O2 = O2−O2,sat.	 4 

For estimates of NPPbbp, bbp data were converted into POC equivalents. I converted 

bbp from 700 nm to 470 nm using a power law relationship with a spectral slope of 0.78 

(Boss et al., 2013; Boss and Haëntjens, 2016): 

 bbp[470] = bbp[700] %
470
700
&
-0.78

.	 5 

Then, POC was estimated from bbp at 470 nm using an empirical relationship (Graff 

et al., 2015): 
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 POC = 48811	×	bbp − 24. 6 

Floats with oceanographically inconsistent bbp or O2 were discarded from the 

analysis. I discarded O2 data from float #5905030 and those listed in Johnson and Bif 

(2021), as well as bbp data from eight floats (#1901329, #5903649, #5903630, #5904882, 

#5904218, #5905023, #5905396, #5905165, and #5903629). These floats exhibited 

sudden large changes in bbp or had indications of sensor drift. I then discarded any 

profiles taken in areas with a water depth less than 2,000 m as defined by the ETOPO5 

topography (NOAA, 1988) because O2 profile calibrations require reference 

measurements at this depth (Takeshita et al., 2013). 

To construct the daily cycles, I only used floats that sampled each hour of the day 

nearly equally throughout their lifetime (Figure 9). To identify these floats, I first 

calculated the number of unique hours that each float observed throughout its lifetime. 

Then, if the float contained observations from at least 21 different hours, the total number 

of profiles collected by the float was calculated and divided by 24. This quotient is the 

number of profiles that are expected for each hour of the day if the float was profiling 

with no bias for any hour of the day. Floats that sampled any hour of the day more than 

three times this expected number were discarded. Note that with more unique hours, 

hourly data is more equally spread throughout the day, but fewer floats are used so spatial 

or seasonal biases within each hour of sampling may be more prominent. A total of 

29,874 profiles from 202 floats carrying O2 sensors and 15,972 profiles from 111 floats 

carrying bbp sensors met these criteria. Note that float profiles of bbp have mostly come 

from the last five years (Figure B1). 
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Daily cycles of ΔO2 and POC were constructed for latitudinal, seasonal, and depth 

bins (Figure 10). Floats were grouped into 10° bands from 30 to 70°S and by season in 

the 30-50°S region. Additionally, I compared the daily cycles of all profiles that 

contained both O2 and bbp measurements from 30 to 70°S (n = 13,037). The median and 

standard error of ΔO2 and POC were calculated for each local hour of the day and each 

latitudinal, seasonal or depth subset, as described above. For every ‘day’, the 24-hourly 

data points were concatenated three times before applying a 3-point running mean. The 

center 24 data points of the smoothed time series are used for productivity calculations. 

 

Figure 10. The annual daily cycle of median (A–D) POC and (E–H) ΔO2 at hourly 
intervals (black points) in the upper 10 m of the water column. All sinusoidal fits (red 
curves) are significant below the 0.1 significance level, except for D. The gray shaded 
regions represent nighttime. Error bars (black vertical lines) represent one standard error. 
For panels A–D, R2 = 0.34, 0.23, 0.47, and 0.17, respectively. For panels E–H, R2 = 0.60, 
0.46, 0.38, and 0.33, respectively. 

3.2.3 Primary productivity calculations 

I calculated GOP and GCP from the median daily cycles of DO2 and POC, 

respectively. Johnson and Bif (2021) simplified their calculations by assuming that all 
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variation in DO2 was due to metabolism. In a similar sense, I assumed that all variation in 

bbp was driven by POC, and that all variation in POC was from Corg. These assumptions 

do not consider how daily variations in particle size or refractive index can affect the 

POC:bbp ratio (Poulin et al., 2018), or the variable contribution of Corg to the POC pool 

(Graff et al., 2015). 

Using the algorithm from Johnson and Bif (2021), a modified version of a previously 

published algorithm (Barone et al., 2019), NPP was then calculated. The model assumes 

that CR is equal to GPP: 

 P(t)	=	P0	+	GPP	×	(	f(t,	E) − t). 7 

where P(t) is the model fit to either POC or DO2 at local hour t, P0 is the POC or DO2 at 

the start of the day, GPP is either GOP or GCP, and, using the sinusoidal option, f (t, E) 

describes the variability in GPP throughout the day as a function of t and light intensity 

(or E). The standard error of the fit was estimated by bootstrapping the residuals (Barone 

et al., 2019). The difference between GPP and CR in a single day is thought to be at most 

10 to 20% of GPP or CR (Barone et al., 2019). This difference contributes to the error in 

the productivity estimates when assuming GPP is equal to CR. 

The latitude, longitude, and date are needed for determining the daily light cycle and 

GPP. For all subsets, the median longitude and latitude were used. For seasonal subsets, 

the midpoint date of the season was used, and for annual climatologies, I used day of year 

90 from 2016 (which represents the average annual light cycle). I fit the model to the 

hourly medians to better approximate the center of each hourly bin, avoiding outliers. I 

converted GOP to NPP using an empirical GOP:NPP ratio of 2.7 mol O2 (mol C)-1 
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(Marra, 2002; Johnson and Bif, 2021). From DO2 measurements, NPPΔO2 was calculated 

as: 

 NPPΔO2 	=	
GOP
2.7
. 8 

Phytoplankton produce both POC and DOC during photosynthesis, however, the bbp 

-sensor only measures the particulate portion. Using the data reported by Moran et al. 

(2022), I calculated an average percent extracellular release (PER; equal to the 

contribution of dissolved primary production to total primary production) of ~31% (see 

Supplementary Table 1 in Moran et al., 2022). Therefore, I assumed that ~30% of NPP 

was from dissolved primary production. I converted GCP to GOP using a PQ of 1.4 

(Laws, 1991), assuming that growth was primarily new. Then, NPPbbpwas calculated as: 

 NPPbbp =
GCP×PQ

2.7×(1−(PER)). 9 

where PER is equal to 0.3.  

I used the seasonal climatological means of euphotic depth (zeu) from the entire 

MODIS satellite mission at a 9-km spatial resolution (Lee et al., 2007; NASA, 2022). The 

euphotic depth data from MODIS is defined as the depth where light is 1% of its value at 

the surface. More realistically, an absolute light level should be used for future work. 

Euphotic-depth-integrated NPP (SNPP) was calculated as the sum of NPP from the 

surface to zeu, but excluding the bin that contained zeu, and multiplied by the width of the 

depth bins (10 m). For each subset, I calculated the average zeu from the satellite data, 

discarding measurements where the seabed is shallower than 2,000 m. Negative NPP or 

estimates made with insignificant fits were included in the vertical integration to avoid 

biasing of SNPP (Barone et al., 2019). The standard error of the depth-integrated values 

was calculated as the square root of the sum of squared standard errors. Total annual NPP 
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comes from multiplying SNPP in each zone by the surface area where the seabed is 

below 2,000 m (NOAA, 1988). 

Annual mean NPP from multiple satellite-based models were calculated using data 

available on the Oregon State University Productivity site 

(http://sites.science.oregonstate.edu/ocean.productivity/index.php). I downloaded the 

monthly means from 2010 to the end of 2020 derived by the VGPM (Behrenfeld and 

Falkowski, 1997), CbPM (Westberry et al., 2008), and CAFE (Silsbe et al., 2016) 

models. Since higher latitudes contain missing data points, I calculated the average SNPP 

pixels for each 10° latitude after removing values where the seabed was less than 2,000 

m.  

3.2.4 Sensitivity analysis 

A sensitivity analysis was performed to test the effect of different parameter choices 

on the NPP calculations (see Table B1). I tested the median or the mean, the minimum 

number of unique local hours, how the outliers are defined, the type of model used, bbp-

to-POC conversion algorithms, alternative spectral slopes, the depth of the euphotic zone, 

and how the analysis changes with an additional year of data (from 2021). I recorded the 

total NPP in the 30-70°S and 50-70°S regions, whether negative SNPP was obtained at 

any latitude, the mean R2 from each curve fit made within the euphotic zone, and the 

slope, R2, and significance of the relationship (using a least-squares linear regression) 

between NPPbbpand NPPΔO2 shallower than zeu. 

3.2.5 Bootstrapping analysis 

A bootstrapping analysis was performed by randomly selecting different numbers of 

profiles from all O2 and bbp-profiles within 30-70°S. The number of randomly selected 

http://sites.science.oregonstate.edu/ocean.productivity/index.php


 48 

 

profiles ranged from 500 to 12,000 profiles. I then calculated SNPPbbp and SNPPΔO2 for 

each random selection. For each interval, I repeated the analysis 1,000 times. The mean 

and standard deviation of SNPPbbp and SNPPΔO2 at each interval was calculated, which 

was used to describe a noise-to-signal ratio (equal to one standard deviation divided by 

the mean). 

3.3 Results and Discussion 

Profiles of NPPbbp and NPPΔO2 measured between 30-70°S (Figure 11) yielded 

similar ranges of SNPPbbp and SNPPΔO2 from 7.1-12.5 and 6.6-12.0 mol C m
-2 y-1, 

respectively. The NPP estimates are reasonably close to those made by 14C incubations 

(see Supplementary Information; Figure B2). The total NPPbbp and NPPΔO2 in the 

30-70°S region was quantified as 11.4 ± 1.1 and 11.7 ± 5.6 Pg C y-1, and in the region 

50-70°S, as 4.6 ± 0.8 and 3.5 ± 5.6 Pg C y-1, respectively (Table 2). The parameters used 

to define which floats are sampling at roughly equal hours of the day shows that these 

NPP estimates vary with different parameters but average to ~11.5 Pg C y-1 and ~4 Pg C 

y-1, respectively (Table B1). I analyzed NPP derived from co-located bbp and O2 to 

determine if real differences exist between NPPbbp and NPPΔO2. Although volumetric 

NPP still had differences at each latitude (Figure B3), I obtained similar zonally-resolved 

NPP using this subset (Table B2). When pooled into a single diel cycle, the two NPP 

estimates appeared to follow an almost 1:1 relationship (slope = 1.07; R2 = 0.78; p < 

0.05; Figure B4). 
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Table 2. Total NPP south of 30°S. The area is calculated from ETOPO5 using all grid 
cells deeper than 2,000 m. The climatological mean euphotic depth was obtained from 
NASA Ocean Color and was rounded to the nearest depth bin’s center. Both Argo float 
and satellite data are from 2010 to 2020 (inclusive) and do not include data points in 
waters less than 2,000 m deep. Total NPP below 30°S and 50°S is calculated as the sum 
of all latitudinal bands shown in the table. Errors represents one standard error. 

Latitudinal Band bbp -
Profiles 

O2-
Profiles 

Area 
(1013 m2) 

zeu 
(m) 

NPPbbp 
(Pg C y-1) 

NPPΔO2 
(Pg C y-1) 

NPPVGPM 
(Pg C y-1) 

NPPCbPM 
(Pg C y-1) 

NPPCAFE 
(Pg C y-1) 

30-40°S 2,386 3,617 2.94 95 4.4 ± 0.4 4.1 ± 0.4 4.5 4.5 4.7 
40-50°S 4,264 8,476 2.80 65 2.4 ± 0.7 4.0 ± 0.6 4.1 3.5 4.5 
50-60°S 4,383 8,234 2.37 65 2.8 ± 0.6 1.9 ± 0.3 1.7 1.4 3.0 
60-70°S 4,019 6,284 1.53 65 1.9 ± 0.5 1.7 ± 5.6 0.9 1.1 2.0 
Total (below 30°S) 15,052 26,611 9.64 - 11.4 ± 

1.1 
11.7 ± 
5.6 

11.1 10.5 14.2 

Total (below 50°S) 8,402 14,518 3.90 - 4.6 ± 0.8 3.5 ± 5.6 2.6 2.5 5.0 

 

Satellite studies of the Southern Ocean (below 50°S) from the past two decades 

reported relatively low NPP at 1.9 (Arrigo et al., 2008), 2.9 (Moore and Abbott, 2000), 

and 1.8-3.4 Pg C y-1 (Arteaga et al., 2018). Our results suggest that recent estimates of 

Southern Ocean NPP may be underestimates and that NPP in this region is more likely 

above 3 Pg C y-1 for the 2010-2020 period. The two studies that estimated NPP for the 

region south of 30°S are higher than our estimates by 2-5 Pg C y-1 (Moore and Abbott, 

2000; Arteaga et al., 2018). For south of 30°S, satellite NPP range from 10.5-14.2 Pg C 

y-1, while south of 50°S, they range from 2.5 to 5.0 Pg y-1 (Table 2). In both cases, float-

based NPP values are within range of the satellite estimates. The VGPM model compares 

best to NPPΔO2 and NPPbbp for south of 30°S. For south of 50°S, the VGPM model is 

closest to NPPΔO2 while the CAFE model is closest to NPPbbp. 
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Figure 11. (A–D) Annual float-based NPPbbp and NPPΔO2 estimates at 10-m resolution 
are shown for each latitude band as red and blue lines, respectively. The shaded regions 
represent one standard error. The 1% euphotic depth is shown as a dashed horizontal line 
in each panel. 

NPPbbp and NPPΔO2 display a strong seasonality (Figure 12). In spring, SNPPbbp and 

SNPPΔO2 was 17.6 ± 7.7 and 16.0 ± 1.5 mol C m
-2 y-1; in summer, SNPPbbp and SNPPΔO2 

was 12.9 ± 14.9 and 21.4 ± 10.7 mol C m-2 y-1; in the fall, SNPP declined to 2.2 ± 1.0 and 

2.1 ± 1.1 mol C m-2 y-1; and in the winter to 2.9 ± 0.5 and 1.8 ± 2.1 mol C m-2 y-1, 

respectively. I did not obtain reliable seasonal NPP estimates from 50-70°S potentially 

because too few profiles were available. 
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Figure 12. (A–D) Seasonal float-based NPPbbp(red lines) and NPPΔO2(blue lines) at a 10-
m resolution between 30°S and 50°S. The colored shaded regions represent one standard 
error for float-based NPP. The 1% euphotic depth is shown as a dashed horizontal line in 
each panel. 

Using the co-located dataset, I estimated how many profiles are needed to obtain 

reliable NPP estimates from diel cycles in this region. The bootstrapping analysis 

suggests that at least ~2,000 bbp-profiles and ~5,000 O2-profiles are needed to achieve a 

noise-to-signal ratio equal to one (Figure B5). This threshold would therefore be achieved 

annually with ~55 or ~137 active floats measuring bbp or O2, respectively, at ~10-day 

intervals. 

Our bbp-based approach for estimating NPP has advantages over the O2-based 

approach. Namely, NPPbbp is not affected by the same errors that physical processes 

introduce for NPPΔO2 (e.g., air-sea gas exchange; Barone et al., 2019). Bio-optical 

sensors are also less prone to drift. The use of bbp to estimate NPP is promising because 

the diel cycle in bbp is retrievable from geostationary satellites. Disadvantages to using bbp 

include the uncertainty in PER and converting bbp to POC (e.g., spectral slope and bbp -to-

POC conversion factors, especially on sub-daily time scales; Poulin et al., 2018). 

Different conversion algorithms tested in the sensitivity analysis highlight this 
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uncertainty in NPPbbp: estimates range from 5.3 to 20.4 Pg y
-1 for south of 30°S and 2.2 to 

8.2 Pg y-1 for south of 50°S (Table B1). Although, an evaluation of these conversion 

algorithms to determine which is the best performing remains to be done. Biases in the 

productivity estimates can also arise from day-night shifts in biomass losses (e.g., 

grazing, particle export, lysis), the uncertainty in the zeu (Table B1), the assumption that 

GPP is equal to CR, and spatial/seasonal biases in each hourly median. These 

spatial/seasonal biases are partly controlled by the unique hours parameter, which in our 

dataset appears to increase NPPΔO2 with an increase in the number of unique hours (but 

leaves NPPbbp unaffected; see Table B1). 

Unlike satellites, floats can detect subsurface productivity, including beneath sea ice 

and community metabolism during the polar night. Although it cannot provide the daily, 

kilometer-scale resolution of satellite imagery, float-based NPP offers the depth-resolved 

information needed to ground-truth and calibrate satellite models. In the coming decades, 

the combination of a sustained float array and space-based remote sensing will provide 

powerful monitoring capabilities for detecting climate-induced changes in NPP not 

possible with other current approaches.  
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Chapter 4  

 

GLOBAL STOCK, PHENOLOGY, AND 

BIOGEOGRAPHY OF PHYTOPLANKTON 

CARBON AND CHLOROPHYLL-A‡ 

 

4.1 Introduction 

Assessing global phytoplankton stocks is an important effort in biology. Modeling 

suggests that phytoplankton are responsible for about half of the net primary productivity 

on Earth, rivaling that of the terrestrial biosphere (Field et al., 1998; Johnson and Bif, 

2021). And, through the sinking of their organic matter into the deep ocean, 

phytoplankton keep atmospheric CO2 concentrations ~200 ppm below an otherwise 

phytoplankton-free ocean (Falkowski et al., 2000; Parekh et al., 2006). 

The most ecologically relevant metric for determining phytoplankton stocks is 

organic carbon biomass, or Corg (Cullen, 1982; Falkowski, 1994), which makes up ~50% 

of a cell’s biomass (Ho et al., 2003). Currently, the global stock of phytoplankton Corg is 

poorly constrained, ranging from approximately 250 to 2,400 Tg Corg (Falkowski and 

 

‡This chapter and Appendix C are based on a manuscript in preparation for journal submission. 
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Raven, 1997; Buitenhuis et al., 2013). This uncertainty limits our ability to establish a 

confident baseline in global phytoplankton biomass.  

Directly measuring phytoplankton Corg is notoriously difficult due to the presence of 

various other particles (e.g., detritus, heterotrophic bacteria, and zooplankton) in seawater 

among phytoplankton (Banse, 1977; Graff et al., 2012). Typically, phytoplankton Corg is 

estimated indirectly by counting the abundance of phytoplankton cells through flow 

cytometry and then applying conversion factors regarding their carbon content. In 

addition to this uncertainty, the high cost and time requirements of this approach often 

make it impractical for collecting consistent shipboard measurements across the ocean. 

It is common in biological oceanography to infer Corg biomass from the 

concentration of Chla. This photosynthetic pigment is specific to phytoplankton and can 

be measured with ease and high sensitivity (Holm-Hansen et al., 1965; Cullen, 1982; 

Falkowski, 1994) but makes up only ~1% of the cell’s biomass (Cullen, 1982). The Chla 

pigment has a distinct optical signature, strongly absorbing colors in the blue (~420 nm) 

and red (~660 nm) parts of the light spectrum. In most of the ocean, phytoplankton Chla 

correlates with the optical properties of seawater to such an extent that it can estimated 

from space. 

Beginning in the late 1970s with the Coastal Zone Color Scanner (Gordon et al., 

1983), satellite observations of the ocean’s color revolutionized our view of ocean 

biology with global maps of Chla (McClain, 2009). More modern satellite instruments 

like the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and the Moderate 

Resolution Imaging Spectroradiometer (MODIS) have provided daily, kilometer-scale 

images of Chla. Surface Chla estimates based on satellite ocean colour technology has 
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enabled fundamental studies about the standing stocks of phytoplankton, including their 

geographic and seasonal variations (Yoder et al., 1993; Siegel et al., 2002; Platt et al., 

2003; Platt and Sathyendranath, 2008; Racault et al., 2012) and their response to weather 

and climate (Yoder and Kennelly, 2003; Babin et al., 2004; Behrenfeld et al., 2006; 

Martinez et al., 2009; Henson et al., 2018; Thomalla et al., 2023). 

However, there are important, well-known limitations to describing large-scale 

phytoplankton dynamics with satellite-detected Chla. For one, it has long been 

recognized that the relationship between Chla and Corg is highly variable (Riley et al., 

1949; Steele, 1964; Eppley et al., 1971; Banse, 1977; Cullen, 1982, 2015). A wide range 

of Corg-to-Chla ratios has been reported, generally from 10 to 300 mg Corg mg Chla-1, 

across studies using laboratory cultures (Geider, 1987; Cloern et al., 1995), field samples 

(Riley et al., 1949; Graff et al., 2015), robotic profilers (Thomalla et al., 2017; Xing et al., 

2021; Chiswell et al., 2022), and satellites (Behrenfeld et al., 2005; Sathyendranath et al., 

2009; Jackson et al., 2017). The Corg-to-Chla ratio of the phytoplankton is influenced by 

factors like taxonomic composition and growing conditions (e.g., temperature, nutrients, 

and light) in systematic but complex ways (Cullen, 1982; Geider et al., 1997). The 

adjustments phytoplankton make to their intracellular Chla content in response to 

ambient light levels (called photoacclimation) is a major determinant in the distribution 

of Chla in the ocean (Fennel and Boss, 2003; Alvarez-Fernandez and Riegman, 2014; 

Behrenfeld et al., 2016; Masuda et al., 2021). Among all other factors, photoacclimation 

can significantly complicate the interpretation of the temporal trends in Corg biomass 

based on Chla alone (Alvarez-Fernandez and Riegman, 2014; Behrenfeld et al., 2016).  
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Secondly, ocean color satellites are inherently biased towards a small fraction of the 

sunlit ocean called the first optical depth (Gordon and McCluney, 1975). Approximately 

90% of the reflected light received by satellite ocean colour technology comes from the 

first optical depth. However, the euphotic depth – the depth at which photosynthesis is no 

longer appreciable – is conventionally defined at depths about five times greater than 

what the satellite is sensitive to*. This observational limitation leaves a substantial portion 

of subsurface phytoplankton unobserved. 

Following the advice of Behrenfeld and Boss (2018), evaluating phytoplankton stocks 

as depth-integrated carbon biomass is needed to properly understand large-scale 

phytoplankton dynamics. The emerging global network of BGC-Argo floats currently 

provides carbon stocks estimates of phytoplankton but has not yet been analyzed on a 

global scale. Floats are a type of profiling robot that freely drift across the ocean, 

travelling through the entire euphotic zone and up to 2 km depth every 5 or 10 days 

(Claustre et al., 2020). During their ascent, these floats measure two key bio-optical 

parameters: Chla fluorescence, a proxy for Chla, and particle backscatter (bbp), a proxy 

for Corg (Martinez-Vicente et al., 2013; Graff et al., 2015). The growing use of this new 

technology in oceanography has allowed for depth-resolved, carbon-based studies of 

phytoplankton dynamics (e.g., Boss and Behrenfeld, 2010; Westberry et al., 2016; 

Arteaga et al., 2020). These studies have highlighted the importance of resolving the 

 

* The euphotic depth is commonly defined as the depth at which photosynthetically available radiation is 
1% of its surface value. The 1% euphotic depth is about 4.6 times deeper than the first optical depth, as per 
Morel (Morel, 1988). 
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subsurface structure of Corg as well as the misleading interpretations that could result 

from relying solely on Chla concentrations or surface measurements (Chai et al., 2021; 

He et al., 2023; Vives et al., 2023). There is great value in understanding how a satellite-

based Chla view of phytoplankton biomass commonly relied on compares in a global 

context with the more holistic, carbon-centric view now provided by autonomous 

profilers. 

Here, I aim to address two simple questions: What is the standing stock of 

phytoplankton Chla (Tg) and Corg (Tg) on Earth? And how well does surface Chla 

characterize the depth-integrated Corg (ΣCorg) stocks in space and time? I address these 

questions to better constrain global stocks of phytoplankton Corg (and Chla) and to offer a 

quantitative assessment on the reliability of surface Chla is as a proxy for ΣCorg. I used 

86,523 high-quality profiles of Chla fluorescence and bbp from 769 floats from the BGC-

Argo database (Figure 13). From this dataset, which includes measurements from all 

ocean basins and seasons, I created weekly, mean climatologies of depth-resolved Chla 

and Corg. These climatologies were then used to calculate the total stocks of annual mean 

Chla and Corg for every 10° latitude band. The weekly resolved climatologies allowed us 

to compare the seasonal cycle of surface Chla (calculated as the average concentration 

within the mixed-layer) with the total stock of phytoplankton carbon biomass, ΣCorg. 
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Figure 13. (A) Global map of 86,523 quality-controlled, bio-optical profiles from BGC-
Argo floats measuring phytoplankton Chla and Corg (black points); and (B) the number of 
profiles obtained each year. The geographical boundaries of the Pacific, Atlantic, and 
Indian ocean basins (colored regions) are used to calculate the climatological means 
every 10° latitude of surface Chla and ΣCorg. 

4.2 Methodology 

4.2.1 Sources of biogeochemical float data.  

Four sources of BGC-Argo float data were used. The first source is the BGC-Argo 

Program database (Argo, 2023). I downloaded the float data between March 16–17, 2023. 

At the time, there were 853 floats with bio-optical sensors. Second, I added 10 additional 

floats deployed in the Gulf of Mexico with funding from the Gulf of Mexico Research 

Initiative (Shay et al., 2018; Gordon et al., 2020) using the data processing provided by 

Gordon et al. (Gordon et al., 2020). Third, I included data from 7 floats deployed earlier 

in the Gulf of Mexico from the National Oceanographic Data Center (NODC) (Hamilton 

and Leidos, 2017). The fourth source included data from 13 floats deployed in the 

Northwest Atlantic for the North Atlantic Aerosol and Marine Ecosystem Study 

(NAAMES) campaign (Behrenfeld et al., 2019; 
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https://misclab.umeoce.maine.edu/floats/). I cross-referenced these floats with the BGC-

Argo program database and found no duplicated float data. 

4.2.2 Quality control and processing for biogeochemical data. 

Not all data sources include quality-control flags for conductivity-temperature-depth 

(CTD) and bio-optical data. The BGC-Argo Program and Gordon et al. (2020) provided 

QC flags for the CTD data. For the BGC-Argo Program database, I only used data with 

the QC flags of 1,2, 5, and 8 and adjusted and delayed-mode data (Argo Data 

Management Team, 2022), which are considered science-quality measurements. For 

Gordon et al. (2020), the same selection criteria for QC flags were applied (i.e., flags 1,2, 

5, and 8). The NODC and NAAMES floats did not have QC flags associated with CTD 

data and therefore underwent a visual inspection only. The bio-optical float sensors 

underwent a series of tests and corrections to account for potential instances of bio-

fouling, malfunction, calibration errors, and other uncommon issues. For this analysis, I 

developed a standard algorithm that applies a series of tests and corrections to the bio-

optical data, which I describe in more detail below. 

The quality control of the BGC-Argo float profiles proceeded as follows. After the 

available QC flags for the CTD data were applied, any BGC data points that did not 

contain co-located Chla, bbp, temperature, and salinity measurements were discarded. 

This step was to ensure that all bio-optical measurements had associated CTD 

measurements. Then each profile underwent a data gap test to ensure that no profile 

contained any significant gaps in the upper 300 m where phytoplankton are present and 

variation in oceanographic parameters is relatively high. The gap test discarded any 

https://misclab.umeoce.maine.edu/floats/
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profiles where there were missing data for more than 100 m within the upper 300 m of 

the profile.  

I then applied a depth range test, which ensured that data were available both 

between 0 and 15 m depth and deeper than 300 m depth. The only exception to the depth 

range test was if the float was avoiding ice. The ice-avoidance software stops floats from 

ascending before reaching the surface and potentially colliding with sea ice. The settings 

for the ice-avoidance software varies between floats and sampling programs. For 

example, the ice avoidance algorithm on Southern Ocean Carbon and Climate 

Observations and Models (SOCCOM) program floats is triggered if the median 

temperature between 20 and 50 m is less than -1.78°C (Riser et al., 2018). Alternatively, 

the ProIce floats (see Randelhoff et al. 2020) used an ice-avoidance algorithm with a 

threshold of -1.3°C in addition to an ice-detecting sensor and a simple date criterion to 

avoid ascent. Because of the differing sea ice avoidance techniques, I decided to use a 

more generous temperature threshold of -1°C to compare against the median temperature 

in the upper 50 m of the water-column. If the median temperature observed by the float 

was below this threshold, I assumed the float avoided sea ice and accepted float profiles 

that instead reached a minimum of 25 m depth (rather than 15 m) for the depth range test.  

If a float profile passed the gap test and the depth range test, the mixed-layer depth 

(MLD) was calculated. The MLD is commonly-defined as the depth where the density 

has increased by a set threshold compared to the density at reference depth near the 

surface (e.g., de Boyer Montégut et al., 2004). A variety of threshold potential densities 

(0.005 to 0.125 kg m-3) and reference depths (0 to 20 m) have been used to define the 

MLD before (de Boyer Montégut et al., 2004; Dong et al., 2008; Holte et al., 2017). For 
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our MLD calculation, I decided to use a threshold density of 0.03 kg m-3 and reference 

depth of 15 m. If a float had not ascended to at least 15 m and was determined to be 

avoiding sea ice, the reference depth was set to the minimum depth in the profile (25 m or 

less). This reference depth is chosen to avoid diurnal mixed layers (de Boyer Montégut et 

al., 2004) and because there is occasionally a lack of CTD data at shallower depths, as 

done previously in the literature (Dong et al., 2008). In the rare case where the density 

threshold was not exceeded (e.g., MLDs of 2000 m can occur in the Nordic Seas; 11), the 

MLD was set to the maximum depth of the profile. 

The bio-optical measurements of bbp and Chla fluorescence were then quality 

controlled following a similar procedure as Dall’Olmo et al. (2023).  

For bbp, a gross filter test was first applied. A profile failed the gross filter test if 

more than 10% of the bbp data in the profile were less than 0 m-1 or greater than 0.03 m-1. 

I then applied a profile hook test. Profile hooks occur when unusually high bbp is present 

at the start a float’s ascent. This high bbp is believed result from particles that either stick 

to the sensor face or rest on the top of the float while the float is resting for several days 

between profiles (Dall’Olmo et al., 2023). If the float is set to rest at the same depth at 

which it begins recording data, then it is common to observe high bbp values that quickly 

decrease to a background value as the float ascends (hence the name “profile hook”). I 

only applied this test to floats from the BGC-Argo program since the parking depth 

information was available with the associated metadata. If the parking depth was known, 

then the profile hook test was only applied if the parking depth was within the 20 m of 

the deepest bbp measurement. If this was the case, any data points greater than a set 

threshold value within those 20 m were discarded. This threshold value was calculated as 
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the median bbp of the bottom 100 m of the profile plus 0.0001 m-1. After the parking hook 

test, I applied a spike/noise test similar to Dall’Olmo et al (2023). This test was only 

applied to profiles deeper than 300 m, as shallower parts of the profile can have a larger 

frequency of spikes that arise from real biogeochemical phenomena (e.g., bubbles, 

aggregates, zooplankton).  

For the spike/noise test, the difference in bbp was calculated from bbp in the original 

profile and the profile of bbp smoothed with 7-point median filter. A data point was 

labelled a spike when the absolute difference was greater than 0.0005 m-1. If more than 

10% of the bbp data in the profile contained spikes, than the whole profile was considered 

too noisy/spikey and was discarded. If the profile passed the spike/noise test, any spikes 

greater than 0.0005 m-1 or less than -0.0001 m-1 were removed from the profile.  

Next, I tested for inaccurate offsets in the calibration, sensor malfunction, and/or bio-

fouling, using the deep bbp test. This test is only applied to data deeper than 500 m, where 

bbp is generally expected to be low (but not equal to 0 m-1) in the open ocean. A profile 

fails the deep bbp test if more than 20% of the values below 500 m depth are negative, or 

if the minimum bbp below 500 m depth is higher than 0.0006 m-1. This test biases against 

profiles taken where sediment resuspension is present in the water column, such as near a 

shelf break or in shallow waters.  

After the deep bbp test, the profile is checked for negative bbp near the surface at 

depths less than 10 m. These negative values could result from bubbles sticking to the 

surface of the sensor or the float breaching the surface of the ocean. Once these tests have 

been applied, the bbp profile is smoothed with 5-point median filter followed by a 7-point 

mean filter.  
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The profiles of Chla underwent a series of rigorous tests and corrections as well. The 

first test was a gross filter test. It removed profiles when more than 10% of the data 

points in the profile contained values outside of the range from -0.5 to 20 mg m-3. 

I then applied a sensor response test, which determines whether the Chla sensor 

simply outputs the same value or an unrealistically small range of values throughout the 

water column, likely resulting from sensor malfunction. The sensor response test 

calculates the ratio of the difference between the 90th and 10th percentiles of Chla in the 

upper 200 m to the difference between 90th and 10th percentile of Chla below 300 m. This 

ratio is meant to compare the variability near the surface (where gradients in Chla are 

present) with the general lack of variability at depth (where Chla should be close to 0 mg 

m-3). The sensor response test is failed when two conditions are met. The first condition 

is that the surface-to-deep ratio in Chla is less than 1.1. A ratio of less than 1.1 suggests 

that the range in Chla at depth is similar to that at the surface, meaning the sensor is 

insensitive to changes in Chla or is stuck on the same value. The second condition is met 

when the median concentration of Chla in the upper 100 m is below 0.05 mg m-3.  

After the sensor response test, I applied a spike/noise test similar to the one applied 

to profiles of bbp. This test is applied only to profiles deeper than 300 m and calculates the 

absolute difference between the original Chla values and the seven-point median filtered 

version of the Chla profile. If more than 10% of the profile contained spikes greater than 

0.1 mg m-3, the profile failed the spike/noise test and was discarded. If the profile passed 

this test, the spikes that exceeded the threshold were removed from the profile.  

Next, a standard dark offset correction was applied to the Chla profile. The dark 

offset corrects for errors in the Chla calibration associated with varying photo-chemical 
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conditions among each profile. The dark offset is determined in situ as the minimum Chla 

value found in the deep portion of the water column where Chla is expected to approach 

0 mg m-3. A dynamic depth range was used to search for an accurate minimum value. The 

lower limit of the depth range was either the mixed-layer depth and the depth of the deep 

chlorophyll maximum, whichever was deeper. The upper limit of the depth range was the 

deepest value of the profile. The deep chlorophyll maximum is calculated as the depth of 

maximum Chla concentration from a Chla profile smoothed with a 5-point median filter 

followed by a 7-point mean filter. The dark offset was set as minimum Chla 

concentration within the specified depth range from a 7-point median filtered version of 

the Chla profile. The dark value was then subtracted from the Chla profile, such that the 

depth of the dark offset equaled 0 mg m-3. Occasionally, a small increase in Chla 

fluorescence is observed with increasing depth below the euphotic zone as a result of 

fluorescent dissolved organic matter. Since I expect Chla to be equal or near 0 mg m-3 at 

high depths, all values below the dark offset value were set to 0 mg m-3 to eliminate this 

fluorescence bias at depth. In cases where the mixed layer depth was set to the bottom of 

the profile (e.g., during deep mixing events), the profile was only offset with the last 

known dark offset values determined from a previous profile, which typically does not 

vary greatly from profile to profile.  

Using the dark offset, I employed a biofouling/malfunction test which eliminated 

profiles when the absolute value of the dark offset was greater than 0.1 mg m-3. 

Following these tests, negative values of Chla were removed between 0 and 10 m depth, 

if present.  
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The Chla profile was then smoothed with a 5-point median filter followed by a 7-

point mean filter. With the smoothed profile, I corrected for the effects of non-

photochemical quenching (NPQ) on Chla fluorescence following a similar protocol to 

Xing et al. (2012), which is also used for quality control within the BGC-Argo program 

(Schmechtig et al., 2018). To correct for NPQ, the maximum Chla value within the mixed 

layer was found. Then, all values above the depth of mixed-layer maximum Chla were set 

to the maximum of Chla in the mixed-layer. The NPQ correction was only applied to 

profiles that were made between sunrise and sunset, or during polar day (when the sun is 

continuously present throughout the day).  

A final correction was made based on the biases identified by Roesler et al. (2017). 

Using their Table 2, I calculated the median slope factor for the estimates north of 30°S 

(equal to 1.80) and south of 30°S (equal to 4.13). These correction factors were applied to 

the individual quality-controlled Chla profiles in each region. This correction was made 

to reduce global biases in Chla resulting from the manufacturer’s calibration of Chla 

sensor. Since this correction is only applicable to Wetlabs ECO sensors, I checked to 

ensure all floats in our database were equipped with this type of sensor. 

Following the quality control of the Chla and bbp data, the profile was binned to a 5-

m resolution and the average value in each bin was recorded. If either Chla or bbp had 

failed any of their tests, the entire profile was discarded. This was done for two reasons. 

The first reason was that Chla and bbp are measured from the same device within a few 

centimeters of each other. So, if there were any issues present in either measurement 

(e.g., bio-fouling on the sensor head was identified in bbp but not Chla), I assumed that 

none of the data from the device was accurate. Secondly, I wanted to ensure all 
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comparisons with float data made in this study used co-located measurements of Chla 

and bbp, to avoid any potential bias due to differences in temporal or spatial coverage. 

The profile then underwent the same 100-m gap test employed before to ensure the 

previous filters did not remove a substantial portion of profile. If there were no 

significant gaps, data in the profile was interpolated. Additionally, data from the 

shallowest depth of the profile was extrapolated to the surface if needed, under the 

assumption that the mixed layer is well-mixed. 

As a final precautionary step, I employed a test called the long-term failure test. For 

the long-term failure test, I recorded the profile number of all bbp or Chla profiles that 

failed the gross filter test, spike/noise test, deep bbp test, sensor response test, or 

biofouled/malfunction test. If the Chla or bbp profile failed any of these tests at least five-

times in a row, then I removed all profiles collected after this series of failures. I also 

removed any profiles collected 100 days prior to when these consecutive failed tests first 

started. This latter step was taken as a cautionary measure to avoid any inaccurate data 

resulting from onset of bio-fouling, sensor drift, or sensor malfunction that could not be 

easily identified by previous tests. 

Finally, each float transect was visually inspected to check for issues not flagged by 

the QC tests. This step is similar to the grey list employed by Argo (Argo Data 

Management Team, 2022). If a float contained data with inconsistent environmental data, 

I decided to either remove all the data from the float or only data from a specified period. 

If some of the float data was retained, I chose a date well before the apparent issue was 

evident (e.g., a sudden increase in the bio-optical values). In total, data from only 8 floats 

were removed (Table C1). 
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Prior to applying these QC tests, I had 883 floats with bio-optical sensors across all 

data sources. Out of these floats, 791 floats passed QC and were used in this analysis 

resulting in 86,523 profiles for analysis. 

4.2.3 Calculation of phytoplankton carbon 

To determine phytoplankton Corg, bbp must be partitioned into phytoplankton 

(bbp,phyto) and non-algal particle (bbp,NAP) components, such that: 

 bbp	=	bbp,phyto	+	bbp,NAP, 10 

Often, Corg is calculated by assuming a constant bbp,NAP (e.g., Behrenfeld et al., 2005; 

Martinez-Vicente et al., 2013; Graff et al., 2015), however, bbp,NAP can vary with depth, 

season, and region (Bellacicco et al., 2019). If bbp,NAP variability is not considered, the 

conversion of bbp to Corg can lead to erroneous results (e.g., negative Corg concentrations).  

To account for the spatiotemporal variability of bbp,NAP, I calculated bbp,NAP as a 

“background” value of bbp for each weekly mean profile. This approach builds off the 

offset correction from Arteaga et al. (2020). They offset surface Corg with reference 

values between 900 and 2000 m depth to ensure Corg asymptotes to 0 mg m-3 with depth. I 

calculated bbp,NAP by utilizing all values of bbp at depth. I first restricted measurements of 

bbp to the deeper portion of the profile, where Chla concentrations are close to zero and 

bbp is dominated by NAP. I separated NAP-dominated bbp as all bbp values less than the 

profile’s median bbp, and then applied a 1% quantile regression to the depth profile of 

separated bbp. Using this trend line, I defined a depth horizon equal to the shallowest 

depth where the bbp profile intersects with the line. Below this depth horizon, bbp,NAP is 

set equal to bbp, where bbp is largely NAP-dominated. Above this depth horizon, bbp,NAP is 

set equal to bbp at the point where the trend line intersects with the profile (extrapolating 
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the background value towards the surface). The resulting profile of bbp,NAP is then used to 

estimate bbp,phyto by subtraction. Phytoplankton Corg was calculated as the product of an 

empirically-derived slope coefficient based on direct estimates of Corg  (Graff et al., 2012, 

2015): 

 𝐶;<=	=	12128	×	bbp,phyto, 11 

4.2.4 Calculation of weekly climatology and global stock 

Profiles were grouped every 10° latitude for each ocean basin (Atlantic, Indian, and 

Pacific) between 80°S and 90°N. For all calculations below, measurements were limited 

to the upper 500 m of the ocean.  For each region, the weekly average mixed-layer depth 

and depth profiles of temperature, salinity, Chla, and bbp were calculated from the 

available profiles. Weeks with missing data were interpolated with the closest available 

data. Then, Corg was calculated from the weekly averaged bbp profiles (see Section 4.2.3) 

The weekly, depth-resolved climatology was concatenated three times, and a nine-

point running median followed by a nine-point running mean was applied to the weekly 

mixed-layer depth and each isoline of Corg and Chla. The center 52-week smoothed time 

series was then separated and used for the analysis. For regions with no available data in 

the Arctic or with little ocean area, I extrapolated the entire seasonal cycle from the 

closest available region. This step only constituted ~0.2% of the final global estimates of 

Corg and Chla. The stock of Chla (Tg) and Corg (Tg) for 5 m intervals was calculated as 

the product of the total volume of seawater (m3) at each depth (Figure C1) and its 

average, weekly volumetric concentration (mg of Chla or Corg m-3). At this point, these 

steps have resulted in a smoothed weekly climatology of depth-resolved stocks of Chla 

and Corg every 10° latitude for the Indian, Pacific, and Atlantic oceans. The sum of these 
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weekly stocks was calculated to obtain a weekly and annual mean global stock. For 

phenological analysis, the weekly mean depth-integrated stock of Chla and Corg 

underwent an additional smoothing using a six-point rolling median followed by a six-

point rolling mean. 

4.2.5 Conversion factors and uncertainty in global stocks 

I quantified the error in both our global Corg and Chla estimates from floats. For this, 

I considered only the uncertainty in the conversion of the bio-optical parameter to 

biological mass, and assume that errors due to sensor drift, temperature, bio-fouling, and 

intra-model sensor calibrations are negligible. I report 95% confidence intervals (CI) for 

all Corg and Chla using the standard error multiplied by 1.96. 

The factors and their uncertainty for converting bbp to Corg was determined from a 

linear least-squares regression applied to the measurements made by Graff et al. (2015). 

These measurements are based on direct measurements of phytoplankton carbon biomass, 

which resulted in a slope and intercept of 12,128 mg m-2 + 0.59 mg m-3. While these 

conversion factors are very close to the approximation made by Behrenfeld et al. (2005), 

the direct measurements by Graff et al. have not yet been replicated.  

The error in the conversion factors is not reported in Graff et al., so to determine this 

error, the data from their Figure 3 was digitized using WebPlotDigitizer 

(https://automeris.io/WebPlotDigitizer/). I counted 52 data points and calculated the same 

slope and y-intercept reported in their study. The slope and its standard error of the 

regression were calculated as 12,128 ± 1168 mg Corg m-2, which is equal to a 95% CI in 

the slope of 9,839-14,417 mg Corg m-2. The uncertainty in Chla was evaluated from the 

unitless slope factors provided by Roesler et al. (2017) from their Table 2. For non-

https://automeris.io/WebPlotDigitizer/
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Southern Ocean regions, I calculated a median slope factor and standard error of 1.8 ± 

0.06 (or a 95% CI of 1.7-1.9). For Southern Ocean regions, I calculated a slope factor 

and standard error of 4.13 ± 0.55 (or a 95% CI of 3.5-4.7). Through error propagation, 

the global error in the estimate of Chla was determined from the sum of Southern Ocean 

(2.3 ± 0.3 Tg) and non-Southern Ocean (6.8 ± 0.4 Tg) Chla stocks. For the final global 

stock, I determined the annual mean ± 95% CI of global Corg and Chla stocks equal to 

341 ± 65 Tg and 9.1 ± 0.5 Tg, respectively. 

4.2.6 Satellite chlorophyll-a climatology 

To compare with float observations of surface Chla and ΣCorg, I created weekly 

climatologies of surface Chla using level-3 data from the MODIS-Aqua satellite. I 

obtained 8-day surface Chla data with a 9-km spatial resolution for the period of January 

1, 2012, to December 31, 2022. This date range approximately covers the period when 

most of the float data was collected (Figure 13). For each image, I calculated the average 

Chla concentration for every 10° latitude only if 70% of pixels were available. These 

weekly averages were used to calculate a mean climatology for each latitudinal band to 

compare with float observations. Similar to the float climatology, satellite Chla was 

concatenated three times and smoothed with a three-point rolling median followed by a 

three-point rolling mean, using the center 52-weeks of data for analysis. 

4.2.7 Phenological metrics 

A variety of metrics to describe phytoplankton blooms and the seasonal cycle of 

phytoplankton biomass have been used before (Platt and Sathyendranath, 2008; 

Behrenfeld, 2010; Boyce et al., 2017). Here, I characterized the annual cycle of 

phytoplankton with three phenological metrics: 1) the timing of the bloom peak, 2) the 



 71 

 

bloom duration, and 3) the bloom amplitude. These metrics were calculated using ΣCorg 

and surface Chla (as a proxy for ΣCorg). The timing of the peak bloom is the week when 

ΣCorg or surface Chla is at its maximum. Bloom duration was defined as the number of 

weeks when ΣCorg or surface Chla are above the annual average (sensu Boyce et al., 

2017). To give a sense of the relative variation in each region’s seasonal cycle, the bloom 

amplitude was defined as the maximum in ΣCorg or Chla minus the minimum and divided 

by the annual mean (sensu Cloern and Jassby, 2008). Similar metrics were also calculated 

for satellite Chla to compare with surface Chla. Pearson correlation coefficients were 

determined for the log-transformed surface Chla v. ΣCorg and surface Chla v. satellite 

Chla (Figure C4). These correlations, bloom amplitude, and bloom duration were 

calculated only when at least 47 weeks of year had available satellite data. Additional 

metrics describing the seasonal cycle, such as the timing of the minimum rate of change, 

are also reported in Appendix C (Figure C5). Latitudinal trends in phenological metrics 

are described with generalized additive models using LinearGAM function from the 

pyGAM Python package. 

4.3 Results and Discussion 

I calculate total standing stocks of ~341 Tg Corg and ~9.1 Tg Chla in the global ocean 

(Figure 14). Area-normalized stocks are equal to ~952 mg Corg m-2 and 25 mg Chla m-2, 

respectively. This puts the global average Corg:Chla ratio at ~38:1. The majority of the 

Corg and Chla stocks are present in the southern hemisphere (65% and 55%, respectively). 

I find both Corg and Chla stocks closely follow the relative sizes of each basin: the Pacific 

Ocean holds half of the global stocks, while the Indian and Atlantic Ocean each hold a 

quarter. The climatological depth of maximum Chla is offset by more than 10 m from the 



 72 

 

depth of maximum Corg in ~80% of the ocean (by area). Moreover, the subsurface layer 

(everything below the surface mixed layer) contains about half of the global Corg and 

Chla stocks (45% and 56%, respectively) meaning that large portions of Earth’s 

phytoplankton are not observable from satellite. Below 300 m, extremely small portions 

of global Corg (~0.3%) and Chla (~0.7%) stock are present, which is consistent with 

expectations (Buitenhuis et al., 2013). 

 

Figure 14. (A, B) Latitudinal distributions of Chla and Corg stock; and (C, D) vertical 
distributions of Chla and Corg stocks per 5 m depth. The average mixed layer depth, 
weighted by the area of each ocean basin, is shown as a black line in each C and D. Note 
that stocks are integrated from 0 to 500 m, although stocks below 300 m depth are either 
extremely low or equal to zero. 

Differences between the latitudinal distribution in Corg and Chla stocks are 

substantial. Nearly half of Earth’s phytoplankton Corg stock is present in the Southern 

Ocean and its subtropical boundaries. I find that around ~42% of Corg is located south of 

30°S (Figure 14), even though the same region only represents about a third of the 
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ocean’s surface area and holds only a quarter of the global Chla stock. I do not observe 

any obvious differences in ΣCorg between the subtropical gyres and the equatorial 

upwelling zones, in contrast to ΣChla or surface Chla, which increase near the equator 

(Figure C2), although this result should be interpreted cautiously due to possible changes 

in the Corg-to-bbp ratio across the equatorial band (Fox et al., 2022). However, I have 

confidence that phytoplankton south of 30°S make up a major portion of global Corg 

stocks and are likely underestimated there (Fox et al., 2022). Altogether, the 

biogeography of Corg stocks, especially in the Southern Hemisphere, show a qualitatively 

different pattern compared to that of Chla.   

Our estimate of global phytoplankton biomass of 341 Tg is within the lower end of 

previous estimates, which range from 250 and 2,400 Tg (Falkowski and Raven, 1997; 

Buitenhuis et al., 2013). I argue that our estimate is more reliable because, unlike 

previous approaches, it contains depth-resolved, carbon-centric measurements from the 

entire euphotic layer (and deeper). Previous estimates are based on either satellite-

observed ocean color or cell abundance measurements taken in the field. Satellite 

estimates come from net primary productivity models, which rely on assumptions about 

the vertical structure of Chla. For example, Antoine et al. (1996) put global Corg at 860 

Tg, assuming a global Corg:Chla ratio of 100 g Corg g Chla-1, even though their global 

Chla stock of 8.6 Tg was reasonably close to ours (~9.1 Tg). Falkowski and Raven 

(1997) estimated global Corg somewhere between 250 to 650 Tg (assuming a Chla:Corg 

ratio between 40 and 100 g Chla-1 g Corg-1). As for abundance-based estimates, they rely 

on a relatively sparse number of observations and must make assumptions about 

intracellular carbon concentrations. Abundance-based estimates from Buitenhuis et al. 
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(2013) put global phytoplankton Corg between 500 and 2,400 Tg. A global census for all 

oceanic life on Earth from Bar-On et al. (2019) provides a best estimate of ~600 Tg of 

Corg. Considering the error in our conversion factors, the 95% confidence interval in our 

estimate of global phytoplankton Corg only ranges from 276 to 407 Tg (see Appendix C). 

Thus, our more holistic, carbon-based subsurface estimate acts as a constraint that 

significantly narrows the current range of global phytoplankton estimates and will make 

it easier to determine any climate-related changes into the future.  

These carbon-based, depth-resolved observations also allow us to better characterize 

the seasonal cycles in phytoplankton Corg stock across the global ocean (Figure 15). I find 

that the annual phytoplankton bloom reaches its peak, on average, 10 weeks after surface 

Chla has reached its annual maximum across ~75% of the ocean (Figure 15C). 

Alternatively, in three quarters of the ocean, the time of the peak phytoplankton bloom is 

offset by more than 4 weeks from the peak in surface Chla. The area where this 

discrepancy occurs contains ~70% of Earth’s phytoplankton carbon stock, and spans 

equatorial and temperate latitudes. Polar oceans tend to have the best synchrony between 

surface Chla and ΣCorg peaks, however, the difference at latitudes greater than 50° still 

ranges from 0 to up to 4 weeks. 
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Figure 15. (A, B) Seasonal cycles in phytoplankton surface Chla (mg m-3) and ΣCorg (mg 
m-2) as z-scores from BGC-Argo floats. (C–E) Phenological metrics derived from the 
seasonal ΣCorg and surface Chla: (C) the timing of the peak ΣCorg and surface Chla, 
defined as the week from the summer solstice (midsummer); (D) the bloom duration, 
defined as the number of weeks above the annual mean; and (E) bloom amplitude, 
defined as the annual range normalized to the mean. The trend lines are best fits 
estimated from a generalized additive model and the shading represents the 95% 
confidence interval. 
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Other aspects of the seasonal cycle in phytoplankton substantially differ from that of 

surface Chla. The duration of blooms, defined here as the time when ΣCorg is above the 

annual average, tends to follow a parabolic shape that increases towards the equator 

(Figure 15). If the metric of surface Chla is used in place of ΣCorg, the blooms would 

appear to be 3 weeks shorter, on average, with the difference increasing to ~6 weeks 

around the tropics (<30°). The seasonal amplitude, measured as the range in ΣCorg 

normalized to the annual average, also follows a parabolic curve but with the amplitude 

lowest near the equator. The same bloom metric based on surface Chla results in regional 

maxima around the subtropical oligotrophic gyres and polar oceans not seen in its ΣCorg 

counterpart (Figure 15E). This large variation in surface Chla in the subtropical gyres and 

polar oceans is not indicative of equally large variation in phytoplankton biomass. 

The same latitudinal trends in float-based surface Chla patterns are generally 

consistent with those from satellite (Figure C3). Furthermore, there is a strong correlation 

between satellite- and float-based Chla (Figure C4). This indicates that the size of the 

BGC-Argo array is large enough to describe basin-wide patterns and that the 

discrepancies between float- and satellite-based estimates of phytoplankton standing 

stock and phenology are not artifacts of under sampling. The discrepancy between 

surface Chla and ΣCorg exists for other phenological metrics too (Figure C5) and is well 

exemplified by the fact that the Pearson correlation coefficient between surface Chla and 

ΣCorg is less than 0.5 in 75% of the ocean and less than 0 for ~50% of the ocean (Figure 

C4). In summary, these carbon-based metrics show that seasonal phytoplankton blooms 

are longer-lived, less intense, and occur later in the year than implied by surface 

measurements of Chla. 
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4.4 Conclusion 

Based on our estimate, the biomass of oceanic phytoplankton accounts for only 

~0.05% of the biosphere (Bar-On et al., 2018) – a miniscule fraction despite their 

tremendous role in Earth’s ecosystems and carbon cycling. Monitoring of this important 

group of organisms is necessary given current and projected future increases to ocean 

temperatures (Cheng et al., 2022), de-oxygenation (Schmidtko et al., 2017; Breitburg et 

al., 2018), and acidification (Doney et al., 2009). To achieve this, the right measurements 

of phytoplankton biomass are needed. I have shown that carbon-centric observations 

from the entire water-column offer a holistic view of phytoplankton biomass that greatly 

constrains uncertainties in their present stocks. Our estimate is an important benchmark 

against which to interpret future trends in phytoplankton standing stocks and phenology. I 

demonstrated how Chla concentrations at the surface are inadequate for describing the 

dynamics in global phytoplankton biomass. In most of the ocean, surface Chla gives a 

qualitatively wrong description of the seasonal cycle in phytoplankton biomass for 

canonical events like the annual bloom. While the depth-limitation of satellites and the 

variation in C:Chla ratios are well-known, these results demonstrate that surface Chla is 

more often than not a misleading metric for phytoplankton bloom dynamics. Further 

studies should focus on re-evaluating our current understanding of phytoplankton 

dynamics in the context of depth-resolved, carbon-based measurements.  
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Chapter 5  

 

CONCLUSIONS 

 

This thesis presents results on the quality of measurements from the BGC-Argo 

program and then applies those measurements to help answer key scientific questions 

about the ocean’s phytoplankton. In Chapter 2, I report a census on the biogeochemical 

measurement quality of the BGC-Argo program, providing information on the overall, 

regional, and annual quality of the measurements taken. This chapter provides important 

context on the biogeochemical measurements used in subsequent chapters (i.e., O2, Chla 

fluorescence, and bbp). With a better understanding of the biogeochemical data quality, in 

Chapter 3, I infer net primary productivity from daily cycles of O2 and bbp measured by 

the BGC-Argo fleet. Finally, in another application of the BGC-Argo data, I quantify the 

stock of phytoplankton Corg and Chla on Earth in Chapter 4. I also describe the phenology 

and biogeography of Corg in contrast to Chla at the surface, showing how the two greatly 

differ despite the common assumption that Chla is a proxy for Corg biomass. 

5.1 Key Findings and Implications 

5.1.1 BGC-Argo array provides high-quality biogeochemical data 

Chapter 2 overviews the database of biogeochemical measurements collected by the 

BGC-Argo program. The program is expanding towards a target of 1,000 floats with 
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~600 floats deployed so far. As of December 2022, more than 250,000 profiles have been 

collected by the program. The majority of these profiles contain O2 measurements, while 

pH and PAR/Ed are the least abundant. About 110,000 profiles in this database include 

measurements of Chla fluorescence and bbp. Using the quality flagging system provided 

by the program, between 80 and 95% of the profiles collected so far contain high-quality 

BGC data for most BGC parameters, with the exception of pH, which is at ~50%. The 

yearly portion of high-quality pH profiles has increased from 40 to 60% between 2018 

and 2022, putting pH on track to match the data quality of other BGC parameters. This 

census shows increasing profile numbers and spatial coverage across all marine regions. 

Currently, some of the highest data density occurs in the seas around Europe (the Baltic, 

Black, and Mediterranean Seas), the Southern Ocean, and the Arctic Ocean, with the 

lowest data density in the South Pacific Ocean. However, while data density may be high 

in some regions, they are not necessarily evenly distributed across the region. I highlight 

how BGC-Argo is improving and discuss various avenues for how more high-quality 

profiles could become available. The census presented in this chapter shows that tracking 

percentages of high-quality data through time is useful for monitoring float sensor 

technology and the success of the BGC-Argo program. 

5.1.2 Novel approach to estimating net primary productivity 

With a technique inspired by Johnson and Bif (2021), I show how NPP can be 

inferred from daily cycles of bbp detected by the BGC-Argo array. In Chapter 3, I 

estimate NPP equal to ~11.4 Pg C yr-1 and ~4.6 Pg C yr-1 for the temperate and polar 

regions of the southern hemisphere. These productivity estimates were comparable when 

daily cycles of oxygen are used instead (11.7 and 3.5 Pg C yr-1, respectively) and were 
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within range of satellite-based estimates. The major takeaway from this chapter, which is 

also exemplified by the work of Gille (2012) and (Johnson and Bif, 2021), is how daily 

cycles in ocean biogeochemistry can be obtained by the BGC-Argo array – even though 

the sampling scheme of individual floats is not intended for this purpose. The approach 

provides information about the subsurface structure of productivity on basin-wide scales, 

which is otherwise not possible using shipboard- or satellite-based techniques. Daily 

cycles from the BGC-Argo array could likely be obtained from other variables as well. 

For example, the variation in nitrate and Chla fluorescence over the course of day has 

been used to estimate nitrate uptake (Johnson et al., 2006) and non-photochemical 

quenching (Ryan-Keogh and Thomalla, 2020), respectively. Further studies that focus on 

expanding this approach to other biogeochemical measurements may offer valuable new 

insights into ocean biogeochemistry. 

5.1.3 A depth-resolved, carbon-centric view of phytoplankton 

In Chapter 4, I describe global phytoplankton stocks of Corg and Chla using ~90,000 

water-column profiles of proxy bio-optical observations. With this dataset, I estimate and 

constrain global phytoplankton carbon stocks to ~340 Tg. I find that half of Earth’s 

phytoplankton biomass is located below the surface ocean at depths out-of-view from 

satellites. I show that the seasonal cycle of Corg biomass is qualitatively different from 

Chla at the surface in the vast majority other ocean. This mismatch occurs to such an 

extent that surface Chla cannot accurately identify the timing of the peak phytoplankton 

bloom in three-quarters of the ocean. In general, using Chla as a proxy of Corg biomass, 

makes phytoplankton blooms appear too earlier, shorter, and more intense than in reality. 

These results challenge the decades-long practice of relying solely on satellite 
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observations of Chla to characterize the dynamics of phytoplankton biomass. In this 

chapter, I argue, as others have before, that both depth-resolved and carbon-based 

estimates are needed to properly describe phytoplankton biomass, especially when 

considering the ongoing and likely future changes to the ocean due to global warming. 

5.2 Final Thoughts 

To effectively address scientific questions about the ocean, it is essential to gather 

observations. These observations have largely come from shipboard and laboratory 

measurements, and for the past 5 decades, from satellite remote sensing. While 

measurements from water samples are of higher quality, gathering such measurements 

over decades at basin-wide scales is not feasible. Satellite remote sensing helps alleviate 

this issue by providing data over large swathes of the ocean at daily to weekly timescales. 

However, satellite observations have limitations, one of which is that they only measure 

the surface ocean, meaning that valuable subsurface information is not consistently 

observed. More recently, underwater robots, such as Argo floats and gliders, have been 

effective for providing consistent subsurface information about ocean biogeochemistry; 

however, they cannot provide the same spatiotemporal resolution of the global ocean as 

satellite imagery. In other words, there are unavoidable gaps in time (usually days to 

weeks) and horizontal space (1 to 100 km). With that said, there is a complementary 

nature to the two technologies: floats provide the information beneath the ocean’s 

surface, while satellites provide information across the ocean’s surface. Combining these 

two pieces of information about the ocean with numerical models – and extensive 

validation – will be an important next step for Earth observation.  
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Appendix A 

Data Processing Note 

Float #5906004 contains a single pH profile labeled as ‘delayed mode’ but is not 

accompanied by a profile-level quality flag for pH. This profile was removed from Figure 

2. 

 

 

Figure A1. Percentage of profiles based on the type of quality-control procedure applied 
for the four most common downlight light parameters: (A) PAR, and Ed at (B) 380 nm, 
(C) 412 nm, and (D) 490 nm. Only floats that had all four of these channels are reported 
here. 
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Figure A2. Survival rates of floats (RFloat) and functional profiles (RFUNC) by deployment 
year. Each of the six key BGC variables: (A) adjusted O2, (B) adjusted NO3- , (C) adjusted 
pH, (D) adjusted Chla, (E) bbp, and (F) PAR/Ed. The solid line represents RFloat (grey) and 
RFUNC (black) by year from 2017 to 2022. The horizontal dashed line in each subplot 
represents RFloat (grey) and RFUNC (black) before 2017. The number of floats with quality-
controlled data (and adjusted data when relevant) deployed each year are reported as the 
bar plot at bottom of each subplot and on the top of each bar. The number of floats 
deployed before 2017 are 813 for O2; 144 for NO3- ; 60 for pH; 249 for Chla; 238 for bbp; 
and 128 for PAR/Ed. Note that only floats deployed for more than 300 days before 
January 1, 2023, were used to standardize float lifetimes for the survival rate calculation 
(see Section 2.2.2.3). 
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Figure A3. Region-wide density of high-quality profiles taken each year for each BGC 
parameter in the (A) North Atlantic, (B) South Atlantic, (C) North Pacific, (D) South 
Pacific, (E) Indian Ocean, (F) Southern Ocean, (G) Arctic Ocean, and the (H) seas 
around Europe. For regions in A-G, areas shallower than 200 m were removed. The 
average number of high-quality profiles for co-located PAR and Ed profiles was used. 
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Figure A4. Percent area coverage where high-quality profile density is above 0 for each 
BGC parameter in the (A) North Atlantic, (B) South Atlantic, (C) North Pacific, (D) 
South Pacific, (E) Indian Ocean, (F) Southern Ocean, (G) Arctic Ocean, and (H) seas 
around Europe. For regions in A-G, areas shallower than 200 m were removed. The 
average number of high-quality profiles for co-located PAR and Ed profiles was used. 

 

 

Figure A5. High-quality profile density as a percentage of the targeted high-quality 
profiles per year with each BGC parameter in the (A) Mediterranean Sea, (B) Black Sea, 
and (C) Baltic Sea. Other figure details in Figure 7 are same as in this figure. 
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Table A1. Floats deployed and raw ascending profiles collected up to 2022. Profiles with 
any mode of processing are reported here. For downwelling light data, only floats 
simultaneously collecting PAR and Ed at 380, 412, 490 nm are reported. 

BGC Property Floats Deployed Profiles Collected 

O2 1,754 251,855 
NO3-  533 60,017 
pH 447 39,483 
Chla 805 111,703 
bbp 791 108,703 
PAR, Ed [380], Ed [412], Ed [490] 273 46,028 
 

Table A2. Floats deployed, profiles collected, and the associated quality control up to 
2022. Profiles with only real-time adjusted or delayed-mode processing are reported for 
O2, NO3- , pH, and Chla. A mix of unadjusted and adjusted measurements are reported for 
bbp and PAR/Ed. Only quality-controlled profiles are reported here. 

BGC 
Property 

 Floats QC’d 
Profiles 

Profile Quality Control 
Scale 

Functional Sensors 
Scale 

SHQ SLQ SUNRES SFUNC SFAIL 
Adjusted O2 1,533 228,892 205,625 20,702 2,565 208,849 20,043 
Adjusted NO3-  485 53,109 46,333 6,458 318 48,126 4,983 
Adjusted pH 350 31,413 15,130 16,261 21 18,888 12,524 
Adjusted Chla 747 91,277 78,033 12,929 315 85,700 5,577 
bbp 717 91,979 79,987 6,693 5,299 81,029 10,950 
PAR 

261 44,947 

41,151 1,145 2,651 41,865 3,082 
Ed [380] 41,500 796 2,651 41,871 3,076 
Ed [412] 41,496 800 2,651 41,867 3,080 
Ed [490] 41,444 852 2,651 41,814 3,133 
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Table A3. Survival rates of floats (RFloat) and functional profiles (RFUNC) for different 
periods, manufacturers, and models of sensors. The hyphen (-) indicates that too few 
sensors (less than 10) were available to calculate meaningful survival rates. Note that 
float numbers do not always add up to the total because some floats were missing 
metadata about the manufacturer and model but had QC flags. For Chla and suspended 
particle sensors, all ECO- and MCOMS-type models were grouped together. I only 
considered downwelling light data from floats that simultaneously measured PAR and Ed 
at 380, 412, and 490 nm wavelengths. 

Parameter, 
Manufacturer, or 
Model 

Number of Floats Deployed RFUNC / RFloat 
Before 
2017 

2017-2019 2020-2022 All Before 2017 2017-2019 2020-2022 All 

Adjusted O2 817 301 302 1420 85%/89% 85%/86% 90%/92% 86%/89% 
    Aanderaa 637 268 258 1163 89%/91% 88%/88% 91%/93% 89%/91% 
        3830/3835 257 0 0 257 91%94% - - 91%/94% 
        4330/4831 379 268 258 905 87%/90% 88%/88% 91%/93% 88%/90% 
    JAC ARO/D-FT 0 5 12 17 - - 93%/92% 66%/67% 
    SBE  176 28 32 236 74%/83% 80%/80% 83%/90% 76%/84% 
        SBE43 132 0 13 145 71%/82% - 93%/97% 73%/84% 
        SBE63 44 28 19 91 82%/87% 80%/80% 77%/85% 81%/84% 
Adjusted NO3

-  144 141 121 406 82%/89% 85%/87% 89%/92% 85%/89% 
    MBARI ISUS 83 100 78 261 84%/97% 84%/88% 93%/96% 87%/93% 
    SBE/Satlantic 61 41 43 145 78%/78% 85%/84% 83%/83% 81%/81% 
        ISUS 3 0 0 3 - - - - 
        SUNA 18 11 0 29 63%/63% 70%/69% - 66%/65% 
        SUNA V2 40 30 43 113 87%/87% 90%/89% 83%/83% 86%/86% 
Adjusted pH 60 112 113 285 70%/88% 49%/87% 66%/95% 60%/90% 
MBARI  DURAFET 50 102 50 202 73%/91% 49%/89% 82%/97% 63%/91% 
SBE SEAFET 10 10 63 83 55%/71% 52%/65% 53%/93% 53%/87% 
Adjusted Chla 249 189 168 606 86%/89% 86%/88% 89%/90% 87%/89% 
    SBE/Wetlabs 240 189 168 597 85%/89% 86%/88% 89%/90% 86%/89% 
        ECO 225 177 145 547 86%/90% 87%/89% 88%/89% 87%/89% 
        MCOMS 15 12 23 50 72%/72% 72%/72% 92%/92% 81%/81% 
bbp 238 185 160 583 87%/91% 85%/88% 90%/95% 87%/91% 
    SBE/Wetlabs 229 185 160 574 86%/91% 85%/88% 90%/95% 87%/91% 
        ECO 214 174 137 525 87%/92% 86%/89% 89%/95% 87%/92% 
        MCOMS 15 11 23 49 72%/72% 69%/69% 92%/92% 81%/81% 
Downwelling light   
(SBE/Satlantic 
OCR-504) 

128 60 40 228 

    

    380 nm 90%/93% 81%/88% 92%/92% 88%/91% 
    412 nm 90%/93% 81%/88% 92%/92% 88%/91% 
    490 nm 90%/93% 81%/88% 92%/92% 88%/91% 
    PAR 90%/93% 81%/88% 92%/92% 88%/91% 
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Table A4. Accumulated density of high-quality BGC profiles in each marine region. See 
Figure 6 for the corresponding high-quality profiles. The average number of high-quality 
profiles for co-located PAR/Ed profiles was used in the density calculation. Each density 
value is rounded to the second decimal place. 

Marine Region Accumulated Density of High-Quality Profiles 
(SHQ per 10,000 km2) 

Adjusted 
O2 

Adjusted 	
NO3-  

Adjusted 
pH 

Adjusted 
Chla 

bbp PAR/Ed 

North Atlantic Ocean 7.41 1.13 0.23 2.75 2.71 2.50 
South Atlantic Ocean 3.93 1.87 0.66 2.35 2.35 1.21 
North Pacific Ocean 6.40 1.01 0.36 1.08 1.11 0.14 
South Pacific Ocean 4.09 0.90 0.51 1.25 1.17 0.41 
Indian Ocean 5.59 0.93 0.41 2.27 2.40 0.95 
Southern Ocean 8.23 3.13 0.99 3.87 3.82 0.15 
Arctic Ocean 9.13 3.34 0.13 6.05 7.37 4.66 
Seas around Europe 54.97 12.61 0.00 32.58 35.75 34.65 
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Appendix B 

Comparison with 14C-NPP 

It would be valuable to make a robust comparison between float-based-NPP and 14C-

NPP, the standard for measuring oceanic NPP; however, the Southern Ocean lacks 

consistent shipboard measurements to allow for such a comparison. While in the 

Northern Hemisphere around the Bermuda and Hawaii time series sites such a 

comparison is prevented by the limited number of acceptable bbp profiles. Despite these 

setbacks, a simple comparison for the Southern Ocean was made as follows. I compiled 

26 profiles of 14C-NPP measurements from the month of March by combing two publicly 

available databases (Mattei and Scardi, 2021b; Marra, 2022). The relevant incubation 

methods are described by Mattei and Scardi (2021a) and Marra et al. (2021). I compared 

these shipboard measurements with float-based estimates between 40 to 70°S for the 

periods of February to April. Estimates of NPP from 14C were grouped into 10-m wide 

depth bins from the surface to 100 m depth and the median, minimum, and maximum 

NPP at each depth were calculated. Measurements made at 0 m were included in the 

0-10 m depth bin. 

The float-based NPP estimates made in the South Indian Ocean are similar to those 

made from bottle incubations of 14C (Figure 9; Figure B2). The estimates of volumetric 

NPPbbp and NPPΔO2 ranged from 101-158 and 45-84 mmol C m
-3, respectively, in the 

top 30 m, where diel cycles are strongest. These ranges are reasonably close to the 

median profile of 14C-NPP of 85-133 mmol C m-3 and are within range of 14C-NPP at the 

same depths. For greater depths, float-based NPP is generally outside of the range 14C-
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NPP. I suspect that at these depths, productivity is weaker and more susceptible to abiotic 

influences, potentially explaining the negative NPPΔO2 (or GOP) and the subsurface peak 

in NPPbbp (Figure B2). 

Additional Sensitivity Analysis Results 

The sensitivity of NPP due to ±10 m variation in the zeu yields notably different NPP 

estimates. Because NPPΔO2 tends to have more negative values at greater depths than 

NPPbbp, I find that SNPPΔO2 declines while SNPPbbp increases when zeu is deepened by 

10 m. When zeu is decreased by 10 m, both float-based estimates of NPP decline. The 

uncertainty in zeu (derived from satellite observation) and the sensitivity of float-based 

NPP highlights the need for radiometry on BGC-Argo floats, which can be used to 

provide an accurate measurement of zeu. 

Different conversion algorithms tested in the sensitivity analysis yielded a wide 

range in zonal NPP. For south of 30°S, NPPbbp ranges from 5.3 to 20.4 Pg y
-1, and south 

of 50°S, from 2.2 to 8.2 Pg y-1 (Table B1). While some of these algorithms represent the 

extremes in the bbp -to-POC relationships, the multi-model means (10.5 Pg y-1 and 4.5 Pg 

y-1, respectively) are reasonably close to our reported values. Some of these algorithms 

do not account for DOC absorption to the filter during POC filtration, which may lead to 

overestimates of POC and thus NPPbbp. Similarly, the choice of the spectral slope is 

another source of uncertainty that results in appreciably different NPPbbp estimates (Table 

B1). More research is needed to determine the conversion factors best suited for 

predicting POC from bbp measured by Bgc-argo floats. 
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Figure B1. The total number of (A) bbp and (B) O2 profiles collected each year from 
2010 to 2020 in the region of 30-70°S. 
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Figure B2. Float-based NPPΔO2 (blue line) and NPPbbp (red line) between 40 and 70°S 
for the period of February to April. In both panels, the median profile of 14C-NPP (black 
line) taken during the month of March is shown for comparison. The shaded region for 
float-based NPP represent one standard error while for 14C-NPP it represents the range of 
observed NPP. 

 

 

Figure B3. (A-D) Annual NPP based on co-located O2 and bbp profiles by latitude. The 
red lines represent NPPbbp and the blue lines represent NPPΔO2. The shaded regions 
represent one standard error. The 1% euphotic depth is shown as a dashed horizontal line 
in each panel. 
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Figure B4. Comparison between co-located NPPbbpand NPPΔO2  from 30-70°S. (A) All 
float profiles with both O2 and bbp measurements were used to estimate NPPbbpand 
NPPΔO2 shown as red and blue lines, respectively. (B) A least squares linear regression 
was applied to all NPP data points above the euphotic depth. The trend line is represented 
by the equation NPPΔO2  = 1.07 ´ NPPbbp- 9 (p-value = 0.01; R

2 = 0.78; n = 7) and is 
shown in red in panel B. The 1:1 line is shown as a black dashed line in (B). The standard 
error of each point is shown by shaded regions in (A) and as the horizontal and vertical 
lines in (B). 

 

Figure B5. Noise-to-signal ratio from bootstrapping analysis using bbp and O2 from 
30-70°S. The curve describes one standard deviation divided by the mean at each sample 
size for NPPΔO2 (blue line) and NPPbbp (red line). The dashed line represents when the 
standard deviation is equal to the mean. 
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Table B1. Sensitivity analysis involving different parameters and years. See more details below. 
Parameter Changed Below 30°S Below 50°S Statistics 

Measure of 
Center 

Min 
hoursa 

Threshold Xb Outlier 
Xc 

Conversion 
Modeld 

Spectral 
Slope 

zeue Model 
Fitf 

Years NPPΔO2 
(Pg C y-1)g 

NPPbbp 
(Pg C y-1)g 

NPPΔO2 
(Pg C y-1)g 

NPPbbp 
(Pg C y-1)g 

O2-
Profiles 

bbp -
Profiles 

Slopeh R2 

Median 18 3 - G15 0.78 NC S 2010-2020 11.9 ± 6.6 11.4 ± 1.1 2.5 ± 6.6 4.6 ± 0.8 27,848 15,736 1.21* 0.73 
Median 19 3 - G15 0.78 NC S 2010-2020 10.7 ± 6.6 11.2 ± 1.1 2.5 ± 6.6 4.6 ± 0.8 27,737 15,625 0.96* 0.59 
Median 20 3 - G15 0.78 NC S 2010-2020 10.3 ± 6.6 11.2 ± 1.1 2.1 ± 6.6 4.7 ± 0.8 27,475 15,422 0.99* 0.66 
Median 21 3 - G15 0.78 NC S 2010-2020 11.7 ± 5.6 11.4 ± 1.1 3.5 ± 5.6 4.6 ± 0.8 26,611 15,052 1.07* 0.76 
Median 22 3 - G15 0.78 NC S 2010-2020 13.5 ± 5.1 11.9 ± 1.2 4.5 ± 5.0 5.1 ± 0.9 25,632 14,712 1.47* 0.72 
Median 23 3 - G15 0.78 NC S 2010-2020 14.5 ± 4.2 12.0 ± 1.3 5.8 ± 4.1 4.8 ± 0.9 24,362 14,231 1.29* 0.75 
Median 24 3 - G15 0.78 NC S 2010-2020 15.3 ± 3.9 9.5 ± 1.5 7.0 ± 3.8 4.7 ± 1.0 20,978 12,638 1.04* 0.85 
Median 21 3 - G15 0.78 +10 m S 2010-2020 9.9 ± 7.8 12.3 ± 1.2 2.2 ± 7.8 5.2 ± 0.8 26,611 15,052 1.24* 0.79 
Median 21 3 - G15 0.78 -10 m S 2010-2020 11.1 ± 3.7 10.4 ± 1.0 3.4 ± 3.6 4.0 ± 0.7 26,611 15,052 1.34* 0.79 
Median 21 3 - G15 0.41 NC S 2010-2020 11.7 ± 5.6 9.8 ± 0.8 3.5 ± 5.6 4.0 ± 0.6 26,611 15,052 1.24* 0.76 
Median 21 3 - S99-RS 0.78 NC S 2010-2020 11.7 ± 5.6 20.4 ± 3.7 3.5 ± 5.6 8.2 ± 2.4 26,611 15,052 0.59* 0.76 
Median 21 3 - S99-APFZ 0.78 NC S 2010-2020 11.7 ± 5.6 8.4 ± 0.6 3.5 ± 5.6 3.4 ± 0.4 26,611 15,052 1.47* 0.75 
Median 21 3 - S99 0.78 NC S 2010-2020 11.7 ± 5.6 14.5 ± 1.8 3.5 ± 5.6 5.9 ± 1.2 26,611 15,052 0.84* 0.76 
Median 21 3 - S99-NU 0.78 NC S 2010-2020 11.7 ± 5.6 11.0 ± 1.0 3.5 ± 5.6 4.5 ± 0.7 26,611 15,052 1.11* 0.76 
Median 21 3 - C12 N/a NC S 2010-2020 11.7 ± 5.6 6.1 ± 0.3 3.5 ± 5.6 2.5 ± 0.2 26,611 15,052 2.01* 0.76 
Median 21 3 - J17 N/a NC S 2010-2020 11.7 ± 5.6 5.3 ± 0.2 3.5 ± 5.6 2.2 ± 0.2 26,611 15,052 2.28* 0.76 
Median 21 3 - T17 0.78 NC S 2010-2020 11.7 ± 5.6 9.2 ± 0.7 3.5 ± 5.6 3.7 ± 0.5 26,611 15,052 1.32* 0.76 
Median 21 3 - R17 0.78 NC S 2010-2020 11.7 ± 5.6 9.2 ± 0.7 3.5 ± 5.6 3.7 ± 0.5 26,611 15,052 1.31* 0.76 
Median 18 3 - G15 0.78 NC L 2010-2020 12.7 ± 9.6 12.1 ± 1.8 1.3 ± 9.6 5.0 ± 1.2 27,848 15,736 0.95* 0.60 
Median 19 3 - G15 0.78 NC L 2010-2020 11.2 ± 9.6 11.8 ± 1.8 1.3 ± 9.6 4.8 ± 1.3 27,737 15,625 0.56 0.34 
Median 20 3 - G15 0.78 NC L 2010-2020 10.6 ± 9.6 12.0 ± 1.8 0.7 ± 9.6 5.2 ± 1.3 27,475 15,422 0.72* 0.46 
Median 21 3 - G15 0.78 NC L 2010-2020 11.8 ± 8.4 12.3 ± 1.8 2.2 ± 8.3 5.1 ± 1.2 26,611 15,052 0.87* 0.59 
Median 22 3 - G15 0.78 NC L 2010-2020 13.9 ± 7.8 12.8 ± 2.0 3.0 ± 7.7 3.0 ± 7.7 25,632 14,712 1.34* 0.58 
Median 23 3 - G15 0.78 NC L 2010-2020 15.7 ± 6.7 13.1 ± 2.0 4.7 ± 6.6 5.1 ± 1.5 24,362 14,231 1.18* 0.65 
Median 24 3 - G15 0.78 NC L 2010-2020 17.0 ± 6.1 10.2 ± 2.3 6.5 ± 6.0 4.8 ± 1.6 20,978 12,638 0.76* 0.67 
Mean 18 3 3 G15 0.78 NC S 2010-2020 9.6 ± 6.9 13.3 ± 1.5 0.4 ± 6.8 5.0 ± 1.1 27,848 15,736 8.00* 0.88 
Mean 19 3 3 G15 0.78 NC S 2010-2020 8.4 ± 6.9 13.2 ± 1.5 0.4 ± 6.8 5.0 ± 1.1 27,737 15,625 7.62* 0.89 
Mean 20 3 3 G15 0.78 NC S 2010-2020 7.9 ± 7.1 13.4 ± 1.5 0.0 ± 7.1 5.1 ± 1.1 27,475 15,422 7.88* 0.88 
Mean 21 3 3 G15 0.78 NC S 2010-2020 9.0 ± 6.3 14.2 ± 1.6 0.7 ± 6.2 5.2 ± 1.2 26,611 15,052 6.65* 0.80 
Mean 22 3 3 G15 0.78 NC S 2010-2020 11.0 ± 4.5 14.0 ± 1.6 2.3 ± 4.4 5.0 ± 1.2 25,632 14,712 9.23* 0.85 
Mean 23 3 3 G15 0.78 NC S 2010-2020 12.0 ± 4.4 13.0 ± 1.7 2.7 ± 4.3 4.3 ± 1.3 24,362 14,231 8.78* 0.82 
Mean 24 3 3 G15 0.78 NC S 2010-2020 14.9 ± 2.8 9.0 ± 1.8 5.7 ± 2.6 4.1 ± 1.3 20,978 12,638 4.20* 0.88 
Mean 18 3 5 G15 0.78 NC S 2010-2020 8.7 ± 6.6 12.5 ± 1.8 -0.3 ± 6.5 4.4 ± 1.6 27,848 15,736 2.92* 0.80 
Mean 19 3 5 G15 0.78 NC S 2010-2020 7.6 ± 6.6 12.6 ± 1.8 -0.3 ± 6.5 4.3 ± 1.6 27,737 15,625 2.66* 0.79 
Mean 20 3 5 G15 0.78 NC S 2010-2020 7.3 ± 6.8 13.0 ± 1.7 -0.5 ± 6.8 4.6 ± 1.5 27,475 15,422 2.59* 0.84 
Mean 21 3 5 G15 0.78 NC S 2010-2020 8.2 ± 6.0 13.6 ± 1.9 0.0 ± 5.9 4.6 ± 1.6 26,611 15,052 2.37* 0.79 
Mean 22 3 5 G15 0.78 NC S 2010-2020 10.5 ± 4.1 12.8 ± 1.8 1.8 ± 4.0 3.8 ± 1.6 25,632 14,712 3.11* 0.75 
Mean 23 3 5 G15 0.78 NC S 2010-2020 12.4 ± 4.0 12.3 ± 2.0 3.2 ± 3.8 3.6 ± 1.8 24,362 14,231 3.65* 0.79 
Mean 24 3 5 G15 0.78 NC S 2010-2020 15.4 ± 2.8 7.1 ± 1.9 6.0 ± 2.4 2.9 ± 1.5 20,978 12,638 1.70* 0.77 
Median 18 5 - G15 0.78 NC S 2010-2020 9.4 ± 6.2 10.8 ± 1.3 1.1 ± 6.1 4.1 ± 0.7 31,938 17,578 1.09* 0.59 
Median 19 5 - G15 0.78 NC S 2010-2020 9.6  ± 6.9 12.5 ± 1.2 2.1 ± 6.8 4.7 ± 0.7 31,711 17,404 0.76 0.32 
Median 20 5 - G15 0.78 NC S 2010-2020 10.2 ± 6.9 12.4 ± 1.2 2.9 ± 6.8 4.6 ± 0.7 31,255 17,012 0.77 0.38 
Median 21 5 - G15 0.78 NC S 2010-2020 10.3 ± 7.1 13.0 ± 1.3 3.4 ± 7.0 4.9 ± 0.7 29,884 16,319 1.28* 0.78 
Median 22 5 - G15 0.78 NC S 2010-2020 10.9 ± 7.6 13.4 ± 1.6 2.2 ± 7.5 5.3 ± 1.2 28,100 15,942 1.58* 0.89 
Median 23 5 - G15 0.78 NC S 2010-2020 11.5 ± 5.1 13.5 ± 1.5 3.4 ± 5.0 5.2 ± 1.1 26,757 15,354 1.49* 0.82 
Median 24 5 - G15 0.78 NC S 2010-2020 13.0 ± 4.2 9.3 ± 1.9 6.3 ± 4.1 3.8 ± 1.2 22,657 13,468 1.27* 0.87 
Median 18 3 - G15 0.78 NC S 2010-2021 12.3 ± 6.4 10.1 ± 1.1 2.5 ± 6.3 5.0 ± 0.8 30,008 17,645 0.92 0.38 
Median 19 3 - G15 0.78 NC S 2010-2021 12.2 ± 6.4 10.3 ± 1.1 2.5 ± 6.3 5.1 ± 0.8 29,985 17,622 0.92 0.36 
Median 20 3 - G15 0.78 NC S 2010-2021 10.9 ± 6.9 9.1 ± 1.1 1.3 ± 6.8 3.8 ± 0.9 29,764 17,402 1.25* 0.63 
Median 21 3 - G15 0.78 NC S 2010-2021 12.5 ± 6.4 9.3 ± 1.1 2.8 ± 6.3 4.0 ± 0.9 29,233 17,297 1.23* 0.68 
Median 22 3 - G15 0.78 NC S 2010-2021 15.1 ± 2.9 9.1 ± 1.1 4.7 ± 2.8 3.8 ± 0.8 28,407 16,978 1.66* 0.70 
Median 23 3 - G15 0.78 NC S 2010-2021 14.4 ± 2.9 9.3 ± 1.1 4.6 ± 2.7 3.8 ± 0.7 26,981 16,430 1.39* 0.62 
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Median 24 3 - G15 0.78 NC S 2010-2021 15.4 ± 2.7 10.2 ± 1.3 7.0 ± 2.6 4.4 ± 0.9 23,008 14,633 1.33* 0.67 
Median 18 5 - G15 0.78 NC S 2010-2021 9.7 ± 4.7 10.8 ± 1.1 1.6 ± 4.6 4.6 ± 0.7 34,507 19,859 1.46* 0.63 
Median 19 5 - G15 0.78 NC S 2010-2021 9.7 ± 4.7 10.8 ± 1.1 1.6 ± 4.6 4.6 ± 0.7 34,459 19,836 1.45* 0.62 
Median 20 5 - G15 0.78 NC S 2010-2021 9.3 ± 4.5 10.2 ± 1.1 1.3 ± 4.4  3.7 ± 0.7 34,093 19,476 1.70* 0.77 
Median 21 5 - G15 0.78 NC S 2010-2021 11.7 ± 4.5 10.7 ± 1.1 3.5 ± 4.4 3.7 ± 0.7 33,146 19,073 1.68* 0.86 
Median 22 5 - G15 0.78 NC S 2010-2021 12.0 ± 3.5 10.5 ± 1.1 2.6 ± 3.3 3.7 ± 0.6 31,203 18,365 2.06* 0.70 
Median 23 5 - G15 0.78 NC S 2010-2021 11.6 ± 3.0 9.0 ± 1.3 2.5 ± 2.7 2.8 ± 0.8 29,677 17,747 2.14* 0.85 
Median 24 5 - G15 0.78 NC S 2010-2021 11.5 ± 2.7 10.7 ± 1.7 5.7 ± 2.5 4.1 ± 0.9 25,020 15,503 1.95* 0.72 
Median 23 3 - G15 0.78 NC S 2010-2021 14.4 ± 2.9 9.3 ± 1.1 4.6 ± 2.7 3.8 ± 0.7 26,981 16,430 1.21* 0.73 

Mean ± standard deviationi (with negative SNPP) 11.5 ± 2.3 11.3 ± 2.3 2.8 ± 2.3 4.4 ± 0.9   2.17 ± 2.11 0.71 ± 0.14 
Range (with negative SNPP) 7.3-17.0 5.3-20.4 -0.5-7.0 2.2-8.2   0.56-9.23 0.32-0.89 

Mean ± standard deviationi (with negative SNPP) 12.6 ± 1.9 11.3 ± 2.3 3.8 ± 1.6 4.5 ± 0.9   1.86 ± 1.72 0.70 ± 0.14 
Range (with negative SNPP) 9.9-17.0 5.3-20.4 1.8-7.0 2.2-8.2   0.56-8.00 0.32-0.89 

The cells shaded in gray shows the parameters used in the main analysis. aThe number of unique local hours the float had to have observed. bThe threshold multiplier 
is multiplied by the expected number of profiles. cWhen using the mean as the center value for each local hour, the outliers are defined as any values around the 
mean that are the outlier multiplier times the standard deviation. dThe model used to estimate POC from bbp. G15 = Graff et al. (2015); C12 = (Cetinić et al., 2012); 
T17 = Thomalla et al. (2017b); S99-RS = Stramski et al. (1999) – Ross Sea Data; S99-APFZ = Stramski et al. (1999) – Antarctic Polar Frontal Zone Sea Data; S08 
= Stramski et al. (2008); S08-NU = Stramski et al. (2008) – excluding upwelling data. R17 =  Rasse et al.  (2017);  J17 = Johnson et al. (2017).eNC means “no 
change” to the zeu values estimated. fS = sinusoidal model fit; L = linear model fit. See details in Barone et al. (2019). gBolded values highlight totals that include 
negative SNPP from any latitudinal group. These negative estimates mainly occurred either in the 50-60°S or 60-70°S regions and mainly with NPPDO2. hThe 
relationship between NPPDO2 and NPPbbp from all measurements from 30-70°S. A star is used to indicate if the regression is significant below the 0.1 significance 
level. iMean and one standard deviations of mean/medians NPP totals. The means exclude rows 13 to 21 for NPP estimates and rows 11 to 21 for the average of 
all R2 values (go to e). Note that a spectral slope of 0.41 comes from Cetinić et al. (2012). 95 
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Table B2. Total NPP south of 30°S from co-located bbp-and O2 profiles. The area is 
calculated from ETOPO5 using all grid cells deeper than 2,000 m. The climatological 
mean euphotic depth was obtained from NASA Ocean Color and was rounded to the 
nearest depth bin’s center. Argo data is from 2010 to 2020 (inclusive) and does not 
include profiles in waters less than 2,000 m deep. Total NPP below 30°S and 50°S is 
calculated as the sum of all latitudinal bands shown in the table. Errors represents one 
standard error. 

Latitudinal Band bbp and O2 Profiles Area 
(1013 m2) 

zeu 
(m) 

NPPbbp 
(Pg C y-1) 

NPPΔO2 
(Pg C y-1) 

30-40°S 1,946 2.94 95 3.7 ± 0.5 5.2 ± 0.6 
40-50°S 3,613 2.80 65 2.8 ± 0.5 4.2 ± 0.4 
50-60°S 3,974 2.37 65 1.4 ± 0.6 3.2 ± 0.7 
60-70°S 3,504 1.53 65 1.8 ± 0.6 1.7 ± 3.2 
Total (below 30°S) 13,037 9.64 - 9.8 ± 1.1 14.3 ± 3.3 
Total (below 50°S) 7,478 3.90 - 3.3 ± 0.8 4.9 ± 3.3 
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Appendix C 

 

Figure C1. The change in ocean volume with depth was multiplied by the volumetric 
concentrations of Chla and Corg to calculate stocks. This calculation was made for each 
10° latitude region and for each basin, although the figure here gives an example of what 
this profile looks like for the global ocean. Bathymetry was determined from the ETOPO 
2022 Global Relief Model (60 arc-second resolution) for ice surface elevation. Area was 
calculated using the area function from GeoPandas in Python. 
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Figure C2. (A, B) Latitudinal distributions of Chla and Corg stock per area; and (C, D) 
vertical distributions of the volumetric concentrations of Chla and Corg. The average 
mixed layer depth, weighted by the area of each ocean basin, is shown as a black line in 
each C and D. 
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Figure C3. (A, B) Seasonal cycles in float- and satellite-based surface Chla (as z-scores). 
(C–E) Phenological metrics derived from the seasonal surface Chla derived from float 
(green points) and satellite (black x’s) satellite observations: (C) the timing of the peak 
satellite and float surface Chla, defined as the week from the summer solstice; (D) the 
bloom duration, defined as the number of weeks above the annual mean; and (E) seasonal 
range, normalized to the annual mean. Panels B and C extend to 65°, while panels D and 
E only extend to time-series with at least 47 weeks of observations. 
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Figure C4. Pearson correlation coefficients calculated from the 52-week cycle of the log-
transformed (A) surface Chla and ΣCorg and (B) surface Chla from floats and satellite 
observations. 

 

Figure C5. Additional phenological metrics calculated surface Chla (green) and ΣCorg 
(brown) of the timing of the minimum (A), the timing of the maximum accumulation rate 
(B), and the timing the minimum rate of change (C). The timing of these metrics is 
relative to the day of year with the least (midwinter) or most (midsummer) daylight 
hours.  
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Table C1. Float data discarded following visual inspection. When applicable, I liberally 
removed profiles well before the issue with the data was apparent. 

Float 
WMO 

Profiles Removed Reason 

2902209 All Salinity is too low given expectation in the 
open ocean (~17 PSU). 

5906207 All There is an abrupt increase in temperature 
in the time series that is inconsistent with 
the first two years of the observations. 

2902160 All There is an abrupt consistent increase in bbp 
that is still in range of what is realistic. It is 
not clear if the data before or after is 
usable, so the entire time series was 
discarded from this float. 

2902158 All The same issue in 2902160 is present with 
this float 

5904218 Profiles after November 1, 
2012 

There is a slow increase in the bbp possibly 
due to sensor drift or bio-fouling (most 
profiles from this float went ~400 m 
depth). 

6901473 Profiles after September 1, 
2014 

There is a slow increase and decrease in 
the bbp and Chla, respectively. This is 
possibly due to sensor or bio-fouling. 

6901650 Profiles after June 1, 2015 There is a sudden, unrealistic drop in bbp. 
6901687 Profiles after July 1, 2017 There appears to be an increase in bbp that 

is rapid, however, bbp returns close to its 
initial values. This happens twice. Profiles 
were removed well before this first 
increase was observed. 
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