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Abstract 
Cholesteatoma is an abnormal skin mass in the middle ear requiring surgical 

excision, and accurate post-surgical imaging is of interest to avoid repeat surgeries. MRI 

suffers from susceptibility-induced field gradients at air-bone interfaces in the auditory 

canal, resulting in geometric distortion and signal pile-up. Multi-shot diffusion-weighted 

echo-planar imaging (ms-DW-EPI) at 0.5 T may reduce distortion, but requires motion 

correction. Multiplexed sensitivity encoding (MUSE) estimates intra-shot phase errors 

from motion, but requires sufficient signal to perform the correction. It is unknown 

whether ms-DW-EPI at 0.5 T provides sufficient signal to perform MUSE. In this work, a 

MUSE reconstruction pipeline was designed and optimized. The engineering design 

process leading to an optimized system for reconstructing patient images is discussed. 

The resulting images demonstrated qualitatively reduced motion artifact compared to 

images reconstructed without MUSE and was statistically supported, confirming the 

hypothesis. This supported further exploration into imaging cholesteatoma with ms-

DW-EPI at 0.5 T.   
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1. Introduction and Motivation 

1.1 Cholesteatoma 
Cholesteatoma is a skin mass or lesion known colloquially as ‘skin in the wrong 

place’1. The pearl-like cyst develops from the eardrum, or tympanic membrane, and 

proliferates into the middle ear space. It occurs in approximately 9 in 100,000 people2, is 

most common in the adult male population3, and is dominant in Caucasian individuals4.   

Cholesteatoma is predominantly acquired rather than congenital2, and while 

several theories of pathogenic origins exist, the most widely accepted cause is pressure 

imbalance across the tympanic membrane4. The middle ear is secluded from the 

external environment by the tympanic membrane. In a healthy individual, pressure 

balance between the internal and external environments is maintained via the 

eustachian tube. In the event of chronic ear infection, eustachian tube function may be 

impaired. As a result, the pressure in the middle ear drops and creates a negative 

internal pressure that draws the tympanic membrane in. This invagination coalesces in a 

cholesteatoma mass which can further engulf inflammatory cells, granulation tissue, 

bacteria, elastin, collagenous fibers, and bone fragments due to erosion4.  

This pathogenic theory is supported by the histologic composition. 

Cholesteatoma is primarily composed of keratinized stratified squamous epithelium4, a 

skin tissue type that lines the external auditory canal and forms a thin layer over the 

external face of the tympanic membrane but is not found in the middle ear5.  The 

etymology of the pathology suggests a cancerous nature, and standalone studies have 

shown neoplastic tendencies6 and progression into squamous cell carcinoma7. However, 
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literature overwhelmingly suggests that this is a historical misnomer and the pathology 

is non-cancerous4.  

Cholesteatoma symptoms reflect the progression from chronic ear infection. 

Primary  symptoms are vertigo, fever, and otalgia8, and can be accompanied by 

tympanic membrane perforation, abnormal and pungent fluid leakage, clogging of the 

ear canal8, balance disturbance, and conductive hearing loss9. Symptoms worsen the 

longer the pathology is left untreated. Late-stage symptoms can escalate to intracranial 

abscesses, purulent labyrinthitis, and facial paralysis8. Symptoms can be managed with 

antibiotics, but ultimately the only course of treatment is surgical removal.  

1.2 Standard of Care 

The standard of care for cholesteatoma treatment following an initial diagnosis is 

that the patient undergoes a computed tomography (CT) scan to confirm the 

diagnosis8,10. CT is the standard for pre-surgical cholesteatoma imaging because it is 

sensitive to detecting occlusion in the auditory space and erosion of the surrounding 

bone and ossicular chain4,11. In this case, sensitivity refers to CT having sufficient 

resolution and contrast for detecting pathology. The initial CT scan may be accompanied 

by a magnetic resonance imaging (MRI) scan. MRI complements CT with soft tissue 

contrast11.  

The surgery to remove cholesteatoma ranges from minorly invasive to extensive 

reconstruction. The surgery may require mastoidectomy that damages the integrity of 

the bony partitions in ‘canal wall up’ or ‘canal wall down’ procedures, or tympanoplasty 

to restructure the eardrum 12. Changes in the auditory environment as a result of the 
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surgery depend on the extensiveness of the surgery, but may include bone 

restructuring, filling with a surgical reconstruction material and the development of scar 

granulation tissue.  

Cholesteatoma is a persistent and recurrent pathology13, meaning that if it is not 

fully removed the first time around, or conditions persist, it will return. This may occur 

from missing a small section of pathology during surgery or a new forming mass12. 

Recurrence occurs in approximately 15% of adult cases 12,13, though higher recurrence 

rates have been reported14. For this reason, patients are called back for a follow-up 

appointment anywhere between six months8,15  to several years16 post-surgery for 

reassessment.  

1.3 Reassessment imaging 

CT is sensitive for exposing new occlusions in the auditory canal and changes in 

the surrounding bone, but lacks the specificity to differentiate between granulation 

tissue, fluid, fibrous scar tissue, reconstruction materials used during the initial 

surgery4,17 , and herniated brain tissue18(Figure 1.1). Here, specificity refers to the ability 

to differentiate between tissue types. The sensitivity and specificity of CT for identifying 

recurrent cholesteatoma are 43% and 48% respectively11. For this reason, CT cannot be 

used to assess for the recurrence of cholesteatoma after surgery. Optical coherence 

tomography (OCT) provides the necessary specificity, but current technology has limited 
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resolution and flexibility, particularly without damaging the tympanic membrane or 

ossicles19.  

Post-surgical reassessment of cholesteatoma with diffusion weighted (DW) MRI 

demonstrates a hyperintense pathology compared to surrounding tissue18,20. This is 

thought to occur through a combination of diffusion restriction and T2 shine-through, a 

hyperintensity from a T2-weighting effect4,15,17,21. The dual effect is a result of the 

keratin having a lengthened T2 compared to other tissue as well as restricted diffusion 

from the cell mass11. From a cost standpoint, the difference between performing a 

second-look surgery compared to an MRI scan is estimated between $180.27 and 

Figure 1.1. High resolution CT scan of auditory canal in a patient with 
diagnosed cholesteatoma.  The image right side shows a new presenting 
cholesteatoma (orange arrow) obstructing the auditory canal (blue arrow) 
and eroding the mastoid bone (green arrow). The patient had undergone 
previous surgery for contralateral cholesteatoma on the image left side. Bone 
fragments are identified as white structures (red arrow), but it is unclear 
whether the surrounding gray tissue is recurrent pathology, scar tissue, or 
surgical construction material.  

Figure 1.2. Hyperintense signal produced by cholesteatoma and distortion-
induced signal pile-up. Cholesteatoma appears slightly hyperintense (blue 
arrow) compared to cortical tissue. Distortion manifests as hyperintense signal 
along auditory canal (orange arrow) in a similar anatomical position to the 
contralateral pathology. Patient was scanned with DW-MRI at 3 Tesla.  
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$390.6622. However, distortion-induced signal pile-up at air-bone interfaces manifest as 

hyperintense clusters (Figure 1.2). The similar appearance of the pathology and 

distortion on DW-MRI images result in false positive diagnoses which reduce physician 

confidence15.   

Due to these imaging limitations, the current standard of care for suspicion of 

recurrent cholesteatoma is a second-look surgery17,23–25. One review reported that, on 

average, 67% of second-look surgeries across multiple studies do not find recurrent 

pathology16.  In the event of not finding recurrence, patients are unnecessarily exposed 

to the associated surgical risks of anaesthesia26, balance loss, impairments to hearing 

and taste, facial nerve paralysis and infection18. However, untreated recurrent 

pathology can progress into the detrimental symptoms of nerve damage and bone 

erosion mentioned earlier, necessitating a second-look surgery in the absence of reliable 

reassessment imaging. One recommendation is to perform a second-look surgery only in 

the case where there is suspicion that a portion of the original pathology was not 

removed16. This may reduce the overall number of surgeries performed, but does not 

resolve the ambiguity for diagnosing a residual cholesteatoma outside of surgery.  

1.4 Limitations of MRI for Cholesteatoma Reassessment 

The distortion in MRI images is a multifactor result of susceptibility-induced field 

gradients causing signal misplacement. Adjustments can be made to the acquisition in 

order to mitigate distortion.  

1.4.1 Acquisition Sequences 

MRI acquisition sequences are chosen based on the desired contrast with the 

feature of interest. For recurrent cholesteatoma, the pathological mass needs to be 



6 
 

differentiated from cortical tissue and distortion. Tissue contrast can be introduced to 

MR images beyond relaxation properties. This is done on the basis of sensitizing the 

signal to physical properties of different tissues such as their spin lattice relaxation time 

(T1), spin-spin relaxation time (T2), and molecular apparent self-diffusion coefficient 

(ADC). T1- and T2-weighted acquisitions prior to second-look surgery report low true 

positive and radiosurgical correlation rates of 37% and 70% respectively27, and so do not 

fulfill the contrast requirements. Contrast encoding with DW-MRI has been reported 

with sensitivity and specificity of up to 92.2% and 91.7%, respectively28, making it a 

suitable candidate.  

In MRI, the Fourier components of the image in data-space are commonly 

referred to collectively as k-space, which is subsequently transformed with the Fourier 

transform (FT). Differences in pulse sequences, such as EPI and PROPELLER, differ in how 

the k-space data is acquired, which ultimately influences the images upon FT. 

1.4.1.1 Non-EPI Sequences 

A rapid imaging sequence is required to acquire diffusion signal. These can be 

broken into echo planar imaging (EPI) and non-EPI sequences. EPI is criticized for 

distortion manifesting as signal pile-up in the auditory canal that confounds 

cholesteatoma diagnosis. Non-EPI acquisitions attempt to address this shortcoming. The 

two leading non-EPI sequences for cholesteatoma reassessment are PROPELLER and 

HASTE. Periodically rotated overlapping parallel lines with enhanced reconstruction 

(PROPELLER) collects alternating lines of k-space data centered across the middle of k-

space23. The advantages of this technique is that the repeated collection of the center of 

k-space makes the acquisition motion robust. However, the acquisition sequence is not 



7 
 

available on all systems, is limited to detecting cholesteatomas between 329 to 5mm, 

has lengthy acquisition times4, and in some cases has reported to present persistent 

susceptibility distortion24. Half-Fourier-acquisition single-shot turbo-spin-echo (HASTE) 

pairs high in-plane resolution with a refocusing pulse following each echo to reduce 

susceptibility distortion30. HASTE has demonstrated utility in cholesteatoma 

reassessment11,31. However, as with PROPELLER, HASTE is a specialized sequence not 

available on all systems, and is known to lack sensitivity to small cholesteatomas 2-3 

mm in size30.  

1.4.1.2 EPI Sequences 

An alternative to designing specialized non-EPI sequences is to address the issue 

of distortion in EPI. EPI is a rapid imaging technique that collects an entire k-space in a 

single repetition time (TR). In single-shot EPI (ss-EPI), lengthy acquisition times lead to 

phase error accumulation and distortion, and so is not ideal for reassessment imaging4. 

Alternatively, the acquisition can be broken into multiple passes over k-space, or multi-

shot EPI (ms-EPI). This acquisition collects every nth line of k-space, where n is the 

number of shots. This reduces the length of the temporal acquisition window for each 

shot to reduce the accumulation of phase errors leading to distortion.  

1.4.1.3 Motion Correction 

A limitation of ms-DW-EPI is that the strong applied diffusion gradients rely on 

accurate and reliable location of produced signal, which is corrupted with intra-shot 

motion. Patient motion may arise from large-scale twitching or fidgeting, but also from 

bodily functions such as respiration or swallowing. Even on this millimeter scale, motion 

between shots produces faint repetitions of the original anatomy every 1/n field of view 
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(FOV). One way to reduce motion artifact is to collect the data even faster, thereby 

minimizing the window of opportunity for intra-shot motion to occur. Feinberg et. al. 

proposed a custom pulse sequence for simultaneous acquisition of temporal and spatial 

data, which saw a 2- to 4-fold decrease in the temporal acquisition window length32. 

However, this technique required a pulse sequence modification, reported reduced SNR 

and increased distortion in regions of high susceptibility, and reported concerns of 

persistent aliasing from parallel imaging. 

Alternatively, intra-shot patient motion can be corrected during image 

reconstruction. Multiplexed sensitivity encoding (MUSE) is a motion correction 

technique that estimates and incorporates intra-shot phase errors  in the image 

reconstruction to remove the motion artifact33. This technique has been applied to DW-

EPI images with diffusion gradient b-values up to 2000 s/mm2 at 3 Tesla (T). This was 

used to support the argument that MUSE i) does not have an signal-to-noise ratio (SNR) 

penalty on the produced images and ii) is not limited by the SNR of images to be 

reconstructed. This was used for demonstration purposes. However, cholesteatoma 

contrast is sufficient at a b-value of 800-1000 s/mm2 20, and so b-values up to 2000 

s/mm2, and the corresponding SNR reduction, is unnecessary.  

DWI with MUSE reconstruction has been implemented clinically in breast tumor34–36, 

rectal37, Crohn’s disease inflammation38, head and neck cancer39, functional MRI40, free-

breathing abdominal41, brain aging changes42, endometrial cancer43, pancreas44, 

stroke45, and prostate cancer46 imaging. All of these applications were implemented at 

clinical field strengths of 1.5 or 3 T.  
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1.4.2 MRI Field Strength 

The clinical standard for MRI field strength is in the range of 1.5-3 T47. The amount of 

produced signal, often described by SNR, scales approximately proportionally to applied 

magnetic field strength48. For example, an image collected at 3 T would produce about 6 

times the amount of signal produced at 0.5 T.  This reduced signal production is a known 

limitation of low-field imaging that occurs at field strengths between 64 mT to 1 T47. 

However, produced signal is only half of the SNR ratio. Dielectric resistance, a product of 

dielectric effects and the primary noise contributor at higher field strengths, is reduced 

at low field strengths47. The reduced dielectric effects and technical advancements for 

device manufacturing to reduce noise have contributed to an improved SNR overall at 

low field.   

An application where clinical MRI field strengths struggle is in regions of air-bone 

interfaces, where susceptibility-induced field gradients (SIFG) cause distortion. 

Susceptibility effects scale with field strength47. At lower fields, distortion resulting from 

SIFG is reduced compared to clinical fields49. This is an important advantage in 

anatomical areas where susceptibility distortion is a concern, such as in the middle ear.   

1.4.3 Resolution 

 Resolution depends on voxel size, a 3-dimensional pixel described by the matrix 

size, slice thickness, and FOV. The smaller the voxel, the better the resolution. However, 

the smaller the voxel, the less produced signal, since there is less substance in that area 

to produce a signal. As described previously, detecting recurrent or residual 

cholesteatoma is particularly challenging with small cholesteatomas between 2-3mm. In 
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order to have clinically useful images to detect these small pathologies, thin slices are 

needed. The challenge is that this correlates with a small voxel and reduced signal 

production from that voxel.  

1.5 Motivation  
As an imaging modality, CT is restricted to density imaging. This is ideal for 

identifying an occlusion of the auditory canal in a first-time presenting pathology, but 

not for differentiating between pathological and scar tissue. DW-MRI demonstrates 

differentiation of cholesteatoma tissue but is confounded by distortion in the auditory 

canal. Distortion scales with field strength and acquisition window length, and so could 

benefit from ms-DW-EPI at 0.5 T. 

At a field strength of 0.5 T, the baseline of produced signal would be approximately 

1/6th of that at 3 T, a typical clinical field strength. With the application of a diffusion 

gradient, the amount of produced signal would be further reduced. Clinically relevant 

resolution requires a small voxel size with reduced signal production. The claim of the 

MUSE paper is that even at high b-values, MUSE is not restricted by SNR33. This is 

supported by the clinical applications described here. However, these studies were 

performed at clinical field strengths between 1.5 to 3 T.  Even if the MUSE algorithm 

itself is not hindered by SNR, an intermediate preparatory step required to calculate the 

phase errors is known to reduce image SNR. It is unknown whether clinically relevant 

ms-DW-EPI images at 0.5 T would have sufficient SNR for MUSE reconstruction. 

This thesis presents an investigation into the SNR limits of MUSE with ms-DW-EPI at 

0.5 T. The following hypothesis addresses this research question. 
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1.6 Hypothesis 
Sufficient SNR will be provided by ms-DW-EPI acquired at 0.5T to perform MUSE and there 

will be a quantifiable reduction in motion-induced ghosting compared to images 

reconstructed without MUSE correction. 

MUSE is not a standard reconstruction option on all MRI systems. To investigate 

this hypothesis, a reconstruction pipeline needed to be developed offline that could 

handle data acquired at 0.5 T. The following objectives address the thesis workflow to 

investigate this hypothesis.  

1.7 Objectives  
Objective 1: Obtain k-space data collected with ms-DW-EPI at 0.5 T. Data must meet the 

following requirements: i) be available on a local server outside of vendor reconstruction 

restraints; ii) organized in a cartesian grid with individual shots, channels, diffusion 

directions, and averages stored separately.  

 

Objective 2: Develop an offline reconstruction pipeline using the logic of the established 

MUSE technique. The pipeline must i) take ms-DW-EPI data as input and ii) output 

images of acceptable clinical quality. The pipeline should match the vendor 

reconstruction as closely as possible in order to mitigate any differences in output 

images to the MUSE reconstruction.  

 

Objective 3: Optimize the acquisition and reconstruction for the clinical application of 

cholesteatoma. The acquisition should match literature standards of resolution as closely 
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as reasonable for clinical relevance. The reconstruction should minimize noise 

accumulated in the images along the reconstruction pipeline.  

 

Objective 4: Evaluate overall image quality and motion artifact levels. Qualitative 

comparisons between vendor and MUSE reconstructed images should examine overall 

image appearance and subjective comparisons of artifacts. Quantitative evaluations 

measure the ghost-to-signal ratio (GSR), distortion-to-signal ratio (DSR), pathology-to-

signal ratio (PSR), and pathology-to-distortion ratio (PDR).  
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2. Background  
MRI is a non-invasive imaging technique that uses the principle that a spinning 

charged particle produces a magnetic field and induces a current. This current is 

received and interpreted as an MRI signal.  

2.1 MRI Foundations 
An atomic nucleus contains positively-charged spinning protons, known 

colloquially as ‘spins’50. Opposing spins will pair together such that the equal and 

opposite contribution of each spin field cancels out and no net magnetization arises. If, 

however, a nucleus possesses an odd number of protons, there will be an unpaired spin. 

In a bulk volume, such as anatomical region of interest, the magnetic field contribution 

of each individual spin contributes to a net magnetization vector.  

In MRI, the global environment of protons in a given volume is influenced by the 

application of an external electromagnetic field, 𝐵𝑜. At equilibrium under 𝐵𝑜, the net 

magnetization vector in a volume aligns along the z-axis in the direction of 𝐵𝑜. An 

applied radio frequency (RF) pulse perturbs the equilibrium to induce the net 

magnetization vector into the transverse x-y plane. The angle at which spins are flipped 

into the transverse plane, or the flip angle, can be adjusted. For maximum transverse 

magnetization, a 90˚ flip angle is used, and referred to as a 90˚ RF pulse. Directly 

following an RF pulse, net magnetization 𝑀𝑧 in the z-axis is zero, and net magnetization 

in the x-y plane 𝑀𝑥𝑦 is at a maximum. In order to excite a particle, the resonant 

frequency must be matched, as described by 

𝜔 =  𝛾 ∗ 𝐵𝑜 
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where ω is the angular frequency of the particle and γ is the gyromagnetic ratio (42.6 

MHz/T for hydrogen). Hydrogen is a common choice for MR due to its abundance in the 

human body50.  The net magnetization vector returns to equilibrium realignment 

through a process called relaxation. Relaxation occurs by independent processes in the 

longitudinal and transverse planes described by T1 and T2 (Figure 2.1).  
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Figure 2.1. The net magnetization vector recovers through T1 and T2 
relaxation after an RF pulse. Prior to the RF pulse, the net 
magnetization is aligned with the applied Bo. When the RF pulse is 
applied, net magnetization is pushed into the transverse (x-y) plane. 
The transverse magnetization decays to zero through loss of phase 
coherence by T2. At the same time, longitudinal magnetization in the 
z plane recovers by T1. T1 and T2 are independent and simultaneous 
processes that are dependent on both the tissue and Bo. 
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2.1.1 T1: Longitudinal Relaxation Time 

T1 relaxation is the rate constant that describes the net longitudinal 

magnetization, 𝑀𝑧, recovery along the direction of 𝐵𝑜
51. T1 relaxation is described by 

𝑀𝑧(𝑡) = 𝑀𝑜(1 − 𝑒
−

𝑡
𝑇1 ) 

where 𝑀𝑜 is the magnetization prior to the RF pulse, t is the elapsed time, and T1 

is the rate constant of recovery. T1 is typically described by an exponential recovery 

curve, which is unique to a tissue and is dependent on field strength. 

2.1.2 T2: Transverse Relaxation Time 

T2 relaxation is the rate constant that describes the net transverse 

magnetization, 𝑀𝑥𝑦, decay along the direction of 𝐵𝑜
51. T2 relaxation is described by 

𝑀𝑥𝑦(𝑡) = 𝑀𝑜 ∗  𝑒
−

𝑡
𝑇2  

where 𝑀𝑥𝑦 is magnetization in the transverse plane and T2 is the rate constant 

of transverse magnetization loss. T2 is typically described by a decay curve which, like 

T1, is unique to a tissue and is dependent on field strength. T2 relaxation is a two-fold 

process of dephasing which occurs through spin-spin interactions as well as external 

field inhomogeneities. After the RF pulse, neighbouring spins in the transverse plane are 

in phase with one another (Figure 2.2). The magnetization vectors from each spin align 

to produce a net magnetization vector that sum to a maximum signal in the transverse 

plane. Shortly after, individual spins lose phase coherence, reducing the net 

magnetization vector. Dephasing continues until phase coherence is lost and no net 

magnetization remains in the transverse plane.  
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 Dephasing is enhanced by a tissue-independent rate constant called T2*. T2* 

reflects the homogeneity of 𝐵𝑜. If a magnetic field is largely homogeneous, T2* and T2 

will by similar. If inhomogeneities exist, dephasing will increase as described by 

𝑀𝑥𝑦(𝑡) = 𝑀𝑜 ∗  𝑒
−

𝑡
𝑇2∗  

for a rotating frame of reference with a 90˚ RF pulse. Field inhomogeneities can exist as 

susceptibility-induced field gradients (SIFG) at tissue boundaries with large inherent 

susceptibility differences. At higher field strengths, the differences in tissue 

susceptibilities, ∆𝐵, are greater and related to T2* by 

1

𝑇2
∗ =  

1

𝑇2
+ 𝛾∆𝐵 

At lower field strengths, T2* increases due to reduced dephasing because of improved 

field homogeneity. 
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Figure 2.2. T2 relaxation describes the reduction in net transverse magnetization due to loss of phase coherence. 
Shown here in a rotating frame of reference, net magnetization is pushed into the transverse (x-y) plane after an 
RF pulse. Initially, neighbouring spins are in phase. Over time, spin-spin interactions and external inhomogeneities 
cause dephasing, which leads to a net reduction in transverse signal.  

RF pulse 
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2.2 K-space: Encoding, Sampling, & Reconstruction 

MRI image sets are acquired with a series of acquisition scans, collectively called 

an acquisition protocol. A pulse sequence describes the tissue contrast, signal encoding, 

and signal readout for a given acquisition sequence or scan.  

The MRI signal can be sensitized to a particular contrast weighting with a series 

of protocolling decisions. The repetition time (TR) is the time between RF pulses52. 

Increasing the TR allows for more opportunity for T1 recovery, and thus less T1 

weighting or contribution to the contrast between tissue types. The echo delay time (TE) 

is the amount of time between the RF pulse and signal readout. A short TE reduces T2 

and T2* effects, since there is less opportunity for dephasing to occur.  

The frequency array produced in response to the applied magnetic fields is called 

k-space53. Frequency components represent contributions from the slice or z dimension, 

IFFT 

FFT 

kx 

ky 
x 

y 

k-space Image space 

Figure 2.3. The frequency and image space domains are related by the FFT. K-space is densely populated around the 
origin, where low frequencies correspond to the fundamental appearance of the image. Higher frequencies on the 
outer limits of k-space correspond to fine detail in the image. The FFT transforms the image domain into the 
frequency domain. The IFFT transforms the frequency domain into the image domain. FFT = Fast Fourier Transform; 
IFFT = inverse FFT; Ky = frequencies in y-dimension; Kx = frequencies in x-dimension; y = y-dimension; x = x-dimension.   
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frequency or y dimension, and the phase or x dimension. For simplicity, the x and y 

dimensions are often depicted alone on a cartesian grid (Figure 2.3). Frequencies near 

the center of k-space, or the origin on the grid, correspond to low frequencies that make 

up the underlying structure of the image, and higher frequencies provide the resolution 

or sharpness component of an image 53. K-space can be transformed into image space 

with the Fast Fourier Transform (FFT). 

An RF pulse excites spins in a tissue volume, but does not offer spatial 

discrimination. This is done with the application of gradients. The slice select gradient, 

Gz, is applied in the z-dimension to select a particular anatomical volume of spins to 

excite50. 

Spatial information is encoded in the k-space array of frequencies for the x- and 

y-dimensions through both frequency and phase. A gradient is applied in the ‘readout’ 

or ‘frequency encode’ direction54. The readout gradient has a known center frequency 

and gradient range, and so a received signal can be located to a specific location within 

the slice stack. However, this only encodes the information in one dimension. One can 

imagine a gradient applied through the center of the brain along the y-axis. Each 

position along that axis will perceive a slightly different gradient strength, and so will 

differ from its neighbour. However, all points in the x-axis will receive the same gradient 

strength. In order to make a 2D image from the received signal, the data must also be 

encoded in the second dimension. This is done through phase encoding. In phase 

encoding, a gradient is applied for a known amount of time. The longer the gradient is 

applied, the more phase will be accumulated by a spin. Where the frequency encode 



19 
 

gradient is applied during readout, the phase encode gradient is classically applied one 

line at a time in phase encoding steps. This can be time consuming, and so alternative 

methods to reduce phase encoding time have been developed.  

2.2.1 Parallel Imaging 

Parallel imaging (PI) addresses lengthy scan times by reducing the number of 

collected phase encoding steps55. This is done by encoding spatial information in the 

receive coil using sensitivity maps as well as in the phase encoded spins. The receive 

coil, or simply coil, contains an array of receive channels for collecting the data. PI 

images are considered under-sampled since a complete dataset was not collected, and 

requires additional post-processing in terms of how the images are reconstructed. 

Depending on the reconstruction method, SNR is approximately reduced by the product 

of the square root of the under-sampling or PI factor and the geometric factor of the coil 

configuration56. The geometric or g-factor describes the encoding efficiency of a coil 

array based on the geometry of the receive channel set-up.  

2.2.1.1 Coil Sensitivity Maps 

Coil sensitivity maps describe the relative sensitivity of each receiver in an array 

coil to an anatomical location55. These maps play a crucial factor in parallel imaging 

Figure 2.4. Sensitivity maps from a 16-channel array coil. Left: data-derived sensitivities; 
right: pre-scan sensitivities.  



20 
 

reconstruction by providing some spatial information and reducing the number of 

necessary phase encoding steps. In general terms, sensitivity maps are derived by 

dividing a full-FOV image from each receive channel in an array coil by a sum-of-squares 

image combined across channels57. This may or may not be accompanied by 

normalization of the maps by dividing by a body coil image.  

Coil sensitivity maps may be obtained at the beginning of a protocol as part of 

the pre-scan or may be data-derived (Figure 2.4)55,56. Pre-scan maps have the advantage 

of being acquired once at the start of a scan and so are computationally less expensive. 

Data-derived sensitivity maps are computationally more expensive because they are 

derived with each PI image set, but have the advantage of more closely matching the 

underlying anatomy in the case of movement between the pre-scan and the data 

acquisition.  

Coil sensitivity maps need to be accurate and reliable in order to properly 

reconstruct an under-sampled image, and so understanding the limitations of these 

maps is necessary. For maps acquired during the pre-scan, significant patient motion 

across the span of the acquisition protocol can misalign the acquired maps from the 

underlying data55. This is considered less of an issue in rigid coils such as head coils 

where the anatomy is confined and movement is limited. In EPI, distortion can play a 

role in inaccurate sensitivity maps. This can occur if a non-EPI dataset is used to derive 

the sensitivities for an EPI image with PI, or if an EPI sequence is used to derive maps for 

an image with a different echo train length (ETL). Corrections for this involve distorting 

the sensitivity maps with acquired field maps to describe the acquisition-specific 
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distortion or by increasing the reduction factor to improve distortion. However, areas of 

strong inherent distortion, such as air-bone interface in the head, are still prone to 

distortion issues in sensitivity maps55. It is also important to note that each channel 

receives a similar but differently weighted version of the object being imaged, and this 

includes similar signal from noise. Noise correlation across channels may be amplified 

and translated into the image when coils are not completely decoupled56.   

2.2.1.2 Parallel Image Reconstruction 

PI reconstruction can happen in the k-space or image space domains. In k-space, the 

most common reconstruction methods are Simultaneous Acquisition of Spatial 

Harmonics (SMASH) and GeneRalized Autocalibrating Partially Parallel Acquisitions 

(GRAPPA). In SMASH, under-sampled k-space is filled in as best-fit harmonics with 

known coil sensitivities56. However, this method is severely restricted by the coil 

configuration, and has largely been replaced by more advanced versions and other 

techniques. GRAPPA is similar to SMASH in that under-sampled k-space lines are filled in 

within k-space, but it was designed with improved SNR return and less stringent 

constraints on coil configuration. GRAPPA is best used in inhomogeneous anatomical 

locations such as in the lungs and abdomen. However, when coil sensitivities are 

available, image-space reconstruction methods are preferable to k-space methods55. 

Image space methods parse out aliased information, whereas k-space methods estimate 

data from a least-squares fitting. The dominant image space reconstruction technique is 

sensitivity encoding (SENSE).  
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2.2.2 Sensitivity Encoding (SENSE) 

 Sensitivity encoding (SENSE) was developed by Pruessmann et. al. as a 

reconstruction method using coil sensitivity maps to unfold the aliased images57. SENSE 

reconstruction occurs in the image domain and requires no custom pulse sequence. The 

general methodology of SENSE is that each coil has an aliased representation of a 

reduced FOV image with overlapping pixels at a position every 1/R FOV, where R is the 

parallel imaging or reduction factor56. The matrix of coil sensitivities, which is made up 

of R pixels by number of channels, Nc, for each spatial location, can be used to relocate 

each aliased position to its full FOV position, thus resolving the full image. This can be 

modelled mathematically as an unfolding matrix  

𝑈 = (𝑆𝐻𝜓−1𝑆)−1𝑆𝐻𝜓−1 

where ψ is a receiver noise correlation matrix and H refers to the complex conjugate of 

S, the sensitivity matrix. This unfolding matrix can be applied to the aliased image set, a, 

by 

𝑣 = 𝑈 ∗ 𝑎 

to solve for the unaliased full-FOV image57. The noise correlation matrix may be omitted 

with the understanding that without decoupling the receiver noise, excess noise will 

persist in the final image and therefore reduce the overall SNR.  

SENSE has gained use in applications where MRI signal is acquired with parallel 

imaging, including in single-shot parallel PI DW-EPI58, cardiac imaging56,57, contrast-

enhanced magnetic resonance angiography, DW-MRI in the brain, and breast imaging56.  
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SENSE is limited by the parallel imaging factor in that it cannot exceed the number of 

receive channels56. As well, the SNR is reported to be higher with a lower parallel 

imaging factor, and SNR is typically negatively impacted after SENSE. Any differences 

between coil sensitivities and the data to be reconstructed can lead to reduced image 

quality. This can include any noise in the sensitivities which can propagate into the final 

image56, as well as the previously mentioned distortion differences between EPI coil 

sensitivities and obtained images. These can be mitigated by proper coil sensitivity 

processing, specifically smoothing in the case of noise.  

2.3 Diffusion-Weighted Imaging 
Stejskal and Tanner demonstrated the idea of encoding the diffusion of spins 

under an applied magnetic field over a short time period, setting the groundwork for the 

idea of diffusion-weighted imaging (DWI)59. Diffusion describes molecular motion 

resulting from thermal energy60. Without external restrictions or influence, water 

molecules will follow Brownian motion, where random diffusion is equally likely to occur 

in all directions61. In the body, barriers in the form of cellular or tissue boundaries act to 

restrict random diffusion. For example, cerebrospinal fluid flow in the ventricles is 

relatively unrestricted, so under a short time observation, would appear to follow a 

relatively unrestricted diffusion pattern. In a section of a blood vessel, diffusion appears 

to occur freely in the direction of flow, but restricted in others by the vessel walls. A 

tumor shows restricted diffusion, since water molecules are confined in the tissue mass. 

In this way, the diffusion properties of tissues can give insight into the local environment 

and can give contrast to identify pathologies without the need for contrast agents17,21.  
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Diffusion gradients are applied in two blocks of equal duration and strength62 

(Figure 2.5). The first gradient is followed by a 180˚ spin echo and the second diffusion 

gradient. In a tissue with limited or restricted diffusion, the set of spins in that volume 

will not diffuse a significant distance between the first and second gradient. This means 

that any phase accumulated during the first gradient will be reversed by the second 

gradient. This gives complete rephasing of neighbouring spins, and the net phase 

recovery produces a strong signal that translates in a DW image as a bright signal. If, 

however, molecules in a given tissue are unrestricted and allowed to diffuse freely, spins 

will diffuse away from their initial position during the first applied gradient. When the 

second gradient is applied, spins will experience a different gradient compared to the 

first, meaning that they will not recover their initial phase perfectly. Neighbouring spins 

are unlikely to be in phase with one another, which leads to a weak produced signal 

from that tissue and a dark appearance on a DW image. Tissue types with intermediate 

diffusion restriction will fall somewhere on the greyscale spectrum depending on 

whether they are more or less restricted.  

Figure 2.5. Schematic of DW pulse sequence. The 90° RF pulse is followed by 
the first diffusion gradient of strength G and duration δ. This is followed by 
a 180° refocusing pulse and a second diffusion gradient of equal strength 
and duration to the first after a time period Δ. Diffusion gradients may be 
applied along the x, y, or z axis. Note that this diagram shows diffusion 
encoding but not acquisition. For acquisition, frequency and phase encoding 
gradients would follow the second diffusion gradient.  
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In practise, all water diffusion in the body is at least in part restricted due to 

anatomical boundaries, and so diffusion is typically described on a scale of 0 to 1, where 

1 is free water diffusion and 0 is no diffusion. This is called the apparent diffusion 

coefficient (ADC) 62. ADC maps are derived by the equation  

𝑆 = 𝑆𝑜 ∗  𝑒−𝑏∗𝐴𝐷𝐶  

𝐴𝐷𝐶 =
𝑙𝑛(𝑆/𝑆𝑜)

−𝑏
 

where S is the signal at a given b-value and 𝑆𝑜 is the signal without an applied 

diffusion gradient, or the b=0 image63. By this equation, any T1 or T2 effects are 

cancelled out, and so only water diffusion trends influence the image. These maps are 

used together with the 𝑏𝑜 and DW images for diagnosis as each provides a unique piece 

of information.  

Diffusion gradient strengths, or b-values, are selected to optimize contrast 

between the tissues of interest. Higher b-values on the order of 1000 s/mm2 or above 

better separate tissues based on their ADCs. However, high b-values also evoke less 

signal and so reduce the overall SNR. For brain applications, a b-value of 1000 s/mm2 is 

usually selected62.  

In theory, molecular diffusion can be encoded on the range of 10 μm62. In 

practise, motion as a result of pulsatile blood flow, cerebrospinal fluid pulsation, and 

respiration can all interfere with the diffusion measurement and lead to motion 
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artifacts60,62,64.  Motion artifacts hindered the uptake of DWI into clinical practise until 

rapid imaging methods were developed60.  

2.4 Echo Planar Imaging  
Echo planar imaging (EPI) is a fast-imaging technique that collects a full 

representation of k-space after a single radio frequency (RF) pulse65. The pulse sequence 

starts with a 90° pulse and slice gradient followed by preparatory phase and frequency 

gradients (Figure 2.6). Then, a phase encode gradient is rapidly turned off and on. At the 

same time a readout gradient is rapidly pulsed between a maximum positive to an 

equally maximum negative strength. This rapid gradient switching is what allows for the 

full k-space to be collected within a single TR. For this to be possible, high performance 

slew gradients are a hardware requirement to perform EPI. In this case, the slew rate 

describes the minimum amount of time required to reach the maximum gradient 

strength65.  

Figure 2.6. Schematic of EPI pulse sequence. A 90° RF pulse is 
delivered with the slice select gradient followed by preparatory 
phase and frequency pulses. For a spin echo, this may be 
followed by a 180° refocusing pulse. Simultaneous phase and 
frequency gradients are rapidly switched to encode and readout 
k-space, corresponding with signal production.  

Figure 2.7. Single-shot EPI acquisition. The 
readout trajectory traverses the entirety of k-
space in a single TR. 
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EPI can happen in a single-shot (ss) or multi-shot (ms) acquisition. In ss-EPI, the 

entire k-space is collected in one TR (Figure 2.7). However, a concern with ss-EPI is the 

exaggeration of phase errors. Over the duration of the readout, spins lose phase 

coherence65. These phase variations propagate through the readout, and so the longer 

the readout window, the more phase errors can accumulate. This is particularly 

exaggerated in regions of susceptibility differences, such as at air-bone interfaces within 

the auditory canal. These phase errors manifest as distortion in image space (Figure 2.8).  

To mitigate this, the window read length can be broken into multiple shots for ms-

EPI (Figure 2.9). Increasing the number of shots decreases the time for phase errors to 

accumulate, thereby decreasing distortion (Figure 2.8). This comes at the cost of 

increasing the scan time. In practise, a 2- to 4-shot acquisition may be used as a 

compromise between distortion and scan time.  

Figure 2.8. Signal pile-up due to distortion and motion artifact (ghost) levels change with number of EPI shots. 
Distortion is circled in yellow and artifact in red. Left: single-shot acquisition with clear signal pile-up along the 
auditory canal and sinuses. No ghosting is visible. Middle: 2-shot acquisition with noticeable but reduced signal 
pile-up along the auditory canal and reduced across the sinus. Some ghosting from the brightest signal is 
visible. Right: 4-shot acquisition with reduced signal pile-up along the auditory canal and minimal signal pile-up 
along the sinus. Significant ghosting is visible outside the brain. All images were acquired on one healthy 
volunteer at 0.5 T. 
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Another significant issue is the opportunity for motion artifacts between shots. An 

assumption made during ms-EPI is that the anatomy is in the same place between shots, 

and so any motion between shots can shift the trajectory of k-space collection and lead 

to artifacts in the image. To correct for this, motion correction needs to be applied to 

ms-EPI.   

2.5 Multiplexed Sensitivity Encoding (MUSE)  

Intra-shot motion in ms-DW-EPI manifests as faint, periodic repetitions of the 

original anatomy, called ghosting artifacts. Estimating and correcting for intra-shot 

phase errors could theoretically remove the ghosting artifact. This was the idea 

proposed by Chen et. al. in their post-processing technique entitled Multiplexed 

Sensitivity Encoding (MUSE)33. The purpose of MUSE was to correct for the motion 

artifact without the need for a custom sequence, navigators, or hardware modifications. 

Similar to SENSE reconstruction, under-sampled datasets with aliased pixels could be 

resolved with known coil sensitivities. The core SENSE algorithm  

Figure 2.9. Schematic of multishot EPI. In this 3-
shot acquisition, acquisition starts on the first line, 
and skips every three lines.  It then re-starts on the 
second, then third line, and repeats the pattern. 
Yellow=shot 1, green=shot 2, blue=shot 3. 
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𝑢𝑗(𝑥, 𝑦) = 𝑆𝑗(𝑥, 𝑦)𝑝(𝑥, 𝑦) + 𝑆𝑗(𝑥, 𝑦 +
𝐹𝑂𝑉𝑦

2
)𝑝(𝑥, 𝑦 +

𝐹𝑂𝑉𝑦

2
) 

describes the aliased signal u received by a coil j is the sum of the product of sensitivities 

S and the true signal p plus the product of the sensitivities and the aliased pixel. In 

MUSE, instead of standard coil sensitivity maps, phase errors due to motion are 

calculated from full FOV images from each shot and multiplied into the sensitivities. 

These full FOV images are estimated using a SENSE reconstruction, since each dataset 

can be considered an under-sampled aliased image. From Chen et. al.33, the phase 

errors for each shot can be estimated by 

𝑒𝑖𝜃(𝑥,𝑦)+𝑐(𝑥,𝑦) =
𝑇𝑉(𝑝𝑠(𝑥, 𝑦))

|𝑇𝑉(𝑝𝑠(𝑥, 𝑦))|
 

where 𝑒𝑖𝜃(𝑥,𝑦)+𝑐(𝑥,𝑦) represents the phase term, with θ being the unique phase error 

due to motion between each shot and c an arbitrary background phase term unrelated 

to motion. TV is a denoising algorithm of the total variation operated on the SENSE-

derived full FOV image 𝑝𝑠. Modifying the original SENSE equation, the MUSE algorithm is 

𝑢𝑗(𝑥, 𝑦) = [𝑆𝑗(𝑥, 𝑦)
𝑇𝑉(𝑝𝑠(𝑥, 𝑦))

|𝑇𝑉(𝑝𝑠(𝑥, 𝑦))|
]𝐷(𝑥, 𝑦) + [𝑆𝑗(𝑥, 𝑦

+
𝐹𝑂𝑉𝑦

𝑁𝑠
)

𝑇𝑉 (𝑝𝑠 (𝑥, 𝑦 +
𝐹𝑂𝑉𝑦

𝑁𝑠
))

|𝑇𝑉 (𝑝𝑠 (𝑥, 𝑦 +
𝐹𝑂𝑉𝑦

𝑁𝑠
))|

]𝐷(𝑥, 𝑦 +
𝐹𝑂𝑉𝑦

𝑁𝑠
) 

The aliased signal u received by a coil j is now the sum of the product of sensitivities S, 

phase errors, and the true signal D plus the product of the sensitivities and phase errors 

of the aliased pixel. This describes a single shot received by a given channel. To modify 
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this for a multi-shot acquisition, the sign between the true and aliased signals is 

changed. For clarity, one paper66 re-writes the MUSE equation as  

𝑢𝑗,𝑘(𝑥, 𝑦) = ∑ 𝑆𝑗(𝑥, 𝑦 +
𝑟 𝑥 𝐹𝑂𝑉𝑦

𝑁𝑠
)𝑝 (𝑥, 𝑦 +

𝑟 𝑥 𝐹𝑂𝑉𝑦

𝑁𝑠
) 𝑒𝑖2𝜋𝑘𝑟/𝑁𝑠

𝑁𝑠

𝑟=0

𝑣𝑘 (𝑥, 𝑦 +
𝑟 𝑥 𝐹𝑂𝑉𝑦

𝑁𝑠
) 

where the term 𝑣𝑘 represents the phase errors due to motion and 𝑒𝑖2𝜋𝑘𝑟/𝑁𝑠 is the 

relative shift in k-space trajectory for a given segment in a ms-EPI acquisition. In this 

term, Ns is the number of shots. The variable r is related to Ns in that they are 

numerically the same, but further describes how each 1/r segment of the FOV is shifted 

in k-space.  

The basic MUSE concept has been extended for non-cartesian acquisitions using 

projection onto convex sets (POCS-MUSE)66 and with deep learning67.  

Some limits apply to the MUSE algorithm. The number of shots in a ms-EPI acquisition is 

limited by the number of coil channels, for similar reasons to the SENSE 

reconstruction33. There is an inherent assumption magnitude is constant across shots, 

meaning that intra-shot differences are limited to phase. This implies that significant 

motion impacting the intra-shot signal magnitude cannot be handled by MUSE. 

Additionally, phase errors are assumed to be from motion only, and so MUSE does not 

impact any inter-shot phase errors that lead to distortion33. As discussed previously, 

MUSE has been implemented at clinical field strengths with increased b-values. 

However, it is unknown whether MUSE is limited by SNR in reduced cases, such as at a 

lower applied field strength.   



31 
 

3. Experimental Methods and Pipeline Engineering Design 
This thesis explores the design decisions that impact image quality and artifact levels 

in a MUSE reconstruction of ms-DW-EPI at 0.5 T. The system design (i.e. acquisition 

protocol, data transfer, reconstruction pipeline) was in flux throughout the duration of 

the thesis research. This chapter presents a comprehensive overview of how these 

design decisions were made including candidate alternatives and the criteria used to 

select the optimal option. The MRI system, data collection, acquisition parameters, 

pipeline development and optimization, and data evaluation are discussed.  

3.1 Experimental Methods  

3.1.1 MRI System 

The MRI used for this project needed to i) meet the hardware requirements of 

strong, rapid gradients in order to acquire the DW-EPI data and ii) have a field strength 

below clinical standards of 1.5-3 T. To address these requirements, the 0.5T Synaptive 

Medical MRI was used (Figure 3.1). This system was available for research in the BIOTIC 

lab at the Halifax QEII Hospital as a head-only device. The system gradients have a peak 

strength of 100 mT/m and slew rate of 400 T/m/s68,69. Previous work has demonstrated 

comparable DWI image quality on this system to that obtained from a clinical system, 

even in the presence of metal implants70,71. For comparison at clinical field strength, the 

3T GE Healthcare MRI in the QEII Hospital was also used.  
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The head coil was required to have a sufficient number of channels for parallel 

imaging and sufficient signal to produce accurate sensitivity maps. A 16-channel and 8-

channel head coil were considered. The 16-channel had adjustable side panels to 

maximize the filling factor of the object with the receiver, whereas the 8-channel was a 

rigid clip-in style. Comparing image quality in the two coils (Figure 3.2) the 16-channel 

gave brighter signal around the periphery of the object whereas the 8-channel produced 

a balanced image in terms of signal intensity from the superficial to deep structures. The 

16-channel could be used with a larger parallel imaging factor, but the deeper range of 

sensitivities in the 8-channel resulting from each channel having a larger diameter 

produced superior coil sensitivity maps. The 8-channel was selected for the project.  

Figure 3.1. Synaptive 0.5 T MRI.  
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3.1.2 Phantoms 

MRI phantoms were used for quality control and pipeline development. The 

large ACR phantom is an accepted standard for evaluating image quality72(Figure 3.3). 

Built-in features with varying susceptibility and physical structures can be used to 

evaluate resolution and distortion. The Synaptive diffusion phantom was used to 

investigate whether diffusion was observable, and how diffusion directions were stored 

within the obtained k-space dataset (Figure 3.3).  

Figure 3.2. Comparison of coil images across anatomical position and in an ACR phantom. Top row: 16-channel coil 
with example images; bottom row: 8-channel coil with example images. 

Figure 3.3. MRI phantoms were used for quality control imaging. Left: Large 
ACR phantom. Right: Diffusion phantom (Synaptive Medical). 
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3.1.3 Human Participants 

Volunteers and patients were recruited for imaging at 0.5 T under an existing 

technique development ethics entitled “Development and Optimization of Point-of-Care 

Magnetic Resonance Imaging” (Romeo File No. 1025269). To compare image quality to 

that of the clinical standard, some volunteers and patients were recruited for imaging at 

3T under an existing technique development ethics entitled “Research Sequence 

Development for 3 Tesla Magnetic Resonance Imaging” (Romeo File No. 1024276). The 

decision to include or exclude scanning at 3 T was made based on the progress of the 

project, i.e. if a comparison to standard image quality and distortion levels were 

necessary. The number of volunteer subjects was limited to the maximum number that 

were approved by the hospital’s research ethics board. A total of six healthy volunteers 

(4 female, mean age = 27.5 ± 4.1 years old) were recruited with the standard MRI 

exclusion criteria for a 30-60 minute scan at 0.5 T. Four of the six healthy volunteers 

were also recruited for a 30-minute scan at 3 T. Three patients (2 males, mean age 44.7 

± 23.2 years old) were recruited for scanning at 0.5 T. Patient candidates were identified 

by clinical collaborators based on a diagnosis of first-time presenting cholesteatoma. 

Clinical scan images obtained at 3 T and with high-resolution CT were acquired from the 

data analysis server used by physicians as allowed under the REB approved protocol.  

3.1.4 Acquisition Parameters 

The parameters used to acquire the ms-DW-EPI data were modified and optimized 

throughout the duration of the MUSE pipeline development. The vendor DW-EPI 

protocol was used as a standard, and parameters such as number of shots, averages, 

matrix size, and image readout were manually adjusted on the MRI console before a 
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scan. The initial priority was to match image integrity between the images reconstructed 

with the MUSE pipeline and those reconstructed with the proprietary vendor 

reconstruction pipeline, or the vendor reconstructed images. Then, priority shifted to 

correcting the motion artifact, and then to optimizing for the clinical application.  The 

rationale for these protocolling choices is described below.   

3.1.4.1 Number of shots 

The number of shots impacts the ghosting and distortion levels. Initially, a 1-shot 

acquisition with minimal ghosting was acquired so that image quality could be matched 

between how the images were imported into Matlab and the vendor reconstructed 

images. Then, the number of shots was increased to 2 and 4. By doing so, a motion 

ghost artifact was introduced. This probed whether MUSE was implemented correctly, 

as increasing the number of shots would be expected to increase the level of ghosting. 

For the clinical application, 3 shots were collected. This was expected to reduce 

distortion more than a 2-shot, while introducing less ghosting artifact than a 4-shot. 

3.1.4.2 Number of averages 

For this work, a diffusion direction and strength is replicated for each shot and 

slice, and each replicate is called an average. In the vendor reconstructed images, the 

averages were always combined. In the current pipeline, the k-space for each individual 

averages was obtained before they were collapsed. Increasing the number of averages 

increases the overall scan time but also improves the SNR. The number of averages was 

selected such that the total time for one acquisition scan was around 5 minutes. This 

ranged from 6 to 8 averages.  
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3.1.4.3 Slice thickness, FOV, and matrix size 

The slice thickness, FOV, and matrix size interrelate to create image resolution 

and voxel size. High image resolution gives crisper boundary visualization, but at the 

cost of smaller voxel size and lower produced SNR. In the literature, ideal slice thickness 

for recurrent cholesteatoma imaging with DW-MRI is 2-5mm11. The minimally 

acceptable matrix size and FOV were derived with the goal of achieving 2mm slices to 

match the literature gold standard. To assist with these protocolling decisions, images 

were obtained with FOV/slice thickness of 18 cm/5.5 mm, 20 cm/5 mm, 22 cm/4.5 mm, 

and 24 cm/5.5 mm (Figure 3.4). These image sets were presented to an experienced 

neuroradiologist, who was asked to evaluate the images for overall quality and 

diagnostic preference. Thin slices were preferred over thick to avoid flow artifacts 

(Figure 3.4 C), and a smaller FOV was preferred, but both thin slices and a small FOV 

were requested. The current protocol obtains 2mm slices with a small matrix size of 96 

by 96 and a FOV between 17.6 and 19.2 cm.  

FOV18/5.5mm FOV20/5mm 

FOV22/4.5mm FOV24/5.5mm 

A B 

C 

Figure 3.4. Optimizing spatial resolution. A: Variations in FOV and slice thickness for comparable voxel 
size; B: Anatomical comparison of comparable slice; C: Flow artefact (yellow circle) in FOV18/5.5mm. 
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3.1.4.4 Frequency Encode Direction 

The default setting in the DW-EPI protocol was to have the setting ‘switch frequency’ 

(SF) toggled on such that the readout was in the left-right direction. Antialiasing filters 

are applied in the frequency encode direction, meaning that it is preferable to have the 

readout in the direction of the longest anatomical plane to avoid wraparound of the 

anatomy. To switch the readout direction, SF was toggled off.  Although the online 

reconned images appeared normal, the MUSE images were unexpectedly poor. This 

prompted an exploration into the impact of input anatomical offsets on image quality 

(Appendix V). An offset in the phase encode direction impacted MUSE image quality, not 

vendor reconstructed images. This could not be replicated by Synaptive engineers, and 

the source of the issue could not be addressed within a reasonable timeline. Since the 

typical added AP offset was small (10-15mm), and it did not interfere with visualizing the 

anatomy of interest or cause any excess wraparound, it was decided that no AP offset 

would be added going forwards, and readout would be in the AP direction.  

3.1.4.5 Working Protocol 

Acquisition parameters were in flux throughout the pipeline development as the 

theoretical SNR output was varied and a protocol was optimized, which was reflected in 

the parameters used to scan the first four healthy volunteers (Appendix VII). The final 

protocol was used to scan the three patients and two healthy volunteers and consisted 

of three DW-EPI acquisitions: 1-shot with PI2 (TE=64.7 msec, matrix =88x88, FOV 17.6 

cm, slice thickness=2mm, slice spacing=2mm), 2-shot (TE=64.5 msec, matrix =88x88, 

FOV 17.6 cm, slice thickness=2mm, slice spacing=2mm), and 3-shot (TE=59.4 msec, 

matrix =96x96, FOV 19.2 cm, slice thickness=2mm, slice spacing=2mm). A balanced 
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steady state free precession (bSSFP) acquisition was selected for anatomical comparison 

due to its high SNR efficiency and demonstrated high resolution at 0.5 T73.   

3.2 Pipeline Engineering and Optimization 
 Although MUSE is an established reconstruction technique, it is not available on 

all MRI systems and is not publicly available. Therefore, an offline, non-vendor 

reconstruction pipeline needed to be developed to investigate the hypothesis in this 

thesis. Matlab (Matlab R2022b) met the requirements for this project of having matrix 

functions and consistency with other lab-developed pipelines. The pipeline design and 

engineering are described below. Briefly, data is transferred from the MRI system 

computer to the data analysis server and partially reconstructed to obtain cartesian-

gridded k-space. This k-space is transferred into Matlab. Coil sensitivities and phase 

variations are derived from the data. Final unaliased images are solved for as per the 

MUSE reconstruction process33.  

3.2.1 Data Organization 

Unprocessed data collected during an acquisition protocol is temporarily stored on 

the MRI console and can be captured as raw k-space. The k-space is transferred to the 

data storage server and then the data analysis server, where it can be organized and 

reconstructed.  
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MUSE reconstruction requires cartesian-gridded k-space. The raw k-space data exists 

as unorganized lines of k-space that need to be interpreted and restructured using the 

accompanying metadata. Two techniques were considered for this purpose. First, 

existing Matlab code from the lab was modified for DW-EPI data. However, the code 

could not correctly grid the k-space data. Alternatively, an offline reconstruction 

pipeline was provided by Synaptive through a Docker container. This pipeline was 

identical to the vendor reconstruction, but had been modified to produce 

reconstruction intermediates called breadcrumbs. Any early processing on the data in 

the vendor reconstruction would be reflected in the breadcrumbs, and so any 

reconstruction differences would be limited to those provided by the MUSE 

reconstruction. The pipeline reflected the latest version of the vendor reconstruction 

pipeline and was not backwards-compatible with previously acquired data (Figure 3.5). 

The two breadcrumbs used for this project were hybrid images and coil coefficients. 

Hybrid images were matrices with one dimension in image space and the other in k-

space. These could be converted into cartesian-gridded k-space by the FT in the image-

domain dimension and served as the source of primary data for the project. The coil 

coefficients were coil sensitivity maps obtained at the beginning of the acquisition 

Figure 3.5. Early versions of the offline reconstruction revealed 
acquisition specificity of the pipeline. Left: New collected axial 2-
shot DWI. Right: DW-EPI data collected previously. 
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protocol. Hybrid image datasets were imported into Matlab as a matrix of size of [Nx, 

Ny, Nz, Ns, Nd, Na, Nc], representing x-matrix size, y-matrix size, number of slices, 

number of shots, number of diffusion directions, number of averages, and number of 

coil channels, respectively. As a sanity check, a 2D FFT was performed on this k-space 

and was saved as a separate image-space matrix.  

The offline partial reconstruction pipeline underwent several iterations 

throughout the duration of the project. Significant problems, such as requiring different 

output breadcrumbs or errors in the reconstruction process (Figure 3.6, Appendix VI), 

led to modified versions of the pipeline. Minor issues, such as needing to modify 

optional reconstruction parameters, were addressed by overriding the default 

reconstruction parameters. This was done by including a text file in the reconstruction 

command, which took precedence over the default settings and circumvented the need 

for an entirely new reconstruction pipeline. The current version of the pipeline produces 

individual hybrid images for each shot, diffusion direction, slice, average, and receive 

channel.  

Figure 3.6. Example of FOV shift between online reconstruction image (left) and 
Matlab rendering of hybrid image in image space (right). Image was acquired 
as a 1-shot EPI with one average. 
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The vendor reconstruction images were used as a gold standard for comparison. 

A few differences were noted in how the data was handled between the vendor 

reconstruction and Matlab. Notably, the vendor reconstructed images were presented 

as ADC maps and combined diffusion images, whereas the Matlab images stored b=0 

and b=1000 for each diffusion direction separately. The vendor reconstruction had an 

automatic cropping feature to limit the FOV to a region with sufficient gradient warp 

correction. If offsets were not entered to center the auditory canal at the start of an 

acquisition protocol, it was obstructed (Figure 3.7). MUSE images were stretched in the 

anterior-posterior direction compared to the vendor reconstructed images. This was 

addressed by resizing the images in Matlab to the standard output size of 256 by 256.  

3.2.2 Sensitivity Maps 

Coil sensitivity maps describe the relative sensitivity of each channel in a receive 

coil to a position in the anatomy. These maps must be accurate for proper 

reconstruction of under-sampled data with SENSE and MUSE. In this work, coil 

sensitivity maps were necessary for both the SENSE reconstruction to derive the phase 

errors due to motion, as well as the final MUSE calculation.  

Figure 3.7. Visible differences between images from physician data server and MUSE 
reconstruction. Left: Vendor reconstructed image on server is circularly cropped, obstructing 
part of the anatomy. Right: MUSE image stretched in the anterior-posterior direction compared 
to physician data server image. Slices were selected to exemplify FOV cropping and stretching, 
respectively, and are not slice matched to each other.  
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Two sources for these sensitivity maps were considered.  First, channel 

combination coefficient breadcrumbs corresponding to sensitivity maps for each 

channel were output from the offline reconstruction pipeline. These were suspected to 

have similar post-processing to the acquired cartesian-gridded k-space from the hybrid 

images, and so were the first choice for coil sensitivities. The breadcrumbs were 

obtained in an intermediate FOV and were interpolated to match the size of the hybrid 

images.  

To better understand the behaviour of these breadcrumbs, acquisition 

parameters that were anticipated to be modified during this project were adjusted one 

at a time, and the corresponding sensitivity maps were plotted (Appendix VIII). A visible 

change was expected with switching the frequency encode direction and increasing field 

of view. Likewise, no visible change was expected and observed with increasing the 

number of shots. There was no visible change when the subject was asked to move 

during the acquisition, suggesting the maps were collected during the pre-scan only, and 

not re-collected with each acquisition.  

Alternatively, sensitivity maps could be derived directly from the data. The 

following pseudocode describes this process for each individual slice summed across 

averages, as described in an available tutorial74.   

1 Inverse 2D FFT of Hanning-filtered data for b=0 k-space 

2 Sum of squares of image data across coil channels 

3 Matrix division of images from 1 divided by 2 
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These two methods were compared for their representation of the physical 

object as well as the output image quality from the SENSE algorithm. For an initial 

understanding of how the SENSE estimation for phase maps and MUSE reconstruction 

depend on the sensitivities, a comparison of derived sensitivities from 1-shot and 2-shot 

data, channel combination coefficients, and reference sensitivity derivations from 

literature75 was performed (Figure 3.8). 

Figure 3.8. Comparing image reconstruction with variations of coil sensitivities. In each column from left, the first 
SENSE step was performed with sensitivities derived from: literature sensitivity method, 1-shot dataset,  2-shot 
dataset, and channel combination coefficients. In each row from top, the MUSE step was performed with sensitivities 
derived from: literature sensitivity method, 1-shot dataset,  2-shot dataset, and channel combination coefficients. 
Ghosting and noise is largely dependent on secondary MUSE reconstruction. The 1-shot derived sensitivities performed 
best overall with any initial sensitivity. Coil coefficients and 2-shot derived sensitivities left noise and ghosting, 
indicating that MUSE was not functioning correctly.  



44 
 

The 1-shot sensitivities performed best for both the initial SENSE and final MUSE, 

and the channel coefficient breadcrumbs left the most ghosting, suggesting that they 

were not working effectively. A few differences may have contributed to this.  

First, there was a noticeable shift in the x-direction between the coil 

combination coefficient breadcrumbs and the derived sensitivities (Figure 3.10 E & F). 

An intensity plot through the center of a representative coil sensitivity for both the 

breadcrumbs and derived sensitivities suggested a consistent yet slightly shifted 

intensity pattern between the two (Figure 3.10 C & F). This contradicted what Synaptive 

engineers observed, where the observed intensity patterns for their derived sensitivities 

matched the coil coefficients exactly. This was resolved with a modification of the offline 

reconstruction pipeline.  

With this update to the offline reconstruction pipeline, a separate coil coefficient 

breadcrumb was produced for each average, shot and diffusion direction. Visual 

inspection revealed that they were identical for a given average and diffusion direction 

and similar across shots, but that they were being replicated due to the configuration of 

the upgrade (Figure 3.9).  

Figure 3.9. Channel combination coefficient breadcrumbs across diffusion directions. No visible differences were 
observed. 
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An FOV discrepancy was identified between the coil coefficient breadcrumbs and 

the derived sensitivity. The coil coefficients appeared to be ‘zoomed in’ compared to the 

derived sensitivities and the object of interest (Figure 3.10 B & E). This observation was 

consistent across fields of view. The apparent FOV difference was suggested to be a 

restriction put on the coil coefficients to mitigate abrupt changes in sensitivities, but 

may have also resulted from EPI distortion. For an EPI acquisition, the channel 

coefficient breadcrumbs were calibrated from undistorted gradient echo images, since 

EPI is known to have geometric distortions from B0 inhomogeneities. The idealized coil 

coefficients may not have matched up closely enough with the distorted image collected 

with EPI. At this point, it was decided that channel combination coefficients were not an 

ideal fit for the current project, and so focus turned to optimizing the derived 

sensitivities.  
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Figure 3.10. FOV difference between coil coefficient breadcrumbs (coil coeff) and derived sensitivities (der sens). At 
FOV 24cm, the coil coeff (A) show a circular object occupying the full panel and the der sens (B) representing the 
expected FOV. An intensity map through the middle of the sensitivity plots (C) for both der sens (blue) and coil coeff 
(red) shows shifted peaks and valleys. Similarly at FOV 30 cm, the coil coeff (D) appear zoomed in compared to the der 
sens (E), and again the peaks and valleys are shifted in the coil coeff compared to the der sens when the center of the 
sensitivities are plotted (F).  
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Initially, sensitivities were derived from a 1-shot, multi-average dataset that was 

collected in addition to the multi-shot data in a given scan. This was done so that the 

data was fully sampled and unaliased. However, minimizing scan time is preferable for 

patient comfort, and so an alternative pseudo 1-shot dataset derived from data already 

being collected was explored. This was done by combining the k-space from the multi-

shot acquisition across shots in addition to averages for each given slice. Although 

previously investigated, improvements to the pipeline as a whole warranted a further 

look. Comparing the general appearance of 1-shot derived and multi-shot or pseudo 1-

shot derived sensitivities (Figure 3.11), sensitivity patterns were similar. The pseudo-1-

shot derived sensitivities appeared more blurred across regions of transition (e.g. 

between the skull and cortical tissue) compared to the crisp transitions in the 1-shot 

derived sensitivities. As well, the background noise was more prominent with potential 

residual ghosting in the pseudo-1-shot. However, it was reasoned that this could be 

addressed by adjusting the filtering and smoothing functions. Looking at the MUSE 

output images using either 1-shot or pseudo-1-shot derived sensitivities for both the 

initial SENSE estimation and the MUSE step, the overall image quality was similar for 

b=0, combined diffusion directions, and ADC maps regardless of which sensitivity map 

Figure 3.11. Comparison of 1-shot derived (top row) and 2-shot derived (bottom row) sensitivities. Top row shows 
sensitivities derived from 1-shot data. Bottom row shows sensitivities derived from 2-shot data combined to create a 
pseudo-1-shot dataset.  
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was used (Figure 3.12). Images reconstructed with the pseudo-1-shot derived 

sensitivities had comparable ghosting levels to images reconstructed with 1-shot 

derived sensitivities. This evidence, along with the added benefit of removing the need 

for an additional scan, supported the use of the pseudo-1-shot derived sensitivities for 

the rest of the project.  

Next, focus turned to optimizing the derived sensitivities. This included 

smoothing and filtering considerations. Initial smoothing was done following the 

method outlined in the SENSE tutorial74. The following pseudocode describes the logic 

of deriving sensitivities.  

Figure 3.12. Output images from the MUSE pipeline using 1-shot derived and pseudo 1-shot derived sensitivities. Top 
row shows 1-shot derived sensitivities (der sens) and bottom row shows pseudo-1-shot der sens. Residual ghosting is 
strongly evident in the 1-shot der sens b=0 and combined diffusion direction (b=0+b=1000) images, and some residual 
ghosting in the pseudo-1-shot b=0 and b=0+b=1000 images. This is particularly noticeable with the image right-side 
ear, which is a particularly bright feature. Note that the wraparound of the nose in each of the images is not indicative 
of ghosting.  
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% Data prep 

1 Load individual shots of k-space as ‘dataset’  

2 Perform 2D inverse FFT of cropped dataset to obtain image space 

% Derive sensitivities  

3 Transform across coils by (∑ |𝑖𝑚𝑔|2𝑁𝑐

𝑙=1
)1/2 where img is the 2D inverse FFT of 

dataset  

4 Divide 2 by 3 to obtain an estimate of coil sensitivities  

5 Perform 2D convolution on sensitivities from 4 to obtain smoothed 

sensitivities   

6 Define a threshold to differentiate region of interest from background  

7 Define a mask of values in image above threshold  

8 Apply mask to smoothed sensitivities  

9 Set masked values (ie 0-values) to 80% of the maximum  

 

This used a smoothing kernel on each of the channels. The kernel indicates the 

size of the smoothing function as a matrix of ones and is optimized for area coverage 

without losing image reconstruction integrity. After smoothing, a threshold mask was 

applied to suppress noise. Since the overall performance of the sensitivities was 

dependent on both the smoothing and threshold mask functions, variations of the two 

were tested to determine the optimal combination (Figure 3.13). The threshold value 

between 0.01 to 0.1 was multiplied by the maximum pixel value and anything below was 

set to zero. Increasing the threshold improved the background noise, but also degraded 
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the periphery of the image. An intermediate combination using a kernel of 12 and 

threshold of 0.05 was selected.  

Alternative methods for filtering and denoising the sensitivities were considered 

(Figure 3.14). It was decided that filtering during the smoothing function was sufficient, 

and so pre-filtering was omitted going forwards.  
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Figure 3.13. Investigating optimal threshold and kernel size combinations for sensitivity masking. 
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A significant issue with the derived sensitivities was artificial noise enhancement 

during the matrix inversion during the SENSE step, which escalated the background 

noise. In addition to the aforementioned filtering methods, several strategies were 

investigated to address this. First, a method in the literature to decorrelate noise across 

channels with a noise decorrelation matrix and multiply them into the sensitivities 

before SENSE reconstruction was implemented76. While this concept did change the 

appearance of the coil coefficients (Figure 3.15), it was not necessarily improving the 

noise. Therefore, this method was abandoned. Second, a denoising algorithm called TV-

L1 denoise, which will be discussed further in regards to the phase errors, was applied to 

the coil sensitivity maps in an attempt to remove the noise. However, this method was 

too aggressive even if the denoising rigor was lowered significantly.   

None Hanning DnCNN 

Bayesian CycleSpinning Wiener2 

Figure 3.14. Denoising considerations for derived sensitivities. Denoising in k-space looked at the Hanning 
filter. Image space denoising included a deep neural network (DnCNN), wavelet denoising with Bayesian 
and CycleSpinning methods, and a Wiener2 filter. The Hanning filter and DnCNN most closely represented 
the original image, while the wavelet and Wiener2 filters were blurred versions of the original.  
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The end protocol for addressing the noise in the sensitivity maps applied a mask using a 

threshold of between 15-20% of the maximum intensity from the pseudo-1-shot image 

and multiplying it by the sensitivity maps. This was followed by setting any zero value to 

0.8. This prevented the noise from being amplified during the matrix inversion and 

multiplication. In addition, during the matrix inversion step, a tolerance was set such 

that values under the set value were treated as zero and were not inverted. It was found 

that each dataset varied in noise intensity, and so the threshold and tolerance values 

had to be adjusted slightly for each dataset. With this, the coil sensitivities were deemed 

to be optimized for the current project.  

 

 

  

With ND No ND 

Figure 3.15. Noise decorrelation matrix trials to address excess background noise. Left: 
intensity map of noise correlation across 8 channels. Dark red indicates strong 
correlation and dark blue indicates weak correlation. Center diagonal line of red 
squares indicates correlation between same channels. Right: Sample coil sensitivity 
maps with and without noise decorrelation.  
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3.2.3 SENSE Estimation of Images 

For both the SENSE and MUSE steps, each diffusion direction and slice were 

processed and stored separately. The channels were combined during the SENSE and 

MUSE algorithms. Separate shots were processed and stored separately for the SENSE 

reconstruction and combined during the MUSE reconstruction.  

The initial stages of pipeline development began with an in-depth exploration 

into sensitivity encoding (SENSE) logic. SENSE is a technique used to reconstruct under-

sampled data from parallel imaging using coil sensitivities and aliased data. In traditional 

parallel imaging, data is under-sampled by some factor in order to reduce scan time, and 

the missing data is approximated with the coil sensitivities. In this project, a full dataset 

representing all lines of k-space is collected, but the collection is broken into multiple 

shots. Each of these shots contains an under-sampled representation of the full k-space, 

where every nth line is omitted as dictated by the number of shots (Figure 3.16). 

Therefore, each shot can be treated as an under-sampled dataset (Figure 3.17), and 

SENSE can be used to reconstruct a full FOV image for each shot (Figure 3.18). This is 

important because these estimated full images provide insight into the phase variations 

due to motion between each shot and are used further in the pipeline to correct for 

motion. Note that this section will largely focus on SENSE, but was worked on in tandem 

with the MUSE reconstruction, and so comparisons between the two are discussed.  

A publicly available SENSE tutorial with Matlab code74 was used for learning the 

algorithm and as a starting outline to work off of, and remained an integral part of the 

pipeline. The following pseudocode describes the framework of the SENSE pipeline. 
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Early exploration of the SENSE algorithm followed the SENSE tutorial closely. This 

included using the provided raw data, copying the code over and adjusting for the 

current version of Matlab, and verifying that the obtained results matched the expected 

results. This also allowed opportunity to adjust variables in the built-in Matlab functions 

to investigate their function. Next, an acquired 1-shot dataset was run through the 

pipeline, which exposed specific characteristics unique to the acquired data that 

required pipeline modification. One important modification was in how the data was 

looped over. This involved switching from looping over the top half of the image and the 

entire left-right extent to looping over the entire top-bottom extent and 1/Ns of the left-

right extent. This translated into the following pseudo-code.  

% Loop over the one side of the image  
13 For 1/Ns of y  
% Loop over the entire image  

14 For 1 to the size of x  
15 Pick out the sub-problem sensitivities  
16 Solve the sub-problem in the least-squares sense  

End  
End  
 

Figure 3.16. K-space representation of 4 individual shots from a 4-shot acquisition.  
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Datasets examining the impact of SNR on MUSE reconstruction were explored. 

One way to increase SNR is by increasing the number of combined averages, and so 

early investigations of SENSE varied the number of combined averages and looked at 

how the output image was impacted. This was done with the understanding that the 

final version of the pipeline would have combined averages for the initial SENSE, but 

that this could give insight into how the MUSE algorithm might behave with varying 

number of averages. As well, it was assumed that the averages were similar, but still 

needed to be probed whether increasing the number of averages did improve the 

appearance of the full image.  

First, it was tested whether combining averages before or after the MUSE step 

impacted image quality (Figure 3.19). As expected, there were no noticeable differences 

in image quality. However, there was residual ghosting after MUSE. To investigate this, 

Figure 3.17. Image space of each shot from a 4-shot acquisition. All images were matched for b=0 diffusion 
direction, slice, and channel.  

Figure 3.18. Estimated full FOV image for each shot from a 4-shot acquisition after SENSE reconstruction. All 
images are b=0 and slice-matched. Images represent early SENSE reconstruction attempts with acquired 4-shot 
data. Residual ghosting suggests inaccurate coil sensitivity maps.  
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individual averages were examined (Figures 3.20-21). There was noticeable image 

degradation between the individual averages, regardless of diffusion direction. This was 

not seen in the b=0 images, which looked reasonable across averages. The first average 

was consistently clearer quality compared to the others for the b=1000 images. This led 

to an extensive investigation into the trends of averages across slices and acquisitions 

(Appendix IV). This included probing image quality with different combinations of 

averages, how SNR changed with different combinations of averages, and how image 

quality changed after the MUSE step with and without the motion correction.  

One hypothesis for the poor image quality seen in some averages after a SENSE 

reconstruction was that the SNR limit had been reached. This was supported by the 

observation that the b=1000 images were impacted and not the b=0 images. However, 

this did not explain why some averages reconstructed well while others did not, and 

also did not explain why increasing the number of combined averages did not always 

improve image quality (Figure 3.22). This was rectified with the modifying text file aimed 
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Figure 3.19. Image quality comparison when averaging before or after the MUSE step. There were no noticeable 
changes in image resolution, noise, or anatomical structure whether averages were combined before or after 
MUSE. Left two columns of images show b=0 images across two slices. Right two columns show b=1000 images 
across two slices. Slices were matched for combining averages before and after MUSE.  
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at altering the navigator data (Figure 3.23). At this point, combining the averages and 

reconstructing with SENSE for full FOV estimations of each shot was acceptable to focus 

on estimating phase errors.  

 

Figure 3.21. Comparing individual averages in a single slice for a single diffusion direction for 
quality. Clockwise from top right: collapsed averages, average 1, average 3, average 2. 

Figure 3.20. Comparing averages from a three average acquisition in the z-diffusion direction. 
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3.2.4 Phase Error Estimation Due to Motion 

The key feature of MUSE is an estimation of the phase errors due to motion 

between shots in a multi-shot EPI acquisition. As described in the original MUSE paper33, 

the phase errors can be approximated as  

Figure 3.22. Comparison of individual and combined averages. Top row: Individual averages from a 
three-average acqusition in the x-diffusion direction. Bottom row: different combinations of 
averages. From left: combining average 1 and 2, combining averages 2 and 3, all three averages 
combined.  

Figure 3.23. Individual averages from a six average acquisition after implementing a modified 
reconstruction pipeline. 
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𝑒𝑖𝜃(𝑥,𝑦)+𝑐(𝑥,𝑦) =
𝑇𝑉(𝑝𝑠(𝑥, 𝑦))

|𝑇𝑉(𝑝𝑠(𝑥, 𝑦))|
 

Where 𝑒𝑖𝜃(𝑥,𝑦)+𝑐(𝑥,𝑦) describes the phase error for each shot, θ, plus the 

inherent background phase, c, and TV represents the total variation for each shot. This 

can be interpreted as the total variation for the full image of each shot divided by the 

absolute value of the total variation of each shot gives the phase variation. Since the 

magnitude of each image represents a positive intensity value, dividing by the absolute 

value sets the magnitude of the image to 1 and leaves a phase map for each shot.  

The total variation algorithm selected for this project was a publicly available 

Matlab algorithm called TV-L1 denoising algorithm77. This function simultaneously 

denoised the image while calculating the total variation, and had options to adjust the 

regularization coefficient and number of iterations, which allowed for sufficient control 

on how much denoising was performed on each image. A lower regularization 

coefficient and an increased number of iterations indicated more rigorous denoising. 

These variables were re-visited as other denoising methods were added into earlier 

steps in the pipeline, but were found to be optimized with a regularization coefficient of 

1 and 100 iterations and stayed consistent throughout development. The magnitude 

and imaginary parts for each shot were run through the algorithm separately and then 

recombined into a complex number. The magnitude of the complex total variance was 

taken, and then the complex number was divided by the magnitude to produce phase 

maps (Figure 3.24). A block pattern was observed in the data, where the phase map was 

divided into the number of shots, and each shot had a unique blocking pattern that 
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seemed to be consistent across slices. This pattern can be understood by looking at the 

underlying math describing the phase, and this will be discussed with the development 

of the ‘MUSE off’ condition further on.  

Figure 3.25. Sensitivity maps corrected for motion with the phase maps. Each image represents one shot of a 4-shot 
acquisition. 

Figure 3.24. Phase maps for a 4-shot acquisition on a phantom in two slices. Each row represents the phase maps for 
shots 1-4 for a separate slice. TV = total variance. 
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The final step to correct for motion was to apply the phase maps to the 

sensitivity maps (Figure 3.25). This was done by multiplying the shot-specific phase map 

by the coil sensitivity matrix. By doing so, a corrected sensitivity matrix was created for 

each shot. The matrices for each shot were concatenated across channels to create a 

single matrix of coil sensitivities for all shots.  

3.2.5 MUSE Correction 

 The MUSE algorithm is described as solving the aliased image for the least 

squared solution. This is the same logic used previously for SENSE, but instead of 

estimating the full image from each individual shot, the shots are concatenated together 

such that the number of images used to solve for the final image is [number of shots * 

number of channels]. In terms of the setup in Matlab, this means for the number of 

shots, the original k-space converted into image space is concatenated into a single 

matrix across channels. This gives a single matrix with the appearance of having 

[number of shots] times as many images for each channel. In this way, the corrected 

sensitivities and raw data are comparable sizes and the Matlab pseudocode can be 

modified slightly from SENSE to the following: 

% Loop over the one side of the image  
13 For 1/Ns of y  
% Loop over the entire image  

14 For 1 to the size of x  
15 Pick out the sub-problem sensitivities from the corrected sensitivities 

16 Solve the sub-problem in the least-squares sense  
End  

End  
 

One way to state the fundamental MUSE algorithm is as  
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𝑓(𝑥, 𝑦) = ∑ 𝑆𝑗 (𝑥, 𝑦 +
𝑟 ∗ 𝐹𝑂𝑉𝑦

𝑁𝑠
)

𝑁𝑠

𝑟=0

𝑝 (𝑥, 𝑦 +
𝑟 ∗ 𝐹𝑂𝑉𝑦

𝑁𝑠
) 𝑒

𝑖2𝜋𝑘𝑟
𝑁𝑠  

Where 𝑆𝑗 and p represent the sensitivities and aliased image, respectively. For each 

image, the term 𝑒
𝑖2𝜋𝑘𝑟

𝑁𝑠  reflects the relative k-space trajectory shift as a result of skipping 

lines of k-space in a multi-shot EPI acquisition. As shown earlier (Figure 3.24), phase 

images appear to be broken into segments depending on the number of shots. For 

example, a 4-shot acquisition would appear to be broken into 4 segments. The cause of 

the apparent abrupt shifts, the boundaries of the segments, can be mathematically 

modelled by the term 𝑒
𝑖2𝜋𝑘𝑟

𝑁𝑠 where k=shot number  and r=segment number. For example, 

if we look at shot 2 (k=2) in a 4-shot acquisition, the relative trajectory shift for each 

segment can be described as: 

𝑟 = 0, 𝑒
𝑖2𝜋2∗0

4 = 𝑒0 = 1 

𝑟 = 1, 𝑒
𝑖2𝜋2∗1

4 = 𝑒𝑖𝜋 = −1 

𝑟 = 2, 𝑒
𝑖2𝜋2∗2

4 = 𝑒𝑖2𝜋 = 1 

𝑟 = 3, 𝑒
𝑖2𝜋2∗3

4 = 𝑒𝑖3𝜋 = −1 
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For a 4-shot acquisition, these can be modelled as shown in Figure 3.26. This was 

confirmed to be the source of the segmentation by calculating the expected term for 

each shot and segment, then inverting the sign and applying to the derived phase maps. 

This largely nulled out the phase, confirming that this phenomenon was the source of 

the segmentation. As described by the MUSE algorithm, the phase includes the inherent 

background phase, k-space trajectory shift, and phase shifts due to motion. While the 

inherent background phase and trajectory shift are expected to be consistent and 

predictable across datasets, it’s including the phase errors due to motion which make 

the MUSE correction effective. Another way to say this is that all else being equal, the 

MUSE reconstruction with phase error correction should be the difference between 

removing ghosting and not.  

1 2 

3 4 

Figure 3.26. Modelled k-space phase trajectory shifts for a 4-shot 
acquisition. The numbers represent the shot numbers from 1-4. 
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To test this, a control condition called ‘MUSE off’ was designed. If the phase 

correction was being applied correctly, the ‘MUSE on’ case should produce less ghosting 

than the ‘MUSE off’ case. If the phase correction was not being applied correctly, then it 

Figure 3.27. Comparing MUSE on to MUSE off images for 
ghosting and image quality. Left column shows b=0 images 
reconstructed with MUSE correction and right column shows 
MUSE off. Ghosting can be observed in the MUSE on images as 
faint, vertical repetitions of the brain. This is  reduced in the 
MUSE off images, suggesting that the phase correction was not 
being applied correctly. 
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would be expected that having MUSE on or off would not make a difference in ghosting 

levels.  

There was a noticeable discrepancy between MUSE on and off, in which MUSE 

off images had reduced ghosting levels (Figure 3.27). It was apparent that something in 

the phase correction was failing, but it was unclear what step was not working correctly. 

To address this in a controlled manner, a generated phantom was modelled in Matlab 

using an available phantom generator on the data analysis server. First, the model was 

used to confirm that the issue was with the phase (Figure 3.28). A generated 1-shot  

acquisition with derived sensitivities did not impact image integrity. As well, a 1-shot 

acquisition manually separated into 2 shots with or without added phase did not impact 

image integrity when reconstructed with the MUSE algorithm. However, if the phase 

was intentionally uncorrected, the image did not reconstruct properly. This suggested 

that it was not the TV-L1 phase error correction with the derived sensitivities itself that 

was the issue, but rather that the phase error correction was not being applied 

correctly. This helped to narrow down the troubleshooting in the MUSE pipeline. As 

well, an attempt to identify motion tolerance for MUSE was made by adding artificial 

movement into the generated model, but it was not deemed a realistic representation 

of physiological motion, and so focus turned back to the pipeline.  
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With the problem identified, the correct order of steps to apply the motion 

correction was confirmed and then applied to the acquired multi-shot data. With the 

correct sequence of steps, as well as improved derived sensitivities as described 

previously, the MUSE correction was working at a sufficient level.  

In addition to individual diffusion images reconstructed with MUSE, it was of 

interest for clinical application to reconstruct ADC maps. Clinicians use these maps along 

with the diffusion images to identify cholesteatoma. While not a primary focus for the 

Control: 1-shot, no phase 2-shot, no phase 

2-shot, phase + MUSE 2-shot, MUSE + incorrect 

phase 

Figure 3.28. Identifying the source of the MUSE 
reconstruction issue using a generated phantom model. 
Control, 1-shot, no phase: A control 1-shot with derived 
sensitivities maintained phantom integrity after going 
through the MUSE algorithm. 2-shot, no phase: A 1-shot 
generated phantom model separated into 2 shots with 
derived sensitivities concatenated together maintained 
phantom integrity after MUSE. 2-shot, phase+MUSE: 
Adding different phase to each of the shots and applying 
the TV-L1 derived phase correction maintained image 
integrity. 2-shot, MUSE + incorrect phase: 2 shots with 
different phase and incorrect phase correction did not 
reconstruct properly. 
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project, ADC maps were calculated by 
log(

𝑏1000𝑛
𝑏0

)

𝑏
 for each diffusion direction, and then 

the diffusion directions were summed together. From a feasibility standpoint, the ADC 

maps could be reconstructed with the available SNR (Figure 3.29).  

 Once the MUSE reconstructed images were of an acceptable quality, it was of 

interest to push the images back to the physician analysis server for ease of comparison 

with the vendor reconstruction images. Before doing so, some post processing needed 

to be done to match the images as closely as possible to the vendor standard. First, 

images were resized. In addition, zero padding of the image was explored so as not to 

change the shape of the anatomy. However, it was decided that standard interpolation 

was advantageous since the anatomy was already stretched in Matlab and interpolation 

was found to correct the stretch to match the shape of the vendor image. Following 

these steps, the images were written into a DICOM with modified code on the data 

analysis server78 and pushed back to the physician analysis server.  

Figure 3.29. ADC maps reconstructed with MUSE and from the vendor 
reconstruction. MUSE is shown at left and vendor reconstruction is shown at 
right.  
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3.3 Data Analysis 
This project was focused on characterizing the changes in ghosting levels with and 

without the application of MUSE correction. This was analyzed with both visual 

inspection and characteristic ratio calculations.  

3.3.1 Qualitative Analysis 

With the correct implementation of MUSE, a reduction in ghosting can be observed 

by visual inspection. The primary concern with the presence of ghosting in diagnostic 

images is reducing clinical confidence in decision making. This can be from concerns of 

artificially bright signal from a ghost overlapping with an existing structure leading to 

false positives, or reducing confidence in the image integrity simply by the observation 

of a faint structure that shouldn’t be there. This is a critical limiting factor for the 

potential applicability of this work, and so visual inspection was prioritized, with 

quantitative analysis being used as a supplementary support of observations. For this 

purpose, images were presented informally to an otolaryngologist and neuroradiologist 

familiar with cholesteatoma. They were asked for their opinions on overall image quality 

and confidence in detection of pathology. They were also asked for input on slice 

thickness, slice orientation preference, noise levels, ghosting levels, and resolution. 

3.3.2 Quantitative Analysis 

The purpose of the quantitative analysis was to bolster and support the visual 

observation of ghosting levels.  

For the purpose of this analysis, ghosting was identified as bright regions of signal 

outside the anatomy resembling the structure of the original anatomy at a displacement 

1/Ns away from the anatomy. This is a modified definition of what was used in the 
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qualitative analysis, which included ghosting inside the anatomy. This distinction was 

made because ghosting outside the brain was clearly isolated and subject only to 

interference from background noise level. It was not possible to say with confidence if 

ghosting inside the brain appeared bright due to strong ghosting or whether it was being 

artificially amplified by underlying signal. This was easier to evaluate with visual 

inspection, where the entire image of ghosting and intensities could be observed at 

once. One caveat of quantifying the ghosting this way was that it may have been 

impacted by background noise. As mentioned previously, the noise floor was different 

between the MUSE and vendor images. This may have had an impact on the relative 

brightness of ghosting from MUSE and vendor images. However, since comparisons 

were being made within datasets such that noise would be consistent across a given 

image set, this method was preferred over measuring ghosting inside the anatomy.  

Commonly reported values for EPI images are the signal-to-noise ratio (SNR) and 

ghost-to-noise ratio (GNR). Due to the fundamental differences in noise between the 

vendor and MUSE reconstruction images, ratios that included noise were avoided. 

Instead, the ratios used to evaluate the images were ghost-to-signal (GSR) and 

Figure 3.30. Circular cropping in the vendor 
reconstruction for participant MUSE_005 
hindered accurate ghosting detection. 
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distortion-to-signal (DSR). For patient image sets, pathology-to-signal ratio (PSR) and 

pathology-to-distortion ratio (PDR) were also calculated.  

It was of interest to quantify these ratios across 1-shot vendor and MUSE, 1-shot 

with parallel imaging vendor, 2-shot vendor and MUSE, and 3-shot vendor and MUSE. 

Note that 1-shot with parallel imaging was collected for interest, but the current MUSE 

pipeline does not yet support reconstruction of parallel imaging datasets, and so this 

acquisition is mentioned but not largely discussed here. A consistent acquisition 

protocol was used for participants MUSE_006 through MUSE_009, and so these were 

the datasets chosen for analysis. Participant MUSE_005 presented with pathology and 

so was included to improve the sample size for pathology ratios, but note that at the 

time of this scan, the protocol was not finalized and so the acquisition parameters 

varied slightly from the other patient scans (Appendix VII). As well, the participant’s 

auditory canal was not properly centered in the slice stack, and the built-in vendor 

reconstruction cropped out the majority of the ghosting (Figure 3.32). Ghosting for this 

Figure 3.31. Representative example of ROIs drawn on a participant dataset with known pathology. 
Left: vendor recon. Right: MUSE recon. Slices were matched between datasets.  
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participant was estimated based on the patterns in uncropped images. Participant 

MUSE_008 had abnormally high levels of ghosting in their 1-shot acquisition, and so this 

was dropped as an outlier.  

Analysis was done in Mango. Regions of interest (ROIs) were drawn around brain 

tissue, ghost, distortion, and pathology (Figures III.33-34). Brain tissue was chosen as a 

consistent area of occipital lobe white matter. Cholesteatoma ROIs, if applicable, were 

drawn around areas of brightest signal. This often meant choosing a small portion of the 

pathology rather than the full mass. Distortion was localized to the poles of the 

temporal lobe along the auditory canal as well as along the edges of the cerebral tissues 

following the auditory canal. Similar to pathology, ROIs were chosen for the brightest 

distortion pixels. Ghosting was chosen outside the brain, most commonly as a ghost of 

the occipital lobe, since it was the most obvious and consistent. Noise ROIs were 

collected but not used for analysis. For each dataset, approximately 5 ROIs of each 

variable were chosen. As much as possible, ROIs were collected in the same slice, 

Figure 3.32. Representative example of ROIs drawn on a healthy volunteer dataset. Slices were 
matched between vendor (left) and MUSE (right). 
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particularly pathology and brain. However in some cases such as distortion, better 

representations were found in superior or inferior slices, and so the ROIs were collected 

there. For each acquisition method (1-shot, 2-shot, or 3-shot), ROIs were drawn for each 

slice in the vendor and MUSE images concurrently to mitigate human error in 

consistency of ROI selection.  

The global and point stats for each ROI in each dataset were exported into Excel for 

processing. For brain tissue and pathology, the mean signal across the ROI was obtained 

from the global stats and averaged across slices. For the ghost and distortion ROIs, the 

maximum signal was obtained from the point stats and averaged across slices. This was 

done since abnormally bright pixels are the concern for ghosting and distortion, rather 

than the average signal. The ratios were calculated by dividing the average across slices 

for each value for each acquisition. This was done in the order of the ratio wording i.e. 

the ghost-to-signal ratio was calculated by dividing the average ghost maximum signal 

by the average brain signal for a given acquisition. These values were then transferred 

into GraphPad Prism for statistical analysis.  

The paired t-test was chosen for statistical analysis. This allowed comparison of one 

acquisition and reconstruction method to another. For each of GSR, DSR, PSR, and PDR, 

the average mean across participants were compared between 1-shot, 2-shot vendor 

and MUSE, and 3-shot vendor and MUSE. The paired t-test was chosen because the 

subjects in each group are not independent of each other 79. The subjects in each group 

could be thought of as matched pairs, since the same participants were scanned in each 

acquisition method.   
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4. Results and Discussion 
In the current work, the question of whether DW-EPI at 0.5 T provides sufficient 

SNR to implement MUSE was explored with the development of an offline 

reconstruction pipeline. This chapter presents and discusses the results that directly test 

the thesis hypothesis. The primary set of results demonstrates the progressive 

functionality and optimization of the reconstruction pipeline in phantoms to healthy 

volunteers and patients. The secondary set of results explores the clinical applicability of 

cholesteatoma imaging at 0.5 T with MUSE.  

4.1 MUSE Reconstruction 

4.1.1 Phantom Results 

Data was collected on the phantoms as a means of quality control and testing 

image integrity (Figures 4.1 and 4.2). The measure of progress in the early stages of 

pipeline development was set as maintaining image quality in phantoms with MUSE 

compared to the vendor reconstruction. This was to ensure that image quality was not 

degraded by MUSE, as well as to test sequences before recruiting human participants.  

Figure 4.2. Phantom data used to develop the MUSE pipeline. 
Left: MUSE off. Right: MUSE on. The phantom demonstrated 
that the overall shape was being maintained but that 
reconstruction was not being performed properly. This was 
most likely due to improper coil sensitivities leading to poor 
SENSE estimations.  

Figure 4.1. Examples of the phantom data being used 
to find issues with the phase correction. Both images 
were collected with a 4-shot acquisition and clearly 
demonstrate an issue in the phase correction for at 
least one segment. 
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Once ghosting was sufficiently reduced and image quality was not negatively 

impacted, phantom data was used to modify the reconstruction pipeline for data 

collected with the current acquisition protocol. Before acquiring on the first patient, the 

sequence was run on an ACR phantom (Figure 4.3) and diffusion phantom (Figure 4.4) 

Figure 4.3. Quality control images produced with the current 3-shot 96x96 protocol with and without MUSE. Top 
row: images reconstructed with MUSE. Bottom row: vendor reconstruction images. There was minimal ghosting in 
the vendor diffusion images and significant ghosting in the ADC maps. The MUSE images had minimal ghosting in 
the diffusion images and qualitatively reduced ghosting in the ADC maps. 

Figure 4.4. Phantom images reconstructed with and without MUSE across diffusion directions. 
Residual apparent ghosting remains in the MUSE on images but not in the MUSE off case. This 
was contradictory to what was found using the same sequence collected on a human volunteer. 
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and used to modify the pipeline to accommodate 3-shot DW-EPI data as well as to 

ensure that the MUSE reconstruction would run with the reduced signal.  

4.1.2 Phantom Discussion 

Pipeline issues were identified by phantom imaging. For example, phantoms 

were used to illustrate persistent issues with the initial SENSE unaliasing (Figure 4.2). 

The resulting image had the correct circular phantom shape, but aliasing remained 

within the object. The Matlab reconstruction introduced a vertical stretch in the object 

compared to the vendor reconstruction, which was clearly identified by the circular 

phantom appearing oblong. 

When exploring the phase maps, particularly understanding how the phase 

varied between segments, the phantom data clearly illustrated issues that needed to be 

resolved (Figure 4.1). This was advantageous over human data because the phantoms 

had a known shape with known uniform signal, and it was clear to identify when this 

was not the case in the reconstruction.  

A comparison with the vendor reconstruction between diffusion images and ADC 

maps with the MUSE and vendor reconstruction showed similar image quality between 

diffusion images and reduced ghosting in the ADC maps (Figure 4.3). In these MUSE 

images, the diffusion images in the x, y, and z directions were summed to produce net 

diffusion images, called b=1000n. The phantom images illustrated a suspected sign of 

phase error estimation failure in the form of a vertical line that indicated MUSE was 

close to its limit, but was not detrimental (Figure 4.3, MUSE b=1000n).  
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However, the use of phantoms was limited. The phantoms by nature have hard 

boundaries that produce artifacts (Figure 4.4). This gave the false impression that there 

was an issue with MUSE even when the pipeline was working as expected on brain data. 

Therefore, once the pipeline had been adequately developed and switched from 

construction to optimization, brain data was preferred to phantom data.  

4.1.3 Healthy Volunteer Results 

 The MUSE pipeline was considered to be working adequately when i) the 

anatomy looked comparable to the vendor reconstruction and ii) ghosting was reduced 

in the MUSE on case compared to the MUSE off and vendor reconstruction. Specifically, 

the MUSE pipeline was considered sufficient when ghost reduction was seen in both the 

b=0 (no diffusion) and b=1000 (applied diffusion gradient) MUSE on images compared to 

MUSE off (Figure 4.5).  

Repeatability was tested with a quality control scan where four repetitions of the 

same acquisition sequence were performed one after another on the same person 
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Figure 4.5. Proof of concept of reduced ghosting with MUSE. Yellow circles indicate ghosting. Top row: MUSE on 
shows reduced ghosting outside the brain, while some ghosting of the occipital lobe remains in the most caudal slice 
(far right). Bottom row: MUSE off shows significant ghosting outside the brain. 
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(Figure 4.6). A slice with clear ghosting of the skull was selected and matched across 

repeated trials.   

4.1.4 Healthy Volunteers Discussion 

Ghosting reduction as a result of MUSE reconstruction was demonstrated in 

Figure 4.5. Some residual ghosting was observed in the MUSE on condition for some 

slices, but it was qualitatively reduced compared to the MUSE off case.  

Healthy human brain images demonstrate the applicability of MUSE at 0.5 T to 

human applications, but also expose opportunities for improvement. In the proof of 

concept in Figure 4.5, MUSE is reducing the overall ghost artifact. However, the 

algorithm was not completely correct, since residual ghosting remained. This led to 

further work investigating coil sensitivity map accuracy, as described previously. Human 

datasets also highlighted the need to center the image in the FOV, and demonstrated 

Figure 4.6. Four repetitions of consecutive, identical 4-shot acquisition in a single patient. Top row: Vendor 
reconstructed images; Bottom row: MUSE reconstructed images. 
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the need to switch the frequency encode direction so that the antialiasing filter could be 

applied in the direction most likely to incur wraparound. This was demonstrated in 

Figure 4.5, where the nose is seen to wrap around from the image top to bottom. The 

frequency encode direction was switched into the anterior-posterior direction to 

address this, as previously discussed.  

 The repeated trials investigation was performed to test the consistency of the 

MUSE reconstruction.  In Figure 4.6, subtle differences arising from patient motion 

across trials are visible in the amount of residual ghosting in both the MUSE and vendor 

reconstructed images. The MUSE images consistently maintain image integrity and do 

not worsen ghosting levels compared to the vendor reconstructed images. Some 

residual ghosting of the skull remains in the MUSE images in some trials, but ghosting 

outside the skull is consistently reduced in the MUSE images compared to the vendor 

reconstruction.  

4.1.5 Patient and Quality Control Volunteer Results: Qualitative Comparison 

 In Chapter 3.2.8, a consistent protocol was developed and used to scan four 

patients with a diagnosed cholesteatoma and two healthy volunteers. Each participant 

was scanned with an anatomical bSSFP, 1-shot DW-EPI with parallel imaging, 2-shot DW-

EPI, and 3-shot DW-EPI. The results for each individual participant are presented and 

discussed in Figures IV.7-11. For each image set, the images are presented as top row of 

vendor 1-shot DW-EPI with parallel imaging (1s), 2-shot DW-EPI (2s), and 3-shot DW-EPI 

vendor (3s). The bottom row of each has the anatomical bSSFP, 2-shot DW-EPI with 

MUSE (2sM) and 3-shot DW-EPI with MUSE (3sM). The participants are referred to by 
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their study ID, and the associated number represents the order in which they were 

recruited to the MUSE study overall. For example, Figure 4.7 shows the images of 

participant MUSE_005. This participant was the first of the patients, but fifth overall to 

be recruited for the MUSE project, after the healthy volunteers.  

Figure 4.7. Volunteer MUSE_005 with a diagnosed cholesteatoma. Imperfect centering led to the anatomy 
of interest being on the end of the slice stack and resulted in severe circular cropping with vendor 
reconstruction images from physician analysis server. Ghosting is therefore difficult to identify. 
Cholesteatoma is circled in yellow. 3-shot MUSE sensitivity maps could not be filtered properly, leading to 
pinpoint noise in resulting image. Distortion is visually similar across number of shots. This patient had 
undergone previous surgery for cholesteatoma in the other ear and was being treated for a new 
occurrence. Physician experts noted that they did not see signal from the previous surgical site, suggesting 
that the surgical material used did not present brightly in DW-EPI at 0.5 T.  

1s 2s 3s 

3sM 2sM bSSFP 
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Figure 4.8. Patient diagnosed with a large cholesteatoma (MUSE_006). The cholesteatoma (circled in yellow) 
spanned across multiple slices, and so the best representation in the middle was chosen. The pathology is clearly 
visualized in each acquisition. The 2-shot and 3-shot vendor (2s and 3s) have clear skull ghosting across the nose. 
This is cleaned up in both 2-shot MUSE (2sM) and 3-shot MUSE (3sM). Both MUSE images have some skull 
degradation due to denoising attempts that do not interfere with identifying the pathology.  

1s 2s 3s 

3sM 2sM bSSFP 

Figure 4.9. Patient with a suspected cholesteatoma and a suspicious fluid mass across acquisitions 
(MUSE_007). The cholesteatoma (not visible in this slice) was identified across acquisition methods.  This 
dataset was difficult to balance for the denoising parameters, which led to a compromise of reduced noise 
but at the cost of degrading some of the skull. Skull degradation had been discussed previously with 
physicians and was less of an issue than obvious noise. This patient had little motion and ghosting but 
some phase incoherene, circled here in blue, which was cleaned up with MUSE.  

1s 2s 3s 

3sM 2sM bSSFP 
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Figure 4.10. Healthy volunteer (MUSE_008) acquired with the cholesteatoma protocol. This volunteer’s head 
filled the FOV and was off-centre, leading to wraparound in the left-right direction that did not interfere with 
visualizing the auditory canal. Significant ghosting was visible with the 2- and 3-shot acquisition. This was 
largely rectified with MUSE, but some residual ghosting may have been left around the nose and eyes, as circled 
in green. This suggests that MUSE has limits for motion tolerance, but still reduces ghosting overall. 

1s 2s 3s 

3sM 2sM bSSFP 

Figure 4.11. Healthy volunteer MUSE_009 across acquisition methods. This slice clearly demonstrates 1/Ns 
ghosting of the skull (circled in green) that is removed with MUSE, as well as clear distortion manifesting as 
bright signal along the temporal lobe (circled in blue).  

1s 2s 3s 

3sM 2sM bSSFP 



82 
 

4.1.6 Patient and Quality Control Volunteer Discussion: Qualitative Comparison 

Each image set was analyzed for overall image quality and visible ghosting levels. 

A specific discussion accompanied each figure, but some overall trends were observed. 

For each patient and healthy volunteer presented, MUSE consistently reduced ghosting. 

In healthy volunteer MUSE_008, excess motion led to severe ghosting, and some faint 

signal in the MUSE images may have been residual ghosting that the pipeline could not 

fully remove. However, ghosting was still reduced in this case. This suggests that the 

MUSE pipeline may have a limit of how much motion it can tolerate before the 

algorithm fails. This is unsurprising, as intentional motion in the generated phantom had 

similar results where reconstruction began to fail if simulated motion between shots 

was added in. The overall appearance of the anatomy between vendor and MUSE 

reconstruction is generally consistent. However, there was a right-left compression and 

anterior-posterior stretch in some MUSE images. This is most likely a result of improper 

slice centering and lack of the vendor post-processing in the MUSE pipeline. As well, 

some of the MUSE images had skull degradation. This was a direct result of noise 

filtering in the sensitivity map step. For each dataset, the optimal combination of 

sensitivity map filtering to remove noise while maintaining image quality was selected. 

This issue of skull degradation was discussed with physician collaborators. They 

indicated that this was not a concern, as long as the anatomy of interest (i.e. the 

auditory canal and surrounding region) were intact.  

In terms of the hypothesis, these results support that DW-EPI at 0.5 T produces 

sufficient signal to perform MUSE.  
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4.1.7 Patient and Quality Control Volunteer Results: GSR 

Four ratios were calculated to quantify the relative signal intensity changes 

across number of shots with and without MUSE. The ghost-to-signal ratio (GSR) directly 

tests the hypothesis and so will be addressed in this section.  

A comparison of GSR across number of shots with and without MUSE is 

presented as a box-and-whisker plot in Figure 4.12.  

The numerical values from the paired t-test comparing mean GSR across number 

of shots with and without MUSE are presented in Table IV.1.  

 

 

 

Figure 4.12. Box and whisker plot comparing mean GSR across number of shots 
with and without MUSE.  PI2 = Parallel imaging factor of 2.  
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Table 4.1. Paired t-test analysis of ghost-to-signal (GSR) datasets across number of shots and reconstruction methods. 
Coloured cells indicate support of expected trends. The 2-shot vendor and MUSE reconstructions had statistically 
different means for GSR (p-value = 0.049, red cell). The 1-shot with and without parallel imaging compared to 2-shot 
and 3-shot MUSE had statistically not different means (green cells). The 3-shot vendor and MUSE images had 
statistically not different means.  

GSR p-value Mean 1 Mean 2 Diff SE of diff 

2-shot Vendor 
vs MUSE 0.049 0.46 0.24 0.22 0.069 

3-shot Vendor 
vs MUSE 0.098 0.48 0.31 0.17 0.072 

1-s PI2 vs 2shot 
MUSE 

0.920 0.24 0.24 0.0029 0.025 

1shot vs 2shot 
MUSE 

0.079 0.093 0.23 0.13 0.016 

1-s PI2 vs 3-shot 
MUSE 

0.18 0.24 0.32 0.081 0.040 

1shot vs 3shot 
MUSE 

0.14 0.093 0.31 0.21 0.049 

 

4.1.8 Patient and Quality Control Volunteer Discussion: GSR 

The GSR is a measure of ghosting reduction compared to average signal 

intensity. GSR was chosen over SNR because noise handling varied between the vendor 

and MUSE reconstructions, and so using signal as a baseline circumvented the issue of 

noise handling.  

The acquisition protocol set used to acquire the data had a 1-shot scan with PI. 

This scan was expected to have a comparable readout window length time, and 

therefore distortion reduction, of a 2-shot acquisition, but without ghosting, since 

instead of collecting the data in two shots, every other line is not collected. For 

interest’s sake, two 1-shot datasets without parallel imaging from the earliest 

volunteers (MUSE_001 and MUSE_002) were also included in the analysis.  
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From Figure 4.12, the GSR for the 2- and 3-shot vendor images is visibly higher 

with a greater spread than the 1-shot with and without PI, 2-shot MUSE, and 3-shot 

MUSE. This is supported by the statistics. From Table 4.1, the 2-shot vendor and 2-shot 

MUSE had statistically different means for GSR (p-value 0.049, Table 4-red cell). As well, 

the 1-shot with and without parallel imaging had statistically unsimilar means (Table 4.1, 

green cells). This suggests that not only was the mean of the GSR for the 2-shot vendor 

statistically different and higher than the 2-shot MUSE GSR, the 2- and 3-shot MUSE 

mean GSRs were not statistically different than the 1-shot mean GSRs. This is important 

because the 1-shot acquisitions were not expected to have ghosting. The 1-shot with PI2 

may have displayed residual aliasing from the interpolated data that could be construed 

as ghosting. This supports the hypothesis that ghosting is reduced with MUSE.  

However, it should be noted that the 3-shot vendor and 3-shot MUSE 

reconstructions did not have statistically different GSR means (0.098).The most likely 

explanation for this is that the sample size was small (n=5), and the effect of any outlier 

would be greater.  

It should be noted that the ghosting seen here did not directly interfere with the 

auditory canal. Most observable ghosting happened outside the brain or in the nasal 

sinus region. The reason this ghosting may still be considered an issue, even though it 

does not appear to directly impact the anatomy of interest, is that observable ghosting 

reduces overall clinician confidence in images. That is, seeing, for example, a ghosted 

skull fragment where there clearly should not be one raises suspicion that there could 

be other, smaller structures appearing where they should not, such as along the 
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auditory canal. Or, knowing that some portion of a signal has moved and maybe taken 

away from the overall strength of the signal could raise questions as to whether a 

structure should be hyperintense when it appears isointense relative to the surrounding 

tissue. Both of these concerns were raised in discussion with clinicians as hesitations for 

using DW-EPI MRI. With the implementation of MUSE, phase errors leading to 

misplaced signal are rectified, addressing both concerns around signal misplacement. 

Overall, the results discussed here support and agree with the qualitative 

observations in ghosting level changes with MUSE. Taken together, these results confirm 

the hypothesis that sufficient SNR will be provided by ms-DW-EPI acquired at 0.5 T to 

perform MUSE and there will be a quantifiable reduction in motion-induced ghosting 

compared to images reconstructed without MUSE correction. 

These results support the further investigation of ms-DW-EPI acquired at 0.5 T 

for cholesteatoma imaging.  

4.2 Application of ms-DW-EPI at 0.5 T for cholesteatoma imaging 
The rationale for using a field strength of 0.5 T in this work was that distortion 

from SIFG is reduced at lower field strengths. As previously discussed, distortion can 

result from dephasing in EPI as well as SIFG. These effects are compounded at higher 

field strengths and at areas of air-bone interfaces. This has been a limiting factor for 

using DW-EPI with cholesteatoma imaging at clinical field strengths. This section will 

explore how distortion changes with number of shots in ms-DW-EPI as well as how 

distortion changes with field strength.  
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4.2.1 Distortion Characterization  

Up to this point, distortion has generally been referred to as signal pile-up 

causing an artificially bright region. However, three manifestations were observed in this 

work.  

Distortion may result in signal being misplaced onto a region of sparse signal, 

may cancel out existing signal, or may be misplaced on top of existing signal. Misplaced 

signal across an area where there should not be any leads to a wisp-like appearance 

(Figure 4.13).  

Phase errors can lead to artificial signal loss (Figures IV.13-14). This issue is 

corrected with MUSE since MUSE realigns phase.  

Figure 4.13. Examples of distortion. Left: misplaced signal onto an otherwise void area is circled in red. Middle: 
circled y-shaped features represent loss of signal resulting from signal misplacement; right: signal pile-up 
circled in red as a result of misplaced signal amplifying existing signal.  

Figure 4.14. Misplaced interfering signal removed with MUSE. 
Left: Vendor recon; Right: MUSE recon. 
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Finally, signal pile-up resulting from signal misplacement onto areas of existing 

signal leads to an artificially bright region. While the first two manifestations of 

distortion are important to recognize to avoid confusion, they do not have the same 

potential for giving false positives in cholesteatoma detection as the signal pile-up due 

to distortion. This manifestation of distortion is found along the auditory canal and 

appears brighter than healthy brain tissue, making it a concern for physicians in using 

MRI to detect cholesteatoma. Therefore, this was selected as the characteristic to 

identify distortion in images.  

4.2.2 Distortion at 0.5T: Results 

The distortion to signal ratio (DSR) across number of shots with and without 

MUSE was analyzed with paired t-tests and presented in a box-and-whisker plot (Figure 

4.15).  

Further, the pathology-to-signal ratio (PSR) and pathology to distortion ratio 

(PDR) were calculated across number of shots with and without MUSE reconstruction 

(Figure 4.16).  

Figure 4.15. Box-and-whisker plot of DSR across number 
of shots with and without MUSE reconstruction. DSR = 
distortion-to-signal ratio. 
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4.2.2 Distortion at 0.5T: Discussion 

All else being equal, distortion should decrease with an increasing number of 

shots and MUSE should not change distortion one way or another. Looking at DSR from 

Figure 4.15, there was a consistency within error across acquisitions with the exception 

of 1-shot without PI. The spread of means for the MUSE acquisitions was large, and the 

lowest average DSR was observed in the 1-shot with PI. Looking at the acquisition 

parameters from the final protocol, the 1-shot with PI2 and 2-shot have a reduced 

matrix size and FOV compared to the 3-shot. As well, the 1-shot with PI2 should have 

similar distortion to the 2-shot acquisition. Taken together, this can explain the similar 

DSR across acquisitions. As expected, the 1-shot data without PI had significantly higher 

DSR than the other acquisition types. This can be explained by the 1-shot having a 

longer readout window length compared to 1-shot with PI or multi-shot sequences.  

For the purpose of cholesteatoma imaging, it is of interest to reduce distortion 

levels to below cholesteatoma signal intensity. As well, it is of interest to have pathology 

Figure 4.16. Box and whisker plot of paired t-test analysis comparing means between acquisition and 
reconstruction methods.; PDR = pathology-to-distortion ratio; PSR = pathology-to-signal ratio; 
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signal intensity above cortical tissue signal intensity. It was demonstrated in Figure 4.16 

that the pathology signal intensity was consistently above cortical tissue signal intensity 

across number of shots with and without MUSE, as indicated by PSR above 1. The 

pathology, however, was consistently below distortion levels as indicated by PDR below 

1. This leaves room for improvement in protocolling to further decrease distortion. It 

should be noted that the slices chosen to analyze distortion were rarely the same slices 

as those with cholesteatoma. In these image sets, the most significant distortion was 

found in superior slices. The practical impact that this distortion has on cholesteatoma 

diagnosis would need to be discussed with physicians.  

4.2.3 Distortion at 0.5 T and 3 T: Results 

To explore the impact of field strength on distortion, patients and healthy 

volunteers were scanned at 3 T with PROPELLER, the current standard for 

cholesteatoma imaging, and a 3-shot DW-EPI with parameters matched to the final 

protocol within reason. Patient MUSE_005 had undergone clinical scanning prior to the 

study and did not have a comparable 3 T scan with MUSE. These image sets were 

compared with the standardized 3-shot DW-EPI acquisition at 0.5 T (Figure 4.17). Within 

reason between participants and field strengths, slices and contrast through window 

and level were matched. The images were compared for overall anatomical appearance 

(head shape, feature warping) and distortion. For further support of MUSE at 0.5 T, 

ghosting levels were also compared. 
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Figure 4.17. Visual comparison of ghosting and distortion across field strengths and acquisitions. Patient 005 had 
undergone previous clinical scanning without 3-shot MUSE at 3T, and so a comparison was unavailable. Signal pile-up 
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4.2.4 Distortion at 0.5 T and 3 T: Discussion 

Signal pile-up due to distortion was observed in every participant with MUSE at 3 

T, while only visible in two participants at 0.5 T. The standard PROPELLER did not have 

an observable distortion-induced signal pile-up, but there was a stoke-like artifact in 

patient MUSE_005. Ghosting was not present in the PROPELLER images and removed in 

the 0.5 T MUSE images. In the 0.5 T vendor images, the ghosting was quite prominent. 

In the 3 T MUSE images, there is no visible ghosting. However, in MUSE_008, there 

appeared to be warping in the nose and skull that is not observable in any other 

acquisition for that participant. This suggests that MUSE at 3 T could be interfering with 

the integrity of the images in some patients. Taken together, these results suggest that 

MUSE with DW-EPI at 0.5 T does not reduce image quality compared to PROPELLER, 

with the exception of the skull degradation resulting from incomplete noise handling. 

This supported the further investigation of DW-EPI at 0.5 T for cholesteatoma imaging.  

4.2.5 Optimizing b-value and TE for cholesteatoma contrast: Results 

Physician collaborator preference for cholesteatoma detection is to be able to 

lower the window and level such that cholesteatoma is the brightest feature in the 

image. For this to happen, several requirements must be met. Signal pile-up due to 

distortion must be reduced to a level below cholesteatoma, but preferably similar to 

cortical tissue. Ghosting causing artificially bright signal must be mitigated to prevent 

false positives. Additionally, cholesteatoma tissue contrast compared to cortical tissue 

must be optimized. From Figure 4.16, the current protocol has relatively constant PSR 

across number of shots with and without MUSE. This sits between 1.3 and 1.4, which 
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does indicate that pathology is brighter than signal. However, the PDR is around or 

below 1 for each acquisition, suggesting that pathology is not brighter than distortion.   

In the literature, cholesteatoma contrast is attributed to diffusion restriction 

and/or T2 shine-through4,17. To explore optimal contrast, one patient with a known large 

cholesteatoma (TD05T_MUSE_007) was recruited for scanning at 0.5 T with both the 

standard protocol and additional scans exploring diffusion restriction and T2 shine-

through. From the ADC map of one of the ms-DW-EPI scans, the ADC of the 

cholesteatoma was approximated to be 0.55. From there, two scans were added. One 

scan increased the b-value of 1400 s/mm2. The other increased TE to 90 msec. All other 

parameters were matched to the standard protocol. For contrast analysis, the window 

and level were gradually dropped for each dataset to probe cholesteatoma contrast 

(Figure 4.18).  
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Figure 4.17. Protocolling decisions impact pathology contrast. Windowing level was reduced from 
high to low to highlight the brightest feature. Cholesteatoma is circled in yellow. Distortion and 
skull are brightest in all except the 3shot TE90 acquisition. 
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4.2.4 Discussion: Optimizing b-value and TE for cholesteatoma contrast 

It was expected that the 1-shot acquisition would show similar contrast between 

cholesteatoma and distortion, and this was observed. It was expected that if 

cholesteatoma contrast was dependent on b-value, TE value, or both, the relative 

cholesteatoma contrast between the standard 3-shot acquisition and the optimized 

acquisitions would change.  

Surprisingly, cholesteatoma contrast was similar between applied b-values of 

1000 and 1400 s/mm2 despite the low ADC. Adjusting the TE value to 90, however, had 

the effect of improved cholesteatoma contrast. This suggests a dominant T2 shine-

through effect compared to diffusion restriction for cholesteatoma contrast. However, 

this investigation was done on only a single patient. This participant was suspected to 

have a cholesteatoma and may have also had a fluid-filled mass in an anatomically 

similar region. This may have confounded the results. Further investigation would need 

to be done to further explore this phenomenon.  

 

 Taken together, these results demonstrate that the MUSE reconstruction 

pipeline designed in this study was implemented in such a way as to effectively reduce 

ghosting in ms-DW-EPI images at 0.5 T. This supported a pilot investigation into its use 

with cholesteatoma imaging. The results shown here demonstrate that the offline MUSE 

reconstruction pipeline does not degrade overall image quality compared to clinical 

standard, and that this technique offers pathology contrast with distortion reduction 

that warrants further investigation.   
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5. Conclusions and Future Directions 
 In the current work, an offline MUSE reconstruction pipeline was developed to 

explore the hypothesis that sufficient SNR will be provided by ms-DW-EPI acquired at 

0.5T to perform MUSE and there will be a quantifiable reduction in motion-induced 

ghosting compared to images reconstructed without MUSE correction. In this work, it 

has been demonstrated that ms-DW-EPI at 0.5 T with MUSE correction reduces ghosting 

and maintains image integrity, confirming the hypothesis.  

The investigation into this hypothesis was divided into four objectives. First, a 

protocol to offload raw k-space data from the MRI console and organize it into a logical 

structure was developed. To do this, an offline reconstruction pipeline that took raw k-

space data as input and produced intermediate breadcrumbs as output was obtained 

and modified to produce individual files for each average, slice, diffusion direction, and 

shot. These files were transformed into cartesian-gridded k-space to address the second 

objective. Here, an offline MUSE reconstruction pipeline was developed to correct for 

the motion-induced phase errors inherent to ms-DW-EPI as described by Chen et. al.33. 

Phantom, healthy volunteer, and patient data was used to develop and troubleshoot, 

refine for human subjects, and specialize the pipeline for the clinical application, 

respectively. As the MUSE pipeline reached a point of producing images of acceptable 

quality, the acquisition sequence parameters were adjusted towards the standard for 

clinical application, addressing objective three. These changes reduced the overall 

produced signal, and so the pipeline was simultaneously adjusted to accommodate this. 

The fourth objective was to qualitatively evaluate the produced images with visual 
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inspection of ghosting and quantitate GSR, DSR, PSR, and PDR. The MUSE images 

consistently had reduced ghosting compared to the vendor reconstructed images. This 

was supported by the mean GSR of the 2-shot vendor images being significantly less 

than the 2-shot MUSE images (p=0.049), as well as the mean GSR for the 1-shot with 

and without PI, 2-shot MUSE, and 3-shot MUSE being not significantly different.  

A pilot investigation into the clinical applicability of ms-DW-EPI at 0.5 T for 

cholesteatoma imaging looked at factors impacting signal pile-up due to distortion such 

as field strength and number of shots. At 0.5 T, the pathology was distinguishable with a 

PSR above 1 regardless of acquisition or reconstruction method. However, distortion 

robustness could still be improved as the PDR was not significantly above 1 for any of 

the acquisition or reconstruction methods. Comparing with 3 T, the 0.5 T images 

outperformed the 3 T MUSE for distortion reduction. An initial exploration into 

optimizing acquisition parameters for pathology contrast explored the effects of b-value 

and TE. This provides a basis on which further work can build off of for optimizing 

pathology contrast for use by clinical experts.  

 Future directions for this work should address the current limitations in order to 

strengthen clinical applicability. The most significant source of error in this project was 

the coil sensitivities. The coil coefficient breadcrumbs were the ideal source of 

sensitivities to most closely resemble the vendor reconstruction. However, there were 

challenges in matching the coil coefficients to the acquired data, most likely related to 

how sensitivities are unwrapped in the online vendor reconstruction pipeline. The 

derived sensitivities were sufficient for the current work, but the parameters for the 
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functions used to mitigate the noise needed to be adjusted for each dataset. On a small 

sample size as in this study, this is reasonable. However, onboarding the MUSE pipeline 

into the online vendor reconstruction would allow for the use of the vendor coil 

sensitivities, as well as gradient warping correction and proper image resizing. It would 

also allow for a streamlined large-scale investigation into the use of DW-EPI at 0.5 T for 

use with cholesteatoma imaging.  

 Considerations for reducing distortion and optimizing pathology contrast were 

explored here. The current offline reconstruction pipeline is limited to fully sampled 

datasets since the sensitivities are derived from the data, and accurate sensitivities 

cannot be derived from an under-sampled dataset because of the under-sampling 

artifact. If coil sensitivities were not a barrier, parallel imaging could be combined with 

ms-DW-EPI. In doing so, the time saved by collecting fewer k-space lines could be used 

to increase the number of averages while still reducing distortion by using a multishot 

acquisition. It has been demonstrated here that the vendor reconstruction of 1-shot PI2 

has reduced distortion compared to a 1-shot without PI. It would be expected that 

combining a multishot acquisition with PI should also improve distortion. The ETL and 

matrix size are currently limited by vendor restraints, but once these are overcome, 

both can be adjusted to reduce readout time and improve distortion further. With 

reduced distortion, focus can turn to making pathology the brightest feature for ease of 

physician use. This could include looking at how a larger sample size of cholesteatoma 

tissue behaves under different TE and b-values. Furthermore, with an optimized 

protocol and consistent noise reduction from onboarding the MUSE pipeline onto the 
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MRI console, it could be of interest to recruit a large cohort of patients with diagnosed 

cholesteatoma for scanning with the current protocol and clinical standard at 3 T, and to 

present the results to clinical experts for comparison of image quality and diagnostic 

confidence.  

 Taken together, a ms-DW-EPI acquisition at 0.5 T with MUSE correction has been 

demonstrated to reduce ghosting and maintain image integrity. Demonstrated 

cholesteatoma image quality supports further exploration into the optimal acquisition 

sequence for reduced distortion and maximum cholesteatoma contrast.  
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Appendix A: Data Transfer 
The protocol for transferring raw k-space off the console MRI and partially reconstructed offline 

is as follows. 

1. Get DataCapture reconstruction ID  
• If acquisition type is 'raw'  

o In separate tab, navigate to 'Data' -> on left hand side of screen click on 
desired acquisition -> on right-hand of screen click on DataCapture -> 
record ReconID  

• If acquisition type does not include 'raw'  
o In separate tab, navigate to 'Data' -> on left hand side of screen click on 

desired acquisition -> on right-hand of screen click on 'run DataCapture' 

-> when reconstruction reaches 100% click on DataCapture -> 
record ReconID  

• Note: Do not click 'End Study' before until ReconIDs are recorded  
  
Offline:  
1. Copy data capture off 0.5T into working directory  

a. Search ls –ltr of /lauterbur/synaptive/ and check filename for reconstruction ID  
b. Move to /biotic/home/allyk/data/TestData  
c. Rename as  

a. Phantom: [Date]_[slice plane]_DWI_[num shot]_[num avg]  
b. Volunteer: TD05T_MUSE_[ID number]_[slice plane]_DWI_[num shot]_[num 

avg]  
2. Run offline reconstruction within Docker   

• Log into biotic server  
• In terminal: docker run –rm –it –v /biotic/home/allyk/data/TestData:/Data -v 

/biotic/home/allyk/Desktop/OfflineEPIRecon/dev-bin:/dev-bin –net=host –
env="DISPLAY" -v $HOME/.Sauthority:/root/.Xauthority --
name=synrun2204 synaptive/run 2204  

• Change directory: cd /Data  
3. Run reconstruction 
• /dev-bin/Epi_Attempt4-Offline –p params_good.json -f filename.h5 -m dorecon  
• Move breadcrumbs:   

o Mv Breadcrumbs Breadcrumbs_filename  
  
3. Open 'entire_pipeline_JR_new.m' in Matlab  
4. Add filepaths  
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Appendix II: Additional Images 
Ghosting changes across acquisition parameter and volunteers (005-009). Image sets 005-007 

are from patients with diagnosed cholesteatoma. Ghosting is circled in blue. Signal pile-up due 

to distortion is circled in yellow 
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Appendix C: MUSE Matlab Code 
% For DWI 4-diffusion direction 1 shot acquisition with 3 avgs 
file_directory = 
'/biotic/home/allyk/data/TestData/Breadcrumbs_TD05T_007_3shot_2mm_iso'; 
%raw_h5 = 
'/biotic/home/allyk/data/TestData/May3_Ax_DWI_3shot_8avgs_2mm_iso.h5'; 
addpath(file_directory); 
addpath('/biotic/home/allyk/matlab/SENSE/SENSE_Code'); 
hybrid_images_dir = dir([file_directory, '/*' 'HybridImages' '*']); 
 
% Eventually should get all these from file header 
Nx = 128;%SFoff=176 
Ny = 96;%96 or 128 
Nz = 28; 
Ns = 3;  
Nd = 4;  
Na = 8;  
Nc = 8;  
slice = 19; 
 
if ~exist('read_files','var') 
  read_files = true; 
end 
if read_files 
 
file_kspace = zeros(Nx,Ny,Nc); 
file_imspace = zeros(Nx,Ny,Nc); 
full_image_space = zeros(Nx,Ny,Nz,Ns,Nd,Na,Nc); 
full_k_space_master = zeros(Nx,Ny,Nz,Ns,Nd,Na,Nc); 
 
% Read slice number for each hybrid image 
for i=1:numel(hybrid_images_dir) 
    single_slice = hybrid_images_dir(i).name; 
    split_str = strsplit(single_slice,{'_','.'}); 
    slice_num = str2double(split_str{5}); 
    shot_num = str2double(split_str{7}); 
    diff_dir = str2double(split_str{9}); 
    avg = str2double(split_str{11}); 
    slice_location = strcat(file_directory,'/', single_slice); 
    for s = 1:Nc 
          channel_number = sprintf('%05d',s-1); 
          slice_hybrid = h5read(slice_location, (['/' channel_number 
'/data']));  
          corrected_slice_hybrid = permute(slice_hybrid,[2,1]); 
          complex_config = 
complex(corrected_slice_hybrid(:,1:2:end),corrected_slice_hybrid(:,2:2:end)); 
          kspace = fftc(complex_config,1); 
          file_kspace(:,:,s) = kspace; 
          file_imspace(:,:,s) = fft2c(kspace); 
    end 
    full_k_space_master(:,:,slice_num,shot_num,diff_dir,avg,:) = file_kspace; 
    full_image_space(:,:,slice_num,shot_num,diff_dir,avg,:) = file_imspace;  
end  
%for a = 1:Na 
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%full_k_space = squeeze(sum(full_k_space(:,:,:,:,:,[1:a],:),6)); 
 
% % Read Output Images 
% output_image_dir = dir([file_directory, '/*outputImage*']); 
% output_image = zeros(256,256,numel(output_image_dir)); 
% for i=1:numel(output_image_dir) 
%     single_slice = output_image_dir(i).name; 
%     split_str = strsplit(single_slice,{'_','.'}); 
%     child_num = str2double(split_str{5}); 
%     slice_location = strcat(file_directory, '/', single_slice); 
%     pre_zeros_channel_number = '/00000'; 
%     image_slice = h5read(slice_location, [pre_zeros_channel_number 
'/data']);  
%     corrected_image_slice = permute(image_slice,[2,1]); 
%     complex_data = 
complex(corrected_image_slice(:,1:2:end),corrected_image_slice(:,2:2:end)); 
%     output_image(:,:,child_num) = complex_data; %make complex then 
interpolate down using imresize 
% end 
% coil_coefficient_dir = dir([file_directory, '/*' 
'ChannelCombinationCoefficients' '*']); 
% slice_coil_comb = zeros(Nx,Ny,Nc); 
% coil_comb = zeros(Nx,Ny,Nz,Nd,Nc); 
% coil_comb_average_count = zeros(Nz,1); 
% for i=1:numel(coil_coefficient_dir) 
%     single_slice = coil_coefficient_dir(i).name; 
%     split_str = strsplit(single_slice,{'_','.'}); 
%     slice_num = str2double(split_str{5}); 
%     slice_location = strcat(file_directory,'/', single_slice); 
%     coil_comb_average_count(slice_num) = 
coil_comb_average_count(slice_num)+1; 
%     for s = 1:Nc 
%           channel_number = sprintf('%05d',s-1); 
%           channel_comb = h5read(slice_location, (['/' channel_number 
'/data']));  
%           corrected_channel_comb = permute(channel_comb,[2,1]); 
%           complex_data = 
complex(corrected_channel_comb(:,1:2:end),corrected_channel_comb(:,2:2:end)); 
%           slice_coil_comb(:,:,s) = imresize(complex_data,[Nx,Ny]); 
%     end 
%     coil_comb(:,:,slice_num,coil_comb_average_count(slice_num),:) = 
slice_coil_comb; %make complex then interpolate down using imresize 
% end 
% Noise Handling 
% info = h5info(raw_h5); 
% seq_params = info.Attributes(1).Value; 
% headerSummary = info.Groups(2); 
%  
% UID_noise = h5read(raw_h5, '/metaData/dataDescriptions/noise/uidList'); 
% noise_UID = lower(dec2hex(UID_noise)); 
% base_name = info.Groups(1).Groups.Name; 
% UID = sprintf('%016s',noise_UID); 
% dataset_name = [base_name '/' UID]; % channel_number = sprintf('%05d',s-1); 
% kspace_noise = h5read(raw_h5,dataset_name); 
%  
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% [Nn,Nc] = size(kspace_noise); 
% temp = complex(kspace_noise(:,1:2:end),kspace_noise(:,2:2:end)); 
% %temp = kspace_noise; 
% noise = reshape(temp,numel(temp)/Nc,Nc); 
% noise = permute(noise,[2 1]); 
% NSamples=size(noise,2); 
% psi = (1/(NSamples-1))*(noise*noise'); 
%  
read_files = false; 
end 
%% SNR at various averages 
%for a = 1:Na 
%full_k_space = squeeze(sum(full_k_space(:,:,:,:,:,[1:a],:),6)); 
full_k_space = squeeze(sum(full_k_space_master,6)); 
% Derive sensitivities 
der_sens_SENSE = zeros(Nx,Ny,Nz,Nc); 
nd_der_sens_SENSE = zeros(Nx,Ny,Nz,Nc); %noise decorrelation  
for Z = 1:Nz 
% 4shot sens 
dataset = squeeze(full_k_space(:,:,Z,:,1,:)); 
%dataset = squeeze(sum(full_k_space(:,:,Z,:,1,[1:a],:),6)); 
dataset = squeeze(sum(dataset,3)); 
%[Nx,Ny,Nc] = size(dataset); 
img = ifft2c(hanning(length(dataset),'symmetric').*dataset); 
%img = ifft2c(dataset); 
img_combined  = sqrt(sum(abs(img).^2,3)); 
%img_combined  = sum(img*,3); 
 
% thresh = 0.02*max(abs(img_combined(:))); 
% mask = abs(img_combined) > thresh; 
 
% Original: Estimate Sensitivities 
S_0 = img./img_combined; 
%S_0 = squeeze(coil_comb(:,:,Z,1,:)); 
S_1 = zeros(Nx,Ny,Nc); 
%S_inv = zeros(Nx,Ny,Nc); 
for i = 1:Nc 
    %S_x = imgaussfilt3(abs(S_0(:,:,i)),0.8); 
    %S_x = imgaussfilt(abs(S_0(:,:,i)),[6 3]); 
    S_x = smoothdata(S_0(:,:,i),1,'gaussian',12);% 9 
    S_y = smoothdata(S_x,2,'gaussian',12);% 6 
    %S_1_norm = S_y.*(1./max(S_y,[],[1 2])); 
    S_1(:,:,i) = S_y; 
end 
 
% S_1 = smooth3(S_0,'gaussian',[3 3 3]); 
thresh = 0.2*max(abs(img_combined(:))); 
mask = abs(img_combined) > thresh; 
S_1_mask = S_1.*mask; 
% S_1_mask(S_1_mask ==0) = max(abs(S_1(:)))/2;  
%S_1_norm = S_1_mask.*(1./max(S_1_mask,[],[1 2])); 
S_1_mask(S_1_mask ==0) = 0.8; 
 
der_sens_SENSE(:,:,Z,:) = S_1_mask;  
%der_sens_SENSE(:,:,Z,:) = S_inv;  
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%  
% % With noise decorrelation 
% csm = reshape(S_1, [Nx*Ny Nc]); 
% relative_ccm = conj(csm) * pinv(psi); 
% %relative_ccm = conj(csm)*pinv(eye(8)); 
% scale_correction = abs(sum(relative_ccm.*csm,2)); 
% corr_img = 1./scale_correction; 
% corr_img(corr_img==Inf) = 0; 
% corr_img = reshape(corr_img,[Nx Ny]); 
% nonzero_ind = scale_correction>0; 
% ccm = zeros(size(csm)); 
% ccm(nonzero_ind, :) = relative_ccm(nonzero_ind,:) ./ 
repmat(scale_correction(nonzero_ind),[1 Nc]); 
% % show_img(abs(relative_ccm)); 
% ccm = reshape(ccm, [Nx Ny Nc]); 
% %im_composite = sum(ccm.*img,3); 
% %show_img(abs(im_composite)); 
% nd_der_sens_SENSE(:,:,Z,:) = ccm;  
end 
% Initial SENSE for deriving phase maps 
%full_k_space_avg = full_k_space;  
%% shots_separate_SENSE_recon = zeros(Nx,Ny,Nz,Na,Ns,Nd);   
shots_separate_SENSE_recon = zeros(Nx,Ny,Nz,Ns,Nd);  
for Z = 1:Nz 
S_2 = squeeze(der_sens_SENSE(:,:,Z,:)); 
for shot=1:Ns 
%for avg = 1:Na 
for diff= 1:Nd 
dataset = squeeze(full_k_space(:,:,Z,shot,diff,:)); 
%dataset = squeeze(sum(full_k_space_avg(:,:,Z,shot,diff,:,:),6)); 
%img_R2 = ifft2c(hanning(length(dataset),'symmetric').*dataset); 
img_R2 = ifft2c(dataset); 
img_R2_SENSE = zeros(Nx,Ny); 
for y = 1:Ny/Ns 
    y_idx = y:Ny/Ns:Ny; 
    for x = 1:Nx 
       S_R2 = transpose(reshape(S_2(x,y_idx,:),Ns,[])); 
       img_R2_SENSE(x,y_idx) = pinv(S_R2,0.3)*reshape(img_R2(x,y,:),[],1);  
    end 
end 
%shots_separate_SENSE_recon(:,:,Z,avg,shot,diff) = img_R2_SENSE; 
shots_separate_SENSE_recon(:,:,Z,shot,diff) = img_R2_SENSE; 
end 
end 
end 
%% end 
% MUSE Portion 
%MUSE_all = zeros(Nx,Ny,Nd,Na,Nz); 
MUSE_all = zeros(Nx,Ny,Nd,Nz); 
for Z = 1:Nz 
channels = squeeze(der_sens_SENSE(:,:,Z,:)); 
  
%for avg = 1:Na 
for diff = 1:Nd 
% %1. Phase variations 
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% real_TVshot1 = 
TVL1denoise(real(shots_separate_SENSE_recon(:,:,Z,avg,1,diff)),1);  
% imag_TVshot1 = 
TVL1denoise(imag(shots_separate_SENSE_recon(:,:,Z,avg,1,diff)),1); 
real_TVshot1 = TVL1denoise(real(shots_separate_SENSE_recon(:,:,Z,1,diff)),1);  
imag_TVshot1 = TVL1denoise(imag(shots_separate_SENSE_recon(:,:,Z,1,diff)),1); 
complex_TVshot1 = complex(real_TVshot1,imag_TVshot1); 
abs_TVshot1 = abs(complex_TVshot1); 
TVshot1 = complex_TVshot1./abs_TVshot1; 
 
% real_TVshot2 = 
TVL1denoise(real(shots_separate_SENSE_recon(:,:,Z,avg,2,diff)),1);  
% imag_TVshot2 = 
TVL1denoise(imag(shots_separate_SENSE_recon(:,:,Z,avg,2,diff)),1); 
real_TVshot2 = TVL1denoise(real(shots_separate_SENSE_recon(:,:,Z,2,diff)),1);  
imag_TVshot2 = TVL1denoise(imag(shots_separate_SENSE_recon(:,:,Z,2,diff)),1); 
complex_TVshot2 = complex(real_TVshot2,imag_TVshot2); 
abs_TVshot2 = abs(complex_TVshot2); 
TVshot2 = complex_TVshot2./abs_TVshot2; 
 
% real_TVshot3 = 
TVL1denoise(real(shots_separate_SENSE_recon(:,:,Z,avg,3,diff)),1);  
% imag_TVshot3 = 
TVL1denoise(imag(shots_separate_SENSE_recon(:,:,Z,avg,3,diff)),1); 
real_TVshot3 = TVL1denoise(real(shots_separate_SENSE_recon(:,:,Z,3,diff)),1);  
imag_TVshot3 = TVL1denoise(imag(shots_separate_SENSE_recon(:,:,Z,3,diff)),1); 
complex_TVshot3 = complex(real_TVshot3,imag_TVshot3); 
abs_TVshot3 = abs(complex_TVshot3); 
TVshot3 = complex_TVshot3./abs_TVshot3; 
 
% % TURN OFF MUSE  
% TVshot1 = ones(Nx,Ny); 
% TVshot2 = ones(Nx,Ny); 
% TVshot3 = ones(Nx,Ny); 
% TVshot4 = ones(Nx,Ny); 
% % Could be MUSE off 
% TVshot2(:,(Ny/4+1:Ny/2))=TVshot2(:,(Ny/4+1:Ny/2))*(0-1i); 
% TVshot2(:,(Ny/2+1:3*Ny/4))=TVshot2(:,(Ny/2+1:3*Ny/4))*(-1); 
% TVshot2(:,(3*Ny/4+1:Ny))=TVshot2(:,(3*Ny/4+1:Ny))*(0+1i); 
%  
% TVshot3(:,(Ny/4+1:Ny/2))=TVshot3(:,(Ny/4+1:Ny/2))*(-1); 
% TVshot3(:,(Ny/2+1:3*Ny/4))=TVshot3(:,(Ny/2+1:3*Ny/4)); 
% TVshot3(:,(3*Ny/4+1:Ny))=TVshot3(:,(3*Ny/4+1:Ny))*(-1); 
%  
% TVshot4(:,(Ny/4+1:Ny/2))=TVshot4(:,(Ny/4+1:Ny/2))*(0+1i); 
% TVshot4(:,(Ny/2+1:3*Ny/4))=TVshot4(:,(Ny/2+1:3*Ny/4))*(-1); 
% TVshot4(:,(3*Ny/4+1:Ny))=TVshot4(:,(3*Ny/4+1:Ny))*(0-1i); 
 
%2. New sensitivities 
TVshot1(isnan(TVshot1))=0.8; 
TVshot2(isnan(TVshot2))=0.8; 
TVshot3(isnan(TVshot3))=0.8; 
 
Sa = (TVshot1).*channels;  
Sb = (TVshot2).*channels;  
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Sc = (TVshot3).*channels; 
S_comp2 = squeeze(cat(3,Sa,Sb,Sc)); 
% S_comp2 = squeeze(cat(3,Sa,Sb)); 
 
%3. Aliased images 
shot1 = ifft2c(squeeze(full_k_space(:,:,Z,1,diff,:)));  
shot2 = ifft2c(squeeze(full_k_space(:,:,Z,2,diff,:)));  
shot3 = ifft2c(squeeze(full_k_space(:,:,Z,3,diff,:)));  
% shot4 = ifft2c(squeeze(full_k_space(:,:,Z,4,diff,:,:)));  
% shot1 = ifft2c(squeeze(full_k_space(:,:,Z,1,diff,avg,:)));  
% shot2 = ifft2c(squeeze(full_k_space(:,:,Z,2,diff,avg,:)));  
% shot3 = ifft2c(squeeze(full_k_space(:,:,Z,3,diff,avg,:)));  
img_R2 = cat(3,shot1,shot2,shot3); 
% img_R2 = cat(3,shot1,shot2); 
 
img_R2_MUSE = zeros(Nx,Ny); 
for y = 1:Ny/Ns 
    y_idx = y:Ny/Ns:Ny; 
   for x = 1:Nx 
    % pick out the sub-problem sensitivities 
    S_R2 = transpose(reshape(S_comp2(x,y_idx,:),Ns,[])); 
    % solve the sub-problem in the least-squares sense 
    %img_R2_MUSE(x,y_idx) = 
2*pinv(S_R2,0.01)*reshape(img_R2(x,y,:),[],1);%tolerance: 0.01 
    img_R2_MUSE(x,y_idx) = 
pinv(S_R2,1.2)*reshape(img_R2(x,y,:),[],1);%tolerance: 1.3 good 
    %img_R2_MUSE(x,y_idx) = reshape(img_R2(x,y,:),[],1)./(2*S_R2); 
    end 
end 
 
MUSE_all(:,:,diff,Z) = img_R2_MUSE; 
%MUSE_all(:,:,diff,avg,Z) = img_R2_MUSE; 
end 
%end 
end 
%end 
%% Calculate ADC 
ADC_slices = zeros(Nx,Ny,Nz); 
DiffXADC = zeros(Nx,Ny,Nz); 
DiffYADC = zeros(Nx,Ny,Nz); 
DiffZADC = zeros(Nx,Ny,Nz); 
 
for z = 1:Nz 
b = -1000;  
diff_o = MUSE_all(:,:,1,z); 
diff_x = MUSE_all(:,:,2,z); 
diff_y = MUSE_all(:,:,3,z); 
diff_z = MUSE_all(:,:,4,z); 
 
% diff_o = MUSE_all(:,:,1,z); 
% diff_x = MUSE_all(:,:,2,z); 
% diff_y = MUSE_all(:,:,3,z); 
% diff_z = MUSE_all(:,:,4,z); 
 
D_x_ADC = log(diff_x./diff_o)/b; DiffXADC(:,:,z) = D_x_ADC;  
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D_y_ADC = log(diff_y./diff_o)/b; DiffYADC(:,:,z) = D_y_ADC;  
D_z_ADC = log(diff_y./diff_o)/b; DiffZADC(:,:,z) = D_z_ADC;  
 
ADC = D_x_ADC + D_y_ADC + D_z_ADC;  
ADC_slices(:,:,z) = ADC; 
end 
show_img(imrotate(imresize(abs(ADC_slices(:,:,11)),[256,256]),90)); 
 
%% Saving Degraded (via MP Recon Pipeline) Dicom Images 
% 1. Read  
% 1. Image must be cast to a uint16 and normalized to [0,32767] 
% 2. Change series description, number, and instance number 
% 3. Study/Exam should not change 
input_folder_reference_original = 
'/biotic/home/allyk/data/DICOMS/Originals/TD05T_MUSE_007 TD05T_MUSE_007 
TD05T_MUSE_007/NSHA MUSE CHOLESTEATOMA 8CH/MR 8CH Ax DWi 3sh 8ave 2mm iso/';  
output_folder_MUSE = '/biotic/home/allyk/data/DICOMS/MUSE_Reconstructed/'; 
original_dicom_dir = dir([input_folder_reference_original, 'MR*']);  
nslices_reference = numel(original_dicom_dir); 
header_reference = dicominfo([original_dicom_dir(1).folder '/' 
original_dicom_dir(1).name]);  
all_dicom_headers_reference(nslices_reference) = header_reference;  
 
newSeriesNumberMUSERecon = header_reference.SeriesNumber*200;  
newSeriesDescDegRecon = [header_reference.SeriesDescription,'_MUSE'];  
newWindowWidth = 15302; 
newWindowCenter = 8025; 
newSeriesUID = dicomuid;  
oldStudyUID  = all_dicom_headers_reference(end).StudyInstanceUID;  
save_path_MUSE = [output_folder_MUSE, 'MUSE_DICOM_', 
num2str(newSeriesNumberMUSERecon),'/']; 
mkdir(save_path_MUSE); 
%double_MUSE = cat(5,MUSE_all,MUSE_all); 
%MUSE_a = squeeze(sum(MUSE_all,4)); 
%MUSE_sl = squeeze(sum(MUSE_a,3)); 
%double_MUSE = ADC_slices; % cat(3,ADC_slices,MUSE_sl); 
double_MUSE = squeeze(sum(MUSE_all(:,:,[2:4],:),3)); 
for sl= 1:28 %1:nslices_reference 
    %MUSE_data = squeeze(sum(double_MUSE(:,:,:,:,sl),4)); 
    %MUSE_data = imresize(squeeze(abs(sum(MUSE_data,3))),[256,256]); 
    MUSE_data = imresize(squeeze(abs(double_MUSE(:,:,sl))),[256,256]); 
    %MUSE_data = medfilt2(MUSE_data,[3 2]); 
    %MUSE_data = imresize(squeeze(abs(ADC_slices(:,:,sl))),[256,256]); 
    norm_MUSE_data = MUSE_data.*(32768./max(MUSE_data,[],[1 2])); 
    int_MUSE = cast(norm_MUSE_data, 'uint16');  
    header_reference = dicominfo([original_dicom_dir(1).folder '/' 
original_dicom_dir(sl).name]); 
    all_dicom_headers_reference(sl) = header_reference; 
    all_dicom_headers_reference(sl).WindowWidth = newWindowWidth; 
    all_dicom_headers_reference(sl).WindowCenter = newWindowCenter; 
    all_dicom_headers_reference(sl).SeriesDescription = newSeriesDescDegRecon; 
    all_dicom_headers_reference(sl).SeriesNumber = newSeriesNumberMUSERecon; 
    all_dicom_headers_reference(sl).SeriesInstanceUID = newSeriesUID; 
    all_dicom_headers_reference(sl).StudyInstanceUID = oldStudyUID; 
    all_dicom_headers_reference(sl).InstanceNumber = sl; 
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    dicomwrite(int_MUSE(:,:), [save_path_MUSE, '/MUSE_dicom_sl', 
num2str(sl),'.dcm'], all_dicom_headers_reference(sl)); 
end 
%% GNR & SNR 
for z = 1:Nz 
%for num_a = 1:Na 
for num_Nd = 1:Nd 
MUSE_avg = squeeze(MUSE_all(:,:,num_Nd,z)); 
%MUSE_avg = squeeze(MUSE_all(:,:,num_Nd,z)); 
ghost_roi = abs(MUSE_avg(75:85,5:15)); 
noise_roi = abs(MUSE_avg(118:128,5:15)); 
brain_roi = abs(MUSE_avg(75:85,68:78)); 
% GNR(num_Nd,num_a,z) = mean(ghost_roi(:))./std(noise_roi(:)); 
% SNR(num_Nd,num_a,z) = mean(brain_roi(:))./std(noise_roi(:)); 
GNR(num_Nd,z) = mean(ghost_roi(:))./std(noise_roi(:)); 
SNR(num_Nd,z) = mean(brain_roi(:))./std(noise_roi(:)); 
% GNR(avg_keep) = mean(ghost_roi(:))./std(noise_roi(:)); 
% SNR(avg_keep) = mean(brain_roi(:))./std(noise_roi(:)); 
 
%figure; imagesc(abs(MUSE_avg(:,:))) 
end   
end 
%end 
%% 
final_MUSE = zeros(Nx,Ny,Nz); 
for Z = 1:Nz 
    collapsed_data = squeeze(sum(MUSE_all(:,:,[2 4],Z),3)); 
%     bilinear(:,:,Z) = imresize(collapsed_data,[256 256], 'bilinear'); 
%     triangle(:,:,Z) = imresize(collapsed_data,[256 256], 'triangle'); 
    lpad = 2*size(collapsed_data); 
    MUSE_kspace = fft2c(collapsed_data,lpad); 
    filter = fft2c(fspecial('gaussian',size(MUSE_kspace))); 
    filtered_MUSE = MUSE_kspace.*filter; 
    zero_pad_MUSE = padarray(filtered_MUSE,[256 256], 0); 
    final_MUSE(:,:,Z) = zero_pad_MUSE; 
 
end   
% show_grid(abs(bilinear(:,:,[18:24])));title('Bilinear'); 
% show_grid(abs(triangle(:,:,[18:24])));title('Triangle'); 
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Appendix IV: Trends in combined averages 
 An investigation into the effects of combining average was run across multiple slices 

with and without MUSE, as well as across diffusion directions. Each graph shows increasing 

number of averages. No conclusive trend was found and the differences in averages was 

determined to be an issue in the partial reconstruction pipeline.  
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Appendix V. Switch Frequency Troubleshooting 
Manual entry of anatomical position shifts caused a degradation in the breadcrumbs 

when the frequency encode was switched the anterior-posterior (Figure V). The issue 

was only present when a shift was added in the frequency encode direction. This had 

not been issue previously, since shifts were typically only needed in the HF and AP 

directions, and not in the LR direction. The first consideration was whether this was a 

multi-shot issue, or whether it was present in single shot EPI as well. To address this, a 1 

shot/slice/avg was obtained on the diffusion phantom with SFon and AP shift of 15 mm. 

This resulted in N/2 ghost, despite it being a 1-shot acquisition. With SFon and no AP 

shift, there was no ghosting. Increasing number of averages with AP shift resulted in 

some sort of striation artifact as well as N/2 ghost. Increasing number of shots to 4 

made it difficult to differentiate between N/4 ghosting and AP shift ghost. SFoff with AP 

shift was identical to SFon with 0 AP shift. All of this supported the issue being related to 

how the offline reconstruction pipeline was handling shifts in the frequency encode 

direction, regardless of number of shots or averages. 
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Figure V. Investigating the relationship between frequency encode direction switching and offsets. For each trial, an offset was applied 
in a single direction. Server images are standard diffusion and MUSE on/off are b=0, since some diffusion images had insufficient 
signal. Top: Head-foot (HF) offset applied. Images are relatively consistent across reconstruction method. Middle: Left-right (LR) offset. 
Offline reconned images with SFoff were blurred and excessively ghosted. Bottom: Anterior-posterior (AP) offset. Offline reconned 
images with SFon were blurred and excessively ghosted. SFoff: switch frequency off. SFon: switch frequency on. Server = data analysis 
server used by physicians. 
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Appendix VI. FOV Shift Troubleshooting  
The first version of the offline reconstruction pipeline produced breadcrumbs at 

an advanced position along the reconstruction process where the shots, averages, and 

diffusion directions were already combined. Since it was necessary to have the shots 

separated to perform MUSE, a Version 2 was developed that produced individual hybrid 

images for each shot. Version 3 produced a reconstruction log that explicitly identified 

the parameters being used during the recon. This was in an attempt to address whether 

the modifier files were being read and incorporated into the reconstruction process. At 

this point, a noticeable FOV shift between what was coming into Matlab compared to 

what was reconstructing online with the vendor reconstruction was observed (Figure 

3.5).  This stage of development was using the third version of the reconstruction 

pipeline in the docker. Investigating the source of the error began with comparing 

images in Matlab reconstructed with the data-derived sensitivities and the offline 

reconstruction pipeline coil coefficients. First looking at images directly after SENSE 

reconstruction, there were no visible differences regardless of sensitivities used (Figure 

3.6 A & B).  

Next was to look at whether SENSE could properly estimate full-FOV images from 

under-sampled data using the sensitivities. To do this, the data was retrospectively 

under-sampled by skipping every second datapoint in the x-dimension. When 

reconstructed with SENSE, both the derived sensitivities and coil coefficients left 

aliasing, suggesting sensitivity estimates were not accurate (Figure 3.6 C & D). Next, the 

magnitude of the sensitivities were compared (Figure 3.6 E & F). There was a clear shift 
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in the derived sensitivities compared to the coil coefficients, suggesting that there was 

specifically a shift happening in the hybrid images, since the same shift was not present 

in the coil coefficients. This inconsistency was brought to the Synaptive engineers, and 

was discovered to be an issue with the navigator, specifically that old code was running 

with a new reconstruction pipeline. Over-riding this with a text file addressed the issue.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.1. Investigating Matlab pipeline as the source of FOV shift. Left column: Images reconstructed with derived 
sensitivities. Right column: Images reconstructed with coil combination coefficients. A & B: Fully sampled data directly 
after SENSE recon. There is no visible difference regardless of sensitivities used. C & D: Artificially under-sampled data 
by skipping every second datapoint in the x-dimension in a 1-shot dataset reconstructed with SENSE. Both the derived 
sensitivities and coil coefficients left aliasing after SENSE, suggesting sensitivity estimates were not accurate. E & F: 
Comparison of sensitivity magnitudes. Derived sensitivities are clearly shifted compared to coil coefficients.   
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Appendix VII. Acquisition Parameters 
Acquisition parameters were varied across the fist four healthy volunteers (Table VII.1). 

The final, consistent protocol was used to scan the three patients and two healthy 

control volunteers (Table VII.2).  

Table VII.1. Acquisition parameters for the first four healthy volunteers scanned with ms-DW-EPI at 0.5 T. The number 
of shots, averages, special features such as switch frequency (SF) off or on or  intentional movement, TE, TR, matrix 
size, FOV, and slice spacing and thickness are reported. Unless otherwise stated, DW gradients are applied. 

#shots #avgs Features  TE 

(msec) 

TR 

(msec) 

Matrix FOV 

(cm2)  

Sl th/sp 

(mm) 

TD05T_MUSE_001 

1 1 SFoff 140 6444 128x128 24 5.5/6.5 

1 6 SFoff 140 6444 128x128 24 5.5/6.5 

1 1 SFon 88.5 4191 128x128 24 5.5/6.5 

1 6 SFon 88.5 4191 128x128 24 5.5/6.5 

2 1 SFoff 88.7 4195 128x128 24 5.5/6.5 

2 6 SFoff 88.7 4196 128x128 24 5.5/6.5 

1 1 SFoff ,No DWI 67.1 2731 128x128 24 5/10 

TD05T_MUSE_002 

1 6 SFoff 140 6444 128x128 24 5.5/6.5 

1 6 SFon 88.5 4191 128x128 24 5.5/6.5 

2 6 SFoff 88.7 4195 128x128 24 5.5/6.5 

4 3 SFoff 65.2 3140 128x128 24 5.5/6.5 

2 6 SFoff ,MOVE 88.7 4195 128x128 24 5.5/6.5 
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TD05T_MUSE_003 

4 6 SFoff 65.4 3144 128x128 24 5.5/6.5 

4 6 SFoff 67.1 3218 128x128 18 3/3 

4 6 SFon 67.1 3218 128x128 18 3/3 

TD05T_MUSE_004 

4 6 SFoff 65.4 3144 128x128 24 5.5/6.5 

4 1 SFoff 65.5 3000 128x128 24 5.5/5.5 

4 6 SFon 66.3 3194 128x128 18 5.5/5.5 

4 6 SFon 66 3177 128x128 20 5/5 

4 6 SFon 65.8 3163 128x128 22 4.5/4.5 

 

Table VII.2. Acquisition parameters for three patients and two healthy volunteers recruited for scanning with ms-DW-
EPI at 0.5 T. MUSE_005 differs from MUSE_006-009. 

 TE (msec) TR (msec) Matrix FOV (cm2)  BW (kHz) Sl th/sp 

TD05T_MUSE_005 

1shotPI2 71.2 3396 96x96 18 180 3/3 

2shot 71.2 3396 96x96 18 180 3/3 

3shot 62.3 2985 96x96 18 180 3/3 

TD05T_MUSE_006 

1shotPI2 64.5 3035 88x88 17.6 180 2/2 

2shot 64.5 3044 88x88 17.6 180 2/2 

3shot 59.5 2813 96x96 19.2 180 2/2 
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TD05T_MUSE_007 

1shotPI2 64.5 3035 88x88 17.6 180 2/2 

2shot 64.5 3044 88x88 17.6 180 2/2 

3shot 59.4 2809 96x96 19.2 180 2/2 

3shotTE90 90 3666 96x96 19.2 180 2/2 

TD05T_MUSE_008 

1shotPI2 64.5 3035 88x88 17.6 180 2/2 

2shot 64.5 3044 88x88 17.6 180 2/2 

3shot 59.4 2809 96x96 19.2 180 2/2 

TD05T_MUSE_009 

1shotPI2 64.7 3040 88x88 17.6 180 2/2 

2shot 64.5 3044 88x88 17.6 180 2/2 

3shot 59.4 2809 96x96 19.2 180 2/2 
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Appendix VIII: Characterizing Coil Coefficients 
Coil coefficients were characterized by varying the acquisition parameters one at a time 

(Table VIII.1) 

Table VIII.1. Characterizing coil coefficient behaviour after parameter adjustments. Parameters were adjusted 
one after another. The parameter that was adjusted between each scan is bolded. SF = Switch frequency, AP = 
Anterior-posterior.  


