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Abstract

In the realm of the Internet of Things (IoT), data exhaust encompasses the unintended

data generated during device interactions over the Internet. This unintentional data

collection can be analyzed by businesses and third parties to gain insights into user be-

haviour. Consequently, there exists a keen interest among various parties in accessing

the details of this data.

This thesis has two main objectives. Firstly, we surveyed approximately 48 re-

search papers, with thirty of them focusing on IoT architecture, layers, components,

and ecosystem attributes. Another thirteen papers concentrated on the pressing is-

sue of data privacy within IoT devices and ecosystems. Surprisingly, only five papers

broached the concept of data exhaust, and none explored its nuances across different

IoT device types. We aim to bridge this knowledge gap by providing a comprehensive

analysis of data exhaust issues across various types of IoT devices.

The second objective of the thesis is to design and develop a predictive modelling

scheme to introduce a solution designed to safeguard users’ privacy while utilizing

Voice Assistants (VAs). providing more details regarding VAs. We discuss the struc-

ture of a VA ecosystem. Following that, we delve into the journey of data within this

ecosystem. Our findings highlight the critical challenge of user awareness regarding

data collection in VAs, emphasizing the potential privacy risks this opacity entails.

To present our solution, we use a real dataset namely Amazon Alexa Traffic Traces,

provided by Barcel et al. that tracked network traffic involving a VA and included

all communications between the user, VA, and the VA server. After obtaining this

data, we carefully analyzed it and used different machine learning methods to predict

data exhaust. The proposed approach brings users more clarity when interacting with

these types of smart devices.

In conclusion, this study outlines a potential solution to address this significant

concern, ultimately ensuring that users can make informed choices when engaging

with VAs and their data.
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Chapter 1

Introduction

This thesis concentrates on IoT devices, with a specific focus on VAs. Initially,

it offers a comprehensive overview of the IoT and subsequently narrows its scope to

examine VAs as a distinctive category within the realm of IoT devices.

1.1 Internet of Things

IoT emerged as an important concept that is transforming the world today. It is now

possible for anything to be connected to anyone at any time and from anywhere, as

long as it has the requisite technology. Using sensors, actuators, Radio Frequency

Identification (RFID) tags, and readers, the system is able to enable both physical

and virtual interactions with the surrounding environment. IoT typically refers to

a network of connected objects that have unique identifiers and are equipped with

sensors (e.g., cameras, motion sensors) and actuators, enabling them to transmit

generated data over a network like the Internet [56]. The current number of connected

IoT devices is estimated to be approximately 13.1 billion, with a projected increase

to over 125 billion by 2030 [15]. Globally, there are more than 200 million smart

personal assistants installed, and current trends indicate that the number will exceed

500 million by 2030[68]. This growth leads to a data explosion in the current data

age, with estimates suggesting that total data storage will exceed 200 zettabytes by

2025 [39][67].

Smarter, faster, and with a higher quality of life, IoT devices are being used in a

wide range of fields. From factories to homes, from hospitals to roads, the footprint

of the Internet of Things can be seen throughout the world. Health, security, and

transportation are a few of the aspects of smart city citizens’ lives that are impacted

by the Internet of Things. Furthermore, it can play a significant role at the national

level in regard to policy decisions (such as energy conservation, pollution reduction,

1



2

Io
T

H
Io

T
IIo

T
PI

oT

Sm
ar

t I
nd

us
tr

y
Sm

ar
t A

gr
ic

ul
tu

re
Sm

ar
t C

ity

W
at

ch
/P

ho
ne

/
La

pt
op

/T
ab

le
t

Sm
ar

t T
oy

s
C

ur
e 

of
 D

is
ea

se
D

is
ea

se
 D

et
ec

tio
n

M
on

ito
rin

g 
an

d 
Tr

ac
ki

ng

 S
m

ar
t E

du
ca

tio
n

Sm
ar

t G
ov

er
na

nc
e

Sm
ar

t  
B

ui
ld

in
gs

Sm
ar

t T
ra

ns
po

rt
at

io
n

Sm
ar

t H
om

e

H
om

e 
A

pp
lia

nc
es

A
ir 

M
on

ito
rin

g
Te

m
pe

re
tu

re
/H

um
id

ity
C

on
tr

ol

Sm
ar

t
W

as
te

 M
an

ag
em

ne
t

Sm
ar

t
En

er
gy

 M
an

ag
em

en
t

Sm
ar

t T
V

Vi
rt

ua
l A

ss
is

ta
nt

Sm
ar

t R
ef

rig
er

at
or

Sm
ar

t V
ac

uu
m

 C
le

an
er

H
om

e 
Se

cu
rit

y
Li

gh
t C

on
tr

ol

Figure 1.1: IoT Application Categories
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etc.), remote monitoring, and infrastructure development. Our systems can operate

more efficiently, economically, and securely by leveraging the Internet of Things based

on a variety of factors, such as energy-saving policies, economic considerations, and

reliability levels. This leads us to categorize the areas in which IoT is being used,

as shown in Figure 1.1[14]. According to the figure, there are three general types of

IoT applications. Industrial Internet of Things (IIoT), Healthcare Internet of Things

(HIoT), and Personal Internet of Things (PIoT). A brief description of each of these

types is provided below.

IIoT : This category of application pertains to industrial activities such as agri-

culture, smart cities, and factories. Remote monitoring solutions, for instance, can

simplify and speed up agricultural production. Smart cities are also one of the key

areas in which the Internet of Things is advancing rapidly in order to facilitate the

implementation of tools that improve city life. Many smart solutions are already

being used in countries around the world, from smart parking to smart waste man-

agement. In many factories, a smart monitoring system is being introduced to replace

traditional production methods[45].

HIoT : Using IoT in healthcare can make patient care better, reduce costs, and im-

prove efficiency. IoT can be used in the healthcare system to control medication, and

medical equipment, manage information, supervise patients, and telemedicine[37].

PIoT : ”A group of connected devices focused mainly in homes and the immediate

proximity of an individual”[58]. This category includes smart devices we use every

day. Watches, homes, phones, laptops, tablets, and even smart toys are all examples

of how personal IoT is taking off.

The rise of cloud computing, artificial intelligence, and the IoT has led to the

increasing popularity of voice assistants in households[65]. Many top technology

companies worldwide, including Apple, Amazon, and Google, have created their own

VAs such as Siri, Alexa, and Google Assistant. These VAs are not only limited to

mobile devices but are also available on various platforms such as smart cars, speakers,

and televisions[24].

In addition to deliberately generated core data, IoT devices generate unintentional

data, which is referred to as data exhaust generated during internet interactions by
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humans or smart devices holds significant value for businesses and third parties[48].

Unintentionally generated data can provide valuable insights, enabling a comprehen-

sive understanding of users and customers. By analyzing collected data using data

mining techniques [18], extract valuable information. However, the data generated,

stored, and transmitted by sensors and actuators may contain sensitive personal in-

formation, raising privacy concerns[1].

1.2 Voice Assistnats

VAs, a very popular type of PIoT devices, are always listening devices, activated

by a specific wake word such as Alexa, Hey Siri, or Okay Google. On smartphones,

this feature can usually be turned off, but on smart speakers, it’s essential.[28] Once

activated, the device records the sound, which is sent to the cloud for processing,

understanding the user’s intention, and executing them in real-time[34].

This intention can trigger actions in the smart assistant’s cloud or be sent to third-

party services. The response is then relayed back to the user’s device, sometimes

involving other cloud services to control IoT devices[28].

By leveraging connections with third-party services and devices, the VA can carry

out a range of functions simply by responding to a user’s voice prompt. These func-

tions may include responding to queries, playing music, setting alarms or timers,

making phone calls or sending messages, completing purchases, offering updates on

the weather, and managing other smart devices[49]. Due to the vast computing power

and resources available on cloud platforms, voice assistants can rely on cloud-based

servers to handle the mentioned complex tasks such as natural language processing,

speech recognition, and machine learning algorithms that require intensive computa-

tional power[65].

However, privacy remains a significant concern for consumers, in different aspects.

An incident in 2018 revealed the unintentional leak of sensitive military base locations

via a fitness tracker social network. Both business and private spheres are affected

by these challenges, including security and privacy concerns. Despite the potential

benefits of smart assistants for business, IT security professionals are hesitant to

adopt them, potentially resulting in missed optimization opportunities. While smart

assistants have quickly gained popularity among private users, individuals who are
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concerned about privacy may have difficulty avoiding them. There is also a concern

in society regarding the possibility of large corporations aggregating and exploiting

vast quantities of personal information collected by these devices.[28].

In light of this perspective, there are two types of threats to privacy:

(1) Sensitive information exposure by external attackers.

(2) Privacy disclosures to voice service providers [70].

Many studies have addressed the first issue, and various types of attacks have

been previously discussed. Li et al.[31], for example, classified different forms of

privacy and security attacks in their study. Regarding the latter, this study addresses

the relatively under-explored topic of data exhaust in VAs. In this context, data

exhaust refers to the traces left behind as a result of user interactions with VAs. This

often-overlooked aspect of privacy threats in IoT devices poses significant challenges,

prompting an in-depth investigation in this research.

This thesis provides a comprehensive insight into the IoT ecosystem by identifying

the different types of data exhaust, with a particular emphasis on personal IoT devices

including VAs. It considers privacy-preserving laws and regulations and identifies a

potential solution to detect data exhaust. Detecting data exhaust and distinguishing

it from core data is crucial in addressing the challenge of transparency within a VA

ecosystem. Through the analysis of various works, it has become evident that trans-

parency is a major problem in VA systems. Properly identifying and differentiating

data exhaust from core data can significantly contribute to resolving this issue.

1.3 Thesis Outline

The remainder of this thesis is structured as follows: Chapter 2 will provide a com-

prehensive survey of data exhaust in IoT devices, covering various aspects such as

IoT terminology, the IoT ecosystem, architecture, data exhaust in IoT devices and

voice assistants, ad targeting and data profiling, as well as Privacy-Preserving Pro-

tocols and Laws. In Section 3, the focus will be on presenting the proposed solution

to the issues discussed in the second chapter. This section will involve examining the

dataset, detailing the methodology, and outlining the different steps of analysis.

Chapter 4 will encompass the conclusion, discussions on future work, and an

exploration of challenges faced in the research.



Chapter 2

Systematic survey of Data Exhaust in IoT Devices

The objective of this chapter is to provide a comprehensive overview of data exhaust

in IoT devices. In order to gain an understanding of issues, challenges, privacy and

security matters with regard to the data collection in these devices, it is important

to understand their architecture models and the general data flow.

2.1 Literature Review

This section presents various related works and research to provide a deeper under-

standing of the topic at hand. The papers are listed according to their publication

date.

Iqbal et al [21] designed an auditing framework that utilized online advertising to

assess the data collection, usage, and sharing practices of smart speaker platforms.

Based on the evaluation results, Amazon and third-party providers collect data on

smart speaker interactions and use it to infer user interests to serve targeted ads.

Jiang et al. [22] address privacy concerns associated with the new generation

of cyberspace data collection, which include tracking browsing activities, disclosing

user input data, making data available via mobile devices, maintaining data security

during transmission, protecting participation sensing privacy, and protecting identity

in opportunistic networks.

Zainuddin et al.[74] addresses a variety of privacy and security issues pertaining

to IoT devices, including unintentional data collection. In this study, various types

of IoT applications are enumerated and the privacy concerns associated with each

application are discussed.

O’Leary et al. [48] propose a framework for locating and transforming exhaust

data. Specifically, they investigate four case studies, namely, Internet search data,

accounting entries, social media disclosures, and the use of Edgar logs. While other

studies have examined data exhaust as a threat to users’ privacy, this study explores

6
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the subject as a potential opportunity for businesses to gain valuable insights into

their users’ preferences.

Ren et al. [56] conduct an analysis of information exposure from approximately

80 devices. They answer a number of questions during their experiment, including

”Does the device expose information unexpectedly?” One of the most intriguing points

about this research is that they identify unexpected behaviour from audio and video

recording devices. In addition, they identify several cases in which exposure varies

depending on the device location.

Pierce et al. [52] discuss some of the vulnerabilities of smart home security cam-

eras, highlighting how they monitor and track the most personal and intimate interior

spaces. Three key concepts have been highlighted in this study namely digital leakage,

hole-and-corner applications, and foot-in-the-door devices. By using these concepts,

the paper shows how user experience, interactive technology, and concerns relating

to privacy, security, accountability, trust, and fairness are interconnected.

Maher et al [33] also examined ethical concerns as well as solutions related to each

ethical concern such as passive data collection, secondary data use, and storage of

passive data.

O’Leary et al [47] analyze and suggest an analysis framework for data exhaust.

Moreover, through the analysis of a case study, they illustrate the concepts related

to data exhaust, including its potential and limitations, as well as how it can be

used effectively. According to this study, data exhaust may provide a comprehensive

overview of how individuals or groups of individuals processed transactions, providing

details regarding the information they accessed and the resources they did not utilize.

Inferring an individual’s needs, desires, or intentions with this information is possible,

making data exhaust an effective tool for gaining insight.

Rutledge et al [57] conducted an exploratory case study of the privacy policy

to determine who is collecting what data in the context of IoT devices, focusing

their attention on Smart TVs as an example of IoT devices. Using the Goal-Based

Requirements Analysis Method (GBRAM) goal mining and refinement, the authors

identified 293 privacy-related goal statements for a Samsung SmartTV. These goals

were classified according to Anton-Earp’s privacy taxonomies and compared with

another study of online finance and healthcare websites. They found that almost
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90% of the data SmartTV viewers collect is unobservable, which poses a significant

privacy vulnerability.

Cunningham et al. [10] examine the impact of legacy privacy laws on the collec-

tion and use of data from IoT devices. This study points out that the focus of privacy

laws should be shifted from data collection to data usage instead of data collection.

For privacy laws to be more effective, they must recognize and address the partic-

ular dangers and hazards associated with the use of sensitive information in certain

situations.

Bolton et al. introduced PrivExtractor, an awareness dashboard tool[7]. They

conducted a comparative analysis of privacy practices from four major vendors, eval-

uating their compliance with data protection laws. The research findings reveal that

these companies usually adhere to legal standards. However, the current regulations

are insufficient to ensure transparent disclosure of data practices.

Each of the articles mentioned above covers some of the most pertinent points

relating to data exhaust in IoT devices. In this paper, we seek to cover all these

points in a comprehensive manner, as there are no articles that address both IoT

ecosystem properties and data exhaust in terms of IoT ecosystem extensively in a

single publication. For the next steps to be taken in this area, it seems necessary

to fill this gap. In Table2.1 you can find a comparison between this work and other

related studies.
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Attributes/
Main

Contribution
This paper [34] [27] [4] [13] [28] [49]

Taxonomy of IoT
Devices

Exploring Data
Flow and Data
Life-Cycle in

IoT Ecosystem

Review of
Different

Components
of IoT

Examine
Different

Layers of IoT
Ecosystem
Architecture

Review of
Data Exhaust

in Terms of IoT
Devices

Review of
Existing Privacy

Preserving
Laws

Covered

Covered

Covered

Covered

Covered

Covered

Not
Covered

Not
Covered

Not
Covered

Partially
Covered

Not
Covered

Partially
Covered

Partially
Covered

Covered

Not
Covered

Not
Covered

Not
Covered

Not
Covered

Not
Covered

Categorize
Different Types

of Data
Exhaust

Covered Not
Covered

Not
Covered

[35]

Not
Covered

Not
Covered

Partially
Covered

Not
Covered

Covered

Partially
Covered

Partially
Covered

Not
Covered

Not
Covered

Covered

Not
Covered

Covered

Not
Covered

Covered

Not
Covered

Not
Covered

Not
Covered

Not
Covered

Not
Covered

Partially
Covered

Covered

Covered

Not
Covered

Not
Covered

Not
Covered

Not
Covered

Not
Covered Covered

Covered

Partially
Covered

Not
Covered

Not
Covered

Not
Covered

Not
Covered

[31]

Not
Covered

Not
Covered

Not
Covered

Not
Covered

Partially
Covered

Not
Covered

Not
Covered

[18]

Not
Covered

Not
Covered

Not
Covered

Not
Covered

Partially
Covered

Not
Covered

Partially
Covered

[12]

Not
Covered

Covered

Not
Covered

Not
Covered

Covered

Covered

Not
Covered

Table 2.1: Comparison of this survey with other survey papers

2.2 Background

In this section, we will begin by offering different explanations of IoT to ensure clarity.

Moving forward, we will dissect the intricate web of IoT Ecosystem Components,

elucidating the diverse elements that collaborate. Understanding these components

is pivotal in comprehending the intricate workings of IoT technologies. Subsequently,

we will describe the intricacies of IoT Ecosystem Architecture, peeling back the layers

to reveal the underlying frameworks that support the functionality of IoT systems.

Lastly, we will navigate through the IoT Data Life-cycle, elucidating how data is

generated, transmitted, processed, and ultimately utilized within the IoT ecosystem.

2.2.1 Terminology

IoT has been defined from a variety of perspectives in numerous publications pub-

lished over the past two decades. In this section, we explore some of these definitions

to gain a better understanding of the term.

Definition 1 : Sensors and actuators are interconnected in an Internet of Things.

This includes everything that can be uniquely addressed and visible to the entire
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globe, including products and physical objects. Using standard communication pro-

tocols, machines gather, transmit, and analyze data to make the world smarter, more

efficient, and more effective[18].

Definition 2 : IoT is a term used to describe extending the Internet into the

physical world by creating spatially distributed devices that can sense, track, and act

on things[36].

Definition 3 : In the IoT, things are connected to each other using unique identi-

fiers, like IP addresses. Rather than requiring human-to-human interaction or human-

to-computer interaction, their data can be transferred over a network to provide

high-level e-services by gathering and processing information[14].

Definition 4 : Using information-sensing devices, the IoT enables devices to iden-

tify, operate, and manage themselves via the internet intelligently[62].

Definition 5 : An integrated network of interconnected (physical and virtual)

things that provides advanced services with existing and evolving technology that’s

interoperable[51].

Definition 6 : The IoT is a network of connected devices that integrates the cyber

and physical worlds[63].

Definition 7 : The IoT is a concept in which things and people can be connected

to anything and anyone at any time, anywhere, using any path or network[54].

2.2.2 IoT Ecosystem Components

Smart devices/sensors: As the main units of an IoT system, smart devices are capable

of sensing, monitoring, controlling, and actuating[26]. In fact, one of the reasons that

IoT has become drastically popular in recent years is the embedding of sensors and

actuators into everyday devices to capture data from the IoT environment (Such as

smart watches) and exchange the gathered data with the other components. A smart

device can be equipped with a variety of sensors, depending on its functionality.

Table 2.2 summarizes the different types of sensors based on their functional char-

acteristics.

Connectivity: An embedded sensor is called a sensor ”node” Although it is rel-

atively straightforward to deploy a single sensor, it is more challenging to ensure
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Table 2.2: Different Sensor Types in IoT Devices

Sensor Type Functionality Sensor
Name

Area of Use

Object Detection Detecting the presence or
distance of nearby objects
by emitting electromag-
netic radiation. Detecting
motion is done by taking
continuous screenshots.

Occupancy
Sensors,
Proximity
Sensors, Mo-
tion Sensor

-Industry
-Smart Home
-Healthcare
-Agriculture
-Smart City

Voice Detection Detecting human voices. It
converts vibrations into au-
dio signals (proportional
voltages and currents).

Speech
Recognition

-Smart Home

Velocity Meter Calculation of the rate of
change of constant position
values. Velocity sensors can
be linear or angular.

Gyroscope
sensors

-Industry
-Smart City

Temperature
Meter

Measuring heat energy to
detect an individual’s body
or surroundings.

Temperature
Sensors

-Industry
-Agriculture
-Healthcare

Pressure Meter Force measurement and
conversion into signals.

Pressure
Sensors

-Industry
-Healthcare

Chemical Meter Measurement of chemical
composition in the environ-
ment.

Chemical
Sensors,
Water Qual-
ity Sensors

-Industry
-Smart City

Humidity Meter Measuring and signaling
humidity in the environ-
ment.

Humidity
Sensor

-Smart City -
Agriculture

Infrared Meter Detection of some charac-
teristics of a certain object.
Heat emission can also be
measured by these sensors.

Infrared
Sensor

-Smart Home
-Smart City

Optic Meter Detection of electromag-
netic energies.

Optic Sensor -Industry
-Healthcare
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connectivity between multiple sensors[54]. IoT devices require specific wireless con-

nectivity technologies based on their type[58]. RFID, Near-field communication

(NFC), Wireless Fidelity (Wi-Fi), Zonal Intercommunication Global-standard (Zig-

Bee), Bluetooth, Z-Wave, Thread, and Wireless Sensor Network (WSN) are some of

these standards[59]. We can divide these types of technologies according to different

features. The key features that may affect the type of connectivity standard in a

smart device are Data Rate, Latency, Coverage, Power, Reliability, and Mobility[12].

Edge: The edge serves as a bridge between devices/sensors and the cloud server.

The edge is the point of communication for all devices and sensors. For these com-

ponents, there are two primary functional considerations:

A) Providing local addresses to sensor nodes in wireless personal area networks for

short-range communication.

B) Translating between local addresses in wireless personal area networks and IP

addresses on the Internet [51].

Cloud: The cloud is the central component of the IoT ecosystem, and it is re-

sponsible for accumulating and processing sensor data[64]. Besides offering storage

space, cloud servers also provide the infrastructure required for real-time processing

and operations. In order to provide the user with the desired response, the data

collected in the cloud may be transmitted to specific services[9].

Services: To respond to the user’s requests, an IoT device may need to commu-

nicate with several parties and service providers. In the course of these interactions,

post-processed data may be shared with different parties[60].

2.2.3 IoT Ecosystem Architecture

A three-layer architecture consists of the following components:

Physical layer: This layer consists of sensors, devices, NFC devices, RFID tags,

etc. Among the components mentioned above, smart devices and gateways can be

considered to be part of this layer.

Network layer: At the top layer, the Network Layer is responsible for the transfer

of data collected from the previous layer, initiating the connection between sensors

and IoT applications. It includes the connectivity component previously described

in this section. Wireless connectivity technologies like Wi-Fi, Signal towers, NFC,
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Bluetooth, NFC, Zigbee and the like are incorporated into this layer[25].

Application layer: A major responsibility of this layer is to manage users’ re-

quests and provide responses from third parties. Requests from users are handled

by servers in this layer. In this layer, it is determined whether the IoT ecosystem

should be labelled as smart home, smart city, smart healthcare, or another type of

IoT ecosystem[25].

To address some of the shortcomings of a three-layer architecture, a five-layer

architecture was proposed. Two new layers have been added to this model in addition

to the three previously mentioned:

Processing layer: Known as the middleware layer, this layer collects data from

the network layer and stores and processes it. It is the cloud processing, the servers,

and the information storage at this layer that handle these operations.

Business layer: Besides determining the business mode and data management,

this layer is also responsible for managing all aspects of the ecosystem and ensuring

the privacy of users[76].

Components of the IoT can be assigned to any of these layers. Smart devices/sensors

live under the physical layer; connectivity protocols are located in the network layer.

The edge component resides under the processing layer, and the cloud/data center

and Services reside under the application layer and business layer [43] [2].

2.2.4 IoT Data Life-cycle

The components listed in section 2.2.2 are intended to capture, communicate, analyze,

and act. An IoT ecosystem begins with observation of the environment to gather data

on a physical phenomenon. Communication technologies are then used to enable

the device to be linked to other devices or servers. For the purpose of extracting

information, all of the gathered data should be processed and analyzed. Eventually,

this enormous process leads to appropriate action.

Considering all phases of data management, the Scenario Agnostic Data Life-

cycle Model (SADLM) proposes three main blocks namely, data acquisition, data

processing, and data preservation. Further, a detailed breakdown of each block is

provided in more detail in each phase[66]. Data Acquisition is the process of collecting

data from a variety of sources, evaluating its quality, and tagging it with additional
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Figure 2.1: IoT Architecture Models

information. Data is generated consecutively or triggered by an external event by

IoT sensors. The data generated by sensor networks is not the only source of data.

Other sources also provide data streams. Therefore, the raw data generated must be

aggregated, warehoused, and streamed at a specified network rate to remote locations

for further analysis[27]. Besides sensor data, stored data and activity data are other

key sources of data that are aggregated with sensor data. Stored data includes device

identifiers and personally identifiable information provided by the user during device

activation, activity logs, device state, etc. Activity data, on the other hand, refers

to data that describes how a user interacts with a device (e.g., via a mobile device

or a button on an IoT device), as well as which functionality has been utilized (e.g.,

toggling a light)[56].

Once collected, data can be preserved, through the Data Preservation block, or

processed, through the Data Processing block. In the Data Preservation block, all

data storage and preservation-related tasks are handled. In this step, the data is

prepared for further processing or publication. Using sophisticated data analysis

techniques, the Data Processing block generates additional value from big data [66].
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2.3 Data Exhaust in IoT Devices

It is important to note that IoT systems are fundamentally reliant on data. In order

to collect data, smart devices are equipped with sensors. As data is collected, it is

transmitted between the components through each of their respective connectivity

technologies. At the edge, data is stored and processed locally. All gathered data is

aggregated in the cloud and in databases, enabling analysis to be performed. Lastly,

services respond to users based on sensor data. In this regard, data is the primary

input and output for each component.

We are confronted by real-time, complex and massive streaming data -Big Data-

in this ecosystem[17]. Big Data is the term applied to massive sets of largely unstruc-

tured data that we are able to collect, process, and analyze[55].

In an IoT ecosystem, the collected data can be divided into two categories:

Core Data that are deliberately generated.

Data Exhaust that are unconsciously generated.

In the first group, the outcome is directly related to the operation of the service,

whereas in the second group, the outcome is due to the interaction between the user

or device over the Internet with other devices[11].

As we move into the all-connected era, there will be a tremendous increase in the

amount of data generated, as a consequence, there will be an increase in unwanted

data generated as well.

Businesses and third parties analyze these unintended generated data consisting

of virtual trails left behind by users to learn more about their behaviours. Telling

a meaningful story about users’ preferences, data exhaust is a valuable source of

information for two purposes. Firstly, targeted advertising and secondly, market

research.

In the opinion of businesses and companies, targeted advertisements can be per-

sonalized in order to get a better return on investment[38]. With a deep understanding

of what is important to you, they may be able to provide you with exactly what you

are seeking, for example on social media! Furthermore, the generated data regarding

how the application is used may help them to improve their products in later versions

and enhance the user experience.
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2.3.1 Different Types of IoT Data Exhaust

Devices that are part of the IoT are designed to perform specific functions. There may

be additional data generated during the process of executing those specific tasks. The

location data generated by your smartphone (IoT device) can be considered unwanted

generated data.

As a source of Big Data, data exhaust can be classified according to the type of IoT

device. Unstructured and semi-structured data types, including textual, signal/vocal,

transactional, pictorial, and positional data[47].

Textual data: Browser-generated data, such as cookies, log files, temporary brows-

ing history, and files.

Signal/Vocal data: Those types of data that are generated by interacting with a

virtual assistant.

Transactional data: In the course of interacting with a payment application, un-

wanted data is generated, such as sales orders, invoices, credit card payments, and

shipping documents.

Pictorial data: All additional data that may be captured when collecting data

from IoT devices equipped with cameras. For example, a security camera may unin-

tentionally collect these data.

Positional data: Any generated data related to the location of the user/device.

Several billion mobile phone users around the world have their locations tracked and

recorded by mobile phone companies. The users do not voluntarily and continuously

log and submit their positional information[10].

2.3.2 Exploring Data Exhaust in Personal IoT Devices

Personal IoT devices refer to a collection of connected devices primarily designed for

use in personal settings and within close proximity to an individual[58]. Personal

IoT devices, such as smartwatches, smartphones, laptops, tablets, smart homes, and

smart toys, have become increasingly popular as they enhance daily life experiences.

However, the rise of these devices has led to a need to explore the various types of

data exhaust.
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IoT
Device DE TypeCore Data

Examples
Potential Data Exhaust

Examples

Watch/Phone
/Laptop/Tablet

Smart Toys

Home
Security

Air Monitoring/
Temperature
and Humidity

Control Devices

Smart TV

Refrigerators

Virtual
Assistants

Vacumme
Cleaner

Textual
Transactional

Positional
Pictorial

Signal/Vocal

Textual
Signal/Vocal

Pictorial
Positional

Positional

Textual
Transactional

Positional
Signal/Vocal

Textual
Transactional

Positional
Signal/Vocal

 Positional

Activity data and habit patterns while
using the device
Personal networks and depth of
relationships
Credit card Information
Background sound when using VA
Aggregate number at some
location/time may help choose
location for hotel, restaurant, etc.

Communications via email
Search engines data
Communications to/from
Number of communications
Length and date of the calls
Cost, feasibility, location and
time of the call

Core Images
Video and interaction
with those at front door

Images at fringes or accidental
Images can capture other events or
locations
Aggregate information for
inferences
about how many people are located
in any one place, at one time.

Background sound
Credit card Information when
making an online purchase
 Activity data and habit patterns
while using the device
Aggregate location and time may
help choose location for a hotel, a
restaurant, etc.

House square footage and
house floor plan
Background Audio/Visual data
Sensitive Room information

Search engines data
Voice commands(if VA is
available)

Voice commands
Search engines data

Cleaning maps
Cleaning time

Navigation data

Aggregate information for
inferences about user's location in
a specific time.

Private converstationsVoice commands

Air quality indexes
Air temperature and
humidity data

Aggregate information for
inferences
about user's location in a specific
time.
Private conversations

Textual
Positional

Signal/Vocal

Credit card Information when
make an online purchase
 Activity data and habit patterns
while using the device

Available groceries
Search engines data
Voice commands(if VA is
available)

Table 2.3: Potential DE in different types of PIoT devices
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Watch/Phone/Laptop/Tablet: These devices utilize a variety of sensor types, in-

cluding voice detection, optical meters, and velocity meters, which can provide tex-

tual, transactional, positional, and signal/vocal data. Human mobility patterns in

urban areas for example, can be analyzed through the analysis of Scenario Agnostic

Data Lifecycle Model (CDR) collected from mobile phones. There is usually infor-

mation about the user’s unique ID, a time stamp, and the location of the cell phone

tower in these records[72].

Smart Toys: There may be several types of sensors that may be used in this device,

including an accelerometer, temperature, voice detection, humidity, and pressure.

As a result, possible data output types include textual and signal/vocal data. As

an example, Hello Barbie is a smart toy that is capable of collecting, storing, and

processing information about children. It was one of the earliest attempts to develop

a smart toy. Private conversations were found to be shared by the toy with multiple

parties, thereby undermining the authority of parents and potentially impacting a

child’s trust[23].

Smart Homes: In this category, there are different types of sensors installed in

different types of devices, such as: Home security (pictorial data, positional, textual),

Air monitoring (textual data), temperature and humidity control devices (textual

data), and home appliances. The categories of home appliances can be divided into

Smart TVs (textual, positional, signal/vocal data - if VAs are included), VA (posi-

tional, signal/vocal, transactional, and textual data), refrigerators (transactional and

positional data), and vacuum cleaners (positional data).

For this subcategory, we can refer to different smart devices. Smart security

cameras for example, equipped with artificial intelligence analyze human behavior

and environmental conditions. Users can also receive smart alerts via their mobile

device when certain types of activity are detected. Additionally, these cameras are

capable of detecting ambient light and device temperature. Google’s NestCam and

Amazon’s Cloud Cam have not been limited to recording footage of intrusions or

carelessness by their owners, as marketing and advertising materials indicate. Instead,

these devices are advertised as being capable of capturing personal moments such as

pets, children, and strange events. It even has a platform called Best of Nest which

encourages users to submit their most compelling and entertaining Nest videos. In
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fact, the website suggests that such videos may even result in the emergence of a

newly created, branded subcategory of social video called Nestie [52][71].

Another example would be iRomba generating maps of the user’s house during the

vacuuming process[52]. Roomba can use the collected data to optimize its cleaning

patterns by analyzing the layout of the home and the placement of furniture. IRobot

assures its users that any data collected will not be shared with third parties with-

out their knowledge, and users can decide whether or not to send their data to the

cloud[69].

Based on a study conducted by Nshimba et al.[46] smart devices owners are sub-

ject to countless privacy risks. A number of privacy issues are addressed by this study

based on the use cases of SAMSUNG, LG, and Sony smart televisions. By taking into

account the architecture of IoT devices, the types of data that is collected, vulnera-

bilities, threats, and policy statements for each television model, we can assign each

privacy issue to a specific architecture layer. Listed below are some of these privacy

issues:

• Data on view habits of users collected.

• Data collected which can be classified as sensitive.

• A microphone which is present.

• Transmission of data vulnerable to interception.

• Cloud storage of data collected from user.

• Data is shared with external companies.

Another example of a smart device that has received significant usage in the past

few years is the personal voice assistant. According to another study conducted by

Iqbal et al., [21] a portion of the data collected by Amazon Echo and third parties, such

as advertising services, will be used by Amazon for advertising and tracking purposes.

The fact that Amazon hosts more than 200k third-party skills can pose a privacy

threat to users. Approximately 41 advertisers share their cookies with Amazon, which

may contain personal information. Other than these advertisers, 247 other third-party

entities, including advertising services, also receive cookies from these advertisers.

Nevertheless, according to their study, there appears to be a lack of transparency
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regarding Amazon’s policies and claims concerning its operation practices and third-

party skills. It does not appear to be consistent with Amazon’s public statements that

they infer advertising interests from their users’ voice interactions. Over 70 percent

of third-party skills do not mention Alexa or Amazon in their privacy policies, and

only 2.2 percent provide clear information about their data collection practices.

The examples provided above are only a few examples of cases where unwanted

data was generated that might have been collected by the sensor device. Table2.3

summarizes the core data and potential data exhaust for each IoT device discussed

above.

2.3.3 Data Exhaust in Voice Assistants

Depending on the type of sensors embedded in the smart device, different types of

data exhaust are expected to be generated. In this section, we concentrate on voice

assistants, specifically delving into the concept of data exhaust within this context.

The rise of cloud computing, artificial intelligence, and the Internet of Things has

led to the increasing popularity of voice assistants in households[65]. Many top tech-

nology companies worldwide, including Apple, Amazon, and Google, have created

their own VAs such as Siri, Alexa, and Google Assistant. These VAs extend their

functionalities through third-party-developed Skills allowing users to automate vari-

ous tasks using voice commands. These skills range from ordering a drink to automat-

ing morning routines. VAs are not limited to mobile devices; they have expanded their

reach to various platforms such as smart cars, speakers, and televisions[24]. Amazon

dominates the market with its Echo products, while Google is expanding its presence

with home speakers and integration into various devices. Apple entered the market

with HomePod, and Microsoft focuses on integrating Cortana into Windows devices

and partnering with other brands[20].

As always listening devices, are activated by a specific wake word such as Alexa,

Hey Siri, or Okay Google. Once activated, they interpret user requests and execute

them in real-time[34]. By leveraging connections with third-party services and de-

vices, the VA can carry out a range of functions simply by responding to a user’s

voice prompt. These functions may include responding to queries, playing music, set-

ting alarms or timers, making phone calls or sending messages, completing purchases,
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offering updates on the weather, and managing other smart devices[49]. Due to the

vast computing power and resources available on cloud platforms, voice assistants

can rely on cloud-based servers to handle the mentioned complex tasks such as nat-

ural language processing, speech recognition, and machine learning algorithms that

require intensive computational power[65].

Offering numerous benefits, advantages, and convenience, the global market of

smart speakers is expected to gain more global popularity with a market growth

from $2.8 billion in 2021 to $11.2 billion by 2026[24]. Globally, there are more than

200 million smart personal assistants installed, and current trends indicate that the

number will exceed 500 million by 2030[68].

However, privacy remains a significant concern for consumers, in different aspects.

There are two types of privacy threats:

(1) Sensitive information exposure by external attackers.

(2) Privacy disclosures to voice service providers [70].

Many papers have addressed the first issue, and various types of attacks have been

previously discussed. Li et al.[31], for example, classified different forms of privacy

and security attacks in their study. Regarding the latter one, this paper addresses

the relatively under-explored topic of data exhaust.

Data exhaust pertains to the kind of data that is unconsciously generated by

the user, as opposed to the intentionally produced core data. To gain a deeper

understanding of this matter, it is necessary to examine the flow of data within an

IoT ecosystem.

The journey of data within a VA ecosystem can be examined by referencing the

architecture model. Following the Five-Layer model, data is collected from the per-

ception layer and transmitted through the network layer, before being processed in

the cloud which forms the third layer. In certain cases, the application and business

layers may require external services or other parties, which may involve calling upon

additional resources[43][66]. Figure 2.2 illustrates this journey in detail.

Businesses and third parties analyze unintentionally generated data, composed of

virtual trails left behind by users, to gain insights into user behaviour. Data exhaust

transforms user preferences into a meaningful narrative that can be used for two

purposes: targeted advertising and market research. As categorized in the previous
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Figure 2.2: Data flow in Voice Assistant ecosystem

study, based on the sensors integrated into the smart device, VA in this case, the

anticipated core data includes voice commands and search engine data. Meanwhile,

potential data exhaust may encompass background sound, credit card information,

device activity data, habit patterns, and the aggregation of location and time to

facilitate locating a specific place.

There needs to be a clear understanding of whether all data generated, transmit-

ted, and shared by the user are what the user intended to generate, transmit, and

share. Data exhaust in particular may contain some personal information that the

user does not wish to share with third parties. More specifically, a user may not be

aware of who is collecting what data while interacting with a virtual assistant, and

this can constitute a serious threat to their privacy.

Although microphones are the primary sensors embedded in voice assistants, some

smart speakers, such as Amazon Echo Plus, also include temperature sensors, humid-

ity sensors, and ambient light sensors. Furthermore, some newer smart speakers,

such as the Amazon Echo Show, feature additional sensors, such as video cameras

and motion sensors[35]. Consequently, these smart devices generate a greater volume

and type of data. The interaction between a voice assistant and other applications

and devices generates various types of data. For example, a Global Positioning Sys-

tem (GPS) may be used by a voice assistant to locate the user when it is used as a

navigational aid. Due to this, the data exhaust from a voice assistant may consist of

a variety of different types of data, such as audio/vocal signals, text, transactional,
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positional, etc.

Lack of user awareness regarding the data collected by VAs, both personal and

household-related, leads to a limited understanding of data processing and the impli-

cations it has on their privacy. As a result, users face challenges in making informed

decisions about their privacy. Trust in the vendors rather than informed consent

becomes the primary factor influencing the adoption and usage of VAs[53].

In recent years, however, there has been increased public concern about VA se-

curity and privacy. Amazon and Google have admitted in news articles that VA

recordings are listened to by employees, and VAs have been reported as recording or

activating actions without the user’s knowledge or consent. As a result of these inci-

dents, there have been concerns raised among the general public regarding privacy[8].

The violations of privacy in VAs can be categorized into four broad categories:

Contextual Privacy: Through the use of virtual assistants, users are exposed

to social privacy breaches, such as being spied on and shown their current location

without their consent. In cases in which user data is shared with third parties without

consent, access-control privacy is violated. Furthermore, ambient privacy and visual

privacy may be compromised if VA devices read aloud notifications or messages.

Bystander Privacy: VAs are capable of collecting data not only from legitimate

users but also from their surroundings, potentially violating the privacy of third par-

ties. In social privacy situations, voice conversations, for instance, can be recorded

without consent. The recording and analysis of private conversations by VA manu-

facturers constitute a serious violation of speech privacy.

Data Sharing Privacy: Cloud services are often used by VAs, and collected data

can be shared with third-party providers. Data sharing privacy can be violated when

data is shared without user awareness or consent. It includes privacy related to access

control, location privacy, criminal intent privacy when data is shared with malicious

third parties, user rights privacy regarding data ownership and control, and user-

consent privacy when users agree to terms and conditions without understanding

how the data will be collected and utilized.

Environmental Privacy: As the IoT grows, environmental privacy concerns will
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arise. Surveillance and monitoring programs conducted by the government for na-

tional security purposes may violate user rights as well as government privacy. More-

over, VA service providers may track user patterns for business purposes, raising

privacy concerns[50].

In light of these violations, seven vulnerability categories can be identified in

Table3.2 [57].

Vulnarability Description

Information collection

Information monitoring

Personalization of
information

Information storage

Information transfer

Information aggregation

Contact

How and what information an institution collects from a consumer, either
directly or via consent.

The methods by which organizations can track the actions of consumers
on their online service (e.g., by using cookies), often with the objective of
benefiting the individual consumer, such as providing a customized online

experience.

The combination of previously gathered personal information with
data acquired from other sources.

The customization and tailoring of functionality and content offered
to specific individuals via an online service.

How and what information is stored in a database within an institution.

The exchange of information between two or more entities.

How and for what purpose an organization contacts a consumer.

Table 2.4: Vulnerability of privacy in VAs
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2.3.4 Data Profiling and Ad Targeting

IoT device users are at risk of being identified, profiled, and tracked. Tracking and

profiling users can also be done using their personal information, such as their name

and address. As mentioned before, smart devices may access the user’s personal

information in many ways. Consequently, it is possible that users’ profiles are being

developed based on not only their personal information but also long-term activities

and behaviours. Then it is critical that users be aware that the collection of their

personal data without their consent can result in targeted marketing and the loss

of privacy. Overall, the prevalence of identification, profiling, and tracking poses a

significant threat to the privacy of users[25]. It is possible to reduce the accuracy

of data mining by restricting access to private or personal data, but there is an

inherent conflict between privacy and profiling that highlights the risks associated

with identification and tracking. Such risks can increase the possibility of profiling

and lead to private data leakage through black market data hunting[61]. In conclusion,

data collection should be conducted with the consent of the user, and privacy policies

should be clearly put in place to ensure that the data is protected.

2.4 Privacy-Preserving Protocols and Laws

In the IoT era, privacy and security issues have become more complex due to the

ability to collect personal data from users. In view of the fact that data is collected

both actively and passively, a set of protocols and regulations is imperative. Smart-

phones, smart watches, fitness trackers, and mobile phones are now equipped with

more resources between the virtual and physical worlds. Such devices can be used

for recording, storing, and processing data pertaining to health, daily routines, and

other activities[37]. Mobile phones are capable of recording and transmitting images,

sounds, voices, and videos with or without the consent of the user. A growing number

of data collection methods have created new privacy concerns, and countermeasures

are necessary to ensure the privacy of users[22].

Rutledge et al [56] analyzed 81 devices information exposure. They conducted an

experiment to see whether there are unexpected exposures of private and/or sensitive

information (e.g., video surreptitiously transmitted by a recording device) or not.
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According to a study conducted by Rutledge et al [57] some of the IoT devices

may not meet the fair information practices principles recommended by the U.S.

Federal Trade Commission (FTC) due to the fact that they do not notify consumers

nor collect their consent before collecting data. Physical limitations may also affect

their ability to comply with rules and regulations. In that case, it may be unclear for

the IoT device users that who collects what data. Using a Samsung Smart TV as

an archetypal example of an IoT device and an exploratory case study of the privacy

policy, the study explored how it applies to this device. Their research focused on

retrieving Samsung’s privacy policies applicable to Smart TVs for analysis through

the use of goal-oriented techniques which they applied. According to the paper, from

the 77 pieces of information collection and monitoring goals included in the Samsung

Smart TV Privacy policies document, 8 (10.4%) could be observed by the user, while

69 (89.6%) could not be observed. Accordingly, most of the data collection and

monitoring is not visible to the average viewer. For another instance, Pal et al [50]

examined different aspects of privacy in terms of voice assistants. According to this

work, in a more sophisticated scenario, once a VA has been activated, the VA not

only collects data about the person who activated it but also collects information

from background voice conversations with non-users.

Furthermore, due to the rise of machine learning applications, big data analysis is

being developed for analyzing the exhaustion of people’s daily browsing habits. This

is a result of the rise of machine-learning applications. This is a result of the increase

in machine-learning applications. In the advertising industry, third-party domains

are often connected with publishers’ websites, and cookies put unique identifiers on

users so that browsing data exhaust can be tracked and used to reconstruct individual

browsing histories. Ads are displayed based on the analysis of users’ features, includ-

ing behavioural targeting, frequency capping, re-targeting, and conversion tracking.

At the same time, publishers also tailor information to users’ conditions and predict

requirements based on evaluated preferences that users have never chosen. It is un-

deniable that the collection of data and its subsequent analysis have benefited both

parties. Users benefit from the automatic customization enabled by a wide variety

of websites and network services, while publishers earn an increase in revenue of ap-

proximately 52 percent when third-party cookies are used. As a result of the trend of



27

collecting exhaust data, the concept of identity tracking has become a major privacy

concern[22]. In terms of smart homes, for instance, the White House recently released

a report on smart meters and smart homes that outlined both their advantages and

disadvantages. It is not only the approximate electricity consumption of residents

that smart meters provide information about. It is reported that devices powered

by electricity have unique signatures. With the help of this unique signature, some

meters are able to distinguish between microwave ovens and refrigerators, or even be-

tween a lightbulb in the bathroom and a lightbulb in the dining room. Smart devices

can detect when the user is at home, cooking, watching television, or on vacation.

An analysis of this information can provide information regarding the wealth, clean-

liness, health, and sleeping habits of a resident. Analyzing a person’s electrical signal

can pinpoint their exact TV show or movie with 96 percent accuracy, according to a

study[10].

In 1995, the European Union issued a directive on privacy that seeks to protect

personal information by requiring notice and consent from entities collecting data, as

well as allowing users to access and correct their data. However, it does not address

the IoT or passive data collection and assumes that all personal information is volun-

tarily provided by users. As far as passive data collection is concerned, the notice and

consent requirements are difficult to apply, leaving questions about how they will be

applied to new technologies such as cameras and smart meters[10]. Furthermore, con-

cerns exist regarding the ownership and security of these unwanted generated data.

Data containing highly sensitive information can be claimed by users, researchers,

companies, and academic institutions. In the case of HIoT devices, for example, the

storage and security of data is a significant concern due to the ease with which encryp-

tion methods can be broken, as well as the potential impact on the confidentiality,

safety, and efficacy of clinical care[33].

It is concluded that the privacy of IoT device users is susceptible to various threats,

and the existing regulations and policies are insufficient in ensuring the protection of

personal information generated during the usage of these devices.

In response to these concerns, the industry has begun to take steps to address

them. Google Home, Amazon Alexa, and Siri now support speaker recognition for

distinguishing between the speakers in a household. As part of an effort to enhance
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privacy control, Amazon introduced a command that allows users to delete their

recordings. In recent years, projects such as Alias and Mycroft have been developed

to give users a greater degree of control over their virtual assistants and to prioritize

privacy. By utilizing constant white noise, Alias disables the smart speaker, which can

then be reactivated when needed. In order to avoid cloud-based analysis of recordings,

Mycroft was designed with privacy in mind[8].



Chapter 3

Predictive Modeling of Data Exhaust in Voice Assistant

Network Traffic Data

3.1 Dataset

For the purpose of addressing privacy concerns relating to data exhaust, we are an-

alyzing data related to voice assistant network traffic. In this thesis, network traffic

data for Amazon Alexa Echo Dot will be examined. In order to generate the dataset,

we used a paper entitled Amazon Alexa traffic traces in 2022, which includes raw

Packet Capture (PCAP) files[4]. It contains 150,000 English raw PCAP files that

contain all of the network traffic communications between the Amazon Echo Dot

and Alexa servers. Their experiment involved setting up a Raspberry Pi as a WiFi

hotspot. The Amazon Echo Dot device connects to the WiFi generated by the Rasp-

berry Pi, and all communication between the device and the Alexa Voice Service

servers is channelled through the Raspberry Pi’s Local Area Network (LAN) port.

Considering that the specific network traffic data described in the referenced paper

is only available as PCAP files, our approach encompasses a dual objective. The

primary objective was to convert these files into a Comma Separated Value (CSV)

format. A comprehensive information extraction process was also undertaken in order

to capture a significant amount of data that could be analyzed further. The dataset

for our research was generated using a tool named CICFlowMeter[29]. Using the

CICFlowMeter, all the PCAP files were processed, and 87 features were extracted

into a CSV file.

The study utilizes a conventional definition of a network flow based on a sequence

of packets sharing common values for Source IP, Destination IP, Source Port, Desti-

nation Port, and Protocol (TCP or UDP). Flows are considered bidirectional, and the

research introduces an application called ISCXFlowMeter, written in Java, for flow

generation and feature calculation. Unlike some existing tools, ISCXFlowMeter offers

29
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greater flexibility in feature selection, addition, and flow timeout control. The tool

generates bidirectional flows, distinguishing between forward and reverse directions,

especially for time-related statistical features. TCP flows terminate upon connection

teardown, while UDP flows terminate based on a flow timeout, a value set arbitrarily

by the individual scheme.

The study explores various flow timeout values, specifically durations of 15, 30, 60,

and 120 seconds, studying their impact on classifier accuracy using the same dataset.

Experimental results indicate that the maximum accuracy is achieved with a flow

timeout of 15 seconds for all classifiers. The classifier response time includes flow

time, feature extraction time, and machine learning algorithm time. Notably, the

study focuses on time-related features, considering two approaches: measuring time

between packets or the duration of flow activity, and fixing time and measuring other

variables like bytes or packets per second.

The extracted features are categorized into six groups: ”fiat”, ”biat”, and ”flowiat”

for forward, backward, and bidirectional flows respectively; ”idle” and active for states

of inactivity and activity; and ”psec” for size and number of packets per second.

The research emphasizes time-related features to analyze their impact on classifier

accuracy[29].

Upon integrating all of the generated CSV files, the dataset was finally ready for

analysis and consisted of 380194 rows. Over the period of 334 days and 23 hours, this

dataset contains such features as Protocol, Flow Duration, Flow Bytes/s, and so on.

There is no label feature in the dataset, making data exhaust detection challenging

since there is no ground truth. On the other hand, it is unclear what data is being

transmitted over the network due to the encryption of the payload. Therefore, we

must analyze the features in order to be able to train a model that can detect data

exhaust. Barcel et al. have provided a PCAP file with two distinct features that can

be extracted. As well as being organized according to the commander’s designations,

each PCAP file has also been renamed to correspond to the command issued to the

Amazon Alexa Dot.

The provided PCAP files are organized into three distinct folders, with each folder

bearing the name of a specific commander. Within each commander’s folder, there

are 100 subfolders, each renamed to a specific command. Consequently, every PCAP
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file can be associated with both a commander and a specific command.

Some of the voice commands include: ”Tomorrow will rain?”, ”Wake me up at

9:00 AM”, ”When is Black Friday?”, ”Which is the closest supermarket?”

Figure 3.1: IoT Architecture Models

Consequently, we systematically generated individualized PCAP files, associating

each with the commander’s identity and the specific command directed to the Amazon

Alexa Dot device. For every CSV file generated, we incorporate both the commander’s

name and the issued command as distinct attributes within the dataset. By leveraging

each datapoint voice command text and the commander name, were generated to offer

a broader perspective.

In the final dataset, there are a total of 85 columns and 380,194 rows. Most of

the features are numerical, except for a few ones such as Flow ID, Src IP, Dst IP,

Timestamp, and Label. All the generated features with the related description are

gathered in table 3.1. These features were extracted using CICFlowMeter, with the

feature label filled as ”No Label” for all rows.

The Label column generated by CICFlowMeter serves as a vital element, indicat-

ing the classification or categorization assigned to network flows. This categorization

discerns whether a particular network flow is benign or potentially malicious. During

the analysis process, CICFlowMeter employs algorithms and rules to assess network



32

flows based on their behaviour, patterns, and anomalies. As a result, flows are as-

signed specific labels, such as normal, suspicious, or even designated with names

corresponding to specific threats[29].

The interpretation of these labels can vary, contingent upon the configuration

settings and the dataset used for training the detection system. In our specific dataset,

the Label column has been filled with No label, indicating that no distinct anomalies

were identified. Consequently, this feature does not provide meaningful insights for

analysis. Hence, it is imperative to exclude this column from further consideration,

as it does not contribute to our understanding of the dataset.

Feature Name Description

Flow duration Duration of the flow in Microsecond

total Fwd Packet Total packets in the forward direction

total Bwd packets Total packets in the backward direction

total Length of Fwd

Packet
Total size of packet in the forward direction

total Length of Bwd

Packet
Total size of packet in backward direction

Fwd Packet Length

Min
Minimum size of packet in forward direction

Fwd Packet Length

Max
Maximum size of packet in forward direction

Fwd Packet Length

Mean
Mean size of packet in forward direction

Fwd Packet Length

Std
Standard deviation size of packet in forward direction

Bwd Packet Length

Min
Minimum size of packet in backward direction

Bwd Packet Length

Max
Maximum size of packet in backward direction
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Bwd Packet Length

Mean
Mean size of packet in backward direction

Bwd Packet Length

Std
Standard deviation size of packet in backward direction

Flow Bytes/s Number of flow bytes per second

Flow Packets/s Number of flow packets per second

Flow IAT Mean Mean time between two packets sent in the flow

Flow IAT Std
Standard deviation time between two packets sent in the

flow

Flow IAT Max Maximum time between two packets sent in the flow

Flow IAT Min Minimum time between two packets sent in the flow

Fwd IAT Min
Minimum time between two packets sent in the forward

direction

Fwd IAT Max
Maximum time between two packets sent in the forward

direction

Fwd IAT Mean
Mean time between two packets sent in the forward di-

rection

Fwd IAT Std
Standard deviation time between two packets sent in the

forward direction

Fwd IAT Total
Total time between two packets sent in the forward di-

rection

Bwd IAT Min
Minimum time between two packets sent in the back-

ward direction

Bwd IAT Max
Maximum time between two packets sent in the back-

ward direction

Bwd IAT Mean
Mean time between two packets sent in the backward

direction

Bwd IAT Std
Standard deviation time between two packets sent in the

backward direction

Bwd IAT Total
Total time between two packets sent in the backward

direction
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Fwd PSH flags
Number of times the PSH flag was set in packets trav-

eling in the forward direction

Bwd PSH Flags
Number of times the PSH flag was set in packets trav-

eling in the backward direction

Fwd URG Flags
Number of times the URG flag was set in packets trav-

eling in the forward direction

Bwd URG Flags
Number of times the URG flag was set in packets trav-

eling in the backward direction

Fwd Header Length Total bytes used for headers in the forward direction

Bwd Header Length Total bytes used for headers in the backward direction

FWD Packets/s Number of forward packets per second

Bwd Packets/s Number of backward packets per second

Packet Length Min Minimum length of a packet

Packet Length Max Maximum length of a packet

Packet Length Mean Mean length of a packet

Packet Length Std Standard deviation length of a packet

Packet Length Vari-

ance
Variance length of a packet

FIN Flag Count Number of packets with FIN

SYN Flag Count Number of packets with SYN

RST Flag Count Number of packets with RST

PSH Flag Count Number of packets with PUSH

ACK Flag Count Number of packets with ACK

URG Flag Count Number of packets with URG

CWR Flag Count Number of packets with CWR

ECE Flag Count Number of packets with ECE

down/Up Ratio Download and upload ratio

Average Packet Size Average size of packet

Fwd Segment Size

Avg
Average size observed in the forward direction
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Bwd Segment Size

Avg
Average size observed in the backward direction

Fwd Bytes/Bulk Avg
Average number of bytes bulk rate in the forward direc-

tion

Fwd Packet/Bulk Avg
Average number of packets bulk rate in the forward di-

rection

Fwd Bulk Rate Avg Average number of bulk rate in the forward direction

Bwd Bytes/Bulk Avg
Average number of bytes bulk rate in the backward di-

rection

Bwd Packet/Bulk Avg
Average number of packets bulk rate in the backward

direction

Bwd Bulk Rate Avg Average number of bulk rate in the backward direction

Subflow Fwd Packets
Average number of packets in a sub-flow in the forward

direction

Subflow Fwd Bytes
Average number of bytes in a sub-flow in the forward

direction

Subflow Bwd Packets
Average number of packets in a sub-flow in the backward

direction

Subflow Bwd Bytes
Average number of bytes in a sub-flow in the backward

direction

Fwd Init Win bytes
Total number of bytes sent in initial window in the for-

ward direction

Bwd Init Win bytes
Total number of bytes sent in initial window in the back-

ward direction

Fwd Act Data Pkts
Count of packets with at least 1 byte of TCP data pay-

load in the forward direction

Fwd Seg Size Min Minimum segment size observed in the forward direction

Active Min Minimum time a flow was active before becoming idle

Active Mean Mean time a flow was active before becoming idle

Active Max Maximum time a flow was active before becoming idle
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Active Std
Standard deviation time a flow was active before becom-

ing idle

Idle Min Minimum time a flow was idle before becoming active

Idle Mean Mean time a flow was idle before becoming active

Idle Max Maximum time a flow was idle before becoming active

Idle Std
Standard deviation time a flow was idle before becoming

active

Table 3.1: List of Features and Descriptions

3.2 Analysis

A comprehensive methodology was employed, consisting of four main phases. These

phases, namely data preprocessing, data points classification, false prediction cluster-

ing, and model evaluation and visualization, form the foundation of our study. In the

following section, we will expand on each of these phases, outlining the specific steps

we took in our thesis. This detailed breakdown will help clarify the methods we used

and showcase the depth and accuracy of our research approach.

3.2.1 Data Preprocessing

The preprocessing phase plays a foundational role in the entire analysis, facilitating

the effective utilization of the dataset. Specifically, within a network, routine activities

such as packet retransmission and duplicated Acknowledgment (ACK) can lead to

alterations in the distribution of packet-level features[13]. Despite collecting traffic

data for the network, it may contain null and irrelevant values, particularly due to the

conversion of files into CSV format using the CICFlowMeter tool, which introduces

potential noise that must be addressed. Thus, essential preprocessing steps have been

undertaken to address these issues. During this phase, duplicate or irrelevant data

must be removed from the collected data by cleaning, filtering, and aggregating it.

The dataset underwent several data cleaning procedures, wherein null, unnecessary,

and duplicate values were removed, along with features exhibiting zero variance.
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Figure 3.2: Analysis Workflow
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A data validation step was performed to ensure IP addresses followed the expected

format. Subsequently, rows with both destination and source IPs containing valid IP

addresses were retained.

Various data transformation steps were applied, including converting ”timestamps”

into the ”datetime” datatype to enable meaningful analysis. Additionally, certain

features were treated as objects, despite representing numerical values, necessitating

conversion to their corresponding float values.

As a critical step, standardization was employed using the StandardScaler to bring

certain features to a consistent scale.

Removing zero variance columns can also help to reduce the dimensionality of the

data, which can improve the performance of machine learning models by reducing the

risk of overfitting and speeding up the training process. As a result, we removed all the

features with zero variance which includes 15 features. All the removed features are

”Bwd PSH Flags”, ”Fwd URG Flags”, ”Bwd URG Flags”, ”URG Flag Cnt”, ”CWE

Flag Count”, ”ECE Flag Cnt”, ”Fwd Byts/b Avg”, ”Fwd Pkts/b Avg”, ”Fwd Blk

Rate Avg”, ”Bwd Byts/b Avg”, ”Subflow Bwd Pkts”, ”Active Mean”, ”Active Std”,

”Active Max”, ”Active Min”, and ”Label”.

Following the applied preprocessing techniques, our dataset comprises 69 numer-

ical attributes, with the exception of the protocol, commander, and voice command

variables. These encompass three distinct protocols, three individual commanders,

and 105 unique voice commands. With the utilization of label encoding, the dataset

is now primed for subsequent analysis. Upon successfully applying these preprocess-

ing steps, the dataset has been rendered clean and ready for subsequent analytical

processes.

3.2.2 Datapoints Classification

We created labels for the dataset by introducing two new features called Commander

and Voice Command. Our strategy involves training classification methods on the

dataset based on the mentioned labels while making certain assumptions. Specifically,

we assume that any data points that are incorrectly identified with respect to the

two labels indicate a potential data exhaust. Data points that exhibit incorrect

classification for both commanders and voice commands could suggest two potential
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Table 3.2: Dataset Features Before and After Preprocessing

scenarios: either the voice network traffic data wasn’t generated due to the user’s

intent, or the transmitted data doesn’t correspond accurately to the original voice

command.

Regarding the selection of classification methodologies, an assessment of various

classifiers was undertaken. However, certain classifiers were excluded from considera-

tion due to their incompatibility with the dataset’s characteristics and the nature of

the classification aim. Specifically, logistic regression and naive Bayes were deemed

unsuitable as the task at hand doesn’t align with binary classification paradigms.

Additionally, the application of Support Vector Machine (SVM) proved sub-optimal

due to challenges posed by the dataset’s high dimensionality, resulting in extended

computation times.

Subsequently, the decision was made to employ the K-Nearest Neighbor(K-NN),

Random Forest and Multi-Layer Perceptron (MLP) classifiers.

For all three methods, the dataset was stratified into two distinct labels: voice

command and commander. Accordingly, two separate models were developed to

predict the corresponding labels.

K-NN is a simple and intuitive machine learning algorithm used for both classifica-

tion and regression tasks. Leveraging the K-NN algorithm, which is a non-parametric

and instance-based machine learning technique, this thesis employed a systematic

approach[16]. By considering the K nearest neighbours of each network packet within

the multidimensional feature space, the K-NN algorithm made classifications based

on the majority voting principle among these neighbours, taking into account their
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similarities and differences. The K-NN algorithm doesn’t require consideration of the

relationship between historical data and easily operates in complex environments.

This simplicity makes it suitable for application in traffic information management

systems[73].

Minkowski distance, a widely used metric in traditional K-NN, expresses actual

distances between points. In this context, the exponent is set to 2, representing

Euclidean distance. The shorter the distance, the greater the similarity[32].

The choice of an appropriate K value was pivotal in ensuring the accuracy of

the classifications. Cross-validation accuracy is a statistical measure used in machine

learning to assess the performance and generalizability of a predictive model. In the

context of this thesis, it refers to the accuracy score obtained through cross-validation

techniques. Cross-validation involves partitioning the dataset into subsets, training

the model on some of these subsets, and evaluating its performance on the remaining

subsets. This process is repeated multiple times, and the average accuracy score across

all iterations provides a reliable estimate of the model’s predictive performance on

unseen data.

In the context of this thesis, a cross-validation function was applied to determine

the optimal value for K in the K-NN algorithm. For each k value in the specified range,

a KNN classifier is instantiated with Manhattan distance as the metric for proximity

measurement and optimal parallelization using multiple processors. Subsequently, a

cross-validation procedure is executed with five folds on a subset of the data. The

accuracy scores obtained from each fold are computed, and the mean accuracy score

is calculated as it is plotted in Figure 3.3 and Figure 3.4. The result obtained from

the cross-validation process guided the selection of the most suitable K value for

classifying network traffic data, predicting both commander and voice command. By

employing this approach, the study ensured that the K-NN algorithm was fine-tuned

and optimized to make accurate predictions on new, unseen data, thereby enhancing

the reliability and effectiveness of the classification process.

Random Forest is an ensemble learning method widely used for both classification

and regression tasks. A combination of decision trees, constructed using the bagging

method, employs both random data selection and feature selection. As an ensemble
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Figure 3.3: Cross Validation - Commander Classification

Figure 3.4: Cross Validation - Voice Command Classification
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technique, Random Forest utilizes bootstrapping, averaging, and bagging to train

multiple decision trees. This integration of decision trees enhances overall accuracy

and stability in predictions. Random Forest builds a ”forest” of decision trees, each

trained with different subsets of randomly selected data and features, ensuring greater

generalization for diverse scenarios. The sub-datasets, constructed through random

sampling with replacement, are used to build sub-decision trees. Each sub-decision

tree produces a result, and the final classification is determined through majority

voting among these sub-trees.[5]

Through the use of distinct subsets of available features, multiple independent

decision trees are simultaneously constructed on different segments of the training

samples. Bootstrapping ensures the uniqueness of each decision tree in the Random

Forest, reducing variance. Once all decision trees are built, they collectively make

predictions on new, unseen data. For classification tasks, each tree ”votes” for a class,

and for regression tasks, they provide individual predictions. The final prediction is

determined by aggregating the votes (classification) or averaging the predictions (re-

gression). The Random Forest classifier amalgamates the decisions of multiple trees

for the final judgment, resulting in strong generalization. This classifier consistently

aims to outperform various other classification techniques in terms of precision, over-

coming challenges associated with imbalanced datasets and overfitting. This method

allows for highly accurate and stable predictions, crucial in the context of voice com-

mander detection within network traffic data analysis [75][3]. By implementing the

randomization of both data and features, our aim is to assess whether this method

outperforms other classification techniques.

MLP is a type of feed-forward Artificial Neural Network (ANN) that falls under

the broader category of deep learning with three or more layers. MLP is specifically

designed to map input data to appropriate outputs through layers of simple neurons,

also called perceptrons. These networks feature hidden layers situated between inputs

and outputs, aiding the model in achieving deeper learning. Each perceptron com-

putes a single output by combining multiple real-valued inputs using weighted sums

and applying a nonlinear activation function. These networks find widespread appli-

cation in supervised learning scenarios, where both training and testing datasets are
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essential components for training and evaluating the model, respectively[44]. MLP

employs a backpropagation algorithm, adjusting connection weights based on dis-

crepancies between expected and actual outputs[42]. MLP can learn both linear and

non-linear functions, approximating any continuous function and solving problems

that are not linearly separable. It also learns tasks from training data, minimizing

the loss function to achieve optimality and reducing loss to an acceptable level. Deep

MLPs, with multiple hidden layers, can represent certain functions more efficiently

than shallow ones, showcasing the capacity to compute complex functions like the

parity function with a linear-sized network[42].

In the context of classifying network traffic data into categories such as commander

and voice command, this thesis utilized MLP as the final classifier in this stage of

analysis, emphasizing its significance in accurately distinguishing and categorizing

various network interactions.

The outcomes of our comparative analysis pertaining to the performance of these

three classification models across the distinct labels are presented in the ensuing

Figure3.5 and Figure3.6. According to these tables an accuracy of 0.96 for the Ran-

dom Forest model when predicting the Commander target feature, and an accuracy

of 0.85 for the same model when predicting the Voice Command target feature.

As anticipated, the Random Forest outperformed the other model, aligning with

its reputation as the preeminent classification model for network traffic data.

Classifier/Metrics

K-NN

Random Forest

Accuracy F1-ScorePrecision

0.83

0.96

0.830.84

0.95 0.96

Recall

0.83

0.96

MLP 0.84 0.84 0.82 0.83

Figure 3.5: Commander Classification Comparison Report

3.2.3 False Prediction Clustering

Following the application of the classification model to the initial dataset, all incor-

rectly predicted rows were integrated into a single data frame, comprising a total of
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Classifier/Metrics

K-NN

Random Forest

Accuracy F1-ScorePrecision

0.65

0.85

0.660.67

0.86 0.85

Recall

0.66

0.85

MLP 0.67 0.74 0.66 0.68

Figure 3.6: Voice Command Classification Comparison Report

12,118 rows among all 380,194 features. For this new dataset containing the model’s

erroneous predictions, we employed a clustering model to categorize distinct types of

data points.

K-Means is a widely used centroid-based clustering method known for its sim-

plicity and efficiency. It is especially suitable for handling numerous variables. The

process involves choosing the desired number of clusters (k) and calculating centroids

for each group by iteratively assigning data points to clusters. This iteration con-

tinues until no further changes occur in the clusters, or until a predefined stopping

criterion is satisfied[41].

Utilizing the k-means clustering technique necessitates the identification of the

ideal number of clusters. In pursuit of this objective, we employed the Elbow Method

on the recently generated dataset.

The Elbow method is commonly used to determine the best number of clusters in

a dataset by examining the sum of the Sum of Squared Errors (SSE) among various

groups. A noticeable change in SSE values, leading to a distinctive bend in the graph,

indicates the ideal cluster count. The Elbow method calculates the squared distances

between each cluster element and its centroid. The optimal number of clusters is

identified through a significant shift in the Within Cluster Sum of Squares (WCSS)

value for different setups, resembling an angle[19].

As illustrated in Figure3.7, the discerned optimal cluster count is 3. In accordance

with this determination, we proceeded to execute the k-means clustering algorithm

with 3 clusters.
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Figure 3.7: Elbow Method for Optimal k

3.2.4 Model Evaluation and Visualization

In the realm of data analysis, visualization serves as a powerful tool, enabling re-

searchers to delve deeper into complex datasets and discern underlying structures

and relationships. In this thesis, where the dataset is notably intricate, comprising

a multitude of features, the challenge lies in unravelling meaningful insights from

this wealth of information. T-distributed Stochastic Neighbor Embedding (t-SNE),

a sophisticated method for reducing dimensionality, proved invaluable in addressing

this specific challenge. Unlike some traditional methods, t-SNE excels in preserving

both local relationships (the proximity of data points in the original high-dimensional

space) and global structures (the overall layout and clustering patterns) of the data[6].

With 69 features to contend with, applying t-SNE became pivotal. By transform-

ing the dataset into a lower-dimensional representation, we effectively unlocked the

ability to visualize the data in a more intuitive and interpretable manner. This trans-

formation paved the way for the creation of a three-dimensional plot, an invaluable

visual representation that condensed the complexity of the dataset into a comprehen-

sible form. The resulting visualization, as showcased in Figure 3.8, not only provided a

visually striking representation of the clustered data but also served as a lens through
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which intricate patterns, previously obscured by the dataset’s complexity, became

apparent.

This application of t-SNE didn’t just simplify the data; it enhanced our under-

standing of the inherent structures within the dataset. By revealing clusters and

groupings that might not have been immediately evident in the high-dimensional

space, t-SNE empowered us to make more informed interpretations and draw in-

sightful conclusions about the underlying relationships among the data points. This

visualization not only bolstered the depth of our analysis but also significantly con-

tributed to the overall richness and comprehensibility of our research findings.

Figure 3.8: Clusters of false voice commands and commanders predictions

3.2.5 Results

As you may have noticed there are three different issues regarding data exhaust in

an IoT ecosystem. First, unwanted data generating, second, passive data collection,

and finally data ownership and data use. We need to specifically be clear about each

issue and discuss solutions for each of them separately. Depending on the type of

sensors they may use in their smart device, businesses and applications may generate

more data than you expect. For instance, once a VA has been activated, the VA not



47

only collects data about the person who activated and is supposed to command it but

also collects information from background voice conversations like two other people’s

conversation[50]. The embedded sensors generate data in response to environmental

events, and it is almost impossible to determine whether the data should be generated

or not. In other words, the sensor cannot determine if the user aimed to generate

specific data consciously or unconsciously. In this scenario, we cannot prevent sensors

from generating data exhaust. Therefore, we may have to seek a solution in two other

steps. The physical layer is responsible for generating data in an IoT ecosystem. Once

the device generates data, it decides what data will be collected and transmitted via

the network layer. As a result, it may be possible to distinguish between generated

data and data that was not supposed to be generated. Depending on the type of

data package, for example, a specific size may be expected, it may be considered

data exhaust if any additional data is provided. For this scenario, we must design

and implement our IoT ecosystem in order to collect the necessary data and prevent

it from collecting unnecessary raw data. This solution targets the first layer of a

five-layer IoT ecosystem architecture.

Regarding the second issue, passively collected data may be employed for a wide

variety of purposes in both healthcare and PIoT devices like smartwatches, such as

early symptom recognition, postoperative monitoring, clinical research, basic science,

and public health. Passive data offers a continuous and quantifiable insight into a

user’s health and lifestyle. The remarkable thing about these devices is that they can

be used to collect and analyze passive information, such as GPS and accelerometer

data, to provide real-time insight into human behaviour without requiring participants

to take part [33]. In this situation, the user is unaware of what is being transmitted

in the first place, raising concerns about privacy issues. As we are referring to the

transmission of data, this issue is the responsibility of the physical layer. It is the

nature of these types of devices to passively collect data; we cannot prevent them

from doing so, but the user should be informed of what is being transmitted while

the device is in use.

However, the third issue concerns the businesses and third parties, which are

currently suffering from a lack of clear and strict regulations. Data ownership and

data usage in the context of IoT devices need to be clarified. As a result, both the
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Application Layer and the Business Layer are responsible for addressing this issue.
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Figure 3.9: Data Exhaust Issues In An IoT Ecosystem

In a study conducted by Iqbal et al. [21], a solution was proposed to address this

concern. In order to measure the amount of data collected, its usage, and its sharing

by smart speaker platforms, they developed an auditing framework that leverages on-

line advertising. In order to evaluate their framework, they looked at Amazon’s smart

speaker ecosystem and according to their findings, the privacy policies of Amazon and

Skills did not clearly disclose their practices regarding data collection.

Meanwhile, MySudo proposes a way to reduce the risk of data exhaust during on-

line interactions[40]. MySudo offers the ability for users to establish separate profiles,

known as Sudo profiles, which each feature a unique telephone number, email, private

web browser, and virtual card. These profiles can be assigned specific functions, such

as shopping, socializing, classified sales, or booking services. By utilizing Sudo in-

formation instead of personal information, users can avoid creating digital footprints

that could lead to their identification and reveal their private actions.

As evidenced by the depiction in Figure 6, our analysis reveals the presence of three

distinct clusters corresponding to instances of erroneous predictions. Guided by our

initial hypothesis, we assert that one of these clusters pertains to what we define as

data exhaust. Notably, in the figure, Cluster 0 is represented by the red data points

and stands out as markedly dissimilar from the other two clusters. This differentiation

positions Cluster 0 as an outlier within the context of the data distribution. Further

exploration of this cluster’s characteristics, particularly pertaining to the properties
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of its features, reinforces our hypothesis. Consistently across the data points within

this cluster, there are discernible patterns in the shared features that lend credence

to the validity of our hypothesis.



Chapter 4

Conclusion

Some users are skeptical about VAs due to privacy concerns. They worry that a

microphone-based device might be exploited by malicious entities to invade their

homes, leading to doubts about the device’s purpose and intentions[30].

The adoption of VAs as everyday gadgets highlights a notable power imbalance be-

tween users and the corporations behind these technologies. Despite being promoted

as convenient tools, VAs operate by relaying user commands to company servers,

where extensive data processing occurs, adhering to regulations such as GDPR. While

users are aware of data mining, their understanding of how personal data influences

online advertising remains limited. Concerns have arisen due to the methods of

data collection, emphasizing the necessity for clearer explanations from vendors[7].

However, current data protection laws have limitations in ensuring a comprehensive

privacy statement. Users often underestimate privacy risks due to incomplete compre-

hension, resulting in varying levels of acceptance regarding privacy loss. Furthermore,

existing privacy controls are not fully utilized, highlighting the disconnect between

user needs and the reliance on VA companies for privacy safeguards.

As evidenced in a study conducted by Bolton et al. [7], there are numerous

ambiguous aspects in the provided privacy policies concerning the collection and

utilization of user-generated data in almost most of the VAs.

This thesis aims to create a user-oriented monitoring system. It achieves this

by training a model to predict network traffic data generated from data exhaust.

We delved into a rich dataset comprising network traffic data, aiming to unravel

the intricacies of voice command interactions. To start, we implemented a model

training process, equipping the system to predict both the commander responsible

for initiating the command and the specific voice command associated with each

data point. This analysis results in finding instances of misclassifications within the

dataset. These misclassifications hinted at a significant issue – there was a possibility

50
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that either the command was not genuinely generated by the assigned commander,

or the uttered voice command did not accurately correspond to the intended action.

Identifying these misclassifications marked a crucial step in our investigation. To

tackle this challenge, we analyzed the discrepancies. In an effort to discern patterns

and clusters within these misclassifications, we employed the K-means clustering tech-

nique. By grouping these discrepancies into distinct clusters, we aimed to gain a

deeper understanding of the underlying issues. One of the key outcomes of our anal-

ysis was the identification of a specific cluster, which we designated as the potential

data exhaust. This cluster indicated instances where either the commands were not

authentic, or the voice commands were mismatched with the intended actions.

This approach can significantly enhance how users perceive transparency, which is

crucial in today’s user-centric environments. Since many users tend to accept privacy

policies without close scrutiny, this solution empowers them to keep a watchful eye

on the integrity of transmitted data.

VAs offer convenience, but they also bring up privacy worries due to their always-

on microphones[30][4]. These worries can be mitigated using the solution proposed

in this thesis.

Using this solution will always help users to know if there is any data transmitted

even when they are not calling them.

Smart speaker manufacturers should prioritize data minimization to restrict the

volume and sensitivity of the information they collect. It’s vital to avoid collecting un-

necessary or irrelevant data, as this could jeopardize user privacy. Implementing data

exhaust control measures can help mitigate the risks of data leaks or unauthorized

access.

4.1 Future Work

In this study, we used a dataset proposed by Barcel et al. There we 105 different

voice commands used in this dataset. For future works, we recommend adopting

the method proposed by Barcel et al. to collect our unique network traffic data

[4]. This involves examining various scenarios, including experimenting with more

sensitive voice commands like making a purchase or setting up the experiment in an

environment including background sounds.
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Additionally, it’s essential to compare different Voice Assistants and assess the

amount of unwanted data they collect to better understand privacy preservation.

In the study conducted by Bolton et al. [7], an extensive analysis of privacy and

policy texts across various brands of VAs was conducted. The researchers meticu-

lously scrutinized these documents, evaluating the transparency levels in each brand’s

privacy text. This thorough examination allowed them to discern the varying degrees

of openness and clarity present in the privacy policies of different VAs.

Building on this groundwork, we can further extend the research scope by applying

the proposed solution to detect data exhaust to multiple brands of VAs. By employing

the same methodology, we aim to assess the reliability and the extent to which these

VAs adhere to their stated privacy policy texts. This comparative analysis becomes

invaluable in unravelling the nuances of how different VAs prioritize transparency

and user privacy. Through this comprehensive evaluation, we endeavour to shed light

on the reliability of these technologies and the authenticity of their privacy claims,

contributing to a deeper understanding of the landscape of VA platforms in terms of

user data protection and transparency.

In other words, while our current study focused solely on the Alexa Echo Dot,

future research may explore other types of VA to provide a broader perspective on

data privacy and collection practices.



Appendix A

List of Publications

• Mellaty, Mahdieh; Sampalli, Srini; Zincir-Heywood, Nur; de Snayer, Kevin;

Dougall, Terri; A Systematic Review of Data Exhaust in IoT Devices, ACM

Computing Surveys, 2023, manuscript under review.
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