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                           Abstract 

 

Stroke is a leading cause of disability and death.  A new treatment called Endovascular 

Thrombectomy (EVT) is available to severe stroke patients, but it is only offered at large 

urban centres and its effectiveness is time dependant.  Patients from Primary Stroke Centres 

(PSCs) must be transferred quickly.  Many patients that are transferred are deemed ineligible 

for treatment upon arrival. Data from Nova Scotia was obtained for three years. This 

comprehensive analysis of patients transferred for EVT with PSCs as distinct Decision-

Making Units (DMUs) was conducted. Input data included patient demographics, system 

efficiency, imaging interpretation, and distance between hospitals.  The output was whether 

EVT was performed. Data Envelopment Analysis (DEA) was used to determine efficiency 

scores for the PSCs. After applying DEA, the study revealed variations in productivity 

change among different PSCs. The results highlighted the negative effect of considerable 

distances between certain PSC and the Comprehensive Stroke Centre (CSC). 
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CHAPTER 1  INTRODUCTION   

 

Data Envelopment Analysis (DEA) is a method of measuring productivity to assess 

multiple dimensions of productivity. DEA uses a concept called technical efficiency, which 

examines the relationships between various inputs and the related output. This allows 

different hospital setting to have different inputs that will yield the optimal output.  This 

concept incorporates efficiency and effectiveness.  

The application of DEA in stroke care services within the healthcare industry holds 

significant potential. DEA, a quantitative method for evaluating efficiency by comparing 

inputs (resources) and outputs (services), can be instrumental in assessing and optimizing 

resource utilization in stroke care. By using DEA, there is an opportunity to standardize 

health service delivery, benchmark the proportion of stroke patients receiving timely 

treatment, and enhance the overall management and efficiency of stroke care. This approach 

aims to ensure that treatments for acute ischemic stroke, for example, are delivered 

optimally across different healthcare centres regardless of differences in the populations that 

they serve and the size of their centre. 

In healthcare, DEA can be applied to assess and optimize the performance of 

healthcare facilities, such as hospitals, in terms of resource utilization and service delivery. 

In the context of stroke care, DEA can be used to assess the efficiency of hospitals in 

providing EVT, considering factors like patient throughput, resource allocation, and quality 

of care. This emphasizes the need for tools like DEA to assess and optimize the performance 

of healthcare facilities, ensuring they can deliver essential services efficiently. DEA can 

help identify areas for improvement in resource allocation and policy formulation, 

ultimately enhancing stroke care and other critical healthcare services. 

Stroke is a significant burden worldwide. In Canada, stroke ranks as the leading cause 

of adult disability (1), and it is a leading cause of death (2). During an average lifetime, 

every Canadian will be touched by a stroke by either becoming a victim of this disease or a 

close family member having a stroke. Nova Scotia’s older population is more affected by 

stroke; consequently, Nova Scotia has a higher incidence of stroke than other Canadian 

provinces, with 140 strokes annually per 100,000 people compared to 113-116 stroke 

incidences per 100,000 people in provinces outside of Atlantic Canada (3). Moreover, stroke 



2 

 

affects older people more than younger adults, as the average stroke incidence is 69 years 

old (4). The odds of having a stroke increases with age: Stroke is anticipated to affect 10% 

of Canadians aged 65 years or older, with the likelihood increasing to 20% among Canadians 

aged 85 years or older (2). 

The most common type of stroke is ischemic stroke, constituting approximately 85% 

of all strokes. Fortunately, acute ischemic stroke can be treatable with a medical treatment 

called thrombolysis with either alteplase (also called tissue Plasminogen Activator (tPA)) 

or Tenecteplase (TNK). The key randomized controlled trial (RCT), the National Institute 

of Neurological Disorders and Stroke (NINDS) trial, found that 39% of patients treated with 

alteplase will experience no disability, in contrast to 26% of untreated patients (5). Around 

20% of patients with ischemic stroke can be suitably treated with alteplase. As a result, 

thrombolysis treatment is widely available at hospitals equipped with a Computed 

Tomography (CT) scanner and possessing the necessary expertise to manage stroke patients. 

In Nova Scotia, there are ten hospitals across the province that provide thrombolysis 

treatment, hence they are called Primary Stroke Centres (PSC), and paramedics are trained 

to bypass a closer hospital to bring suspected acute stroke patients to a PSC. In 2015, a series 

of RCTs (6), including the Canadian-led ESCAPE trial (7), proved a new treatment for 

ischemic stroke patients to be highly efficacious: Endovascular Thrombectomy (EVT). This 

treatment mechanically removes the clot using stent retriever devices and/or aspiration (8).  

EVT is provided to patients with a Large Vessel Occlusion (LVO), which is the most 

severe form of ischemic stroke; approximately 30-40% of all ischemic stroke is because of 

an LVO (9). EVT is highly effective; About 26.9% of stroke patients treated with EVT will 

achieve recovery without disability, in contrast to 12.9% of patients who did not undergo 

EVT. Additionally, 46.0% of EVT-treated patients will experience only minor disability, 

compared to 26.5% of patients who did not receive EVT (6). This results in a Number 

Needed to Treat (NNT) for a reduction in disability of 2.6 (10). Note that patients in the 

control group of the EVT trials (patients that did not receive EVT) may have received 

alteplase. Yet, the proportion with no disability (12.9%) (6) is much lower than the number 

provided for the alteplase trial (39% with alteplase vs. 26% without treatment) (5), which is 

because EVT is provided to the most severe strokes. EVT is often provided with alteplase, 

depending on a patient’s eligibility for each treatment. Unfortunately, the availability of 

EVT is limited to larger centers due to the requirement for specific tools and trained staff 

available at Comprehensive Stroke Centres (CSC); in Nova Scotia, it is only available at 

one center. Patients eligible for EVT but arriving at a PSC need to be urgently transported 
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to the CSC for EVT treatment. 

In stroke, minutes matter, as the brain begins to undergo rapid deterioration shortly 

after the onset of symptoms (11), which makes the efficiency of receiving treatment with 

both thrombolysis treatment (12) and EVT treatment highly time-sensitive (13). Hence, 

timely access to EVT is crucial. PSCs must react quickly to ensure EVT-eligible stroke 

patients are transferred to the CSC as efficiently as possible. Eligibility for EVT is based on 

the imaging of the patient (8,14). The plain CT brain images show the extent of the ischemic 

core, as only patients with a small core are eligible, which indicates that there is a brain to 

save. The CT Angiogram (CTA) needs to confirm that the clot is in a large vessel accessible 

by the EVT procedure. Finally, the collateral circulation should also be assessed, as good 

collaterals keep the brain alive during transfer and during the EVT procedure (15). This is 

normally assessed using a multiphase CTA (mCTA) or CT perfusion (CTP). Despite our 

knowledge about selecting patients for EVT based on imaging, there is great uncertainty 

around how to best select patients for transfer from a PSC to a CSC. Research from Ontario 

indicated that 34% of patients with LVO who were transferred for EVT ultimately received 

the treatment. In other words, there is a great waste of resources, with 66% of individuals 

transferred for EVT were deemed ineligible for treatment upon arrival (16). Similar data 

from the US shows that only 27% of transferred patients received EVT (17). In Nova Scotia, 

only 44% received EVT when transferred from PSC between the dates of 2018 and 2021. 

Therefore 50-70% of severe stroke patients transferred from a PSC to a CSC for EVT 

treatment will not receive treatment; this is often called futile transfers. These futile transfers 

are creating a significant burden on the health systems as they are experiencing high levels 

of occupancy, severe health human resource shortages, and seemingly greater population 

morbidity, which is resulting in greater stress on the pre-hospital Emergency Medical 

Services (EMS) system, and delays in medical transfer between hospitals. Therefore, 

optimizing EVT response will free up scarce resources that are badly needed across the 

health system. 

There are two opposing forces in this optimization problem. Over selecting patients 

for transfer to receive EVT leads to a greater number of patients that will receive the 

treatment; however, it also leads to a larger number of patients that turn out to be ineligible 

for treatment upon arrival. This essentially uses the philosophy to “cast a wide net”; 

however, over selection comes at a significant cost to the healthcare system due to the 

resources required for the urgent transport of a large proportion of severe stroke patients 

from remote hospitals to an EVT center who will not receive treatment. On the other hand, 
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under selection or being more discriminant in selection results in missed cases and an overall 

lower number of patients from remote hospitals that will receive EVT, but the overall cost 

of transfer is lower since fewer patients are transferred. Additionally, time remains the 

largest factor for eligibility for EVT (12,15). However, several trials have shown that a 

highly select group of patients that arrive late (up to 24 hours after onset) still benefit from 

EVT (18,19). Therefore, there needs to be better processes developed to reduce the time 

from arrival at the peripheral site to departure for transfer to CSC, called door-in-door-out 

(DIDO) times (20,21). This research looks at the application of Data Envelopment Analysis 

to determine the efficiency of PSCs in their selection and transfer of ischemic stroke patients 

for EVT. 

This thesis includes two studies that were conducted addressing application of DEA to 

emergency departments (EDs) and management of emergency conditions. This first study 

(27) is a narrative review that focuses on applying DEA in EDs and managing emergency 

conditions such as acute ischemic stroke and acute myocardial infarction (AMI). The second 

study applied DEA to optimize transfer times and futile transfers of ischemic stroke patients 

receiving EVT in PSC in Nova Scotia. Chapter 2 and Chapter 3 contain the manuscript for 

study 1 (27) and study 2, respectively. Each study manuscript includes sections and 

subsections, discussion that notes study limitations, as well as key findings. Chapter 4 

includes a discussion that relates individual studies, interpretation of DEA results for 

healthcare administrators, limitations, and opportunities for future studies. Finally, Chapter 

5 highlights the key conclusions drawn from the two studies and states the overall 

contributions of the works. 
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2.1 Abstract                                                                                                                                                                                                             

                                                                                                                                  

Background: The healthcare industry is one application for data envelopment analysis 

(DEA) that can have significant benefits for standardizing health service delivery. This 

narrative review delves into the application of DEA within EDs and its effectiveness in 

managing critical emergency conditions, such as acute ischemic stroke and AMI. This 

includes benchmarking the proportion of patients that receive treatment for these emergency 

conditions. 

 

Narrative Review: Most frequent primary areas of study motivating work in DEA, EDs and 

management of emergency conditions including acute management of stroke can be sorted 

into five distinct clusters in this study: (1) using basic DEA models for efficiency analysis 

in EDs, i.e., applying variable return to scale (VRS), or constant return to scale (CRS) to ED 

operations; (2) combining advanced and basic DEA approaches in EDs, i.e., applying super-

efficiency with basic DEA or advanced DEA approaches such as additive model (ADD) and 

slack based measurement (SBM) to clarify the dynamic aspects of ED efficiency throughout 

the duration of a first-aid program for AMI or heart attack; (3) applying DEA time series 

models in EDs like the early use of percutaneous coronary intervention (PCI) in AMI 

treatment, and endovascular thrombectomy (EVT) in acute ischemic stroke treatment., i.e., 

using window analysis and Malmquist productivity index (MPI) to benchmark the 

performance of EDs over time; (4) integrating other approaches with DEA in EDs, i.e., 

combining simulations, machine learning (ML), multi criteria decision analysis (MCDM) by 

DEA to reduce the patients waiting times, and futile transfers; and (5) applying various DEA 

models for the management of acute ischemic stroke., i.e., applying DEA to increase the 

number of qualified acute ischemic stroke patients who receive EVT and other medical 

ischemic stroke treatment in the form of thrombolysis (alteplase and now Tenecteplase). 

 

Results: We assess the methodological setups of the papers, offering detailed explanations 

regarding the applied models, selected inputs, outputs, and all relevant methodologies. 

 

Conclusion: In conclusion, we explore several ways to enhance DEA's status, transforming 

it from a mere technical application into a strong methodology applicable to healthcare 

managers and decision-makers.                                                                                                                                                                                 

 

Keywords: data envelopment analysis; emergency department operations; acute management 

of stroke; stroke patients; emergency transfer to a tertiary hospital; acute stroke treatment; 

acute myocardial infarction treatment; endovascular thrombectomy; percutaneous coronary 

intervention. 
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2.2 Introduction 

Healthcare systems worldwide are under pressure to provide timely access to urgent 

conditions in the emergency departments (EDs) as wait times continue to increase (28,29), 

creating greater demands to enhance their efficiency. However, assessing the effectiveness 

of EDs is a complex task that should not be underestimated. ED serves as a primary entry 

point to hospitals and plays a crucial role in hospital management. Due to the constant and 

unscheduled arrival of patients, the ED often experiences high levels of overload, leading to 

long waiting times for patients. This significantly impacts patients suffering from conditions 

such as stroke and myocardial infarction, which require immediate treatment in the ED (30-

31). Therefore, EDs must be evaluated for their efficiency. 

The potential tools to evaluate the efficiency of EDs include Data Envelopment 

Analysis (DEA). The fundamental concept of DEA is to identify an optimal performance 

frontier comprising efficient decision-making units (DMUs) that cover all the ineffective 

DMUs. The efficiency value for each DMU can be determined by measuring its deviation or 

gap between a point and the frontier. Over the past decades, DEA has progressively been 

applied to EDs, proving its suitability in this area. DEA possesses various characteristics that 

make it an appealing instrument for evaluating the performance of ED. Its ability to 

proficiently oversee numerous resources in the ED and monitor health results throughout the 

process of change is a notable benefit. EDs are typically the primary entry point for hospital 

admission. Because of the accidental nature of patients attending, the department should 

provide initial care for various diseases and damage, some of them could cause a risk to life 

or be potentially life-threatening and need urgent care. EDs of most health centers conduct 

24 hours a day 7 days a week, although supervising levels may differ to reflect patient 

volume.  

 Bridging the gap between evidence and practice concerning the EDs' efficiency 

analysis is essential. Further research is needed to tackle methodological challenges in 

implementing efficiency analysis for EDs by managing emergency conditions effectively 

and enhancing the availability of valuable evidence. This article aims to make an initial step 

to increase our perception of how the application of DEA is applied in EDs to assist decision-

makers in increasing the number of eligible patients who receive advanced treatments for 

conditions such as acute ischemic stroke and acute myocardial infarction (AMI) including 

the urgent transfer of these patients to receive the treatment.  
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The deleterious effects of delayed treatment have been observed in other emergency 

conditions such as early thrombolysis and percutaneous coronary intervention (PCI) in AMI 

or heart attack (32). Myocardial infarction (MI) is the result of a partial or complete occlusion 

of blood flow to a segment of the heart muscle. AMI might not exhibit noticeable symptoms 

and go unnoticed, or it could be demonstrated as a catastrophic occurrence causing a sudden 

drop in cardiovascular function and unexpected fatality. The primary cause of most AMIs is 

underlying coronary artery disease, which stands as the top mortality factor around the 

world. In cases of coronary artery blockage, the heart muscle is deprived of oxygen. AMI 

has conventionally been categorized into ST elevation or non-ST elevation myocardial 

infarction (33,34). However, treatments are comparable between these two categories, and a 

comprehensive overview of the general management of AMI can be provided for clarity. 

Despite significant advancements in prognosis over the last decade, AMI remains a 

prominent cause of illness and death globally (35). This progress can be attributed to various 

noteworthy trends, including enhancements in risk assessment, broader adoption of an 

invasive approach, establishment of care systems that prioritize prompt revascularization 

through procedures like percutaneous coronary intervention (or fibrinolysis), developments 

in antiplatelet medications and anticoagulants, and increased utilization of secondary 

preventive measures such as statins. Extended periods of inadequate oxygen delivery to the 

heart muscle can result in the death and decay of myocardial cells. As the primary goal of 

thrombolysis is to swiftly reestablish blood circulation to the at-risk heart muscle to protect 

its cellular structure and operation, the factor of time becomes a critical limitation that 

hinders the beneficial outcomes of thrombolysis and PCI (36).  

 Finally, this narrative review aims to review the application of DEA as an important 

approach of MCDM to EDs and the management of emergency conditions. Initially, we 

review the correlation between the notion of 'efficiency' in DEA and 'convex efficiency' in 

MCDM through a basic model. Through some related references, we demonstrate that 

certain integrated methods such as machine learning and simulation suggested in the DEA 

field for addressing MCDM issues contradict fundamental normative principles that are 

widely acknowledged.   

 

                            2.3 Techniques and Views 

This section comprises five subsections that encompass diverse integrated DEA                      

approaches, all aimed at illustrating the role of these approaches in relation to EDs:  
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2.3.1 Applying Basic DEA Models for Efficiency Analysis of EDs 

DEA models, CCR and BCC, differ in their treatment of scale returns, with CCR 

assuming constant returns and BCC allowing for variable returns. Ongoing modifications to 

these models reflect a persistent debate on their dominance. The choice between the two 

models depends on the dataset characteristics. A study by Banker et al. suggests CCR 

performs better with smaller sample sizes (up to 50 DMUs), while BCC is more effective 

with larger samples (at least 100 DMUs). Input-oriented DEA models minimize inputs for a 

given output, while output-oriented models maximize outputs with constant inputs; hybrid 

models aim to optimize both inputs and outputs for efficiency (37).               

Figure 1 summarizes basic DEA models including input oriented CCR dual model (a) 

Visual representation of technical efficiency and its breakdown from various sources in a 

graphical format considering pure technical efficiency (PTE), technical efficiency (TE), and 

scale efficiency (SE), and (b) Frontier lines considering input and output-oriented 

visualization. 

 

 
(a) 

 

(b) 

Figure 1: a) Visual Representation of Technical Efficiency and Its Breakdown from 

Various Sources in a Graphical Format Including PTE, TE, and Scale SE, b) Frontier 

Lines Considering Input and Output Oriented and Mixed Oriented Visualization . 
 

 

Table 1. summarizes the characteristics of input and output oriented for basic models.  
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Table 1: Characteristics of Input and Output Oriented for Basic DEA Models. 

Characteristics CCR input-
oriented  

CCR output-
oriented  

BCC input-
oriented  

BCC output-
oriented  

Return to scale (RTS) CRS CRS VRS VRS 

Sign of the inputs Semi-positive Semi-positive Semi-positive Free 

Sign of the outputs Free Free Free Semi-positive 

Type of efficiency Overall Technical Overall Technical Pure Technical Pure Technical 

Surface of envelopment Piecewise linear Piecewise linear Piecewise linear Piecewise linear 

Metric of envelopment Radial ([0,1]) Radial ([1,∞]) Radial ([0,1]) Radial ([1,∞]) 

 

The initial study was conducted by Hao et al. (38) in 1978. They suggested the CRS 

approach assisted by multiple regression analysis to assess the efficiency of acute care 

veteran's affairs hospitals including the hospital’s ED. The study excluded hospitals that 

were smaller in scale, housing fewer than 100 beds and those that had not been operating for 

12 months. Various forms of analysis were applied to evaluate the efficiency of these 

hospitals. Two types of analysis used in this study were assessment of productivity and input-

oriented, focusing on key outputs of medical procedures, patient releases, and visits to the 

emergency room and outpatient services. Therefore, the techniques employed in this study 

rely on quantitative input, including the sum of staff, the sum of medical beds within the 

hospital facility, and the corresponding sum of full-time nurses and physicians. It's important 

to note that none of these inputs or outputs were measured in monetary units. Consequently, 

they were not susceptible to fluctuations in the currency's worth or changes in the dollar’s 

cost across different locations in the country where the hospitals were located. Multiple 

regression analysis was employed in combination with DEA to determine the relative 

efficiencies. The outcomes of the study showed that approximately half of all hospitals could 

improve their efficiency. Additionally, the study found that the dimensions of the hospital, 

inpatient surgical procedure, outpatient surgical procedure, and combined emergency room 

and outpatient visits were factors that had a significant impact on good efficiency values. 

Finally, they provided valuable insights into the efficiency of acute care veteran's affairs 

hospitals and identified areas where improvements could be made. This research 

methodology allowed for a comprehensive evaluation of the hospitals and provided a basis 
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for further analysis and potential enhancements in healthcare. 

Many research papers have explored basic DEA models for public hospitals and acute 

care centers (39-43). However, in this narrative review, our focus is only on the following 

articles assisted by basic DEA models for EDs: 

Akkan et al. (44) applied VRS and CRS models for the efficiency evaluation of the 

EDs for seven general hospitals in Istanbul's Beyoglu state hospitals. Four essential and 

interconnected variables were determined for assessing the efficiency of the EDs. These 

variables were carefully selected based on the critical and relevant data accessible. The first 

two variables were considered as inputs: the total bed capacity within the ED and its 

corresponding level. The other two variables were regarded as outputs: the sum of patients 

seeking emergency medical attention attended to in the ED and the sum of patients referred 

from the ED. Out of these variables, the classification or status of the EDs held significant 

importance as it influenced the selection of the appropriate DEA model and set the suggested 

model apart from many other models. DEA, assisted by statistical methods, was applied to 

make it easier for hospital managers to extract hidden rules. The small number of hospitals 

in this study was one of the weaknesses.                    

EDs play a vital role in Jordanian hospitals. Waiting times for ED patients were a 

critical and common problem. Therefore, Al-Refaie et al. (45) proposed a DEA-based 

approach to decrease the average waiting time for patients in the ED, improve the nurses’ 

efficiency, and increase the quantity of waiting patients. The inputs in this scenario included 

the sum of nurses and the typical length of stay (LOS) in the ED, where smaller values were 

favored. On the other hand, the outputs consist of the average percentage of nurses and the 

number of patients served, where larger values were preferred. A proposal for a cellular 

service system was made, and it was implemented to schedule ten nurse appointments. To 

assess the performance measures for each design, the simulation was executed with ten 

replicates, each spanning one month (672 hours). The optimal outcome was established by 

applying aggressive CRS formulation. The results presented that the optimal approach relies 

on distribution of workloads among different individuals or teams, which reduced patients’ 

mean waiting time from 195 to 183 minutes, increased the number of patients attended from 

8853 to 8934 and improved the nurses’ operation from 52% to 62%. Ultimately, the 

adaptability of nurses within cellular service systems provides valuable support to hospital 

administrators aiming to improve the efficiency of the ED. 

Chu et al. (46) applied the VRS assisted by multi objective linear programming 



12 

 

(MOLP) for allocation of healthcare resources in hospitals during times of public health 

emergencies in China. Initially, the DEA was implemented to guarantee that the ED can 

constantly indicate state-of-the-art knowledge through all operational periods. Each hospital 

was considered a DMU that utilized various inputs to create desired outputs. The suggested 

inputs for a DMU consist of four main factors including the number of doctors and nurses, 

ICU beds, personal protective equipment (PPE) requirement, and fixed assets. The outputs 

comprise the sum of patients who have been admitted, the sum of patients who have been 

released, and the number of fatalities or the number of deceased individuals. The sum of 

patients who have been admitted and the sum of patients who have been released were 

considered desirable outputs, representing successful medical care. Conversely, the number 

of fatalities was classified as an undesirable output, reflecting the negative outcome of 

patient care. According to the suggested model, two models for assessing efficiency were 

organized to determine the effectiveness levels of EDs before and after resource allocation. 

The findings indicated that all the EDs achieved efficiency following the allocation of 

medical resources, and therefore an innovative resource allocation possibility was 

determined. For the MOLP, the first objective was to optimize the output, while the other 

objective was to link the allocated resource to the operation size of each ED.  

Omrane et al. (47) proposed VRS input oriented for ambulatory care departments. Four 

EDs demonstrated a relatively effective performance throughout the three years. Using a 

DEA model, they evaluated relative efficiencies by considering the available personnel 

(physicians, nurses, and managerial personnel) as inputs and the number of outpatients who 

have received treatment as the output. Consequently, they computed efficiency scores for 

each ambulatory care unit from 2014 to 2016, allowing them to pinpoint the inefficient units 

in terms of resource utilization and outpatient treatment. The findings from this research 

were regarded as valuable for managers in assessing the potential reduction of human 

resources in outpatient units without cooperating with their ability to fulfill tasks and avoid 

wasting limited resources. They identified potential adjustments based on their relative 

efficiency to aid decision-makers in hospital management and enable the optimal allocation 

of human resources. These adjustments aim to help address inefficiencies in certain EDs and 

implement appropriate countermeasures.                                       

Ketabi et al. (48) suggested CRS input-oriented to evaluate and compare 24 EDs in 

Iran. The selected factors were categorized into two groups: the first subset included input 

factors such as the number of active beds, physicians, nurses, and medical equipment. The 
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second subset consisted of output factors, which encompass the number of discharges, the 

proportion of cases where revival or recovery occurs, typical duration of waiting, and the 

level of contentment or satisfaction expressed by patients. The model can be employed to 

identify the reasons for inefficiency and determine strategies for enhancing performance. 

Based on the suggested data, 37% of EDs were inefficient. The primary causes were the 

surplus of medical devices and staff members. So, DEA offered a collection of anticipated 

input/output quantities or levels that could make EDs comparatively effective.              

 During the COVID-19 pandemic, physicians and EDs faced a significant challenge. 

The increasing entry of patients seeking treatment in EDs led to overcrowding, subsequently 

impacting the quality of services provided. Consequently, the management and operation of  

EDs became even more pressing during the pandemic. Addressing this issue, Taghipour et 

al. (49) initially applied four basic input and output-oriented DEA to assess the efficiency of 

EDs located in the provinces situated at the center of Iran. The main factors were door-to-

doctor time, number of admitted patients, employee absence rate, percentage of complaints 

handled, number of patients waiting in a queue, number of test kits, time required for 

receiving the test results, and finally the proportion of isolation rooms about the total area of 

the ED that are theoretically anticipated to have an impact on the performance of EDs during 

the pandemic. For this research, indicators with favorable outcomes with lower levels/ranks, 

examples include the duration of hospitalization and the time spent in boarding, were 

designated as inputs. Conversely, indicators with desirable outcomes with higher 

levels/ranks, including the sum of patients who have been admitted and the sum of test kits, 

were assigned as outputs. Subsequently, they conducted a sensitivity analysis to identify the 

key factors impacting the efficiency of this department. Their findings highlighted the 

significant factors influencing efficiency which were the high number of admitted patients, 

ward congestion, and the extended time taken to report COVID-19 test results. 

2.3.2 Combining Advanced and Basic DEA Approaches in ED Applications 

An ongoing debate in DEA turns around the choice between input-oriented and output-

oriented approaches. Charnes et al. (50) proposed a third model, the Additive model (ADD), 

which integrated both input and output oriented. The input and output slacks are determined 

in ADD and optimized for the DMU to maximize their value. Thus, ADD minimizes the 

inputs while concurrently maximizing the outputs. Furthermore, inefficiencies extracted 

from slacks are provided in the analysis score. However, the initial ADD model should 

provide scalar efficiency evaluation. Table 2 summarizes the characteristics of the ADD.                                         
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Table 2: Characteristics of the Additive Model. 

Characteristics Additive Model  

RTS CRS&VRS 

Sign of the inputs Free 

Sign of the outputs Free 

Type of efficiency Mix of both 

Surface of envelopment Piecewise linear 

Metric of envelopment [0,1] 

 

Tone’s (51) development of the slacks-based measure (SBM) suggested a new idea in 

this issue. The SBM continuously reduces within each slack, with its measurement ranging 

between zero and one. SBM sets aside the notion of proportional adjustments in both inputs 

and outputs and directly addresses the concept of slacks. This method has three variations, 

specifically input-oriented, output-oriented, and non-oriented approaches.   The SBM 

models are created to fulfill the two requirements of Units’ invariance (The measurement 

remains unchanged regardless of the units used for the data) and Monotonicity (The 

measurement should consistently decrease with each slack in both input and output). 

Table 3 summarizes the characteristics of SBM model.  

 

Table 3: Characteristics of the Slack Based Measurement Model. 

 

 

 

 

 

 

 

 

 

 

Super-efficiency involves systematically ranking units with efficiency scores of one. 

Characteristics SBM model  

RTS CRS&VRS 

Sign of the inputs Semi-positive 

Sign of the outputs Free 

Type of efficiency Mix of both 

Surface of envelopment Piecewise linear 

Metric of envelopment [0,1] 
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The model uses standard DEA models, assuming the assessed unit is not in the reference 

set. It estimates the increase in a unit's inputs while maintaining efficiency relative to others. 

The super-efficiency score serves as an indicator of stability, assessing variations in input 

data without compromising the unit's efficient status. This approach provides a systematic 

ranking method based on performance relative to a set of benchmarks (26,52). Du et al. (53) 

applied advanced DEA to compute the efficiency of hospitals. They employed an integrated 

SBM super-efficiency model to assess hospitals providing comprehensive acute care 

services. The model considered the common selection of variables for inputs and outputs 

and considered the health outcome quality measure represented by the survival rate among 

the suggested outputs. In this study, every hospital within the sample was considered a 

DMU, which employed inputs encompassing both the physical and monetary aspects to 

generate outputs, representing healthcare services and the subsequent health conditions. As 

a result, the proposed model evaluated both the quantity and quality of the outputs. By using 

this DEA model, inefficiencies in the DMUs were identified and addressed without 

compromising the quality of care provided.                              

 Dexter et al. (54) performed research where they employed data resampling methods 

to explore different statistical choices for super-efficient DEA. This was done either for 

comparative purposes or as a reference for administrators overseeing DMUs in rural, 

teaching, and state hospitals. The output in this context was the number of hospital 

discharges, which included the specified procedures. On the other hand, the inputs 

comprised the staffed acute and intensive care beds available at the hospital, as well as the 

surgeons who carried out a minimum of three cases for any of the eight procedures, such as 

cardiac and neurological surgery, at the hospital. Their primary focus was on identifying the 

disparities in the outputs, considering slacks adjusted to account for favorable inclination or 

tendency to determine areas where improvements could be made. Through numerical 

experiments, they observed that the estimations of the output differences did not exhibit 

approaching or tending towards uniformity as the values increase indefinitely, a 

characteristic that is commonly anticipated in standard numerical assumptions. They found 

that larger sample sizes did not consistently lead to more precise predictions of the output 

gaps. The gaps obtained from the baseline DEA correlated with the jackknife mode and the 

resampling mode, with or without additional data from any specific population subset. In 

most cases, the baseline DEA gaps were also equal to the median. These findings 

highlighted the importance of considering DEA results with sensitivity analysis, where one 
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benchmark DMU was ignored at a time. The sensitivity analysis proved to enhance the 

effectiveness of decision support provided by DEA by identifying the capability of a DMU 

to improve one or multiple outputs.                                        

 In the following, we selected papers that specifically examined advanced DEA in the 

context of EDs:                                

 Fiallos et al. (55) suggested an SBM-VRS model to evaluate the performance of ED. 

Within the ED, there was a lack of motivation to adopt a methodology that examined the 

correlation between the effects on outputs and the increases in inputs, this led them to focus 

on models that allowed for VRS. In the model, quantity measures were utilized as inputs, 

while quality measures served as outputs. This study focused on three inputs: the mean 

duration of individual appointments, the mean count of laboratory tests, and the mean count 

of radiology orders for each appointment. The only output considered was the level of non-

return individual appointments within 72 hours. They examined the significance of 

employing a sophisticated approach that recognizes the diversity of patients an ED physician 

encounters and the crucial role they serve as advisors for instructing other physicians. So, 

patients were gathered along with their representative medical problem, and ED physicians 

evaluated each group independently. Performance differences were evident among 

physicians in each complaint group and set. A secondary categorization separated patients 

according to whether they were attended by a trainee in addition to the primary joining 

physician. Practically every ED physician exhibited improved performance when they were 

not assisted by beginners.                                             

 Agovino et al. applied SBM for EDs in Italy (56). The main objective of this study was 

to clarify changing aspects of the efficiency of the ED during an emergency medical 

assistance program. So, they applied an analysis of the city of Sorrento conducted in two 

stages. An efficiency analysis was conducted using two inputs and two outputs. The outputs 

were categorized as favorable results, representing the sum of individuals seeking medical 

attention or treatment who experienced improved medical conditions or ailments related to 

a person's well-being after medical care provided in the ED, and unfavorable outputs, which 

represented the sum of individuals who experienced worsening health conditions after 

medical treatment. The main goal was to assess the effectiveness of first aid in enhancing 

patients’ health conditions. Both output variables were established based on the triage code, 

which serves as a reliable indicator or factor that can help determine a patient's degree of 
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immediacy and, consequently, the ED's ability to provide appropriate treatment. 

Additionally, the check-out code was also considered in the analysis. They incorporated two 

time-based variables as inputs for their analysis: access time (AT) and healthcare time (HT). 

Both factors were computed as the daily wait time's median. The AT was used to obtain the 

period starting from the time a patient entered the phase of triage or the triage level till a 

physician conducted the first examination. This quantity represented the duration of time 

spent waiting to receive first aid and critical information provided for patient healthcare 

support. A greater value for AT indicated poorer performance of the ED. On the other hand, 

HT quantity represented the duration of health treatment from the patient's initial health 

examination until their discharge. First, they used SBM to explore the changing efficiency 

patterns of the Sorrento ED. Secondly, they utilized a filter to verify if variations in ED 

efficiency were implemented through the gradient of the supply curve for first aid services. 

In conclusion, a potential solution might involve adopting a flexible management approach 

for medical and nursing staff. This would involve incorporating daily and seasonal planning 

that considers fluctuations in work intensity. Such planning would empower Sorrento's ED 

to function more efficiently, even during periods of reduced demand.               

 Since health transformation programs (HTP) and EDs are the most critical aspects of 

the health sector, Bozdemir et al. (57) applied super-efficiency to VRS and CRS models to 

remove multiple efficient DMUs for EDs. To assess the efficiency of health activities, three 

inputs and three outputs were considered. The inputs comprised the gross domestic product 

(GDP) share of current expenditure on health, the number of graduates from medical 

faculties per 100,000 population, and the rate of deaths per 1000 live births (infant 

mortality). On the other hand, the outputs consisted of the number of beds per 1000 

population, life expectancy (representing the regular life expectancy at birth, assuming 

mortality rates remain constant across different age groups), and the percentage of the total 

population aged 65 and over. The main objective was to evaluate the achievement, 

effectiveness, and endurance or long-term viability of HTP; in this situation, they considered 

two separate case studies. First, Turkey’s efficiency was assessed during 2003–2016 in the 

health sector and based on the first scenario, Turkey was inefficient during 2003–2012. The 

main reason for their being inefficient was investment. The second case study compared 

Turkey with nine other countries based on GDP, and it was observed to be efficient except 

in 2007. Finally, Turkey ranked fifth among the ten countries regarding the average 

efficiency score. 
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 Ngee-Wen et al. (58) utilized a retrospective observational approach, analyzing data 

on support staff, doctors, discharges, arrival times to consultants, and LOS. For this study, 

two inputs were selected: full-time equivalent staff (representing the total number of support 

staff, including nurses and medical assistants) and full-time equivalent medical (comprising 

the total number of doctors, including medical officers, specialists, and consultants). 

Moreover, one output was considered, which was the number of discharges (representing 

the total number of discharges in the ED for a given year). These inputs and outputs were 

selected based on their extensive use as variables in DEA healthcare research. Two 

additional outputs were included: arrival to the consultant (representing the total number of 

patients with an arrival time to the consultant less than 90 minutes) and LOS (representing 

the total number of patients with LOS less than 120 minutes). The inclusion of these outputs 

was determined by lean key performance indicators employed to track the results of lean 

healthcare implementation. Efficiency scores were then computed for 20 public EDs in 

Malaysia using SBM. These scores were then compared before and after the implementation 

of lean practices. In evaluating the outcomes of Lean healthcare, several key performance 

metrics were typically employed. However, the current deficiency lies in the absence of 

adequate tools to assess efficiency in this context. After the introduction of lean 

implementation, 13 out of the 20 EDs showed progress in reducing the LOS and the time it 

takes for a patient to arrive and see a consultant or specialist. On the other hand, it is worth 

noting that out of these 13 public EDs, only 9 of them experienced an improvement in their 

efficiency score. Lean healthcare has been proven to positively impact the efficiency of 

specific EDs. The SBM model provided comparative analysis capabilities and valuable 

information for slack removal, which can complement the principles of continuous 

improvement in the context of lean practices. 

 Azadeh et al. (59) assessed three categories of inaccuracies, which involved insecure 

transport, multiple or recurrent needle punctures into a vein, and errors in the process of 

collecting samples. The suggested inaccuracies were incorporated into a simulation model. 

A total of seventy suitable settings, validated by specialists in ED, were outlined to evaluate 

different options. These settings were then analyzed and assessed using stochastic DEA 

(SDEA) to identify the optimal solutions. In this study, the inputs consisted of cost, number 

of nurses, and number of physicians, while the outputs included waiting line, the length of 

time a patient spends or stays in a particular situation or medical setting, and the number of 

three distinct mistakes that were made or committed. The findings showed that adding 
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additional nurses and physicians or incorporating a larger number of nurses and physicians 

in the ED would lead to a reduction in human errors, patient duration, and queue length. 

                                 2.3.3 Applying DEA Time Series Models to EDs 

MPI and window analysis are the two most common DEA time series approaches for 

measuring productivity and efficiency respectively. Various methods can be employed in 

productivity evaluations to calculate productivity changes, including the Fisher, Tornqvist, 

and Malmquist indexes. Among these, the Malmquist total factor productivity (TFP) index, 

introduced by Malmquist (60), is the most used analytical tool for assessing productivity 

changes.  

 The MPI offers three key advantages over the Fischer and Tornqvist indexes. Firstly, 

there is no need for information on optimizing earnings or minimizing expenses. Secondly, 

there is no need for data on input and output prices. Lastly, when applied to panel data, the 

MPI enables the separation of productivity changes into two separate elements: technical 

efficiency (also known as catching up) and technical change (which refers to alterations in 

best practices). 

 The DEA window analysis operates based on the concept of moving averages, as 

initially proposed by Charnes et al. (61), and it proves valuable in identifying efficiency 

changes observed in a unit over a period. In this approach, each unit is considered a separate 

entity in separate periods. Consequently, the efficiency of a specific component in a 

particular period is evaluated not only with its efficiency during different timeframes or in 

alternate periods but also with the efficiency of other components. By incorporating 

additional data points into the analysis, this method becomes particularly useful for 

situations with small sample sizes. 

 Trakakis et al. (62) conducted a study using the input oriented MPI approach, 

considering both VRS and CRS, to examine the total productivity of 155 rural primary care 

hospitals in Greece. Twelve outputs were identified, which included the total number of 

nursing activities, small-scale surgical procedures or minor surgeries, dental treatments, 

cases of long-term or persistent medical conditions, emergencies, urgent events, 

transcriptions, bio pathological and laboratory exams, vaccinations, and vaccinations for 

kids and teenagers. Inputs consisted of the total number of managerial employees, doctors, 

nursing staff, and non-medical staff. The research aimed to assess the productivity of each 

of the 155 DMUs in Greece and analyze how it changed during the period from 2016 to 
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2018. Additionally, the study evaluated the overall productivity change of all 155 DMUs 

over time. The mean value analysis revealed there was a decline of 0.9% in overall 

productivity between 2016 and 2017. and a further reduction of 5.2% from 2017 to 2018, 

resulting in a total reduction of 3.1% in the productivity of all 155 DMUs. The findings from 

this model can provide valuable insights into the performance of each rural health clinic. In 

a related study, Bağcı et al. (63) proposed a time series DEA-based MPI using CRS and 

VRS models from 2011 to 2016 in rural hospitals in Turkey. As input variables, the study 

considered the total number of beds, specialists, residents, general practitioners, nurses, and 

midwives, other medical personnel wages and benefits, other service expenditures, raw 

materials and supply costs, and overall administrative costs. As for the outputs, the study 

applied the number of inpatients, outpatient, and surgical operations for three suggested 

groups, and working capital turnover. The research revealed that the proportion of efficient 

rural hospitals decreased from 2011 to 2016, indicating that the organizational and financial 

management of rural hospital supervisors may have contributed to lower productivity.  

 Zhou et al. (64) applied the same MPI time series DEA, assisted by the Tobit statistic 

model, to analyze factors influencing productivity in 28 urban and rural areas. The input 

variables in this study consisted of the sum of institutions, the sum of beds, and the sum of 

health technicians. Alternatively, the output involved the sum of outpatients and emergency 

visits, as well as the quantity of discharged patients. They found that the concentration or 

distribution of the population and the ratio of dependents (non-working population) to the 

working-age population were the primary aspects influencing the technical efficiency of 

rural areas. As a suggestion to improve productivity, the authors recommended improving 

medical technology in rural clinics through technology restoration.                                   

 Jia et al. (65) performed a time series DEA window analysis, assisted by CRS and 

VRS, to assess the operational efficiencies of EDs in five hospitals over seven years. The 

data pool used in the study was provided by health authorities. Consequently, they 

considered two inputs of the real count of beds and staff members at the termination of the 

period. Three outputs were considered the sum of out-patients and EDs, the sum of patients 

who have been discharged, and the mean duration of hospital stay at the termination of the 

period. The results revealed that the sample EDs exhibited an overall increasing trend in 

their operational efficiencies, comprising TE, PTE, and SE over seven years. However, there 

was a brief decline shortly after the hospital’s organization, with PTE showing more 

improvement in comparison to SE. Particularly, the creation of separated hospitals did not 
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have a lasting adverse impact on efficiencies in hospital operations. The final findings 

suggested the impact of increasing SE through enhanced organizational management and 

highlighted the benefits of adopting different branch organizations, merging, and 

restructuring. This study provided valuable insights into the real-world operation of DEA 

window analysis for measuring basic operational efficiencies of EDs.                                            

 Mohd Hassan et al. (66) proposed an evaluation of cross-sectional efficiency for 76 

EDs. For this analysis, the cost of ambulance services was considered as the input, and the 

output variables included the extent of geographical coverage or distance span (kilometers), 

the sum of transferred patients, and utilization hours. The evaluation of TE assuming CRS 

is known as overall technical efficiency (OTE). When VRS is considered, OTE can be 

divided into two separate components: PTE or managerial efficiency, and SE. PTE and SE 

are distinct from each other and cannot be merged or combined. In this study, further 

assessments were applied to examine the OTE, PTE, SE, and RTS for different health 

facilities and geographical regions. For these analyses, the Mann-Whitney U-test and chi-

square test were applied. The primary reason for the disparity in OTE among hospitals and 

EDs was their operating size rather than the PTE.                                            

2.3.4 Integrating Simulations, ML, and MCDM with DEA for the Management of 

Emergency Conditions in EDs 

DEA can be integrated by various commonly used techniques, such as MCDM, 

artificial neural network (ANN), logistic regression, and discrete event simulation (DES). 

MCDM originated from operations research (OR) and includes various approaches. MCDM 

is a method for ranking a finite number of alternatives assisted by multiple criteria. It 

evaluates and selects alternatives that fit the objectives and requirements (67).      

DEA benefits from the incorporation of ML algorithms, such as ANN and logistic 

regression. ANN draws its inspiration from the brain's primitive sensory treatment models, 

which can be simulated using a network of model neurons in a computer. By implementing 

algorithms that mimic real neuron processes, the network can "learn" and effectively solve 

various problems. The ANN collects input from different units and produces an output of 

one if the total input exceeds a specified threshold, otherwise, the output is zero. The output 

transitions from 0 to 1 when the total weighted sum of inputs reaches the threshold (68). On 

the other hand, logistic regression is a widely utilized ML algorithm, specifically falling 

under the supervised learning technique. It is employed for predicting categorical dependent 

variables based on a given set of independent variables. Logistic regression is well-suited 
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for forecasting the outcome of a categorical dependent variable (69). Simulation studies 

have long been applied in healthcare to address delays and challenges associated with the 

healthcare system. Researchers have explored numerous alternatives, considering factors 

such as processes within the organization, and level of staffing applying simulation models 

to enhance the performance of EDs and decrease patient waiting times. DES suggested by 

Günal et al. (70) is a prominent tool employed for analyzing and optimizing healthcare 

systems. It is frequently integrated with DEA in various research articles. DES evaluates the 

functioning of a system as a series of distinct events occurring chronologically. Every 

occurrence takes place at a designated moment in time and results in a state of systematic 

modification. When there are no changes between consecutive events, the simulation time 

can instantly advance to the time of the next event, known as the next-event time 

progression. 

 Several studies have proposed integrating DEA with ANN or logistic regression for 

acute care hospitals (71-74). Additionally, many research papers have suggested DEA with 

DES for acute care centers (75-79). However, in this narrative review, our primary focus is 

only on the evaluation of the following articles that considered integrating the suggested 

approaches with DEA models in EDs:                              

 Despite the critical role of ED performance measurement, commonly applied metrics 

need to be normalized. The objective of Kang et al. (80) research paper was to suggest an 

efficiency indicator that supports evaluating EDs in connection with TE and SE. They 

explored critical exogenic components concerning the TE of EDs. According to the 

provided information, the suggested research was an initial study that analyses the scale and 

technological efficiencies of EDs. This study applied input-oriented DEA models that 

considered six inputs and outputs and created an efficiency ranking for specific EDs. The 

inputs for the evaluation consist of three variables: the number of ED beds, clinical staffing 

working hours, and non-clinical staffing working hours in the ED. On the other hand, the 

outputs include three measures: the daily sum of patient visits, the average LOS, and the 

rate of leaving without being treated. The DEA analysis suggested that a considerable 

number of EDs might not require adjusting their operations’ range to increase efficiency. 

Alternatively, they might have to re-engineer specific procedures to apply suggested inputs 

effectively. The logistic regression supported those different operational segments within 

the ED, the LOS, and the percentage of patients arriving by ambulance related to the TE of 

EDs. Using these models as strong tools used for comparing and evaluating performance, 
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the results can serve as a foundation for improving EDs' performance by focusing on critical 

hospital resources.                                    

 EDs need to adopt effective systems that reduce expenses while ensuring satisfactory 

levels of care. The main objective of Weng et al. (81) was to create and implement a 

combined approach using DES and DEA. In this research, the study considered different 

types of ED resources as inputs, which included the number of physicians, nurses, and beds. 

The output aimed to evaluate how modifications in these input levels influenced the 

efficiency of ED operations, leading to the identification of the most efficient resource 

allocations. This approach aims to assess possible bottlenecks, optimize throughput, and 

find solutions to decrease patient waiting times in the ED while enhancing patient 

satisfaction. The same integrated approach was applied by Aminuddin et al. (82) to 

determine the highest potential demand that the ED can handle using its existing resources. 

DES was employed to examine the waiting time patterns of ED visits and forecast the peak 

demand. DES-DEA was applied to identify the optimal decision for the number of resources 

(doctors and nurses) necessary to sustain their efficient services. The inputs in this approach 

include the sum of physicians, nurses, and the overall mean waiting time for patients. On 

the other hand, the outputs consist of the average use of doctors, the average use of nurses, 

and the number of patients served. The primary goal was to minimize the overall mean 

waiting time while applying the lowest possible resources, considering the provided rate of 

resource utilization on average and the sum of patients attended. The most effective 

improvement was identified through the implementation of the BCC input-oriented method 

and super-efficiency method. The proposed improvement can serve as an initial benchmark 

for hospital administration to make informed decisions while addressing the problem of 

overcrowding.                       

 Due to demographic change and aging people's growth, timely access to health services 

has become increasingly difficult. These make many difficulties for patients and medical 

setups. Acute hospitals are experiencing an unprecedented level of overcrowding because 

there is a shortage of available acute beds. Consequently, patients in need of treatment 

experience prolonged waiting periods as healthcare providers focus on whether to admit 

them, transfer them to another facility, or discharge them to go home. These extended 

waiting periods frequently lead to patients entering various locations within the hospital. So, 

it causes a risk to patient safety and reduces the level of service provided whereas raising 

the expenses associated with medical care.                                   



24 

 

 Keshtkar et al. (83) proposed an integrated simulation methodology that allowed 

hospital managers to consider the patient waiting challenge. Merging dynamics and DES 

assisted the manager in facilitating the difficult patient movement at both larger, overall 

levels and smaller, specific stages. Design of experiment (DOE) and DEA were incorporated 

into the simulation to efficiently evaluate the operational consequences of different 

management interventions. In CRS and VRS models, some DMUs are efficient with an 

efficiency score of one, and some DMUs with an efficiency score of lower than one are 

inefficient. Sometimes, several DMUs may get the efficiency score of one. Thus, to address 

this issue, the super-efficiency method was applied by ordering DMUs based on their 

efficiency levels. The DMU with the highest super-efficiency score is considered the best. 

The VRS output-oriented performed better than other models and was considered for 

ranking.                            

 The gap between the number of doctors and nurses and the patient ratio creates a 

bottleneck in the available resources, leading to long waiting times for patients, particularly 

after office hours, and during weekends. To achieve the optimal resource allocation for the 

two shift groups, a combination of DES integrated by BCC input-oriented and super 

efficiency methods was proposed by Yusoff et al. (84). This approach generated multiple 

resource allocation options for doctors and nurses, amounting to 64 options available for 

weekdays and 729 options available for weekends. The DES model provided the values for 

the mean waiting time, the mean operation rate of physicians, the mean operation rate of 

nurses, and the number of patients who have been attended to or treated. In terms of 

preference, the sum of physicians, the sum of nurses, and the mean waiting duration were 

considered inputs, since values that are smaller in size were favored. Conversely, the mean 

usage or occupancy of physicians, the mean usage or occupancy of nurses, and the number 

of patients who have been attended to or treated were designated as outputs, since higher 

values were favored for these variables. The findings revealed that the optimal distribution 

of physicians and nurses during weekdays consists of a team of three physicians and three 

nurses for each work period. During weekends, the most effective group consists of four 

physicians and four nurses for each work period. These recommended arrangements have 

resulted in reduced average waiting times, improved utilization of medical staff, and an 

increased number of patients attending during weekdays and weekends. The same DES-

DEA was proposed in recent studies (85-86). The main objective was to increase the 

efficiency of the hospital's EDs, aiming to minimize patient waiting times and optimize 
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resource utilization. The outcomes underscored the significance of maintaining a well-

balanced number of doctors within the ED to uphold an acceptable patient throughput time. 

Finally, Rabbani et al. (87) proposed DES-DEA in the last DES suggested article. This paper 

applied the clinical pathway as a crucial element for the integrated simulation of the ED due 

to the significant interactions of laboratories, radiology departments, and pharmacies. EDs 

deal with a range of patients, each having unique priorities. This leads to the necessity for 

distinct response variables, creating a multi-response optimization problem. To address 

these resource allocation challenges, a novel approach that combines DEA, DOE, multi-

layer perceptron, ANN, and radial basis functions was introduced. Due to the expensive and 

limited nature of healthcare resources, the model incorporated budgetary and resource 

restrictions.           

 The healthcare sector is facing a notable and continuously expanding issue with human 

errors. Yazdanparast et al. (88) suggested both resource allocation and human error to 

optimize the use of resources in an ED. Six inputs were the number of triage nurses, 

physicians, nurses, beds, CPR units, and oxygen capsules. On the other hand, six outputs 

were the average wait time of patients, considering the weight or significance of each case, 

the average waiting time for patients during the triage process, the rate or occurrence of 

errors related to skills or competencies, the score or measure of redundancy or duplications, 

the average waiting time for beds or the typical duration patients wait to be assigned a bed, 

and fee. The algorithm consists of four main components: simulation, ANN, DOE, and 

fuzzy DEA (FDEA). The approach aimed to optimize multiple aspects, including human 

error, cost, wait time, patient safety, and productivity. The simulation helped establish the 

link between human resource utilization and human error. Furthermore, ANN was employed 

to predict response variables, while FDEA was applied to determine the optimal scenario.    

 Kang et al. (89) proposed a data-oriented framework to compare and establish efficient 

EDs, along with implementing their most effective methodologies. Initially, they employed 

DEA to recognize the frontiers of efficient operations in the EDs. Then the ED 

benchmarking alliance database from 2012 categorized 449 EDs into six groups and 

assessed the efficiency of each ED within those groups. The components considered as 

inputs in this context were the number of ED beds, clinical staffing working hours, and non-

clinical staffing working hours within the ED. On the other hand, the outputs consist of the 

daily sum of patient visits, the average LOS, and the rate of patients leaving without being 

treated. After obtaining the efficiency rankings, logistic regression was employed to 
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determine the specific attributes of EDs that influenced their classification as either efficient 

frontiers or inefficient units. The findings revealed that the efficiency of the EDs was 

significantly influenced by the proportion of admitted patients entering through the ED, the 

utilization of a mid-level provider intake model, the presence of a fast-track area, and the 

overall patient volume. 

Labijak-Kowalska et al. (90) applied an extensive investigation into the resilience of 

efficiency results concerning various input and output weights. They achieved this by 

applying mathematical programming and the Monte Carlo simulation. They examined three 

inputs, namely, the mean duration of each patient's appointment, the mean sum of laboratory 

tests conducted during each patient's appointment and the mean sum of radiology requests 

made during each appointment. Additionally, they used an output, which was the level of 

non-return individual appointments during a time frame of 72 hours. They concentrated on 

a particular subset of patients who primarily presented expressions of discomfort in the 

abdominal region and constipation. However, during their analysis involving multiple 

scenarios, they also considered two additional groups with complaints connected to 

instances of fever, as well as injuries affecting either the lower or upper limbs, head, and 

wounds involving lacerations or punctures. Specifically, they employed the ADD for their 

analysis. They concentrated on evaluating physicians' performance in handling different 

groups of patients' complaints. The results that were obtained highlight how much 

physicians' performances relied on the specific weight vectors that were selected. 

Additionally, they provided a foundation for creating a plan to enhance the performance of 

physicians who are not meeting performance expectations or are performing below the 

desired standard, deciding on the main priorities for a practice-oriented model, and detecting 

the most challenging issues raised by patients.                                  

 DEA assisted by MCDM in EDs proposed in recent studies (91-92). Abdel-Basset (93) 

applied DEA integrated by MCDM to assess the efficiency of EDs in 20 hospitals. This 

assessment was based on two key criteria: the sum of patients who received treatment. and 

the impact on the standard of living experienced by a patient, which was evaluated by 

applying 11 different factors. In this research, 11 inputs that directly and indirectly impact 

the operations of the ED were taken into consideration. The suggested inputs have been 

verified by specialists and corroborated by prior research. The inputs included the sum of 

unoccupied beds, the level of importance or severity of the department, the number of vacant 

beds, the sum of skilled and capable nurses, the choice of task allocation based on the 
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patient's medical condition or pathology, the LOS, the sum of ambulances leaving or 

departing from a location, the process of admitting a patient to a hospital for medical care 

and treatment, the rate at which patients are moved or transferred to different hospital units 

or facilities after being admitted, the time taken for ambulance personnel to transfer a patient 

from the ambulance to the hospital or medical facility, the presence or accessibility of 

medical apparatus or devices for use, and the number of proficient or capable physicians. 

However, this study concentrated on two specific outcomes: the impact on the patient's 

quality of life and the number of patients who have received medical care or treatment. 

Using the analytic hierarchy process (AHP) as one of the MCDM techniques, the study 

measured the weight of efficiency factors to achieve more precise aggregation outcomes, 

considering the level of contradiction between criteria values. The findings indicated that 

half of the hospitals (ten out of twenty) demonstrated efficient service in their EDs whereas 

the remaining ten hospitals showed lower levels of efficiency.                              

 Gharahighehi et al. (94) proposed a methodology to improve the performance of a 

hospital's ED in Iran. The ED faced challenges due to extended waiting times and uneven 

resource allocation, causing issues for both patients and ED staff. To address this, the 

method involved simulating the patient flow within the ED, assisted by DEA-DES, to 

identify the bottlenecks responsible for the inefficiencies in ED performance. The 

simulation model considered non-homogeneous patient arrivals and provided detailed 

representations of diagnostic procedures, including medical conditions through the study 

and examination of bodily samples or specimens, test center testing, a medical imaging 

technique that uses high-frequency sound waves to create visual representations of internal 

body structures in a non-invasive manner, magnetic resonance imaging (MRI), CT scan and 

radiology. DEA software was applied to analyze ten different scenarios, each consisting of 

one input and three outputs. In this context, each scenario represented a DMU. The input 

was the average number of patients arriving per day. The initial output was the amount of 

left without being seen (LWOS) patients, the second output was the average waiting time, 

and the third output was the cost. To evaluate efficiency, all outputs were normalized using 

an output-oriented approach. Among the ten scenarios, four were considered efficient, 

achieving a maximum efficiency score of one. However, the remaining six scenarios were 

deemed inefficient and required adjustments or replacements. Four well-known MCDM 

techniques including DEA, AHP, VIKOR, and Delphi method were applied in this study. 

DEA was employed to identify efficient scenarios, while AHP was used to assign weights 
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to every individual principle. The Delphi method was applied to determine appropriate rates 

of usage for different resources. Additionally, the prolonged VIKOR method was used to 

assess and rank data on 95% confidence intervals obtained from efficient scenarios based 

on divergent factors. Finally, by applying the highest-ranking setting, which did not require 

any additional investments, the overall waiting time for acute patients could be reduced by 

approximately 5%. 

2.3.5 Applying Various DEA Models for the Management of Stroke Emergency 

Conditions 

DEA has been used in stroke in some studies. The initial study about stroke was 

suggested by Ozcan et al. in 1998 (95). They applied CRS input-oriented DEA to analyze 

relations among contributors’ knowledge and technical efficiency. The four inputs 

considered in this study were average LOS, charges for occupational therapy (OT) and 

physical therapy (PT), as well as total charges. All three variables served as measures of 

resource usage. Health administrators, who were refunded based on the diagnosis related 

group (DRG) system, had strong incentives to reduce the average LOS while maintaining 

quality outcomes. Therefore, a lower LOS indicated higher productivity under similar 

circumstances. To analyze the outputs, they were divided into two categories to consider 

different patient case mixes: mild and severe. Severe strokes were identified by either a 

coma diagnosis or having at least four diagnoses with at least one surgery performed to treat 

the principal diagnosis directly. The number of secondary diagnoses had been verified as an 

indicator of severity in studies of other medical procedures. All cases that did not meet these 

criteria were classified as mild stroke cases. The charge variables represented the resources 

required for stroke treatment. Although using true costs would have been a more accurate 

measure of resource usage, the necessary data was not available. As a result, it was assumed 

that charges reflected the level of resource utilization in the analysis. The article examined 

the average LOS and the expenses related to physical therapy for cases of stroke, which 

were classified as mild or severe, across 214 hospitals categorized by their level of 

experience in stroke treatment. These factors were used as input variables in the study. This 

study found that, on average, technical efficiency develops with experience. Conversely, 

although more qualified suppliers were considered more technically efficient on average, 

they tended to charge more. The study further suggested that the gap in the case of acuteness 

among efficient and inefficient contributors expands as the experience level increases. The 

suggested outcomes indicate a significant ability for workers who are not operating 
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efficiently to change methods of practice to those of related effective workers to decrease 

collective costs significantly.    

 Behr et al. (96) proposed health system efficiency at the country level based on the 

Organization for Economic Co-operation and Development (OECD) health data. 30-day 

mortality after admission to a hospital for ischemic stroke per 100 patients (based on 

admission data) and 30-day mortality after admission to a hospital for acute myocardial 

infarction (AMI) per 100 patients (based on admission data) were two specific outputs. Due 

to issues related to data availability and missing information, they were unable to include 

all aspects of the ideal-typical inputs. Instead, the inputs used in the study were categorized 

into three broader categories. The first category was basic medical inputs, which consisted 

of variables like the number of hospital beds for every 1000 individuals, the number of 

committed physicians for every 1000 individuals, and the number of committed nurses for 

every 1000 individuals. The second category was intermediate medical inputs, which 

included variables such as surgical procedure for cataracts, overall number of procedures 

for every 1000 individuals, surgical procedure for coronary artery bypass (the number of 

hospitalizations for every 1000 individuals), and kidney transplantation (the overall number 

of medical procedures for every 1000 individuals). The third category was financial inputs, 

which involved healthcare spending as a percentage of the GDP. They categorized the 

output indicators into two groups: designated and non-designated. Although they 

acknowledged the suggested categorization was not entirely precise, they considered 

designated outputs to be more directly associated with the impacts of the health system 

compared to the undesignated outputs. The designated outputs comprised the number of 

infant deaths per 1000 live births, the rate of mortality within 30 days after hospital 

admission for ischemic stroke as the number of deaths per 100 patients using admission 

data, and the rate of mortality within 30 days after hospital admission for AMI as the number 

of deaths per 100 patients using admission data. On the other hand, the non-designated 

output referred to life expectancy at birth. They emphasized numerous phases of healthcare 

approaches to detect inefficiencies: perfect evaluations of health systems, disregarding 

limitations on data access or data limitations, and the underlying theory or theoretical 

foundation for a discussion under real data limitations were among the highlighted phases. 

This information showed prospective policy involvements that could improve efficiency. 

Their analysis contained hospitals in 34 countries assisted by the VRS model. Productivity 

measures relative to average DEA prices were computed. Based on suggested data 
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restrictions, they emphasized several aspects of each system rather than conducting a 

comprehensive analysis of each healthcare structure.    

 Another study suggested by Amiri (97) assessed the quality of nursing care. A cross-

national study was conducted to analyze the responsibilities of recently graduated nurses in 

providing high quality nursing care and optimizing patient outcomes. This article considered 

the VRS model assisted by the statistical technique of a generalized linear model for stroke 

care services in Finland. Data was gathered from 33 OECD countries, encompassing the 

sum of nursing graduates for every 100,000 members plus three OECD health care quality 

indicators (HCQI) within the acute care centers. These HCQIs included the mortality rates 

within 30 days, both in-hospital and out-of-hospital, for every 100 patients incorporating 

AMI, hemorrhagic stroke, and ischemic stroke. Additionally, four control variables were 

included in the analysis: the sum of individuals who have completed their medical education 

and training, nurses currently working in the profession, and the distribution of doctors for 

every 1000 individuals (acting as substitutes or representatives for other various healthcare 

occupations), also, the sum of CT scanners per one million individuals (an indicator 

representing the level of healthcare expertise). Increased personnel or a larger workforce 

level of newly qualified nurses related to improved patient results in acute care, while the 

clinical efficiency of nursing graduates (which was linked to their educational level) was 

the critical reason for increasing the quality of DMUs and patient survival rates. 

Furthermore, integrating the DEA model with other linear or nonlinear programming 

approaches is important for DMU’s evaluation. Conversely, one of the most difficult tasks 

in allocating resources within musculoskeletal rehabilitation units is providing treatment for 

patients with brain injuries, particularly those who have suffered a stroke or are in the post-

stroke phase. 

 Koltai et al. (98) proposed output oriented SBM for assessing in-patient rehabilitation 

centers in Hungary. The four selected inputs in this study were the number of hospital beds 

(this refers to the overall bed capacity in recovery units, that establishes the main ability of 

these parts to deliver medical care provided to patients with musculoskeletal conditions), 

sum of medical doctors (this represents the full-time equivalent (FTE)), sum of doctors 

employed at the rehabilitation units, sum of nurses (this indicates the full-time equivalent 

number of nurses working within the rehabilitation part), and sum of medical practitioners 

with specialized expertise (this refers to the full-time equivalent number of various 

specialized healthcare professionals such as verbal communication therapeutic services, 
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mental health professionals, certified massage therapists, instructors specialized in 

acceptable education, physical therapists ,physical therapists assistants, professionals in the 

field of healthcare who assist individuals in acquiring or restoring the abilities necessary for 

their daily activities and tasks, healthcare professionals who focus on the management and 

care of orthopedic devices and equipment, including braces, casts, and prosthetics, 

professionals who provide support and assistance to individuals, healthcare professionals 

who specialize in providing physical education and exercise programs tailored to individuals 

with medical conditions or special health needs, educators who work with students with 

special needs, healthcare professionals who specialize in nutrition and dietary advice, and 

other professionals who provide various forms of therapeutic treatment). In addition to using 

operating expenses and investment factors, the researchers also attempted to consider the 

financial aspect. However, obtaining accurate and comparable data for these financial inputs 

is a big challenge. As a result, the primary mode of financing for hospital units relied on the 

sum of beds. Therefore, the sum of beds was applied as an approximation for the impact of 

financial inputs. Four outputs were the number of patients (this represents the quantity of 

musculoskeletal patients who are discharged from the department either their therapeutic or 

recovery-oriented care is completed or due to transmission to other healthcare units), a 

typical alteration in health condition (this indicates the typical variance in the Barthel index 

(BI) score at the time of admission compared to the score when leaving the hospital. It 

reflects the change in health status during the rehabilitation period), the quantity of 

individuals with stroke and brain injuries (this value indicates the amount of the population 

with complex cases among all patients), hypothetical potential for patients to improve their 

health status (this represents the average variation among the highest amount of the BI upon 

admission). The value is obtained by subtracting BI from 100 and indicates the possible 

enhancement in the health condition that individuals can experience throughout their 

rehabilitation journey). As a result, the research focused on those rehabilitation centers that 

concentrate on patients recovering from stroke or other brain damage. The main result was 

the patients’ health condition change in efficiency score. Assessing the impact of hospital 

services on health improvement often proves challenging to quantify. Still, this 

determination is needed to connect the availability of DEA studies with the needs of 

decision-makers seeking DEA results.                                          

 Finally, despite the potential advantages of using operation research (OR) 

methodologies in the healthcare industry, there exists a notable lack of research regarding 
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the application of OR tools like MOLP in addressing complex healthcare challenges, 

particularly in the assessment of stroke care services. Moreover, although existing literature 

emphasizes the benefits of providing appropriate care services to stroke patients, it falls 

short in demonstrating over an extended period advantages of enhancing the instant 

availability of different stroke care interventions for patients’ accessibility throughout their 

lifetimes. Consequently, a recent study proposed by Mirmozaffari et al. (99) aimed to 

address this significant research gap by filling it with valuable insights and information. 

They suggested a novel integrated approach to stroke care services. DEA and MOLP are 

extensively utilized for evaluating efficiency. Even with their similarities and overlapping 

principles, they have developed independently. The generalized DEA (GDEA) cannot 

consider decision makers’ (DM's) individual choices and past efficiency records. On the 

other hand, MOLP can include the DM's preferences when making decisions. To address 

this limitation, they transformed the GDEA to MOLP using the maximum-ranked option, 

leading to several advantages of interactive problem-solving, integration of the step method 

(STEM) to reflect DM's choices, elimination of the need for pre-established preference 

information, and application of the most preferred solution (MPS) to determine the most 

effective method or strategy. This paper has the potential to serve as a starting point for 

various research directions. One such area involves expanding the practical use of the non-

radial or non-oriented GDEA model. Additionally, an interesting subject for investigation 

pertains to exploring the robust inverse GDEA and comprehensive framework of the 

interactive GDEA dual model and MOLP. However, it's worth noting that the data for 

GDEA might be imprecise during production activities. Therefore, it becomes essential to 

consider the concept of imprecise interactive GDEA. 

2.4 Discussion and Limitations 

Despite significant efforts to enhance the performance of EDs, there remains a need to 

further develop cutting-edge solutions for implementation within the emergency care 

environment. Accompanied by timely external measures, efficient emergency care networks 

must be established in real-world scenarios. These strategies could also be adapted and 

applied to support ED operations beyond the pandemic period. For instance, the integration 

of DEA, machine learning, and simulation techniques, which are currently used to predict 

health outcomes for ED patients, could also be utilized to anticipate potential health issues 

in individuals suffering from acute ischemic stroke and AMI. Moreover, the strategies 

devised to enhance resource allocation and patient flow can be embraced by EDs to manage 
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surges in demand, which are anticipated due to population growth and potential new 

epidemics/pandemics. Diversely, the methodologies proposed here could be extrapolated to 

various healthcare settings like hospitalization, surgery, and intensive care. For example, 

simulation techniques might be employed to predict mortality rates, LOS, and the 

probability of discharging patients to their homes. DEA could also model patient pathways 

and treatment alternatives within these services, optimizing the utilization of available 

resources. Similarly, expanding DEA projects could ensure adherence to healthcare and 

safety protocols, establishing a foundation for comprehensive data collection and 

performance analysis in these units.                                          

 There are certain limitations to this review. Firstly, the process improvement 

approaches discussed primarily pertain to the realm of industrial engineering. Considering 

methodologies beyond this scope, such as clinical management units (CMUs) and clinical-

related interventions, could be valuable. Secondly, financial outcomes could be factored into 

the analysis, potentially constraining the applicability of the described approaches in EDs 

operating within budget constraints, especially those in low and middle-income countries. 

Thirdly, despite a carefully implemented and monitored review process, there is a possibility 

that some relevant studies were inadvertently excluded. Next, valuable insights may have 

been missed due to the exclusion of the grey literature in the evidence search. Finally, we 

were unable to address all the other advanced methodologies within MCDM and DEA that 

have been utilized for diverse objectives. These encompass approaches like DEA fuzzy 

window analysis (100-101), dynamic DEA (102), the Russell model (103), as well as fuzzy 

MCDM techniques applied to assess the evaluation dimensions during the COVID-19 

pandemic (104-106). Furthermore, well-known MCDM methods such as the technique for 

order of preference by similarity to ideal solution (TOPSIS), and decision-making trial and 

evaluation laboratory (DEMATEL) were also applied to categorize significant human error 

factors in EDs (107-111).                                         

2.5 Conclusion and Future Studies 

This narrative review contributes to DM’s skills in ED performance improvement to 

recognize the advantages and drawbacks of DEA. A major benefit is its broad range and all-

encompassing approach, effectively bridging the gap between health economists, health 

services researchers, and DMs in acute care. We identified several crucial aspects to 

consider when applying DEA studies in stroke and acute care centers. In addition to 
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incorporating these parameters, DEA applications must ensure reproducibility and 

transparency in both the methodology and results. Researchers are advised to collaborate 

and work together to enhance the consistency of efficiency measures and maximize the 

usefulness for consumers. Additional research is required to address the gaps in certain 

performance measurements, such as incorporating health outcomes as outputs or capital 

resources as inputs. Furthermore, there is a need to explore the reasons behind productivity 

changes, their decomposition, and the factors contributing to improved performance in the 

delivery of EDs services. Moreover, developing the application of sensitivity tests is 

essential to investigate how variations in the DEA model can contribute to uncertainties in 

the efficiency results. DEA in EDs should put more attempts into improving the precision 

of the research outcomes by measuring the sensitivity analysis. Only a subset of articles has 

utilized methodologies to enhance the model requirements, such as selecting appropriate 

inputs and outputs, incorporating weight restrictions to account for value judgments in DEA 

modeling, employing super efficiency models to handle outlier observations, and thus 

providing DMs with more dependable information. However, we conducted a 

comprehensive evaluation of the methodological configurations used in the papers, 

providing in-depth explanations concerning the models applied, selected inputs, outputs, 

and all pertinent methodologies. Finally, we investigated multiple approaches to improve 

DEA's standing, shifting it from a simple technical application to a strong methodology that 

can be effectively employed by healthcare managers and decision-makers.                          

 In the future study, one example within the acute management of stroke will be the 

application of DEA to benchmark the performance of community hospitals to enhance the 

number of stroke patients who meet the eligibility criteria and receive advanced treatment 

with EVT requiring transfer while reducing the number of futile transfers of patients who 

are ineligible for treatment upon arrival. This approach is also suitable for implementing in 

cases of prompt thrombolysis and PCI for AMI or heart attack. There is also a lack of 

research studies that apply DEA to evaluate the performance of acute stroke and AMI 

systems of care. Specifically, DEA can be used to evaluate different EDs' performances to 

assess the proportion of patients that are treated in both conditions. The proportion of 

patients that receive treatment is often affected by the population that it serves (e.g., age), 

the size of the hospital, and the proximity to a large comprehensive center, which provides 

an opportunity for the application of DEA to provide an efficient frontier that benchmarks 

this important measure for various hospitals. 
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3.1 Abstract  

 

Background: This study applies data envelopment analysis (DEA) to optimize transfer 

times and futile transfers of eligible ischemic stroke patients receiving endovascular 

thrombosis (EVT) in primary stroke centers (PSC) in Nova Scotia. The study aims to assess 

healthcare delivery in Nova Scotia over two periods. It seeks to improve stroke care for rural 

populations by examining nine inputs, including age and distance between PSCs and the 

Comprehensive Stroke Centre (CSC) that provided EVT treatment, in relation to a single 

output variable: whether EVT is performed or not.  

 

Methods:  In the first phase, 115 patients were treated as decision-making units (DMUs) for 

ten PSCs through an application of an input-oriented variable returns to scale (VRS) assisted 

by super efficiency analysis using the Python-based PyDEA tool. This tool is known for its 

unrestricted capacity in handling DMUs, inputs, and outputs. In the second phase, eight PSCs 

with low patient numbers were merged into four DMUs, each consisting of two PSCs. These 

two merged PSCs have a limited number of patients, and the selected PSCs are also 

geographically close to one another. Two PSCs have been kept separate because they had 

sufficient patient volume. In the first phase, VRS generated more reasonable efficiency 

scores for evaluation, while in the second phase, constant returns to scale (CRS) 

outperformed VRS, yielding better results. In the initial stage of the second phase, ten PSCs 

were considered as six DMUs using the input-oriented CRS and VRS for 115 patients. 

Super-efficiency measures were applied in this stage to improve the evaluation process 

further. In the second part of the second phase, a comparison between the first period (2018-

2019) and the second period (2020-2021) was conducted using the Malmquist productivity 

index (MPI) considering CRS and VRS to evaluate the relative efficiency and productivity 

change of six DMUs over time. 

 

Results: Due to PyDEA's limitations in MPI evaluation over time, a different software 

namely, Probability-Imprecise DEA (PIM-DEA) was employed, which provided the 

required advanced functionalities. Finally, the results of both phases highlighted the 

detrimental effect of considerable distances between certain PSC and the CSC, the sole 

facility equipped with EVT technology in the selected small province in Canada, leading to 

increased access times for receiving EVT. 

 

Conclusion: One significant constraint arises from the relatively small size of the province 

under examination. This size constraint inevitably leads to a more restricted pool of available 

data. As a result, it became necessary to combine several PSCs to bolster patient sample 

sizes.  

 

Keywords: data envelopment analysis; endovascular thrombectomy; variable returns to scale; 

constant returns to scale; Malmquist productivity index; super efficiency.  
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3.2 Introduction 

In healthcare, DEA can be applied to assess and optimize the performance of healthcare 

facilities, such as hospitals, in terms of resource utilization and service delivery. In the 

context of stroke care, DEA can be used to assess the efficiency of hospitals in providing 

EVT, considering factors like patient throughput, resource allocation, and quality of care. 

This emphasizes the need for tools like DEA to assess and optimize the performance of 

healthcare facilities, ensuring they can deliver essential services efficiently, even during 

times of crisis. DEA can help identify areas for improvement in resource allocation and 

policy formulation, ultimately enhancing stroke care and other critical healthcare services. 

This contribution is also novel as we are applying it to Nova Scotia which has a unique 

geography with long driving distances compared to flight distances and where a large portion 

of its population live outside of the main city, which has the province’s only EVT-capable 

hospital. So, this paper has significant potential benefits to expanding scientific knowledge 

to health systems facing similar issues as Nova Scotia.                       

 In this study, two specialized software applications have been utilized to facilitate the 

analysis:  

1. In the initial scenario, wherein the dataset encompasses 115 DMUs representing 

individual patients, PyDEA was employed. This choice was motivated by the notable 

advantage offered by PyDEA, operating within the Python programming environment, 

which allows for the handling of an extensive number of DMUs, inputs, and outputs 

without constraints. PyDEA, short for Python-based DEA, is a software tool designed 

for conducting DEA using the Python programming language. It offers a flexible and 

powerful environment for assessing the relative efficiencies of DMUs in various 

contexts, including healthcare.     

2.    Subsequently, in the second scenario involving a specific set of DMUs, namely 10 

PSCs, PIM-DEA was selected as the analytical tool. This decision was prompted by the 

absence of Malmquist evaluation functionality within PyDEA and the manageable 

number of DMUs associated with DASH. By leveraging PIM-DEA, the model could be 

effectively applied to yield insightful results. PIM-DEA is a specialized software tool 

used for conducting DEA when there is uncertainty or imprecision in the data. It's 

particularly useful when data is expressed in terms of probability distributions or 

intervals, allowing for more robust efficiency assessments.                                                            
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These two software tools offer complementary functionalities, with PyDEA providing a 

versatile environment for large-scale DEA analyses, and PIM-DEA addressing scenarios 

where imprecise data is a crucial consideration. Together, they enable a comprehensive 

assessment of healthcare efficiency in the context of stroke care.                      

 In Nova Scotia, there are 11 stroke centers throughout the entire province, with only 

one of them having the capability to provide treatment for stroke patients via EVT. In cases 

where ischemic stroke patients are located beyond the catchment of CSC, they will be 

transported to a PSC. Should patients meet the eligibility criteria for EVT, the PSC promptly 

facilitates their transfer to CSC. This procedural framework reflects the approach not only 

in Nova Scotia but also in analogous regions across Canada and internationally, where it is 

imperative to urgently transfer ischemic stroke patients to hospitals equipped for the EVT 

procedure. 

The identification primary stroke center has been deliberately omitted to safeguard 

confidentiality and privacy. In Figure 1, the Nova Scotia Health Authority Management 

Zones are illustrated. Each zone—Western, Northern, and Eastern—features three PSCs 

represented by different numbers. The central zone, uniquely, hosts only one PSC (number 

8), positioned in proximity to the sole CSC located centrally and indicated by yellow cross. 

In the second phase, eight PSCs with low patient numbers were merged into four DMUs, 

each consisting of two PSCs (PSCs number 5 and 10, 1 and 6, 3 and 4, 2 and 7). These two 

merged PSCs have a limited number of patients, and the selected PSCs are also 

geographically close to one another. Two PSCs have been kept separate because they had 

sufficient patient volume (PSCs number 8 and 9). 
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Figure 2: Stroke Centres Across Nova Scotia: The PSCs and the Only CSC Indicated 

by Numbers Including, Three PSCs in the Western Zone, Three PSCs in the Northern 

Zone, Three PSCs in the Eastern Zone, and Only One PSC in the Central Zone. The 

Only CSC in Nova Scotia in Central Zone Indicated by Cross. (PSC: Primary Stroke 

Centre; CSC: Comprehensive Stroke Centre).                           
 

3.3 Methods 

Methods in this study contain the following seven subsections: 

3.3.1 Proposed Framework of the Suggested Approach 

The analysis in this study followed a systematic nine-step process in Figure 3. In the 

initial stage of data preprocessing, we prioritize the critical step of preparing the data. This 

involves a tailored approach based on the unique characteristics of the dataset.  
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Figure 3: Proposed Framework of Suggested Approach in This Study in Nine Steps . 

 

In the overall data preprocessing, four essential steps were followed. In the first part, 

filtering reduced the data from 5156 patients to 115 during 2018-2021 (discussed further in 

subsection 3.7.3 Data Sources: Provincial Registry and Manually Imaging). In the second 

part, we employ either the mean, providing a measure of central tendency, or the median, a 

robust indicator that accommodates skewed distributions. This strategy proves invaluable in 

addressing missing data or 'nan cells,' ensuring the integrity and reliability of our analytical 

process. As a third step, before conducting DEA, categorical variables like sex, occlusion 

location, and collateral status were removed because DEA specifically analyzes continuous 

data. In the decision tree for variable inclusion in DEA, the process begins by categorizing 

variables into two main types: Categorical (Qualitative) and Numerical (Quantitative). 

Within the Categorical category, further distinction is made between Nominal variables (with 

no order ranking, such as mutually exclusive categories like Gender or specific areas in 

occlusion locations) that should be excluded from DEA, and Ordinal variables (with a clear 

order, like ASPECTS or Collateral quality) that can be included in DEA. On the Numerical 

side, both Discrete variables (e.g., counts like the number of EVT performed or thrombolysis 

given) and Continuous variables (e.g., age, time intervals, Euclidean distance, and driving 

distance) are deemed suitable for inclusion in DEA. This structured decision-making process 

ensures that only variables compatible with DEA requirements, whether categorical or 
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numerical, are considered, contributing to the effectiveness and appropriateness of the 

analysis. 

 

Figure 4: The Third Part of Data Preprocessing: Removing Nominal Categorical 

Variables in DEA Evaluation 

In the fourth or final part of data preprocessing, before normalization (second step) in 

an input-oriented DEA, when we need to reverse benefits to costs, the specific approach we 

are referring to is often called "Data Transformation." This transformation is necessary when 

some inputs or outputs are considered desirable to maximize (benefits), while others are 

considered undesirable to minimize (costs). The transformation is typically applied to 

convert all inputs and outputs into a common dimension, usually by turning desirable outputs 

into costs or undesirable inputs into benefits. This ensures that the DEA model can be 

consistently applied to either maximize benefits or minimize costs. For inputs that are 

initially considered as benefits (desired to be maximized), we may apply a reciprocal 

transformation to convert them into costs. It is to take the reciprocal of the value for inputs 

considered as benefits. We apply reciprocal of the value for two inputs of Alberta Stroke 

Program Early CT Score (ASPECTS), and Collateral to change them to costs, like other 

inputs, and finally apply input-oriented by minimizing all inputs. After applying the 

appropriate transformation to our inputs and outputs, we can then proceed with the 

normalization step. Normalization is crucial to ensure that the data is on a comparable scale 

before running the DEA model. So, in the normalization part, the data underwent Min-Max 

Scaling, normalizing it to a range between 0 and 1. Third, nine carefully selected inputs 



43 

 

including Age, ASPECTS, Collateral, thrombolysis given, onset to Arrival at PSC time, 

onset to 1st CT time, arrival to PSC to arrival to CSC Time (Door-In-Door-In Time), Driving 

Distance, and Euclidean Distance were identified, with the sole output being whether EVT 

was performed. In our study, we conduct a thorough comparative analysis between two parts: 

one incorporating Age, ASPECTS, and Collateral inputs and the other excluding them from 

consideration. This dual approach, guided by our input-oriented VRS and VRS super-

efficiency DEA model, allows for a nuanced exploration of the impact of these inputs on 

efficiency scores. The first part, encompassing all inputs, establishes a baseline 

understanding of efficiency outcomes influenced by Age, ASPECTS, and Collateral. In 

contrast, the second part excludes these factors, focusing solely on time and distance-related 

inputs aligned to minimize transfer time in stroke care. The comparative analysis, detailed 

in the results section, illuminates the differential efficiency landscapes under these two parts, 

providing insights into the role of Age, ASPECTS, and Collateral in optimizing stroke care 

processes. The main inputs that significantly influence and have both positive and negative 

effects on efficiency in our DEA model include thrombolysis given, onset to arrival at PSC 

time, onset to the 1st CT time, arrival to PSC to arrival to CSC time (Door-In-Door-In Time), 

driving distance, and Euclidean distance. These variables encompass critical aspects of the 

process under evaluation, reflecting the administration of thrombolysis, time intervals in the 

patient care pathway, and the spatial aspects related to driving and Euclidean distances. By 

including these inputs in our analysis, we aim to comprehensively capture the factors 

impacting efficiency in the context of our study, recognizing both favorable and unfavorable 

influences on the overall effectiveness of the evaluated units. Step four and in the initial 

phase, 115 patients were treated as independent DMUs, applying an input oriented VRS 

method aided by super-efficiency analysis to address the issue of a significant quantity of 

DMUs having an efficiency score of one. Given the large dataset, the Python-based PyDEA 

tool was employed for its capacity to handle a substantial number of DMUs, inputs, and 

outputs. Subsequently, in the fifth step or the second phase, eight PSCs with low patient 

volumes were merged into four DMUs, each comprising two hospitals, based on their 

proximity and low patient count. Two hospitals or PSCs were kept separate due to their 

higher patient volume, resulting in a total of six DMUs. In the second phase, CRS 

outperformed VRS, providing more reasonable efficiency scores. Furthermore, in the eighth 

step, a comparison between two time periods (2018-2019 and 2020-2021) was conducted 

using the MPI with a focus on CRS to assess the relative efficiency and productivity changes 
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of the six DMUs over time. To fix PyDEA's time evaluation issues, in the last step, we used 

a different software. In the second part of the second scenario, we used PIM-DEA because 

it has better features and fits our needs.  

 

3.3.2 Endovascular Thrombectomy and the Process of Determining Endovascular 

Thrombectomy Eligibility in Nova Scotia 

 

EVT is a specialized procedure that removes brain blood clots via specific tools such 

as aspiration or stent retrievers. Ischemic stroke patients with LVO are eligible for EVT as 

the clot is in a large vessel that is accessible to retrieve. Ischemic stroke patients with an 

LVO are typically the most severe ischemic stroke patients, and they account for 30-40% 

of ischemic stroke cases (9). There are 10 PSCs in Scotia, and if a patient eligible for EVT 

arrives at the PSC, swift transfer to a CSC is crucial for timely EVT treatment.           

 To conduct EVT, a specialized guide for example a balloon catheter is carefully placed 

into the femoral artery, typically situated near the thighs. This guide is then meticulously 

advanced through the circulatory system until it reaches the internal carotid artery, which 

extends through the neck. The use of angiography during this process grants the 

neurosurgeon a clear visual of the blood vessels, ensuring precision. Following this, a micro-

catheter, accompanied by a micro-wire, is delicately introduced into the brain, navigating 

beyond the clot. Once the micro-wire successfully reaches the heart of the clot, the attending 

physician proceeds to gently extract it. Upon successful removal of the clot through a careful 

suctioning process, the doctor then conducts a thorough assessment to confirm that the blood 

flow has been fully restored to its normal state, ensuring the effectiveness of the procedure. 

The catheter is subsequently eliminated, and targeted pressure is used at the insertion site to 

staunch any potential blood loss (112).                           

 In the process of determining EVT eligibility, a patient first arrives at the hospital or 

is transported by ambulance. Subsequently, a physician conducts an initial assessment to 

confirm a stroke diagnosis and evaluate the stroke's severity. Neuroimaging evaluation 

follows, involving a Non-Contrast Computed Tomography (NCCT) scan of the head to 

ascertain the stroke type (Ischemic or Hemorrhagic), with the ASPECTS providing a score 

for the extent of cerebral damage due to the stroke. For Ischemic Stroke patients eligible for 

treatment, thrombolysis is administered to dissolve the clot. To determine EVT eligibility, 

patients undergo additional imaging using CTA to precisely identify the clot's location 



45 

 

within the cerebral vasculature. mCTA and, if possible, CT Perfusion (CTP) scans are 

performed concurrently after the NCCT. mCTA provides cerebral angiograms in three 

distinct phases, offering critical information about collateral blood flow. The CTP scan plays 

an important role in distinguishing between salvageable and irreversibly damaged sections 

of the brain. This differentiation is crucial in determining the potential benefit of EVT, 

ensuring that eligible patients receive optimal treatment for an increased likelihood of a 

successful outcome. As depicted in Figure 6, the eight steps involved in the process of 

determining EVT eligibility are demonstrated. 

 

 

Figure 5: The Process of Determining Endovascular Thrombectomy Eligibility in 

Eight Steps.  

 

Using the various imaging scans (NCCT, (m)CTA, CTP), EVT eligibility is 

determined between the local emergency physician at the PSC and the neurologist and 

interventional neuro-radiologist. If the patient is deemed eligible for EVT, urgent transfer 

to the CSC from the PSC is arranged. The transport team determines if they can deploy a 

helicopter or if they will use a ground ambulance. The time to deploy the team can be 

optimized through parallel workflow.                                     

 

3.3.3 Return to Scales, Input-oriented, Output-oriented and the Analysis of Weakly 

Efficient Decision-Making Units for Basic Data Envelopment Analysis Models 
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In this study, we applied DEA, considering patients (in the first phase) and hospitals 

(in the second phase) as DMUs, subject to evaluation based on their efficiency in utilizing 

resources for healthcare outcomes. For patients, this involves assessing the effectiveness of 

healthcare resources in achieving positive health outcomes. Hospitals, on the other hand, 

are evaluated based on factors like staffing, equipment, and finances, in relation to the 

delivery of quality healthcare services. In this study, the evaluation of efficiency involves a 

specific set of metrics. For both patients and hospitals, the analysis considers eight different 

inputs—these likely encompass various resources, factors, or variables relevant to 

healthcare delivery. Additionally, the study focuses on one key output, namely whether EVT 

was performed or not. This choice of inputs and output serves as the basis for assessing the 

efficiency of resource allocation and decision-making in both patient and hospital 

contexts.              

 DEA represents an approach to measuring relative efficiency in situations involving 

multiple inputs and outputs that cannot be directly compared. In such cases, efficiency is 

determined by calculating the weighted sum of outputs divided by the weighted sum of 

inputs. In mathematical notation, Bousssofiane et al. (113) create the DEA model as a 

fractional linear setup with the structure presented below: 

   𝑻𝑬𝟎 = 𝑴𝒂𝒙
∑ 𝑼𝒓𝒚𝒓𝒋𝟎

𝒔
𝒓=𝟏

∑ 𝑽𝒊𝒙𝒊𝒋𝟎
𝒎
𝒊=𝟏

                                                                                                 (1) 

    St.  
∑ 𝑼𝒓𝒚𝒓𝒋

𝒔
𝒓=𝟏

∑ 𝑽𝒊𝒙𝒊𝒋
𝒎
𝒊=𝟏

≤ 𝟏,     𝒋 = 𝟏, … . , 𝒏; 

𝑼𝒓, 𝑽𝒊 ≥ 𝜺;    𝒓 = 𝟏, … , 𝒔, 𝒊 = 𝟏, … . 𝒎  

𝑻𝑬𝟎 represents the technical efficiency score for DMU 𝒋𝟎. 𝑼𝒓 signifies the weight assigned 

to output 𝒓, where 𝒓 ranges from 1 to 𝒔 (𝒔 being the total number of outputs). 𝑽𝒊 denotes the 

weight attributed to input 𝒊, with 𝒊 ranging from 1 to 𝒎 (𝒎 being the total number of inputs). 

𝒏 represents the total number of patients for the first scenario and total number of PSCs for 

the second scenario. 𝜺 is a small positive value. 𝒚𝒓𝒋 represents the number of output 𝒓 

generated by patient 𝒋 in the first scenario or PSCs 𝒋 in the second scenario. 𝒙𝒊𝒋 signifies the 

number of input 𝒊 used by patient 𝒋 or PSCs 𝒋.  𝒋𝟎 specifically refers to the patients or PSCs 

undergoing assessment.                         

Figure 6 shows Return-to-Scale (RTS) areas including VRS, CRS, Increasing Return 

to Scale (IRS) and Decreasing Return to Scale (DRS), basic models, input-oriented (IO) and 
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output-oriented (OO). 

 

Figure 6: Six Return to Scale Regions.  

 

The economic principle of RTS has been extensively examined within the DEA 

framework. Traditionally, RTS has been limited to single-output scenario. DEA broadens 

the concept of RTS to encompass cases with multiple outputs, thereby expanding the 

applicability of DEA. 

 In Figure 6, five DMUs labeled as A, B, C, D, and F are depicted. The OBC ray 

signifies the  CRS frontier. AB, BC, and CD form the VRS frontier, representing CRS, IRS, 

and DRS, respectively. Both B and C demonstrate CRS attributes. On the AB segment, IRS 

dominates to the left of point B, while on the CD segment, DRS prevails to the left of point 

C. 

 For a non-frontier DMU denoted as F, when employing the input-oriented VRS 

envelopment model, F' becomes the optimal reference point, and the RTS classification for 

F is categorized as IRS. Conversely, when employing the output-oriented VRS envelopment 

model, F'' is identified as the efficient target, and the RTS classification for F is categorized 

as DRS.  Nonetheless, the areas corresponding to IRS, CRS, and DRS are individually 

defined regardless of the VRS model utilized. These are designated as Area I for IRS, Area 

II for CRS, and Area III for DRS. In fact, Figure 4 illustrates a total of six distinct RTS areas. 

The remaining areas, IV, V, and VI, are characterized by dual RTS classifications. 

Specifically, Area IV exhibits IRS in the input-oriented and CRS in the output-oriented. 

Area V demonstrates CRS in the input-oriented and DRS in the output-oriented. Finally, 
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Area VI displays IRS in the input-oriented and DRS in the output-oriented.         

 As mentioned above, two alternative approaches including input-oriented and output-

oriented are offered in DEA to evaluate the efficient frontier. The provided CRS model is 

characterized as an input-oriented model, aiming to minimize inputs while maintaining the 

outputs at their existing level. 

  𝜽∗ = 𝑴𝒊𝒏 𝜽                                                                                                                   (2) 

 𝒔𝒕.      

 ∑ 𝝀𝒋𝒙𝒊𝒋 ≤𝒏
𝒋=𝟏 𝜽𝒙𝒊𝟎, , 𝒊 = 𝟏, 𝟐, … , 𝒎;                                                                                                    

∑𝒏
𝒋=𝟏 𝝀𝒋𝒚𝒓𝒋 ≥ 𝒚𝒊𝟎,          , 𝒓 = 𝟏, 𝟐, … , 𝒔;               

𝝀𝒋  ≥ 𝟎  , 𝒋 = 𝟏, 𝟐, … . , 𝒏    

Since 𝜽 = 𝟏 is a feasible solution, the optimal value in above (1), 𝜽∗ ≤ 𝟏.  Considering 𝜽∗ =

𝟏 the current levels of inputs cannot be reduced (proportionally), showing that 𝑫𝑴𝑼𝟎 

(represents one of the 𝑫𝑴𝑼𝒔 under evaluation) is on the frontier. However, 

considering 𝜽∗ < 𝟏, 𝑫𝑴𝑼𝟎 is controlled by frontier. 𝜽∗ shows the input-oriented efficiency 

score of 𝐷𝑀𝑈0.                                             

 Sometimes, several 𝑫𝑴𝑼𝒔 can still reduce their inputs to reach the same efficient 

frontiers. The suggested 𝑫𝑴𝑼𝒔 are weakly efficient, and a reduction in individual inputs is 

termed input slack. Therefore, both input slack and output slack might happen in Model (2). 

 𝑺𝒊
− = 𝜽∗𝒙𝒊𝟎 − ∑𝒏

𝒋=𝟏 𝝀𝒋𝒙𝒊𝒋 , 𝒊 = 𝟏, 𝟐, … , 𝒎;                                                                 (3) 

𝑺𝒓
+ = ∑𝒏

𝒋=𝟏 𝝀𝒋𝒚𝒓𝒋 − 𝒚𝒓𝟎      , 𝒓 = 𝟏, 𝟐, … , 𝒔;                                                                 (4) 

𝑺𝒊
− and 𝑺𝒓

+are input and output slack variables. So, for determining the possible non-zero 

slack after solving it, the following CRS linear programming is solved: 

𝑴𝒂𝒙 ∑𝒎
𝒊=𝟏 𝑺𝒊

− + ∑𝒔
𝒓=𝟏 𝑺𝒓

+                                                                                                (5) 

 𝒔𝒕.                                                                                                                                   

∑𝒏
𝒋=𝟏 𝝀𝒋𝒙𝒊𝒋 +  𝑺𝒊

− = 𝜽∗𝒙𝒊𝟎                    , 𝒊 = 𝟏, 𝟐, … , 𝒎                                                 

∑𝒏
𝒋=𝟏 𝝀𝒋𝒚𝒓𝒋  − 𝑺𝒓

+
= 𝒚𝒓𝟎                        , 𝒓 = 𝟏, 𝟐, … , 𝒔 

𝝀𝒋  ≥ 𝟎  , 𝒋 = 𝟏, 𝟐, … . , 𝒏    

Figure 7 shows the five 𝑫𝑴𝑼𝒔 along with the segmented linear frontier.  
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Figure 7: Weakly Efficient DMUs, Super-efficiency Model, Radial, and Non-radial 

DEA.                                                             
 

𝑫𝑴𝑼𝒔 1, 2, 3, and 4 lie on this frontier. It should be noted that 𝑫𝑴𝑼𝟒 is on the frontier. 

However, it can still reduce its input to reach 𝑫𝑴𝑼𝟑. This distinct input reduction is named 

input slack.                                                                      

  

𝐷𝑀𝑈0 is efficient if and only if 𝜽∗ = 𝟏 and 𝑺𝒊
−∗

= 𝑺𝒓
+∗ = 𝟎 for all 𝒊 and 𝒓. In addition, 

𝐷𝑀𝑈0 is weakly efficient if 𝜽∗ = 𝟏 and 𝑺𝒊
−∗ ≠ 𝟎 and (or) 𝑺𝒓

+∗ ≠ 𝟎 for some 𝒊 and 𝒓. So, 

in Figure 6, 𝑫𝑴𝑼𝒔 1,2 and 3 are efficient and 𝑫𝑴𝑼𝟒 is weakly efficient.                     

 

Moreover, for the sake of streamlining computations and avoiding an infinite array of 

solutions (If (𝑢∗, 𝑣∗) constitutes an optimal solution, then (𝑎𝑢∗, 𝑎𝑣∗) remains optimal for 

any positive value of 𝑎, the previously mentioned fractional model (1) can be transformed 

into an input-oriented linear program in model 6. Finally, models (2) and (5) show a two-

stage CRS model included in the following DEA model )22(. 

   𝒁𝟎 = 𝑴𝒊𝒏𝜽 −   𝜺 (∑𝒎
𝒊=𝟏 𝑺𝒊

− + ∑𝒔
𝒓=𝟏 𝑺𝒓

+)                                                                  (6) 
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   𝒔𝒕. 

   ∑𝒏
𝒋=𝟏 𝝀𝒋𝒙𝒊𝒋 +  𝑺𝒊

− = 𝜽𝒙𝒊𝟎 , 𝒊 = 𝟏, 𝟐, … , 𝒎                                                                                               

    ∑𝒏
𝒋=𝟏 𝝀𝒋𝒚𝒓𝒋 −  𝑺𝒓

+ = 𝒚𝒓𝟎 , 𝒓 = 𝟏, 𝟐, . . . , 𝒔;  

𝑺𝒊
−, 𝑺𝒓

+ ≥ 𝟎, 𝝀𝒋  ≥ 𝟎 , 𝒋 = 𝟏, 𝟐, … . , 𝒏   , 𝜺 ≥ 𝟎      

The transformation involves setting the total input weight to a fixed value of one to 

maximize the weighted sum of outputs. This ensures that the total output is maximized. This 

linear model is repeated multiple times to find the most efficient combination of input and 

output weights for each 𝑫𝑴𝑼. Typically, a 𝑫𝑴𝑼 is considered efficient if it scores one, 

while a score below one indicates inefficiency.                                                                 

 The inclusion of non-Archimedean 𝜺 in the objective function of model (6) allows the 

minimization throughout 𝜽 to precede the optimization involving the slacks, 𝑺𝒊
− and 𝑺𝒓

+. 

Consequently, model (6) undergoes a two-step computation process, starting with the 

maximal reduction of inputs through the optimal  𝜽∗ in model (2); Subsequently, in the 

second stage, advancement toward the efficient frontier is reached by optimizing the slack 

variables in the model. (5). The existence of weakly efficient 𝑫𝑴𝑼𝒔 leads to the existence 

of multiple optimal solutions. Therefore, if weakly efficient 𝑫𝑴𝑼𝒔 are absent, we can skip 

the second stage calculation (model 5) and determine the slacks using models (3) and (4) 

instead. However, determining the presence or absence of weakly efficient is typically 

unknown in advance. It should be noted that incorporating ∑𝒏
𝒋=𝟏 𝝀𝒋 = 𝟏 into models (2) and 

(5) transforms the CRS models into VRS. So, as a continuation of the previously mentioned 

CCR model, which operates under CRS, the input-oriented BCC model was introduced to 

incorporate the consideration of VRS (23). 

 𝒁𝟎 = 𝑴𝒊𝒏𝜽 −   𝜺 (∑𝒎
𝒊=𝟏 𝑺𝒊

− + ∑𝒔
𝒓=𝟏 𝑺𝒓

+)                                                                  (7) 

  𝒔𝒕. 

                            ∑𝒏
𝒋=𝟏 𝝀𝒋𝒙𝒊𝒋 + 𝑺𝒊

− = 𝜽𝒙𝒊𝟎 , 𝒊 = 𝟏, 𝟐, … , 𝒎; 

∑𝒏
𝒋=𝟏 𝝀𝒋𝒚𝒓𝒋 −  𝑺𝒓

+ = 𝒚𝒓𝟎 , 𝒓 = 𝟏, 𝟐, . . . , 𝒔;                                                                

 ∑𝒏
𝒋=𝟏 𝝀𝒋 = 𝟏 

𝑺𝒊
−, 𝑺𝒓

+ ≥ 𝟎, 𝝀𝒋  ≥ 𝟎  ∀𝒋, 𝜺 ≥ 𝟎 , 𝒋 = 𝟏, 𝟐, … . , 𝒏    

Dual variables (𝝀𝒋) represent shadow prices associated with constraints that limit the 
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efficiency of DMUs to be not more than 1. When a constraint is restricted, the shadow price 

is typically positive; when it is nonbinding, the shadow price is zero. In the primal model 

solution, a restricted constraint indicates that the related 𝑫𝑴𝑼𝒋𝟎 possesses an efficiency 

score of 1 and a positive shadow price will be present. Hence, positive shadow prices in the 

primal model, or positive quantities for 𝝀𝒋 in the dual model, signify and identify the peer 

group for any inefficient unit. if a 𝑫𝑴𝑼𝒋𝟎  is efficient, the slacks will equal 0, and the 

efficiency (𝒁𝟎) will equal 1. If 𝒋𝟎 is inefficient, 𝒁𝟎 will be fewer than 1 and some slacks 

could be positive.                                            

3.3.4 Super Efficiency Model  

If a 𝐷𝑀𝑈 being assessed is not part of the reference set in envelopment models, it leads 

to the creation of DEA models known as super-efficiency DEA models. The distinguishing 

feature of super-efficiency models, compared to envelopment models, is that the 𝐷𝑀𝑈0  in 

assessment is deliberately left out of the reference set. In other words, super-efficiency DEA 

models use reference technology derived from all other 𝐷𝑀𝑈𝑠 except the one under 

evaluation. The input-oriented CRS super-efficiency model is presented in the following 

model: 

𝑴𝒊𝒏   𝜽𝒔𝒖𝒑𝒆𝒓                                                                                                                   (8) 

                              𝒔𝒕.            

                             ∑ 𝝀𝒋𝒙𝒊𝒋 ≤𝒏
𝒋=𝟏,𝒋 ≠𝟎 𝜽𝒔𝒖𝒑𝒆𝒓𝒙𝒊𝟎              , 𝒊 = 𝟏, 𝟐, … , 𝒎                                              

                             ∑𝒏
𝒋=𝟏,𝒋≠𝟎 𝝀𝒋𝒚𝒓𝒋 ≥ 𝒚𝒊𝟎                                   , 𝒓 = 𝟏, 𝟐, . . . , 𝒔; 

𝝀𝒋  ≥ 𝟎  , 𝒋 ≠ 𝟎.   

By incorporating the ∑𝒏
𝒋≠𝟎 𝝀𝒋 = 𝟏, into model (8), VRS is achieved. By incorporating the 

∑𝒏
𝒋≠𝟎 𝝀𝒋 ≤ 𝟏 NIRS is achieved. By incorporating the ∑𝒏

𝒋≠𝟎 𝝀𝒋 ≥ 𝟏 NDRS) is achieved.              

 

In Figure 7, when assessing the CRS super-efficiency of 𝑫𝑴𝑼𝟐, it is measured in 

comparison to point A on the novel facet formed by 𝑫𝑴𝑼𝒔 1 and 3. If either 𝑫𝑴𝑼𝟒 or 

𝑫𝑴𝑼𝟓 is excluded from the reference set, the frontier remains unchanged. Consequently, 

the super-efficiency score for 𝑫𝑴𝑼𝟒 and 𝑫𝑴𝑼𝟓 equals the input-oriented CRS efficiency 

score. Similarly, 𝑫𝑴𝑼 𝟑 is evaluated against point B on the new facet defined by 𝑫𝑴𝑼𝒔 𝟐 

and 4.                                                          
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 If we evaluate the super-efficiency of 𝑫𝑴𝑼𝟏. 𝑫𝑴𝑼𝟏 is measured against C (see 

figure 7) on the frontier continued by 𝑫𝑴𝑼𝟐. It can be observed that C is weakly efficient 

𝑫𝑴𝑼 in the continuing four 𝑫𝑴𝑼𝒔 2,3,4, and 5. So, the line segment between C and 

𝑫𝑴𝑼𝟐 represents slack on output. We want to modify such a super-efficiency 

score.                            

 While super-efficiency models can distinguish the performance of efficient 𝑫𝑴𝑼𝒔, it's 

important to note that these efficient 𝑫𝑴𝑼𝒔 are not evaluated against a uniform benchmark. 

This is because the frontier, derived from the lasting 𝑫𝑴𝑼𝒔, varies for each efficient 𝑫𝑴𝑼 

being assessed. Essentially, super-efficiency should be viewed as representing the ability for 

input reduction and output surpluses.                                    

3.3.5 Malmquist Productivity Index 

MPI is a method used to assess changes in productivity over time. Figure 8 shows CRS input 

oriented in MPI model.  

 

Figure 8: Constant Return to Scale Input Oriented Model in Malmquist Productivity 

Index . 
 

By considering inefficiencies, the productivity index in equation (9) can be divided 

into two parts, one calculating change in efficiency and the other calculating technical 

change, which is equivalent to a shift in the frontier technology. 



53 

 

𝑴𝒊
𝒕+𝟏(𝒚𝒕+𝟏, 𝒙𝒕+𝟏, 𝒚𝒕, 𝒙𝒕) =

𝑫𝒊
𝒕+𝟏(𝒚𝒕+𝟏,𝒙𝒕+𝟏)

𝑫𝒊
𝒕(𝒚𝒕,𝒙𝒕)

[
𝑫𝒊

𝒕(𝒚𝒕+𝟏,𝒙𝒕+𝟏)

𝑫𝒊
𝒕+𝟏(𝒚𝒕+𝟏,𝒙𝒕+𝟏)

×
𝑫𝒊

𝒕(𝒚𝒕,𝒙𝒕)

𝑫𝒊
𝒕+𝟏(𝒚𝒕,𝒙𝒕)

]

𝟏
𝟐⁄

                            (9) 

In equation (9), the initial portion signifies the alteration in technical efficiency, while 

the latter part enclosed within the square root denotes the shift in technology. The shift in 

technical efficiency is determined by comparing the technical efficiency in period t+1 with 

that of period t. This essentially illustrates how the DMUs (PSCs) managed to approach the 

most efficient production frontier. A catch-up effect larger than 1, equal to 1, or fewer than 

1 indicates an improvement, no change, or reduction from t to t+1, separately. The 

estimation of technical efficiency involves the multiplication of both scale efficiency and 

pure efficiency changes. Scale efficiency can be derived from any recorded measurements 

assuming either CRS or VRS. It is calculated as the ratio of CRS to VRS technical efficiency 

scores. Moreover, if the scale efficiency corresponds to 1, then the DMU is operating at an 

optimal scale. The distance function 𝑫𝒊
𝒕(𝒚𝒕, 𝒙𝒕) quantities the greatest possible reduction of 

𝑥𝑡 under the condition that 𝒙𝒕 𝝀⁄  is feasible.                                     

 We suggested technology at t by 𝑺𝒕 and t+1 by 𝑺𝒕+𝟏. The two observations (𝒙𝒕, 𝒚𝒕) and 

(𝒙𝒕+𝟏, 𝒚𝒕+𝟏) are both feasible in their corresponding period. We can represent the 

productivity index in relation to the distance mentioned along the x-axis suggested in Figure 

6 as follows: 

𝑴𝒊
𝒕+𝟏(𝒚𝒕+𝟏, 𝒙𝒕+𝟏, 𝒚𝒕, 𝒙𝒕) =

𝑶𝒃 𝑶𝒂⁄

𝑶𝒅 𝑶𝒆⁄
[

𝑶𝒂

𝑶𝒄
×

𝑶𝒇

𝑶𝒆
]

𝟏
𝟐⁄

                                                               (10) 

Finally, based on two same scenarios but different approaches for CRS input-oriented 

MPI (suggested in Figure 7) the MPI is calculated as the Technical Change (TC) and 

Efficiency Change (EC): 

𝑴𝑷𝑰𝑪𝑹𝑺
𝒕 = 𝑻𝑪(𝒕) × 𝑬𝑪(𝒕)                                                                                             (11) 

This formula combines the two components to deliver an inclusive measure of productivity 

changes over time. MPI accounts for both changes in cost efficiency and overall efficiency 

in resource utilization, making it a valuable tool for evaluating productivity dynamics in 

healthcare applications.                                                      

 While the basic MPI formula (TC × EC) is commonly used, the VRS formulation 

provides an additional level of detail by considering scale efficiency. This can be particularly 

useful in industries or systems where changes in scale play a significant role in productivity 

dynamics. In VRS, the outcome of the MPI can be demonstrated by multiplying the 
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following elements of Pure Efficiency Change (PEC), TC, and Scale Efficiency Change 

(SEC). 

 PEC=
𝑫𝒕+𝟏

𝝉 (𝒚𝒕+𝟏,𝒙𝒕+𝟏)

𝑫𝒕
𝝉(𝒚𝒕,𝒙𝒕)

                                                                                                        (12) 

  TC=[
𝑫𝒕

𝝉(𝒚𝒕,𝒙𝒕)

𝑫𝒕+𝟏
𝝉 (𝒚𝒕,𝒙𝒕)

×
𝑫𝒕

𝝉(𝒚𝒕+𝟏,𝒙𝒕+𝟏)

𝑫𝒕+𝟏
𝝉 (𝒚𝒕+𝟏,𝒙𝒕+𝟏)

]

𝟏
𝟐⁄

                                                                              (13) 

                            𝑺𝑬𝑪 = [
𝑺𝑬𝒕(𝒚𝒕+𝟏,𝒙𝒕+𝟏)

𝑺𝑬𝒕(𝒚𝒕,𝒙𝒕)
×

𝑺𝑬𝒕+𝟏(𝒚𝒕+𝟏,𝒙𝒕+𝟏)

𝑺𝑬𝒕+𝟏(𝒚𝒕,𝒙𝒕)
]

𝟏
𝟐⁄

                                                                    (14)  

                           𝑴𝒊
𝒕+𝟏(𝒚𝒕+𝟏, 𝒙𝒕+𝟏, 𝒚𝒕, 𝒙𝒕) = 𝑴𝑷𝑰𝑽𝑹𝑺

𝒕 = 𝑻𝑪(𝒕) × 𝑷𝑬𝑪(𝒕) × 𝑺𝑬𝑪(𝒕)                            (15) 

The PEC factor evaluates whether the 𝑫𝑴𝑼 under assessment has either approached or 

distanced from the frontier of the benchmark technology at time t+1 while taking into 

consideration the benchmark technology at time t. The TC factor signifies whether there has 

been a shift in the boundary of the technology over the given period. Additionally, the SEC 

factor assesses the impact of changes in the scale of 𝑫𝑴𝑼𝒔 on their productivity. As defined 

by the distance function, if the MPI or any of its constituent components falls below one, it 

indicates a regression; a value exceeding one denotes progress, and a value of one signifies 

a situation that has remained unchanged. 

Consider 𝒚𝒋
𝒕 = (𝒚𝟏𝒋

𝒕 , 𝒚𝟐𝒋
𝒕 , … . , 𝒚𝒎𝒋

𝒕 ) as outputs and 𝒙𝒋
𝒕 = (𝒙𝟏𝒋

𝒕 , 𝒙𝟐𝒋
𝒕 , … . , 𝒙𝒏𝒋

𝒕 ) as inputs for PSC 

j (j=1,….,N) in period (t= t, t+1). So, distance function for the same period is as follows:    

𝑫𝒊
𝒕(𝒚𝒕, 𝒙𝒕) =

𝟏

𝜽𝒌
∗ ; where 𝜽𝒌

∗ = 𝒎𝒂𝒙𝜽                                                                                (16)  

We applied an input-oriented approach to assess the technical and scale efficiencies of PSCs, 

employing both the standard CRS) and VRS models. The input variables analyzed in this 

study are more flexible compared to the only one binary output (EVT performed or not). 

 

3.3.6 Radial and Non-radial Data Envelopment Analysis Models 

Envelopment DEA models can be referred to as radial efficiency quantities, as they 

improve all inputs or outputs of a DMU at a specific dimension. Fare and Lovell (114) 

proposed a non-radial measure that permits non-proportional reductions in positive inputs 

or enhancements in positive outputs. The following model summarizes the CRS non-radial 

input-oriented DEA model. 
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                                𝒁𝟎 = 𝑴𝒊𝒏𝜽 −   (
𝟏

𝒎
∑𝒎

𝒊=𝟏 𝜽𝒊 −  𝜺 ∑𝒔
𝒓=𝟏 𝑺𝒓

+)                                                                       (17)                                          

  𝒔𝒕. 

 ∑𝒏
𝒋=𝟏 𝝀𝒋𝒙𝒊𝒋 = 𝜽𝒊𝒙𝒊𝟎             , 𝒊 = 𝟏, 𝟐, … , 𝒎;                                                                                              

  ∑𝒏
𝒋=𝟏 𝝀𝒋𝒚𝒓𝒋 −  𝑺𝒓

+ = 𝒚𝒓𝟎 , 𝒓 = 𝟏, 𝟐, . . . , 𝒔;  

𝜽𝒊 ≤ 𝟏                , 𝒊 = 𝟏, 𝟐, … , 𝒎;  

  𝝀𝒋  ≥ 𝟎         , 𝒋 = 𝟏, 𝟐, … . , 𝒏   , 𝜺 ≥ 𝟎    

By incorporating the ∑𝒏
𝒋≠𝟎 𝝀𝒋 = 𝟏, into model (8), VRS is achieved. By incorporating the 

∑𝒏
𝒋≠𝟎 𝝀𝒋 ≤ 𝟏 NIRS is achieved. By incorporating the ∑𝒏

𝒋≠𝟎 𝝀𝒋 ≥ 𝟏 NDRS) is achieved. 

Finally, the efficient targets are 𝒙𝒊𝟎̈ = 𝜽𝒊
∗𝒙𝒊𝟎 and 𝒚𝒓𝟎̈ = 𝜽𝒊

∗𝒙𝒊𝟎 = 𝒚𝒓𝟎 + 𝑺𝒓
+∗

. 

The slacks in the non-radial DEA models are improved in a second stage model where 

𝜽𝒊
∗ 𝐨𝐫 𝝋𝒓

∗are fixed. As an example, for output slacks in input-oriented non-radial under 

CRS we have:  

 𝑴𝒂𝒙 ∑𝒎
𝒊=𝟏 𝑺𝒊

−
                                                                                                        (18) 

                             𝒔𝒕.  

 ∑𝒏
𝒋=𝟏 𝝀𝒋𝒙𝒊𝒋 +  𝑺𝒊

− = 𝒙𝒊𝟎                    , 𝒊 = 𝟏, 𝟐, … , 𝒎;                                                                                               

 ∑𝒏
𝒋=𝟏 𝝀𝒋𝒚𝒓𝒋 = 𝝋𝒓

∗𝒚𝒓𝟎                        , 𝒓 = 𝟏, 𝟐, . . . , 𝒔;  

                                  𝜽𝒊 ≤ 𝟏                , 𝒊 = 𝟏, 𝟐, … , 𝒎;  

   𝝀𝒋  ≥ 𝟎        , 𝒋 = 𝟏, 𝟐, … . , 𝒏      

And in input slacks for output-oriented non-radial under CRS we have:  

 𝑴𝒂𝒙 ∑𝒔
𝒓=𝟏 𝑺𝒓

+
                                                                                                         (19) 

 𝒔𝒕.  

∑𝒏
𝒋=𝟏 𝝀𝒋𝒙𝒊𝒋 = 𝜽𝒊

∗𝒙𝒊𝟎                    , 𝒊 = 𝟏, 𝟐, … , 𝒎;                                                                                               

 ∑𝒏
𝒋=𝟏 𝝀𝒋𝒚𝒓𝒋 − 𝑺𝒓

+ = 𝒚𝒓𝟎              , 𝒓 = 𝟏, 𝟐, . . . , 𝒔;  

𝜽𝒊 ≤ 𝟏                , 𝒊 = 𝟏, 𝟐, … , 𝒎;  

                              𝝀𝒋  ≥ 𝟎        , 𝒋 = 𝟏, 𝟐, … . , 𝒏         

It should be noted that, in input-oriented non-radial DEA models, there are no input slacks, 

and in output-oriented non-radial DEA models, there are no output slacks.                                 
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Both non-radial and envelopment produce identical frontiers, but they can generate 

distinct efficient targets, even in cases where the envelopment models have no non-zero 

slacks. For example, if we change the second input of DMU6 in Figure 7, the input-oriented 

CRS envelopment model generates the efficient target of D with all nonzero slacks. Whereas 

the input-oriented CRS non-radial DEA model generates DMU2 as the efficient target for 

DMU6. It should be noted that both models generate the same target of DMU3 for DMU4. 

Figure 9 shows input-oriented radial and non-radial movements.  

 

Figure 9: Input Oriented Radial and non-radial DEA. 

3.3.7 Data Description 

This section includes the following three subsections: 

 3.3.7.1 The Selected Data Attributes for Data Envelopment Analysis Assessment 

In the context of DEA, the choice of inputs and outputs is a critical step. Table 4 shows a 

visible demonstration of these selections.  
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Table 4: The Selected Data Attributes for DEA Assessment. 
No Data Points 

1 Age 

2 Sex 

3 ASPECTS 

4 Clot/Occlusion Location 

5 Collateral Status 

6 Thrombolysis given 

7 Onset to Arrival 1st Time  

8 Onset to 1st CT  

9 Arrival 1st to CSC Time/ Door-In-Door-In Time 

10 Driving Distance 

11 Euclidean Distance  

12 EVT performed or not? 

The dataset applied in this study encompasses a diverse array of demographic and 

clinical data, workflow times, and geographic distances pivotal for comprehensive 

assessment. It comprises information from 5156 patients of ischemic stroke patients, 

spanning from January 1, 2018, to December 31, 2021. Age, a fundamental demographic 

parameter, wields substantial influence over various facets of the medical treatment process. 

Sex (male vs female) is not considered as an input in the present context. The ASPECTS 

emerges as a pivotal tool in stroke evaluation, leveraging CT scans to discern early 

indicators of ischemic changes in the cerebral tissue. The precise localization of clots or 

occlusions within blood vessels, denoted as Clot/Occlusion Location, emerges as a pivotal 

determinant in shaping treatment strategies. Collateral status refers to the circulatory 

system's ability to create alternative routes for blood flow when a vessel is blocked, crucial 

for maintaining blood supply to tissues and organs and reducing the risk of ischemia. It is 

assessed in three categories: "good" indicates well-developed alternative vessels, offering 

effective bypass; "intermediate" suggests less developed routes, potentially less efficient in 

preventing ischemia; and "poor" signifies limited alternative routes, increasing the risk of 

early acute infarction. Evaluating collateral status is vital in cases of vascular blockages, 

influencing treatment decisions for conditions like coronary artery disease and stroke. 

Various imaging techniques, such as angiography, provide valuable insights into collateral 

circulation, aiding in treatment planning. Thrombolysis given input serves as a binary 

indicator denoting whether patients received thrombolysis treatment before being 

transferred for EVT. Workflow measures including Onset to Arrival 1st Time, quantifying 

the interval between symptom onset and the patient's arrival at the PSC, bear substantial 

relevance in gauging treatment timeliness. Likewise, Onset to 1st CT, delineating the 

duration between symptom onset and the start of the NCCT scan at the PSC, assumes 
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paramount importance in expediting diagnosis and therapeutic initiation. Arrival 1st to CSC 

Time/Door-In-Door-In Time quantifies the elapsed time from the patient's initial arrival at 

the PSC to their subsequent arrival at the CSC, thus constituting a pivotal metric in 

evaluating the efficacy of the transfer process. The physical distance from the PSC via road 

to reach the CSC, encapsulated as Driving Distance for a ground ambulance, emerges as a 

logistical variable exerting a notable impact on treatment timelines. Furthermore, Euclidean 

Distance between the PSC and CSC denotes the linear spatial separation between pertinent 

locations, signifying the distance when a helicopter is used for transfer. From this array of 

variables, Age, ASPECTS, Collateral, thrombolysis given, Onset to Arrival 1st Time, Onset 

to 1st CT, Arrival 1st to CSC Time/Door-In-Door-In Time, Driving Distance, and Euclidean 

Distance have been judiciously selected as inputs for the ensuing DEA. Finally, an auxiliary 

variable serves to denote whether EVT was performed or not, providing the only output 

variable in this analytical framework.                                        

The selected inputs (inputs 6 to 11 in Table 4), play a crucial role in the analysis. These 

inputs have been specifically identified for their direct influence on the process being 

evaluated. The key inputs with notable impacts, featuring both positive and negative effects 

on efficiency within our DEA model, encompass thrombolysis given, onset to arrival at PSC 

time, onset to the 1st CT time, Door-In-Door-In Time (arrival to PSC to arrival to CSC 

time), driving distance, and Euclidean distance. These inputs collectively capture crucial 

aspects of the evaluation, reflecting elements such as medical intervention, time intervals, 

and spatial considerations, thereby providing a comprehensive understanding of efficiency 

factors in the studied context. In our study, we conduct a comprehensive comparative 

analysis between two parts: one considers Age, ASPECTS, and Collateral inputs, while the 

other excludes them. This dual approach enables a nuanced exploration of the impact of 

these inputs on efficiency scores without delving into specific modeling techniques. The 

first part, encompassing all inputs, establishes a baseline understanding of efficiency 

outcomes influenced by Age, ASPECTS, and Collateral. In contrast, the second part focuses 

solely on time and distance-related inputs, aiming to minimize transfer time in stroke care. 

The results section details the comparative analysis, shedding light on the differential 

efficiency landscapes between these two parts and providing insights into the role of Age, 

ASPECTS, and Collateral in optimizing stroke care processes. However, it's important to 

note that certain variables, highlighted in blue, possess a different nature. These include Sex, 

and Clot/Occlusion Location. These variables are categorical, meaning they represent 
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distinct categories or groups rather than continuous numerical values. In the case of Sex, it 

represents a binary classification (male or female), while Clot/Occlusion Location involves 

different possible categories. So, in DEA, including categorical variables as inputs can be 

problematic. DEA operates on numeric data and assumes a continuous, numerical nature of 

inputs and outputs. Categorical variables do not conform to this assumption. For instance, 

how do you quantify 'male' or 'female' in a way that can be used mathematically in the DEA 

model? Furthermore, including categorical variables in DEA may lead to misinterpretation 

or erroneous results. The model may not effectively differentiate between categories or may 

produce outputs that are difficult to interpret or utilize in a meaningful way. Therefore, in 

the case of Sex, and Clot/Occlusion Location, it is considered unnecessary to include them 

as inputs in DEA due to their categorical nature. Instead, these variables may be more 

appropriately used for descriptive or stratified analyses, providing additional context to the 

results obtained from the DEA model. Additionally, it's important to acknowledge our single 

highlighted green variable as the output in the DEA model, which is a crucial component in 

assessing the efficiency of the evaluated process. This output variable has been carefully 

selected for its relevance and significance in measuring the effectiveness of stroke treatment. 

In the context of data normalization, 'Min-Max Scaling' or 'Min-Max Normalization' is 

employed to rescale variables to a range between 0 and 1. Among the variables mentioned, 

ASPECTS and Collateral are considered benefits, while Age, Onset to Arrival 1st Time, 

Onset to 1st CT Arrival, Arrival 1st to CSC Time/ Door-In-Door-In Time, Driving Distance, 

and Euclidean Distance are viewed as costs in the normalization process. This technique 

ensures that all variables operate within a consistent scale, which is crucial for various types 

of analyses and modeling, while preserving the underlying relationships between the 

variables. 

3.3.7.2 Driving Distance and Euclidean Distance 

Driving distance refers to the actual length of the path one would need to travel by road 

from one location to another, factoring in the layout of roads, highways, streets, as well as 

any necessary detours or turns. This metric is crucial for providing the distance when a 

ground ambulance is used to transfer the patient from the PSC to CSC. On the other hand, 

Euclidean distance measures the straight-line distance between two points in space, derived 

from the Pythagorean theorem., it provides a straightforward measure of spatial separation, 

and it provides the distance when a helicopter is used to transport the patient from the PSC 

to the CSC. The distances, including both driving distance and Euclidean distance, were 
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assessed from the Nova Scotia referring medical centers to the EVT center. These 

computations were executed using Google Maps for each of the 10 referring center 

locations. The detailed outcomes are described in Table 5 for your reference.  

 

Table 5: The  Driving Distance and Euclidian Distance Between each Primary Stroke 

Centre and Comprehensive Stroke Centre. 

PSCs Driving Distance (km) 
Euclidian Distance 

(km) 

1 157 127.57 

2 101 79.1 

3 92.7 81.5 

4 195 137 

5 359 250.23 

6 217 166.9 

7 302 221.7 

8 8 3.28 

9 105 87.4 

10 400 312.58 

Eight PSCs with a small number of patients were combined into four DMUs, each 

comprising two PSCs. These merged PSCs not only serve a small patient population, but 

they are also located near each other geographically (In Table 5. PSCs included in DMU1 

are PSCs numbered 5 and 10, PSCs included in DMU2 are PSCs numbered 3 and 4, PSCs 

included in DMU3 are PSCs numbered 1 and 6, PSCs included in DMU4 are PSCs 

numbered 2 and 7). Two PSCs numbered 8 and 9 were maintained as separate entities due 

to their substantial patient volume. Table 3 shows the suggested division. 

Table 6: PSCs and DMUs in the Second Scenario. 

PSCs DMUs 

5 and 10 1 

3 and 4 2 

1 and 6 3 

2 and 7 4 

8 5 

9 6 

 

3.3.7.3 Data Sources: Provincial Registry and Manually Imaging 

Nova Scotia has a provincial stroke registry that includes all stroke patients that were 

admitted to a hospital in the province. It includes key demographic, clinical, process, and 

outcome measures for each stroke patient. This registry was used to identify patients that 

were transferred. The dataset encompasses records from 5156 cases of ischemic stroke 

patients, spanning the period from January 1, 2018, to December 31, 2021, with a specific 
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focus on individuals sourced exclusively from 10 designated PSCs. Out of this group, 3102 

patients were received at these centers, marking a significant subset of the total population. 

It is imperative to note that our research exclusively concentrated on patient transfers 

originating from Patient Service Centers, culminating at the CSC, underscoring the 

specificity of our investigation. Within this context, only 238 patients out of the 3102 were 

ultimately transferred to the CSC, representing those deemed in need of higher-level care, 

which reasonably suggests an inclination towards EVT interventions. However, it is worth 

mentioning that 10 patients were excluded from the study due to discrepancies in their 

Health Card Numbers (HCN), resulting in an inability to locate their data. Consequently, 

the final analysis was conducted on a group of 115 patients, ensuring a rigorous and accurate 

examination.  

 The suggested data was obtained from the provincial stroke registry: age, PSC hospital, 

onset time, time of arrival at PSC, time of departure from PSC, and time of arrival at CSC. 

From this data the following data was calculated: driving distance, Euclidean distance, onset 

to arrival at PSC, onset to 1st CT, arrival at PSC to arrival at CSC.                           

 The imaging data and whether EVT procedure was done was then manually collected. 

Using the HCN for each identified patient, the NCCT image was read for the ASPECTS and 

collateral status. Similarly, imaging data was used to find the EVT procedure to determine 

if EVT was performed. Figure 10 illustrates the process of filtering EVT-eligible patients in 

four distinct steps. 

 

Figure 10: Four Steps of Filtering for Endovascular Thrombectomy Eligible Patients 

in the Provincial Registry. 
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3.4 Results, and Final Evaluation of Decision-Making Units  

This study aims to improve stroke care for rural populations by analyzing nine inputs, 

such as age and distance between PSCs and CSC that administered EVT treatment. The only 

output variable is: whether EVT is conducted or not. To protect confidentiality and privacy, 

the names of the province and primary stroke center have not been disclosed. In the 

subsequent sections, we will provide more comprehensive information for both the first and 

second subsections. 

3.4.1 First Scenario 

In the initial stage, 115 patients were regarded as distinct DMUs to assess ten PSCs. 

This assessment applied an input-oriented VRS approach, assisted by super efficiency using 

the PyDEA tool, which is recognized for its versatility in managing DMUs, inputs, and 

outputs without constraints. In this section, as we have 115 patients or DMUs, there is no 

need to consolidate PSCs as was done in the second scenario. In the second scenario, eight 

PSCs with limited patient counts were combined into four DMUs, each composed of two 

PSCs. Therefore, in this section, we consider all ten PSCs. Table 4 presents the details of 

the 115 patients and their corresponding attended PSCs. It's worth mentioning that the 

numbering (1 to 10) corresponds to the suggestions provided in Table 7 for the PSCs. 

Table 7: The Suggested Final 115 Patients or DMUs and Their Attended PSCs. 

D
M

U
s 

PSCs D
M

U
s 

PSCs D
M

U
s 

PSCs D
M

U
s 

PSCs D
M

U
s 

PSCs 

1 2 24 8 47 10 70 1 93 1 

2 6 25 8 48 9 71 8 94 9 

3 7 26 9 49 10 72 8 95 8 

4 2 27 6 50 7 73 8 96 3 

5 5 28 10 51 1 74 9 97 2 

6 7 29 8 52 8 75 1 98 6 

7 2 30 8 53 3 76 8 99 9 

8 8 31 7 54 7 77 8 100 3 

9 3 32 3 55 4 78 8 101 9 

10 10 33 10 56 3 79 10 102 9 

11 8 34 8 57 9 80 7 103 9 

12 9 35 8 58 9 81 1 104 9 

13 2 36 5 59 1 82 7 105 9 

14 8 37 8 60 5 83 7 106 3 

15 2 38 2 61 10 84 9 107 9 

16 8 39 7 62 9 85 8 108 9 

17 8 40 2 63 3 86 8 109 2 

18 8 41 8 64 8 87 8 110 6 

19 8 42 9 65 9 88 6 111 9 

20 8 43 10 66 2 89 10 112 4 

21 8 44 6 67 7 90 8 113 2 

22 8 45 3 68 9 91 8 114 2 

23 8 46 2 69 3 92 5 115 7 



63 

 

 

Table 8 shows efficiency results for 115 patients in VRS input-oriented model. 

Table 8: Efficiency Results for 115 Patients in VRS Input Oriented Model Including 

All Inputs. 

 

              

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

In this part, our focus shifts to a detailed examination of the outcomes derived from 

the two distinct parts of our analysis—one that includes Age, ASPECTS, and Collateral 

inputs that exclude them. So, in the first part, where all inputs are considered, the analysis 

reveals a distribution of efficiency scores among DMUs. Notably, the inclusion of Age, 

ASPECTS, and Collateral introduces variability in the efficiency landscape, emphasizing 

the impact of neurological and collateral status on overall efficiency. The baseline 

understanding derived from this part forms a crucial reference point for evaluating the 

effectiveness of stroke care processes when accounting for these specific inputs. Based on 

Table 8, 98 patients are considered efficient, and 17 patients received efficiency scores 

below 1. Table 9 shows the super-efficiency of the first part. 

 

 

D
M

U
s 

Efficiency D
M

U
s 

Efficiency D
M

U
s 

Efficiency D
M

U
s 

Efficiency D
M

U
s 

Efficiency 

1 1 24 1 47 1 70 0.8 93 1 

2 0.89106315 25 1 48 0.90531194 71 1 94 1 

3 1 26 1 49 1 72 1 95 1 

4 0.99540257 27 1 50 1 73 1 96 1 

5 1 28 1 51 1 74 0.80897522 97 1 

6 0.8 29 1 52 1 75 1 98 1 

7 0.90819778 30 1 53 0.9901267 76 1 99 1 

8 1 31 0.90586991 54 1 77 1 100 1 

9 1 32 0.70541343 55 1 78 1 101 0.9612301 

10 1 33 1 56 1 79 1 102 1 

11 1 34 1 57 1 80 1 103 1 

12 0.88097027 35 1 58 1 81 1 104 1 

13 0.90417857 36 1 59 1 82 1 105 1 

14 1 37 1 60 1 83 1 106 1 

15 1 38 0.88484381 61 1 84 1 107 0.86256741 

16 1 39 1 62 1 85 1 108 1 

17 1 40 1 63 0.9 86 1 109 1 

18 1 41 1 64 1 87 1 110 1 

19 1 42 1 65 1 88 1 111 1 

20 1 43 1 66 1 89 1 112 1 

21 1 44 1 67 0.5368217 90 1 113 1 

22 1 45 1 68 1 91 1 114 1 

23 1 46 1 69 0.8 92 1 115 1 
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Table 9: Super Efficiency Results for 115 Patients in VRS Input Oriented Model 

Including All Inputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast, the second part strategically excludes Age, ASPECTS, and Collateral, 

homing in on inputs directly associated with time and distance. This refined focus aligns 

with our primary objective of minimizing transfer time and futile transfers in stroke care. 

By concentrating on aspects such as onset to Arrival at PSC time, onset to 1st CT time, 

arrival to PSC to arrival to CSC time (Door-In-Door-In Time), and distance metrics like 

Driving Distance and Euclidean Distance, this part aims to discern the efficiency landscape 

under conditions directly relevant to our study's overarching goal.                       

 The resulting efficiency scores from this second part offer a distinct perspective, 

showcasing the impact of excluding Age, ASPECTS, and Collateral on overall efficiency 

outcomes. This comparison allows us to pinpoint how the refined set of time and distance-

related inputs contributes to optimizing stroke care processes, offering insights into potential 

improvements. 

 In Table 8, findings reveal that many efficient DMUs are indicative of potential 

inefficiencies. The key contributor to the prevalence of efficient DMUs appears to be the 

consideration of factors such as "Collateral" and "ASPECTS." The suggestion to remove 

D
M

U
s 

Efficiency D
M

U
s 

Efficiency D
M

U
s 

Efficiency D
M

U
s 

Efficiency D
M

U
s 

Efficiency 

1 1 24 1.2208191 47 1.2942053 70 0.8 93 1.0025925 

2 0.89106315 25 1 48 0.90531194 71 1 94 1 

3 1 26 1.2885566 49 1 72 1.2166742 95 1 

4 0.99540257 27 1 50 1 73 1.5932243 96 1 

5 1 28 1 51 1 74 0.80897522 97 1 

6 0.8 29 1 52 1.3880813 75 1.3863572 98 1 

7 0.90819778 30 1 53 0.9901267 76 1.0137769 99 1.0171683 

8 1.6156897 31 0.90586991 54 1.1252411 77 1.1417537 100 1 

9 1 32 0.70541343 55 1.0543576 78 1 101 0.9612301 

10 1 33 1 56 1 79 1.3835616 102 1 

11 1 34 1.4204012 57 1.2009917 80 1.630363 103 1 

12 0.88097027 35 1.4900112 58 1 81 1.4814815 104 1.8571432 

13 0.90417857 36 1 59 1 82 1 105 1 

14 1 37 1 60 1 83 1.7792685 106 1.0492335 

15 1 38 0.88484381 61 1 84 1.1460134 107 0.86256741 

16 1.0326639 39 1 62 1.1231954 85 1.006602 108 1.0400273 

17 1 40 1 63 0.9 86 3.7112112 109 1.1054744 

18 4.92055 41 1.306763 64 1.018913 87 1.1634706 110 1 

19 1 42 1.0971618 65 1.0639581 88 1 111 1.0185501 

20 1.7 43 1 66 1.1103448 89 1.3644427 112 1 

21 1 44 1 67 0.5368217 90 1.0348789 113 1 

22 5.3997535 45 1.303289 68 1.0790837 91 1 114 1 

23 1.0261391 46 1 69 0.8 92 1 115 1.0569433 
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these inputs implies that doing so would likely result in a greater number of inefficient 

DMUs. This strategic removal is proposed to enable decision-makers to pinpoint and 

address the primary reasons for inefficiency, thereby facilitating a more focused and 

targeted approach to improving overall decision-making processes.As we delve into the 

specific implications of including or excluding Age, ASPECTS, and Collateral, our analysis 

becomes a cornerstone for drawing meaningful conclusions. The detailed exploration of 

these comparative parts forms the bedrock for discussions on the optimal input 

configuration, informing decisions aimed at minimizing transfer time and optimizing the 

efficiency of stroke care processes. Table 10 shows efficiency for the second part of the 

study. 

Table 10: Efficiency Results for 115 Patients in VRS Input Oriented Model Excluding 

Suggested Inputs. 

D
M

U
s 

Efficiency D
M

U
s 

Efficiency D
M

U
s 

Efficiency D
M

U
s 

Efficiency D
M

U
s 

Efficiency 

1 0.37047866 24 1 47 0.80579527 70 0.43720876 93 0.52152339 

2 0.53481983 25 1 48 0.74147996 71 1 94 0.68987501 

3 0.56055283 26 1 49 0.14632709 72 1 95 1 

4 0.99369193 27 0.3276777 50 0.5620658 73 1 96 0.82003173 

5 0.44884999 28 0.66201662 51 0.36096889 74 0.20402824 97 0.70745959 

6 0.49159373 29 1 52 1 75 1 98 0.47513516 

7 0.73559787 30 1 53 0.80681012 76 1 99 0.86820806 

8 1 31 0.84328033 54 0.17512331 77 1 100 0.25199846 

9 0.70605276 32 0.41663489 55 0.84850463 78 1 101 0.87979115 

10 0.20650682 33 0.20650682 56 0.62796032 79 0.43702871 102 0.68117598 

11 1 34 1 57 0.99443054 80 1 103 0.47440186 

12 0.87392301 35 1 58 0.57679494 81 0.57771623 104 1 

13 0.52225037 36 0.40122734 59 0.71707895 82 0.50320452 105 0.56621046 

14 1 37 1 60 0.45543838 83 1 106 0.74787362 

15 0.27492907 38 0.59335672 61 0.20353869 84 1 107 0.58849399 

16 1 39 0.39803553 62 0.50110212 85 1 108 0.81726094 

17 1 40 0.87347816 63 0.63495079 86 1 109 1 

18 1 41 1 64 1 87 1 110 0.59255174 

19 1 42 1 65 0.90015285 88 0.42847891 111 0.81142452 

20 1 43 0.40999737 66 1 89 0.62129719 112 0.36103124 

21 1 44 0.59054233 67 0.38917901 90 1 113 0.17612853 

22 1 45 1 68 0.1770921 91 1 114 0.63121715 

23 1 46 0.61392984 69 0.23178621 92 0.35788511 115 0.374154 

 

Based on Table 10, 43 patients are considered efficient because they achieved an 

efficiency score of 1. This means they are using their resources optimally to achieve their 

outcomes. So, 72 patients received efficiency scores below 1, indicating that they are not 

using their resources optimally to achieve their outcomes. They may have room for 

improvement in their resource allocation or utilization. Table 11 shows super efficiency for 
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the second part of the study. 

Table 11: Super Efficiency Results for 115 Patients in VRS Input Oriented Model 

Excluding Suggested Inputs. 

D
M

U
s 

Efficiency D
M

U
s 

Efficiency D
M

U
s 

Efficiency D
M

U
s 

Efficiency D
M

U
s 

Efficiency 

1 0.37047866 24 1 47 0.80579527 70 0.43720876 93 0.52152339 

2 0.53481983 25 1 48 0.74147996 71 1 94 0.68987501 

3 0.56055283 26 1.1322636 49 0.14632709 72 1 95 1 

4 0.99369193 27 0.3276777 50 0.5620658 73 1 96 0.82003173 

5 0.44884999 28 0.66201662 51 0.36096889 74 0.20402824 97 0.70745959 

6 0.49159373 29 1 52 1 75 1 98 0.47513516 

7 0.73559787 30 1 53 0.80681012 76 1 99 0.86820806 

8 1 31 0.84328033 54 0.17512331 77 1 100 0.25199846 

9 0.70605276 32 0.41663489 55 0.84850463 78 1 101 0.87979115 

10 0.20650682 33 0.20650682 56 0.62796032 79 0.43702871 102 0.68117598 

11 1 34 1 57 0.99443054 80 1.5294118 103 0.47440186 

12 0.87392301 35 1 58 0.57679494 81 0.57771623 104 1.8571432 

13 0.52225037 36 0.40122734 59 0.71707895 82 0.50320452 105 0.56621046 

14 1 37 1 60 0.45543838 83 1.2086956 106 0.74787362 

15 0.27492907 38 0.59335672 61 0.20353869 84 1.0827967 107 0.58849399 

16 1 39 0.39803553 62 0.50110212 85 1 108 0.81726094 

17 1 40 0.87347816 63 0.63495079 86 3.7112112 109 1.0958577 

18 4.92055 41 1.306763 64 1 87 1 110 0.59255174 

19 1 42 1 65 0.90015285 88 0.42847891 111 0.81142452 

20 1.7 43 0.40999737 66 1 89 0.62129719 112 0.36103124 

21 1 44 0.59054233 67 0.38917901 90 1 113 0.17612853 

22 5.3997535 45 1.2853258 68 0.1770921 91 1 114 0.63121715 

23 1 46 0.61392984 69 0.23178621 92 0.35788511 115 0.374154 

 

The consistent score of 1 implies that these DMUs have maximally harnessed their 

available resources, leading to optimal and highly effective outcomes. Essentially, they are 

operating at the zenith of efficiency, leaving little to no room for further improvement based 

on the criteria outlined in the DEA model.                                    

 This observation suggests that the identified DMUs have successfully utilized their 

inputs to generate the desired outputs in an exceptionally effective manner. Their 

performance is not only efficient but has surpassed the benchmark set by the DEA model, 

indicating a high level of productivity and resource utilization. Consequently, these DMUs 

can be considered exemplars in terms of operational efficiency within the analyzed context, 

showcasing a remarkable ability to achieve optimal results with the given resources and 

constraints. 

Radial DEA and non-radial DEA represent two distinct approaches to measuring 

efficiency within this framework. Radial DEA determines efficiency scores based on the 

distance of each DMU from the efficient frontier, a hyperplane enveloping all DMUs, with 
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the assumption that any deviation from this frontier signifies inefficiency. The radial 

measure of efficiency is derived from the ratio of a DMU's output/input vector to a weighted 

average of these vectors for the efficient units. It focuses on scale inefficiency and is based 

on the premise that efficiency improvements involve moving closer to the efficient frontier. 

Non-radial DEA, on the other hand, introduces a more nuanced perspective by considering 

both radial and non-radial components of inefficiency. Unlike radial DEA, non-radial DEA 

allows for deviations in both input and output directions from the efficient frontier, 

providing a more comprehensive analysis. It breaks down inefficiency into two components: 

radial inefficiency, associated with distance from the efficient frontier, and non-radial 

inefficiency, associated with the direction of deviation. This approach enables a more 

refined understanding of inefficiency by accounting for both scale inefficiency and 

allocative inefficiency. The choice between radial and non-radial DEA depends on the 

specific characteristics of the decision-making problem, the nature of the available data, and 

the nuances of the efficiency evaluation being conducted.                                        

 Based on suggested data in Table 7 and 10, Table 12 provides an evaluation of DEA 

targets, including original values, target values, and the corresponding differences for both 

radial and non-radial categories for the first DMU in PSC 2. 

Table 12: Original Values, Target Values, Radial, and Non-radial for the Second DMU 

in the First Scenario. 
Category Original Target Radial Non-radial 

DIDI Time (Door-In-Door-In) 0.807957154 0.147523055 -0.50862627 -0.151807829 

Driving Distance 0.3925 0.145412874 -0.247087126 0 

Euclidean Distance 0.408119521 0.149670629 -0.256919948 -0.001528944 

Onset_to_1st_CT 0.101744186 0.03769405 -0.064050136 0 

Onset_To_Arrival_1st 0.15942029 0.048331173 -0.100358475 -0.010730642 

The presented values represent the efficiency scores and corresponding differences for five 

key inputs that warrant special attention. These values are crucial in identifying areas for 

improvement and optimizing the performance of inefficient units to enhance their efficiency 

and effectiveness.                                            

 The original value for "Onset to Arrival 1st" is 0.15942029, and the target value after 

the DEA analysis is 0.048331173. The radial difference, which represents the degree of 

improvement achievable without altering the input mix, is -0.100358475. The non-radial 

difference, indicating the portion of improvement that involves adjusting input levels, is -

0.010730642. For "Onset To 1st CT," the original value is 0.101744186, and the target value 



68 

 

post-DEA analysis is 0.03769405. The radial difference is -0.064050136, denoting potential 

improvement without changing input proportions. The non-radial difference is -0, indicating 

no improvement required involving input level adjustments. A negative radial difference 

suggests potential for improvement, while a zero non-radial difference indicates that the 

input levels are already considered optimal. Combining these, implies that adjustments can 

be made to inputs and outputs to move the system toward greater efficiency. The original 

"Euclidean Distance" value is 0.408119521, while the target value is 0.149670629 following 

DEA evaluation. The radial difference is -0.256919948, suggesting potential enhancement 

without altering input mix. The non-radial difference is -0.001528944, implying minimal 

improvement involving input level adjustments. DIDI Time" initially measures 

0.807957154, and after DEA analysis, the target value is 0.147523055. The radial difference 

is -0.50862627, indicating potential improvement without changing input proportions. The 

non-radial difference is -0.151807829, suggesting minimal improvement involving input 

level adjustments. The original value for "Driving Distance" is 0.3925, and the target value 

post-DEA analysis is 0.145412874. The radial difference is -0.247087126, representing 

potential improvement without changing input proportions. The non-radial difference is 0. 

When the non-radial difference, indicating the portion of improvement related to adjusting 

input levels, is 0, it generally means that there is no need for adjustment or optimization in 

the input levels. In the context of DEA efficiency analysis or performance measurement, a 

non-radial difference of 0 implies that the current input levels are already considered 

optimal, and no further improvement can be achieved by altering the input mix. In simpler 

terms, if the non-radial difference is 0, the system or process is already operating at its most 

efficient point concerning the input levels being considered. There is no room for 

improvement by adjusting these inputs further.                                      

       

Appendix B (Table 29) delineates the suggested evaluations for all 115 patients, or DMUs. 

The section provides a thorough exploration of assessments and recommendations, offering 

a comprehensive overview of the proposed evaluations for each individual.                             

          

Appendix B (Table 30) adheres to a uniform methodology, extending the same approach 

to super-efficiency for all 115 patients, or DMUs. The content within this section reflects 

the application of a standardized process, specifically tailored for evaluating and achieving 
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super-efficiency.           

 Based on the data presented in Tables 7, 10, and 11 we have conducted a ranking of 

all ten PSCs by evaluating the average technical efficiency of patients who sought services 

at each respective PSC in Table 13. This analysis allows us to assess the effectiveness and 

performance of these centers in delivering care to their respective patient populations. 

 This ranking is based on the calculated efficiency scores for each PSC. PSC 8 has 

achieved the highest efficiency score of 1, indicating optimal performance. PSC 10, on the 

other hand, has the lowest efficiency score at 0.41100162. 

Table 13: Ranking of Ten Primary Stroke Centres by Evaluating the Average 

Technical Efficiency of Attended Patients. 

 

 

 

 

 

 

                     

 

The significance of the distance between PSCs and CSC is evident in contrasting 

scenarios. PSC 8, the nearest to the CSC, attains the highest efficiency score, suggesting 

that spatial proximity positively impacts operational efficiency. The reduced distance likely 

facilitates quicker responses and seamless collaboration. In contrast, PSC 10, situated 

farthest from the CSC, receives the lowest efficiency score, indicating that increased 

distance hampers operational efficiency. Longer distances may lead to delays and logistical 

challenges, impacting the timely delivery of stroke care. These results underscore the crucial 

role of geographical factors in shaping the efficiency of stroke care networks, emphasizing 

the need for strategic planning to minimize distances between primary and comprehensive 

stroke centers for improved overall system performance.                               

 It's important to further analyze the factors contributing to these scores to identify areas 

for improvement and potential best practices to be shared across the centers. In DEA, the 

terms "Reference Set," "Peer Weight," and "Peer Count" are key concepts used to evaluate 

the relative efficiency of DMUs in a dataset. Here's what they mean:                       

 

PSCs Ranking Ave. Efficiency Score 

1 6 0.602416037 

2 3 0.653270607 

3 4 0.62440989 

4 5 0.604767935 

5 9 0.415850205 

6 8 0.491534278 

7 7 0.572471733 

8 1 1 

9 2 0.730754559 

10 10 0.41100162 
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Reference Set: The reference set refers to a cluster of DMUs against which the efficiency 

of a specific DMU is evaluated. These DMUs serve as benchmarks or reference points. The 

efficiency of the DMU being evaluated is assessed in relation to its ability to perform as 

well as, or better than, the units in the reference set. The goal is to identify the most efficient 

units that can potentially serve as benchmarks for less efficient ones.                                      

 

Peer Weight: Peer weights are coefficients assigned to each DMU in the reference set. 

These weights are determined by the DEA model and represent the relative worth or 

influence of each benchmark unit in the evaluation of the DMU being assessed. The weights 

are used to aggregate the performance measures of the reference set in a way that reflects 

the efficiency of the DMU under assessment.                                                  

 

Peer Count: Peer count refers to the number of DMUs contained in the reference set. It 

represents the size of the benchmark group used to evaluate the efficiency of a specific 

DMU. The choice of peer count can have an impact on the results of the DEA analysis, and 

it is an important parameter to consider when conducting the evaluation.’ 

                   

 Due to the large number of 72 inefficient patients in the initial scenario, it is impractical 

to include evaluations for each patient in this paper. As a result, we have chosen to focus on 

the five patients with various efficiency scores for detailed analysis. This approach allows 

us to provide a representative overview of the inefficiencies observed within this group, 

while also managing the scope of the study for clarity and conciseness. Table 14 shows 

reference set, peer weight, peer count, classification, and super-rank. 

 

Table 14. Reference Set, Peer Weight, Peer Count, and Classification of Three Selected 

Patients or DMUs Among 115 Patients. 

D
M

U
s 

P
S

C
s 

 E
fficien

cy
 

 R
eferen

ce
 S

et 

(E
fficien

t 

 D
M

U
s 

 N
u

m
b

er
) 

      

P
ee

r W
e
ig

h
t 

(L
a

m
b

d
a

s) 

P
ee

r C
o

u
n

t 

C
la

ssifica
tio

n
 

S
u

p
er-R

a
n

k
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- 
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51 

26 9 1.1322636 84,45,86 0.79086679,0.13440915, 0.074724063 36 CRS 10 
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The efficiency score for patient (DMU) number 1 who attended PSC number 2 is 

0.37047866. This score indicates that, according to the DEA analysis, patient 1 is operating 

at approximately 37.04% of the maximum possible efficiency given the inputs and outputs 

considered in the analysis. In other words, there is potential for improvement in how 

resources are utilized. Reference sets 42, 41, and 18 are the specific patient numbers selected 

as benchmarks or reference points to evaluate the efficiency of patient number 1. Patients 

42, 41, and 18 are considered comparable to patient 26 in terms of their inputs and outputs. 

These patients serve as reference points to assess patient 1's performance. The peer count 

represents the number of reference units included in the evaluation. In this case, since the 

suggested DMU is not efficient, it cannot be peer counted. Peer weight or lambda are the 

weights assigned to each of the reference patients (42, 41, and 18) in the DEA model. These 

weights indicate the relative importance or contribution of each benchmark patient in the 

evaluation of patient 1's efficiency. The lambda values suggest that patient 42 has the highest 

relative importance (0.51716649). The IRS classification indicates the nature of input-

oriented DEA model. Lastly, the super efficiency rank of 70 indicates where patient 1 stands 

among the 115 patients in the analysis.                                 

 The efficiency score for patient number 2 who attended PSC number 6 among the 115 

patients is 0.53481983. This score suggests that, based on the DEA, patient 2 is operating at 

approximately 53.48% of the maximum achievable efficiency given the specific inputs and 

outputs considered in the analysis. This indicates that there is some room for improvement 

in how resources are utilized by patient 2. The reference sets, consisting of patients 26, 104, 

109, and 22, are specific individuals chosen as benchmarks or reference points to evaluate 

patient 2's efficiency. These patients are deemed comparable to patient 2 in terms of their 

inputs and outputs, serving as reference points to gauge patient 2's performance. The peer 

count, in this case, is five, representing the number of reference units included in the 

evaluation. This means that four patients (26, 104, 109, and 22) are part of the reference set 

used to compare against patient 2. The lambdas, representing peer weights, are values 

assigned to each of the reference patients. These weights indicate the relative importance or 

contribution of each benchmark patient in the evaluation of patient 1's efficiency. For 

example, patient 109 has the highest relative importance with a lambda of 0.42725536. The 

classification of IRS indicates the nature of the DEA model used, focusing on optimizing 

the utilization of inputs to achieve higher levels of output, assuming the technology or 
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production process is not perfectly scalable. Lastly, the super efficiency rank of 51 signifies 

where patient 2 stands among the 115 patients in the analysis when considering super 

efficiency. 

 The last selected DMU, representing an efficient patient in a healthcare context, 

demonstrates exceptional performance with an efficiency score of 1.1322636. This patient 

is assessed against a reference set of 36 DMUs, which includes both inefficient and efficient 

cases. This gives a relatively large set for benchmarking and evaluating the patient's 

efficiency. The peer weights, represented by lambdas, indicate the influence of each peer in 

determining the efficiency of the selected patient. The value of 1.1322636 suggests that 

these peer weights play a significant role in the efficiency calculation.                                

 

Appendix B (Table 31) outlines the recommended evaluations for all 115 patients, or 

DMUs. The content of this section offers insights into assessments and recommendations 

about each individual, providing a comprehensive overview of the suggested evaluations. 

 

Appendix B (Table 32), a uniform approach is employed, maintaining consistency, 

particularly in the realm of super efficiency for all 115 patients, or DMUs. The document 

reflects the application of this standardized methodology throughout its 

content.                                   

 

Before applying super-efficiency Table 15 shows ranking of DMUs for 115 patients in VRS 

input-oriented model. 
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Table 15: Ranking of DMUs for 115 Patients in VRS Input Oriented Model. 

 

 With 43 patients already identified as efficient based on their initial assessment, the 

objective now is to further distinguish and rank these efficient units using a method called 

super efficiency analysis. This specialized technique allows for a more nuanced evaluation 

of their performance relative to each other. By applying super efficiency, we aim to uncover 

subtle differences in how these patients utilize their resources and achieve outcomes, 

ultimately providing a more detailed understanding of their relative effectiveness within the 

group of already efficient units. This additional level of analysis can offer valuable insights 

into potential areas of excellence or opportunities for improvement among these high-

performing patients.                                                                

 Table 16 displays the ranking of 43 super-efficient DMUs. When we apply super 

efficiency to 53 efficient DMUs with a score of 1, and then find that most of them still 

receive a score of 1, it means that these 30 DMUs are performing at the highest level of 

efficiency possible given the inputs and outputs considered in the analysis. This could 

indicate that these DMUs have effectively utilized their resources and achieved optimal 

outcomes. In other words, they are already operating at the peak of efficiency and there is 

no room for further improvement based on the specified inputs and outputs in the DEA. 
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8 1 1 64 1 1 101 47 0.87979115 89 70 0.62129719 88 93 0.42847891 

11 1 1 66 1 1 12 48 0.87392301 46 71 0.61392984 32 94 0.41663489 

14 1 1 71 1 1 40 49 0.87347816 38 72 0.59335672 43 95 0.40999737 

16 1 1 72 1 1 99 50 0.86820806 110 73 0.59255174 36 96 0.40122734 

17 1 1 73 1 1 55 51 0.84850463 44 74 0.59054233 39 97 0.39803553 

18 1 1 75 1 1 31 52 0.84328033 107 75 0.58849399 67 98 0.38917901 

19 1 1 76 1 1 96 53 0.82003173 81 76 0.57771623 115 99 0.374154 

20 1 1 77 1 1 108 54 0.81726094 58 77 0.57679494 1 100 0.37047866 

21 1 1 78 1 1 111 55 0.81142452 105 78 0.56621046 112 101 0.36103124 

22 1 1 80 1 1 53 56 0.80681012 50 79 0.5620658 51 102 0.36096889 

23 1 1 83 1 1 47 57 0.80579527 3 80 0.56055283 92 103 0.35788511 

24 1 1 84 1 1 106 58 0.74787362 2 81 0.53481983 27 104 0.3276777 

25 1 1 85 1 1 48 59 0.74147996 13 82 0.52225037 15 105 0.27492907 

26 1 1 86 1 1 7 60 0.73559787 93 83 0.52152339 100 106 0.25199846 

29 1 1 87 1 1 59 61 0.71707895 82 84 0.50320452 69 107 0.23178621 

30 1 1 90 1 1 97 62 0.70745959 62 85 0.50110212 10 108 0.20650682 

34 1 1 91 1 1 9 63 0.70605276 6 86 0.49159373 33 109 0.20650682 

35 1 1 95 1 1 94 64 0.68987501 98 87 0.47513516 74 110 0.20402824 

37 1 1 104 1 1 102 65 0.68117598 103 88 0.47440186 61 111 0.20353869 

41 1 1 109 1 1 28 66 0.66201662 60 89 0.45543838 68 112 0.1770921 

42 1 1 57 44 0.99443054 63 67 0.63495079 5 90 0.44884999 113 113 0.17612853 

45 1 1 4 45 0.99369193 114 68 0.63121715 70 91 0.43720876 54 114 0.17512331 

52 1 1 65 46 0.90015285 56 69 0.62796032 79 92 0.43702871 49 115 0.14632709 
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Table 16: Ranking of Super-efficient DMUs with 43 Efficient Patients. 
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22 1 5.3997535 84 12 1.0827967 29 13 1 73 13 1 

18 2 4.92055 8 13 1 30 13 1 75 13 1 

86 3 3.7112112 11 13 1 34 13 1 76 13 1 

104 4 1.8571432 14 13 1 35 13 1 77 13 1 

20 5 1.7 16 13 1 37 13 1 78 13 1 

80 6 1.5294118 17 13 1 42 13 1 85 13 1 

41 7 1.306763 19 13 1 52 13 1 87 13 1 

45 8 1.2853258 21 13 1 64 13 1 90 13 1 

83 9 1.2086956 23 13 1 66 13 1 91 13 1 

26 10 1.1322636 24 13 1 71 13 1 95 13 1 

109 11 1.0958577 25 13 1 72 13 1    

Table 17 shows ranking of all 115 DMUs after applying super efficiency. 

 

Table 17: Ranking of all 115 DMUs After Applying Super-efficiency. 
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22 1 5.3997535 30 13 1 101 47 0.87979115 89 70 0.62129719 88 93 0.42847891 

18 2 4.92055 34 13 1 12 48 0.87392301 46 71 0.61392984 32 94 0.41663489 

86 3 3.7112112 35 13 1 40 49 0.87347816 38 72 0.59335672 43 95 0.40999737 

104 4 1.8571432 37 13 1 99 50 0.86820806 110 73 0.59255174 36 96 0.40122734 

20 5 1.7 42 13 1 55 51 0.84850463 44 74 0.59054233 39 97 0.39803553 

80 6 1.5294118 52 13 1 31 52 0.84328033 107 75 0.58849399 67 98 0.38917901 

41 7 1.306763 64 13 1 96 53 0.82003173 81 76 0.57771623 115 99 0.374154 

45 8 1.2853258 66 13 1 108 54 0.81726094 58 77 0.57679494 1 100 0.37047866 

83 9 1.2086956 71 13 1 111 55 0.81142452 105 78 0.56621046 112 101 0.36103124 

26 10 1.1322636 72 13 1 53 56 0.80681012 50 79 0.5620658 51 102 0.36096889 

109 11 1.0958577 73 13 1 47 57 0.80579527 3 80 0.56055283 92 103 0.35788511 

84 12 1.0827967 75 13 1 106 58 0.74787362 2 81 0.53481983 27 104 0.3276777 

8 13 1 76 13 1 48 59 0.74147996 13 82 0.52225037 15 105 0.27492907 

11 13 1 77 13 1 7 60 0.73559787 93 83 0.52152339 100 106 0.25199846 

14 13 1 78 13 1 59 61 0.71707895 82 84 0.50320452 69 107 0.23178621 

16 13 1 85 13 1 97 62 0.70745959 62 85 0.50110212 10 108 0.20650682 

17 13 1 87 13 1 9 63 0.70605276 6 86 0.49159373 33 109 0.20650682 

19 13 1 90 13 1 94 64 0.68987501 98 87 0.47513516 74 110 0.20402824 

21 13 1 91 13 1 102 65 0.68117598 103 88 0.47440186 61 111 0.20353869 

23 13 1 95 13 1 28 66 0.66201662 60 89 0.45543838 68 112 0.1770921 

24 13 1 57 44 0.99443054 63 67 0.63495079 5 90 0.44884999 113 113 0.17612853 

25 13 1 4 45 0.99369193 114 68 0.63121715 70 91 0.43720876 54 114 0.17512331 

29 13 1 65 46 0.90015285 56 69 0.62796032 79 92 0.43702871 49 115 0.14632709 

After calculating and ranking of DMUs assisted by super-efficiency and based on the 

data presented in Tables 7 and 17, in Table 18, we've performed a thorough evaluation of 

all ten PSCs, assessing the average technical efficiency of patients who utilized services at 

each respective center. This examination offers valuable insights into how effectively and 
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efficiently these centers provide care to their specific patient populations. 

Table 18: Ranking of Ten Primary Stroke Centres After Applying Super-efficiency. 

 

 

 

 

 

 

 

 

                                                                               

This ranking is based on the calculated efficiency scores for each PSC. PSC 8 has 

achieved the highest efficiency score of 1, indicating optimal performance. PSC 10 on the 

other hand, has the lowest efficiency score. The phenomenon of obtaining the same lowest and 

highest rankings in a super efficiency analysis, despite seemingly contradictory, underscores the 

critical influence of distance in the efficiency outcomes. When both the lowest and highest rankings 

remain consistent, it implies that certain entities, in this case, PSCs, are not only achieving optimal 

efficiency but are also strategically located near CSCs. The highest efficiency score indicates 

that the PSCs in question are operating at the peak of efficiency, effectively utilizing 

resources, and achieving optimal outcomes within the specified inputs and outputs. The 

lowest efficiency score, obtained by entities situated farther away, suggests that increased 

distance negatively affects efficiency, likely leading to higher transmission losses, extended 

response times, and potentially suboptimal operational outcomes. This phenomenon 

emphasizes the crucial role of geographical factors, particularly distance, in shaping the 

overall efficiency of the stroke care network. The consistent super efficiency rankings 

highlight that the spatial proximity to the CSC is a key determinant of optimal performance. 

Proximity allows for quicker response times, more efficient collaboration, and streamlined 

patient transfer processes, contributing to the overall effectiveness of the stroke care system. 

To further enhance efficiency, strategies aimed at minimizing distances between PSCs and 

CSCs could be considered. This might involve reevaluating the geographic distribution of 

stroke centers, optimizing their locations to ensure strategic coverage, and reducing 

potential barriers that could impede timely and effective stroke care delivery. In doing so, 

healthcare systems can leverage these insights to create more resilient and responsive stroke 

care networks, improving outcomes for patients across the spectrum of stroke cases. 

PSCs Ranking Ave. Efficiency Score 

1 7 0.602416037 

2 3 0.660644276 

3 5 0.65294247 

4 6 0.62440989 

5 9 0.415850205 

6 8 0.491534278 

7 4 0.639572405 

8 1 1.265286868 

9 2 0.781811868 

10 10 0.41100162 
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 3.4.2 Second Scenario 

In the second phase of the analysis, eight PSCs with low patient volumes were 

combined into four DMUs, each comprising two PSCs. These selected PSCs not only had a 

limited number of patients, but they were also in close geographical proximity to one 

another. Two PSCs were kept separate due to their sufficient patient volume. The first phase 

of the analysis utilized VRS to generate efficiency scores for evaluation, whereas in the 

second phase, CRS proved to be more effective, providing improved results. Initially, ten 

PSCs were considered as six DMUs in the second phase, employing the input-oriented CRS 

approach for a total of 115 patients. Table 19 shows the average amount(or the number of 

inputs and outputs for the binary variables like thrombolysis given or not as well as EVT 

performed or not ) of  following inputs and outputs for the six suggested DMUs:                   

 Input 1 (Age), Input 2 (ASPECTS), Input 3 (Collateral), Input 4 (Driving Distance), 

Input 5 (Euclidean Distance), Input 6 (Ave. Onset_To_Arrival_1st), Input 7 (Ave. DIDI 

Time(Door-In-Door-In), Input 8 (Ave. Onset_to_1st_CT), Input 9 (Number of 

Thrombolysis not given, and given), and Output 1(Number of EVT not performed and 

performed, and given). However, based on the second part of the first scenario we consider 

the critical inputs in this part including Driving Distance, Euclidean Distance, Ave. 

Onset_To_Arrival_1st, Ave. DIDI Time, Ave. Onset_to_1st_CT, and Number of 

Thrombolysis not given.  
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Table 19: The Average Amount of Inputs and Output for the Six Suggested DMUs. 
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1 51.6 8.2 2.6 400 312.58 338 514 508.8 4 1 3 2 

2 69.5 8.25 2.5 105.4875 88.4375 269.125 227.625 296.125 2 6 2 6 

3 70.5 8.5 3 217 166.9 110 230 129 1 1 1 1 

4 68.875 9.5 2.75 193.25 151.1025 87.375 472 216.125 5 3 3 5 

5 61.4 8.5333 2.4 8 3.28 453.5333 323.7333 526.1333 14 1 13 2 

6 65 8.9333 2.6 105 87.4 118 199.4666 185.8 4 11 6 9 

 

The statistical evaluations for suggested inputs and outputs including Mean, Sum, 

Standard Deviation, Variance, Min, Max, and Rang are presented in Table 20. 

Table 20: Statistical Evaluations for Suggested Inputs and Output. 

 

 

 

 

 

 

 

 

These statistics provide a comprehensive overview of the distribution, variability, and 

central tendencies within each variable. The mean gives us an average value, the standard 

deviation indicates the spread of values around the mean, and the range represents the 

difference between the maximum and minimum values. Understanding these descriptive 

statistics is essential for gaining insights into the characteristics and patterns of your dataset, 

which can inform further analysis and decision-making processes. 

3.4.2.1 CRS and VRS Input-oriented Assisted by Super-efficiency for Six DMUs 

During the first part of the second phase, an assessment was conducted on ten PSCs, 

Variables Mean Sum Std. Dev Variance Min Max Range 

Input 1 64.48 386.88 7.16 51.28 51.6 70.5 18.9 

Input 2 8.65 51.92 0.49 0.24 8.2 9.5 1.3 

Input 3 2.64 15.85 0.21 0.04 2.4 3 0.6 

Input 4 171.46 1028.74 134.36 18053.54 8 400 392 

Input 5 134.95 809.7 104.49 10919.11 3.28 312.58 309.3 

Input 6 229.34 1376.03 148.62 22089.04 87.38 453.53 366.16 

Input 7 327.8 1966.82 135.31 18309.99 199.47 514 314.53 

Input 8 310.33 1861.98 169.37 28685.21 129 526.13 397.13 

Input 9 5 30 4.65 21.6 1 14 13 

Input 9 3.83 23 4.02 16.17 1 11 10 

Output 10 4.67 28 4.41 19.47 1 13 12 

Output 10 4.17 25 3.06 9.37 1 9 8 
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which were consolidated into six DMUs using the input-oriented CRS approach, 

considering a total of 115 patients. Additionally, super-efficiency measures were 

implemented in this stage to improve the evaluation process. Table 21 shows efficiency and 

super-efficiency results for 6 DMUs in CRS input-oriented model. 

Table 21: Efficiency and Super-efficiency Results for Six DMUs in CRS Input-oriented 

Model. 

 

 

 

 

 

 

 

 

The performance analysis across the six DMUs reveals distinctive efficiency patterns. 

DMU 1, initially operating at full efficiency in T1, encountered a substantial decline to 

46.15% in T2, indicating potential changes in inputs or outputs affecting its operational 

efficacy. Similarly, DMU 2 faced a significant efficiency drop from 66.67% in T1 to 18.11% 

in T2, suggesting operational challenges or shifts in the second period. DMU 3 experienced 

a decrease from 66.67% (T1) to 39.46% (T2), with a modest improvement, reflecting a 

nuanced performance evolution. In contrast, DMU 4 operated close to full efficiency in T1 

(67.53%) and achieved a remarkable 100% efficiency in T2, surpassing the efficiency 

benchmark. DMU 5 demonstrated consistent full efficiency in both periods, and its super-

efficiency scores exceeded already high standards, showcasing exceptional performance. 

DMU 6, efficient in T1, underwent a notable drop to 28.46% in T2, signaling potential issues 

or alterations in operations. General observations highlight efficiency fluctuations for 

DMUs 1, 2, 3, and 6, warranting further investigation into the factors influencing these 

changes. Super-efficiency analysis emphasizes exceptional performance for DMUs 1, 4, 5, 

and 6, as they either met or exceeded efficiency benchmarks in both periods. 

Recommendations include a comprehensive exploration of the factors contributing to 

efficiency changes for DMUs 1, 2, 3, and 6. Moreover, an in-depth analysis of super-

efficiency scores could provide valuable insights into the practices and strategies employed 

by these highly efficient DMUs, potentially offering avenues for enhancing overall 

efficiency across the board. 

DMUs Efficiency T1 

(2018-2019) 

Super-efficiency of T1 

(2018-2019) 

Efficiency T2 

(2020-2021) 

Super-efficiency of T2 

(2020-2021) 

1 0.5 0.5 0.4615 0.4615 

2 0.6667 0.6667 0.1811 0.1811 

3 0.6667 0.6667 0.3946 0.3946 

4 0.6753 0.6753 1 2.7572 

5 1 5.7733 1 5.9269 

6 1 1.7344 0.2846 0.2845 
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Efficiency and super-efficiency results for 6 DMUs in VRS input-oriented model are 

demonstrated in Table 22. 

Table 22: Efficiency and Super-efficiency Results for Six DMUs in VRS Input-oriented 

Model. 

 

 

 

 

 

 

 

In the VRS input-oriented model for the six DMUs, DMU 1 exhibited an efficiency 

increase from 55% in T1 to 100% in T2, with a super-efficiency score of 1.1666667 in the 

second period. This suggests that DMU 1 not only achieved full efficiency but surpassed it, 

indicating outstanding performance. DMU 2 maintained full efficiency in both periods, with 

super-efficiency scores of 1.4117538 in T1 and 1.6349027 in T2, showcasing consistent 

high-level performance. DMU 3 was fully efficient at 2.2647356 but super-efficiency score 

of 2.2647356 but experienced a slight decrease to 94.19% efficiency in T2, reflected in a 

super-efficiency score of 1.0957858. DMU 4 operated at full efficiency in both periods, with 

a super-efficiency score increasing from 1.2955651 in T1 to 3 in T2, exceeding the already 

high efficiency benchmarks. DMU 5 encountered infeasibility in both efficiency and super-

efficiency calculations in both periods. DMU 6 achieved full efficiency in T1, with a super-

efficiency score of 1.8477036, but its efficiency dropped to 89.93% in T2, resulting in a 

super-efficiency score of 1.080464. General observations indicate variations in efficiency 

performance across the DMUs. Recommendations include a thorough investigation into the 

factors influencing efficiency changes, especially for DMUs 3, 5, and 6, where notable 

fluctuations or infeasibility occurred. Additionally, analyzing super-efficiency scores for 

DMUs 1, 2, 3, and 4 can provide insights into their practices and strategies that contribute 

to outstanding performance, potentially offering valuable lessons for enhancing overall 

efficiency.   

 

As the CRS model identified additional inefficient DMUs, we proceeded to conduct a more 

in-depth exploration of the following four tables in CRS input-oriented approach, assisted 

DMUs Efficiency T1 

(2018-2019) 

Super-efficiency of T1 

(2018-2019) 

Efficiency T2 

(2020-2021) 

Super-efficiency of T2 

(2020-2021) 

1 0.55 0.55 1 1.1666667 

2 1 1.4117538 1 1.6349027 

3 1 2.2647356 0.9419 1.0957858 

4 1 1.2955651 1 3 

5 1 Infeasible 1 Infeasible 

6 1 1.8477036 0.8993 1.080464 
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by super-efficiency analysis, spanning two distinct periods, namely 2018-2019 and 2020-

2021.  

Appendix B (Table 33) covers the VRS input-oriented analysis for the two specified 

periods (2018-2019 and 2020-2021 in the Second Scenario).                   

 

An analysis of Table 23, which represents the DEA evaluation under the CRS-2018-

2019 model, reveals key insights into the efficiency and ranking of the six DMUs. DMUs 

1, 2, 3, and 4 exhibited efficiency scores ranging from 0.5 to 0.6753, suggesting room for 

improvement in their resource utilization. DMUs 5 and 6, however, achieved perfect 

efficiency scores of 1, signifying optimal performance. The reference set, denoted by the 

efficient DMU number, varied across the entities, with DMU 5 referencing 5 efficient 

DMUs, while DMU 6 referenced all 6 efficient DMUs. Peer weights (Lambdas) indicate the 

influence of each peer in the evaluation process, with higher weights suggesting greater 

impact. Peer counts represent the number of peers considered for each DMU, influencing 

the relative importance of peer contributions. The classification distinguishes between CRS 

and IRS, providing insights into the underlying model applied. Rankings further highlight 

the performance order, with DMUs 5 and 6 securing the top positions, indicating their 

superior efficiency. Overall, the table serves as a comprehensive overview of the DEA 

analysis, encompassing efficiency scores, reference sets, peer weights, classifications, and 

rankings for each DMU in the CRS-2018-2019 context. 

Table 23: Reference Set, Peer Weight, Peer Count, and Classification of Six DMUs in 

CRS Input-oriented Model During 2018-2019. 
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1 0.5 6 0.5 - IRS 4 

2 0.6667 6 0.33333333 - IRS 3 

3 0.6667 6 0.16666667 - IRS 3 

4 0.6753 6 0.5 - IRS 2 

5 1 5 1 1 CRS 1 

6 1 6 1 5 CRS 1 

 

Analyzing the super-efficiency results for the DMUs in the CRS-2018-2019 model in Table 

24 reveals distinctive performances. DMUs 1, 2, 3, and 4, classified under IRS (Increasing 

Returns to Scale), did not have applicable super-efficiency scores. In contrast, DMU 5 
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showcased outstanding efficiency with a score of 5.773374 and a DRS classification, 

securing the top ranking. DMU 6, with a super-efficiency score of 1.7344792 and an IRS 

classification, ranked second. The inclusion of reference sets and peer weights, particularly 

for DMU 6 involving DMUs 4 and 5, contributed to its exceptional super-efficiency 

performance. Overall, super-efficiency analysis highlights the exceptional performance of 

DMUs 5 and 6, providing valuable insights for further exploration of their strategies and 

practices to enhance overall efficiency. 

Table 24: Reference Set, Peer Weight, Peer Count, and Classification of Six DMUs in 

CRS Input-oriented Model During 2018-2019 After Applying Super-efficiency. 
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1 0.5 6 0.5 - IRS 5 

2 0.66666667 6 0.33333333 - IRS 4 

3 0.66666667 6 0.16666667 - IRS 4 

4 0.67525036 6 0.5 - IRS 3 

5 5.773374 6 2.1666667 1 DRS 1 

6 1.7344792 4,5 0.26925738,0.39940214 5 IRS 2 

 

Observing Table 25 for the DEA evaluation under the CRS-2020-2021 model reveals 

the efficiency and ranking of the six DMUs. DMU 1, with an efficiency of 0.4615, 

referencing only DMU 4, obtained a peer weight of 0.23076923. Classified under IRS 

(Increasing Returns to Scale), it secured a ranking of 2. DMU 2 demonstrated an efficiency 

of 0.1811, referencing only DMU 4 with a peer weight of 0.070166432. Despite its IRS 

classification, DMU 2 obtained a ranking of 5. DMU 3, with an efficiency of 0.3946, also 

referenced DMU 4 as the only efficient DMU, obtaining a peer weight of 0.30769231, 

resulting in a ranking of 3. DMU 4 and DMU 5 both achieved perfect efficiency scores of 

1, referencing only DMU 4 and DMU 5 as efficient DMUs, respectively, and obtaining top 

rankings under the CRS classification. DMU 6, with an efficiency of 0.2846, referenced 

only DMU 4, securing a peer weight of 0.12432423. Despite an IRS classification, DMU 6 

obtained a ranking of 4. The table provides a comprehensive overview of efficiency, 

reference sets, peer weights, classifications, and rankings for each DMU in the CRS-2020-

2021 context. 
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Table 25: Reference Set, Peer Weight, Peer Count, and Classification of Six DMUs in 

CRS Input-oriented Model During 2020-2021. 

 

 

 

 

 

 

 

 

 

 

Examining Table 26, which represents the super-efficiency results for the CRS-2020-

2021 model, provides insights into the efficiency and ranking of the six Decision Making 

Units (DMUs). DMU 1, with an efficiency of 0.4615, referenced DMU 4 as the efficient 

DMU and achieved a peer weight of 0.23076923. Despite its IRS classification, DMU 1 

obtained a ranking of 3. DMU 2, with an efficiency of 0.1811, referenced both DMU 4 and 

DMU 5 as efficient DMUs, securing respective peer weights of 0.070166432 and 

0.006274027. This IRS-classified DMU obtained a ranking of 6. DMU 3, with an efficiency 

of 0.3946, referenced DMU 4 as the efficient DMU and obtained a peer weight of 

0.30769231, resulting in a ranking of 4. DMU 4 demonstrated super-efficiency with a score 

of 2.7572, referencing DMUs 1 and 5 as efficient peers and obtaining respective peer 

weights of 1.326589 and 0.64430236. This DRS-classified DMU secured a ranking of 2. 

DMU 5 showcased exceptional super-efficiency with a score of 5.9269, referencing DMU 

4 as the efficient peer and achieving a peer weight of 1.0769231. This top-ranked DRS-

classified DMU outperformed all others. DMU 6, with an efficiency of 0.2845, referenced 

both DMU 4 and DMU 5 as efficient peers, securing respective peer weights of 0.12432423 

and 0.027413215. Despite its IRS classification, DMU 6 obtained a ranking of 5. The table 

offers a comprehensive view of super-efficiency, reference sets, peer weights, 

classifications, and rankings for each DMU in the CRS-2020-2021 context. 
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1 0.4615 4 0.23076923 1 IRS 2 

2 0.1811 4,5 0.070166432, 
0.00627403 

2 IRS 5 

3 0.3946 4 0.30769231 1 IRS 3 

4 1 4 1 5 CRS 1 

5 1 5 1 3 CRS 1 

6 0.2846 4,5 0.12432423, 
0.02741322 

2 IRS 4 
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Table 26: Reference Set, Peer Weight, Peer Count, and Classification of Six DMUs in 

CRS Input-oriented Model During 2020-2021 After Applying Super-efficiency. 

D
M

U
s 

 

E
fficien

cy
 

 

R
eferen

ce
 S

et 

(E
fficien

t 

D
M

U
s 

n
u

m
b

er
) 

 

P
ee

r W
e
ig

h
t 

(L
a

m
b

d
a

s) 

P
ee

r C
o

u
n

t 

C
la

ssifica
tio

n
 

R
a

n
k

in
g

 

 

1 0.4615 4 0.23076923 - IRS 3 

2 0.1811 4,5 0.070166432,0.0062740
27 

- IRS 6 

3 0.3946 4 0.30769231 - IRS 4 

4 2.7572 1,5 1.326589, 0.64430236 5 DRS 2 

5 5.9269 4 1.0769231 3 DRS 1 

6 0.2845 4,5 0.12432423, 
0.027413215 

- IRS 5 

 

3.4.2.2 Analysis of Malmquist Productivity Index for the Second Scenario 

In this part, a comparison between the first period (2018-2019) and the second period 

(2020-2021) was conducted using the MPI including CRS and VRS to evaluate the relative 

efficiency and productivity change of six DMUs across different time periods. Table 27 

shows MPI results for CRS input-oriented model.  

Table 27: Malmquist Productivity Index Results for Six DMUs Considering CRS 

Input-oriented Between T1(2018-2019) and T2(2020-2021) . 
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1 1.87 0.92 0.27 0.86 1.72 50 46.15 

2 1.66 0.27 0.38 0.29 0.45 66.67 18.11 

3 1.65 0.59 0.36 0.57 0.98 66.67 39.46 

4 1.5 1.48 0.56 1.87 2.23 67.53 100 

5 1.02 1 1.59 1.65 1.02 100 100 

6 1.09 0.28 1.13 0.38 0.31 100 28.46 

 

In this study, MPI is used to evaluate the productivity change between two time periods 

for a set of DMUs. In this study, six DMUs are compared in two periods including 2018-

2019 and 2020-2021.                                                            

 Let's break down and compare the results for MPI, CRS input oriented in Table 27: 

Total Change measures the overall productivity change. It is a weighted average of TC and 
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EC. EC represents the change in efficiency. It's a measure of how much more efficiently the 

DMUs are utilizing their inputs in the second period compared to the first period. TC 

represents the technology change. It's a measure of how much the production technology 

has changed over the two periods. Technical Efficiency Change (T2D1CRS) is a component 

of the TC that measures the change in efficiency while holding the technology constant. 

Technical Efficiency Change (T1D2CRS) is a factor of the TC that calculates the change in 

technology while holding efficiency constant. Finally, Total Factor Productivity Growth 

(TFPG(MI)) is a measure of how much output can be produced with a given set of inputs. 

It is a combination of technological change and efficiency change.                               

 Here is a detailed comparison of the results for DMUs 1 to 6 for CRS input-oriented 

MPI: 

DMU 1: 

Considering, TC: 1.87, EC: 0.92, Efficiency T1: 0.5, Efficiency T2: 0.0.4615, and MI:1.72 

T2D1CRS (Technical Efficiency T2 relative to T1 in CRS): 0.27 - Suggests a technical 

change, implying decline in technical efficiency in utilizing inputs for output production in 

the second period (T1 is more efficient than T2). 

T1D2CRS (Technological Efficiency T1 relative to T2 in CRS): 0.86 - Indicates an 

improvement in technological efficiency, meaning DMU 1 was more efficient in producing 

higher outputs relative to inputs in the second period (T2 is more efficient than T1). 

DMU 2: 

T2D1CRS (Technical Efficiency T2 relative to T1 in CRS): 0.38 - Suggests a technical 

change, implying decline in technical efficiency in utilizing inputs for output production in 

the second period (T1 is more efficient than T2). 

T1D2CRS (Technological Efficiency T1 relative to T2 in CRS): 0.29 - Indicates an 

improvement in technological efficiency, though to a lesser extent than DMU 1 (T2 is more 

efficient than T1). 

DMU 3: 

T2D1CRS (Technical Efficiency T2 relative to T1 in CRS): 0.36 - Suggests a technical 

change, implying a decline in technical efficiency in utilizing inputs for output production 

in the second period (T1 is more efficient than T2). 

T1D2CRS (Technological Efficiency T1 relative to T2 in CRS): 0.57 - Indicates an 
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improvement in technological efficiency, but it's important to note that there may be other 

issues in the dataset (T2 is more efficient than T1). 

DMU 4: 

T2D1CRS (Technical Efficiency T2 relative to T1 in CRS): 0.56 - Suggests a minimal 

technical change, suggesting relatively stable utilization of resources. 

T1D2CRS (Technological Efficiency T1 relative to T2 in CRS): 1.87 - Indicates a 

substantial improvement in technological efficiency, signifying a significant increase in 

output relative to inputs. 

In evaluating the MPI results for the six suggested DMUs over the transition from T1 

(2018-2019) to T2 (2020-2021) based on the CRS input-oriented approach, notable patterns 

emerge. DMU 1 demonstrates an overall productivity improvement (MPI = 1.72) driven by 

positive technological change (T1D2CRS = 0.86) and a moderate decline in technical 

efficiency (T2D1CRS = 0.27). Conversely, DMU 2 exhibits a decline in productivity (MPI 

= 0.45) attributed to a decline in technical efficiency (T2D1CRS = 0.38) and minor 

technological change (T1D2CRS = 0.29). DMU 3 shows a modest decrease in productivity 

(MPI = 0.98) stemming from diminished technical efficiency (T2D1CRS = 0.36) despite 

positive technological change (T1D2CRS = 0.57). In contrast, DMU 4 experiences 

substantial productivity growth (MPI = 2.23) due to a significant increase in technological 

change (T1D2CRS = 1.87). DMU 5 maintains relatively stable productivity (MPI = 1.02) 

with substantial gains in technical efficiency (T2D1CRS = 1.59) and positive technological 

change (T1D2CRS = 1.65). Finally, DMU 6 exhibits a decline in productivity (MPI = 0.31) 

resulting from technical efficiency (T2D1CRS = 1.13) and technological change (T1D2CRS 

= 0.38). These evaluations highlight the varying dynamics of productivity changes among 

the DMUs, emphasizing the importance of considering both technical and technological 

factors in assessing overall efficiency.                                                                                                                                                                                                                        

Table 28 shows MPI results for VRS input-oriented model.  

Let's break down the results for MPI, VRS input oriented in Table 28:                             

SEC represents the change in scale efficiency. It's a measure of how well the DMUs are 

operating at their optimal scale. PEC is a component of the SEC that measures the change 

in efficiency due to scale changes. Technical Efficiency Change (T2D2CRS) is a component 

of the TC that measures the change in efficiency while allowing for changes in scale. 

Technical Efficiency Change (T1D1CRS) is a component of the TC that measures the 
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change in technology while holding scale efficiency constant. Technical Efficiency Change 

(T2D1VRS) is a factor of the TC that calculates the change in efficiency while allowing for 

changes in scale. Technical Efficiency Change (T1D2VRS) is a factor of the TC that 

quantifies the alteration in technology while holding scale efficiency constant.                           

Table 28: Malmquist Productivity Index Results for Six DMUs Considering VRS 

Input-oriented Between T1(2018-2019) and T2(2020-2021) . 

 

 

 

 

 

 

 

 

Here is a detailed comparison of the results for DMUs 1 to 6 for VRS input-oriented MPI: 

DMU 1: 

Considering, TC: 0.91, SEC: 1.04, PEC: 1.82, Efficiency T1: 55, Efficiency T2: 100, and 

MI: 1.72 

T2D1VRS (Technical Efficiency T2 relative to T1 in VRS): 0.64 - Indicates a positive 

technical change, showcasing an improvement in resource utilization and output production 

in the second period (T1 is more efficient than T2 in the use of variable inputs). 

T1D2VRS (Technological Efficiency T1 relative to T2 in VRS): 0.96 - Indicates an 

improvement in technological efficiency, signifying an increase in output relative to inputs 

(T2 is more efficient than T1 in the use of variable inputs). 

DMU 2: 

T2D1VRS (Technical Efficiency T2 relative to T1 in VRS): 1.23 - Indicates an 

improvement in technical efficiency and better resource utilization for output production in 

the second period (T2 is more efficient than T1 in the use of variable inputs). 

T1D2VRS (Technological Efficiency T1 relative to T2 in VRS): 1.09 - Indicates an 

improvement in technological efficiency, although not as substantial as in CRS (T1 is more 

efficient than T2 in the use of variable inputs). 
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1 0.91 1.04 1.82 0.46 0.5 0.64 0.96 0.27 0.86 1.72 55 100 

2 0.94 0.48 1 0.18 0.67 1.23 1.09 0.38 0.29 0.45 100 100 

3 0.58 1.79 0.94 0.39 0.67 2.15 0.68 0.36 0.57 0.98 100 94.19 

4 1.14 1.95 1 1 0.68 2.25 2.94 0.56 1.87 2.23 100 100 

5 1.02 1 1 1 1 1.59 1.66 1.59 1.65 1.02 100 100 

6 0.75 0.46 0.9 0.28 1 1.77 0.89 1.13 0.38 0.31 100 89.93 
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T2D1VRS (Technical Efficiency T2 relative to T1 in VRS): 2.15 - Indicates a positive 

technical change, showcasing an improvement in resource utilization and output production 

in the second period (T2 is more efficient than T1 in the use of variable inputs). 

T1D2VRS (Technological Efficiency T1 relative to T2 in VRS): 0.68 - Indicates an 

improvement in technological efficiency, suggesting better conversion of inputs to outputs 

(T2 is more efficient than T1 in the use of variable inputs). 

DMU 4: 

T2D1VRS (Technical Efficiency T2 relative to T1 in VRS): 2.25 - Indicates an 

improvement in technical efficiency and better resource utilization for output production in 

the second period (T2 is more efficient than T1 in the use of variable inputs). 

T1D2VRS (Technological Efficiency T1 relative to T2 in VRS): 2.94 - Indicates a 

substantial improvement in technological efficiency, indicating a significant increase in 

output relative to inputs (T1 is more efficient than T2 in the use of variable inputs). 

DMU 5: 

T2D1VRS (Technical Efficiency T2 relative to T1 in VRS): 1.59 - Indicates a substantial 

improvement in technical efficiency, suggesting higher outputs with the same inputs (T2 is 

more efficient than T1 in the use of variable inputs). 

T1D2VRS (Technological Efficiency T1 relative to T2 in VRS): 1.66 - Indicates an 

improvement in technological efficiency, signifying that DMU 5 became more efficient in 

producing outputs (T1 is more efficient than T2 in the use of variable inputs). 

DMU 6: 

T2D1VRS (Technical Efficiency T2 relative to T1 in VRS): 1.77 - Indicates an 

improvement in technical efficiency, suggesting better resource utilization for output 

production in the second period (T2 is more efficient than T1 in the use of variable inputs). 

T1D2VRS (Technological Efficiency T1 relative to T2 in VRS): 0.89 - Indicates an 

improvement in technological efficiency, signifying an improvement in resource utilization 

and output production (T2 is more efficient than T1 in the use of variable inputs).                        

In evaluating the MPI results for the six suggested DMUs over the transition from T1 

(2018-2019) to T2 (2020-2021) based on the VRS input-oriented approach, notable patterns 

emerge. DMU 1 demonstrates an overall productivity improvement (MPI = 1.72) driven by 

positive technological change (T1D2VRS = 0.96) and a positive technical change 
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(T2D1VRS = 0.64). DMU 2 exhibits a decline in productivity (MPI = 0.45) with TC and 

SEC less than one. DMU 3 shows a decline in productivity (MPI = 0.98) with TC and SEC 

less than one. In contrast, DMU 4 experiences substantial productivity growth (MPI = 2.23) 

due to a significant improvement in both technical efficiency (T2D1VRS = 2.25) and 

technological change (T1D2VRS = 2.94). DMU 5 maintains relatively stable productivity 

(MPI = 1.02) with substantial gains in technical efficiency (T2D1VRS = 1.59) and positive 

technological change (T1D2VRS = 1.66). Finally, DMU 6 exhibits a significant decline in 

productivity (MPI = 0.31) by multiplying TC, SEC, and PEC which are less than one. These 

evaluations highlight the varying dynamics of productivity changes among the DMUs, 

emphasizing the importance of considering both technical and technological factors in 

assessing overall efficiency. 

 The detailed comparisons provide insights into how each DMU performed in terms of 

technical efficiency, technological efficiency, and overall productivity change over the two 

periods under both CRS and VRS assumptions. The values offer specific indications of 

improvements or stability in resource utilization and output production for each DMU. The 

CRS and VRS methods provide slightly different perspectives on productivity change and 

efficiency for the DMUs. VRS allows for a more nuanced analysis by considering scale 

efficiency changes. The choice between CRS and VRS may depend on the specific 

characteristics and context of the DMUs. For example, if scale efficiency is a critical factor, 

VRS may provide more relevant insights. It's important to note that the interpretation of 

these results should be done in conjunction with a thorough understanding of the specific 

context and operations of the DMUs in question. Additionally, the results may be influenced 

by the assumptions and methodology used in the analysis. 

3.5  Discussions  

The detailed comparisons provide insights into how each DMU performed in terms of 

technical efficiency, technological efficiency, and overall productivity change over the two 

periods under both CRS and VRS assumptions. The values offer specific indications of 

improvements or stability in resource utilization and output production for each DMU. The 

CRS and VRS methods provide slightly different perspectives on productivity change and 

efficiency for the DMUs. VRS allows for a more nuanced analysis by considering scale 

efficiency changes. The choice between CRS and VRS may depend on the specific 

characteristics and context of the DMUs. For example, if scale efficiency is a critical factor, 
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VRS may provide more relevant insights. It's important to note that the interpretation of 

these results should be done in conjunction with a thorough understanding of the specific 

context and operations of the DMUs in question. Additionally, the results may be influenced 

by the assumptions and methodology used in the analysis.                             

 In examining the results across two distinct scenarios, the pivotal role of the distance 

between PSCs and the CSC becomes apparent. Specifically, in the first scenario, PSC 8 

corresponds to DMU 5 in the second scenario. Possessing the shortest distance to the CSC, 

PSC 8 secures the top position and attains the highest efficiency score in all CRS and VRS 

models within both scenarios. Similarly, PSC 9 in the first scenario aligns with DMU 5 in 

the second scenario. As the second closest PSC to the CSC, it claims the second position in 

all aspects of the first scenario and dominates in most segments of the second scenario. 

Conversely, PSC 10 and 5 exhibits the longest distance from the CSC (as evident from Table 

3, where the combination of these two PSCs forms DMU 1 in the second scenario). 

Unsurprisingly, they register the lowest efficiency scores in all facets of the first scenario 

and a substantial portion of the second scenario. This detailed analysis underscores the 

critical influence of proximity to the CSC on the efficiency and performance of EVT 

treatment in stroke care, shedding light on specific PSCs that excel or face challenges based 

on their geographic positioning in relation to the comprehensive treatment center. 

It should be noted that in some cases, despite longer distances to CSCs, certain PSCs 

may exhibit higher efficiency scores. In the healthcare sector, optimizing the balance 

between distance and efficiency involves a multidimensional approach that considers not 

only physical proximity but also the capabilities, resources, and coordination among 

healthcare facilities. Regional healthcare systems often work to ensure that patients have 

access to the right level of care based on their needs and the severity of their condition, 

considering the geographical distribution of healthcare facilities. While CSCs may offer 

specialized care, the efficiency of patient outcomes is influenced by factors such as timely 

transportation, telemedicine advancements for remote consultations, regional collaboration 

ensuring smooth patient transfer, resource allocation at PSCs, and adherence to quality 

metrics in healthcare. Even when located at a greater distance, efficient resource 

management, effective communication, and a focus on quality care can contribute to higher 

efficiency scores for some PSCs compared to their closer CSC counterparts. The 

multidimensional nature of healthcare systems requires a careful balance between physical 

proximity and the quality and coordination of care to optimize patient outcomes. 
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3.6  Conclusion, Limitations, and Future Studies 

Stroke is a disease that disproportionally affects an older population, and it is the 

leading cause of severe disability. Improved patient outcomes for the most severe ischemic 

stroke patients through this project will allow older Nova Scotians to age in place. Reducing 

disability for severe ischemic stroke patients can be achieved by increasing the number of 

patients living outside of Halifax that receive EVT. This improvement will avoid the need 

for long term care or lengthy inpatient rehabilitation; therefore, they will be able to remain 

in rural areas with their families in locations where they reside. This study applied DEA to 

improve the efficiency of ischemic stroke patient transfers for EVT within PSC in a small 

Canadian province. The research provided valuable insights into healthcare delivery across 

two distinct periods, showcasing DEA's important role as a decision-support tool for 

healthcare policy and resource allocation. To address data limitations stemming from the 

province's size, PSCs were strategically combined to bolster patient sample sizes for 

comprehensive analysis. The study focused on a range of inputs, including age and distance 

metrics, relative to the pivotal output variable of EVT performance. Throughout the 

evaluation phases, both VRS and CRS  methodologies were employed, with CRS ultimately 

yielding superior results in the latter phase. Additionally, the study conducted a comparative 

analysis between the two periods, employing the MPI to assess relative efficiency and 

productivity changes across six DMUs. While PyDEA facilitated the initial evaluations, 

PIM-DEA software was instrumental in conducting advanced MPI assessments over time. 

Distance plays a crucial role in stroke care efficiency, evident in the comparison of PSCs in 

different scenarios. PSC 8 (DMU 5 in the second scenario) stands out with the shortest 

distance to the CSC, securing the highest efficiency scores. In contrast, PSC 10 and 5, 

positioned farthest from the CSC, demonstrate the lowest efficiency scores. This highlights 

the pivotal influence of geographic proximity to the CSC on the efficiency and performance 

of specific PSCs in delivering EVT for strokes. The findings underscored the critical role of 

proximity in ensuring timely access to EVT, particularly in regions with substantial 

distances between PSCs and Comprehensive CSC equipped with EVT technology. This 

research provides a valuable foundation for future studies, which could expand the model 

to encompass larger provinces with multiple CSCs. 

It is crucial to recognize specific limitations inherent in this research. A notable 

constraint stems from the relatively small size of the province under examination compared 

to larger provinces, such as Ontario, which have more extensive datasets available for 
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analysis.. As a result, it became necessary to strategically combine several PSCs to bolster 

patient sample sizes. While this approach allowed for a more comprehensive analysis, it is 

essential to recognize that the available data may still have limitations in providing a 

complete representation of the province's healthcare landscape. Looking ahead, one 

promising avenue for future research lies in addressing these data restrictions. Conducting 

similar analyses in larger provinces or regions with more extensive healthcare 

infrastructures could offer a broader perspective. This expansion would likely lead to a more 

robust dataset, enabling researchers to draw more definitive conclusions and make more 

generalized recommendations. Moreover, a larger province may house a greater number of 

EVT centers, allowing for an even more nuanced evaluation of stroke care delivery. By 

applying the suggested model in this context, researchers may uncover additional insights 

and potential areas for improvement in healthcare delivery. Future studies could leverage 

the groundwork laid in this research to conduct even more comprehensive assessments on a 

larger scale.  
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CHAPTER 4  DISCUSSION   
 

The two manuscripts that were completed explore the application of DEA in 

emergency care and the management of acute condition such as ischemic stroke. Paper 1 

was a narrative review of the state of the art in applying DEA in emergency department 

treatment of urgent conditions such as acute ischemic stroke.  Paper 2 applied DEA to the 

efficiency of transferring patients from PSCs to CSCs for EVT. 

In Paper 1 (27), a narrative review categorizes DEA applications in EDs, emphasizing 

its utility in benchmarking patient treatment proportions and efficiency analysis. The study 

identifies five parts, including basic DEA models, advanced approaches, time series models, 

integration with other methodologies, and specific models for acute ischemic stroke 

management. Methodological insights encompass the use of VRS and CRS, super-

efficiency models, and the incorporation of simulations and machine learning. The paper 

concludes by exploring ways to elevate DEA from a technical application to a robust 

methodology for healthcare decision-makers. 

Paper 2 delves into a detailed application of DEA to address the challenge of 

minimizing transfer times and futile transfers for ischemic stroke patients transferred for 

EVT using Nova Scotia, Canada as a case study. The study is structured in two distinct 

phases. In the initial phase, each PSC is treated as an independent DMU, creating a 

comprehensive analysis for ten PSCs using an input oriented VRS assisted by super 

efficiency analysis. The use of super efficiency analysis is particularly noteworthy as it 

allows for the identification of outlier observations and enhances the evaluation process. 

This phase involves a meticulous consideration of nine inputs, including patient age and the 

distance between PSCs and the CSC providing EVT. The second phase strategically 

addresses data limitations arising from the relatively small size of Nova Scotia. Eight PSCs 

with low patient numbers are merged into four DMUs, each consisting of two PSCs. This 

strategic combination allows for a more comprehensive analysis by bolstering patient 

sample sizes. The decision to merge PSCs is based not only on the limited number of 

patients but also on geographic proximity, ensuring that PSCs selected for merging are close 

to one another. Two PSCs are kept separate due to their sufficient patient volume. In this 

phase, both VRS and CRS methodologies are employed, with CRS ultimately 

outperforming VRS and yielding superior results. The study goes beyond the immediate 

analysis of efficiency by conducting a comparative assessment between two distinct periods 
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(2018-2019 and 2020-2021) using the MPI. This temporal analysis aims to evaluate the 

relative efficiency and productivity changes of six DMUs over time. It is noteworthy that 

the study acknowledges the limitations of the Python-based PyDEA tool used in the initial 

phase for MPI evaluations over time and opts for PIM-DEA software, which provides the 

necessary advanced functionalities. The findings of both phases highlight the significant 

impact of considerable distances between specific PSCs and the CSC on the efficiency and 

performance of EVT delivery for stroke patients. Geographic proximity emerges as a critical 

factor influencing access times for EVT. The study not only contributes insights into 

healthcare delivery within a specific region but also underscores the broader implications of 

distance on emergency care efficiency. In summary, Paper 2 provides a meticulous and 

context-specific application of DEA, addressing practical challenges in stroke care delivery. 

By strategically merging PSCs and employing advanced methodologies, the study not only 

offers insights into Nova Scotia's healthcare landscape but also sets the stage for potential 

applications of DEA in larger provinces or regions with more extensive healthcare 

infrastructures. 

Together, these papers contribute to a nuanced understanding of how DEA can be 

applied in emergency care settings. Paper 1 provides a comprehensive overview, 

categorizing DEA applications, while Paper 2 offers a specific case study, showcasing the 

practical implications of DEA in minimizing transfer times for ischemic stroke patients. The 

combination of these insights underscores the versatility and effectiveness of DEA as a 

decision-support tool for healthcare managers and decision-makers, offering both a broad 

perspective and a real-world application within the emergency care context. 

4.1 Interpretation of DEA Results for Healthcare Administrators 

Healthcare administrators in Nova Scotia face a critical decision-making challenge 

when interpreting the DEA results, especially with a single EVT center and ten Primary 

Stroke Centers (PSCs). The findings indicate that Eastern zones, being the furthest from the 

Comprehensive Stroke Center (CSC), exhibit lower efficiency scores. This geographical 

variation underscores the importance of spatial proximity in stroke care efficiency. 

Administrators should recognize that the reduced efficiency scores in Eastern zones may be 

attributed to longer distances, potentially leading to extended response times and logistical 

complexities. This prompts the need for strategic interventions to address geographical 

challenges and optimize the overall stroke care network. 
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• Resource Allocation and EVT Center:  

Resource Utilization: With a single EVT center in Nova Scotia, administrators need to 

carefully allocate resources to ensure optimal utilization. The DEA results offer insights into 

the efficiency of resource allocation across centers, guiding administrators in identifying 

areas for improvement and ensuring that the EVT center is operating at its maximum 

capacity. 

Benchmarking: The EVT center can serve as a benchmark for efficient practices. Decision-

makers should investigate the factors contributing to its high efficiency score and consider 

replicating successful strategies in other centers to enhance overall system efficiency. 

• Strategic Planning for System-Wide Improvement:  

System-Wide Optimization: Administrators can use the DEA results to inform strategic 

planning initiatives aimed at system-wide improvement. This may involve standardizing 

protocols, implementing best practices from high-efficiency centers, and addressing 

inefficiencies in time metrics to elevate the overall quality of stroke care services. 

Collaboration and Communication: Decision-makers should encourage collaboration and 

communication among stroke centers, fostering a network that shares best practices and 

collectively works towards enhancing the efficiency of the entire system. Regular 

assessments and adjustments based on performance metrics will be crucial for continuous 

improvement. 

In summary, healthcare administrators in Nova Scotia, armed with DEA insights, can 

strategically optimize the stroke care network. Addressing geographical challenges, 

ensuring efficient resource allocation, and fostering collaboration among centers are key 

considerations for decision-makers aiming to enhance the overall effectiveness of stroke 

care services in the region. 

 

4.2 Limitations and Future Direction of the Research 

 In reflecting upon the insightful findings presented in this case study, it is essential to 

acknowledge the research's efforts in applying DEA to address the challenges of minimizing 

transfer times and futile transfers of ischemic stroke patients for EVT. The study's two-

phase approach, incorporating strategic merging of PSCs and employing VRS and CRS 

methodologies, offers valuable contributions to the understanding of healthcare efficiency 
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within a specific regional context. However, as with any research endeavor, certain 

limitations arise, particularly stemming from the small number of patients and resultant data 

constraints. Additionally, the study prompts thoughtful considerations for future research 

directions, suggesting avenues for addressing these limitations and broadening the scope to 

larger provinces and larger datasets, thereby enhancing the applicability and generalizability 

of the DEA model in diverse healthcare settings. In the following, we highlighted the 

suggested limitations and future directions: 

The limitations in this study include: 

1. Data Representation Challenges: 

• While the strategic combination of PSCs allows for a more comprehensive analysis, 

it is crucial to acknowledge that the available data may still have limitations in 

providing a complete and nuanced representation of the entire healthcare landscape 

within Nova Scotia. The merged PSCs may not fully capture the diversity and 

intricacies of individual centers, potentially impacting the generalizability of the 

study's findings. 

2. Geographic Specificity: 

• The research's geographic specificity to Nova Scotia might limit the generalizability 

of its findings to other regions with distinct healthcare infrastructures. The unique 

characteristics of Nova Scotia, such as its size and population density, may not be 

representative of larger provinces or regions, affecting the applicability of the 

proposed model in diverse healthcare contexts. 

In essence, future research should build upon the limitations identified in this research 

by expanding the scope to larger provinces, addressing data restrictions, and ensuring the 

applicability of the DEA model in varied healthcare contexts. This approach will contribute 

to a more comprehensive understanding of the efficiency and performance of acute stroke 

systems across hospitals. While the study focuses on efficiency and geographic 

considerations, future research might delve into a comprehensive cost-benefit analysis 

associated with different transportation methods. Evaluating the economic implications, 

including infrastructure investment, maintenance costs, and potential healthcare savings 

through faster interventions, could provide a more holistic understanding of the viability of 

transportation improvements. 
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CHAPTER 5  CONCLUSION 
 

The findings underscore the vital role of geographic proximity in influencing the 

efficiency and performance of specific PSCs in delivering EVT for stroke patients. 

Importantly, this insight holds considerable implications for future healthcare planning, 

suggesting that if the establishment of a second CSC is recommended, the Eastern zone 

should be a priority to address the extended transportation distances faced by PSCs in this 

region. Furthermore, the consideration of Euclidean distance for air transport from long 

distances reflects a pragmatic approach, recognizing the urgency of stroke cases where 

minutes are crucial. The recommendation for such rapid transportation methods aligns with 

the broader goal of minimizing transfer times and optimizing healthcare delivery. This 

aspect of the conclusion emphasizes the practical implications of the research, advocating 

for strategic improvements in the transportation infrastructure to enhance the overall 

efficiency of stroke care. In essence, this case study not only summarizes the efficiency 

trends among PSCs but also provides actionable insights for healthcare policymakers. The 

emphasis on geographic priority and the practical consideration of transportation methods 

adds a nuanced dimension to the research, contributing valuable guidance for future 

healthcare planning and resource allocation in the region. 

5.1 Summary of Contributions 

 This research studied the application of DEA to optimize healthcare delivery and 

minimize transfer times for ischemic stroke patients receiving EVT. The contributions of 

this research are as follows: 

1. Geographic Efficiency and PSC Performance: 

• Geographic Efficiency Analysis: Explores the relationship between geographic 

distance and PSC efficiency for delivering EVT to ischemic stroke patients. 

• Strategic Merging for Nuanced Insights: Merges PSCs based on patient volume 

and geographical proximity to provide comprehensive and nuanced insights into the 

efficiency landscape. 

• Efficiency Variations Among PSCs: Identifies specific PSCs demonstrating lower 

efficiency and highlights the pivotal role of geographic proximity. 

• Eastern Zone Priority Recommendations: It is recommended to prioritize the 
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Eastern zone for a potential second CSC, considering specific regional needs, 

Euclidean distance, or the requirement for helicopters in patient transportation, as 

well as the potential need for additional ambulances. The decision to prioritize the 

Northern zone is based on its acquisition of the second lowest average efficiency 

score for PSCs, designating it as the second priority. 

2. Patient-Centric Focus and Individualized Analysis: 

• Patient-Centric Evaluation: Treats each ischemic stroke patient as an independent 

DMU, offering a detailed analysis of individual experiences and outcomes. 

• Two-Scenario Analysis: Conducts a dynamic analysis in two distinct scenarios, 

providing a nuanced understanding of efficiency trends considering different 

parameters. 

• Comparative Analysis Over Two Periods: Offers insights into efficiency trends 

over time by comparing two distinct periods: 2018-2019 and 2020-2021. 

• Patient-Centric Efficiency Trends: Provides efficiency trends from a patient-

centric perspective, enriching the understanding of individual patient experiences. 

3. Methodological Rigor and Future Research Implications: 

• Strategic PSC Merging for Data Constraints: Proposes strategic merging of PSCs 

to address data limitations, ensuring a comprehensive analysis. 

• Consideration of Euclidean Distance: Advocates for considering Euclidean 

distance for transportation methods, aligning with the time-sensitive nature of stroke 

interventions. 

• Setting the Stage for Future Research: Proposes future research directions such as 

telemedicine integration, cost-benefit analysis, community engagement, and 

environmental impact assessment. 

• Holistic Healthcare Approach: Advocates for a holistic approach to healthcare 

improvement, considering broader ecological implications beyond immediate 

patient care. 

These three contributions encompass the geographic efficiency and performance of 

PSCs, a patient-centric focus with individualized analysis, and methodological rigor 

with implications for future research and holistic healthcare improvement. 
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Appendix B: Study 2 Supplementary  

Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario. 

  
D

M
U

s 

 

Category Original Target Radial Non-radial 

  1
  

DIDI Time (Door-In-Door-In) 0.807957154 0.147523055 -0.50862627 

-

0.151807829 

Driving Distance 0.3925 0.145412874 

-

0.247087126 0 

Euclidean Distance 0.408119521 0.149670629 

-

0.256919948 

-

0.001528944 

Onset_to_1st_CT 0.101744186 0.03769405 

-

0.064050136 0 

Onset_To_Arrival_1st 0.15942029 0.048331173 

-

0.100358475 

-

0.010730642 

  2
  

DIDI Time (Door-In-Door-In) 0.204284621 0.109255466 

-

0.095029155 0 

Driving Distance 0.5425 0.273932476 

-

0.252360242 

-

0.016207282 

Euclidean Distance 0.533943311 0.285563471 -0.24837984 4.16E-10 

Onset_to_1st_CT 0.04244186 0.022698748 

-

0.019743112 0 

Onset_To_Arrival_1st 0.057971014 0.031004048 

-

0.026966966 0 

 3
 

DIDI Time (Door-In-Door-In) 0.176740627 0.099072459 

-

0.077668168 6.66E-10 

Driving Distance 0.755 0.339469904 

-

0.331782613 

-

0.083747482 

Euclidean Distance 0.70925843 0.353053119 -0.31168161 

-

0.044523701 

Onset_to_1st_CT 0.046511628 0.026072225 

-

0.020439403 0 

Onset_To_Arrival_1st 0.072463768 0.04061977 

-

0.031843998 2.64E-10 

 4
 

DIDI Time (Door-In-Door-In) 0.094108646 0.093515002 

-

0.000593644 1.12E-10 

Driving Distance 0.3925 0.31221161 

-

0.002475917 

-

0.077812473 

Euclidean Distance 0.408119521 0.324700019 

-

0.002574447 

-

0.080845056 

Onset_to_1st_CT 0.038372093 0.038130039 

-

0.000242054 -1.25E-10 

Onset_To_Arrival_1st 0.050724638 0.050404663 

-

0.000319975 -1.47E-10 

 5
 

DIDI Time (Door-In-Door-In) 0.257077276 0.115389132 

-

0.141688143 -9.58E-10 

Driving Distance 0.8975 0.272729317 

-

0.494657134 

-

0.130113549 

Euclidean Distance 0.800531064 0.282130006 

-

0.441212704 

-

0.077188354 

Onset_to_1st_CT 0.039534884 0.017745232 

-

0.021789652 -1.36E-10 

Onset_To_Arrival_1st 0.049818841 0.022361186 

-

0.027457655 -2.96E-10 

 6
 

DIDI Time (Door-In-Door-In) 0.179801071 0.08838908 

-

0.091411992 8.49E-10 

Driving Distance 0.755 0.243531398 

-

0.383846734 

-

0.127621868 

Euclidean Distance 0.70925843 0.258557957 

-

0.360591433 

-

0.090109041 

Onset_to_1st_CT 0.091860465 0.045158029 

-

0.046702436 3.71E-10 

Onset_To_Arrival_1st 0.13134058 0.062693125 

-

0.066774374 

-

0.001873081 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 7
 

DIDI Time (Door-In-Door-In) 0.123182862 0.090613052 

-

0.032569811 1.06E-09 

Driving Distance 0.3925 0.252919665 

-

0.103777836 

-

0.035802499 

Euclidean Distance 0.408119521 0.269192801 

-

0.107907671 

-

0.031019049 

Onset_to_1st_CT 0.05755814 0.042339646 

-

0.015218495 5.15E-10 

Onset_To_Arrival_1st 0.079710145 0.058634614 

-

0.021075532 7.02E-10 

 8
 

DIDI Time (Door-In-Door-In) 1 0.143075746 0 

-

0.856924254 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.04244186 0.038953488 0 

-

0.003488372 

Onset_To_Arrival_1st 0.048007246 0.000905797 0 

-

0.047101449 

 9
 

DIDI Time (Door-In-Door-In) 0.148431523 0.104800487 

-

0.043631037 8.45E-10 

Driving Distance 0.23175 0.163627728 

-

0.068122273 9.05E-10 

Euclidean Distance 0.260733252 0.169884618 -0.07664182 

-

0.014206814 

Onset_to_1st_CT 0.045930233 0.032429167 

-

0.013501065 -4.15E-10 

Onset_To_Arrival_1st 0.070652174 0.049884162 

-

0.020768012 -4.92E-10 

 

1
0
 

DIDI Time (Door-In-Door-In) 0.355011477 0.073312291 

-

0.281699186 0 

Driving Distance 1 0.145621203 -0.79349318 

-

0.060885617 

Euclidean Distance 1 0.149901822 -0.79349318 

-

0.056604998 

Onset_to_1st_CT 0.31744186 0.065553909 

-

0.251887951 1.74E-10 

Onset_To_Arrival_1st 0.454710145 0.093900746 

-

0.360809399 1.77E-10 

 

1
1
 

DIDI Time (Door-In-Door-In) 0.321346595 0.143075746 0 

-

0.178270849 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.362209302 0.038953488 0 

-

0.323255814 

Onset_To_Arrival_1st 0.428442029 0.000905797 0 

-

0.427536232 

 

1
2
 

DIDI Time (Door-In-Door-In) 0.100994644 0.088261544 

-

0.012733101 3.53E-10 

Driving Distance 0.2625 0.229404791 -0.03309521 1.13E-09 

Euclidean Distance 0.27960842 0.243188607 

-

0.035252188 

-

0.001167625 

Onset_to_1st_CT 0.056976744 0.049793287 

-

0.007183456 -5.14E-10 

Onset_To_Arrival_1st 0.077898551 0.068077336 

-

0.009821215 -4.03E-10 

 

1
3
 

DIDI Time (Door-In-Door-In) 0.224942617 0.117476364 

-

0.107466252 -5.00E-10 

Driving Distance 0.3925 0.142845955 -0.18751673 

-

0.062137315 

Euclidean Distance 0.408119521 0.14693075 -0.19497895 

-

0.066209821 

Onset_to_1st_CT 0.074418605 0.038865144 

-

0.035553461 -1.34E-10 

Onset_To_Arrival_1st 0.054347826 0.028383172 

-

0.025964654 0 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.   

 

1
4
 

DIDI Time (Door-In-Door-In) 0.116296863 0.116296863 0 -4.37E-10 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.097093023 0.059431936 0 

-

0.037661087 

Onset_To_Arrival_1st 0.125 0.036041494 0 

-

0.088958506 
 

1
5
 

DIDI Time (Door-In-Door-In) 0.631981637 0.161404021 

-

0.458231513 

-

0.012346102 

Driving Distance 0.3925 0.106066279 -0.28459034 

-

0.001843381 

Euclidean Distance 0.408119521 0.112203917 

-

0.295915601 -3.00E-09 

Onset_to_1st_CT 0.538953488 0.086524872 

-

0.390779507 

-

0.061649109 

Onset_To_Arrival_1st 0.222826087 0.061261367 

-

0.161564718 -1.38E-09 

 

1
6
 

DIDI Time (Door-In-Door-In) 0.140015302 0.140015302 0 -1.53E-10 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.103488372 0.041293882 0 -0.06219449 

Onset_To_Arrival_1st 0.124094203 0.004921305 0 

-

0.119172898 

 

1
7
 

DIDI Time (Door-In-Door-In) 0.207345065 0.143075746 0 

-

0.064269319 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.587790698 0.038953488 0 -0.54883721 

Onset_To_Arrival_1st 0.808876812 0.000905797 0 

-

0.807971015 

 

1
8
 

DIDI Time (Door-In-Door-In) 0.143075746 0.143075746 0 0 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.038953488 0.038953488 0 0 

Onset_To_Arrival_1st 0.000905797 0.000905797 0 0 

 

1
9
 

DIDI Time (Door-In-Door-In) 0.10558531 0.10558531 0 0 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.233139535 0.067623315 0 -0.16551622 

Onset_To_Arrival_1st 0.22192029 0.050095772 0 

-

0.171824518 

 

2
0
 

DIDI Time (Door-In-Door-In) 0.022953328 0.022953328 0 0 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.130813953 0.130813953 0 0 

Onset_To_Arrival_1st 0.158514493 0.158514493 0 0 

 

2
1
 

DIDI Time (Door-In-Door-In) 0.301453711 0.143075746 0 

-

0.158377965 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.294186047 0.038953488 0 

-

0.255232559 

Onset_To_Arrival_1st 0.237318841 0.000905797 0 

-

0.236413044 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 

2
2
 

DIDI Time (Door-In-Door-In) 0.139250191 0.139250191 0 0 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.026744186 0.026744186 0 0 

Onset_To_Arrival_1st 0.000905797 0.000905797 0 0 
 

2
3
 

DIDI Time (Door-In-Door-In) 0.434583015 0.143075746 0 

-

0.291507269 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.263372093 0.038953488 0 

-

0.224418605 

Onset_To_Arrival_1st 0.000905797 0.000905797 0 0 

 

2
4
 

DIDI Time (Door-In-Door-In) 0.311400153 0.311400153 0 0 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.116860465 0.116860465 0 0 

Onset_To_Arrival_1st 0.038949275 0.038949275 0 0 

 

2
5
 

DIDI Time (Door-In-Door-In) 0.413925019 0.143075746 0 

-

0.270849273 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.30872093 0.038953488 0 

-

0.269767442 

Onset_To_Arrival_1st 0.382246377 0.000905797 0 -0.38134058 

 

2
6
 

DIDI Time (Door-In-Door-In) 0.092578424 0.092578424 0 0 

Driving Distance 0.2625 0.2625 0 0 

Euclidean Distance 0.27960842 0.27960842 0 0 

Onset_to_1st_CT 0.037790698 0.037790698 0 0 

Onset_To_Arrival_1st 0.055253623 0.055253623 0 0 

 

2
7
 

DIDI Time (Door-In-Door-In) 0.299923489 0.098278238 -0.20164525 -6.74E-10 

Driving Distance 0.5425 0.168202347 

-

0.364734848 

-

0.009562805 

Euclidean Distance 0.533943311 0.174961316 

-

0.358981995 -5.14E-10 

Onset_to_1st_CT 0.151744186 0.049723186 -0.102021 -3.10E-10 

Onset_To_Arrival_1st 0.208333333 0.053196599 

-

0.140067146 

-

0.015069588 

 

2
8
 

DIDI Time (Door-In-Door-In) 0.197398623 0.130681169 

-

0.066717454 0 

Driving Distance 1 0.31566126 -0.33798338 -0.34635536 

Euclidean Distance 1 0.313594333 -0.33798338 

-

0.348422287 

Onset_to_1st_CT 0.037790698 0.02501807 

-

0.012772628 0 

Onset_To_Arrival_1st 0.055253623 0.036578817 

-

0.018674806 0 

 

2
9
 

DIDI Time (Door-In-Door-In) 0.167559296 0.167559295 0 -8.09E-10 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.087790698 0.050285412 0 

-

0.037505286 

Onset_To_Arrival_1st 0.059782609 0.006439394 0 

-

0.053343215 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 

3
0
 

DIDI Time (Door-In-Door-In) 0.302983933 0.143075746 0 

-

0.159908187 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.145930233 0.038953488 0 

-

0.106976745 

Onset_To_Arrival_1st 0.072463768 0.000905797 0 

-

0.071557971 
 

3
1
 

DIDI Time (Door-In-Door-In) 0.205049732 0.152423479 

-

0.032135326 

-

0.020490927 

Driving Distance 0.755 0.627374264 

-

0.118323351 

-

0.009302385 

Euclidean Distance 0.70925843 0.598103679 

-

0.111154747 -3.68E-09 

Onset_to_1st_CT 0.023255814 0.01961117 

-

0.003644643 -1.60E-10 

Onset_To_Arrival_1st 0.030797101 0.025970589 

-

0.004826512 -2.92E-10 

 

3
2
 

DIDI Time (Door-In-Door-In) 0.13006886 0.054191226 

-

0.075877635 8.57E-10 

Driving Distance 0.23175 0.09294723 

-

0.135194864 

-

0.003607906 

Euclidean Distance 0.260733252 0.091446722 

-

0.152102682 

-

0.017183847 

Onset_to_1st_CT 0.223255814 0.093016162 

-

0.130239652 7.89E-10 

Onset_To_Arrival_1st 0.34692029 0.119971796 

-

0.202381193 

-

0.024567301 

 

3
3
 

DIDI Time (Door-In-Door-In) 0.355011477 0.073312291 

-

0.281699186 0 

Driving Distance 1 0.145621203 -0.79349318 

-

0.060885617 

Euclidean Distance 1 0.149901822 -0.79349318 

-

0.056604998 

Onset_to_1st_CT 0.31744186 0.065553909 

-

0.251887951 1.74E-10 

Onset_To_Arrival_1st 0.454710145 0.093900746 

-

0.360809399 1.77E-10 

 

3
4
 

DIDI Time (Door-In-Door-In) 0.547819434 0.143075746 0 

-

0.404743688 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.159883721 0.038953488 0 

-

0.120930233 

Onset_To_Arrival_1st 0.136775362 0.000905797 0 

-

0.135869565 

 

3
5
 

DIDI Time (Door-In-Door-In) 0.101759755 0.101759754 0 -7.57E-10 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.549418605 0.122903758 0 

-

0.426514847 

Onset_To_Arrival_1st 0.843297101 0.147278221 0 -0.69601888 

 

3
6
 

DIDI Time (Door-In-Door-In) 0.21117062 0.084727426 

-

0.126443194 0 

Driving Distance 0.8975 0.180736656 

-

0.537398462 

-

0.179364882 

Euclidean Distance 0.800531064 0.188871302 

-

0.479336115 

-

0.132323647 

Onset_to_1st_CT 0.128488372 0.051553047 

-

0.076935324 -5.56E-10 

Onset_To_Arrival_1st 0.194746377 0.07813757 

-

0.116608806 -6.38E-10 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 

3
7
 

DIDI Time (Door-In-Door-In) 0.141545524 0.141545525 0 6.27E-10 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.288953488 0.040123685 0 

-

0.248829803 

Onset_To_Arrival_1st 0.401268116 0.002913551 0 

-

0.398354565 
 

3
8
 

DIDI Time (Door-In-Door-In) 0.166029074 0.098514466 

-

0.067514607 -6.98E-10 

Driving Distance 0.3925 0.228543369 

-

0.159607487 

-

0.004349144 

Euclidean Distance 0.408119521 0.24216046 

-

0.165959061 -3.79E-10 

Onset_to_1st_CT 0.063953488 0.037947232 

-

0.026006256 -1.37E-10 

Onset_To_Arrival_1st 0.081521739 0.048371472 

-

0.033150267 0 

 

3
9
 

DIDI Time (Door-In-Door-In) 0.221117062 0.088012448 

-

0.133104615 8.21E-10 

Driving Distance 0.755 0.241826075 

-

0.454483175 -0.05869075 

Euclidean Distance 0.70925843 0.256665469 

-

0.426948375 

-

0.025644586 

Onset_to_1st_CT 0.115116279 0.045820369 -0.06929591 3.76E-10 

Onset_To_Arrival_1st 0.161231884 0.063361953 

-

0.097055866 

-

0.000814065 

 

4
0
 

DIDI Time (Door-In-Door-In) 0.118592196 0.103587694 

-

0.015004503 5.38E-10 

Driving Distance 0.3925 0.321009491 

-

0.049659822 

-

0.021830687 

Euclidean Distance 0.408119521 0.337447798 

-

0.051636033 -0.01903569 

Onset_to_1st_CT 0.022674419 0.01980561 

-

0.002868809 0 

Onset_To_Arrival_1st 0.043478261 0.037977312 -0.00550095 0 

 

4
1
 

DIDI Time (Door-In-Door-In) 0.26013772 0.26013772 0 0 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.1 0.1 0 0 

Onset_To_Arrival_1st 0.139492754 0.139492754 0 0 

 

4
2
 

DIDI Time (Door-In-Door-In) 0.126243305 0.112471308 0 

-

0.013771997 

Driving Distance 0.2625 0.2625 0 0 

Euclidean Distance 0.27960842 0.27960842 0 0 

Onset_to_1st_CT 0.023255814 0.023255814 0 0 

Onset_To_Arrival_1st 0.0625 0.057971014 0 

-

0.004528986 

 

4
3
 

DIDI Time (Door-In-Door-In) 0.359602142 0.142574489 -0.21216621 

-

0.004861444 

Driving Distance 1 0.409997372 -0.59000263 1.88E-09 

Euclidean Distance 1 0.393152425 -0.59000263 

-

0.016844945 

Onset_to_1st_CT 0.036627907 0.015017346 

-

0.021610561 0 

Onset_To_Arrival_1st 0.045289855 0.018568722 

-

0.026721134 2.13E-10 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 

4
4
 

DIDI Time (Door-In-Door-In) 0.136954858 0.080877641 

-

0.056077217 -2.96E-10 

Driving Distance 0.5425 0.209520943 

-

0.222130786 

-

0.110848271 

Euclidean Distance 0.533943311 0.220814751 

-

0.218627184 

-

0.094501376 

Onset_to_1st_CT 0.098837209 0.058367555 

-

0.040469653 -2.01E-10 

Onset_To_Arrival_1st 0.153985507 0.076032052 

-

0.063050547 

-

0.014902908 

 

4
5
 

DIDI Time (Door-In-Door-In) 0.096403979 0.096403979 0 0 

Driving Distance 0.23175 0.23175 0 0 

Euclidean Distance 0.260733252 0.260733252 0 0 

Onset_to_1st_CT 0.108139535 0.108139535 0 0 

Onset_To_Arrival_1st 0.04076087 0.04076087 0 0 

 

4
6
 

DIDI Time (Door-In-Door-In) 0.133894415 0.082201777 

-

0.051692638 3.73E-10 

Driving Distance 0.3925 0.215516396 

-

0.151532538 

-

0.025451066 

Euclidean Distance 0.408119521 0.227468224 

-

0.157562769 

-

0.023088528 

Onset_to_1st_CT 0.09127907 0.056038945 

-

0.035240125 0 

Onset_To_Arrival_1st 0.122282609 0.07368063 

-

0.047209666 

-

0.001392312 

 

4
7
 

DIDI Time (Door-In-Door-In) 0.198163734 0.159679399 

-

0.038484334 0 

Driving Distance 1 0.706692588 -0.19420473 

-

0.099102682 

Euclidean Distance 1 0.667270574 -0.19420473 

-

0.138524696 

Onset_to_1st_CT 0.023837209 0.01920791 

-

0.004629299 0 

Onset_To_Arrival_1st 0.023550725 0.018977063 

-

0.004573662 0 

 

4
8
 

DIDI Time (Door-In-Door-In) 0.142310635 0.105520484 

-

0.036790151 1.61E-10 

Driving Distance 0.2625 0.19463849 

-

0.067861511 0 

Euclidean Distance 0.27960842 0.204298904 -0.07228438 

-

0.003025136 

Onset_to_1st_CT 0.030813953 0.022847928 

-

0.007966024 -5.74E-10 

Onset_To_Arrival_1st 0.079710145 0.04647989 -0.02060667 

-

0.012623585 

 

4
9
 

DIDI Time (Door-In-Door-In) 0.451415455 0.06605431 

-

0.385361145 -1.55E-10 

Driving Distance 1 0.128432521 -0.85367291 

-

0.017894569 

Euclidean Distance 1 0.138635686 -0.85367291 

-

0.007691404 

Onset_to_1st_CT 0.820930233 0.119600085 

-

0.700805901 

-

0.000524247 

Onset_To_Arrival_1st 0.652173913 0.09543071 

-

0.556743202 -9.58E-10 

 

5
0
 

DIDI Time (Door-In-Door-In) 0.257077276 0.137620813 

-

0.112582931 

-

0.006873532 

Driving Distance 0.755 0.409264771 

-

0.330640321 

-

0.015094909 

Euclidean Distance 0.70925843 0.398649907 

-

0.310608523 -1.13E-10 

Onset_to_1st_CT 0.040697674 0.022874771 

-

0.017822903 0 

Onset_To_Arrival_1st 0.058876812 0.033092643 -0.02578417 1.72E-10 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 

5
1
 

DIDI Time (Door-In-Door-In) 0.185156848 0.066835863 

-

0.118320986 1.15E-09 

Driving Distance 0.3925 0.132149409 

-

0.250819711 -0.00953088 

Euclidean Distance 0.408119521 0.134951459 

-

0.260801071 

-

0.012366992 

Onset_to_1st_CT 0.200581395 0.072403644 

-

0.128177751 5.09E-10 

Onset_To_Arrival_1st 0.307065217 0.101360705 

-

0.196224226 

-

0.009480286 

 

5
2
 

DIDI Time (Door-In-Door-In) 0.589135425 0.143075746 0 

-

0.446059679 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.079069767 0.038953488 0 

-

0.040116279 

Onset_To_Arrival_1st 0.042572464 0.000905797 0 

-

0.041666667 

 

5
3
 

DIDI Time (Door-In-Door-In) 0.213465953 0.130876794 

-

0.041239462 

-

0.041349697 

Driving Distance 0.23175 0.186978245 

-

0.044771755 -3.23E-10 

Euclidean Distance 0.260733252 0.195797925 

-

0.050371026 

-

0.014564302 

Onset_to_1st_CT 0.034883721 0.028144539 

-

0.006739182 0 

Onset_To_Arrival_1st 0.053442029 0.04311757 

-

0.010324459 0 

 

5
4
 

DIDI Time (Door-In-Door-In) 0.52027544 0.091112356 

-

0.429163083 -1.38E-09 

Driving Distance 0.755 0.122468176 

-

0.622781901 

-

0.009749923 

Euclidean Distance 0.70925843 0.124207681 

-

0.585050746 -2.57E-09 

Onset_to_1st_CT 0.395930233 0.069336612 -0.32659362 -1.38E-09 

Onset_To_Arrival_1st 0.572463768 0.085009878 

-

0.472212018 

-

0.015241872 

 

5
5
 

DIDI Time (Door-In-Door-In) 0.125478194 0.106468828 

-

0.019009365 -1.04E-09 

Driving Distance 0.23175 0.196640947 

-

0.035109052 -9.31E-10 

Euclidean Distance 0.260733252 0.206334397 -0.03949988 

-

0.014898974 

Onset_to_1st_CT 0.041860465 0.035518798 

-

0.006341667 -2.49E-10 

Onset_To_Arrival_1st 0.045289855 0.038428651 

-

0.006861203 -1.97E-10 

 

5
6
 

DIDI Time (Door-In-Door-In) 0.177505738 0.11146656 

-

0.066039178 3.96E-10 

Driving Distance 0.23175 0.145529805 

-

0.086220196 7.40E-10 

Euclidean Distance 0.260733252 0.149800393 

-

0.097003116 

-

0.013929743 

Onset_to_1st_CT 0.046511628 0.029207457 

-

0.017304171 0 

Onset_To_Arrival_1st 0.06884058 0.040298545 

-

0.025611427 

-

0.002930608 

 

5
7
 

DIDI Time (Door-In-Door-In) 0.112471308 0.111844904 

-

0.000626404 0 

Driving Distance 0.2625 0.261038017 

-

0.001461983 0 

Euclidean Distance 0.27960842 0.276743188 

-

0.001557268 

-

0.001307964 

Onset_to_1st_CT 0.00755814 0.007516045 -4.21E-05 0 

Onset_To_Arrival_1st 0.036231884 0.036030092 

-

0.000201792 0 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 

5
8
 

DIDI Time (Door-In-Door-In) 0.169089518 0.097529979 -0.07155954 2.64E-10 

Driving Distance 0.2625 0.151408672 

-

0.111091328 0 

Euclidean Distance 0.27960842 0.156324484 

-

0.118331698 

-

0.004952238 

Onset_to_1st_CT 0.073837209 0.042588929 -0.03124828 7.02E-10 

Onset_To_Arrival_1st 0.115036232 0.060984596 

-

0.048683915 

-

0.005367721 
 

5
9
 

DIDI Time (Door-In-Door-In) 0.136954858 0.098207447 

-

0.038747412 7.71E-10 

Driving Distance 0.5425 0.225617283 -0.15348467 

-

0.163398048 

Euclidean Distance 0.533943311 0.238677713 

-

0.151063802 

-

0.144201796 

Onset_to_1st_CT 0.03255814 0.023346757 

-

0.009211383 -1.78E-10 

Onset_To_Arrival_1st 0.153985507 0.056366358 

-

0.043565741 

-

0.054053408 

 

6
0
 

DIDI Time (Door-In-Door-In) 0.263963275 0.120219007 

-

0.143744269 6.75E-10 

Driving Distance 0.8975 0.358797544 

-

0.488744054 

-

0.049958402 

Euclidean Distance 0.800531064 0.364592573 

-

0.435938493 1.87E-09 

Onset_to_1st_CT 0.072674419 0.03309872 

-

0.039575699 3.05E-10 

Onset_To_Arrival_1st 0.10326087 0.047028964 

-

0.056231907 3.04E-10 

 

6
1
 

DIDI Time (Door-In-Door-In) 0.436113236 0.088765915 

-

0.347347319 -1.30E-09 

Driving Distance 1 0.193953456 -0.79646131 

-

0.009585234 

Euclidean Distance 1 0.203538686 -0.79646131 -3.55E-09 

Onset_to_1st_CT 0.260465116 0.053014728 

-

0.207450387 -8.76E-10 

Onset_To_Arrival_1st 0.362318841 0.064644956 

-

0.288572939 

-

0.009100947 

 

6
2
 

DIDI Time (Door-In-Door-In) 0.343534813 0.126581168 -0.17138879 

-

0.045564855 

Driving Distance 0.2625 0.131539308 

-

0.130960694 1.68E-09 

Euclidean Distance 0.27960842 0.134274397 

-

0.139496048 

-

0.005837975 

Onset_to_1st_CT 0.03255814 0.016314953 

-

0.016243187 0 

Onset_To_Arrival_1st 0.055253623 0.017987493 

-

0.027565915 

-

0.009700215 

 

6
3
 

DIDI Time (Door-In-Door-In) 0.166794185 0.105906099 

-

0.060888085 -4.25E-10 

Driving Distance 0.23175 0.147149846 

-

0.084600154 0 

Euclidean Distance 0.260733252 0.151598238 

-

0.095180468 

-

0.013954546 

Onset_to_1st_CT 0.054651163 0.034700799 

-

0.019950364 0 

Onset_To_Arrival_1st 0.081521739 0.048563702 

-

0.029759446 

-

0.003198591 

 

6
4
 

DIDI Time (Door-In-Door-In) 0.122417751 0.122417751 0 -1.77E-10 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.331395349 0.054751147 0 

-

0.276644202 

Onset_To_Arrival_1st 0.490942029 0.028010477 0 

-

0.462931552 

 



118 

 

Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 

6
5
 

DIDI Time (Door-In-Door-In) 0.206579954 0.125467998 -0.02062642 

-

0.060485536 

Driving Distance 0.2625 0.236135293 

-

0.026209877 -0.00015483 

Euclidean Distance 0.27960842 0.251690317 

-

0.027918104 4.51E-10 

Onset_to_1st_CT 0.04244186 0.038204161 

-

0.004237699 0 

Onset_To_Arrival_1st 0.071557971 0.064413112 

-

0.007144859 1.60E-10 

 

6
6
 

DIDI Time (Door-In-Door-In) 0.612853864 0.143075746 0 

-

0.469778118 

Driving Distance 0.3925 0.02 0 -0.3725 

Euclidean Distance 0.408119521 0.010493314 0 

-

0.397626207 

Onset_to_1st_CT 0.058139535 0.038953488 0 

-

0.019186047 

Onset_To_Arrival_1st 0.000905797 0.000905797 0 0 

 

6
7
 

DIDI Time (Door-In-Door-In) 0.256312165 0.099751315 -0.15656085 2.89E-10 

Driving Distance 0.755 0.257662665 

-

0.461169847 

-

0.036167487 

Euclidean Distance 0.70925843 0.276028495 

-

0.433229936 8.87E-10 

Onset_to_1st_CT 0.106395349 0.041406837 

-

0.064988512 1.59E-10 

Onset_To_Arrival_1st 0.141304348 0.054992686 

-

0.086311662 1.73E-10 

 

6
8
 

DIDI Time (Door-In-Door-In) 0.244835501 0.043358433 

-

0.201477068 0 

Driving Distance 0.2625 0.046486677 

-

0.216013324 6.55E-10 

Euclidean Distance 0.27960842 0.039886984 

-

0.230091978 

-

0.009629459 

Onset_to_1st_CT 0.680232558 0.120463811 

-

0.559768746 -1.10E-09 

Onset_To_Arrival_1st 1 0.139668384 -0.8229079 

-

0.037423716 

 

6
9
 

DIDI Time (Door-In-Door-In) 0.192042846 0.044512883 

-

0.147529963 -9.09E-10 

Driving Distance 0.23175 0.050748612 

-

0.178033546 

-

0.002967842 

Euclidean Distance 0.260733252 0.044616679 -0.20029888 

-

0.015817693 

Onset_to_1st_CT 0.498255814 0.115488825 

-

0.382766987 -1.69E-09 

Onset_To_Arrival_1st 0.761775362 0.138010031 

-

0.585206338 

-

0.038558993 

 

7
0
 

DIDI Time (Door-In-Door-In) 0.255547054 0.11172741 

-

0.143819643 -4.36E-10 

Driving Distance 0.3925 0.171331073 

-

0.220895562 

-

0.000273366 

Euclidean Distance 0.408119521 0.178433428 

-

0.229686091 -1.75E-09 

Onset_to_1st_CT 0.068604651 0.029994554 

-

0.038610097 0 

Onset_To_Arrival_1st 0.077898551 0.034057929 

-

0.043840622 -3.00E-10 

 

7
1
 

DIDI Time (Door-In-Door-In) 0.351185922 0.143075746 0 

-

0.208110176 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.623255814 0.038953488 0 

-

0.584302326 

Onset_To_Arrival_1st 0.72192029 0.000905797 0 

-

0.721014493 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 

7
2
 

DIDI Time (Door-In-Door-In) 0.214996174 0.143075746 0 

-

0.071920428 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.109883721 0.038953488 0 

-

0.070930233 

Onset_To_Arrival_1st 0.075181159 0.000905797 0 

-

0.074275362 

 

7
3
 

DIDI Time (Door-In-Door-In) 0.042081102 0.042081102 0 -2.88E-10 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.413372093 0.11618649 0 

-

0.297185603 

Onset_To_Arrival_1st 0.786231884 0.133417567 0 

-

0.652814317 

 

7
4
 

DIDI Time (Door-In-Door-In) 0.498852334 0.101779964 -0.39707237 0 

Driving Distance 0.2625 0.053557414 

-

0.208942587 6.98E-10 

Euclidean Distance 0.27960842 0.050150481 

-

0.222560406 

-

0.006897533 

Onset_to_1st_CT 1 0.104529129 -0.79597176 

-

0.099499111 

Onset_To_Arrival_1st 0.494565217 0.100905272 

-

0.393659946 7.24E-10 

 

7
5
 

DIDI Time (Door-In-Door-In) 0.260902831 0.143075746 0 

-

0.117827085 

Driving Distance 0.3925 0.02 0 -0.3725 

Euclidean Distance 0.408119521 0.010493314 0 

-

0.397626207 

Onset_to_1st_CT 0.070930233 0.038953488 0 

-

0.031976745 

Onset_To_Arrival_1st 0.000905797 0.000905797 0 0 

 

7
6
 

DIDI Time (Door-In-Door-In) 0.433817904 0.26013772 0 

-

0.173680184 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.146511628 0.1 0 

-

0.046511628 

Onset_To_Arrival_1st 0.184782609 0.139492754 0 

-

0.045289855 

 

7
7
 

DIDI Time (Door-In-Door-In) 0.09716909 0.09716909 0 1.85E-10 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.115697674 0.070925793 0 

-

0.044771881 

Onset_To_Arrival_1st 0.147644928 0.063654717 0 

-

0.083990211 

 

7
8
 

DIDI Time (Door-In-Door-In) 0.55317521 0.143075746 0 

-

0.410099464 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.409302326 0.038953488 0 

-

0.370348838 

Onset_To_Arrival_1st 0.529891304 0.000905797 0 

-

0.528985507 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 

7
9
 

DIDI Time (Door-In-Door-In) 0.488905891 0.153641233 -0.27523998 

-

0.060024678 

Driving Distance 1 0.437028712 -0.56297129 2.25E-09 

Euclidean Distance 1 0.409865437 -0.56297129 

-

0.027163273 

Onset_to_1st_CT 0.05755814 0.02515456 -0.03240358 0 

Onset_To_Arrival_1st 0.029891304 0.013063358 

-

0.016827946 0 
 

8
0
 

DIDI Time (Door-In-Door-In) 0.166794185 0.166794185 0 0 

Driving Distance 0.755 0.755 0 0 

Euclidean Distance 0.70925843 0.70925843 0 0 

Onset_to_1st_CT 0.015697674 0.015697674 0 0 

Onset_To_Arrival_1st 0.015398551 0.015398551 0 0 

 

8
1
 

DIDI Time (Door-In-Door-In) 0.181331293 0.10475803 

-

0.076573262 -1.19E-09 

Driving Distance 0.3925 0.22118186 -0.16574638 -0.00557176 

Euclidean Distance 0.408119521 0.235777269 -0.17234225 -2.22E-09 

Onset_to_1st_CT 0.087209302 0.050382228 

-

0.036827073 -8.91E-10 

Onset_To_Arrival_1st 0.120471014 0.069598059 

-

0.050872954 -1.22E-09 

 

8
2
 

DIDI Time (Door-In-Door-In) 0.295332823 0.120485015 

-

0.146720012 

-

0.028127797 

Driving Distance 0.755 0.34992854 

-

0.375080587 

-

0.029990872 

Euclidean Distance 0.70925843 0.356902048 

-

0.352356382 -2.00E-10 

Onset_to_1st_CT 0.065116279 0.032766806 

-

0.032349473 -3.68E-10 

Onset_To_Arrival_1st 0.095108696 0.047859126 -0.04724957 -2.16E-10 

 

8
3
 

DIDI Time (Door-In-Door-In) 0.450650344 0.450650344 0 0 

Driving Distance 0.755 0.755 0 0 

Euclidean Distance 0.70925843 0.70925843 0 0 

Onset_to_1st_CT 0.031976744 0.031976744 0 0 

Onset_To_Arrival_1st 0.000905797 0.000905797 0 0 

 

8
4
 

DIDI Time (Door-In-Door-In) 0.112471308 0.112471308 0 0 

Driving Distance 0.2625 0.2625 0 0 

Euclidean Distance 0.27960842 0.27960842 0 0 

Onset_to_1st_CT 0.023255814 0.023255814 0 0 

Onset_To_Arrival_1st 0.057971014 0.057971014 0 0 

 

8
5
 

DIDI Time (Door-In-Door-In) 0.598316756 0.143075746 0 -0.45524101 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.093604651 0.038953488 0 

-

0.054651163 

Onset_To_Arrival_1st 0.095108696 0.000905797 0 

-

0.094202899 

 

8
6
 

DIDI Time (Door-In-Door-In) 0.039020658 0.039020658 0 0 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.131976744 0.131976744 0 0 

Onset_To_Arrival_1st 0.150362319 0.150362319 0 0 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 

8
7
 

DIDI Time (Door-In-Door-In) 0.373374139 0.311400153 0 

-

0.061973986 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.154651163 0.116860465 0 

-

0.037790698 

Onset_To_Arrival_1st 0.051630435 0.038949275 0 -0.01268116 
 

8
8
 

DIDI Time (Door-In-Door-In) 0.197398623 0.084581146 

-

0.112817476 -1.11E-09 

Driving Distance 0.5425 0.186082313 

-

0.310050191 

-

0.046367495 

Euclidean Distance 0.533943311 0.194803662 

-

0.305159863 

-

0.033979786 

Onset_to_1st_CT 0.120930233 0.051816054 

-

0.069114179 -5.27E-10 

Onset_To_Arrival_1st 0.180253623 0.077234875 

-

0.103018747 -8.29E-10 

 

8
9
 

DIDI Time (Door-In-Door-In) 0.234889059 0.145935913 

-

0.088953147 3.94E-10 

Driving Distance 1 0.487569757 -0.37870281 

-

0.133727433 

Euclidean Distance 1 0.466422097 -0.37870281 

-

0.154875093 

Onset_to_1st_CT 0.022674419 0.014087553 

-

0.008586866 0 

Onset_To_Arrival_1st 0.031702899 0.019696922 

-

0.012005977 1.01E-10 

 

9
0
 

DIDI Time (Door-In-Door-In) 0.068859985 0.068859985 0 1.50E-10 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.425 0.095708042 0 

-

0.329291958 

Onset_To_Arrival_1st 0.56884058 0.09828187 0 -0.47055871 

 

9
1
 

DIDI Time (Door-In-Door-In) 0.331293037 0.143075746 0 

-

0.188217291 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.340697674 0.038953488 0 

-

0.301744186 

Onset_To_Arrival_1st 0.369565217 0.000905797 0 -0.36865942 

 

9
2
 

DIDI Time (Door-In-Door-In) 0.280030604 0.100218783 -0.17981182 -5.70E-10 

Driving Distance 0.8975 0.272256696 

-

0.576298114 

-

0.048945191 

Euclidean Distance 0.800531064 0.286498146 

-

0.514032916 -1.69E-09 

Onset_to_1st_CT 0.088953488 0.031835129 

-

0.057118359 -1.49E-10 

Onset_To_Arrival_1st 0.120471014 0.043114782 

-

0.077356232 -1.94E-10 

 

9
3
 

DIDI Time (Door-In-Door-In) 0.218056618 0.113721626 

-

0.104334991 -1.61E-10 

Driving Distance 0.3925 0.20469793 

-

0.187802069 -4.50E-10 

Euclidean Distance 0.408119521 0.21207711 

-

0.195275645 

-

0.000766766 

Onset_to_1st_CT 0.050581395 0.026379381 

-

0.024202014 0 

Onset_To_Arrival_1st 0.054347826 0.028343663 

-

0.026004164 0 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 

9
4
 

DIDI Time (Door-In-Door-In) 0.123182862 0.084980777 

-

0.038202084 -8.07E-10 

Driving Distance 0.2625 0.18109219 -0.08140781 -5.00E-10 

Euclidean Distance 0.27960842 0.189265857 

-

0.086713558 

-

0.003629004 

Onset_to_1st_CT 0.08255814 0.056954797 

-

0.025603342 -4.68E-10 

Onset_To_Arrival_1st 0.120471014 0.069219808 

-

0.037361072 

-

0.013890134 

 

9
5
 

DIDI Time (Door-In-Door-In) 0.188982402 0.143075746 0 

-

0.045906656 

Driving Distance 0.02 0.02 0 0 

Euclidean Distance 0.010493314 0.010493314 0 0 

Onset_to_1st_CT 0.398255814 0.038953488 0 

-

0.359302326 

Onset_To_Arrival_1st 0.596014493 0.000905797 0 

-

0.595108696 

 

9
6
 

DIDI Time (Door-In-Door-In) 0.100994644 0.082818812 

-

0.018175831 -2.73E-10 

Driving Distance 0.23175 0.190042353 

-

0.041707647 -3.38E-10 

Euclidean Distance 0.260733252 0.199198328 

-

0.046923712 

-

0.014611212 

Onset_to_1st_CT 0.070348837 0.057688278 

-

0.012660558 -1.28E-10 

Onset_To_Arrival_1st 0.092391304 0.075763801 

-

0.016627503 -2.11E-10 

 

9
7
 

DIDI Time (Door-In-Door-In) 0.128538638 0.090935893 

-

0.037602746 8.53E-10 

Driving Distance 0.3925 0.251959087 

-

0.114822111 

-

0.025718802 

Euclidean Distance 0.408119521 0.268895239 

-

0.119391452 -0.01983283 

Onset_to_1st_CT 0.064534884 0.045655823 

-

0.018879061 3.98E-10 

Onset_To_Arrival_1st 0.081521739 0.057673337 

-

0.023848403 5.05E-10 

 

9
8
 

DIDI Time (Door-In-Door-In) 0.183626626 0.087247465 -0.09637916 -1.09E-09 

Driving Distance 0.5425 0.246664751 

-

0.284739176 

-

0.011096073 

Euclidean Distance 0.533943311 0.253695237 -0.28024807 -3.06E-09 

Onset_to_1st_CT 0.098837209 0.046961033 

-

0.051876176 -1.99E-10 

Onset_To_Arrival_1st 0.128623188 0.061113399 

-

0.067509789 -4.08E-10 

 

9
9
 

DIDI Time (Door-In-Door-In) 0.12165264 0.105619803 

-

0.016032837 4.70E-10 

Driving Distance 0.2625 0.227904618 

-

0.034595384 2.11E-09 

Euclidean Distance 0.27960842 0.24121609 

-

0.036850136 

-

0.001542194 

Onset_to_1st_CT 0.025581395 0.022209974 

-

0.003371422 1.93E-10 

Onset_To_Arrival_1st 0.050724638 0.04403954 

-

0.006685098 4.64E-10 

 

1
0

0
 

DIDI Time (Door-In-Door-In) 0.166794185 0.042031878 

-

0.124762307 1.62E-10 

Driving Distance 0.23175 0.043554746 

-

0.173349357 

-

0.014845897 

Euclidean Distance 0.260733252 0.036633265 

-

0.195028874 

-

0.029071113 

Onset_to_1st_CT 0.473255814 0.119259737 

-

0.353996078 2.81E-10 

Onset_To_Arrival_1st 0.725543478 0.14150679 

-

0.542707639 

-

0.041329049 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 

1
0

1
 

DIDI Time (Door-In-Door-In) 0.122417751 0.107702054 

-

0.014715697 2.61E-10 

Driving Distance 0.2625 0.230945177 

-

0.031554823 5.55E-10 

Euclidean Distance 0.27960842 0.24459036 

-

0.033611407 

-

0.001406653 

Onset_to_1st_CT 0.015697674 0.013810675 

-

0.001886999 0 

Onset_To_Arrival_1st 0.050724638 0.043494817 -0.00609755 

-

0.001132271 

 

1
0

2
 

DIDI Time (Door-In-Door-In) 0.117827085 0.08026098 

-

0.037566105 -2.51E-10 

Driving Distance 0.2625 0.157589652 

-

0.083691305 

-

0.021219042 

Euclidean Distance 0.27960842 0.163183846 -0.08914588 

-

0.027278694 

Onset_to_1st_CT 0.087209302 0.059404882 -0.02780442 3.56E-10 

Onset_To_Arrival_1st 0.132246377 0.086634854 

-

0.042163322 

-

0.003448202 

 

1
0

3
 

DIDI Time (Door-In-Door-In) 0.218821729 0.103809435 

-

0.115012294 0 

Driving Distance 0.2625 0.124530488 

-

0.137969512 -2.90E-10 

Euclidean Distance 0.27960842 0.129560159 

-

0.146961665 

-

0.003086596 

Onset_to_1st_CT 0.140116279 0.066471423 

-

0.073644856 -1.16E-10 

Onset_To_Arrival_1st 0.09692029 0.045979166 

-

0.050941124 0 

 

1
0

4
 

DIDI Time (Door-In-Door-In) 0.111706197 0.111706197 0 0 

Driving Distance 0.2625 0.2625 0 0 

Euclidean Distance 0.27960842 0.27960842 0 0 

Onset_to_1st_CT 0.004069767 0.004069767 0 0 

Onset_To_Arrival_1st 0.038043478 0.038043478 0 0 

 

1
0

5
 

DIDI Time (Door-In-Door-In) 0.140780413 0.079711343 

-

0.061069071 6.63E-10 

Driving Distance 0.2625 0.148630247 

-

0.113869754 1.68E-09 

Euclidean Distance 0.27960842 0.153241119 

-

0.121291208 

-

0.005076093 

Onset_to_1st_CT 0.109302326 0.06188812 

-

0.047414206 -2.07E-10 

Onset_To_Arrival_1st 0.163949275 0.087599799 

-

0.071119481 

-

0.005229996 

 

1
0

6
 

DIDI Time (Door-In-Door-In) 0.149961744 0.11215243 

-

0.037809312 -1.98E-09 

Driving Distance 0.23175 0.17331971 

-

0.058430289 -1.03E-09 

Euclidean Distance 0.260733252 0.181627444 

-

0.065737731 

-

0.013368077 

Onset_to_1st_CT 0.085465116 0.063917104 -0.02154801 -1.50E-09 

Onset_To_Arrival_1st 0.11865942 0.088742248 -0.02991717 -1.84E-09 

 

1
0

7
 

DIDI Time (Door-In-Door-In) 0.127008416 0.074743689 

-

0.052264727 -7.07E-10 

Driving Distance 0.2625 0.139182372 

-

0.108020328 -0.0152973 

Euclidean Distance 0.27960842 0.142756311 

-

0.115060545 

-

0.021791564 

Onset_to_1st_CT 0.11744186 0.069113829 

-

0.048328031 0 

Onset_To_Arrival_1st 0.178442029 0.095160563 

-

0.073429967 

-

0.009851499 
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Table 29: Original Values, Target Values, Radial, and Non-radial for All 115 DMUs 

in the First Scenario.  

 

1
0

8
 

DIDI Time (Door-In-Door-In) 0.140015302 0.114429038 

-

0.025586265 2.76E-10 

Driving Distance 0.2625 0.214530998 

-

0.047969003 1.63E-09 

Euclidean Distance 0.27960842 0.222423414 -0.05109538 

-

0.006089626 

Onset_to_1st_CT 0.023837209 0.01948122 

-

0.004355989 0 

Onset_To_Arrival_1st 0.036231884 0.029610904 -0.00662098 2.08E-10 

 

1
0

9
 

DIDI Time (Door-In-Door-In) 0.10558531 0.10558531 0 0 

Driving Distance 0.3925 0.3925 0 0 

Euclidean Distance 0.408119521 0.408119521 0 0 

Onset_to_1st_CT 0.018023256 0.018023256 0 0 

Onset_To_Arrival_1st 0.027173913 0.027173913 0 0 

 

1
1

0
 

DIDI Time (Door-In-Door-In) 0.168324407 0.09974092 

-

0.068583487 -1.94E-10 

Driving Distance 0.5425 0.300968695 

-

0.221040681 

-

0.020490624 

Euclidean Distance 0.533943311 0.316389038 

-

0.217554273 -4.23E-10 

Onset_to_1st_CT 0.051162791 0.030316601 -0.02084619 -1.48E-10 

Onset_To_Arrival_1st 0.070652174 0.041865068 

-

0.028787105 -2.23E-10 

 

1
1

1
 

DIDI Time (Door-In-Door-In) 0.135424637 0.109886872 

-

0.025537766 5.56E-10 

Driving Distance 0.2625 0.212998938 

-

0.049501064 1.72E-09 

Euclidean Distance 0.27960842 0.224674467 

-

0.052727292 

-

0.002206661 

Onset_to_1st_CT 0.020348837 0.016511545 

-

0.003837292 0 

Onset_To_Arrival_1st 0.054347826 0.041559461 

-

0.010248667 

-

0.002539697 

 

1
1

2
 

DIDI Time (Door-In-Door-In) 0.342769702 0.123750571 

-

0.219019131 0 

Driving Distance 0.4875 0.153130771 

-

0.311497271 

-

0.022871959 

Euclidean Distance 0.438287798 0.158235588 

-

0.280052211 1.19E-09 

Onset_to_1st_CT 0.040697674 0.014693132 

-

0.026004542 0 

Onset_To_Arrival_1st 0.060688406 0.021858015 

-

0.038777996 -5.24E-05 

 

1
1

3
 

DIDI Time (Door-In-Door-In) 0.7482785 0.131793193 

-

0.616485308 4.37E-10 

Driving Distance 0.3925 0.069130448 

-

0.323369552 -2.30E-10 

Euclidean Distance 0.408119521 0.063858024 -0.33623803 

-

0.008023468 

Onset_to_1st_CT 0.149418605 0.026316879 

-

0.123101726 0 

Onset_To_Arrival_1st 0.054347826 0.009572203 

-

0.044775623 0 

 

1
1

4
 

DIDI Time (Door-In-Door-In) 0.167559296 0.105766301 

-

0.061792995 1.26E-10 

Driving Distance 0.3925 0.24527341 

-

0.144747269 

-

0.002479321 

Euclidean Distance 0.408119521 0.257612042 -0.15050748 6.12E-10 

Onset_to_1st_CT 0.043023256 0.027157017 

-

0.015866239 0 

Onset_To_Arrival_1st 0.060688406 0.038307563 

-

0.022380843 0 
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Table 29: Original Values, Target Values, Radial, and Non-radial for Efficient DMUs 

in the First Scenario. 

 

1
1

5
 

DIDI Time (Door-In-Door-In) 0.357306809 0.114901669 

-

0.223619037 

-

0.018786102 

Driving Distance 0.755 0.246872926 -0.47251373 

-

0.035613344 

Euclidean Distance 0.70925843 0.265371877 

-

0.443886551 -2.10E-09 

Onset_to_1st_CT 0.11627907 0.043506279 

-

0.072772791 -5.40E-10 

Onset_To_Arrival_1st 0.153985507 0.057614293 

-

0.096371214 -4.32E-10 

 

Table 30: Original Values, Target Values, Radial, and Non-radial for Efficient DMUs 

After Applying Super-efficiency in the First Scenario. 

 

 

 

 

 

 

 

D
M

U
s 

Category Original Target Radial Non-radial 

8
 

DIDI Time (Door-In-Door-In) 
1 0.143075746 0 -0.856924254 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.04244186 0.038953488 0 -0.003488372 

Onset_To_Arrival_1st 
0.048007246 0.000905797 0 -0.047101449 

1
1
 

DIDI Time (Door-In-Door-In) 
0.321346595 0.143075746 0 -0.178270849 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.362209302 0.038953488 0 -0.323255814 

Onset_To_Arrival_1st 
0.428442029 0.000905797 0 -0.427536232 

1
4
 

DIDI Time (Door-In-Door-In) 
0.116296863 0.116296863 0 -1.01266E-10 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.097093023 0.047284271 0 -0.049808752 

Onset_To_Arrival_1st 
0.125 0.032012776 0 -0.092987224 

1
6
 

DIDI Time (Door-In-Door-In) 
0.140015302 0.140015302 0 -1.53256E-10 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.103488372 0.041293882 0 -0.06219449 

Onset_To_Arrival_1st 
0.124094203 0.004921305 0 -0.119172898 

1
7
 

DIDI Time (Door-In-Door-In) 
0.207345065 0.139250191 0 -0.068094874 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.587790698 0.026744186 0 -0.561046512 

Onset_To_Arrival_1st 
0.808876812 0.000905797 0 -0.807971015 
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Table 30: Original Values, Target Values, Radial, and Non-radial for Efficient DMUs 

After Applying Super-efficiency in the First Scenario. 

 

 

 

 

 

1
8
 

DIDI Time (Door-In-Door-In) 
0.143075746 0.284853648 2.850147552 -2.70836965 

Driving Distance 
0.02 0.215823712 0.398411 -0.202587288 

Euclidean Distance 
0.010493314 0.219525904 0.209032586 3.8737E-09 

Onset_to_1st_CT 
0.038953488 0.092714885 0.775974905 -0.722213508 

Onset_To_Arrival_1st 
0.000905797 0.018949771 0.018043974 0 

1
9
 

DIDI Time (Door-In-Door-In) 
0.10558531 0.10558531 0 0 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.233139535 0.067623315 0 -0.16551622 

Onset_To_Arrival_1st 
0.22192029 0.050095772 0 -0.171824518 

2
0
 

DIDI Time (Door-In-Door-In) 
0.022953328 0.039020658 0.01606733 4E-10 

Driving Distance 
0.02 0.02 0.014 -0.014 

Euclidean Distance 
0.010493314 0.010493314 0.00734532 -0.00734532 

Onset_to_1st_CT 
0.130813953 0.131976744 0.091569767 -0.090406976 

Onset_To_Arrival_1st 
0.158514493 0.150362319 0.110960145 -0.119112319 

2
1
 

DIDI Time (Door-In-Door-In) 
0.301453711 0.143075746 0 -0.158377965 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.294186047 0.038953488 0 -0.255232559 

Onset_To_Arrival_1st 
0.237318841 0.000905797 0 -0.236413044 

2
2
 

DIDI Time (Door-In-Door-In) 
0.139250191 0.108338009 4.594913051 -4.625825233 

Driving Distance 
0.02 0.340532096 0.6599507 -0.339418604 

Euclidean Distance 
0.010493314 0.356746809 0.346253496 -1.27526E-09 

Onset_to_1st_CT 
0.026744186 0.013839793 0.882492214 -0.895396606 

Onset_To_Arrival_1st 
0.000905797 0.030794865 0.029889068 -1.32855E-10 

2
3
 

DIDI Time (Door-In-Door-In) 
0.434583015 0.143075746 0 -0.291507269 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.263372093 0.038953488 0 -0.224418605 

Onset_To_Arrival_1st 
0.000905797 0.000905797 0 0 

2
4
 

DIDI Time (Door-In-Door-In) 
0.311400153 0.143075746 0 -0.168324407 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.116860465 0.038953488 0 -0.077906977 

Onset_To_Arrival_1st 
0.038949275 0.000905797 0 -0.038043478 

2
5
 

DIDI Time (Door-In-Door-In) 
0.413925019 0.143075746 0 -0.270849273 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.30872093 0.038953488 0 -0.269767442 

Onset_To_Arrival_1st 
0.382246377 0.000905797 0 -0.38134058 
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Table 30: Original Values, Target Values, Radial, and Non-radial for Efficient DMUs 

After Applying Super-efficiency in the First Scenario. 

 

 

 

2
6
 

DIDI Time (Door-In-Door-In) 
0.092578424 0.104823181 0.012244756 1.6652E-09 

Driving Distance 
0.2625 0.240246334 0.034719195 -0.056972861 

Euclidean Distance 
0.27960842 0.256962051 0.036982016 -0.059628385 

Onset_to_1st_CT 
0.037790698 0.042789032 0.004998334 7.1696E-10 

Onset_To_Arrival_1st 
0.055253623 0.062561667 0.007308043 9.51945E-10 

2
9
 

DIDI Time (Door-In-Door-In) 
0.167559296 0.167559295 0 -8.09042E-10 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.087790698 0.050285412 0 -0.037505286 

Onset_To_Arrival_1st 
0.059782609 0.006439394 0 -0.053343215 

3
0
 

DIDI Time (Door-In-Door-In) 
0.302983933 0.143075746 0 -0.159908187 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.145930233 0.038953488 0 -0.106976745 

Onset_To_Arrival_1st 
0.072463768 0.000905797 0 -0.071557971 

3
4
 

DIDI Time (Door-In-Door-In) 
0.547819434 0.143075746 0 -0.404743688 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.159883721 0.038953488 0 -0.120930233 

Onset_To_Arrival_1st 
0.136775362 0.000905797 0 -0.135869565 

3
5
 

DIDI Time (Door-In-Door-In) 
0.101759755 0.101759754 0 -7.56965E-10 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.549418605 0.122903758 0 -0.426514847 

Onset_To_Arrival_1st 
0.843297101 0.147278221 0 -0.69601888 

3
7
 

DIDI Time (Door-In-Door-In) 
0.141545524 0.141545525 0 6.27274E-10 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.288953488 0.040123685 0 -0.248829803 

Onset_To_Arrival_1st 
0.401268116 0.002913551 0 -0.398354565 

4
1
 

DIDI Time (Door-In-Door-In) 
0.26013772 0.040063952 0.079800627 -0.299874395 

Driving Distance 
0.02 0.02290061 0.00613526 -0.00323465 

Euclidean Distance 
0.010493314 0.013712275 0.00321896 3.72905E-10 

Onset_to_1st_CT 
0.1 0.130676302 0.0306763 2.49115E-09 

Onset_To_Arrival_1st 
0.139492754 0.149311373 0.042791216 -0.032972597 

4
2
 

DIDI Time (Door-In-Door-In) 
0.126243305 0.112471308 0 -0.013771997 

Driving Distance 
0.2625 0.2625 0 0 

Euclidean Distance 
0.27960842 0.27960842 0 0 

Onset_to_1st_CT 
0.023255814 0.023255814 0 0 

Onset_To_Arrival_1st 
0.0625 0.057971014 0 -0.004528986 
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Table 30: Original Values, Target Values, Radial, and Non-radial for Efficient DMUs 

After Applying Super-efficiency in the First Scenario. 

 

 

 

4
5
 

DIDI Time (Door-In-Door-In) 
0.096403979 0.097909037 0.027506542 -0.026001485 

Driving Distance 
0.23175 0.297874249 0.066124254 -4.835E-09 

Euclidean Distance 
0.260733252 0.310468413 0.074393924 -0.024658763 

Onset_to_1st_CT 
0.108139535 0.036203847 0.030854999 -0.102790687 

Onset_To_Arrival_1st 
0.04076087 0.052390997 0.011630128 -8.89657E-10 

5
1
 

DIDI Time (Door-In-Door-In) 
0.185156848 0.066835863 -0.118320986 1.15462E-09 

Driving Distance 
0.3925 0.132149409 -0.250819711 -0.00953088 

Euclidean Distance 
0.408119521 0.134951459 -0.260801071 -0.012366992 

Onset_to_1st_CT 
0.200581395 0.072403644 -0.128177751 5.08948E-10 

Onset_To_Arrival_1st 
0.307065217 0.101360705 -0.196224226 -0.009480286 

5
2
 

DIDI Time (Door-In-Door-In) 
0.589135425 0.143075746 0 -0.446059679 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.079069767 0.038953488 0 -0.040116279 

Onset_To_Arrival_1st 
0.042572464 0.000905797 0 -0.041666667 

6
4
 

DIDI Time (Door-In-Door-In) 
0.122417751 0.122417751 0 -2.28138E-10 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.331395349 0.05742134 0 -0.273974009 

Onset_To_Arrival_1st 
0.490942029 0.030577312 0 -0.460364717 

6
6
 

DIDI Time (Door-In-Door-In) 
0.612853864 0.139250191 0 -0.473603673 

Driving Distance 
0.3925 0.02 0 -0.3725 

Euclidean Distance 
0.408119521 0.010493314 0 -0.397626207 

Onset_to_1st_CT 
0.058139535 0.026744186 0 -0.031395349 

Onset_To_Arrival_1st 
0.000905797 0.000905797 0 0 

7
1
 

DIDI Time (Door-In-Door-In) 
0.351185922 0.143075746 0 -0.208110176 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.623255814 0.038953488 0 -0.584302326 

Onset_To_Arrival_1st 
0.72192029 0.000905797 0 -0.721014493 

7
2
 

DIDI Time (Door-In-Door-In) 
0.214996174 0.143075746 0 -0.071920428 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.109883721 0.038953488 0 -0.070930233 

Onset_To_Arrival_1st 
0.075181159 0.000905797 0 -0.074275362 

7
3
 

DIDI Time (Door-In-Door-In) 
0.042081102 0.042081102 0 -2.8775E-10 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.413372093 0.11618649 0 -0.297185603 

Onset_To_Arrival_1st 
0.786231884 0.133417567 0 -0.652814317 
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Table 30: Original Values, Target Values, Radial, and Non-radial for Efficient DMUs 

After Applying Super-efficiency in the First Scenario. 

 

 

 

7
5
 

DIDI Time (Door-In-Door-In) 
0.260902831 0.143075746 0 -0.117827085 

Driving Distance 
0.3925 0.02 0 -0.3725 

Euclidean Distance 
0.408119521 0.010493314 0 -0.397626207 

Onset_to_1st_CT 
0.070930233 0.038953488 0 -0.031976745 

Onset_To_Arrival_1st 
0.000905797 0.000905797 0 0 

7
6
 

DIDI Time (Door-In-Door-In) 
0.433817904 0.039020658 0 -0.394797246 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.146511628 0.131976744 0 -0.014534884 

Onset_To_Arrival_1st 
0.184782609 0.150362319 0 -0.03442029 

7
7
 

DIDI Time (Door-In-Door-In) 
0.09716909 0.09716909 0 1.85098E-10 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.115697674 0.070925793 0 -0.044771881 

Onset_To_Arrival_1st 
0.147644928 0.063654717 0 -0.083990211 

7
8
 

DIDI Time (Door-In-Door-In) 
0.55317521 0.143075746 0 -0.410099464 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.409302326 0.038953488 0 -0.370348838 

Onset_To_Arrival_1st 
0.529891304 0.000905797 0 -0.528985507 

8
0
 

DIDI Time (Door-In-Door-In) 
0.166794185 0.198163734 0.08830281 -0.056933261 

Driving Distance 
0.755 1 0.399705909 -0.154705909 

Euclidean Distance 
0.70925843 1 0.375489782 -0.084748212 

Onset_to_1st_CT 
0.015697674 0.023837209 0.008310534 -0.000170999 

Onset_To_Arrival_1st 
0.015398551 0.023550725 0.008152175 -6.02302E-10 

8
3
 

DIDI Time (Door-In-Door-In) 
0.450650344 0.143385116 0.094048744 -0.401313972 

Driving Distance 
0.755 0.029586955 0.157565178 -0.882978223 

Euclidean Distance 
0.70925843 0.01960764 0.148019114 -0.837669904 

Onset_to_1st_CT 
0.031976744 0.038650151 0.006673406 1.41729E-09 

Onset_To_Arrival_1st 
0.000905797 0.001094833 0.000189036 0 

8
4
 

DIDI Time (Door-In-Door-In) 
0.112471308 0.12178356 0.009312253 -1.15809E-09 

Driving Distance 
0.2625 0.2625 0.021734134 -0.021734134 

Euclidean Distance 
0.27960842 0.27960842 0.023150654 -0.023150654 

Onset_to_1st_CT 
0.023255814 0.025181318 0.001925505 -2.57579E-10 

Onset_To_Arrival_1st 
0.057971014 0.061540038 0.004799809 -0.001230784 

8
5
 

DIDI Time (Door-In-Door-In) 
0.598316756 0.143075746 0 -0.45524101 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.093604651 0.038953488 0 -0.054651163 

Onset_To_Arrival_1st 
0.095108696 0.000905797 0 -0.094202899 
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Table 30: Original Values, Target Values, Radial, and Non-radial for Efficient DMUs 

After Applying Super-efficiency in the First Scenario. 
 

  

 

 

 

 

 

 

8
6
 

DIDI Time (Door-In-Door-In) 
0.039020658 0.144813905 0.105793245 1.62995E-09 

Driving Distance 
0.02 0.044073699 0.054224224 -0.030150525 

Euclidean Distance 
0.010493314 0.038942905 0.02844959 4.2935E-10 

Onset_to_1st_CT 
0.131976744 0.375350207 0.357816826 -0.114443364 

Onset_To_Arrival_1st 
0.150362319 0.558026327 0.407664003 4.30545E-09 

8
7
 

DIDI Time (Door-In-Door-In) 
0.373374139 0.143075746 0 -0.230298393 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.154651163 0.038953488 0 -0.115697675 

Onset_To_Arrival_1st 
0.051630435 0.000905797 0 -0.050724638 

9
0
 

DIDI Time (Door-In-Door-In) 
0.068859985 0.068859985 0 1.49645E-10 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.425 0.095708042 0 -0.329291958 

Onset_To_Arrival_1st 
0.56884058 0.09828187 0 -0.47055871 

9
1
 

DIDI Time (Door-In-Door-In) 
0.331293037 0.143075746 0 -0.188217291 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.340697674 0.038953488 0 -0.301744186 

Onset_To_Arrival_1st 
0.369565217 0.000905797 0 -0.36865942 

9
5
 

DIDI Time (Door-In-Door-In) 
0.188982402 0.143075746 0 -0.045906656 

Driving Distance 
0.02 0.02 0 0 

Euclidean Distance 
0.010493314 0.010493314 0 0 

Onset_to_1st_CT 
0.398255814 0.038953488 0 -0.359302326 

Onset_To_Arrival_1st 
0.596014493 0.000905797 0 -0.595108696 

1
0

4
 

DIDI Time (Door-In-Door-In) 
0.111706197 0.112471308 0.095748207 -0.094983096 

Driving Distance 
0.2625 0.2625 0.22500009 -0.22500009 

Euclidean Distance 
0.27960842 0.27960842 0.239664456 -0.239664456 

Onset_to_1st_CT 
0.004069767 0.00755814 0.003488373 -1.09634E-10 

Onset_To_Arrival_1st 
0.038043478 0.036231884 0.032608708 -0.034420302 

1
0

9
 

DIDI Time (Door-In-Door-In) 
0.10558531 0.11570648 0.010121165 5.05279E-09 

Driving Distance 
0.3925 0.225054308 0.037624147 -0.205069839 

Euclidean Distance 
0.408119521 0.234514254 0.039121399 -0.212726666 

Onset_to_1st_CT 
0.018023256 0.019750925 0.001727668 8.01653E-10 

Onset_To_Arrival_1st 
0.027173913 0.029778743 0.002604829 1.07684E-09 
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Table 31: Original Values, Target Values, Radial, and Non-radial of All 115 DMUs. 
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1 2 0.37047866 42,41,18 0.51716649,0.11235486,0.37047866 - IRS 

2 6 0.53481983 26,104,109,22 0.25333833,0.13750643,0.42725536,0.18189988 - IRS 

3 7 0.56055283 20,109,104 0.089943553,0.7598555,0.15020095 - IRS 

4 2 0.99369193 86,26,109 0.13781283,0.22271624,0.63947093 - IRS 

5 5 0.44884999 22,109,104 0.25824888,0.56042054,0.18133058 - IRS 

6 7 0.49159373 86,26 0.07822104,0.92177896 - IRS 

7 2 0.73559787 45,26,86 0.014176412,0.94811468,0.037708913 - IRS 

8 8 1 18 1 - CRS 

9 3 0.70605276 86,26,22,104 0.17991818,0.005377071,0.22780253,0.58690222 - IRS 

10 10 0.20650682 20,26,86,104 0.20650682,0.002264888,0.27546761,0.51576069 - IRS 

11 8 1 18 1 - CRS 

12 9 0.87392301 84,26,45,86 0.13965811,0.70624827,0.020177068,0.13391655 - IRS 

13 2 0.52225037 45,26,18 0.007132385,0.50035329,0.49251433 - IRS 

14 8 1 20,18 0.22292994,0.77707006 - CRS 

15 2 0.27492907 45,18,41 0.40645232,0.27492907,0.31861861 - IRS 

16 8 1 20,18 0.025477709,0.97452229 - CRS 

17 8 1 18 1 - CRS 

18 8 1 18 1 40 CRS 

19 8 1 20,18 0.31210191,0.68789809 - CRS 

20 8 1 20 1 27 CRS 

21 8 1 18 1 - CRS 

22 8 1 22 1 29 CRS 

23 8 1 18 1 - CRS 

24 8 1 24 1 3 CRS 

25 8 1 18 1 - CRS 

26 9 1 26 1 35 CRS 

27 6 0.3276777 20,26,18,86 0.063022726,0.6111437,0.26465497,0.0611786 - IRS 

28 10 0.66201662 84,80,18 0.57079399,0.21393703,0.21526898 - IRS 

29 8 1 24,18 0.14545454,0.85454546 - CRS 

30 8 1 18 1 - CRS 

31 7 0.84328033 84,45,80 0.2345336,0.023158974,0.74230742 - IRS 

32 3 0.41663489 20,86,104 0.41663489,0.28255179,0.30081332 - IRS 

33 10 0.20650682 20,26,86,104 0.20650682,0.002264888,0.27546761,0.51576069 - IRS 

34 8 1 18 1 - CRS 

35 8 1 86,41 0.71626298,0.28373702 - CRS 

36 5 0.40122734 86,26,104 0.33716843,0.1292101,0.53362145 - IRS 

37 8 1 20,18 0.012738854,0.98726115 - CRS 

38 2 0.59335672 45,26,22,86 0.015443781,0.84648721,0.13241236,0.005656642 - IRS 

39 7 0.39803553 86,26 0.085253302,0.9147467 - IRS 

40 2 0.87347816 26,109,104 0.28041201,0.45007301,0.26951498 - IRS 

41 8 1 41 1 11 CRS 

42 9 1 84 1 2 CRS 

43 10 0.40999737 80,22,104 0.42891541,0.26285966,0.30822493 - IRS 

44 6 0.59054233 86,26 0.21847034,0.78152966 - IRS 

45 3 1 45 1 22 CRS 

46 2 0.61392984 86,26 0.19374682,0.80625318 - IRS 

47 10 0.80579527 45,26,80 0.019475547,0.077394584,0.90312987 - IRS 

48 9 0.74147996 20,22,104 0.11946719,,0.16037409,0.72015872 - IRS 

49 10 0.14632709 45,20,86 0.51207802,0.14632709,0.34159489 - IRS 

50 7 0.5620658 84,80,18 0.46881456,0.37493502,0.15625042 - IRS 

51 1 0.36096889 20,86,104 0.36096889,0.17655932,0.46247179 - IRS 

52 8 1 18 1 - CRS 

53 3 0.80681012 84,42,18 0.044193713,0.64437637,0.31142991 - IRS 
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Table 31: Original Values, Target Values, Radial, and Non-radial of All 115 DMUs. 
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54 7 0.17512331 84,86,18,41 0.42254918,0.38951658,0.17512331,0.012810927 - IRS 

55 4 0.84850463 45,26,109,22 0.022023331,0.65823983,0.033166035,0.2865708 - IRS 

56 3 0.62796032 86,22,104 0.13494544,0.34740588,0.51764868 - IRS 

57 9 0.99443054 26,104,109,22 0.037077433,0.83573775,0.078873382,0.048311438 - IRS 

58 9 0.57679494 86,22,104 0.26732997,0.1907786,0.54189143 - IRS 

59 1 0.71707895 20,104 0.15209368,0.84790632 - IRS 

60 5 0.45543838 84,26,45,80 0.60782398,0.066288128,0.12269898,0.20318891 - IRS 

61 10 0.20353869 20,26,18,86 0.082022798,0.71733384,0.12151589,0.079127478 - IRS 

62 9 0.50110212 22,104 0.54004409,0.45995591 - IRS 

63 3 0.63495079 86,22,104 0.18858683,0.28708391,0.52432926 - IRS 

64 8 1 20,18 0.17197452,0.82802548 - CRS 

65 9 0.90015285 84,45,41 0.81453954,0.087884085,0.097576372 - IRS 

66 2 1 18 1 - CRS 

67 7 0.38917901 84,26,45,86 0.35169438,0.52595904,0.117269,0.005077586 - IRS 

68 9 0.1770921 20,26,18,86 0.16599167,0.10922341,0.011100429,0.71368449 - IRS 

69 3 0.23178621 20,86,104 0.23178621,0.64141539,0.1267984 - IRS 

70 1 0.43720876 86,26,22,104 0.011446232,0.480287,0.36450811,0.14375866 - IRS 

71 8 1 18 1 - CRS 

72 8 1 18 1 - CRS 

73 8 1 20,18 0.84076433,0.15923567 - CRS 

74 9 0.20402824 45,86,18,41 0.15847657,0.4908072,0.20402824,0.14668799 - IRS 

75 1 1 18 1 - CRS 

76 8 1 41 1 - CRS 

77 8 1 86,22 0.41984732,0.5815268 - CRS 

78 8 1 18 1 - CRS 

79 10 0.43702871 84,80,18 0.075254492,0.54255714,0.38218837 - IRS 

80 7 1 80 1 10 CRS 

81 1 0.57771623 84,45,41,86 0.7138494,0.13257795,0.025764211,0.12780843 - IRS 

82 7 0.50320452 84,45,80 0.68588411,0.12856863,0.18554726 - IRS 

83 7 1 83 1 1 CRS 

84 9 1 84 1 16 CRS 

85 8 1 18 1 - CRS 

86 8 1 86 1 42 CRS 

87 8 1 24 1 - CRS 

88 6 0.42847891 86,16,104 0.31512447,0.22062465,0.46425087 - IRS 

89 10 0.62129719 80,22,104 0.53854885,0.16563114,0.29582001 - IRS 

90 8 1 20,18 0.61783439,0.38216561 - CRS 

91 8 1 18 1 - CRS 

92 5 0.35788511 45,26,109,22 0.000427051,0.65534205,0.25032435,0.093906552 - IRS 

93 1 0.52152339 26,104,109,22 0.33497209,0.096647192,0.21484632,0.3535344 - IRS 

94 9 0.68987501 20,26,18 0.20437245,0.66429769,0.13132985 - IRS 

95 8 1 18 1 - CRS 

96 3 0.82003173 86,26,22,104 0.26015243,0.5772977,0.038641987,0.12390788 - IRS 

97 2 0.70745959 45,26,86 0.064566952,0.90015272,0.035280331 - IRS 

98 6 0.47513516 20,22,109,104 0.2651239,0.083921074,0.52929353,0.12166149 - IRS 

99 9 0.86820806 86,26,22,104 0.038505744,0.32185899,0.10415563,0.53547964 - IRS 

100 3 0.25199846 20,86,104 0.25199846,0.65086856,0.097132974 - IRS 

101 9 0.87979115 20,22,104 0.065248965,0.064874019,0.86987702 - IRS 

102 9 0.68117598 86,104 0.43261999,0.56738001 - IRS 

103 9 0.47440186 45,26,20,86,18 0.20090972,0.25562002,0.081537271,0.069068394,0.39286459 - IRS 

104 9 1 104 1 37 CRS 

105 9 0.56621046 86,22,104 0.44825687,0.02130912,0.53043401 - IRS 

106 3 0.74787362 84,45,41,86 0.57572404,0.064730252,0.12269533,0.23685037 - IRS 

107 9 0.58849399 86,104 0.5085263,0.4914737 - IRS 

108 9 0.81726094 20,22,109,104 0.04207771,0.29016366,0.25076562,0.41699301 - IRS 

109 2 1 109 1 15 CRS 

110 6 0.59255174 45,26,109,22 0.00872763,0.56187674,0.38353157,0.045864059 - IRS 

111 9 0.81142452 86,22,104 0.074247862,0.12988023,0.79587191 - IRS 

112 4 0.36103124 86,22,104 0.003772977,0.44723415,0.54899287 - IRS 

113 2 0.17612853 20,22,109,104 0.021599058,0.8151974,0.073489137,0.089714409 - IRS 

114 2 0.63121715 26,104,109,22 0.49541472,0.15287115,0.18272238,0.16899175 - IRS 

115 7 0.374154 84,45,41 0.75772983,0.20365262,0.03861755 - IRS 
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Table 32: Reference Set, Peer Weight, Peer Count, and Classification of All 115  DMUs 

After Applying Super-efficiency. 
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1 2 0.37047866 84,18,41 0.51716649,0.37047866,0.11235486 - IRS 

2 6 0.53481983 26,104,109,22 0.25333833,0.13750643,0.42725536,0.18189988 - IRS 

3 7 0.56055283 20,109,104 0.089943553,0.7598555,0.15020095 - IRS 

4 2 0.99369193 86,26,109 0.13781283,0.22271624,0.63947093 1 IRS 

5 5 0.44884999 22,109,104 0.25824888,0.56042054,0.18133058 - IRS 

6 7 0.49159373 86,26 0.07822104,0.92177896 - IRS 

7 2 0.73559787 45,26,86 0.014176412,0.94811468,0.037708913 - IRS 

8 8 1 18 1 - CRS 

9 3 0.70605276 86,26,22,104 0.17991818,0.005377071,0.22780253,0.58690222 - IRS 

10 10 0.20650682 20,26,86,104 0.20650682,0.002264888,0.27546761,0.51576069 - IRS 

11 8 1 18 1 - CRS 

12 9 0.87392301 84,26,45,86 0.13965811,0.70624827,0.020177068,0.13391655 - IRS 

13 2 0.52225037 45,26,18 0.007132385,0.50035329,0.49251433 - IRS 

14 8 1 20,22 0.19736842,0.80263158 - CRS 

15 2 0.27492907 45,18,41 0.40645232,0.27492907,0.31861861 - IRS 

16 8 1 20,18 0.025477709,0.97452229 - CRS 

17 8 1 18 1 - CRS 

18 8 4.92055 24,75 0.47429876,0.52570124 39 CRS 

19 8 1 20,18 0.31210191,0.68789809 - CRS 

20 8 1.7 86 1 25 CRS 

21 8 1 18 1 - CRS 

22 8 5.3997535 57,109 0.39975311,0.60024689 32 CRS 

23 8 1 18 1 - CRS 

24 8 1 18 1 2 CRS 

25 8 1 18 1 - CRS 

26 9 1.1322636 84,45,86 0.79086679,0.13440915, 0.074724063 36 CRS 

27 6 0.3276777 20,26,18,86 0.063022726,0.6111437,0.26465497,0.0611786 - IRS 

28 10 0.66201662 84,80,18 0.57079399,0.21393703,0.21526898 - IRS 

29 8 1 24,18 0.14545454,0.85454546 - CRS 

30 8 1 18 1 - CRS 

31 7 0.84328033 84,45,80 0.2345336,0.023158974,0.74230742 - IRS 

32 3 0.41663489 20,86,104 0.41663489,0.28255179,0.30081332 - IRS 

33 10 0.20650682 20,26,86,104 0.20650682,0.002264888,0.27546761,0.51576069 - IRS 

34 8 1 18 1 - CRS 

35 8 1 86,41 0.71626298,0.28373702 1 CRS 

36 5 0.40122734 86,26,104 0.33716843,0.1292101,0.53362145 - IRS 

37 8 1 20,18 0.012738854,0.98726115 - CRS 

38 2 0.59335672 45,26,22,86 0.015443781,0.84648721,0.13241236,0.005656642 - IRS 

39 7 0.39803553 86,26 0.085253302,0.9147467 - IRS 

40 2 0.87347816 26,109,104 0.28041201,0.45007301,0.26951498 - IRS 

41 8 1.306763 86,42 0.98803872,0.011961279 10 CRS 

42 9 1 84 1 2 CRS 

43 10 0.40999737 80,22,104 0.42891541,0.26285966,0.30822493 - IRS 

44 6 0.59054233 86,26 0.21847034,0.78152966 - IRS 

45 3 1.2853258 26,80 0.92817411,0.071825888 23 CRS 

46 2 0.61392984 86,26 0.19374682,0.80625318 - IRS 

47 10 0.80579527 45,26,80 0.019475547,0.077394584,0.90312987 - IRS 

48 9 0.74147996 20,22,104 0.11946719,,0.16037409,0.72015872 - IRS 

49 10 0.14632709 45,20,86 0.51207802,0.14632709,0.34159489 - IRS 

50 7 0.5620658 84,80,18 0.46881456,0.37493502,0.15625042 - IRS 

51 1 0.36096889 20,86,104 0.36096889,0.17655932,0.46247179 - IRS 

52 8 1 18 1 - CRS 

53 3 0.80681012 84,18 0.68857009,0.31142991 - IRS 
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Table 32: Reference Set, Peer Weight, Peer Count, and Classification of All 115  DMUs 

After Applying Super-efficiency. 

 
                 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

54 7 0.17512331 84,86,18,41 0.42254918,0.38951658,0.17512331,0.012810927 - IRS 

55 4 0.84850463 45,26,109,22 0.022023331,0.65823983,0.033166035,0.2865708 - IRS 

56 3 0.62796032 86,22,104 0.13494544,0.34740588,0.51764868 - IRS 

57 9 0.99443054 26,104,109,22 0.037077433,0.83573775,0.078873382,0.048311438 3 IRS 

58 9 0.57679494 86,22,104 0.26732997,0.1907786,0.54189143 - IRS 

59 1 0.71707895 20,104 0.15209368,0.84790632 - IRS 

60 5 0.45543838 84,26,45,80 0.60782398,0.066288128,0.12269898,0.20318891 - IRS 

61 10 0.20353869 20,26,18,86 0.082022798,0.71733384,0.12151589,0.079127478 - IRS 

62 9 0.50110212 22,104 0.54004409,0.45995591 - IRS 

63 3 0.63495079 86,22,104 0.18858683,0.28708391,0.52432926 - IRS 

64 8 1 86,18 0.19852941,0.80147059 - CRS 

65 9 0.90015285 84,45,41 0.81453954,0.087884085,0.097576372 - IRS 

66 2 1 22 1 - CRS 

67 7 0.38917901 84,26,45,86 0.35169438,0.52595904,0.117269,0.005077586 - IRS 

68 9 0.1770921 20,26,18,86 0.16599167,0.10922341,0.011100429,0.71368449 - IRS 

69 3 0.23178621 20,86,104 0.23178621,0.64141539,0.1267984 - IRS 

70 1 0.43720876 86,26,22,104 0.011446232,0.480287,0.36450811,0.14375866 - IRS 

71 8 1 18 1 - CRS 

72 8 1 18 1 - CRS 

73 8 1 20,18 0.84076433,0.15923567 - CRS 

74 9 0.20402824 45,86,18,41 0.15847657,0.4908072,0.20402824,0.14668799 - IRS 

75 1 1 18 1 1 CRS 

76 8 1 86 1 - CRS 

77 8 1 86,22 0.41984732,0.5815268 - CRS 

78 8 1 18 1 - CRS 

79 10 0.43702871 84,80,18 0.075254492,0.54255714,0.38218837 - IRS 

80 7 1.5294118 47 1 11 CRS 

81 1 0.57771623 84,45,41,86 0.7138494,0.13257795,0.025764211,0.12780843 - IRS 

82 7 0.50320452 84,45,80 0.68588411,0.12856863,0.18554726 - IRS 

83 7 1.2086956 80,18 0.013043476, 0.98695652 - CRS 

84 9 1.0827967 26,42 0.1324747, 0.8675253 17 CRS 

85 8 1 18 1 - CRS 

86 8 3.7112112 45,35,41 0.11368925,0.61062187,0.27568888 46 CRS 

87 8 1 18 1 - CRS 

88 6 0.42847891 86,16,104 0.31512447,0.22062465,0.46425087 - IRS 

89 10 0.62129719 80,22,104 0.53854885,0.16563114,0.29582001 - IRS 

90 8 1 20,18 0.61783439,0.38216561 - CRS 

91 8 1 18 1 - CRS 

92 5 0.35788511 45,26,109,22 0.000427051,0.65534205,0.25032435,0.093906552 - IRS 

93 1 0.52152339 26,104,109,22 0.33497209,0.096647192,0.21484632,0.3535344 - IRS 

94 9 0.68987501 20,26,18 0.20437245,0.66429769,0.13132985 - IRS 

95 8 1 18 1 - CRS 

96 3 0.82003173 86,26,22,104 0.26015243,0.5772977,0.038641987,0.12390788 - IRS 

97 2 0.70745959 45,26,86 0.064566952,0.90015272,0.035280331 - IRS 

98 6 0.47513516 20,22,109,104 0.2651239,0.083921074,0.52929353,0.12166149 - IRS 

99 9 0.86820806 86,26,22,104 0.038505744,0.32185899,0.10415563,0.53547964 - IRS 

100 3 0.25199846 20,86,104 0.25199846,0.65086856,0.097132974 - IRS 

101 9 0.87979115 20,22,104 0.065248965,0.064874019,0.86987702 - IRS 

102 9 0.68117598 86,104 0.43261999,0.56738001 - IRS 

103 9 0.47440186 45,26,20,86,18 0.20090972,0.25562002,0.081537271,0.069068394,0.39286459 - IRS 

104 9 1.8571432 57 1 36 CRS 

105 9 0.56621046 86,22,104 0.44825687,0.02130912,0.53043401 - IRS 

106 3 0.74787362 84,45,41,86 0.57572404,0.064730252,0.12269533,0.23685037 - IRS 

107 9 0.58849399 86,104 0.5085263,0.4914737 - IRS 

108 9 0.81726094 20,22,109,104 0.04207771,0.29016366,0.25076562,0.41699301 - IRS 

109 2 1.0958577 57,22,4 0.50060778,0.27480988,0.22458234 15 CRS 

110 6 0.59255174 45,26,109,22 0.00872763,0.56187674,0.38353157,0.045864059 - IRS 

111 9 0.81142452 86,22,104 0.074247862,0.12988023,0.79587191 - IRS 

112 4 0.36103124 86,22,104 0.003772977,0.44723415,0.54899287 - IRS 

113 2 0.17612853 20,22,109,104 0.021599058,0.8151974,0.073489137,0.089714409 - IRS 

114 2 0.63121715 26,104,109,22 0.49541472,0.15287115,0.18272238,0.16899175 - IRS 

115 7 0.374154 84,45,41 0.75772983,0.20365262,0.03861755 - IRS 
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Table 33: Reference Set, Peer Weight, Peer Count, and Classification of Six DMUs in 

VRS and Super-efficiency Input-oriented During 2018-2019 and 2020-2021 in the 

Second Scenario 
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1 0.55 6,3 0.4,0.6 - IRS 6 

2 1.4117538 6,3 0.6,0.3 1 IRS 4 

3 2.2647356 6,2 0.1,0.8 4 IRS 2 

4 1.2955651 6,3 0.4,0.6 1 IRS 5 

5 Infeasible Infeasible Infeasible - IRS 1 

6 1.8477036 4,5,3 0.4,0.3,0.2 4 IRS 3 
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1 1 1 1 1 CRS 1 

2 1 2 1 3 CRS 1 

3 0.94192877 4,2 0.3,0.6 - IRS 2 

4 1 4 1 3 CRS 1 

5 1 5 1 2 CRS 1 
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1 1.1666667 4,2 0.1,0.8 2 IRS 4 

2 1.6349027 3,1,6 0.3,0.06,0.5 3 IRS 3 

3 0.94192877 4,2 0.3,0.6 1 IRS 5 

4 3 5,1 0.9,0.09 3 IRS 2 

5 Infeasible infeasible infeasible - IRS 1 

6 0.8992828 5,4,2 0.06,0.01,0.9 1 IRS 6 
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       Figure 11: The Relationship Between Onset_To_Arrival_1st to Age . 

 

 

Figure 12: The Relationship Between DIDI Time(Door-In-Door-In) to Age . 
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Figure 13: The Relationship Between Onset_to_1st_CT to Age . 

 

 

Figure 14: The Relationship Between Onset_To_Arrival_1st to DMUs . 
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Figure 15: The Relationship Between DIDI Time(Door-In-Door-In) to DMUs . 

 

 

                               Figure 16: The Relationship Between Onset_to_1st_CT to DMUs . 
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Figure 17: The Relationship Between Age to DMUs . 
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