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Abstract

Passive Acoustic Monitoring (PAM) is a useful technique for monitoring marine mam-

mals. However, the large volume of data collected through PAM systems make au-

tomated algorithms for detecting and classifying sounds essential. Deep learning

algorithms have shown great promise in recent years, but their performance is limited

by insufficient amounts of annotated data for training the algorithms. Our work ex-

amines several machine learning techniques to overcome data scarcity in a single and

multi-domain scenarios, where each domain is a different underwater acoustic envi-

ronment. We first investigate the benefits of augmenting training datasets in a single

domain with synthetically generated samples when training a deep neural network

for the classification of marine mammals. We apply two acoustic data augmenta-

tion techniques, SpecAugment and Mixup, on PAM data to improve the network‘s

performance. Next, we address the challenge of data scarcity in a multi-domain con-

text through transfer learning, a machine learning concept whereby knowledge from

a source domain is transferred to a target domain. Specifically, we considered two

different underwater acoustic environments as the source and target domain. We

develop a more robust deep neural network model for the classification of marine

mammals by incorporating knowledge from two different domains. Lastly, we con-

front data scarcity in a scenario where no annotated data is available for training deep

learning models. In this context, we explore the artificial generation of synthetic ma-

rine mammal vocalizations, integrating real acoustic properties from the underwater

environment to create datasets for training deep neural networks in detecting and

classifying real marine mammal vocalizations. We evaluate the performance of all

three approaches and compare the results with baseline models. We demonstrate

that the proposed approaches provide useful and effective solutions in scenarios of

data scarcity under diverse and variable conditions.
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Chapter 1

Introduction

Many marine mammals primarily utilize species-specific acoustic signals for communi-

cation and navigation within their environment [34]. In light of this, passive acoustic

monitoring (PAM) has gained widespread acceptance for studying animal vocaliza-

tions (bioacoustics) in both aquatic and terrestrial environments [133], proving to be

a valuable tool in research, conservation efforts [16], species distribution estimation

[48], population size determination [86], and other applications [84, 93]. Furthermore,

PAM is non-invasive and eliminates the risk of behavioral alterations that may result

from other monitoring techniques, such as GPS tagging [136].

With advancements in PAM technology and reduced costs, autonomous recording

units have been deployed to cover extensive areas, and capable of continuous data

collection for extended periods (ranging from months to years) [25]. However, the

development of effective tools for analyzing recordings to detect marine mammal

vocalizations has not kept pace with the improvements in acoustic data collection

methods. In many cases, manual analysis supported by traditional signal processing

techniques [123, 38] remains the primary method for examining and annotating these

datasets. This approach often demands highly specialized expertise and can be both

difficult and inefficient. Consequently, the creation of fully or nearly fully automated

detection and classification systems for target signals is desirable.

In the past few years, Machine Learning (ML) algorithms have been incorporated

into many of these systems due to their potential to efficiently process large amounts of

data and accurately identify signals of interest [65, 127]. In particular, Deep Learning

(DL), a subfield of ML, has shown substantial progress in discriminative tasks across

several fields [49, 91, 97], with a number of recent studies dedicated to the detection

and classification of marine mammal vocalizations such as beluga whale signals [149],

sperm whale clicks [11] and dolphin echolocation clicks [79].

One key advantage of DL over traditional ML techniques is that it reduces the

1



2

need for a pre-processing pipeline to convert raw audio data into features for detectors

and classifiers [5, 21, 105]. Traditional feature extraction often involves application-

specific, complex steps that require expertise in multiple domains [8, 13]. In contrast,

DL incorporates the feature extraction process into a Deep Neural Network (DNN)

architecture, learning data representations through a multi-layer approach. Moreover,

DL models can be adapted and tuned to new applications by simply providing them

with new data. This simplicity allows DNNs to be highly adaptable to different clas-

sification tasks [104], and enables them to outperform conventional ML techniques by

producing more useful representations than the traditional process of manual feature

engineering [128]. However, in practice, most DL-based detectors and classifiers still

employ some pre-processing steps, such as computing spectrograms [139, 127].

Typically DNNs require large amounts of training data to successfully train accu-

rate detectors and classifiers. However, while large amounts of underwater acoustic

data have been collected with the help of PAM systems, only a small fraction of

these data have been labeled due to the large cost involved in the annotation process.

The scarcity of annotated data constitutes the major bottleneck towards developing

effective DL models for marine mammal classification. In addition, DL applications

to PAM data face some key challenges that can heavily impact a DNN model’s abil-

ity to generalize well to previously unseen data, particularly in small datasets. One

key challenge is that underwater acoustic data is characterized by the surrounding

underwater soundscape in which it was collected, and may vary greatly depending on

the geographic location that the PAM system was deployed. Furthermore, real world

underwater acoustic data is often subject to substantial amounts of anthropogenic

noise sources such as shipping and construction activities. These signals often over-

lap with animal vocalizations and are another source of confusion for a classifier [10].

Another major challenge in underwater bioacoustic datasets is that valuable signals

are often strongly underrepresented when compared to the background noise [10].

Therefore, before engaging with new costly and time consuming annotation efforts,

we can employ DL techniques, such as data augmentation [128], transfer learning

[150], semi-supervised learning [102] and active learning [89], that can help train

DNNs that generalize better with smaller training datasets.

In this work, we explore two of these techniques, namely data augmentation and
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transfer learning (TL), to address the problem of data scarcity and generalization

when training a DNN on PAM data for the detection and classification of the “up-

call” vocalization of North Atlantic right whales (NARW; Eubalaena glacialis). The

NARW is an endangered baleen whale species that has been the subject of intensive

research over the past several decades in an effort to conserve the species. The up-

call vocalization, a distinctive call produced by NARWs, is frequently the focus of

detection and classification methods, [65, 127, 130]. However, while the focus of this

work is on NARW upcall vocalizations, the methodologies examined can be easily

adapted to accommodate different species and incorporated into other acoustic de-

tection and classification frameworks. In summary, the work can be observed through

three distinct phases.

In phase one, we introduce the concept of data augmentation applied to underwa-

ter acoustics. Data augmentation is a strategy that can be employed to significantly

inflate the size and diversity of the training dataset by generating new labeled data

through the manipulation of the current available data. The augmented data are vari-

ations of the current available data that were not seen before but are theoretically

possible. While particularly effective when there is data insufficiency, augmentation

has been applied to great success in larger datasets as a form of regularization to

reduce the problem of overfitting in DL models [52]. Overfitting occurs when a model

learns too well the details and noise of the training data but fails to predict unseen

data. Data augmentation has long been used to improve the performance of DL

models across many tasks [70, 49, 67]. Taylor et al. [135] showed that even simple

geometric and photometric transformations could have a big impact on a DNN per-

formance. Wang et al. [111] compares the effectiveness of traditional augmentation

techniques to generative methods based on generative adversarial networks (GANs)

on relatively small amounts of data. In environmental acoustics, Salamon and Bello

[120] use audio data deformations such as time stretching, and pitch shifting to train

a DNN model on urban environmental sounds, vastly improving performance over

the DNN trained without augmentation. In this research, we propose the utilization

of two acoustic data augmentation methods, SpecAugment [108] and Mixup [147] to

improve the classification of NARW upcalls. For this purpose, we train a DNN on

a dataset comprised of sound clips containing upcall vocalizations and compared the
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results with and without the augmentation step. We then evaluate the effectiveness of

these two methods in a scenario of data scarcity, that is, when there is an insufficient

amount of data to successfully train a DNN.

In phase two, we explore the concept of TL applied to underwater acoustics. As

previously discussed, the diversity and variations in underwater acoustic environ-

ments along with data insufficiency constitutes a major challenge towards developing

a uniform model that generalizes well to PAM data from different sources. Data

collected from PAM systems can differ in location, depth and type of the system

deployment, resulting in different sources of transient sounds/noise (human activity

and other biological sounds), different ambient sounds (noise from breaking waves,

wind, rain, etc), differences in sound propagation (a vocalization may sound different

due to reverberations, diffraction, attenuation, reflections), differences in hardware

and system self-noise, among many other differences. TL can mitigate this problem

by applying the knowledge learned in one or more source domains to a different target

domain. This approach can be particularly effective as some of the features learned

in the source domain often share similarities with the target domain [150]. In this

study, we consider the source domain as a DL model that has been trained on a large

annotated dataset representing an acoustic environment, and the target domain as a

different acoustic environment that we wish to apply the model to. We employ TL to

adapt the trained model to the target environment using considerably less annotated

data than was originally used to train the model. We then compare the performance

of the TL model against a model that was trained only on the data from the target

environment.

In phase three, we approach the issue of data scarcity from a scenario where no

annotated data is available to train a DNN. Specifically, we consider a large acoustic

dataset without any annotations. In this context, traditional data augmentation

techniques and TL may be insufficient to mitigate the problem, as they depend on

the availability of at least a minimal amount of annotated data for transforming

the data, creating new samples, or adapting to a novel environment. To overcome

this limitation, we employ artificial generation of synthetic signals by mimicking the

acoustic properties of NARW upcalls vocalizations. Initially, we create synthetic

signals resembling the shape of the upcall without any distortion effects. Next, we
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utilize acoustic propagation modeling to simulate how these synthetic signals would

propagate and distort in a real underwater environment. Finally, we leverage the large

quantities of unlabeled data available to embed these synthetic signals into segments

of real background data, thereby generating a new sample containing information

from both the synthetic vocalization and the environmental soundscape. By utilizing

both synthetic data and real background environment samples extracted from a large

unprocessed dataset, we train a DNN to detect and classify reall NARW upcalls. We

compare the results obtained by a model trained on synthetic data with a model

trained on real vocalizations, and assess whether this approach can produce a model

capable of serving as a useful tool for assisting bioacousticians in analyzing large

quantities of PAM data.

1.1 Contributions

In the first phase, we train a DNN for the detection and classification of marine

mammal vocalizations and enhance its performance through data augmentation on

data from a single source domain. We contribute in the following:

• We present a DNN capable of classifying marine mammal vocalizations upcalls

• We adapt the SpecAugment and Mixup augmentation techniques to PAM data,

showing that these techniques lead to a significant improvement in the ability

of our DL model to classify Marine Mammal upcalls.

• We demonstrate that data augmentation can be successfully applied when work-

ing with very limited amounts of data, greatly boosting model performance

while also reducing the required amount of annotated data.

In the second phase, we expand the work done in the first phase to include data

from multiple domains (data collected in different underwater acoustic environments),

and approach this problem through a TL solution. The contributions of this phase

are the following:

• We describe a methodology for adapting a DNN trained at detecting NARW

upcalls from a particular set of acoustic environments to a new acoustic envi-

ronment.
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• We evaluate whether the adapted DNN can be used effectively as a detector,

extracting a high number of true detections while producing a low number of

false detections.

• We implement the methodology as an open-source command-line tool to fa-

cilitate the creation of DL-based acoustic detectors and classifiers for NARW

upcall vocalizations.

In the third phase, we tackle data scarcity by using artificially generated synthetic

signals that mimic marine mammal vocalizations, enabling DNN training on a large,

unannotated acoustic datasets, thus overcoming the limitations of the data augmen-

tation and TL approaches of phase one and phase two. Our contributions in this

phase are as follows:

• We develop a method for artificially generating synthetic vocalizations that can

be used to train a DNN in the absence of annotated data.

• We employ acoustic propagation modeling to simulate the propagation and

distortion of synthetic signals in a real underwater environment, enhancing their

realism.

• We demonstrate the effectiveness of our approach by training a DNN on syn-

thetic vocalizations, and comparing its performance to a model trained on real

vocalizations.

• We assess the potential of this approach to serve as a useful tool for assist-

ing bioacousticians in analyzing large quantities of PAM data, particularly in

situations where annotated data is scarce or unavailable.

In addition, this research has contributed to a number of journal publications and

invited talks.

1.1.1 Journal Publications

• Padovese, B., Frazao, F., Kirsebom, O. S., Evers, C., Beslin, W. A. M., Theri-

ault, J., & Matwin, S. (2023). Adapting Deep Learning Models to New Acoustic
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Environments - A Case Study on the North Atlantic Right Whale Upcall. Eco-

logical Informatics. p. 102169. [107]

• Padovese, B., Frazao, F., Kirsebom, O. S., & Matwin, S. (2021). Data augmen-

tation for the classification of North Atlantic right whales upcalls. The Journal

of the Acoustical Society of America, 149(4), 2520-2530. [106]

• Fabio Frazao, Oliver Kirsebom, Bruno Padovese, and Stan Matwin., Embedded

Deep Learning for Underwater Acoustics, The Journal of Ocean Technology 15,

No. 3, 174-175 (2020)

1.1.2 Conference Presentation

• Machine Learning in Marine Bioacoustics. Sobey Fund for Oceans - Sustainable

Ocean Conference 2021, Dalhousie University, Halifax, NS, September 2021.

• Adaptable, Open-source Deep Learning NARW Vocalization Detection Tool -

North Atlantic Right Whale Consortium, New Bedford Whaling Museum, New

Bedford, Massachusetts, October 2022.

1.1.3 Workshop Report

• Fabio Frazao, Bruno Padovese, and Oliver S Kirsebom. Workshop report: De-

tection and classification in marine bioacoustics with deep learning. arXiv

preprint arXiv:2002.08249, 2020.

1.1.4 Invited Talks

• Data Augmentation: Improving your Datasets. MERIDIAN Winter Webinar

Series: Sound detection/classification with deep learning, Halifax, NS, Nov

2020.

• Methods to Overcome Data Scarcity. Detection and Classification in Marine

Bioacoustics with Deep Learning, MERIDIAN and Ocean Networks Canada

Workshop, Victoria, BC, Nov 2019.

• Augmentation Unchained Project. Detecting Whale Calls with Deep Neural

Networks, MERIDIAN-DAMMA workshop, Quebec City, QC, Sep 2019.
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1.2 Outline

The remainder of the report is organized as follows:

In Chapter 2, we present a bibliographic review of existing works on ML and DL

approaches for the detection and classification of marine mammal vocalizations. In

addition, we explore studies that employ ML techniques to combat the limited avail-

ability of annotated PAM data to train effective DL-based detectors and classifiers in

underwater bioacoustics.

In Chapter 3, we introduce the marine mammal species that are the focus of

this study and describe the common denominators across all phases, including the

datasets used, the spectrogram computation process, the neural network architecture,

and the performance metrics employed to evaluate the effectiveness of each approach.

This chapter provides the foundational elements upon which subsequent chapters will

build from.

Chapter 4 presents a data augmentation approach for improving the performance

of DL-based detectors and classifiers. We introduces the study-case, PAM data,

and data preparation steps used in the study. Next, we present the neural network

architecture and data augmentation algorithms used to train the models. Finally,

we describe the experimental steps taken and discuss the experimental results of the

approach.

Chapter 5 explores a TL approach in order to improve the performance of a

DNN that was originally trained on vocalizations from one environment to different

environments. We present the PAM datasets from different sources used in the study

and the data preparation steps. Then, we discuss and explore different TL strategies

for PAM data and discuss the experimental results.

Chapter 6 presents a synthetic signal generation approach to address data scarcity

in training DNNs on datasets where no annotations are available. We outline the

methodology for creating realistic synthetic marine mammal vocalizations. We anal-

yse which steps of the synthetic signal generation process contribute more to training a

DNN to detect real vocalizations. Finally, we assess the effectiveness of this approach

on a dataset with no annotated data and discuss limitations.

Finally, in Chapter 7 we summarize our findings, discuss possible limitations of

this research, outline promising new lines of research and indicate potential future
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work.



Chapter 2

Background and Related Works

Applying automated detectors to identify marine species and distinguish between

vocalization types, is already a well established practice. Several PAM detection and

classification systems employ a binary classifier that is responsible for verifying the

occurrence of a signal of interest (detection) and a binary or multi-class classifier that

determines the source of the signal (classification) [136]. For instance Kirsebom et al.

[65] uses a sliding window of 3s and step size of 0.5s to compute a series of classification

scores between 0− 1 and then average these scores over a 2.5s window to verify the

presence of NARWs, significantly reducing the presence of false positives. In [132], a

set of spectral and temporal criteria were used to validate captured echolocation clicks

of beaked whales from a detection algorithm. In all cases, however, a final manual

validation of the detections is common, reinforcing the need for robust methodologies.

With respect to the classifiers involved in detecting marine mammal vocalizations,

existing approaches can be grouped into two different classes, those that involve a

set of extracted features that are then fed to a classifier, and more recent approaches

involving DL. In Section 2.1 we review a couple of traditional detectors and classifiers,

and in Section 2.2, we present DL-based studies for PAM and techniques to combat

data scarcity.

2.1 Traditional Approaches

Initially, detection and classification of marine mammal vocalizations has been sup-

ported by signal processing techniques or classical ML methods such as shallow neural

networks [105], random forests [46], support vector machines [36], classification and

regression trees [100], Gaussian mixture models [117] and contour-based techniques

[123]. In general, these methods work on a set of features that have been extracted

from the data rather than on the raw audio itself. These features can have a high

impact on the models performance, and therefore need to be carefully considered

10
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when building a classifier. The main disadvantage of this approach is that the pro-

cess of manually choosing which features to pass to a classifier and computing them

from the raw audio data can be highly application specific, and may involve complex

computational and mathematical steps that requires expertise in multiple domains

[8, 13, 6, 105].

Works that employ classical ML algorithms have been proposed for the detection

and classification of a number of marine species. Pourhomayoun et al. [113] used

18 handcrafted features such as event duration, signal-to-noise ratio (SNR), aver-

age bandwith and center frequency as input to a shallow neural network to classify

bioacoustic signals. In [6], two specific sets of features based on short-time Fourier

transform (STFT) and wavelet packet transform were fed to a shallow neural network

to classify blue whale calls. Both methods leveraged the low frequency characteristics

of a blue whale call to compute the feature sets only on two low frequency sub-

bands. Ibrahim et al. [55] employed Mel Frequency Cepstral Coefficients (MFCC)

and Discrete Wavelet Transform (DWTs) to extract features of NARW upcalls. These

features were then used by a Support Vector Machine (SVM) and the K-nearest neigh-

bors (KNN) algorithm for upcall detection.

Among the signal processing techniques, many algorithms have exploited the time-

frequency structure of marine mammal vocalizations. Gillespie [43] developed an al-

gorithm to distinguish right whale calls from other animals and anthropogenic sounds.

The algorithm uses an edge detection algorithm and a gaussian kernel to extract ’out-

lines’ of the signals on a spectrogram. Next, a number of features are computed such

as duration, bandwidth and details of the frequency contour to be used by a classifi-

cation function. In [38] transient signals that had similar time-frequency features to

a particular pygmy blue whale call were searched by a signal recognition algorithm.

The computed features included signal duration, the frequency band and the slope of

frequency change with time. Another study [101] introduced a Minke whale detecion

algorithm that searched for frequency features of ’boing’ calls without having to first

compute the continuous spectrogram, thereby reducing processing time. The algo-

rithm employs a waveform envelope detector, a frequency characteristic matching on

peak and side-band frequency features and the estimation of the duration of the boing

to classify the sounds. In particular, the authors showed that the proposed method
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drastically reduced false alarm rates of Minke whale calls originating from sounds

produced by humpback whales. Simard et al. [130] applied a NARW upcall detector

based on spectrogram cross-coincidence with a synthetic upsweep call template that

was originally proposed in [95] for blue and fin whales.

2.2 Deep Learning

In contrast to traditional detection and classification algorithms, DNNs, the main

component in DL-based systems, introduces the concept of representation learning

through which much of the feature extraction process is incorporated into the neural

network architecture. In representation learning, the multiple layers of the DNN will

automatically learn to extract simpler features and aggregate them into progressively

more complex non-linear representation of the data, thereby replacing the traditional

feature extraction steps. In theory, the shallow layers of the DNN will learn simple,

more generic features while the deep layers will learn more complex, specific features

for a given task. Given enough data, DL-base models can outperform traditional ML

approaches as the features learned by the DNN can often be more useful for a given

task than manual feature engineering. In addition, DL-based systems can be easily

adapted to other settings, because the same DNN can be trained to perform a wide

range of tasks and its response can be improved or adjusted by simply feeding the

network new data [104]. In practice however, most DL-based detectors and classi-

fiers still use some sort of pre-processing step such as re-sampling, denoising, or the

computation of spectrograms [139, 127, 65], but such pre-processing steps are often

considerably simpler than heavy-feature engineering.

Advances in DNNs and DL techniques have shown substantial progress in many

discriminative and generative tasks in several fields, for instance, image [49] and video

[143] classification and object detection [148], face recognition [122], image to image

translation [22], text translation [1] and generation [15]. DL has also been driving

unprecedented developments accross a wide range of acoustic applications such as

speech recognition [115, 108], speech and music synthesis [71], audio tagging [69],

timbre transfer [53], among many other tasks [91, 97]. However, the applications of

similar techniques to PAM is still relatively underused.

In terrestrial bioacoustic applications, deep learning (DL) has seen varied use.
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Nolasco et al. [98] underscored challenges in detecting diverse animal sounds and

the constraint of needing extensive species-specific annotated datasets for training

DNNs. They introduced a few-shot learning framework for sound detection, employ-

ing a single model trained to recognize multiple sound events from just 5 examples

each. To advance this method, the authors launched a public challenge. After three

iterations, top methods combined meta-learning and transfer learning, emphasizing

event duration and time resolution.

In another study, Ghani et al. [41] explore the utility of feature embeddings -

vectors from machine learning models - for few-shot transfer learning. These em-

beddings can differentiate subtle acoustic details, enabling transfer learning between

species and more accurate classifications. By leveraging pretrained embeddings from

large-scale acoustic classifiers, the study proposes a method for species-agnostic clas-

sification across different taxonomic groups. Interestingly, the study found that mod-

els pretrained on extensive bird vocalizations provided better performance than those

trained on data from bats, amphibians, or marine mammals. This suggests that cer-

tain feature embeddings might possess a stronger capacity for generalization across

diverse bioacoustic tasks.

In [61], Kahl et al. developed BirdNET, a deep neural network designed for iden-

tifying vocalizations of 984 bird species from North America and Europe. Utilizing

a task-specific architecture inspired by residual networks, the model comprises 157

layers and over 27 million parameters. Among several techniques employed to en-

hance its efficacy, domain-specific data augmentation was highlighted as an essential

step which ensured robustness against ambient noise and overlapping vocalizations.

BirdNET’s was shown to perform comparably with more complex architectures used

in areas like image object detection. By emphasizing the importance of high temporal

resolution in input spectrograms, the model achieved high precision in various test

scenarios. Specifically, BirdNET attained a mean average precision of 0.791 for single-

species recordings and demonstrated consistent correlations with expert observations

in eBird (a citizen science platform for submitting observation of birds) hotspots.

In underwater bioacoustics, Zhong et al. [149] employed an ensemble convolutional

neural network (CNN) – a type of DNN – trained on spectrograms to detect beluga

whale calls and whistles. In order to create an ensemble model, the authors took the
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weighted average prediction of four different models based on commonly used DNN

architectures. Kohlsdorf et al. [68] trained an autoencoder composed of convolutional

and recurrent layers on spectrograms to perform several tasks related to dolphin

vocalizations such as signal detection, signal type classification between background

noise, echolocation clicks, bursts, and whistles, as well as KNN clustering based on

signal type. Shiu et al. [127] trained a variety of DNNs to detect NARW upcalls and

compared the results to traditional methods. Similarly, Kirsebom et al. [65] trained

a ResNet [49], another type of DNN, to detect NARW upcalls, but they focused on

a different geographic location and provided insights into the importance of dataset

size and variance for training DNNs.

A number of studies have trained DNN to identify odontocetes clicks. Luo et al.

[82] presented a method based on a one-dimension CNN to distinguish between click

and non-click signals. The raw audio signal was used as input for the network and

was first subjected to a high-pass filter pre-processing step. In a following study [145],

the authors expanded the approach to automatically classify echolocation clicks from

different species of odontocetes. Another study [11] developed two distinct sperm

whale echolocation click detectors based on a CNN and recurrent neural networks

(RNN). The CNN was used to classify spectrograms while the RNN was employed

for a wider variety of classification tasks such as vocal clan classification and individual

whale identification. Jiang et al. [59] expands the application of CNNs to odontocetes

vocalizations to detect and classify whistles produced by killer whales and long-finned

pilot whales using denoised spectrograms.

While DL-based approaches have shown great promise as versatile detectors and

classifiers so far, many of these algorithms rely on large amounts of annotate data

to accurately detect and classify marine mammal vocalizations. When this is not

available, as is often the case in underwater bioacoustics, it is reasonable to employ

ML strategies such as data augmentation and TL to mitigate the effects of data

scarcity. In Section 2.2.1 we presents existing data augmentation research in PAM

while 2.2.2 summarises TL research for PAM.



15

2.2.1 Data Augmentation

Simple data augmentation procedures have been used in many works as a relatively

easy approach to gaining model robustness. Techniques such as time shifting, pitch

shifting and noise injection are common practices often employed by researchers when

developing detectors and classifiers. Some of these techniques are applied directly

to the time-series data, while others are applied to the spectrogram representation,

and some can be applied to both. Time shifting the spectrogram view in either

direction to generate additional examples was employed by Shiu et al. [127] for NARW

detection. Li et al. [73] applied several data augmentation techniques directly to the

time-series rather than the spectrogram. The techniques included time and pitch

shifting, time stretching, adding background noise and volume control (amplifying

or attenuating the original audio) to generate more data. Spectrograms of all audio

samples were then computed to train a CNN to detected and classify the dolphin

whistles. Similarly, Mishachandar and Vairamuthu [94] injected artificial noise to

samples in order generate additional samples along with the time and pitch shifting

transformations for ocean noise classification. Waddell et al. [141] also employed a

time shift augmentation approach to train a CNN for the classification of fish calls.

Specifically, the authors shifted sepctrograms in time by small random amounts.

Vickers et al. [139] used data augmentation to add several types of synthetic noise

representative of the testing environment to improve a NARW classifier. In another

study [10], an augmentation procedure involving two steps was proposed. In the first

step, intensity, pitch, and time augmentation were conducted while in the second step

noise injection was carried out. A CNN was then trained as a killer whale detector

and classifier.

Another domain of data augmentation that addresses challenges arising from

limited and imbalanced datasets is synthetic data generation. Computer-generated

synthetic signals have been extensively utilized in marine mammal communication

research, offering significant advantages over natural signals collected in sea trials.

These advantages include not only data augmentation for training classifiers but also

providing a controlled setting for conducting experiments and testing focused hy-

potheses [134]. Synthetic signals have been employed to investigate animal behavior,

such as social communication [63, 3], and female mate choice [3, 114]. In other studies
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[12, 30], synthetic signals were used to explore how distortion caused by signal trans-

mission through the underwater acoustic environment affects automatic detection

and classification methods, whose performance is highly dependent on the acoustic

properties of the environment [95, 51, 129]. Binder [12] generated synthetic calls

of bowhead and humpback whales to obtain clean signals free from acoustic prop-

agation effects. In another example, Mercado et al. [92] trained a neural network

to classify the propagation distance of recorded sounds, aiming to measure whether

humpback whales used frequency degradation to estimate the range of singing whales.

Although these synthetic signal generation approaches were not specifically intended

for dataset augmentation, they could be similarly applied for generating additional

data for training DNNs.

In the context of data augmentation, researchers have explored various approaches

to generate synthetic PAM data for detecting and classifying marine mammal vocal-

izations. These methods range from using images containing unrelated but similarly

shaped patterns [75], to creating new vocalizations through DL-based generative

methods [76], and augmenting signals by propagating them through new environ-

ments. In Li et al. [75], synthetic data resembling delphinid whistles were created

by injecting primitive shapes into spectrogram patches of whistle-absent recordings.

These primitive shapes were derived from contours in the computer vision domain,

such as images of buildings and people. The synthetic data was then used to aug-

ment a PAM dataset for training a DNN to extract dolphin whistle contours. In a

subsequent work, Li et al. [74] introduces a novel approach of training models us-

ing pseudo-labels, approximate whistle labels generated using previously established

whistle extractors that necessitate minimal human-annotated data. Training deep

neural networks with these pseudo-labels presents challenges due to their inherent

inaccuracies compared to human-generated annotations. The authors propose an im-

proved loss function to compensate the inaccuracies created by the pseudo-labels. In

another study, Duc [30] augmented a blue whale dataset by propagating randomly

extracted samples through a new acoustic environment, effectively creating new whale

calls subjected to different distortions.

The emergence of GANs has provided a powerful framework for creating realistic

speech samples, enabling the generation of more realistic synthetic signals. Li et al.
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[76], expanded their data augmentation procedure for generating delphinid whistles

by employing GANs to generate synthetic data. Similarly, Shah [125] relied on DNNs

based on GANs to generate synthetic Odontoceti whistles. While these DL-based

generative methods have the potential to create highly realistic samples, they also

pose significant limitations. First, being DL-methods, these generative networks re-

quire large quantities of training data, which limits their application in cases where

only small amounts of annotated data are available or no annotated data exists. Sec-

ond, GANs-generated samples can contain artifacts or have missing regions. Third,

it is often difficult fine-tune generations to address a specific focus. This can lead

to a GANs-based model trained to generate whale calls producing samples with no

vocalizations or faint vocalizations. Consequently, a sample selection evaluation is

sometimes required to validate the generated samples. However, despite these limi-

tations, GANs remain a promising avenue for the generation of synthetic data in the

field of underwater acoustics. Even though their application in underwater acous-

tics is still in its infancy, continued research and advancements in GANs can lead to

significant improvements in marine mammal detection and classification models.

2.2.2 Transfer Learning

The most widespread TL technique for PAM is pretraining, whereby a DNN that

has already been trained for another task is used to initialize the new DNN training

process for a similar task. TL from image datasets such as ImageNet [27] has been a

common practice in PAM research, and while quite different from the data in bioa-

coustics, it has nonetheless shown significant improvements to the final performance

of detectors and classifiers. ImageNet is a large dataset containing annotated pho-

tographs for developing computer vision algorithms and often serves as a benchmark

dataset in many studies. The principal argument for this approach is that the shallow

layers of the DNN trained on ImageNet will learn low-level generic features such as

basic shapes that can be shared to a wide range of different tasks, including bioacous-

tics. A pretrained network on the ImageNet dataset was used to detect and classify

killer whale, long-finned pilot whale, and harp seal vocalizations in [81], showing that

significantly less data was needed to achieve a satisfactory performance. The same

TL approach was used in [149] to train three out of four models used in ensemble
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learning for the detection of beluga whales and in [72] and [28] for bird species and

bird song classification respectively.

More recently, some studies have begun using Google’s AudioSet [39] and VGG-

Sound [20] (diverse datasets containing audio from YouTube videos) to pre-train a

DNN. In [23] transfer learning from AudioSet was used to develop a DL-system to

tag arctic ecoacoustic recordings while [7] pre-trained a CNN on the VGG-Sound set

to detect two audio-visually distinctive actions in wild chimpanzees. In a related

study that also employed TL to address the issue of insufficient annotated data in

PAM, Dufourq et al. [31] explored the use of 12 pre-trained DNN architectures on

the ImageNet dataset, which is a vast collection of images, as the source models

for TL. These pre-trained models were then adapted to classify vocalizations of four

terrestrial endangered species, achieving satisfactory performance with as few as 25

annotated samples for each species.

Another approach used in TL is to make some layers of the pretrained DNN as

untrainable (freeze), such that the information learned by those layers is conserved.

Bermant et al. [11] froze the feature extraction layers of a RNN and replaced the

classification layer. The model was then retrained and tested on unseen data to

classify sperm whale echolocation clicks. Thomas et al. [136] trained a VGG-19

network (another type of CNN), to classify low frequency vocalizations from different

species of marine mammals. All sixteen convolutional layers (the feature extraction

layers) are then frozen and the model is trained only on the last three layers to adapt

to humpback whale sounds.



Chapter 3

DNNs for the Detetion and Classification of NARW Upcalls

The typical process for developing DL-based detectors and classifiers often follows

several key common steps. In this chapter, we establish the common foundational

elements upon which we will build and evaluate the methodologies and strategies ex-

plored in the subsequent chapters. We will present the marine mammal species and

vocalization of interest, the chosen datasets, the selected audio representation, the

neural network architecture, and the evaluation metrics. By providing this ground-

work, we ensure a cohesive and comprehensive understanding of each phase of the

research and their comparative effectiveness and applications in detecting and clas-

sifying marine mammal vocalizations. We note, however, that while most of the

elements presented in this chapter are consistent across all phases of this research,

some elements may differ. Each chapter contains a description of the specific ele-

ments used and any additions or deviations from the common elements are defined

as necessary.

3.1 North Atlantic right whale

This thesis focuses on developing a DNN model for the acoustic detection of NARW

from PAM data. The NARW is a large baleen whale species that is designated “Crit-

ically Endangered” by the International Union for Conservation of Nature (IUCN),

due to its small and declining population [24]. By the end of 2021, only 340 (±

7) NARW were estimated to remain [112]. The species’ decline is primarily driven

by anthropogenic activities, with ship strikes and entanglement in fishing gear being

major causes of mortality [66, 126]. Sub-lethal stressors such as ship noise [118] may

also impede the species’ recovery. In light of these issues, the NARW has garnered

major research interest over the last several years in an effort to conserve the species.

This includes the development of accurate acoustic detectors and classifiers, which

would be invaluable for informing mitigation efforts such as management of shipping

19
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and fishing activities [127].

In this thesis, we are concerned with detecting the “upcall” vocalization of the

NARW. The NARW upcall is a stereotyped low-frequency upsweep (typical frequency

range 100 – 300 Hz) that lasts approximately one second, and is frequently produced

by both sexes under various behavioural contexts [110, 109]. These characteristics

make the upcall an ideal candidate to identify NARWs acoustically, and thus it is

often used in detectors and classifiers for this species (e.g., [130, 127, 65]). An online

repository containing many examples of NARW upcalls and other vocalizations can

be found in the Watkins Marine Mammal Sound Database [121] 1. In the following

chapters, we present several methods and strategies aimed at enhancing the perfor-

mance of a DNN model when detecting NARW upcalls, particularly in the context

of annotation scarcity.

3.2 Datasets

This thesis relies on three datasets containing NARW upcalls: (i) recordings collected

in the Gulf of Maine (GOM) off the coast of Massachusetts, US, which were used for

the Detection, Classification, Localization and Density Estimation (DCLDE) 2013

workshop challenge [44]; (ii) recordings collected in the Gulf of St. Lawrence (GSL) by

[130]; (iii) and recordings collected in the Emerald Basin (EMB) off the coast of Nova

Scotia, Canada by the Department of Fisheries and Oceans Canada (DFO) [32]. The

specific geolocations for each deployment are illustrated in Figure 3.1. The GOM2,

GSL3 and EMB4 datasets have all been made publicly available. It is important to

note, however, that the NARW’s habitat encompasses and extends beyond the Gulf

of Maine, the Gulf of St. Lawrence, and the Emerald Basin, where recordings were

collected for this study.

The GOM dataset was collected during one-week long deployments in 2000 and

2009, with an array of bottom-mounted Marine Autonomous Recording Units (MARUs;

[18]) developed by the Conservation Center for Bioacoustics at Cornell University5.

1The NARW examples can be found at https://whoicf2.whoi.edu/science/B/whalesounds/
bestOf.cfm?code=AA3A

2The GOM data is available at https://soi.st-andrews.ac.uk/dclde2013/
3The GSL data is available at https://doi.org/10.20383/101.0241
4The EMB data can be found at https://doi.org/10.3389/fmars.2022.976044
5Conservation Center for Bioacoustics; https://www.birds.cornell.edu/ccb/technology/

https://whoicf2.whoi.edu/science/B/whalesounds/bestOf.cfm?code=AA3A
https://whoicf2.whoi.edu/science/B/whalesounds/bestOf.cfm?code=AA3A
https://soi.st-andrews.ac.uk/dclde2013/
https://doi.org/10.20383/101.0241
https://doi.org/10.3389/fmars.2022.976044
https://www.birds.cornell.edu/ccb/technology/
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Figure 3.1: Map illustrating the deployment locations for the GSL (Top Figure) GOM,
and EMB (Bottom Figure) datasets. Data was collected using varying hardware and
over different time periods, as detailed in Section 3.1. The location indicated for the
GOM deployment is approximate, due to the unavailability of specific coordinates.

Data from the 2009 deployment, collected between March 28 and April 3, contains

NARW upcalls. In contrast, the data from the 2000 deployment, collected between

May 19 and May 25, does not include any identified NARW upcalls. The MARUs

were deployed approximately 3 meters above the seafloor with no surface expression.

All audio files in the GOM dataset are 15-minutes long with a sample rate of 2 kHz

and were recorded continuously (i.e., they span the entire week without gaps or inter-

ruptions). The dataset comprises data from all 7 days of recording from one recorder

in both recording years. In total, the dataset contains 336 hours of recordings. All au-

dio files were subjected to a full manual analysis by an expert and all NARW upcalls
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were annotated.

The GSL data were collected between 2015 and 2019 at six different stations across

the GSL through surface deployments tethered to a buoy and bottom deployments

moored approximately 5 m above the seafloor. Each bottom recording station was

equipped with an AURAL-M2 autonomous underwater recorder6 while the surface

deployments were equipped with an ic-Listen hydrophone7 connected to a real-time

ocean observing Viking buoy8.

A subset of the GSL recordings were downsampled to 1 kHz and processed us-

ing a time-frequency-based detection algorithm (TFBD) to detect candidate NARW

upcalls, which were then validated by an expert. The algorithm follows [90] and

searches spectrograms of the recordings for NARW upcalls based on spectrogram

cross-coincidence with a synthetic upsweep call template originally proposed in [95]

for blue and fin whales. The upsweep call template used for NARW upcalls had a

bandwidth of 20 Hz, was 1-s long, and had a frequency sweep kernel between 100 to

200 Hz [130]. All validated detections had the NARW upcall time centered based on

the midpoint of the upcall determined by the TFBD algorithm with minor temporal

misalignment of up to 0.5 s [65]. In this manner, a large number of 3-second long

audio clips were extracted from the data, collected between June 9, 2018, to July 17,

2018, and between May 31, 2019, to August 21, 2019. These are dubbed as GSL A

for the clips originating from the surface deployments, and GSL B for the clips from

the bottom deployments. Additionally, a smaller subset of the GSL recordings from

the bottom deployments were subjected to a full manual analysis by an expert. This

effort resulted in 50 audio files collected between August 17, 2015 and January 10,

2017, each 30 minutes in duration, amounting to a total of 25 hours of recordings

sampled at 32 kHz, in which every NARW upcall has been annotated (this subset

is named as GSL B*). Both the 3-second clips and the 30-minute continuous files

form the the GSL dataset used in the present work. Further information on the GSL

dataset data collection and specific deployment locations can be found in [65].

The EMB data were collected using a bottom-mounted Autonomous Multichannel

Acoustic Recorder (AMAR; JASCO Applied Sciences, Ltd.) deployed from May

6Multi-Electronique Inc.; http://www.multi-electronique.com/aural.html
7Ocean Sonics; https://oceansonics.com/product-types/iclisten-smarthydrophones/
8Multi-Electronique Inc.; http://www.multi-electronique.com/buoy.html

http://www.multi-electronique.com/aural.html
https://oceansonics.com/product-types/iclisten-smarthydrophones/
http://www.multi-electronique.com/buoy.html
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24, 2015 to April 20, 2016 (EMB 2015) and from September 15, 2016 to November

30, 2017 (EMB 2016) in the Emerald Basin. The acoustic recorders were placed

approximately 20 m above the seafloor. The recording schedule was duty cycled and

alternated between two sampling rates, such that data were sampled at 8 kHz for 11

min 18 s, followed by 250 kHz for 1 min 4 s. This cycle was repeated every 20 min.

For this study, only the 8 kHz recordings were used. In total, the EMB 2015 dataset

contains ∼ 7, 247 hours of recordings, and the EMB 2016 dataset contains ∼ 9, 608

hours of recordings. All recordings were processed with the Low Frequency Detection

and Classification System (LFDCS; [8]), using the call library from [8]. All calls that

were classified as a NARW upcall call type by LFDCS with a Mahalanobis distance

<= 3 were reviewed and validated by an expert, following the protocol described in

[32].

Table 3.2 displays the total number of annotated NARW upcalls in each dataset.

Each dataset has its own unique characteristics, advantages and limitations. For

instance, whilst the GOM dataset has the largest amount of annotated upcalls for

training, its data was collected over only one week of monitoring, which may not

provide an accurate representation of the environmental soundscape during other

seasons. On the other hand, the EMB dataset was collected over a longer stretch

of time, thereby capturing more variability in the acoustic environment and NARW

vocalization patterns, but only contains 479 annotated upcalls, a very low quantity

for training a DNN. By using multiple datasets in this study, we aim to address each

limitation through our methodology, ultimately creating more robust and generaliz-

able DNN models for detecting and classifying NARW upcalls across diverse acoustic

environments and time periods. We note that each phase of this thesis utilizes a

different combination of these datasets. In each respective phase, we clearly specify

which datasets are employed to ensure a thorough understanding of the methodology

and results.

3.3 Audio Representation

The majority, but not all, of studies in the acoustic domain use a spectrogram rep-

resentation of the audio data rather than the raw waveform. The main motivation

behind using a spectrogram representation is that this is how researchers analyse
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Dataset Upcalls
GOM 9,063

GSL 4,331
GSL A 800
GSL B 2,374
GSL B* 1,157

EMB 479
EMB 2015 232
EMB 2016 247

Table 3.1: Total number of annotated NARW upcalls in each dataset. The GSL
dataset displays the total number of annotated upcalls contained in the GSL A,
GSL B and GSL B*. Similarly, the EMB dataset displays the total number of anno-
tated upcalls contained in the EMB 2015 and EMB 2016 datasets. Training, valida-
tion and testing splits are defined in each chapter as necessary.

this type of data. One advantage of such an approach is that it is much faster to

view a spectrogram than listen to potentially long recordings [136]. Spectrograms

visually represent the frequency content of a signal over time, allowing for the easier

identification of specific features and patterns, such as harmonics, as well as enabling

more effective noise filtering within the frequency domain. Another advantage is that

you can see sounds that are too low or too high in frequency to be audible by a

human listener. Furthermore, by modelling the problem as an image task, it is pos-

sible to take advantage of powerful DNNs developed for image data. For instance, in

speech recognition and speech synthesis tasks, it is common to pair mel spectrograms

with DNNs [108, 71]. This type of spectral representation of the sound information

resembles that of the human ear and can be useful for solving speech related tasks.

In light of this, current state-of-the-art NARW upcall detectors use magnitude

spectrograms as input instead of acting directly on the raw audio data. This is true

for conventional detectors [8, 130] as well as the more recent generation of deep-

learning detectors [127, 65]. In this work, magnitude spectrograms with a frequency

range of 0 Hz - 500 Hz are employed as input to a DNN to classify 3-second audio

segments as containing a NARW upcall or not.

To produce the training sets for each phase of the reasearch, audio segments were

extracted from each dataset as determined by the annotations. These segments were



25

designated as “positive” if they contained a NARW upcall and as “negative” oth-

erwise. For the negative samples, the GSL clips and EMB 2015 dataset contained

“negative” annotations that were false detections (hard negatives) from the TFBD

and LFDCS algorithms, respectively. For the GOM dataset and the GSL 30-minute

audio files, the negative samples were extracted by randomly isolating 3-second seg-

ments that did not overlap with the annotated upcalls. This process was also repeated

to extract additional negative samples from the EMB 2015 dataset in order to com-

plement the hard negatives with a more representative view of the EMB soundscape.

The number of negative samples extracted from each dataset varies for each phase

of the study, reflecting the specific requirements and methodologies employed. These

variations are thoroughly detailed and explained in the corresponding chapters.

To compute the spectrograms, audio files from the GOM, EMB and GSL 30-

minute datasets were downsampled to a sampling rate of 1 kHz to match the sampling

rate of the GSL 3-second clips. Next, for all 3-second segments, the spectrogram

representation was computed with a Hamming window size of 0.256 s (NFFT of 256

samples) and step size of 0.032 s, which represents an 87.5% overlap, and produces

a spectrogram (2-d array) with time × frequency dimensions of 94 × 129. These

settings are ideal for the detection and classification of upcalls [40, 130]. Finally, the

resulting 2-d array was normalized to have a mean of 0 and standard deviation of 1.

Figure 3.2 displays a spectrogram of a stereotypical NARW upcall using the specified

parameters.

3.4 Neural Network Architecture

In this thesis, we employ a residual network (ResNet) [49] architecture to classify

NARW upcalls. ResNet, a type of convolutional neural network (CNN), has exhib-

ited strong discriminative capabilities across a variety of classification tasks and is

relatively straightforward to implement. These attributes make ResNets well-suited

for our study, as the primary objective is to investigate the potential of ML tech-

niques to address data scarcity rather than to focus on the architecture itself. As

with traditional CNNs, they employ layers of convolutional filters that transform the

raw input data - in our case, a spectrogram - into useful features which are then fed

to a traditional feed-forward neural network for classification.
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Figure 3.2: Spectrogram of a stereotypical NARW upcall, generated using the spectro-
gram computation parameters described in Section 3.3. The spectrogram illustrates
the distinctive low frequency upsweep characteristic of NARW upcalls.

These features are implicitly learned during the training process by leveraging

patterns in the time-frequency bins, producing weighted combinations of nearby ele-

ments which then pass through a non-linear activation function and serve as input for

the next layer. In theory, the earlier, shallow layers learn low-level generic features

while delegating the learning of specific features to the deeper layers of the DNN.

However, very deep CNNs often suffer from a loss of generalization capabilities due

to the vanishing/exploding gradient problem [49]. To help alleviate this issue, and

have networks that generalize better, ResNets introduces simple ”skip connections”

in the network architecture that allow the learning procedure to bypass (skip) stacks

of convolutional layers (a residual block), therefore preserving what was learned in the

previous layers. This design improves generalization and enables training of deeper

networks.

We utilize the widely adopted ResNet-18 architecture [49], a variant of the ResNet

family, to classify the NARW upcalls. This particular architecure starts with an ini-

tial convolutional layer with 16 filters, followed by 8 ResNet blocks, each containing 2

convolutional layers with 3x3 kernels. The depth of the network increases by doubling

the number of filters every 2 ResNet blocks. Each convolutional layer is accompanied



27

by batch normalization and employs rectified linear units (ReLU) [96] as the activa-

tion function. The residual blocks are then followed by a final batch normalization

[57] layer and global average pooling [78]. At the end, a fully connected layer with a

softmax function produces a score for each of the two possible classifications (upcall

present or absent). These scores, ranging from 0 to 1, represent the network’s con-

fidence in each classification, and their sum equals 1. It is worth noting that there

are other popular ResNet architectures (e.g., ResNet-34, ResNet-50, etc.) that could

potentially be more powerful due to their increased depth of layers. However, given

the limited amount of data, the fewer layers of ResNet-18, compared to its sibling

architectures, allow for faster and more computationally efficient training without

compromising performance. This characteristic is particularly advantageous when

considering embedded PAM systems where power consumption and processing power

are limited.

3.5 Performance Evaluation

For each phase of the experiments, a test set was reserved to evaluate the performance

of the DNN model after training. This test set consisted of annotated data that was

not used during the training process, allowing for an unbiased assessment of the

model’s ability to classify NARW upcalls. Specifics concerning which dataset was

used for training and which dataset was reserved for testing, as well as any training

and testing splits, can be found in the relevant chapters of this thesis. In these

chapters, we detail the motivation for each experiment, discussing their objectives

and providing a comprehensive description of the methodology employed.

To evaluate the network’s performance and account for variability due to ran-

dom initializations, all experiments were conducted five times using different initial

network weights and biases. The results were then averaged to establish the mean.

Samples were classified as ‘positive’ if the positive-class (NARW upcall detected)

score computed by the model exceeded a certain threshold value, and were classi-

fied as ‘negative’ otherwise. Given a class score s and a detection threshold τ , the

network’s detection can be represented as follows:



28

D =

⎧
⎨
⎩

1, if s ≥ τ

0, otherwise
(3.1)

where D is the detection results, either positive or negative, D = 1 indicates a

positive detection (NARW upcall) and D = 0 indicates a negative detection (no

NARW upcall).

Model evaluation involved computing the precision, recall, and false positive rate

(FPR) with respect to the upcall (positive) class. The precision measures the pro-

portion of instances classified by the network as positive that indeed have positive

labels (true positive), i.e., they were also labeled as positive by the expert annotator,

as opposed to negative labels (false positive). Recall on the other hand, measures the

proportion of positively labeled instances in the test set that were correctly classified

as positive (true positive) by the network, as opposed to negative (false negative).

Finally, the FPR identifies how many false positives are detected on average over a

unit of time and can better reflect how the model performs in a real world application.

In this work, we consider the FPR to be the number of FP per hour. The precision

and recall can be computed as follows:

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

where TP is the number of true positives in the test set, FP is the number of false

positives, and FN is the number of false negatives.

It is worth mentioned accuracy as an intuitive metric for evaluating performance.

However, in the context of detecting animal vocalizations such as NARW upcalls,

accuracy presents important limitations. This is primarily because it assumes equal

risk and equal importance associated with false positives and false negatives [12], as

well as equal importance between classes. Marine mammal vocalizations are generally

sparse occurrences in vast amounts of continuous acoustic data, such as those collected

by PAM systems. Consequently, a model that classifies the majority of the data as

negative (i.e., no vocalization) may still achieve high accuracy despite failing to detect
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the actual vocalizations. In such scenarios, metrics such as precision, recall, and

FPR provide a more comprehensive understanding of a model’s performance, as they

account for the imbalance in class distribution and the potential costs associated with

false detections and missed detections. For this reason, this thesis and many other

works [65, 127, 75, 76] focused on detecting animal vocalizations favour evaluating a

DNN model’s performance using the previously described metrics of precision, recall,

and FPR, over accuracy.



Chapter 4

Data Augmentation for PAM

The contents of this section were based on our work published in; Padovese, B.,

Frazao, F., Kirsebom, O. S., & Matwin, S. (2021). Data augmentation for the classi-

fication of North Atlantic right whales upcalls. The Journal of the Acoustical Society

of America, 149(4), 2520-2530. [106]

ML models in general, and DL models in particular, greatly benefit from large

amounts of labeled data, and in theory, the more labeled data available, the better

these models should perform at their respective tasks. This notion is formalized

within the Probably Approximately Correct (PAC) learning framework [137]; loosely

speaking, a task is said to be PAC-learnable if by enlarging the training dataset we

can increase the probability that the learning process produces a well-performing

model, solving the task to within a prescribed level of accuracy. However, in practice,

the availability of labeled data is always limited and it is often either unfeasible or

expensive to acquire more labeled data. Therefore, data augmentation strategies that

produce more data by generating them synthetically can be an inexpensive way to

mitigate this problem.

While many different data augmentation strategies have been proposed, they all

share the same goal of having DL models generalize better. By generating new sam-

ples through different techniques, an augmented dataset comprehends a more repre-

sentative set of possible data points, thus minimizing the distance between what a

DL model has seen during training and what it can see in a real world application.

While other solutions for increasing generalization such as employing more complex

architectures or TL exists, data augmentation addresses the core of the issue, that

is, providing DL algorithms with more samples to train from [128]. This is done

with the expectation that additional information can be extracted from the original

dataset through augmentations. Another advantage of using data augmentation is

that we can fine tune our approach to tackle a specific knowledge gap or deficiency

30
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that our model has. For instance, if we know that the environment we want to apply

our DL model to is close to a busy shipping lane, we can use this prior knowledge to

transform our data to simulate a similar environment and make our model invariant

against this type of noise.

Data augmentation techniques can range from simple “naive” transformations

that do not take into consideration the problem being addressed to complex DL-

based augmentations that are capable of modelling raw audio drawn from a training

dataset. Naive augmentations could be characterized by their simplicity and include

transformations based on signal processing functions such as pitch shifting [73], time

stretching [73], time warping [108] adding noise [94], as well as transformation on spec-

trogram representations such as time shifting [127], and those inspired by computer

vision such as random masking [108]. Data-based augmentations instead, leverage

the user knowledge of the domain to transform samples based on the characteristics

of the environment, and can include simple operations such as mixing signals [144]

to sound propagation modelling to synthesise how a signal distorts as it propagates

through the underwater environment [12]. Finally, DL-based [45] augmentations learn

the distribution of the dataset feature space to generate new unseen samples drawn

from this distribution.

One important consideration when using data augmentation techniques is label

fidelity. Shorten and Khoshgoftaar [128] refers to this problem as the “safety of ap-

plication”, and consider an augmentation technique to be “safe” if there is a high

likelihood that the label of the generated sample is preserved post-transformation.

This problem is best described using the classic computer vision task of recognizing

“6” and “9” or “b” and “d”. In this case, transformations that flip the image horizon-

tally or rotate it 180◦ would also transform the meaning of the labels and therefore

are “unsafe”. Generally speaking, knowing which transformation is “safe” to apply

or not depends on the application and requires a certain level of domain knowledge

about the data.

4.1 Dataset

In this phase, we have opted to work only with a subset of the clips data as we

are interested in studying the effects of data augmentation on PAM data and not
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on producing the best possible NARW classifier. For this reason, we selected the

GSL B clips dataset. We recall that this particular subset data were collected through

bottom deployments moored approximately 5 m above the sea floor at four different

stations, each equipped with an AURAL-M2 autonomous underwater recorder, and

that the clips were extracted from longer recordings using a TFBD algorithm. For

more information, refer to Section 3.2. In total, the chosen subset contains 3,888 3-s

long sound clips, of which 1,514 were negative samples (with no right whale upcall)

and 2,374 were positive samples (containing a NARW upcall).

For composing the training and testing sets, the data were split based on the

temporal placement of each 3-s clips within the longer recording. A time, t0, was

defined to split the dataset in an 85:15 ratio between training/validation and testing,

with samples extracted from times t < t0 selected for the training set and samples

extracted from times t > t0 chosen for the testing set [65]. Following this procedure,

the training/validation set consists of 3,309 clips, including 2,033 positive samples

and 1,276 negative samples, while the testing set comprises 579 samples, with 341

positive and 238 negative samples. Table 4.1 summarizes the composition of the

training/validation and testing sets, providing the number of positive and negative

samples for each set.

Training + Testing Training Testing

Total 3,888 3,309 579
Positives 2,374 2,033 341
Negatives 1,514 1,276 238

Table 4.1: Composition of the training/validation and testing sets for the GSL B
clips dataset. The table displays the number of positive (containing NARW upcalls)
and negative (no NARW upcall) samples in each set, as well as the total number of
samples.

4.2 Data Preparation

For the methodology described in this chapter, we adhered to the same spectrogram

computational steps outlined in Section 3.3. Since the data used in this phase was

already segmented into 3-seconds clips, contained negatives, and were already at

required sampling rate of 1,000 Hz, no additional pre-processing steps were required.
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4.3 Data Augmentation

In this phase, two augmentation methods, SpecAugment and Mixup that were origi-

nally introduced for Automatic Speech Recognition (ASR) and computer vision tasks

respectively were studied and adapted to PAM data. Both methods have shown to

significantly improve the performance of classifiers in their respective fields, and have

been chosen for their performance boost potential and ease of integration in a ML

pipeline. In the following, we describe these methods and explain how we adapted

them to a PAM task.

4.3.1 SpecAugment

SpecAugment [108], as implied by its name, is an augmentation technique specifically

tailored to dealing with spectrograms in acoustic discriminative tasks. Its primary

purpose is to make an ASR model more robust against small interferences such as

deformation and loss of bins in the time or frequency dimension. This is done by in-

troducing three transformations to the spectrogram, namely time warping, frequency

masking and time masking as shown in Algorithm 1. Given a spectrogram with τ

time bins and ν frequency bins:

1. Time warping consists of a deformation of the spectrogram in the horizontal

(time) direction, in which the corners of the image and the mid-points of the

vertical edges are used as fixed points, while a vertically centered point, ran-

domly positioned in the horizontal (time) direction within (W, τ−W ), is shifted

by an amount 0–W where W is the user specified max warp distance parameter.

We modified the tensorflow implementation of the tfa.image.sparse image warp

method [108] so that it allows for the mid-points of the vertical edges to be used

as fixed points without also fixing the mid-points of the horizontal edge.

2. Masking is done by selecting a number of blocks of time bins or frequency bins

and replacing all values within the blocks with a mask value.

• Frequency masking works by first randomly selecting f frequency bins to

be masked from the interval [0, F ], where F is a user-specified parameter.

Then, a random frequency bin along the vertical axis, f0, is selected from
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[0, ν − f). Finally, all pixel values in the frequency bin range [f0, f0 + f ]

are replaced with a constant mask value.

• Time masking consists of first selecting t time bins to be masked from the

interval [0, T ], where T is a user-specified parameter. Then, a random time

bin along the horizontal axis, t0, is selected from [0, τ − T ). Finally, all

pixel values in the time range [t0, t0 + t] are replaced with a constant mask

value.

The mask value can in principle be anything, but often the minimum, maximum

or mean value of the masked area is used. Figure 4.1. displays a Spectrogram

from the dataset before and after applying SpecAugment.

Algorithm 1 SpecAugment

Input: A spectrogram S, max warp distance W , max masked frequency bins F and
max masked time bins T
Output: S - The SpecAugmented Spectrogram

1: τ ← GetTimeBins(S)
2: ν ← GetFrequencyBins(S)
3: if TIME WARPING then
4: vc← ν/2 {Vertical center}
5: p← RANDOM(W , τ −W ) {Random point in the horizontal line}
6: sa← RANDOM(0, W ) {Shift Amount}
7: S ← ImageWarp(vc, p, sa) {Perform time warping}
8: end if
9: if FREQUENCY MASK then
10: f ← RANDOM(0, F)
11: f0← RANDOM(0, ν − f)
12: Set a value to S[:, f0 : f0 + f ] {Masking}
13: end if
14: if TIME MASK then
15: t← RANDOM(0, T)
16: t0← RANDOM(0, τ − t)
17: Set a value to S[t0 : t0 + t, :] {Masking}
18: end if
19: return S

Multiple, possibly overlapping, masking operations may be carried out for a single

input spectrogram and the number of masks should be chosen based on the type of
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Figure 4.1: SpecAugment applied to a spectrogram. From top to bottom, the figures
shows the the original spectrogram and the augmented spectrogram with time warping
(W = 8), frequency masking (F = 7) and time masking (T = 5).

signal of interest and the characteristics of the spectrogram. Each of the three de-

scribed transformations may also be disabled. For instance, according to the authors

of Park et al. [108], time warping contributed only minor improvements in the over-

all performance of the ASR model. In this work, SpecAugment was applied to the

Magnitude Spectrogram representation of the input audio, generating new augmented

samples to feed to the DNN during training.

Being simple and computationally cheap, SpecAugment can be applied during
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the training phase without significantly impacting training time. However, it is im-

portant to exercise caution when choosing the mask and warp parameters for each

transformation, for instance how many frequency or time bins to mask. SpecAug-

ment was originally proposed for ASR tasks, where the signals of interest are long

and occupy most of the recording and masking large segments should not affect the

overall structure of the signal, nor its label. However, in PAM detection and classifi-

cation the opposite is frequently true, marine mammal vocalizations are often short

and far and few in between long segments of silence or background noise. In this

context, since the signals are short, it is possible to completely mask out the signal

or distort it significantly if we choose large values for the parameters, thereby making

the transformations non-label preserving. We contribute by adapting SpecAugment

from an ASR context to a PAM detection and classification problem by proposing

much smaller values for the masking and warping parameters but with more frequent

occurrences of masking per recording.

In this study, even though SpecAugment provides transformations that may not

resemble the kinds of interference that are common in hydrophone data, they may still

be useful in terms of boosting model performance by generally increasing the diversity

of the training data as we are working with substantially less amounts of data than

used for training the ASR model in Park et al. [108]. In addition, by masking some

time and frequency bins, the model will have to learn to predict the same outcome,

using less available information. This results in a more robust representation of the

data learned. Another important difference is that while Park et al. [108] worked

with the Mel Spectrogram because it provides useful features for ASR tasks, we work

with Magnitude Spectrograms.

4.3.2 Mixup

The Mixup [147] method generates a new training example, in our case a new wave-

form, by computing the linear superposition of two input arrays, including their

labels. As it takes an array as input, it can work with both images [147] and raw

audio waveforms [144].

Given two samples xi and xj from a training set and their associated labels yi and

yj, a new virtual training example can be constructed by:
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x = αxi + βxj

y = αyi + βyj
(4.1)

where α, β ∈ [0, 1] are the mixing ratio. Note that while the default algorithm

uses β = (1− α), our implementation gives a little more freedom by allowing a user

defined α and β separately. The method is also described in Algorithm 2.

Algorithm 2 Mixup

Input: Two audio files xi and xj, their labels yi and yj and the α and β weights
Output: The new waveform x, and its label y

1: xi, yi ← LoadAudio() {Load the first audio file}
2: xj, yj ← LoadAudio() {Load the second audio file}
3: if β is null then
4: β ← (1− α), and α, β ∈ [0, 1]
5: end if
6: x← αxi + βxj

7: y ← αyi + βyj {The labels can be represented as one-hot vectors}
8: return x, y

Mixup can be implemented with just a few lines of code and introduces minimal

computational overhead, whilst incorporating the knowledge that linear interpolation

of audio feature arrays will produce linearly interpolated associated labels [147]. This

allows us to incorporate the method during training, by creating a virtual sample

from two input arrays extracted from the training set. In practice, Mixup often leads

to significant improvements in the models performance [147, 144].

In computer vision, Mixup or similar mixing techniques [147, 56], whereby two

or more images are mixed together by averaging their pixel values, have shown to

be surprisingly effective in boosting the performance of ML models at discriminative

tasks, even as this may seem counter intuitive [128]. In most computer vision tasks, a

pixel in an image always corresponds to a unique physical object, and it is usually safe

to assume that adjacent pixels also correspond to the same object. Hence, two visual

objects mixed together may result in an object that makes little sense to a human

observer. In the context of audio data, however, the mixing not only helps the model

learn more robust representations of each signal, but also results in realistic sounds

that can be interpreted by a human listener in a straightforward and intuitive manner
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Figure 4.2: The Mixup method as applied to two audio samples. The top two images
are the source samples which are mixed to become the augmented sample.

because sounds can and do overlap naturally. Sounds are mechanical pressure waves,

and when two such waves interfere the resulting wave is the linear superposition of

the two.

For the purpose of this work, the new mixed samples are generated before training

and added to the training database, which permits additional pre-processing steps to

be carried out such as the spectrogram computation. In addition, we hypothesise that

the linear superposition of two input audio samples (Figure 4.2) alone while main-

taining a single label for the new augmented sample is enough to achieve significant

gains. Therefore, for all our experiments after applying Mixup, instead of preserving

the linearly interpolated labels Eq. (4.1), we discarded one of the labels Eq. (4.2).

This further simplifies implementation as we can now assume each clip belongs to a

single class. Under this setting, as to not assign a negative label to a positive sample,
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all new negative samples were augmented from two original negative samples. As to

be consistent with the original dataset, which only has one upcall per 3 s clip, all new

positive samples were augmented from one original negative sample and one origi-

nal positive sample. Furthermore, to maintain consistency when generating a new

positive, the α parameter will always be the weight for the negative sample, while β

will always be the weight for the positive one. Finally, all mixed samples are then

normalized to the interval [−1, 1].

y =

{︄
0, if yi = yj = 0

1, otherwise
(4.2)

The main difference between SpecAugment and Mixup in relation to their aug-

mentation capability is that SpecAugment enhances the model’s robustness against

partial loss of information by providing samples with missing information. Addition-

ally, SpecAugment poses a more challenging problem for the DNN, requiring it to

produce the same output while relying on less information. Meanwhile Mixup en-

riches the training set by generating new audio that combines information from two

recordings. This allows the model to learn a more robust representation of each class

and can potentially strengthen it against indecision. Ultimately, both algorithms

enhance a DNN model’s performance by expanding the range of diverse data it is

exposed to during the training process.

4.3.3 Experimental Protocol

Firstly, when augmenting the original dataset, for all experiments, we ensure that

our binary classes will have the same number of positive and negative samples after

augmentation. Hence, since the original dataset contains fewer negative samples than

positive samples, all augmented datasets will contain exactly 757 more augmented

negative samples than augmented positive samples.

The network was trained for N = 100 epochs and with a batch size of 128 samples

per optimization procedure. All experiments were conducted using the ADAM opti-

mization algorithm [64] with the default parameters of initial learning rate of 0.001,

decay of 0.01, β1 of 0.9, and β2 of 0.999. Finally, all experiments were conducted
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on an NVIDIA TITAN V GPU with 12 GB of memory. For determining the net-

work’s performance, we computed the mean recall and precision, as established in

Section 3.5, on the test set for each experiment.

4.3.4 Full Dataset Protocol

For the purpose of creating a useful augmented set, we initially evaluated the best

parameters for both methods. Starting with Mixup, we extensively experimented with

different α and β values to assess their impact when creating new positive samples

for the training set. Specifically, we evaluated if giving more emphasis to either of the

original samples would help the DNN model learn the desired patterns better than a

balanced approach (α = β). For this purpose, we tested the following combinations

of α and β values, α = 0.2 and β = 0.8; α = 0.3 and β = 0.7; α = 0.4 and

β = 0.6. Based on these investigations, only a modest effect was found when varying

the weights in the given interval. Therefore, when applying Mixup for the remaidner

of the experiments in this work, the α and β weights will always be set to 0.5 when

augmenting data for either class.

For SpecAugment, we originally compared the effects of applying all three trans-

formations at the same time (frequency masking, time masking, and time warping)

versus applying the masking operations and time warping individually. We augmented

the dataset to have 10,000 samples from each class. For the time warping operation,

we set the warping parameter to W = 8, while for the masking operations, we applied

six time and frequency masks to each augmented sample with frequency masking pa-

rameter F = 7 and time masking parameter T = 5. We found these parameters

to be ideal when working with the data. Specifically, we found that using multiple

smaller masks (masking fewer time or frequency bins) was more effective than fewer

bigger masks. While some variation was found when isolating the three operations,

this was not substantial, and for all other experiments involving SpecAugment, all

three transformations will be used when augmenting data for either class.

Finally, with these initial observations we investigated the DNN model perfor-

mance when training on progressively larger amounts of augmented data. Starting

with the full original dataset, we augmented the training set to 10000 total samples,

and then incrementally added 5000 augmented samples at each step up to 40000 total
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samples, using either SpecAugment or Mixup.

4.3.5 Undersampled Dataset Protocol

The first step in understanding the effects of augmentation in a scenario of data

scarcity was to draw a set of baseline performances when feeding the DNN only a

portion of the original training set, without any sort of data augmentation. To this

end, we assess the performance of the DNN when training on just 200 original samples

(100 from each class), and incrementally adding another 200 original samples (100

from each class) at each new training procedure. Next, we investigate the effects of

data augmentation by progressively increasing the amount of augmented data avail-

able for training a DNN. From the baselines established in the previous experiment,

we increased the amount of augmented samples at each step by 2000 up to 8000.

4.4 Results

4.4.1 Full Dataset

We report the DNN model’s performance when training the model on progressively

larger amounts of augmented data in Figure 4.3. The dashed line represents the

baseline performance when training with all the available original data without aug-

mentation. We observe that the model greatly benefits from the added augmented

samples, with recall improving from 89.0% up to 93.0% and precision improving from

85.9% up to 90.7% in the best scenarios. Furthermore, it is worth highlighting that

the model already achieves high precision and recall rates with a relatively modest

number of augmented samples. With 10000 total samples (5000 from each class), the

model achieves close to 90% precision and recall with both Mixup and SpecAugment.

By increasing the total samples to 20000 (10000 from each class), it is possible im-

prove the performance even more while also achieving a lower standard deviation.

With 20000 total samples, the model attained 90.7% precision and 90.8% recall with

the Mixup method and 90.1% precision and 91.3% recall with SpecAugment. Finally,

we observe that under our setup, it took ≈ 27 minutes to train the model without any

augmented samples, increasing by ≈ 45 minutes for every additional 5000 augmented

samples.
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Figure 4.3: Classification performance (%) in terms of precision (a), recall (b) and
training time (c) when training a ResNet on augmented datasets. The Figure displays
the performance and training time when training on progressively larger augmented
datasets using either SpecAugment or Mixup as the augmentation method. The
Baseline is the full original dataset without augmentation.

4.4.2 Undersampled Dataset

We have also investigated the performance of the proposed methodology in a scenario

of data scarcity by first undersampling our original dataset to establish baseline per-

formance. With very low amounts of data available (200-400 samples), the model

was not able to learn properly in order to generalize at all, and classifies almost every

new sample as positive achieving nearly 100% recall and 50% precision. Furthermore,

throughout the entire training procedure the model displays a substantially higher

loss in the test set than in the training set when training with just 200 or 400 orig-

inal samples. By increasing the amount of training data available, either original or

augmented training data, the model is then able to learn to identify more effectively,

and generalizes better to unseen data. For instance, when increasing the amount of

original data available, we observe a gradual increase in performance, achieving 80.4%

precision and 77.6% recall at 1000 original samples. It is worth noting that there are

substantial differences in performance between the five models trained for each ex-

periment when working with a small subsample of the original dataset. For instance,
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Figure 4.4: Baseline performance (%) in terms of precision and recall when training
a ResNet on a subsample of the original dataset. The ResNet was trained with
progressively more original data (starting from 200 original samples and adding 200
original samples at each step up to 1000 original samples).

with 1000 original samples we obtain a standard deviation of 4.1% for precision and

9.2% for recall as shown by the width of the shaded bands in the Figure 4.4. With

400 original samples available for training, we obtain a standard deviation of more

than 10% on recall and 5% on precision for both Mixup and SpecAugment.

Next, we investigated the effects of data augmentation by progressively increasing

the amount of augmented data available for training the DNN using either Mixup

or SpecAugment as the data augmentation method (Figure 4.5). The dotted line

represents the baseline performance when training with all the available original data.

We observe that the performance of the network is considerably improved by the

data augmentation step, especially in the most extreme cases of data scarcity (200

and 400 samples). In these cases, instead of overfitting the training set and achieving

a precision close to 50% and a recall close to 100%, the network achieves both a recall

and precision close to 80% using just 200 samples, which corresponds to less than 10%

of the available original training data. Using about a third of the original training

dataset (1000 samples) and 6000 augmented samples, the process was consistently

achieving recall levels close to the baseline, and precision even higher than the baseline

for both Mixup and SpecAugment.
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Figure 4.5: Classification performance (%) in terms of precision and recall when
training a ResNet with progressively more augmented data (starting from 0 and
adding 2000 samples at each step) generated with Mixup and SpecAugment using an
undersampled dataset. Each bar represents the number of original samples and the
error bars represents the standard deviation for that particular experiment.

4.5 Discussions

4.5.1 Full Dataset

With respect to the full dataset experiments, we found that both augmentation meth-

ods, Mixup and SpecAugment, contribute significantly to improving the performance

of the network, and achieve comparable gains with the same number of augmented

samples. This suggests that both methods are effective in increasing the diversity of

a dataset under the proposed scenario, but do not provide any additional features to

justify using one over the other. Moreover, substantial gains were already achieved

with a moderate amount of augmented data. Mixup achieved a precision of 90.7%

and a recall of 90.8%, while SpecAugment achieved a precision of 90.1% and a recall of

91.3%” compared to the baseline metrics of 89.0% and 85.9% for recall and precision

respectively. Particularly in regards to the precision, adding a data augmentation

step improved the model performance without compromising its recall. On the other

hand, further inflating the size of the training set did not bring significant benefits to
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justify the increased training time.

In general, based on the improved performance obtained by diversifying the train-

ing set, we argue that more complex data augmentation techniques such as genera-

tive methods based on DL models [88, 99] have the potential to significantly diversify

the training set further improving the performance of a DNN. By generating new

synthetic samples drawn from the dataset distribution these methods offer a way to

unlock additional information from the dataset, which cannot easily be unlocked with

traditional augmentation methods such as the ones used here. For instance, while

the Mixup method can generate new audio samples by combining two waveforms,

these new samples are generated in a very specific manner that does explore the full

sample space as the Mixup algorithm does not modify the temporal position of a

NARW upcall. Deep generative models however can learn to produce new samples

with upcalls at any possible temporal position or frequency range naturally observed

in the original dataset, expanding the effects of augmentation.

Finally, an important observation can be made that augmentation in general

caused the DNN model to underfit the training data. This can be observed from

the training curves displayed in Figure 4.6, where our original overfitting problem

(indicated by the baseline curves) turned into an underfitting problem. In fact, we

find that the loss obtained on the training set when augmenting with the Mixup

method was even higher than the loss on the test set. This implies that this aug-

mented training set is harder for the model to solve than the data contained in the

test set.

There are several benefits to this. The first obvious one, is that the DNN was able

to benefit from the increased data diversity by generalizing better to new unseen data.

Second, in contrast to the usual problem of finding ways to deal with overfitting,

underfitting can be more easily addressed by increasing the model complexity, for

example by using deeper and wider networks, or by training for longer [108]. This

has the potential to further increase the model‘s ability to generalize to unseen data.

To verify this potential, we conducted an additional experiment by training our same

DNN on the 20000 samples mixup augmented dataset for 100 additional epochs (200

epochs in total). We observe that the model trained for 200 epochs was able to

lower the loss from 0.14 at 100 epochs to 0.12 at 200 epochs in the training set, with
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Figure 4.6: Training (straight lines) and test (dashed lines) loss curves of the model
when trained on the base original training set (black lines), and on the augmented
training set with Mixup (blue lines) and SpecAugment (orange lines) for 100 epochs.

no changes to the test set performance. This, in turn, implies that the model got

better at classifying the harder dataset by training longer, however these gains did

not translate into improved classification performance on the test set.

4.5.2 Undersampled Dataset

Concerning the undersampled dataset experiments, data augmentation greatly im-

proved the performance of a model in a scenario where there was insufficient amounts

of data to train a DNN. For instance, with 800 original samples (less than a third

of the full original dataset) and 6000 augmented samples, the model achieved 89.3%

precision and 82.3% recall with SpecAugment and 90.5% precision and 82.9% recall

with Mixup whereas it only achieved 81.9% precision and 71.5% recall when trained

only on the 800 original samples. Furthermore, we found that the DNN performed

poorly under severe lack of data as 100% recall and 50% precision means that every

test sample was being classified as positive. With data augmentation, even though

the results remain considerably lower than the full baseline’s, there has been a large

improvement in providing a helpful classification.

Also, it was observed that access to more original data was crucial in lowering the

standard deviation and it is evident that augmented data is not a perfect replacement

for real data. For instance, the standard deviation obtained with 400 original samples
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was almost always larger than the standard deviation obtained with 800 or 1000

samples, in all levels of augmentation. However, although the standard deviation for

both precision and recall was often lower in the augmented set when compared to the

unaugmented ones, access to more original data plays a larger factor in reducing the

standard deviation on the performance metrics. Since both augmentation methods

used in this study only transform or combine the available data, and we controlled

other sources of variance such as initial training seed, the high standard deviation

implies that they heavily depend on the initial draw of samples when building the

undersampled set. That is, depending on the initial draw, the feature space present

in the training set may not be sufficiently diverse for the model to properly learn,

and the data augmentation methods studied will only be able to expand the existing

feature space. On the other hand, the low standard deviation displayed on the full

training set and its augmented versions shows that the feature space contained in the

full training set is more diverse and the data augmentation techniques are able to

capitalize on this diversity.



Chapter 5

Transfer Learning for PAM

The contents of this section were based on our work published in: Padovese, B.,

Frazao, F., Kirsebom, O. S., Evers, C., Beslin, W. A. M., Theriault, J., & Matwin,

S. (2023). Adapting Deep Learning Models to New Acoustic Environments - A Case

Study on the North Atlantic Right Whale Upcall. Ecological Informatics. p. 102169.

[107]

In this chapter, we investigate adapting DL models trained to detect NARW

upcalls in one acoustic environment to a new acoustic environment. As established

previously, marine soundscapes are characterized by a vast diversity in environmental

conditions, making it difficult to develop a universally applicable model that can

effectively process data from different PAM systems, even if the task, such as detecting

NARW vocalizations, remains the same. These systems may differ in their deployment

locations, depths, and types, and consequently, the collected data may vary in terms of

transient sounds or noise sources, ambient sounds, sound propagation characteristics,

and hardware-induced system self-noise.

TL offers a promising approach to address these challenges by leveraging knowl-

edge acquired in one or more source domains and applying it to a different target

domain. Typically, the source model has been trained on vast amounts of data, al-

lowing the network’s layers to learn features that are useful for the given task. Ideally,

some of these features would be generic enough to be shared across tasks, making TL

an efficient way to transfer the knowledge learned in the source domain during the

training process of a new model for the target domain. In this way, even small target

datasets can benefit from the robust representations learned previously, and the target

data only needs to adapt the new model to the new environment. In this context, it

is noteworthy that only the source model and target dataset are necessary to initiate

the TL process, which significantly enhances usability in cases where the source data

is unavailable.

48
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In this thesis, we have access to both large datasets with a few thousands of sam-

ples (the GOM dataset) and substantially smaller ones (the EMB dataset), which

can represent the diverse range of data availability scenarios in underwater acous-

tic research. For instance, we can consider the GOM dataset as a source domain,

where a DL model is trained on a large annotated dataset representing one acoustic

environment. On the other hand, the EMB dataset can represents a target domain,

which corresponds to a different acoustic environment to which we aim to adapt the

model. By employing TL, we adapt the trained model to the target environment using

substantially fewer annotated data than was initially required for training, offering

insight into the practical application of TL for the proposed task of detecting marine

mammals in different underwater environments with limit ted annotated data.

5.1 Materials and Methods

5.1.1 Datasets

This phase relies on all three datasets outlined in Section 3.2, namely the GOM,

GSL, and EMB. Every subset of data from these datasets was employed. During this

phase, the first four days of the GOM dataset were designated for training while the

remaining three days were used for validation. A temporal split was also applied to

the GSL data, reserving 85% for training and 15% for validation. These splits follow

the protocol described in [44] for the GOM dataset and in Kirsebom et al. [65] and

Section 4.1 for the GSL dataset. The validation data were used for confirming that

model training had converged without overfitting. The first year of the EMB dataset

(EMB 2015) was used for model adaptation while the second year (EMB 2016) was

used for model testing. This split allowed us to adapt and test a model in a new

acoustic environment while not having any temporal overlap between the data used

for model adaptation and the data used for testing. For constructing the test set,

100 audio files were extracted from the EMB 2016 dataset and subjected to a full

manual review by an expert to identify all NARW upcalls. The files have a combined

duration of over 18 hours and span all 10 months of the monitoring effort. Of the

100 files that were extracted, 75 files were randomly selected from those that were

flagged by the LFDCS algorithm as containing at least one true upcall, while 25 files
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were selected at random from the remaining audio files that were not flagged by the

LFDCS algorithm as containing an upcall. Table 5.1.1 provides an overview of the

NARW upcalls distribution across each dataset and respective split.

We note that this process of testing the performance of the model on continuous

data, as opposed to simply extracting segments and creating a test dataset as done in

Chapter 4 provides a more realistic assessment of the performance of a model on real

data. This is because the conventional method of testing on selected segments can be

constrained by a limited variety of background environments, which may be chosen

randomly, hand-picked, or flagged by another detection algorithm. Moreover, in real-

world settings, marine mammal vocalizations, such as those of NARWs, are extremely

sparse occurrences, and the composition of test sets often fails to represent the true

ratio between background noise and vocalizations. In such cases, the performance

demonstrated by the classifier in these test sets may not be representative of its

performance on full-length recordings from the target environment. On the other

hand, by evaluating a detector and classifier on full-length data, we can provide a

much more realistic measure of detector performance in real-world scenarios.

Dataset Total Training Validation Adaptation Testing
GOM 9,063 6,357 2,706 - -
GSL 4331 3,715 616 - -

EMB 2015 232 - - 232 -
EMB 2016 504 - - - 504

Table 5.1: Total number of annotated NARW upcalls in each dataset as well as the
number of upcalls reserved for the NARW detector’s training, validation, adaptation
and testing. A dash indicates that a particular dataset was not used for either train-
ing, validation, adaptation or testing. For a detailed description of the datasets, refer
to Section 3.2.

5.1.2 Data Preparation

To generate the spectrograms and construct the training and adaptation datasets,

we employed the methodology for extracting positive and negative samples and the

spectrogram computation steps outlined in Section 3.3. For the EMB 2015 dataset

only, due to the limited amount of upcall annotations available for TL, multiple 3-

second segments were extracted from each annotation by shifting the spectrogram
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window by steps of 0.5 seconds forward and backward in time with respect to the

midpoint of the upcall. Each upcall sample is represented N ≥ 1 times in the training

set, but the value of N is not the same for all samples, as only spectrogram views

that included at least 50% of the upcall were extracted. In this way, instead of

having a single view that is usually centralized in the midpoint of the upcall in

time, we produced additional views where the vocalization is slightly shifted in either

direction. In addition to increasing the size of the dataset, the translated spectrogram

views encourage the network to learn a more generalized and translation-invariant

representation of the upcall. The resulting number of positive and negative samples

extracted from each dataset are shown in Table 5.1.2. For the EMB 2016 testing

dataset, no segments were extracted as our evaluation approach involved testing on

the complete continuous data.

Dataset Training Adaptation
Total Postive Negative Total Positive Negative

GOM 12,714 6,357 6,357 - - -
GSL 6,952 3,715 3,237 - - -

EMB 2015 - - - 7,403 1,392 6,011

Table 5.2: Number of positive and negative samples used for training and adapting
the NARW upcall detector. For details on how the positive and negative samples
were extracted see Section 3.3. Note that the number of positive samples extracted
from the EMB 2015 dataset was inflated by extracting multiple, time-shifted views
of the same upcall.

5.1.3 Neural Network Architecture

In addition to the ResNet-18 architecture described in Section 3.4, we employed

another commonly used CNN architecture to classify NARW ucpcalls, namely the

VGG-19 [131] which was implemented with batch normalization [57]. This specific

architecture begins with an initial convolutional layer with 64 filters, followed by 4 sets

of convolutional blocks. Each set contains a varying number of convolutional layers

with 3x3 kernels, and the depth of the network increases by doubling the number of

filters after each block. In this implementation, the first and second blocks have 2

convolutional layers each, the third block has 3 convolutional layers, and the fourth

and final block has 8 convolutional layers, for a total of 16 layers. Each convolutional
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layer is accompanied by batch normalization and employs ReLUs [96] as the activation

function. Between the blocks, max-pooling layers are employed. After the final set of

convolutional blocks, the network utilizes a final batch normalization [57] layer and

global average pooling [78]. The convolutional layers are then followed by 2 dense

layers. At the end, as with the ResNet-18, a fully connected layer with a softmax

function produces a score for each of the two possible classifications (upcall present

or absent). These scores, ranging from 0 to 1, represent the network’s confidence in

each classification, and their sum equals 1.

5.1.4 NARW Detection Tool

As DL algorithms are increasingly being used in marine bioacoustics, there is a grow-

ing need for ready-to-use tools that allow researchers to apply and adapt DL models

to their own data as well as integrate them with various software. In light of this,

the Python tool we created provides a high-level interface for developing DL-based

detectors through a command-line interface (CLI). By providing concise options for

performing common tasks required during the detector development stage, our tool

allows researchers to design and adopt DL methods for the detection and classification

of NARW vocalizations. Additionally, the tool adopts a standard output format that

makes it simpler for researchers to transition their work to a finalized model that is

open to share, use, and adapt.

The tool is organized into sub-modules, serving users with varying needs, who have

a high-level understanding of ML and DL concepts without requiring any program-

ming skills. These sub-modules can be incorporated into the detector development

workflow on an as-needed basis. Users with more advanced programming knowledge

can also integrate the modules into external applications.

5.1.5 LFDCS Performance

To set a performance benchmark for comparison with the DNNs trained in this phase,

we initially evaluated the LFDCS detector, which was first used in [32] to generate

preliminary annotations. It is worth recalling that the annotations from [32] only en-

compass the validated detections produced by the LFDCS algorithm. To our knowl-

edge, a full manual analysis has not been previously carried out on the Emerald
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Basin recordings. For performance metric calculations, we assembled a test dataset

consisting of 75 files containing at least one verified true upcall, as detailed in Sec-

tion 5.1.1, and an additional 25 files that were initially flagged by the LFDCS detector

as containing a NARW upcall but were later verified as false positives by an expert.

Performance evaluation metrics, including precision, recall, and FPR per hour, were

calculated with respect to the positive class, as defined in Section 3.5. This step

enables a direct comparison between our methodology and a traditional detection

algorithm still widely used for the automated classification of NARW vocalizations

[60, 32].

We found that the LFDCS model achieved a precision of 0.52 and a recall of 0.41.

Across all 100 test files, it generated 140 false positives, resulting in an FPR per hour

of 7.56 over 18.5 hours of recordings. It should be noted that the composition of our

test dataset is skewed towards true positives, as 75% of the files were initially flagged

by the LFDCS detector for containing genuine upcalls, while the remaining 25% were

files identified as false positives. This is, however, acceptable in the present study as

the aim of this step is to provide a performance benchmark against which to compare

our deep learning model. A comparison with the methods implemented in this phase

can be seen in Section 5.2.

5.1.6 Experimental Setup

We conducted three experiments in order to evaluate the effectiveness of model adap-

tation through TL. For all three experiments, the models were evaluated on the

EMB 2016 data. This dataset was reserved for testing purposes only and was not

used for training or TL. Similarly to phase one, all experiments were conducted on a

workstation with a NVIDIA TITAN V GPU with 12 GB of memory using the NARW

detection tool developed as part of this work.

For the first experiment, we trained the two DNN architectures described in Sec-

tions 3.4 and 5.1.3 on the GOM and GSL datasets with a batch size of 64 samples

and learning rate of 0.001 for 40 epochs using the ADAM [64] optimization algorithm.

We determined that 40 epochs were enough for the optimization to converge with-

out overfitting. In the second experiment, we used the EMB 2015 dataset to adapt
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the models from the first experiment to the EMB acoustic environment. When fine-

tuning the models to the new data, we decreased the learning rate by a factor of 10 to

0.0001 and reduced the number of training epochs to 20. The reduced learning rate

and number of training epochs reflects the fine-tuning process of TL. Finally, in the

third experiment, to demonstrate that the EMB 2015 data are insufficient to produce

a useful detector without model adaptation, we established a baseline performance

by training the two DNN architectures on the EMB 2015 dataset only.

Samples were classified as ‘positive’ if the positive-class score computed by the

model exceeded a certain threshold value, and were classified as ‘negative’ other-

wise. Model evaluation was conducted by computing the precision, recall and FPR

with respect to the positive class. For more details regarding the metrics, refeer to

Section 3.5.

In addition to the performance metrics described above, we selected the ResNet

model to display the embeddings produced by the model before and after model

adaptation. The embeddings are a low-dimensional representation of the data, and

were generated by extracting the output of the last feature extraction layer of the

network. The output is a collection of features produced by the network that are

then reduced to two dimensions with the t-SNE algorithm [138]. When plotted in

a 2-d space, similar data points appear near one another, ideally forming distinct

clusters that correspond to each class. This approach allows us to better visualize if

the features learned by the DNN have strong discriminatory power between the two

classes.

5.2 Results

In Table 5.2, we present a comparative summary of each model’s performance in terms

of precision recall and FPR per hour at a fixed detection threshold of 0.5 for easier

comparison with the LFDCS detector. Overall, both DL models, before and after

TL, outperformed the LFDCS detector in terms of both recall and precision with the

ResNet model after TL achieving the highest recall and precision at 0.87 and 0.85,

respectively. Conversely, the baseline models, trained on limited data, exhibited high

FPRs per hour of up to 85 for the baseline VGG model and 53 for the baseline ResNet

model. In contrast, the LFDCS detector, while achieving moderate levels of recall
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and precision, maintained a more balanced performance with fewer than ∼ 8 FP per

hour.

Model Precision Recall FPR (h)
LFDCS 0.52 0.41 7.56

Baseline - VGG 0.2 0.79 85
Baseline - ResNet 0.28 0.78 53
VGG - Before TL 0.71 0.57 6.32

ResNet - Before TL 0.80 0.69 4.4
VGG - After TL 0.58 0.84 16.3

ResNet - After TL 0.85 0.87 4

Table 5.3: Precision, recall and FPR per hour of each model’s performance at a fixed
detection threshold of 0.5.

Figures 5.1 and 5.2 summarize the performance of the various models on the

EMB 2016 test set. In Figure 5.1 we show precision against recall, while in Figure 5.2

we show FPR against recall. The colors blue and orange are used to distinguish the

two different architectures used (i.e., ResNet-18 and VGG-19) and the green color

indicates the LFDCS algorithm. Dotted curves show the baseline performance of the

model trained exclusively on the EMB 2015 dataset. Finally, dashed and solid curves

show the performance of the models trained on the GOM and GSL datasets before

and after adaptation, respectively.

At a fixed recall of 0.41, the LFDCS detector achieved a similar performance to

that of the baseline models, reaching a precision of 0.52. This corresponded to an

FPR per hour of ∼ 7.5, which is lower than the VGG model after TL, albeit at the

cost of lower recall. For context, the VGG model was capable of achieving a recall of

up to 0.9 while maintaining an FPR of approximately 10. We note that the ResNet

models both before and after TL achieved a better performance than the LFDCS

detector both in terms of precision and recall at all detection thresholds.

After adaptation, both the VGG and ResNet models outperformed their source

model on the EMB 2016 recordings at high recall levels. Both models showed a large

improvement in recall, with the recall of the ResNet model improving from 0.65 to

∼ 0.90 for a precision of 0.85, and the recall of the VGG model improving from 0.74

to ∼ 0.86 for a precision of 0.60. Overall, the ResNet model after adaption had the

highest recall (∼ 0.95) with the lowest FPR of below 9 per hour out of all the models.
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The performance of the baseline models trained only on the EMB 2015 data were

substantially inferior to the models trained on the GOM and GSL datasets, both

before and after adaptation. While the baseline model had a recall comparable to

that of the models trained on the GOM and GSL datasets without adaptation, it

produced a large number of false positives, leading to a low precision for any given

recall and a high FPR.

Figure 5.1: Precision vs. recall on the EMB 2016 test set for the various models
investigated in this study. Results obtained with the ResNet-18 architecture are
shown in blue while results obtained with VGG-19 are shown in orange. Dotted
curves show the baseline performance of the models trained only on the EMB 2015
dataset while dashed and solid curves show the performance of the models trained
on the GOM and GSL datasets before and after adaptation, respectively. The green
star denotes the LFDCS detector performance.

In general, model adapation improved the recall without significantly worsening

neither the precision nor the FPR. The VGG model showed a constant precision of ∼
0.6 for recalls below ∼ 0.9, with the FPR increasing considerably only when the recall

approached 1. The ResNet model displayed a precision above 0.75 (corresponding to

a FPR of less than 9 per hour) for any given recall. At a recall of ∼ 0.81, the ResNet

model achieved the lowest FPR of only 3, corresponding to a precision of ∼ 0.87.
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Figure 5.2: Precision vs FPR on the EMB 2016 test set for the various models inves-
tigated in this study. Results obtained with the ResNet-18 architecture are shown in
blue while results obtained with VGG-19 are shown in orange. Dotted curves show
the baseline performance of the models trained only on the EMB 2015 dataset while
dashed and solid curves show the performance of the models trained on the GOM
and GSL datasets before and after adaptation, respectively. The green star denotes
the LFDCS detector performance.

Figure 5.3 further reinforces our findings where we display the two-dimensional

embeddings of the ResNet model predictions on the EMB 2016 data before (top), and

after (bottom) the adaptation procedure. While the positive and negative classes

already form two distinct clusters before the adaptation step, the clusters become

more distinct after adapting the model to the EMB acoustic environment through TL.

We note that this picture is consistent with the reasonable classification performance

obtained already before the adaptation step and the improvement observed upon

applying TL.

We used the Python tool that we developed to carry out the three experiments

described in this study. The tool is organized into 5 sub-modules, which allow the

user to work through 5 major steps required for developing a DL detector for under-

water bioacoustics. These steps are: 1) creating training and test datasets from raw
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Figure 5.3: Two-dimensional t-SNE embeddings of the predictions of the ResNet
on the EMB 2016 data before (top) and after (bottom) model adaptation. The ‘x’
symbol represents positive samples while the ‘o’ symbol represents negative samples.
To produce the embeddings we extracted the features produced by the last feature
extraction layer of the network and reduced their dimension with the t-SNE algorithm.

acoustic data using different audio representations (i.e., spectrograms, cepstrogram,

etc.); 2) training a DL model to detect and classify underwater acoustic signals; 3)

evaluating the model on fully-annotated test datasets and reporting standard perfor-

mance metrics such as precision, recall and FPR; 4) running the model on a set of

audio files; and 5) adapting the model to a new underwater acoustic environment.

Each sub-module also includes several options, such as the ability to define a detec-

tion threshold in sub-module 4. The tool is provided as an open-source package in a

GitLab repository1 and includes relevant documentation, instructions and examples.

1GitLab repository: https://git-dev.cs.dal.ca/meridian/NARW_detection_tool

https://git-dev.cs.dal.ca/meridian/NARW_detection_tool
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5.3 Discussion

The quality of DL models is dependent on the availability of large quantities of anno-

tated data. In this work, given limited number of annotated upcalls in the EMB 2015

dataset, the ability to leverage the knowledge learned from the considerably larger

GSL and GOM datasets through model adaptation allowed a DL model to be used in

a scenario where it would have otherwise performed poorly. This is evidenced by the

performance of the baseline models trained only on the EMB 2015 data, which were

not able to generalize well to unseen samples from the same acoustic environment. In

contrast, the performance of the source models trained on the larger GOM and GSL

datasets was already an improvement over the baseline models before model adapta-

tion, even without access to data from the EMB testing environment. This indicates

that the features learned from the source environments already formed a reasonably

robust representation of the positive and negative classes in the testing environment.

By adapting the source models to the testing environment, we were able to verify

that the adapted models had a substantial improvement in performance. At a FPR

below ∼ 5 per hour, the ResNet model retrieved ∼ 85% of the upcalls, improving

from ∼ 70%, while at ∼ 11 FPR, the VGG network retrieved ∼ 87% of the upcalls,

up from ∼ 70%.

The distinct division between the positive and negative classes in the adapted

ResNet model 5.3, suggests that the features learned by the DNN have strong dis-

criminatory power between the two classes. In other words, the DNN has learned

distinct representations for each class even before the classification layers. This find-

ing is significant as it enables the use of these representations as input for clustering

methods and other post-processing techniques. In this context, we highlight the

works by [103] that cluster the features learned by an autoencoder (a DL method)

to distinguish between fish and whale calls in coral reefs, and [9] that adopt a fully

DL-based unsupervised feature learning approach to cluster and distinguish between

killer whale (Orcinus orca) call types.

When comparing the DL models to a traditional detection algorithm like the

LFDCS detector, it is evident that the DL models, both before and after TL, out-

performed the LFDCS detector across various metrics. Notably, even the models

before TL surpassed the performance of the LFDCS detector. This suggests that the
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features learned by the source models—trained on extensive datasets—were highly

effective at generalizing to the target task. Conversely, the limitations of DL-based

approaches become apparent when we contrast the LFDCS detector’s performance

with that of the baseline models, which were trained under data-limited conditions.

Although these baseline models achieved higher overall recalls, these gains were offset

by a significant decrease in precision and a marked rise in the FPR per hour. This

indicates that the models were biased toward classifying the majority of samples as

positive. In contrast, the LFDCS detector maintained a much higher level of preci-

sion while capturing slightly less than half of the upcalls, providing a more balanced

performance which can be beneficial in a real-world context.

Higher rates of false positives can substantially increase the amount of time an-

alysts must spend manually validating detector outputs. Therefore, a lower FPR is

often desirable, even if it results in a lower recall. A higher recall, however, may

be prioritized in situations where near real-time detection is required, such as when

monitoring a species for conservation efforts. While assigning an exact value to a

desirable precision and recall can be challenging due to factors such as the analysis

objective, and the target location and species, we can illustrate the cost of false pos-

itives in an analysis with the following example: Consider a one-month monitoring

effort with one recorder, totaling 744 hours. Employing the ResNet model presented

in this work, which generates an average of 5 false positives per hour, would result

in approximately 3,740 false positives requiring validation. As the monitoring dura-

tion and number of recorders increases, the number of false positives to be validated

will also rise. In this context, Shiu et al. [127] defines a useful detector as one that

produces fewer than an average of 20 false positives per hour of recording. Similarly,

both Simard et al. [130] and Kirsebom et al. [65] tuned their detectors to prioritize

higher precision over recall, with recall levels reaching as low as 62%.

In our work, the best model, ResNet, displayed substantially higher recall after

model adaptation without losing any precision, which indicates that the model was

able to generalize well to the new acoustic environment. In addition, we examined the

false positives from this model and found that the majority of them were signals that

were similarly shaped like an upcall. This suggests that the model is able to accurately
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detect the characteristics of an upcall against the background environment, but strug-

gles against similar shaped signals originating from other sources. Fig. 5.4 displays

spectrograms of the model’s classifications, illustrating both correct (true positives)

and incorrect (false positives) detections. In this context, humpback whales, in par-

ticular, produce vocalizations that are acoustically similar to NARW vocalizations

and have been reported to trigger large numbers of false positives [26, 32]. Addition-

ally, humpback whales are often more vocally active than right whales [35, 32]. This

elevated vocal activity could result in a higher number of false positives when the

objective is to detect NARW calls, thereby complicating the detection efforts further.

Another challenge in developing detectors capable of differentiating between the

upcall vocalizations of right whales and humpback whales is the scarcity of anno-

tated data that covers both species from a single geographical location. Typically,

annotation efforts within a specific region or data collection effort focus on a singular

species or type of vocalization, resulting in datasets that include annotations for one

species but omit others. Consequently, when DL-based models are trained to dis-

tinguish between the two species using these incomplete datasets, they often end up

learning to discriminate based on the background noise characteristics unique to each

dataset’s environment, rather than learning accurate representations of each type of

vocalization. While several works have proposed multi-species classifiers that include

both humpback and right whale classes [136], only a few studies [32] focus on the spe-

cific challenge of developing a robust architecture capable of effectively distinguishing

between the vocalizations of these two species. For instance Durette-Motin et al.

[32] employ prior knowledge that NARW upcalls tend to occur irregularly, whereas

humpback sounds are often repetitive and may be associated with songs, particu-

larly from fall to spring [142], to help distinguish both species vocalizations. They

use this knowledge to automatically discard automated NARW detections that occur

within a 24-hour period of detected humpback whale presence, provided that no other

characteristics identifying the sound as NARW are found. Such solutions however,

often demands highly specialized expertise and can be difficult to implement. These

limitations highlights the importance of expanding datasets to include vocalizations

from other species in order to build more robust detectors.

Another important limitation of the current work is that all recordings used in this
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study were collected North of the Gulf of Maine in NARW feeding or migration areas.

Future research should assess how the methods presented in this study perform on

data collected from different environments and time periods, such as NARW calving

grounds off the southeast coast of the U.S.

Figure 5.4: Spectrograms samples illustrating the model’s classification performance
on NARW upcalls. a) The first row displays four true positive examples where the
model successfully detects and classifies upcalls. b) The second row presents four false
positive examples, showcasing instances where the model misclassifies other acoustic
signals or noise as upcalls. Panel titles indicate the models confidence in the detection.

The use of a CLI tool for creating DL-based acoustic detectors and classifiers

facilitates the adoption of the methodology described in this study as well as allows

users to compare and replicate the results. In its current form, the tool is agnostic

to vocalization types and species, to the audio representation used (e.g., spectrogram

or cepstogram) and to the type of CNN architecture chosen (e.g., VGG or ResNet),

but still makes certain assumptions about the model, most importantly that it is a

binary detector (i.e., only two classes). Another assumption made by the tool include
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it being compatible with CNN architectures only, but not accepting sequence models

such as RNNs. These assumptions limit the range of possible applications and DL-

approaches to marine mammal acoustic detection but are limitations we intend to

address in the future.



Chapter 6

Synthetic NARW Upcalls for Model Training

As established in previous chapters, obtaining large quantities of annotated vocaliza-

tions for training a DNN to detect and classify marine mammals is a costly and time

consuming endeavor. In most situations, there is insufficient training data even after

an initial annotation effort due to the sparse occurrence of signals of interest in the

data. While the data augmentation techniques presented in Chapter 4 can greatly

increase the performance of models in a context of data scarcity, they are also limited

by the availability of sufficient annotated samples to apply the transformations to.

In this thesis, we explore mimicking NARW calls by generating synthetic signals

that are acoustically similar to real upcalls. The motivation behind this approach is

to train a DNN that is capable of achieving reasonable detection performance without

feeding it any real vocalization. By synthesizing calls artificially one can augment a

dataset that has yet to be analysed and reduce the need of having annotated data

for training DNNs. In this way, researches have the option of validating the model’s

detections without the need for manually reviewing the recordings in search of vo-

calizations. To generate realistic upcalls, acoustic propagation modelling was used

to transmit the synthetic signals through a virtual environment and simulate how

the signals would behave in the recording environment as they propagate through

the water. This approach enables modelling different underwater environments and

multiple scenarios for the same environment, greatly expanding the size and diversity

of a training dataset [12]. Finally, to make the synthetic upcalls even more realistic,

we embed them in real background samples extracted from the environment. During

this process, we scale the amplitude of the synthetic upcall relative to the ambient

noise background to produce embedded calls with varying SNRs. This is important

because a SNR mismatch between a sample containing an synthetic upcall embedded

in the real ambient noise background, compared to a real upcall in the ambient noise

background, can significantly impact the detection performance of a DNN trained on

64
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synthetic data when applied to real data. Therefore, by achieving similar SNR levels

as those found in real upcalls samples, we ensure that the synthetic upcall samples

more closely resemble natural upcalls allowing the DNN to learn to detect them more

accurately.

By combining synthetic calls, acoustic propagation modeling, and environment

embedding, a wide range of upcall shapes and characteristics can be generated. This

process results in a diverse dataset, providing an increased variability for training

a DNN to detect and classify real upcalls, and subsequently saving valuable time

that would otherwise be spent on analyzing the data. Another advantage of this

approach is that researchers have complete control over the modelling parameters

and can quickly fine tune any variable to reflect a specific need. A model trained on

this data is therefore already tailored to the specific vocalization and environment

of interest. Additionally, while the methodology was proposed to produce a training

dataset without any annotations, it can be equally applied as a data augmentation

step to an already existing dataset.

In this chapter, we experiment with training a DNN to detect NARW in the Gulf

of Saint Lawrence using a training dataset produced with synthetic NARW upcalls

propagated through a virtual environment representing the Gulf. We verify whether

this DNN can be used effectively as a detector, extracting a high number of true

detections while producing a low number of false detections. To our knowledge, this is

the first work that combines both generation of synthetic calls with sound propagation

modelling to produce a training dataset for DL-based detection and classification of

marine mammals.

6.1 Materials and Methods

6.1.1 Datasets

To evaluate the effects of using synthetic data in a controlled setting, this chapter relies

only on the GSL dataset described in Section 3.2. The GSL dataset was chosen for this

stage of the research due to its well-documented data collection protocol [65] and the

comprehensive description of the Gulf of St. Lawrence’s acoustic properties in several

works [80, 4]. These factors enable a precise definition of the parameters for modeling
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the acoustic propagation of synthetic signals within the virtual environment. In order

to isolate the recording environment to a specific setting and recording equipment,

only a subset of this dataset, the data collected through the bottom deployments, was

used. We recall that the bottom deployments were moored approximately 5 m above

the seafloor and were split into multiple 1 kHz 3-seconds long clips (GSL B), and 50,

30-minute long recordings sampled at 32 kHz (GSL B*) amounting to 25 hours of

continuous data. Both subsets were fully annotated for NARW upcalls. The GSL B

dataset contained 3,888 clips, of which 1,514 were negative samples and 2,374 were

positive samples. Unlike in Chapter 4, this dataset was not divided into training and

validation sets. For further details on the annotations and data collection process,

refer to Section 3.2.

In this study, the 30-minute recordings were utilized for testing the DNN on con-

tinuous data and as a source of negatives for synthetic upcall generation and training.

Specifically, this dataset served to simulate a scenario where no annotations are avail-

able as is typical in real-world situations. In this scenario, it is still possible to

leverage randomly extracted segments of background noise for both synthetic gener-

ation and composing the negatives of a training sample. In this simulation, the DNN

trained on synthetic data is then employed to detect any upcalls within the dataset.

Meanwhile, the clips dataset was used to establish the baseline performance and for

adapting a DNN that was initially trained on synthetic data, allowing us to observe

the improvement in performance as we incrementally introduce real data.

6.1.2 Data Preparation

In this chapter, we adhere to the same spectrogram computation process outlined

in Section 3.3. To create the synthetic dataset, for the positive set, we generate N

synthetic samples, where the value of N is determined in the experimental protocol

outlined in Section 6.1.7. The negative samples are acquired by randomly extracting

3-second segments from the 30-minute recordings dataset, with the number of back-

ground samples extracted equal to N . This process follows the same methodology

described in Section 3.3.

To create a balanced dataset of the GSL B clips dataset, we aimed to include an

equal number of positive and negative samples. As there were initially 1,514 negative
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samples, we supplemented this count by randomly extracting 860 additional 3-second

segments from the 30-minute recordings dataset while avoiding the upcall annotations

to match the 2,374 positive samples. This resulted in a total of 2,374 negative samples

and an overall dataset comprising 4,748 samples. Table 6.1.2 displays the partitioning

of real and synthetic data for both the synthetic dataset and the GSL B clips dataset.

Dataset Synthetic Positives Real Positives Real Negatives
Synthetic N - N

GSL B Clips - 2,374 2,374

Table 6.1: Number of training samples in the two datasets, GSL B clips and syn-
thethic dataset, utilized in this thesis, showcasing the distribution of synthetic pos-
itives, real positives, and real negatives within each dataset. For details on how the
synthetic samples were generated, see Sections 6.1.3, 6.1.4, 6.1.5 and 6.1.6.

6.1.3 Artificial Generation of Synthetic Upcalls

As previously stated, NARW upcalls were synthetically generated to compose a train-

ing dataset for training a DNN. The first step in generating synthetic calls of marine

mammals is understanding their acoustic properties. We recall that the NARW upcall

is a stereotyped low-frequency upsweep (typical frequency range 100 – 300 Hz) that

lasts approximately one second (Section 3.1). Figure 6.1 presents various spectrogram

representations illustrating the diverse shapes that NARW upcalls can exhibit. While

this definition of a typical NARW upcall is often cited in the literature [65, 127, 40], it

is natural to find considerable variance in the duration, frequency range, and pattern

of upcalls. Furthermore, external factors such as transmission loss and interference

from anthropogenic, biogenic, and environmental sources can further distort the sig-

nal, resulting in a wide variety of similar yet distinct upcalls both acoustically and

visually through spectrograms. For instance, all of the upcalls displayed in Figure 6.1

were recorded at some distance from the vocalizing whale. As a result, the calls may

have been significantly modified by propagation effects en-route from the whale to

the hydrophone. Therefore, the variation we observe in these upcalls is a combination

of intrinsic variation as well as propagation variation.
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Figure 6.1: A collection of nine spectrograms displaying the diverse shapes and pat-
terns of NARW upcalls, showcasing the natural variability in their acoustic properties.

In an ideal scenario, synthetically generated upcalls would be indistinguishable

from natural upcalls, however, due to the complex nature of NARW upcalls and the

various external factors that can impact their acoustic properties, it is impossible for

an algorithm to anticipate all possible variations when generating synthetic upcalls.

To establish a known starting point, we generated “clean” synthetic signals that have

not been subjected to any kind interference or propagation effect. This provided us

with a basis for experimentation with propagation effects, which will be discussed in

the next section. By starting from a “clean” signal, we were able to more accurately
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control the effects of propagation and better evaluate their impact on the performance

of the DNN.

The algorithm to generate the “clean” synthetic signals was based on two factors,

the literature definition described in this section and visual analysis of spectrograms

of high SNR upcall samples drawn from the datasbase. In this thesis, the synthetic

upcall is a sine wave that changes its frequency between fstart and fend in T seconds

to achieve an upsweep pattern. Motivated by the goal that these synthetic upcalls

should have similar variations in the duration, frequency range, and pattern of natural

upcalls, we developed the following policy to synthesize the upcall:

1. To generate a waveform that is D seconds long, a duration T between [Tstart, Tend]

is first randomly selected for the synthetic signal. Then, a starting time P for

the upcall is randomly chosen within the interval [0, D − T/2]. Note, that the

upper interval limit of P allows for the creation of a synthetic upcall that is

only half present in the generated waveform. This helps the DNN to learn a

representation of the upcall in cases where it is only partially present in the

spectrogram view, improving the robustness of the model.

2. The frequency upsweep pattern is generated by linear interpolation of four time-

frequency points (t1, f1), ..., (t4, f4), where t1 = P , t2 = P + Tτ1, t3 = P + Tτ2,

and t4 = P + T . The values of f1, .., f4, τ1 and τ2 are randomly selected from

user-defined intervals. The linear interpolation is used to create a function to

determine the frequency f of the signal at any time point t using the equation,

f = f(t) (6.1)

3. The phase of the signal is then given by,

ϕ = 2π

∫︂
f(t)dt (6.2)

where dt is the time step between two consecutive samples. Finally, the syn-

thetic signal S can be generated with,

S = A sinϕ (6.3)
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where A is the amplitude.

To ensure consistency between the synthetic and real data used in this thesis, all

synthetic samples were generated with a sampling rate of 1000 Hz. The parameters

for the policy used in this thesis are summarized in Table 6.1.3.

Parameter Value
D 3

Tstart 0.8
Tend 1.2
f1 [80..105]
f2 [115..135]
f3 [160..195]
f4 [230..290]
τ1 [0.25,0.45]
τ2 [0.6,0.8]

Table 6.2: User defined parameters used in this thesis to generate the synthetic
upcalls.

While the goal of generating synthetic signals was to produce signals that closely

resembled natural upcalls, the parameter values were not extensively explored to

find an optimal combination. For instance, one possible approach to further enhance

the realism of synthetic signals could involve experimenting with time-dependent

modulation of the amplitude, where A varies slowly over time. However, this idea was

considered beyond the scope of this work and could be explored in future research.

Instead, the focus was on using the synthetic upcall samples to train a DNN to

detect real upcalls. Therefore, some synthetic signals may appear slightly unnatural,

but they are still suitable for DNN training. In fact, these quasi-random deviations

are desirable for DNN training because they help the network learn a more general

representation of the upcall [65]. In Figure 6.2, we present four distinct examples of

synthetic upcall variations generated using the proposed algorithm.

6.1.4 Acoustic Propagating Modelling

As established in the literature review, underwater environmental conditions can

significantly impact how sound propagates through the water and, consequently,
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Figure 6.2: A collection of 4 spectrograms displaying different shapes for the synthetic
upcalls achieved by the proposed algorithm. For details on how the synthetic NARW
upcall samples were generated, see Section 6.1.3

how a detector and classifier will perform under varying conditions. Each underwa-

ter environment possesses unique characteristics, such as temperature, salinity and

bathymetry, which play a crucial role in shaping the acoustic environment. Moreover,

these environments are subject to various influencing factors, including underwater

currents, different sources of transient sounds/noise, geological features, and differ-

ent ambient sounds. Even neighboring locations can experience significant variations

in propagation conditions. This variability poses a substantial challenge to a DNN

ability to generalize and adapt to different underwater settings.

In this thesis, we employ acoustic propagation modeling to simulate the trans-

mission of “clean” synthetic upcalls within the target environment. These upcalls

represent signals that have not been affected by any propagation-related distortions.

This approach is motivated by the results obtained in Chapter 5, which highlighted
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the importance of adapting a DNN to the target underwater environment for de-

tecting NARW upcalls. By propagating the synthetic signals, we provide the DNN

with valuable information concerning the acoustic environment, rather than merely

focusing on the properties of the upcalls themselves. Figure 6.3 presents a synthetic

NARW upcall propagated through different virtual underwater environments. This

figure illustrates the complex interaction of the upcall with various environmental

factors, such as water depth, seafloor composition, and sound speed profiles, which

ultimately shape the characteristics of the received signal.

Figure 6.3: A side-by-side comparison of synthetic NARW upcalls before and after
acoustic propagation modelling through various simulated underwater environments.
The spectrograms on the left displays the synthetic upcalls propagated through a
sandy bottom at a depth of 70 m while those on the right corresponds to synthetic
upcalls propagated through a gravel seafloor at a depth of 120 m. The top, middle,
and bottom rows represent propagation distances of 2, 500 m, 7, 500 m, and 10, 000
m, respectively. Details on the acoustic propagation modelling can be found in Sec-
tion 6.1.4. White noise has been added to the background to simulate environmental
noise.
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The propagation modeling conducted in this thesis also assumes an unperturbed

environment, devoid of influencing factors caused by underwater currents or abrupt

changes in the acoustic properties of the environment caused by temporary external

factors. Although a comprehensive modeling of the Gulf of St. Lawrence’s acoustic

conditions would be an interesting research subject, the main goal of this chapter is

to utilize synthetic data for training a DNN without access to annotations, and not to

create the best possible acoustic propagation modelling for the Gulf of St. Lawrence.

This thesis utilized the Kadlu1 Python package implementation of sound propa-

gation, which is based on the methods described by Jensen et al. [58]. The Kadlu

package uses a parabolic equation (PE) solver (Chapter 6 of Jensen et al., refer to the

Kadlu technical note in Appendix A for more details) to compute the transmission

loss as a function of frequency, and from this computation, the response function in

the time domain is derived through Fourier transform (Section 8.2 in Jensen et al.)

through the Kadlu-echo package implementation2. Finally, this response function is

convolved with the synthetic signal to simulate the various propagation effects in the

underwater environment. These effects include reverberations and echoes, which are

caused by reflections off the water’s surface and the seafloor, as well as refraction due

to variations in sound speed with depth. Listing 6.1 provides the Python code used for

generating the response functions. Propagation modelling is performed on the syn-

thetic upcalls based on the recording site characteristics. Water depth and receiver

depth data were obtained from the dataset description provided in Section 3.2 and in

Kirsebom et al. [65]. While a comprehensive mapping of the Gulf of St. Lawrence’s

bathymetry should be considered for studies focused on a more in-depth analysis of

the propagation effects, we simplify the process by using the reported depth values

of the deployments for the dataset.

1 from echo import echo

2

3 water depth = [75 , 85 , 95 , 105 , 115 , 125 ] # Def in ing the bathymetry

va lue s

4 s ea f l oo r name = [ ’ sand ’ , ’ g r ave l ’ ] # Def in ing the ly tho l ogy data

5

6 # load ing the Sound speed p r o f i l e

1The Kadlu package is hosted at: https://git-dev.cs.dal.ca/meridian/kadlu
2The Kadlu-echo package is hosted at: https://git-dev.cs.dal.ca/meridian/kadlu_echo

https://git-dev.cs.dal.ca/meridian/kadlu
https://git-dev.cs.dal.ca/meridian/kadlu_echo
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7 mat = sc ipy . i o . loadmat ( ”Rho SV over depth ext 2019 −09−19 12 NS 1 .mat” )

8

9 # Converting the ssp to the format r equ i r ed by the response f unc t i on s

10 ssp = (mat [ ’SV ’ ] , mat [ ’ depth ’ ] )

11 c = ssp [ 0 ] . f l a t t e n ( )

12 z = ssp [ 1 ] . f l a t t e n ( )

13 ssp = ( c , z )

14

15 f o r f l o o r in sea f l oo r name :

16 s e a f l o o r = echo . s e a f l o o r d i c t [ f l o o r ] # Ret r i ev ing ly tho l ogy data

17 f o r depth in water depth :

18 # Def in ing the source depth

19 source depth = np . l i n s p a c e (5 , depth−5, 6 , dtype=in t )

20

21 # Compute Frequency Response

22 mag , phase , axes = echo . compute f r eq re sponse ( load bathymetry=

depth ,

23 s e a f l o o r=s e a f l o o r , ssp=ssp , source depth=source depth ,

r e c e i v e r d ep th=depth−5,

24 r e c e i v e r d i s t a n c e =[500 , 1000 , 2500 , 5000 , 7500 , 10000 ] ,

freq max=in t ( s r /2) ,

25 p l o t f r e q =[200 ] , p l o t d i r=’ . ’ )

26

27 # Save f requency Response

28 f i l ename = ’ f r e q r e s p on s e ’ + s t r ( f l o o r ) + ’ ’ + s t r ( depth ) + ’ .

csv ’

29 echo . s a v e f r e q r e s p on s e ( ’ . / r e s pon s e f un c t i on s / ’ + f i l ename , mag ,

phase , axes )

30 f r eq , mag , phase , tag = echo . l o ad f r e q r e s p on s e ( ’ . /

r e s pon s e f un c t i on s / ’ + f i l ename )

31

32 # Derive the re sponse func t i on in time from teh frequency

response

33 re sponse = [ ]

34 f o r idx , in enumerate (mag) :

35 time , re sp = echo . f r eq2t ime ( f r e q=freq , mag=mag [ idx ] , phase=

phase [ idx ] , window len=durat ion )

36 re sponse . append ( resp )

37
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38 # Save the time response to convolve with the s i g n a l

39 f i l ename = ’ t ime r e spons e ’ + s t r ( f l o o r ) + ’ ’ + s t r ( depth )

+ ’ . csv ’

40 echo . s ave t ime r e spons e ( ’ . / r e s pon s e f un c t i on s / ’ + f i l ename ,

time , re sponse )

Listing 6.1: The code computes frequency and time response functions for underwater

acoustic signals across various water depths and seafloor types, using a given sound

speed profile. Results are saved in ’.csv’ files.

Hydrophones for this dataset were deployed at depths ranging from approximately

∼ 75 m to ∼ 125 m and positioned about ∼ 5 m above the seafloor. Bearing this in

mind, we varied the water depth value from 75 m to 125 m and the receiver depth

value from 70 m to 120 m in increments of 10 to encompass the deployment depth

range. For the horizontal distance between the source (a vocalizing NARW) and the

recorder, six distance values were selected, ranging from 500 m to 10000 m. The source

depth were selected as 6 equally spaced values between 5 m and the receiver depth.

Lithology data for the seafloor were extracted from Loring and Nota (1973) [80] and

transformed into acoustic properties using the approximations presented in Table 1.3

of Jensen et al. (2011) [58]. Two seafloor compositions were considered: a sandy

seafloor with a sound speed of 1650 m/s, a density of 1.9 g/cm3, and an attenuation

of 0.8 dB/λp; and a gravel bottom with a sound speed of 1800 m/s, a density of

2.0 g/cm3, and an attenuation of 0.6 dB/λp. Finally, the sound speed profile was

computed using the Intergovernmental Oceanographic Commission standard TEOS-

10 [87]. Since the water-column properties from the deployments was unavailable,

we utilized measurements collected during a separate glider deployment in the Gulf

of St. Lawrence in 2019, between September and October. Although employing

multiple sound speed profiles throughout the year would offer a more comprehensive

representation of the Gulf’s acoustic properties, using a single profile for propagating

the synthetic data serves as an acceptable approximation for this task. The sound

speed profile used in this thesis can be visualized in Figure 6.4. All model parameters

used for the acoustic propagation modelling are summarized in Table 6.1.4.

It is important to highlight that initially, we set the horizontal distance between

the vocalizing NARW and the recorder to range from 50 m to 1,000 m. However,

by extending this propagation distance to 10,000 m—a value well within the typical
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vocalization range of a NARW—we observed significant improvements in the perfor-

mance of the resulting model trained on this data. Two potential explanations can

be offered for this enhancement. First, the additional propagation distance generated

synthetic samples that more closely resembled natural upcalls, thereby improving

the model’s ability to detect them. Second, the increased range of distance values

contributed to greater diversity and intrinsic variability in the synthetic dataset, at-

tributes that generally contribute to the efficacy of DL models.

Figure 6.4: Sound speed profile used to calculate the transmission loss for the acoustic
propagation modelling of the synthetic signals.



77

As illustrated in Figure 6.4, the sound speed profile exhibits a variation of approx-

imately 40 m/s within the depths of interest. This represents a significant change,

particularly within such a small depth range, and when compared to other similar

studies, such as the sound speed profiles presented in Figures 4.5 and 4.7 in Binder

[12]. This further underscores the challenge in accurately characterizing the target

environment. However, it is yet to be determined whether such variations in sound

speed have a substantial impact on the performance of a DNN compared to using

a constant value, or if there are other contributing factors that prove to be more

influential.

Parameter Value
Water Depth [75, 85, 95, 105, 115, 125]

Receiver Depth [70, 80, 90, 100, 110, 120]
Horizontal Distance [500, 1000, 2500, 5000, 7500, 10000]

Source Depth [5..Receiver Depth] (6 equally spaced values)
Seafloor Composition (Sandy) Sandy, Gravel

Sound Speed Profile Figure 6.4

Table 6.3: Parameters employed for the acoustic propagation modeling utilized in
this study, including water depth, receiver depth, horizontal distance, source depth,
seafloor composition, and sound speed profile.

6.1.5 Embedding Into Ambient Noise

While the steps described thus far can create synthetic samples of NARW vocaliza-

tions and propagate them through a virtual environment representing the Gulf of

St. Lawrence, they still lack the contextual information present in the background

environment of real samples. This contextual information, such as various sources

of transient sounds/noise and different ambient sounds, can help a DNN distinguish

between natural NARW upcalls and the environmental soundscape. To address this,

we embed the synthetic samples in real background samples randomly extracted from

the database. The resulting sample will contain both the synthetic upcall information

and the information from the soundscape, providing the DNN with a more realistic

and complex training dataset.

This approach can be easily applied to any type of synthetic vocalization, as we

do not need to verify if the real background segment extracted from the environment
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contains a real vocalization. Due to the sparse nature of marine mammal vocaliza-

tions, we can safely assume it does not. While in theory, this process could end up

embedding a synthetic signal with a real vocalization, the odds are so low that it can

be safely disregarded, at least for the context of training a DNN for the detection and

classification of marine mammals.

To embed the synthetic signal, we employ the mixup augmentation technique

described in Section 4.3.2, which involves blending the synthetic signal with a back-

ground segment using a weighted average. It is worth highlighting that we are super-

imposing the waveforms, not the spectrograms. This process not only combines the

synthetic signal with a background segment but also introduces a level of variability

into the resulting sample, further enhancing the robustness of the DNN’s learning

process. Figure 6.5 displays a synthetic NARW upcall embedded in a randomly sam-

pled background segment extracted from the GSL continuous dataset, illustrating

how the mixup algorithm effectively incorporates the synthetic vocalization into the

environmental soundscape while preserving the characteristics of both components.

The resulting composite signal aids the DNN to better generalize and adapt to various

acoustic conditions, ultimately improving its performance in detecting and classifying

marine mammal vocalizations.

When embedding the synthetic upcall in the background segment, it is important

to consider difference in SNR between the embedded synthetic samples relative to the

ambient background noise and the natural upcalls relative to the background. If the

embedded sample has an excessively high SNR, it can introduce artifacts from the

spectrogram computation of the synthetic signal generation into the embedded spec-

trogram visualization, as seen in Figure 6.5. Moreover, the DNN may learn to search

for this high SNR pattern, incorrectly classifying natural upcall samples as negative.

Conversely, if the embedded sample has too low an SNR, the synthetic signal fea-

tures may be overwhelmed by the background noise, rendering it indistinguishable.

In Figure 6.6, we compare the embedded synthetic upcall sample from Figure 6.5 to

a natural upcall sample. We can observe that the artifacts in the embedded synthetic

sample caused by spectral leakage are not present in the natural upcall. Addition-

ally, we can observe that the natural upcall exhibits a lower intensity and seamlessly

integrates with the background environment. It is worth noting that spectral leakage
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Figure 6.5: A spectrogram showcasing a synthetic NARW upcall embedded into a
randomly sampled background segment extracted from the GSL continuous dataset
using the mixup augmentation technique. Details on the embedding process can be
seen in Section 6.1.5

(side-lobes) can be addressed using various windowing functions; however, to main-

tain consistency with the spectrogram computation performed throughout this work,

artifacts are addressed by adjusting the SNR of the embedded synthetic upcalls.

6.1.6 SNR Adjustment

To adjust the SNR of an embedded sample to resemble natural segments, we ma-

nipulate the mixing weights α and β of the mixup method when incorporating the

synthetic upcall into the background environment. Our goal is to determine appropri-

ate α and β values that ensure the synthetic signal remains audible and distinguish-

able within the background segment while maintaining a similar SNR to the target

dataset. Given a synthetic signal S and a real background segment B an embedded

sample x can be constructed by:

x = αB + βS (6.4)

To find an appropriate β weight, we first compute the standard deviation of each

recording in the target dataset and use the mean value σr as a reference. This
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Figure 6.6: A comparison of an embedded synthetic upcall sample (left) and a natural
upcall sample (right) from the GSL dataset. The figure illustrates the differences in
intensity in the synthetic upcall before SNR adjustment. The natural upcall seam-
lessly integrates with the background environment, highlighting the importance of
proper SNR adjustment for synthetic upcalls to ensure realistic training data for the
DNN.

computation is performed on the waveforms and not the spectrograms. We also

calculate the standard deviation of each synthetically generated upcall and derive a

mean value σs. We can then determine β as the scaling factor between σs and σr,

adjusted by a random value. Thus, we have:

β =
σs

σr

+ h (6.5)

where h is a random value within the range H = [0.0,−0.07]. Empirically, we found

that adjusting β to cover a wider range of values generated a more realistic looking

range of signals, varying from strong to barely distinguishable from the background

environment. The range H can be adapted to create a more suitable set of mixing

weights that properly target an specific dataset’s unique properties, such as the over-

all noise level. By tuning the range H accordingly, we can ensure that the embedded

synthetic signals better resemble the natural upcalls in the target dataset, resulting

in a more effective training process for the DNN. With β determined, we can assign

α as 1 − β. Balancing α and β in this manner allows the DNN to learn to detect

upcalls amidst the same level of noise present in real-world scenarios. Figure 6.7
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displays an embedded synthetic upcall after applying the mixing weights. The in-

tensity of the signal now closely resembles that of a natural upcall, and in addition,

any artifact from the spectrogram computation of the synthetic upcall is effectively

masked. It is worth noting that, in theory, the upcall SNR relative to the background

should be correlated with the propagation distance, with calls becoming fainter as

the hydrophone is further away from the whale. However, we opted for a simpler

approach to adjust the SNR, as we believed it would be sufficient for generating use-

ful training data. Furthermore, the variability in sound source levels and ambient

noise levels means that the correlation between received level and distance won’t be

entirely precise. Another limitation is the way β is calculated: it is designed to match

the SNR of the entire dataset as a whole rather than accounting for the variability

in SNR across individual samples. As a result, since we are using a range of values

to approximate the generations to the dataset’s average SNR, some synthetic calls

may be anomalously low or high in relation to the background noise compared to real

samples. However, it is worth noting that these slightly unnatural generations could

actually be beneficial for training a DNN as they encourage the network to learn a

more generalized representation of the data space.

To validate that our approach produces embedded signals with a SNR comparable

to those in the GSL dataset, we compute the SNR of the embedded synthetic upcalls

and compare them to the SNR of real upcalls found in the dataset. It is important to

note, however, that this computation is not a requirement for applying the method-

ology, especially in real-world scenarios where real upcall annotations may not be

available. This comparison serves primarily to demonstrate the effectiveness of our

technique in generating synthetic signals with similar SNR to the real upcalls in the

dataset.

Various methods exist for calculating SNR, ranging from complex, accurate ap-

proaches to simpler ones that yield rough approximations for each sample. For ex-

ample, Binder et al. [14] computes the SNR of denoised spectrograms through:

SNR = 10 log10(
σ2
s+n

σ2
n

) (6.6)

where σ2
s+n is the combined signal and noise variance, and σ2

n is the noise variance.

Given that in their work, each spectrogram spans a couple of seconds, this formula
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Figure 6.7: A spectrogram showcasing a synthetic NARW upcall embedded into a
randomly sampled background segment extracted from the GSL continuous dataset
using the mixup augmentation technique. Here, the mixing weights were applied to
seamlessly blend the synthetic upcall with the background noise, creating a more
realistic representation. For details on the embedding process, refer to Section 6.1.5
and Section 6.1.6

provides a useful approximation. Spectrograms with high SNRs are subsequently

selected for further analysis, particularly for studying the impact of applying propa-

gation models.

In this thesis, we adopt a more sophisticated method to estimate the SNR value of

each sample, whether positive or negative. This approach follows a heuristic algorithm

outlined in [65]. The procedure consists of the following steps:

1. Denoising the Spectrogram: A denoised spectrogram Xd was generated by

first subtracting the median value of each time slice to minimize broadband,

impulsive noise. Next, the median value of each frequency slice was subtracted

to eliminate tonal noise.

2. Locating the Upcall Mid-Point: The mid-point of the upcall is identified

by sliding a one-second window across Xd and finding the maximum pixel value

in time within the frequency range of 80–200 Hz as given by:
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sumt(maxf (Xd)) + sumf (maxt(Xd)) (6.7)

where t and f denote the time and frequency axes, respectively.

3. Creating a Trace: A trace is generated by connecting the pixels in Xd that

have the maximum value within each time slice.

4. Computing Median Value Along Trace: The median value of the origi-

nal spectrogram X is calculated along this trace. To accommodate the finite

“width” of the upcall, three pixels immediately above and below the trace were

also included.

5. Final SNR Estimation: The median values of X in the 0.5-second adja-

cent windows are computed for the frequency interval of 80–200 Hz and then

subtracted from the original value.

Before adjustment, the average SNR of the synthetic dataset was 33.91 dB with

a range spanning from −10.37 dB to 67.14 dB. In contrast, the average SNR of

the real upcalls was 10.14 dB, with a range extending from −0.68 dB to 27.85 dB.

After adjusting the synthetic samples, their average SNR value became closer to the

real upcalls, reaching 19.7 dB, and spanning a range from 2.71 dB to 39.88 dB. In

Section 6.2, we evaluate and compare the performance of models trained on a dataset

where synthetic signals were embedded but not adjusted in terms of their SNR, and

a dataset where synthetic signals were embedded and adjusted. It is important to

clarify that the objective is not to perfectly match the SNR between synthetic and

real upcalls. Instead, the aim is to verify that our methodology generates synthetic

signals whose SNR characteristics are not exaggeratedly different from those of real

upcalls.

6.1.7 Experimental Protocol

In this section, we present a series of experiments designed to evaluate the performance

of our proposed methodology for generating synthetic NARW upcall datasets and

subsequently training a DNN on this data for the classification and detection of real
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NARW upcalls. We utilized the ResNet-18 architecture described in Section 3.4

for all experiments. A batch size of 128 samples and a learning rate of 0.001 were

employed using the ADAM optimization algorithm. For all experiments, the models

were evaluated on the 30-minutes recordings of the GSL dataset. All experiments

were conducted on a workstation with a NVIDIA TITAN V GPU with 12 GB of

memory using the NARW detection tool described in Section 5.1.4 for the training

and testing. For all experiments, we used a batch size of 128 samples and learning

rate of 0.001 for 20 epochs using the ADAM optimization algorithm. Empirically, we

found that the model was quickly converging when trained on the synthetic data and

a low number of training epochs was enough to evaluate performance. In particular,

we observed that the models converged more rapidly on synthetic upcalls compared

to natural upcalls for datasets of similar size.

Our goal is to assess whether the synthetic data could yield results comparable

to those obtained from real upcall samples when training a DNN for the detection

and classification of real NARW upcalls. While we expect that a model trained on

real data would still outperform a model trained only on any form of synthetic data,

we aim to evaluate the extent of this difference and whether the synthetic data can

still provide sufficient accuracy to be usable by bioacousticians. For this purpose,

we established a baseline performance by training a ResNet model on the GSL B

clips dataset, which contains real upcall samples. Next, we trained a ResNet model

on a synthetic dataset comprising synthetic upcall samples and randomly sampled

background samples. We generated N = 5000 synthetic upcall samples using the

methodology described in previous sections. For embedding the synthetic upcall

samples, random background samples were extracted from the 30-minute GSL dataset

as outlined in Section 6.1.2. An equal number of negative samples were randomly

extracted from the same dataset. In total, the ResNet was trained on 10,000 samples,

including 5,000 synthetic NARW upcalls and 5,000 real background samples. With

both the baseline performance and the performance of the model trained on synthetic

data, we assess whether the latter achieved a level of performance sufficient to be a

useful tool for bioacousticians analyzing acoustic data. By comparing the results,

we can determine the effectiveness of synthetic data in training the model and its

potential for practical application in real-world scenarios.
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To investigate the impact of SNR on the performance of trained models, we con-

duct an additional evaluation of both the baseline and synthetic models, focusing on

how they perform as a function of SNR. Specifically, we examine the effects of dis-

carding samples with SNR values below a pre-defined minimum threshold, SNRmin,

when running the models on the 30-minute GSL test dataset. This allows us to un-

derstand how variations in SNR could potentially influence the model’s accuracy and

its impact on choosing an appropriate recall and precision level.

To assess the contribution of each step in the methodology – synthetic upcall

generation, acoustic propagation modeling, embedding synthetic signals into ambient

noise, and adjusting the SNR of the embedded samples – to the overall performance

of the ResNet model, we trained 5 additional models, isolating each operation and

testing each combination. This process enabled us to examine how each component

influences the performance of a DNN trained on a synthetic database as the method-

ology increases in complexity. Table 6.4 display the all the combinations executed.

For each experiment, the same number of synthetic samples were generated and back-

ground noise was extracted, as described earlier in the text.

Model Name
Synthetic
Upcalls

Acoustic
Propagation

Embedding
SNR

Adjusting
S X

SP X X
SE X X

SPE X X X
SE-SNR X X X

SPE-SNR X X X X

Table 6.4: Combinations of methodology components utilized when training each
model. Model names indicate the components used in their training, where S repre-
sents Synthetic Upcalls, P represents Acoustic Propagation, E represents Embedding,
and SNR represents SNR Adjusting.

In addition to the experiments outlined above, we conducted a final experiment

to observe the improvement in performance as we incrementally introduced real data

into the synthetic models. To this end, we utilized the TL methodology described

in Chapter 5 to adapt a model that was initially trained only on synthetic data

with incremental amounts of real data. For the model trained on synthetic data,

we selected the SPE-SNR model and incrementally incorporated real upcall samples
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from the GSL B clips dataset. For each adaptation procedure, a new model was

generated by progressively incorporating real data samples into the training process.

Starting with an initial batch of 300 upcall samples from the GSL B clips dataset, we

increased the number of samples in increments of 200 until reaching a total of 2,374

upcall samples. At each training iteration, an equal number of negative (background)

samples were also fed to the DNN, ensuring a balanced training set. This approach

allowed us to observe the impact of gradually adding real data to the model’s training

and evaluate its effectiveness in enhancing the model’s performance.

This experiment aimed to provide insight into how this type of synthetic model

would be used in a real-world setting. The process involves using the model trained on

synthetic data to create an initial batch of real detections to be analyzed, which can

then be fed back into the model to improve its performance. This iterative approach

allows for continuous enhancement of the model’s performance as more real NARW

upcalls are detected, demonstrating the practical utility of models trained on synthetic

data for assisting ocean researchers in detecting marine mammal vocalizations as well

as highlighting the potential for ongoing adaptation and refinement.

We employ the same evaluation metrics of precision, recall, and FPR per hour

as described in Section 3.5 to assess the performance of the models. To account for

variability due to random initializations, we repeat the training processes 10 times

with different initial network weights and biases. The results are then averaged to

establish the mean performance.

6.2 Results

Figure 6.8 and Figure 6.9 summarize the performance of the SPE-SNR model on

the GSL 30-minutes recordings test dataset. In Figure 6.8 we show precision against

recall, while in Figure 6.9 we display the FPR against recall. The dashed lines indicate

the baseline performance while the solid lines indicate the performance of the SPE-

SNR model that was trained on data generated with all the steps outlined in the

previous sections.

For recall levels below ∼ 0.83, the ResNet-18 model trained on synthetic data

outperforms the baseline model, maintaining a precision greater than 0.80 with a

standard deviation of ∼ 4%. On the other hand, for recall values above ∼ 0.83, the
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Figure 6.8: Precision vs. recall on the GSL B 30-minutes full-length recordings.
Results obtained with the SPE-SNR model are shown in blue while results obtained
with the baseline model are shown in black. The dashed lines also indicate the baseline
model’s performance. The confidence bands denote the range within one standard
deviation of the mean.

SPE-SNR model experiences a sharp drop in precision, to 0.35, while retrieving 93%

of the calls. This decline is also accompanied by an increase in the standard deviation,

as evidenced by the expanded shaded blue region in the plot. In contrast, the baseline

model, which was trained on real data from the GSL clips dataset, sustains a higher

performance, achieving a precision of ∼ 0.5 at similar recall levels.

A similar pattern can be observed int the FPR per hour for most levels of recall.

For recall levels below 0.82, the SPE-SNR model trained on synthetic data generates

fewer than 10 FP per hour. Furthermore, at these recall levels, the SPE-SNR model

yields a slightly lower FPR when compared to the baseline model. Conversely, for

recall levels higher than 0.82, the baseline model demonstrates a substantially lower

FPR than the SPE-SNR model. This sharp rise in the FPR of the SPE-SNR model,

which can be attributed to its diminished precision, is evident in the accompanying

figure.

A similar pattern can be observed for the FPR per hour for most levels of recall.
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Figure 6.9: Recall vs FPR on the GSL B 30-minutes full-length recordings. Results
obtained with the SPE-SNR model are shown in blue while results obtained with
the baseline model are shown in black. The dashed lines also indicate the baseline
model’s performance. The confidence bands denote the range within one standard
deviation of the mean

The baseline model trained on real data has higher recall levels for the same FPR

when the recall is greater than 0.6. Conversely, for recall levels lower than 0.5, the

SPE-SNR model achieved fewer than 4 average false positives per hour, lower than

what the baseline achieved for any given recall.

The SPE-SNR model exhibited a much higher overall standard deviation than the

baseline model, as inferred from the confidence intervals in Figure 6.9 and Figure 6.8.

This was the case for all precision and FPR per hour values for any given recall.

This suggests that the five training iterations produced models with varying levels

of performance for both recall and precision. For instance, with a default detection

threshold of 0.5, one training iteration produced a model with a recall of ∼ 0.84 and

precision of ∼ 0.72, while another generated a model with a recall of ∼ 0.53 and

precision of ∼ 0.95. Notably, a precision of ∼ 0.95 is higher than any of the baseline

models, achieving a particularly low FPR per hour of fewer than 2.

In Figure 6.10, we evaluate the performance of the SPE-SNR and baseline models
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as functions of SNR, with all results obtained using a detection threshold of 0.5. Both

models exhibit similar trends with a gradual performance improvement in precision

and recall as the SNR threshold, SNRmin, increases. Notably, precision increases for

SNR values beyond 0, while recall rises starting from an SNR value of 5. The recall

for both models, along with the precision of the baseline model, exhibits a sharp

initial increase. This concurrent improvement in precision and recall contributes to a

decrease in the FPR per hour when increasing the SNRmin threshold. For instance,

at an SNRmin threshold of 10 dB, the SPE-SNR model identifies ∼ 85% of the upcalls

with precision ∼ 0.95 and yields fewer than 2 false positives per hour.

Figure 6.10: Precision, recall and FPR vs SNR on the GSL B 30-minutes full-length
recordings. The top sub-plot illustrates the mean recall (dashed lines) and precision
(solid lines) for both the synthetic models (orange) and the baseline models (blue).
The bottom sub-plot shows the FPR for both models. Error regions, shown in lighter
shades around each line, represent one standard deviation from the mean. The ex-
periments were tan with a detection threshold of 0.5
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In Table 6.5, we summarize the performance of various models trained with dif-

ferent combinations of methodology components, with all results obtained using a

detection threshold of 0.5. The baseline performance is also displayed for comparison.

Initially, we observe that the simpler approaches using only one or two components

(models S, SP and SE), indicated by dashes in the table, failed to distinguish real

upcalls from the background environment. These models classified all test set samples

as negatives.

Conversely, the SPE model, which incorporated synthetic upcalls, acoustic prop-

agation, and embedding but did not use SNR adjusting, was the first combination

where the trained model on synthetic data demonstrated some discrimination capa-

bilities. However, the SPE model only retrieved 3% (±0.01) of the upcalls from the

test recordings. The SE-SNR model, which incorporated synthetic upcalls, embed-

ding, and SNR adjusting without acoustic propagation, achieved the highest precision

of 0.96(±0.01) and a recall of 0.37(±0.11), resulting in a very low FPR per hour of

0.57(±0.27). The SPE-SNR model, which combined all methodology components,

achieved a precision of 0.91(±0.05) and the highest recall among synthetic models at

0.71(±0.08), yielding an FPR per hour of 3.57(±3.13). This combination of compo-

nents provided a more balanced performance compared to other models. For compar-

ison, the baseline model, trained on real data, achieved a precision of 0.73(±0.07), a

recall of 0.85(±0.06), and an FPR of 15.13(±7.30). In general, we observe that the

baseline model achieves a substantially higher recall than models trained on synthetic

data, but at the cost of lower precision.

We also investigated the effect of incrementally introducing real data into the

synthetic models through TL. These findings are presented in Figure 6.11, where

we display precision, recall, and the FPR per hour as a function of the number

of additional real samples incorporated into the model. Generally, we found that

the introduction of even a small amount of real data (600 samples) was crucial in

substantially increasing the model’s recall from ∼ 0.57 to ∼ 0.8. The addition of

more real samples did not lead to further increases in recall. This increase in recall

was accompanied by a slight increase in precision from 0.85 to 0.95 with only 300 real

upcall samples. As we introduced more real data, precision produced a downward

trend until 900 real upcall samples, at which point precision stabilized at ∼ 0.9.
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Model Name Precision Recall FPR (h)
Baseline 0.73(±0.07) 0.85(±0.06) 15.13(±7.30)

S - - -
SP - - -
SE - - -

SPE 0.85(±0.12) 0.03(±0.01) 0.20(±0.18)
SE-SNR 0.96(±0.01) 0.37(±0.11) 0.57(±0.27)

SPE-SNR 0.91(±0.05) 0.71(±0.08) 3.57(±3.13)

Table 6.5: Combinations of methodology components utilized when training each
model. Model names indicate the components used in their training, where S rep-
resents Synthetic Upcalls, P represents Acoustic Propagation, E represents Embed-
ding, and SNR represents SNR Adjusting. All results were obtained with a detection
threshold of 0.5. A dash indicates that the model was not able to produce useful re-
sults, and classified everything as negative. The standard deviation is given in the
parentheses.

Notably, the substantial increase in recall did not generate in a rise in the FPR per

hour, with the every model generating less than 5 FP per hour after model adaptation.

Moreover, we note that incorporating real data had a large impact in reducing the

standard deviation, as indicated by the confidence intervals. We observed that the

addition of 900 or more real upcall samples resulted in considerably lower standard

deviations in both precision and recall compared to the models trained solely on

synthetic data.

6.3 Discussion

Overall, the results demonstrate that the synthetic data generated by our proposed

methodology can effectively train a DNN for the classification and detection of real

NARW upcalls. This is evidenced by the performance of the SPE-SNR model, which

was able to retrieve over 70% of all the real upcalls from the test set, while producing

less than 4 FP per hour of recording. In addition, the SPE-SNR outperformed, on

average, the baseline model, which was trained on real vocalizations, when retrieving

up to ∼ 82% of the vocalizations. This finding is significant, as no annotated samples

were used to train the DNN. The success of the synthetic data-driven approach enables

analysis efforts to be conducted after an initial training phase, reducing the reliance on

time-consuming and labor-intensive manual annotation of real data. Consequently,
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Figure 6.11: Impact of incrementally introducing real positive data samples into the
synthetic models through TL. The top graph illustrates the precision and recall as
real upcall samples are progressively added, while the bottom graph depicts the FPR
per hour with the same incremental additions. Solid lines represent the performance
of each model, and dashed straight lines indicate the performance of the baseline
model. The confidence bands denote the range within one standard deviation of the
mean. An equal number of negative samples were fed to the DNN at each iteration.

this methodology can facilitate more efficient exploration of unprocessed datasets

which have not yet been annotated, as well as production of acoustic datasets for

training DNNs to detect marine mammal vocalizations.

We have also examined the FN from the SPE-SNR model and found that the

majority of the FN were signals that display very different patterns from the stereo-

typical NARW upcall on which we based our synthetic generation algorithm. This

can be seen in Figure 6.12, where we present six spectrograms of real upcall samples

extracted from the test recordings that were not detected by the SPE-SNR model

trained on synthetic data. From these examples, for instance, we observe that the
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upcalls are sometimes only partially present in the spectrogram view, with only a

small portion of their frequency range visible and often a lot shorter than the defined

one-second-long stereotypical upcall. This suggests that the synthetic models would

benefit from a more robust synthetic upcall generation process that covers a wider

range of patterns and shape variety observed in real upcall samples. Increasing the

variability of the synthetic upcall samples would also have a positive impact in reduc-

ing the standard deviation of the synthetic models. More diverse training datasets

would better represent the real-world variability in upcall patterns. With a broader

range of synthetic upcalls, the model can learn to generalize more effectively, leading

to more consistent performance across different iterations. Ultimately however, syn-

thetic upcalls can only provide an approximation of the true variability observed in

real upcalls, underscoring the importance of retraining the models once real upcall

samples are available.

Figure 6.12: A collection of six spectrograms displaying real upcall segments that
were not detected by the SPE-SNR synthetic model.
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As anticipated, the baseline model trained only on real vocalizations still demon-

strated a competitive performance when compared to any of the models trained solely

on synthetic upcalls. Additionally, the baseline model exhibited a substantially lower

standard deviation compared to the SPE-SNR model across all levels of recall. This

difference was particularly pronounced at higher recall levels, where the SPE-SNR

model displayed a sharp deacrese in overall performance. This further highlights the

importance of using real-world data in training models for the task of detecting and

classifying NARW upcalls. By pairing the synthetic models with incrementally more

real upcall samples when using model adaptation, we observed considerable improve-

ments in their performance. The addition of even a small number of real samples

substantially improved the recall up to ∼ 0.8 and reduced the standard deviation of

the models, further highlighting the importance of real data in the training process.

The increased recall was observed with a slight increase of precision as additional

real upcall samples were introduced, achieving a more balanced performance when

compared to the purely synthetic models.

We also noted a considerable reduction in the standard deviation as we added

real upcall samples. Adapting the synthetic models with real data resulted in a bet-

ter overall performance when compared to the baseline baseline. However, while the

baseline model produce a higher recall than precision (∼ 0.85 and ∼ 0.73, respec-

tively), the adapted models showed a higher precision than recall (∼ 0.87 and ∼ 0.8,

respectively). This led to a significant reduction in the FPR per hour, to less than

4 for the model trained on synthetic data combined with real-world observations. In

comparison baseline model, generated an FPR of 15 per hour. These results further

reinforce our findings and are indicative that using models trained only on synthetic

data to process large datasets and aid human annotators in identifying and anno-

tating real upcalls to subsequently produce a better model on real data, is a viable

approach.

By focusing only on upcalls with an SNR greater than 5.0, the baseline model

managed to retrieve over 90% of the NARW upcalls in the test recordings while

maintaining an average precision of ∼ 0.85 and a substantial reduction in the FPR

of around 3x. On the other hand, the SPE-SNR model did not exhibit a substantial

reduction in false positives per hour, even at elevated SNRmin thresholds. When
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the SNRmin = 10 threshold was set to zero, the SPE-SNR model achieved the best

balance between precision and recall, with values of approximately ∼ 0.95 and ∼
0.85, respectively, along with a low FPR of 2. These findings are consistent with

those in [65], which demonstrated a steady performance enhancement as the SNRmin

threshold rose. Additionally, a reduced standard deviation was observed for higher

SNR values.

Upon examining the contributions of each component in our synthetic NARW up-

call generation methodology, we found that the highest-performing synthetic models

were those that incorporated all methodological components. This indicates that an

effective approach for optimal results relies on the integration of artificially generated

synthetic upcalls, acoustic propagation modeling, embedding synthetic upcalls into

real background samples, and adjusting the SNR of the embedded synthetic upcalls.

Notably, models that combined fewer than three steps of the proposed methodol-

ogy failed to yield useful results, further emphasizing the importance of producing a

diverse array of upcall patterns with varying acoustic properties and environmental

noise conditions in order to successfully train models for detecting and classifying real

NARW upcalls.

While the proposed approach was able to effectively produce a useful NARW

upcall detector, we also identified important limitations. These include: (1) the re-

stricted variation for producing diverse marine mammal vocalization with different

properties; (2) the complexity of the acoustic propgation methodological step, which

limits usability for users without experience in the field; and (3) the dependency on

the understanding and accurate mathematical modelling of the acoustic source prop-

erties of marine mammal vocalizations. This methodology’s effectiveness is inherently

reliant on the ability to synthetic signals that are similar to real vocalizations. How-

ever, this process can be far from straightforward. While synthesizing NARW upcalls

may be comparatively simpler, vocalizations from other species, such as killer whales,

can be highly complex with significant intrinsic variation that cannot be accounted

for by propagation effects. Based on these observations, two distinct approaches can

be pursued to expand the methodology.

One approach involves delving deeper into the complexity of synthetic data gen-

eration, acoustic propagation modeling, and other advanced techniques. By refining
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and improving the synthetic marine mammal vocalization generation process, incor-

porating more accurate propagation models, and optimizing other components of the

methodology, we can produce more realistic synthetic vocalizations that approaches

what is observed in real-world settings. Consequently, a DNN trained on this data

would be better suited to generalize to real-world data.

Alternatively, a more straightforward and simplistic process can also be adopted

for generating synthetic vocalizations. This process involves training a DNN on simple

shapes that resembles the vocalization of interest. In the case of NARW upcalls, these

shapes could include half-parabola-like structures, crescent moons, or other images

that mimic an upcall’s structure. This methodology was successfully employed by Li

et al. [75], where the authors generated delphinid whistle-like structures based on

contours derived from computer vision images, then superimposed these structures

onto spectrograms. Thus, an alternative approach that emphasizes the structure of

the vocalizations, while minimizing the complexities introduced by ambient noise or

propagation effects (by using denoised spectrograms, for instance) may allow the use

of simpler, more abstract structures that resemble real vocalizations without needing

to model them in detail. The emphasis on core structural features, rather than

intricate variations or background noise, reduces the complexity of the data generation

process. The result is a more accessible methodology that capitalizes on the strengths

of DNNs to extract meaningful patterns from these simplified representations, while

still being capable of accurate marine mammal vocalization detection.



Chapter 7

Conclusion and Future Work

Passive acoustic monitoring (PAM) supported by deep leaning (DL) based detection

and classification systems plays an important role in supporting marine mammal re-

search. However, the availability of large fully annotated passive acoustic datasets

constitutes a major bottleneck in developing accurate detection and classification sys-

tems to identify marine mammals vocalizations. In this work, we presented three (DL)

approaches to overcome data scarcity: data augmentation, transfer learning (TL), and

artificial generation of synthetic vocalizations, deployed across three distinct phases.

In the first phase (Chapter 4), we developed an approach to improve the per-

formance of a deep neural network (DNN) North Altnatic right whale (NARW) up-

call classifier through the use of two data augmentation methods, SpecAugment and

Mixup. With a dataset consisting of 3,309 underwater sound clips, about half of

which contained a NARW upcall, we trained a Residual Network (ResNet) binary

classifier with and without a data augmentation step. By augmenting the training

set up to a total of 20,000 samples, we observed a significant improvement in the per-

formance of the DNN. The approach showed a performance increase from 85.9% up to

90.7% for precision and from 89.0% up to 91.3% for recall (Section 4.4). Furthermore,

data augmentation in general caused the DNN model to underfit the training data,

converting an overfitting problem into an underfitting problem. This suggests that

the proposed architecture and training procedure does not fully exploit the potential

of the augmented training set, and opens interesting possibilities such as increasing

the width and depth of the DNN architecture and increasing the number of training

epochs. In addition, to simulate a scenario of severe data scarcity, we undersampled

the original dataset and compared the performance of a DNN model before and after

data augmentation. We observed a significant improvement in precision and recall

when adding the augmented data to the training dataset in different conditions of

data scarcity.

97
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In the second phase of the research (Chapter 5), we investigated a transfer learn-

ing (TL) approach to address the problem of data scarcity in PAM and enhance a

NARW classifier’s effectiveness across different underwater acoustic environments. In

summary, we utilized TL to adapt ResNet and VGG models that were trained on

data from the Gulf of Maine and Gulf of St. Lawrence to detect NARW upcalls in

the Emerald Basin. Initial training was conducted using the data from the GOM

dataset (9,063 upcalls) and GSL dataset (4,331 upcall), while model adaptation em-

ployed the EMB 2015 dataset (232 upcalls). The models were then evaluated on the

EMB 2016 recordings (503 upcalls). Overall, we saw a substantial improvement in

detector performance after each model was adapted to the new environment, with the

ResNet model improving recall from 70% to 85% for a false positive rate of less than

5 per hour (Section 5.2). These results are encouraging as the annotated data used

for the adaptation process was considerably less than the amount originally used for

training. This allows DNNs to be used in scenarios where there would otherwise be

insufficient data to produce a useful detector. We also introduced a command-line

interface tool for developing NARW acoustic detectors and classifiers to encourage

the adoption of DL in marine mammal research.

In the third phase (Chapter 6), we explored the generation of synthetic NARW

upcall vocalizations and their integration with real acoustic properties from the under-

water environment to produce training datasets for DNNs. This approach addresses

the challenge of data scarcity when no annotated data is available for training DL

models. To evaluate our approach, we selected the GSL B* dataset, which consists of

50 continuous recordings, each 30 minutes long. We developed a methodology for syn-

thetic generation of NARW upcall that involved fours key steps. First, we artificially

generated synthetic signals with properties similar to NARW upcalls (Section 6.1.3).

Second, we transmitted these synthetic signals through a virtual environment with

similar characteristics to the Gulf of St. Lawrence environment to simulate the dis-

tortion of an upcall as it propagates through water (Section 6.1.4). Third, we em-

bedded the synthetic upcalls into real background samples randomly extracted from

the recordings, incorporating the contextual information present in the real samples’

background environment (Section 6.1.5). Lastly, we adjusted the SNR of the em-

bedded synthetic upcalls to resemble that of real upcalls (Section 6.1.6). We then
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trained and evaluated DNN classifiers on both purely synthetic and mixed datasets

that combined synthetic and real upcalls. Our findings demonstrated that while mod-

els trained exclusively on synthetic data were already as effective as those trained on

real data for detecting and classifying real NARW upcalls, their performance greatly

improved by having access to even small amounts of extra real vocalizations during

training. These findings reinforce the importance of incorporating real vocalizations

in the training process when possible. This approach enables a DNN trained on only

synthetic vocalizations to find real vocalizations, thereby producing better datasets

with each iteration.

7.1 Future Research

This Section outlines a number of potential research ideas and future work in under-

water bioacoustic classification and detection.

7.1.1 Data Augmentation based on Deep Learning

The improved performance gained by increasing the diversity of the dataset through

basic augmentation steps as done here opens up the possibility of applying more

sophisticated data augmentation methods based on deep generative methods to gen-

erate marine mammal vocalizations. While our proposed solution is well-suited to

the task of inflating the training dataset based on the distribution of already existing

samples through either geometric transformations or linear superposition, it is limited

by the type of transformations. Furthermore, SpecAugment itself is limited to only

generating spectrograms and not the waveform itself. Deep generative algorithms

however, are capable of creating new examples of the data that were not seen in the

training dataset, but could have theoretically been drawn from the original dataset

distribution. Such algorithms have been extensively explored in speech and image

related tasks but their application to underwater bioacoustics is still incipient and

are an interesting direction for future work.

Auto-Regressive Models. Generative models such as WaveNet [99] or SampleRNN

[88] for audio generation are capable of modeling raw audio, and have been used to

produce highly realistic speech examples conditioned on linguistic features. WaveNets
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and SampleRNN are auto-regressive models that generate raw audio in a sample-by-

sample manner, where each generated sample is conditioned on all previous ones.

This presents two initial advantages, the technique produces more natural sounding

output and provides full control on what kind of waveform is being generated. The

main disadvantage of auto-regressive approaches for audio generation is their inher-

ently slow inference time, which greatly limits their usability in real-time tasks such

as text-to-speech synthesis. However, animal vocalization synthesis to increment a

training dataset does not have this time constraint, which greatly expands their us-

ability.

GANs-based approaches. Generative Adversarial Networks have emerged as a

powerful and versatile tool with widespread adoption across various domains. In

computer vision, GANs have been used for unconditional image generation [62] and

video-to-video synthesis [19]. More recently, a number of works have begun to make

progress in the use of GANs on the acoustic domain [29, 71], mainly towards text-

to-speech synthesis. While audio quality has not significantly improved over the

auto-regressive approaches, GANs based architectures have shown to be several time

faster during audio generation, making them highly interesting for text-speech appli-

cations. In underwater bioacoustics, GANs have been successfully applied to generate

odontocetes vocalizations [125] and dolphin whistles [76] as discussed in Chapter 2.

Exploring the application of GANs for generating NARW upcalls presents an intrigu-

ing avenue for future research.

Neural Style Transfer. Neural Style Transfer techniques are able to manipulate

images by applying the visual style of another image while preserving the original

content. In other words these techniques are able to blend two images together where

the resulting image looks and has the content of one image but is ”painted” in the

style of the other. Recently, similar ”style” transfer techniques have begun to be

explored in the context of acoustics, in particular to voice and musical instruments.

Engel et al. [33] trained audio synthesis models built on top of the Differentiable

Digital Signal Processing (DDSP) library [33] that are capable of timbre transfer

between disparate sounds while keeping the frequency and loudness the same or even

transfer of room acoustics to new environments.



101

In general, while few attempts have been made in generating animal vocalization

with these types of methods, we believe that similar results to the augmentation

techniques displayed in this work can be expected while opening up new possibilities.

Under this perspective, a few paths for future research presents themselves. First,

given the success of GANs for similar tasks, we plan to investigate the suitability of

GANs for producing synthetic NARW upcalls. Second, inspired by computer vision’s

neural style transfer techniques and given the recent success presented by the DDPS

library in acoustic transfer, we plan on investigating the augmentation potential of

transferring marine mammal vocalizations to different underwater soundscapes and

vice-versa. Other paths worth exploring are techniques adapted from video synthesis

[140], and audio synthesis from few samples such as voice cloning [2] or few-shot

image generation [77]. Video data presents similar characteristics to acoustics such as

temporal features that could be adapted to sound generation while few-shot learning

could help address the problem of acquiring large amounts of underwater acoustic

data required to train effective generators.

The use of generative methods opens another path for using only synthetically

generated vocalizations to train a DNN. It would be interesting to compare this ap-

proach to the methodology we introduced in phase 3 for generating synthetic vocal-

izations. However, while deep generative methods show great promise, they also offer

limited control over what is generated. Therefore a validation stage of the generated

data is recommend before being added to the training set. Unsupervised clustering

techniques that could group embeddings of these generations into distinct groups for

further analysis could keep manual validation efforts to a minimum. Designing a

visual analytic interface where generated samples are grouped into high quality/low

quality is an interesting possibility. Some preliminary investigation has been done in

this direction where we employed a SampleRNN model to generate synthetic NARW

upcalls. While the model was successfully generating realistic vocalizations, most of

the synthetic samples contained only environmental noise leading to a highly skewed

negative/positive generation ratio. Although the incorporation of a validation tool

as described above could help select only high quality samples, we are looking at

exploring different generative algorithms that would give a more consistent response.
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7.1.2 Multi-Species detection and Classification

While the methodologies proposed in this study have proven effective for classifying

NARW upcalls, they hold promise for the identification of vocalizations from other

marine mammals as well. In this context, we plan to assess the methodology be

developing a multi-species classifier for other low-frequency vocalizations. This step

will also help evaluate the methodology’s capability to discriminate between vocaliza-

tions that share similarities in duration, frequency band, and shape. One significant

challenge when developing classifiers and detectors for NARW upcall detection is the

extensive vocal repertoire of humpback whales. Certain sounds produced by hump-

backs can closely resemble NARW upcalls, often leading to confusion, even among

trained bioacousticians [26, 12]. In particular, incorporating humpback whale vo-

calizations into the NARW upcall detector will be a crucial step in demonstrating

the capability of these DL-based detectors to accurately differentiate between the

vocalizations of these two species.

7.1.3 Active Learning

While data augmentation and TL can drastically reduce the required amount of

training data when developing a detection and classification system, these techniques

cannot overcome all biases present in a small dataset. For instance, when adapting a

model to a new task such as classifying blue whale calls, if there are no instances of

blue whales in the original dataset, no amount of augmentation or TL will change this

fact. The proposed approach described in Chapter 6 can be effective in bridging this

gap and creating a first batch of detections to be analysed. In these cases, however,

engaging with some annotation efforts by a human expert to validate the detections

and extract the required segments is still necessary. One can further reduce the

amount of time a human annotator would have to spend analysing the detections by

employing active learning [89].

Active Learning [116] consists in having a DL model cleverly select the data that

a human analyst is going to annotate, ensuring that the most useful samples for the

task at hand are chosen. Through this strategy, the model can achieve a higher per-

formance threshold using less data than randomly sampling. In this way, instead of

having the human annotator validate all of the detection from the synthetic models,
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we can ask the model itself to choose which of detections would be more valuable,

thereby substantially reducing the amount training data required to achieve a sat-

isfactory performance level. There are several active learning strategies that can

be employed, with the most common ones being uncertainty sampling and query-

by-committee (QBC). In uncertainty sampling [50], the model selects samples for

which it is the most uncertain about its predictions. This can be measured in several

ways, such as selecting samples with the least confidence as determined by the score

outputted by the DNN for each class, or the smallest margin between the top two

predicted class probabilities in a multi-class classification task. By annotating and

incorporating these uncertain samples into the training set, the model learns to better

handle ambiguous or borderline cases, ultimately improving its overall performance.

QBC [124] is a multimodal appraoch where each model is a committee member. These

are trained on the current annotated data. These models can be different instances of

the same model, or completely different model architectures. The committee mem-

bers then make predictions on the unlabeled samples, and samples with the highest

disagreement among the committee members are selected for annotation. The idea

behind QBC is similar to that of uncertainty sampling. We are addressing the uncer-

tainty created between the disagreement between the predictions of a diverse set of

models, each of which may capture different aspects of the data.

7.1.4 Incorporating Wider Temporal Context

The majority of studies that apply DL to underwater bioacoustics, including the

present work, use spectrogram representations views of the audio data to train detec-

tors and classifiers. However, these views are often temporally short (a few seconds

long) and fail to consider information present in a wider temporal context as would

be done by bioacousticians when analysing the data. While some approaches incor-

porate predictions in the immediate vicinity of a detection, such as Kirsebom et al.

[65] where they average classification scores on overlapping sliding windows to de-

tect NARW upcalls, it would be interesting to explore still more sophisticated DL

approaches that consider an even wider temporal context.

In this context, Recurrent Neural Networks (RNNs) [146] have been employed in

many tasks involving time-series due to their potential to capture sequential patterns
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in larger temporal contexts. While a traditional RNN architecture could achieve

similar results to what we have found in this work it would be interesting to explore

sequential models [85, 42] that combines the abstraction powers of the convolutional

layers of a CNN models with the sequential capabilities of recurrent layers. In this

architecture the raw audio would serve as input to convolutional layers that would

produce features for the recurrent layers, and could provide a better representation

of the the data than a CNN or RNN architecture alone would.

While studies like Shiu et al. [127] and Foster [37] have investigated either the

CNN or RNN approaches, and others like Ibrahim et al. [54] have provided a com-

parative analysis between the two, the exploration of architectures that combine both

CNNs and RNNs remains incipient. Notably, there is a lack of consensus on which

type architecture would be a better candidate for detecting marine mammals, or for

sound detection in general. In fact, both Shiu et al. and Ibrahim et al. reported

similar performance when using strictly a CNN or RNN architecture.

Sainath et al. [119] investigated the combination of CNNs and RNNs for voice

search tasks. Their paper introduced the CLDNN architecture, merging CNN and

Long Short-Term Memory (LSTM) components. This design utilizes CNN layers to

transform the input signal into a variant set of features. Once transformed, the data

progresses through LSTM layers for temporal modeling before being processed by

fully connected layers to produce a refined feature representation. Similarly, within

sound event detection, Çakır et al. [17] utilized a method that extracts features via

multiple convolutional layers, equipped with filters spanning both time and frequency

dimensions. These extracted features are subsequently fed as input into recurrent

layers, and their outputs are used to determine event activity probabilities through a

fully connected layer.

Building on the work of both Sainath et al. [119] and Çakır et al. [17], Madhusud-

hanan et al. [83] expanded upon the original concept within the realm of bioacoustics.

Their architecture handles a series of fixed-size spectrograms totaling 2 minutes of

audio, processed by pre-trained CNN layers. The resultant features are then used as

input for LSTM layers. This combined network showed a 17% increase in F1-score

performance for detecting fin whale calls compared to a standard CNN model. No-

tably, their work showed that the combined approach of CNN and RNN layers can
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handle even larger temporal contexts. This is particularly promising for studying

species known for their prolonged vocalizations or songs.

In terrestrial bioacoustics, Gupta et al. [47] proposed a similar approach for

predicting and analyzing acoustics of 100 bird species using spectrograms. Their

work uses CNNs for summarizing the spectral features with RNNs to capture temporal

dependencies, yielding a model with an average accuracy of 67% across all bird species.

The model employs a sliding window technique to process the spectrogram inputs

through the CNNs, which are then concatenated before being fed into the RNN. The

authors also showed various model combinations, including standalone CNNs, CNNs

with LSTM networks, Gated Recurrent Units (GRU), and Legendre Memory Units

(LMU).

A common theme across these studies is the combination of CNN’s ability to ex-

tract specific features and RNN’s capacity for modeling temporal sequences in one

classifier. The experiments listed within each work show promise that these combined

models generally perform better than standalone CNN or RNN models. This shift in

approach, from specific “snapshot” detections to broader context analysis, provides

deep neural networks with more temporal data to enhance their accuracy and sensi-

tivity in bioacoustic detection tasks, ultimately leading to more robust and reliable

analyses in complex acoustic environments.
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Širović, et al. Improve automatic detection of animal call sequences with tem-
poral context. Journal of the Royal Society Interface, 18(180):20210297, 2021.

[84] Yigit Mahmutoglu and Kadir Turk. A passive acoustic based system to locate
leak hole in underwater natural gas pipelines. Digital Signal Processing, 76:59–
65, 2018.

[85] Zelda Mariet and Vitaly Kuznetsov. Foundations of sequence-to-sequence mod-
eling for time series. In The 22nd international conference on artificial intelli-
gence and statistics, pages 408–417. PMLR, 2019.

[86] Tiago A. Marques, Len Thomas, Stephen W. Martin, David K. Mellinger, Jes-
sica A. Ward, David J. Moretti, Danielle Harris, and Peter L. Tyack. Esti-
mating animal population density using passive acoustics. Biological Reviews,
88(2):287–309, 2013.



114

[87] Trevor J McDougall and Paul M Barker. Getting started with teos-10 and the
gibbs seawater (gsw) oceanographic toolbox. Scor/Iapso WG, 127(532):1–28,
2011.

[88] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham
Jain, Jose Sotelo, Aaron Courville, and Yoshua Bengio. Samplernn: An uncon-
ditional end-to-end neural audio generation model, 2016.

[89] Kunal B Mehta, Jorge Rodriguez Saltijeral, Jesse Lopez, Abhishek Singh,
Valentina Staneva, Scott Veirs, and Val Veirs. Active listening and learning
for orca sound detection. The Journal of the Acoustical Society of America,
148(4):2728–2728, 2020.

[90] David K Mellinger. A comparison of methods for detecting right whale calls.
Canadian Acoustics, 32:55–65, 2004.

[91] Zhong Meng, Yong Zhao, Jinyu Li, and Yifan Gong. Adversarial speaker ver-
ification. In ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6216–6220. IEEE, 2019.

[92] E Mercado III, SR Green, and JN Schneider. Understanding auditory distance
estimation by humpback whales: a computational approach. Behavioural pro-
cesses, 77(2):231–242, 2008.

[93] Nathan D Merchant, Matthew J Witt, Philippe Blondel, Brendan J Godley, and
George H Smith. Assessing sound exposure from shipping in coastal waters using
a single hydrophone and automatic identification system (ais) data. Marine
pollution bulletin, 64(7):1320–1329, 2012.

[94] B Mishachandar and S Vairamuthu. Diverse ocean noise classification using
deep learning. Applied Acoustics, 181:108141, 2021.

[95] Xavier Mouy, Mohammed Bahoura, and Yvan Simard. Automatic recognition
of fin and blue whale calls for real-time monitoring in the st. lawrence. The
Journal of the Acoustical Society of America, 126(6):2918–2928, 2009.

[96] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In ICML, 2010.

[97] Juhan Nam, Keunwoo Choi, Jongpil Lee, Szu-Yu Chou, and Yi-Hsuan Yang.
Deep learning for audio-based music classification and tagging: Teaching
computers to distinguish rock from bach. IEEE signal processing magazine,
36(1):41–51, 2018.

[98] Inês Nolasco, Shubhr Singh, Veronica Morfi, Vincent Lostanlen, Ariana
Strandburg-Peshkin, Ester Vidaña-Vila, Lisa Gill, Hanna Pamula, Helen White-
head, Ivan Kiskin, et al. Learning to detect an animal sound from five examples.
Ecological Informatics, 77:102258, 2023.



115

[99] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

[100] Julie N Oswald, Jay Barlow, and Thomas F Norris. Acoustic identification of
nine delphinid species in the eastern tropical pacific ocean. Marine mammal
science, 19(1):20–037, 2003.

[101] Hui Ou, Whitlow WL Au, and Julie N Oswald. A non-spectrogram-correlation
method of automatically detecting minke whale boings. The Journal of the
Acoustical Society of America, 132(4):EL317–EL322, 2012.
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Appendix A

Acoustic Propagation Modelling

Technical aspects of how sound propagation is modelled in the Kadlu package is

presented here. The following was extracted from the package’s documentation and

is based on the “Computational Ocean Acoustics” book by Jensen et al. [58].
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1 The PE Equation

Kadlu uses a Parabolic Equation (PE) approch for solving the wave equation
(Jensen, Ch. 6). This yields solutions that are valid in the farfield (distance
from source considerable greater than wavelength) for environments that exhibit
“weak” range dependence. More specifically, Kadlu implements a numerical
solution to the PE equation introduced by Thomson and Chapman,

∂ψ

∂r
= ik0

(
n− 2 +

[
1 + k−2

0

∂2

∂z2

]1/2
)
ψ (1)

which is said to have “good wide-angled behavior for realistic ocean acoustic
environments with moderate changes in the refraction index”, n ≡ c0/c. Rear-

ranging and introducing A ≡ ik0(n−1) and B ≡ ik0[−1+(1+k−2
0

∂2

∂z2 )1/2], this
can be written in the compact form,

∂ψ

∂r
= (A+B)ψ (2)

2 Split-Step Fourier Solution

Following Jensen Eq. (6.123), we approximate the solution with,

ψ(r + ∆r) ≈ e
B
2 ∆reA∆re

B
2 ∆rψ(r) (3)

Finally, using F to denote the fourier transform z → kz and using the cor-

respondence ∂2

∂z2 → −k2
z (Jensen Eq. (6.87)), we obtain the split-step Fourier

formula,

Fψ(r + ∆r, z) ≈ UD( 1
2∆r) F UR(∆r) F−1 UD( 1

2∆r) Fψ(r, z) , (4)

where UD and UR are the diffractive and refractive propagation matrices, re-
spectively,

UD(x) = e
i
[
(k20+k2z)

1/2−k0
]
x
,

UR(x) = eik0(n−1)x (5)

1



3 Computational domain

Following Jensen Sec. 6.5.3, we implement the split-step Fourier algorithm on a
uniform grid (∆r,∆z). Following Jensen, we adopt a default grid size of,

∆z = λ/2 , ∆r = 2∆z , λ ≡ c0/f = 2π/k0 , (6)

where c0 = 1, 500 m/s is the reference sound speed in water. (The option is
provided for the user to specify a finer/coarser grid as needed.) The water
surface (z = 0) is treated as a pressure-release surface, requiring ψ(r, 0) =
0. At the bottom, we terminate the physical solution domain by an artificial
absorption layer of uniform thickness and a complex index of refraction of the
form,

n2 = n2
b + iαe−(|z|−zmax)2/D2

, (7)

where we adopt α = 1/(π log10 e) ≈ 0.733, D = (zmax −H)/3, and zmax = 4
3H.

We determine the depth at which the physical domain is terminated, H, from
the requirement that the real bottom should have a thickness of at least several
wavelengths. Thus, we take,

H = max zb + 3λ , (8)

where max zb is the maximum seafloor depth in the domain.

6.5 Solutions by FFTs 493

6.5.3 Numerical Implementation

A schematic of the solution domain is shown in Fig. 6.6. The solution is obtained on
a regular spatial grid .�r;�z/, onto which the environmental parameters .c; �; ˛/
are mapped. The marching solution algorithm requires specification of initial con-
ditions  .r0; z/ as well as boundary conditions at the sea surface .z D 0/ and at
the bottom boundary .z D zmax/. Since the issue of starting fields was treated in
Sect. 6.4, we shall here concentrate on formulating appropriate upper and lower
boundary conditions.

The free surface is traditionally treated as a pressure-release boundary requiring
 .r; 0/ D 0, which is easily implemented in the numerical solution scheme. The
lower boundary condition is more complicated. We essentially wish to terminate the
solution domain in depth .z D zmax/ by a radiation condition to simulate a bottom
continuation by a homogeneous halfspace. The usual approach is to terminate the
physical solution domain .z D H/ by an artificial absorption layer of several wave-
lengths thickness (Fig. 6.6), so as to ensure that no significant energy is reflected
from the lower boundary at z D zmax. Following Brock [33], the absorption layer is
modeled with a complex index of refraction of the form

n2 D n2
b C i˛ exp

�
�
� z � zmax

D


2
�
; (6.146)

which results in an exponentially increasing wave attenuation with depth in the ab-
sorption layer. In this expression nb D c0=cb, while the constants ˛ and D are
generally picked as ˛ D 0:01 and D D .zmax � H/=3. The thickness of the ar-
tificial absorption layer is taken to be H=3, which seems to work well in typical

r

z

H

zmax

Water
ρ, α

Bottom
ρb, αb

Physical domain

cb

Absorption layer

c(r,z)

ψ=0

ψ=0

ψ(0,z)

Δz

Δr

Fig. 6.6 Schematic of solution domain for parabolic wave equations
Figure 1: Shematic of PE solution domain (adapted from Jensen).
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4 Water-Bottom Interface

For realistic treatment of bottom effects on sound propagation, it is important to
include density changes at the water-bottom interface. We follow the approach
described in Jensen Sec. 6.5.4. The refractive index, n, is replaced with the
effective index of refraction,

ñ2 = n2 +
1

2k2
0

[
1

ρ
∇2ρ− 3

2ρ2
(∇ρ)2

]
, (9)

and the displacement potential ψ in Eqs. (1)–(4) is replaced with ψ̃ = ψ/
√
ρ.

We remove density discontinuities at the water-bottom interface by introducing
a smoothing function of the form,

ρ(z) = ρ+ 1
2 (ρb − ρ) tanhχ , (10)

where χ ≡ |z|−zbL , zb being the seafloor depth and L the distance over which the
density changes from ρ to ρb. We adopt L = π/k0 = λ/2, close to the value of
L = 2/k0 suggested by Jensen. By taking the gradient of Eq. (10), we further
obtain,

|∇ρ| =
1

2L
(ρb − ρ) sech2χ

[
1 + (∇zb)2

]1/2
, (11)

∇2ρ ≈ − 1

L2
(ρb − ρ) sech2χ tanhχ

[
1 + (∇zb)2

]
(12)

where (∇zb)2 =
(
∂zb
∂r

)2
= cos2φ

(
∂zb
∂x

)2
+ sin2φ

(
∂zb
∂y

)2
. Moreover, in the second

equation, we have neglected the curvature of the seafloor, i.e., ∇2zb ≈ 0. We
note that Kadlu assumes a single bottom layer, although it would be straight-
forward to generalize the implementation to handle several layers.

5 Volume Attenuation

We ignore volume attenuation in the water column, but include volume attenu-
ation in the bottom layer by subtracting a complex term from the sound speed,
cb. The complex term is computed as the largest, real root of the polynomial

βx2 − x+ βc2b = 0 fulfilling 0 ≤ x < cb. Here β = α
(λ)
b /(40πcb log10 e) with α

(λ)
b

being the attenuation coefficient in units of dB/λ. For typical values of α
(λ)
b ,

this leads to,

c → cb(1− iβcb) (13)

n2
b → n2

b(1 + i2βcb) (14)
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6 Starter

We use the Thomson starter field, as defined in Jensen Sec. 6.4.2.3,

ψ(0, kz) =

{
e−iπ/4

∆z (8π)
1/2 (

k2
0 − k2

z

)−1/4
sin kzzs , |kz| < k0 sin θ1

0 , |kz| ≥ k0 sin θ1

(15)

where ψ(0, kz) ≡ Fψ(0, z), while zs and θ1 are the depth and half-beamwidth
of the source, respectively, and ∆z is the vertical grid spacing. Note that the

prefactor e−iπ/4

∆z does not appear in the formula given in Jensen Sec. 6.4.2.3.
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