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Abstract 

Brain-computer interfaces (BCI) have become a burgeoning field of research as 

computers become embedded in everyday life. Electroencephalography (EEG) is the 

preferred brain measurement device used in BCIs, though research- and medical-grade 

devices are prohibitively expensive. EEGs such as the Unicorn Hybrid Black (UHB) have 

entered the market as low-cost alternatives, albeit with electrode arrays of diminished 

density. The present study aims to assess the feasibility and usability of the UHB in BCI 

research and how it can or cannot be utilized as an accessible learning tool in academic, 

commercial, and public spheres. This was done by creating a BCI using the UHB and 

UHB Python API to assess various machine learning algorithms’ classification accuracy 

of a meditation paradigms that uses self-caught experience sampling to capture mind 

wandering. Key findings suggest that the UHB is a demonstrably effective tool within 

research and academic spheres; however, its feasibility within consumer-grade BCIs may 

be limited. The machine learning classification accuracy was deemed acceptable with the 

ridge classifier emerging as the algorithm of optimal performance. 

Keywords: BCI, machine learning, EEG, meditation, mind wandering, usability testing 
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Glossary 

Term Definition 

Brain-computer interface 

a system that translates brain signals into instructions or 

commands that are subsequently interpreted by an 

external device, thereby allowing for direct 

communication between brain and computer 

Alpha waves neural oscillatory activity from the range of 8-13 Hz 

BCI illiteracy 

a phenomenon in which a non-negligible minority of 

BCI users are unable to produce detectable patterns of 

brain activity that is required from some paradigms 

Beta waves neural oscillatory activity from the range of 13-30 Hz 

Decision tree 

a supervised machine learning algorithm that 

continuously splits data based on specific rules or 

conditions 

Default mode network 
a resting state network that exhibits consistent 

deactivation during goal-directed tasks 

Delta waves neural oscillatory activity from the range of 0.1-4 Hz 

Electrocorticography 

(ECoG) 

a device that measures electrical activity in the brain 

through electrodes that are placed directly on the 

surface of the cortex 

Electroencephalogram 

(EEG) 

a device that measures neural activity through the 

placement of electrodes on the scalp that detect the 

electrical impulses generated by neurons 

Event-related potential 

(ERP) 

neural activity that temporally corresponds to a 

sensory, cognitive, or motor event describe through its 

polarity, amplitude, latency, and scalp distribution 
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Term Definition 

Extra-physiologic artifact 

artifacts in an EEG signal resulting from the external 

environment such as technical preparation problems, 

movements in the recording environment, and 

powerline noise 

Feature extraction a process that highlights pertinent signals from a signal 

Function near-infrared 

spectroscopy (fNIRS) 

a device that measures changes in the oxygenated and 

deoxygenated hemoglobin levels in the brain using 

near-infrared-range light 

Functional magnetic 

resonance imaging (fMRI) 

a device that measures brain activity by detecting 

changes in the brain associated with blood flow 

Gamma waves neural oscillatory activity from the range of 30-100 Hz 

K-fold cross-validation 
a method to evaluate a machine learning algorithm’s 

performance 

K-nearest neighbour 

a supervised machine learning algorithm that is non-

parametric and classifies new data points by choosing 

the class closest in distance to a number of predefined 

training samples 

Machine learning 

a branch of computer science concerned with enabling 

computers to "learn" without being directly 

programmed 

Meta-awareness 
the explicit awareness of the contents of one's 

consciousness 

Mind wandering 
the disengagement from active attention due to 

spontaneous thought 

Mismatch negativity 

(MMN) 

an ERP shown to be exhibited during auditory change 

detection tasks 
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Term Definition 

Multi-layer perceptron 

a supervised and neural network machine learning 

algorithm that operates by creating a network of nodes 

arranged in layers 

Multitaper power spectral 

analysis 

a feature extraction technique operating in the 

frequency domain that reflects the amount of power per 

unit volume of a random signal at a particular 

frequency 

Naïve Bayes 

a supervised machine learning algorithm that is based 

on the Bayes Theorem and is used to calculate 

conditional probabilities 

Oddball auditory protocol 

a method of eliciting mind wandering in which a 

sequence of repetitive "standard" tones is interspersed 

occasionally with "oddball" tones that differ in some 

way from the standard tones, typically in frequency 

(i.e., pitch) 

Physiologic artifact 

artifacts in an EEG signal resulting from eye 

movement, the heart, sweat, tongue movement, and 

muscular movement 

Probe-caught experience 

sampling 

a method of measuring mind wandering in which a 

random prompt or probe is presented to a participant at 

random points through a task asking whether they are 

experiencing mind wandering or not 

Self-caught experience 

sampling 

a method of measuring mind wandering in which a 

participant self-reports their conscious perception of 

mind wandering through methods such as a button 

press 

Supervised learning 
a category of machine learning classification that 

makes inferences from labelled training data 

Support vector machine 
a supervised machine learning algorithm that is often 

used for classification and regression purposes 
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Term Definition 

Theta waves neural oscillatory activity from the range of 4-8 Hz 

Unicorn Hybrid Black 

(UHB) 
a consumer-grade eight-channel wet/dry EEG 
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Chapter 1 Introduction 

 With the increasing ubiquity and embeddedness of computers in everyday life, 

many researchers of varying disciplines have endeavoured to enhance and reimagine the 

ways in which we operate and communicate with computers. One such method is to 

communicate with computers directly with one’s brain rather than relying on peripheral 

devices such as a computer mouse or keyboard. This approach, coined brain-computer 

interface (BCI), involves a system that translates brain signals into instructions or 

commands that are subsequently interpreted by an external device, thereby allowing for 

direct communication between brain and computer. Though there have been significant 

strides towards integrating BCIs into everyday life, the utility and usability of such 

systems remains an ongoing exploration. Likewise, the actual hardware used in BCIs is 

constantly evolving, thereby necessitating continuous investigation into the interplay 

between the neurophysiology and engineering on which BCIs hinge. Since the goal of 

BCI research is to redefine how we access and interact with information, the field has 

considerable potential as an information technology artifact as well as for information 

science research in general.  

1.1 Background 

 Though BCI research is considered to have been founded in the 1970s, one must 

consider research as early as the 19th century in order to understand the theoretical 

background of the field. The first neural electrical signals were recorded from animals in 

1875 by Richard Caton which led to the invention of the electroencephalogram (EEG) by 

Hans Berger in 1924. In the 1930s, the presence of alpha and beta waves were confirmed 

(Hermann et al., 2016; Kawala-Sterniuk et al., 2020; Stone & Hughes, 2013). By the 

beginning of World War II, most neuropsychiatric centres across the globe possessed an 
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EEG laboratory (Herrmann et al., 2016; Kawala-Sterniuk et al., 2020; Stone & Hughes, 

2013). After 30 years of improving and expanding upon EEG as a neural measurement 

instrument, the field of BCI was conceived in the 1970s and the term first coined by 

Jacques J. Vidal (Kawala-Sterniuk, 2021; Vidal, 1973). Even so, the first attempts to 

create a functioning BCI with humans as subjects did not occur until the 1990s and the 

field was not operationalized until 2000 by Jonathan Wolpaw (Kawala-Sterniuk, 2021).  

 Even though initial BCI research used EEG as its primary neural measurement 

device, subsequent research has used a multitude of other instruments such as: 

electrocorticography (ECoG), magnetoencephalography (MEG), functional near-infrared 

spectroscopy signals (fNIRS) and functional magnetic resonance imaging (fMRI), among 

others (Hong & Santosa, 2013; Kawala-Sterniuk, 2021). Though all instruments have 

their own benefits and drawbacks, EEG is the preferred method in BCI research due to its 

non-invasive and inexpensive nature as well as its relative portability (Hong & Santosa, 

2013; Jin, Ji, & Wenyan, 2019; Liang et al., 2020; Värbu, Muhammad, & Muhammad, 

2022; Yin et al., 2022). Even though EEG is inexpensive compared to other options, 

commercial BCIs still remain limited to the public due to their high cost. Though there 

are smaller and more cost-effective EEGs available, they vary in the size of electrode 

arrays, the type of data transfer, the signal-noise ratio, and spatio-temporal resolutions. 

Compared to their research- and medical-grade alternatives, consumer-grade, low-cost 

EEG systems are often inaccurate and have a low transfer rate (Kawala-Sterniuk et al., 

2021; Maskeliunas et al., 2016). However, with the initiative in medicine towards 

smaller, more capable, and cost-effective systems, over time, BCI devices will become 
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more inexpensive and inconspicuous. Before this can occur, issues and deficiencies with 

EEGs must be identified so that they can be improved upon. 

 The most commonly used headsets in BCI research and development are created 

by the following companies: Emotiv Inc., Ant Neuro, Cognionics, Neurosky Inc., 

OpenBCI, interaXon, g.tec, and CREmedical (Kawala-Sterniuk et al., 2021). Each 

company offers multiple devices at varying costs and varying sizes of electrode arrays. In 

addition, the devices do not perform identically in practice and some devices are more 

suited to specific tasks than others (Kawala-Sterniuk et al., 2021). These companies 

among others have developed functioning BCIs that are available for consumer purchase. 

For instance, Neurosky headsets have a library of apps that can be used with their 

headsets that offer entertainment, wellness, and utility value (Neurosky, 2023). In 

addition, Muse is an assistive meditation tool that detects mind wandering and uses audio 

cues to return focus (Muse, 2023). Recently, Apple has been approved for a patent for 

AirPods equipped with 17 active electrodes capable of measuring neural activity, 

including other biological signals (Cruise, 2023). While it is still in development, this 

suggests that a next generation of consumer-grade EEG is on the horizon. 

1.2 Purpose 

The field of BCI research, while comparatively new as a discipline, is rapidly 

developing with the advent of new technologies. While BCI technology has seen limited 

success in the consumer market, with the pace at which it is growing, in the foreseeable 

future BCI systems may soon be a popular and ubiquitous consumer item. As such, it is 

of increasing importance to evaluate not only the feasibility and efficacy of consumer-

grade EEGs in BCI systems, but also the usability and utility of both the EEGs and the 
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BCI systems themselves. There are many consumer-grade EEGs on the market, all of 

which have different features and specifications including the quality of the 

measurements they can record (resolution), the number of sensors they have (size of the 

electrode array), and how quickly they collect data (the sampling rate). Though these 

EEG systems are typically inexpensive and thereby make brain-measurement technology 

more accessible to a wider audience, the variability in the quality of the measurements 

can impact both the accuracy and reliability of the data collected. For instance, EEG 

devices providing lower resolution or smaller electrode arrays might limit the range of 

signals captured, potentially providing unclear or noisy data. Thus, it is important that the 

differences, benefits, and drawbacks of each EEG be evaluated in order to optimize the 

efficacy of the device in a particular BCI context. However, since there is no accepted 

standardized testing protocol, the quality of a signal is dependent on the paradigm and 

experimental conditions; a meditation paradigm wherein the participants are required to 

keep their eyes closed would yield fewer signal artifacts related to blinking than would an 

experiment in which participants are required to keep their eyes open, for example (Niso 

et al., 2023). 

Though there often tends to be a focus on the signal and technical specifications 

of an EEG, the usability from the experience of a user is just as important. This holds 

especially true in the context of a BCI intended for the mass market—if a consumer 

cannot figure out how to work the system nor enjoys using it, it has little viability as a 

successful product. In a study assessing the user experience of a selection of EEGs, 

Izdebski et al. (2016) report that participants rated most EEGs with an average score of 
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3.5 or lower on a 5-point Likert scale. This suggests that many of the EEGs available on 

the market could benefit from usability improvements.  

 Though it is important to test the efficacy and feasibility of the specific EEG to be 

integrated in the BCI, it is also necessary to validate the usefulness and practicality of 

BCI systems themselves. A BCI must be demonstrably reliable in the long-term, easy to 

set up, use, and maintain, and through its use benefit mood, quality of life, and 

productivity (Wolpaw, 2013). If a BCI is unable to meet these criteria, no matter how 

affordable, effective, and accurate the hardware is, there is little purpose or motivation in 

using the system. Thus, a BCI must not be designed thoughtlessly without due 

consideration to both the hardware, software, and purpose of the system. 

 One popular BCI design is an assistive meditation system, such as the previously 

discussed Muse. Neurosky also has multiple meditation apps available in its app store 

(Neurosky, 2023). This type of interface is popular not only because a meditation 

paradigm can control for signal artifacts resulting from movement and eye blinks, but 

also because a single electrode is sufficient to detect attention, thereby decreasing the 

need for larger and more complex EEG devices (van der Wal & Irrmischer, 2015). 

Furthermore, meditation has been found to enhance the efficacy of BCI system control 

(Eskandari & Erfanian, 2008; Lo, Wu, & Wu, 2004; Tan et al., 2015; Liang & Shastri, 

2018). Thus, a meditation-based BCI is an excellent choice for a BCI in the early 

consumer market, not only because of the simplicity of the hardware and paradigm, but 

also because such a system would train users for success in subsequent BCIs.  

 Likewise, a system that can detect and correct mind wandering would prove to be 

an exceptionally helpful device. Mind wandering is defined as the disengagement from 
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active attention due to spontaneous thought. Since mind wandering can negatively impact 

performance, it can be detrimental in the context of academic lectures and even 

dangerous in high-risk situations such as driving or operating heavy machinery (Lee, 

2014; Mooneyham & Schooler, 2013; Wammes et al., 2016). However, mind wandering 

can be difficult to measure without disrupting the user. One approach to measuring mind 

wandering is through the use of a probe that prompts participants intermittently to collect 

information on whether or not they are experiencing mind wandering. While this has 

been shown to effectively capture mind wandering, it comes at the cost of disrupting the 

cognitive processes of the participants (Conrad & Newman, 2019). Another approach to 

measure mind wandering is with self-caught experience sampling in which participants 

self-report whether they are experiencing mind wandering using a button press, for 

example (Rodriguez-Larios & Alaerts, 2020). Since this is not as disruptive as a probe, it 

would be a preferable method in a BCI designed with the purpose of improving attention. 

Thus, determining whether self-caught experience sampling is a sufficient measure of 

mind wandering could assist in creating more accurate BCIs in the future.  

 The purpose of the present study is to create a BCI using the Unicorn Hybrid 

Black (UHB), a relatively low-cost consumer-grade EEG, and to assess its performance, 

feasibility, and usability within the context of the system. Likewise, the utility and 

practicality of a meditation-based paradigm within the context of a BCI will be assessed. 

We will also endeavour to delineate how such a device can or cannot be utilized in 

academic, commercial, and public sectors. The main research questions to be investigated 

are as follows: 

1. Is an 8-channel EEG sufficient for the identification of mind wandering? 
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2. Does a BCI intervention enhance meditation attention? 

3. Is self-caught experience sampling sufficient for the detection of mind wandering 

in a meditation-based BCI? 

4. What are the best approaches to machine learning classification in a mind 

wandering BCI? 
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Chapter 2 Literature Review 

2.1 Measuring Neural Activity 

 As the name suggests, one of the primary components of a BCI is some sort of 

instrument that can detect and measure brain activity. The instrument most used in BCI 

research is typically EEG due to its non-invasive and inexpensive nature as well as its 

relative portability, though electrocorticography (ECoG) and more recently functional 

near-infrared spectroscopy (fNIRS) are also popular choices (Hong & Santosa, 2013; Jin, 

Ji, & Wenyan, 2019; Liang et al., 2020; Nicolas-Alonso & Gomez-Gil, 2012; Värbu, 

Muhammad, & Muhammad, 2022; Wang, Nakanishi, & Zhang, 2019; Yin et al., 2022).  

 An EEG measures neural activity through the placement of electrodes on the scalp 

that detect the electrical impulses generated by neurons. Historically, EEG has required 

that a conductive medium, typically a gel, be placed between the electrode and the scalp. 

However, advances in EEG technology have led to the development of so-called “dry” 

electrodes that do not require such a conductive medium (Cruz-Garza et al., 2017). 

Because of its placement on the scalp, EEG signals suffer from poor spatial resolution 

and a low signal-noise ratio brought on by the interference of background activity (Vaid, 

Singh, & Kaur, 2015). Additionally, due to its poor spatial resolution, EEG does not 

excel at localizing brain activity. Though there are EEGs with dense electrode arrays with 

up to 512 channels or more that are specialized at localizing activity, these devices are 

expensive and thus are not currently used outside of research contexts. That said, EEG is 

exceptionally precise when it comes to temporal measurements (Burle et al., 2015; Kim, 

Richter, & Uğurbil, 1997; Song et al., 2013; Vaid, Singh, & Kaur, 2015). This is because 

EEG measures electrical activity as opposed to other brain measurement instruments like 
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fMRI or positron emission tomography (PET) that rely on the measurement of regional 

cerebral blood flow which, while considered a correlate of neural activity, presents a 

number of compounding issues when it comes to temporal resolution (Kim, Richter, & 

Uğurbil, 1997; Roy & Sherrington, 1890). Since a BCI often must respond to inputs in 

real time, it is much more productive to have a device that is temporally precise than 

spatially precise. As such, EEG’s precise temporal resolution makes it a compelling 

method of data collection in a BCI.  

 Another neural measurement technique is ECoG which measures electrical 

activity in the brain through electrodes that are placed directly on the surface of the 

cortex. While it has increased temporal and spatial resolution and is less vulnerable to 

artifacts as compared to EEG, it requires a craniotomy to be utilized and therefore its use 

is incredibly invasive and hazardous (Nicolas-Alonso & Gomez-Gil, 2012). Successful 

BCIs created using ECoG include a system that controls a two-dimensional cursor and a 

system that classifies motor actions (Levine et al., 1999; Schalk et al., 2007). The utility 

of these BCIs as well as the incredibly invasive nature of ECoG suggests that it is an 

option better suited for people with severe motor disabilities rather than for everyday use.  

 fNIRS is another measurement technique that measures changes in the 

oxygenated and deoxygenated hemoglobin levels in the brain using near-infrared-range 

light. Like EEG, it is portable and relatively inexpensive compared to other available 

options. When compared to EEG, it is not susceptible to electromagnetic noise, but is 

more vulnerable to signal issues caused by motion. While it is more spatially precise than 

EEG, it is less temporally precise. One compelling disadvantage of fNIRS is the lack of 

standardization when it comes to data analysis (Naseer & Hong, 2015; Pinti et al., 2020). 
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Though there may certainly be a future for fNIRS in BCI research, at present there are 

very few consumer-grade devices on the market. Thus, while the primary focus of this 

study will be EEG, fNIRS should also be investigated once there are more consumer-

grade options available. 

 BCIs built using EEGs typically involve the measurement of two different forms 

of brain activity: oscillatory activity and event-related potentials (ERPs). There are five 

frequency bands that are well-established within EEG oscillation: delta (0.1-4 Hz), theta 

(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz) (Kumar & 

Bhuvaneswari, 2012; Teplan, 2002). These oscillations are associated with different 

cognitive functions depending on their location, amplitude, frequency, phase, and 

coherence (Herrmann et al., 2016; Kumar & Bhuvaneswari, 2012; Teplan, 2002). An 

ERP, on the other hand, is reflective of neural activity that temporally corresponds to a 

sensory, cognitive, or motor event and is described through its polarity, amplitude, 

latency, and scalp distribution (Handy, 2005; Kam et al., 2022; Luck, 2012). Whether or 

not a researcher chooses to measure oscillatory activity or ERPs depends largely on the 

paradigm associated with the BCI and what the system is attempting to accomplish. 

2.2 Mind Wandering 

2.2.1 Definition 

 A BCI must have a specific function or purpose to work effectively. Paradigms 

must be used to elicit a certain neural response in order to achieve a BCIs purpose. One 

commonly used paradigm in BCI research is one that detects mind wandering and alerts 

users to recover attention. Mind wandering is defined as the disengagement from active 

attention due to spontaneous thought. It is characterized by the absence of strong 
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constraints on both the contents of and transitions between mental states and is often 

defined by its absence of explicit intent (Christoff et al., 2016; Compton, Gearinger, & 

Wild, 2019; Dehais et al., 2020; Fox & Christoff, 2018). However, there is a growing 

body of research that acknowledges that there are two primary types of mind 

wandering—intentional and unintentional—and that one must be cautious not to conflate 

the two (Klesel et al., 2021; Seli et al., 2016). That said, unintentional mind wandering 

will hereafter be referred to as mind wandering, keeping in mind that the focus of this 

paper is not on intentional mind wandering. While mind wandering is considered to have 

adaptive functions in autobiographical planning and creative problem solving, it also 

poses a significant cost to performance and can be dangerous when occurring in high-risk 

situations such as driving (Fox & Beaty, 2019; Lee, 2014; Mooneyham & Schooler, 

2013; Oschinsky et al., 2019; Park et al., 2021; Smallwood & Andrews-Hanna, 2013; 

Smallwood et al., 2011). Therefore, attention-recovery BCIs could prove to be an 

important tool to implement in such high-risk situations should they reach viability in the 

consumer market.  

 Though mind wandering falls under the inattention umbrella along with effort 

withdrawal, preservation, and inattentional blindness and deafness, it is differentiated 

from other inattentional neurocognitive states in both how it is evoked and its 

manifestation. Typically, mind wandering results from both low to mid task engagement 

and low physiological arousal (Dehais et al., 2020; Lee, 2014; Park et al., 2021; 

Smallwood & Schooler, 2006). However, mind wandering can occur during more 

cognitively demanding tasks at the cost of deficits in performance (Smallwood & 

Schooler, 2006). In essence, mind wandering occupies a middle ground of constraint 
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between dreaming and creative thinking (Christoff et al., 2016). Hasenkamp et al. (2012) 

proposed a model that describes the cognitive fluctuations that occur between mind 

wandering and attentional states that consists of four intervals: mind wandering, 

awareness of mind wandering, shifting of attention, and sustained attention. This model 

was developed from the observation of meditation and provides key insights into the 

neural mechanisms associated with mind wandering, self-detection of mind wandering, 

and the return to meditation.  

2.2.2 Measurement 

 Such meditation paradigms are often used in the detection of mind wandering and 

are particularly effective in its measurement since by nature it involves the dynamic 

fluctuation between attention and mind wandering. Likewise, given perfect experimental 

conditions, meditation does not involve a visual or auditory task and thus does not require 

the discernment between on-task and mind wandering that many other paradigms require 

(Hasenkamp et al., 2012; Lutz et al., 2015). There are two methods of measuring mind 

wandering during a meditation task: self-caught experience sampling in which a 

participant presses a button when they become aware of their mind wandering, and 

probe-caught experience sampling in which participants are probed at random points 

throughout the task as to whether they are presently experiencing mind wandering 

(Rodriguez-Larios & Alaerts, 2020). The former method requires the participation of 

meta-awareness (i.e., the explicit awareness of the contents of one’s consciousness) 

whereas the latter is identified passively. Because of this, one can expect each method to 

produce different results even when performed under otherwise identical experimental 

conditions. Indeed, Liu et al. (2021) discovered significant differences in the ERPs 
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induced by mind wandering between participants measured with self-caught experience 

sampling and those measured with probe-caught experience sampling, though the authors 

purport that these differences may result from differing visual stimuli. Though there are a 

variety of benefits and limitations to using self-caught and probe-caught experience 

sampling methods, self-caught experience sampling is particularly suited for meditation 

tasks because of the close relationship between meditation and meta-awareness and 

mindfulness (Chu et al., 2023; Weinstein, 2018).  

 Because of the delay between mind wandering and the awareness of mind 

wandering, EEG’s enhanced temporal resolution is particularly appropriate for measuring 

neural correlates of mind wandering. Some research suggests that increased alpha band 

activity is considered the strongest indicator of mind wandering (Baldwin et al., 2017; 

Compton, Gearinger, & Wild, 2019; Kam et al., 2022). Conversely, Braboszcz and 

Delorme (2011) found that alpha power was decreased during mind wandering whereas 

theta and delta power were increased. Similarly, Rodriguez-Larios and Alaerts (2020) 

found that mind wandering was associated with increased amplitude and decreased 

frequency of theta bands whereas alpha bands exhibited decreased amplitude and 

increased frequency. In studies conducted on fatigue and inattention in various vehicle 

operators, only the theta band was shown to have consistently increased power (Park et 

al., 2021). On the other hand, in Kam, Rahnuma, and Hart’s (2022) meta-analysis on 

spectral band activity during mind wandering, only eight of 13 studies reported increased 

theta activity. Less importance has been placed on delta, beta, and gamma bands but 

research shows mixed results (Kam, Rahnuma, & Hart, 2022). In sum, there is little 
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agreement within past literature on the oscillatory activity associated with mind 

wandering, though alpha and theta bands seem to be most implicated. 

 One can also analyze ERPs to measure mind wandering. While some research 

posits that ERP amplitude is the most compelling and replicable indicator of mind 

wandering, others find that oscillatory activity is the most significant (Conrad & 

Newman, 2021; Kam, Rahnuma, & Hart, 2022). However, ERPs by nature are elicited 

from the presentation of stimuli and are not an appropriate or viable method of neural 

measurement in a meditation task that does not involve some sort of auditory, motor, or 

visual stimulus. 

2.2.3 Neuroanatomy 

 Insofar as the neuroanatomical regions associated with mind wandering, most of 

these areas (such as the posterior cingulate cortex, ventral medial and dorsal medial 

prefrontal cortex, precuneus, and lateral parietal cortex) belong to the default mode 

network (DMN), a resting state network that exhibits consistent deactivation during goal-

directed tasks (Christoff et al., 2016; Hasenkamp et al., 2011; Raichle et al., 2001; 

Raichle, 2015). The DMN is located bilaterally in the medial prefrontal cortex and in the 

medial and lateral parietal and temporal cortices (Raichle, 2001). As such, we can expect 

the spectral band activity associated with mind wandering to be localized in these areas. 

Indeed, in joint EEG-fMRI research, alpha activity is reported to be involved both with 

the DMN and with internally directed cognition (Christoff et al., 2016; Compton, 

Gearinger, & Wild, 2019; Hasenkamp et al., 2011; Knyazev et al., 2011; Mo et al., 2013; 

Raichle, 2015). Indeed, in Kam, Rahnuma, Park, and Hart’s (2022) meta-analysis, they 

found that alpha band activity is often reported to be attenuated across both posterior sites 



15 
 

and frontocentral and temporal sites during mind wandering. Likewise, the authors report 

that mind wandering often results in greater theta activity in frontocentral areas. While 

this suggests that the DMN is implicated in these changes, this cannot be confirmed with 

EEG alone due to its poor spatial resolution.  

2.3 Computer Interface 

 The second main component of a BCI, as the name suggests, is the computer. 

Once the neural signals have been collected, a computer is required to interpret, process, 

and send feedback to the user. Using the breath counting task used by Braboszcz and 

Delorne (2011) to detect mind wandering as an example, a BCI could be created by first 

collecting training data from participants by asking them to engage in the task, self-

caught experience sampling and oddball auditory protocol included (whereby participants 

are presented with two tones of different frequencies, one of which is presented 

significantly fewer times, leading to its designation as an “oddball” auditory tone). An 

algorithm can then be trained on this data so that the system can appropriately determine 

the neural correlates of mind wandering. Subsequently, the system could then fit this data 

to data collected from the users in real-time as they repeat the breath counting task 

(excluding the self-caught experience sampling and oddball auditory protocol) and 

initiate some sort of stimulus when it detects a user’s mind wandering. Though this is one 

example of how a mind wandering BCI might operate, there are many different ways in 

which a BCI might be designed. 

2.3.1 BCI Classification 

 BCIs are classified in various ways with increasing levels of specificity. At the 

broadest level, BCIs are classified as either invasive or non-invasive and can be further 
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classified by the method of measuring neural activity (e.g., EEG, fMRI, fNIRS, etc.). 

Within the context of this paper, the focus will be on EEG-based BCIs. This particular 

type of BCI can be further categorized based on the paradigm the interface uses and/or 

the BCI categorization. Paradigm-based subdivisions are that a BCI can either be actively 

controlled (e.g., through motor imagery, visual evoked potential, auditory evoked 

potential, vibrotactile evoked potential, imagined speech, or error-related potential) or 

passively controlled (e.g., analysis of EEG spectral changes) (Abiri et al., 2019; Al-

Nafjan et al., 2017; Värbu, Muhammad, & Muhammad, 2022).  

A BCI can be classified as either dependent in that it relies on muscles and 

peripheral nerves or independent wherein only changes in brainwaves are observed 

without any required muscle movement (Machado et al., 2010; Pasqualotto, Federici, & 

Belardinelli, 2011; Värbu, Muhammad, & Muhammad, 2022). Similarly, a BCI can be 

defined as either evoked/exogenous or spontaneous/endogenous. The former category is 

dependent on external stimulation whereas the latter does not require a stimulus (Padfield 

et al., 2019; Värbu, Muhammad, & Muhammad, 2022). Lastly, a BCI can be classified as 

either synchronous in which the BCI only analyzes signals within specific time intervals 

and thus commands can only be made during specific windows or asynchronous in which 

neural activity is constantly analyzed and commands can be issued at any time (Nicolas-

Alonso & Gomez-Gil, 2012; Värbu, Muhammad, & Muhammad, 2022). A mind 

wandering detection BCI, at least in instances of unintentional mind wandering, is 

passively controlled and independent because it involves the detection of a user’s internal 

state and does not require any muscle movement. A mind wandering detection BCI can 
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be either evoked/exogenous or spontaneous/endogenous and may also be synchronous or 

asynchronous depending on the constraints of the paradigm.  

 The operation of a BCI typically involves four stages: signal acquisition, signal 

pre-processing, feature extraction, and classification and computer interaction (Hong & 

Santosa, 2013; Vaid, Singh, & Kaur, 2015; Värbu, Muhammad, & Muhammad, 2022). 

Signal acquisition, as discussed previously, involves collecting neural data with a 

measurement device (an EEG, in this context) then storing it in an accessible format 

(Vaid, Singh, & Kaur, 2015). 

2.3.2 Signal Pre-Processing 

 Because EEG data is vulnerable to signal artifacts, the collected data must then be 

processed to prevent the distortion of the signal (Padfield et al., 2019; Vaid, Singh, & 

Kaur, 2015). There are two different types of signal artifacts: extra-physiologic and 

physiologic. Extra-physiologic artifacts are those that result from the external 

environment such as technical preparation problems (e.g., insufficient electrode 

grounding, incorrect electrode placement), movements in the recording environment, and 

powerline noise. Physiologic artifacts include the interference of signals generated from 

eye movement, the heart, sweat, tongue movement, and muscular movement (Elsayed, 

Zaghloul, & Bayoumi, 2017; Jiang, Bian, & Tian, 2019; Reddy & Narava, 2013). The 

type of pre-processing performed largely depends on the artifacts present in the signal. 

For instance, the removal of eye movement artifacts is not necessary in a meditation-

based BCI, since the eyes are closed during meditation. Most commonly, the techniques 

used for artifact removal are as follows: linear filtering, blind source separation, 

empirical-mode decomposition, and wavelet transform (Jiang, Bian, & Tian, 2019). Since 
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most EEG-based BCIs required real-time signal processing, it is important that a pre-

processing method that is both automatic and has a low computational cost is selected 

(Vaid, Singh, & Kaur, 2015). Linear filtering is a particularly popular approach to artifact 

removal because of its ease of implementation from both a hardware and software 

perspective and because it does not require the identification of artifacts nor other 

identifying information (Elsayed, Zaghloul, & Bayoumi, 2017). 

2.3.3 Feature Extraction 

 The feature extraction stage of a BCI exists because the features of a sought-after 

signal are masked by noise. Rather than use an immense number of resources to analyze a 

massive dataset that may contain irrelevant data, feature extraction simplifies analysis by 

highlighting only those signals which are pertinent. In order to extract the signal or 

differentiate it from noise, a distinguishing property or recognizable measurement 

represented by a feature can be extracted from a section of a pattern (Suleiman & Fatehi, 

2011; Al-Fahoum & Al-Fraihat, 2014; Vaid, Singh, & Kaur, 2015). There are a variety of 

feature extraction methods that can be used in a BCI that use both linear and non-linear 

methods. Such methods can occur in a number of different domains: time, frequency, 

time-frequency, and space-time-frequency (Al-Fahoum & Al-Fraihat, 2014; Hosni et al., 

2007; Vaid, Singh, & Kaur, 2015). The feature extraction technique used depends on the 

experimental paradigm, the desired signals to be extracted, and the relevant domains. A 

popular feature extraction technique often used in bioengineering and neuroscience is 

multitaper power spectral analysis, an analysis that arose from non-parametric spectral 

analyses as an answer to inherent issues pertaining to variance and bias and is therefore a 

well-suited approach to time series data (Babadi & Brown, 2014; Bokil et al., 2006; 
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Thomson, 1982). This analysis exists in the frequency domain and produces a metric 

called power spectral density which is a reflection of the power density (the amount of 

power per unit volume) of a random signal at a particular frequency. Since it is an 

analysis of the frequency domain, it allows one to determine the prevalence of specific 

frequency bands within the context of specific paradigms.  

2.3.4 Machine Learning Algorithms and Computer Interaction 

 Classification and computer interaction is the last stage of a BCI wherein data is 

fed to a machine learning algorithm. Machine learning is a branch of computer science 

concerned with enabling computers to “learn” without being directly programmed. This 

process is done with statistical algorithms that employ a variety of methods to fit models 

to data such that future data can be predicted accurately (Bi et al., 2019). There are many 

algorithms that classify data in a variety of ways, and there is no single algorithm that 

works in all circumstances (Mahesh, 2020). The selection of a classifier largely depends 

on the data and experimental paradigm of the BCI, and due consideration must be given 

to the algorithm’s hypothesis space to ensure that the theoretical model suits the data to 

which it is applied. The machine learning algorithm used is the main player behind the 

predictive performance of a BCI—arbitrary or uninformed selection can significantly 

hinder predictive performance. 

 Machine learning algorithms fall under one of the following categories: 

supervised learning, unsupervised learning, semi-supervised learning, reinforcement 

learning, multi-task learning, ensemble learning, neural network, and instance-based 

learning (Mahesh, 2020). Of these categories, only supervised learning models and to a 
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lesser extent neural nets will be discussed since they are the most used machine learning 

models in the context of EEG-based BCIs (Aggarwal & Chugh, 2022).  

 Supervised learning algorithms make inferences from labelled training data and 

require that the dataset be split into a training dataset and a testing dataset (Mahesh, 

2020). Though there are various methods to do this, most machine learning frameworks 

split the dataset statically wherein neither the training nor evaluation stage of the model 

can use all available data (Bai et al., 2021). Decision tree, Naïve Bayes, support vector 

machine, k-nearest neighbour, and multi-layer perceptron algorithms are all examples of 

supervised learning yet employ drastically different methods.  

A decision tree continuously splits data based on specific rules or conditions and 

is typically used to solve classification and regression problems, though suffers from 

issues with stability and has a disposition to sampling error (Mahesh, 2020; Pedregosa et 

al., 2011; Ray, 2019). Decision trees are optimized for relatively simple classification 

tasks with fewer unrelated data features. 

Naïve Bayes, by contrast, is a machine learning approach based on the statistical 

Bayes Theorem, which is used to calculate conditional probabilities. This algorithm 

assumes that all predictors are conditionally independent from one another—that is, the 

presence of a specific feature is unrelated to any other feature (Joyce, 2003; Mahesh, 

2020; Pedregosa et al., 2011; Ray, 2019). The Naïve Bayes approach is easy to 

implement, can be effective with smaller samples of training data, scales linearly with the 

number of predictors, and is generally used to solve binary and multi-class classification 

problems and probabilistic predictions. However, its simplicity is its downfall since it can 
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be difficult to apply Naïve Bayes to a dataset that, for example, has a continuous variable 

feature (Mahesh, 2020; Pedregosa et al., 2011; Ray, 2019).  

Support vector machine algorithms are used for classification and regression 

purposes, though they can classify non-linear data by using kernels which separate 

objects that belong to different classes. This approach excels with both structured and 

semi-structured data, has reduced probability of over-fitting due to its adoption of 

generalization, and can be utilized in complex manners if the appropriate kernels are 

adopted. However, support vector machine algorithms also suffer from noticeable 

increases in training time for large datasets, struggle to analyze noisy data, and do not 

provide probability estimates (Mahesh, 2020; Pedregosa et al., 2011; Ray, 2019).  

K-nearest neighbour algorithms are non-parametric and are used for both 

classification and regression problems. This algorithm classifies new data points by 

choosing the class closest in distance to a number of predefined training samples. While 

this algorithm is both simple and flexible, using larger datasets is computationally 

intensive and therefore hinders performance (Mahesh, 2020; Pedregosa et al., 2011; Ray, 

2019).  

Multi-layer perceptron (MLP) algorithms, while classified as supervised learning, 

can also be classified as a neural network. Used for either classification or regression, 

MLP operates by creating a network of nodes arranged in a minimum of three layers 

(input, hidden, and output) with each node in the nonlinear hidden and linear output layer 

possessing an associated threshold and weight. The input layer distributes the inputs to 

subsequent layers such that an input is multiplied by a weight to a certain threshold then 

passed to a linear or nonlinear function. While an MLP is flexible enough to solve a 
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variety of problems, they are non-monotonic, there is no standard way to initialize and 

train additional hidden units, and net control parameters are arbitrary (Delashmit & 

Manry, 2005). 

2.3.5 Evaluation 

  Once a machine learning model has been applied, it should be evaluated to assess 

its performance. Though there are a number of techniques that evaluate an algorithm’s 

predictive performance, henceforth referred to as generalization error, one of the most 

common is k-fold cross-validation. This method iterates over the dataset k times, each 

time splitting the dataset into k parts where one part is used for validation and the 

remaining k – 1 parts are merged into a training subset for model evaluation. This is done 

for each part such that the model is fit to distinct yet partially overlapping training sets. 

The score produced from this process is the mean k generalization error. The value of k 

can therefore greatly affect the resulting generalization error and its value should 

therefore be fixed intentionally. Generally, the value of k is assigned a large value 

(usually 5, 10, or 20) in order to analyze a greater number of patterns for training, though 

larger k values result in loose generalization error estimations (Anguita et al., 2012; 

Raschka, 2018). 

2.4 Summary 

 In sum, BCIs employ a diverse array of techniques and technologies to operate 

efficiently. When determining which methods to employ, it is crucial to consider the 

intended purpose and function of the BCI so that the technology and underlying 

processes can synergistically optimize its performance.  
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 EEG was chosen as the primary neural measurement device because of its low 

cost, relative portability, enhanced temporal resolution, and popularity as a tool in BCI 

research. Furthermore, a meditation paradigm that detects and corrects mind wandering 

was chosen for a number of reasons. Firstly, meditation-assistance BCIs are some of the 

most common BCIs available in the consumer market at present and investigating the 

utility and usability of such a device would provide a look into the current state of the 

market. Secondly, meditation paradigms are particularly easy to implement by merit of 

their simplicity and that the lack of motor movements yields a signal less vulnerable to 

signal artifacts caused by noise. Lastly, mind wandering, while it can be positive and 

helpful in some contexts, can be disadvantageous or dangerous in high-risk situations; 

investigating ways in which mind wandering can be interrupted and corrected could lead 

to research that can benefit the development of future mind wandering intervention BCIs. 

We will measure mind wandering with self-caught experience sampling because of its 

minimized disruption of cognitive processes as well as the close relationship between 

meta-awareness and meditation. 

 The neural signal to be investigated is oscillatory activity, with a particular focus 

on alpha and theta activity. Though there is discourse on whether oscillatory activity or 

ERPs are the most compelling and replicable indicator of mind wandering, ERPs by 

nature are elicited from the presentation of stimuli and are not an appropriate method of 

neural measurement in a meditation task that does not involve an auditory, motor, or 

visual stimulus. The acquired signal will then be processed with linear filtering due to its 

ease of implementation and because it does not require the identification of signal 

artifacts. Features will then be extracted with a power spectral density analysis since this 
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analysis operates in the frequency domain and is therefore well-suited for extracting 

oscillatory activity. 

 The machine learning classifiers to be used are all classified as supervised 

learning models and are as follows: decision tree, Naïve Bayes, support vector machine, 

k-nearest neighbour, and multi-layer perceptron. The decision to use only supervised 

learning models was made because they are the algorithms most often used in EEG-based 

BCIs. The performance of the algorithms will be assessed using k-fold cross-validation 

which is a popular method to calculate generalization error that is effective on supervised 

learning models. 

Table 1. A summary of the key technologies and processes that will be used in the present 

study. 

Process Approach Rationale 

Signal acquisition EEG 

• Low cost 

• Portability 

• Enhanced temporal resolution 

• Popularity 

Paradigm 

Mind wandering 

detection during 

meditation 

• Exists in consumer market 

• Fewer signal artifacts 

• Mind wandering can be dangerous 

Mind wandering 

measurement 

Self-caught experience 

sampling 
• Close relationship between 

meditation and meta-awareness 

Neural signal 

Oscillatory activity 

(alpha and theta in 

particular) 

• Reliable indicator of mind 

wandering 

Signal pre-

processing 
Linear filtering 

• Ease of implementation 

• Does not require identification of 

artifacts 
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Process Approach Rationale 

Feature extraction Power spectral density • Operates in frequency domain; 

well-suited for oscillatory activity 

Machine learning 

classification 

Supervised learning 

models 
• Most used approach in EEG-

based BCIs 

Evaluation k-fold cross-validation 
• Popular approach 

• Effective on supervised learning 

models 
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Chapter 3 Methods 

3.1 Instruments 

 The developed BCI employs a Unicorn Hybrid Black EEG (UHB) as its neural 

measurement device. The UHB is an eight-channel EEG with electrodes situated at the 

international 10-20 system electrode positions FZ, C3, CZ, C4, PZ, P7, 0Z, and P8 

(American Clinical Neurophysiology Society, 1991; Figure 1). The UHB supports both 

wet and dry recording—the first recording was obtained with dry electrodes, though data 

were deemed poor quality and subsequent recordings were obtained with wet electrodes 

(See Appendix 1 for wet/dry recording comparison for the first task). The device 

connects to a computer via Bluetooth using a USB dongle and as such is wireless, 

excluding the wired electrodes (Unicorn Hybrid Black, 2022). The device was paired 

with the UHB Python API in order to control the device from within the Python 

environment. The Python library PyGame was used for the design of the user interface 

and forms the primary framework of the BCI. The library MNE-Python was used for 

EEG processing and analysis, and the library scikit-learn was used to apply the machine 

learning algorithms. According to the previously outlined classification criteria, the BCI 

developed in this study is classified as independent, spontaneous, asynchronous, and 

measures passive spectral changes. 
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Figure 1. UHB electrode positions, in adherence with the international 10-20 system 

electrode positions (American Clinical Neurophysiology Society, 1991). 

3.2 Participants 

 Participants (n = 5) were recruited from within the Neurocognitive Imaging Lab 

and the Quantitative Science Studies Lab at Dalhousie University on a first come, first 

served basis. Participants were subject to screening criteria to ensure they were fluent in 

English, able to use a computer keyboard, had no history of neurological disorders, were 

not taking medications that affect brain activity, and were comfortable removing religious 

headgear. No information was collected on the level of experience that participants had 

with meditation. Though it has been found that meditation training leads to fewer 

episodes of mind wandering, this was ultimately not deemed relevant since it exists 

outside the scope of this study (Feruglio et al., 2021; Zanesco et al., 2016). Though this is 

an interesting avenue for future research, the present study is grounded in more technical 

aspects related to BCI research.  
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3.3 Experimental Design 

 The experimental task consisted of two primary stages: data collection and 

application. In the data collection and training stage, participants were fitted with the 

UHB then asked to engage in meditation for 20 minutes. Mind wandering was measured 

using self-caught experience sampling by asking participants to respond with a key press 

when they became aware of their mind wandering. Additionally, birdsong was played 

throughout the task. Subsequently, in the application stage, the participants were again 

asked to engage in meditation for 20 minutes with the exception that they do not button 

press when they become aware of their mind wandering. Instead, the BCI was 

programmed to interrupt the birdsong to play traffic noises at the 7-, 12-, and 17-minute 

marks for 20, 30, and 10 seconds, respectively. Upon completion of these two tasks, the 

participants were finally asked to complete a short questionnaire to record their subjective 

experience using the BCI (Figure 2; Appendix 2).  

 

Figure 2. An illustration of the experimental design. 

 The method in which the auditory stimuli are presented is modelled loosely after 

the oddball auditory protocol in which a sequence of repetitive “standard” tones is 

interspersed occasionally with “oddball” tones that differ in some way from the standard 

tones, typically in frequency (i.e., pitch) (Braboszcz & Delorne, 2011). The intention for 

presenting the audio stimuli in this way was to test whether a disparate sound presented at 

intervals (i.e., the traffic noises) is sufficient to bring participants out of a mind 

wandering state. The Muse headband uses thunderstorm and birdsong when users are in a 
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mind wandering and meditation state, respectively (Vekety, Logemann, & Takacs, 2022). 

This was inspiration for the selection of our audio cues, though we selected traffic noises 

both to differentiate ourselves from the Muse system and as a creative choice. Based on 

the literature reviewed, there does not appear to be a significant body of research aimed at 

whether specific audio noises are more or less inclined to correct mind wandering.  

 We selected the 20-minute duration interval for meditation because mind-

wandering results from both low task engagement and low physiological arousal (Dehais 

et al., 2020; Lee, 2014; Park et al., 2021; Smallwood & Schooler, 2006). It was our 

intention to design the study in such a way to ensure that the length of meditation was 

long enough to elicit low task engagement, thus creating more opportunity for mind 

wandering. However, we did not want the meditation task to be overly long so that we 

could control for the effects of fatigue—though the task may not be cognitively 

demanding, 40 minutes is a long time to be meditating.  

3.4 BCI Design 

 In order to run two different stages of the experimental task, two separate scripts 

were created. The scripts are very similar, with a few key differences. Both scripts utilize 

the same primary graphical interface that is of a relatively simple design. Upon 

initialization of both programs, there is a welcome screen that shows task-relevant 

information and instructs the participant how to properly operate the BCI. Following this 

screen is one in which the participant is prompted with a text-input box to enter the 

amount of time they would like to meditate. Though within the context of the study each 

participant was instructed to meditate for 20 minutes, the option to run the program for 

any amount of time was included for future research involving the developed BCI and in 
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the event that the BCI is developed for consumer use. Once this information is entered, 

the BCI then enters its primary experimental loop and shows a timer on the screen while 

the participant performs the task. Throughout the task, birdsong audio is played which 

stops once the entered duration elapses, thereby notifying the participant that the task is 

complete. The primary difference between the two scripts is that the application script for 

the second stage of the experimental task will interrupt the birdsong audio with traffic 

noises at specified intervals. Otherwise, the two scripts are virtually identical. Upon 

completion, the raw EEG data is stored in a comma-delimited format for processing and 

algorithm training. 

 Separate from the primary BCI, a script was created to process the data, train the 

machine learning algorithms, and conduct relevant analyses. Since this script is an offline 

analysis, it is important to note that the BCI created within the context of this study is not 

a true BCI, but instead a framework upon which a BCI can be implemented. However, 

the offline analysis tests the feasibility of the BCI and its various components even 

though they do not exist as a cohesive whole. In order to create a true BCI, parts of the 

offline analysis script can be nested within the application script to detect and correct 

mind-wandering in real time. However, since this is a pilot study, it was not pertinent to 

complete the interface but rather to assess the performance of each of its individual parts. 

Depending on the results, the paradigm may or may not be modified to enhance the 

performance and efficacy of the BCI. 

3.5 Data Processing and Analysis 

 The raw EEG data obtained during this task was processed using tools from the 

MNE-Python library. Since MNE-Python assumes EEG data to be in volts, the data 
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collected from the UHB were converted from microvolts to volts. A one-pass, zero-

phase, non-causal bandpass filter was then applied to converted data using the windowed 

time-domain method. A hamming window with a 0.0184 passband ripple and 53 dB 

stopband attenuation was used. The bandpass filter was applied such that it filtered low 

frequency signals below 2Hz and high frequency signals above 30Hz. The converted and 

filtered data was then sectioned into 10 second epochs. Rejection criteria were set for 

epochs with a maximum peak-to-peak signal amplitude of 1e-3. Features were extracted 

by calculating power spectral density using a multitaper method then converting the 

values to decibels.  

 Using the sci-kit learn library, the processed data from the collection phase of the 

task was validated using the train test split procedure then was subsequently used to train 

seven classifiers, as follows: linear discriminant analysis, ridge classifier (sometimes 

referred to as a least squares support vector machine with a linear kernel), k-nearest 

neighbours, support vector machine, decision tree, multi-layer perceptron, and Naïve 

Bayes. These classifiers were then applied to the data collected during the application 

stage of the task in order to determine how well the classifiers can predict mind 

wandering. To assess the performance of the classifiers, an accuracy score and a mean k-

fold cross-validation score (k = 5) were computed for each classifier. A cross-validation 

score was only calculated for the data collection phase data since it is only relevant to use 

on data that has been split for training. 

 The power spectral density analysis was then undone to leave us with the filtered 

epochs. Evoked objects were created for each condition by averaging together all epochs 

for each respective condition. From here, there were two separate analyses that were 
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performed on the data: a subtraction analysis and a time frequency analysis. The 

subtraction analysis will provide information on the difference between the on-task 

conditions and the mind wandering conditions, and the time frequency analysis will allow 

us to evaluate how the presentation of the traffic noise stimulus modulates neural 

oscillations over time. The latter of the analyses will only be applied on the application 

task data since the collection task data does not contain the traffic noises that are 

pertinent to the analysis. The subtraction analysis was performed by subtracting the mind 

wandering condition evoked objects from the on-task evoked objects, thereby creating a 

new evoked object containing the features specific to the mind wandering condition. The 

resulting object also underwent feature extraction by calculating the power spectral 

density with a multitaper method. The second analysis was to calculate the time 

frequency representation of the evoked objects for each condition using a Morlet 

transform method which utilizes a fast Fourier transform, which is functionally identical 

to the calculation of power spectral density (Cochran et al., 1967). Since the traffic noise 

stimuli were administered at specific time points, this analysis thereby required operation 

in the time-frequency domain. 

 The post-task questionnaire consisted of four questions, two of which use a 5-

point Likert scale (Q1, Q2), one of which is designed to capture relevant keywords 

pertaining to the participants’ experience with the BCI (Q3), and the last of which offers 

an opportunity to provide user feedback regarding the BCI (Q4) (Appendix 2). Since the 

post-task questionnaire was administered via pen and paper, results were transcribed into 

an Excel worksheet. The mean and median scores were calculated for the Likert-based 

questions (Q1, Q2). For Q3, keywords were manually extracted and a simple sentiment 
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analysis using a dictionary-based approach was conducted. Though Q4 underwent no 

specific analysis, participant responses were individually considered within the context of 

the discussion. 
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Chapter 4 Results 

4.1 Classification 

 On average, the overall classification accuracy for the training data was 52% with 

no classifier obtaining an accuracy score above 60%. The algorithms with the highest 

accuracy overall were the decision tree (60%), ridge classifier (59%), Naïve Bayes 

(57%), and nearest neighbours (57%). Once cross-validated, the classifiers with the 

highest accuracy were the ridge classifier (62%), Naïve Bayes (59%), and nearest 

neighbours (57%). However, some classifiers had greater accuracy for specific 

participants. For instance, the ridge classifier classified the data for participant 2 with 

100% accuracy as did the Naïve Bayes for the data for participant 5. The corresponding 

mean cross-validation scores for these two classifiers, however, are 73% for the ridge 

classifier and 80% for the Naïve Bayes (Figure 3). 

 The application data had noticeably lower accuracy scores than the training data 

with an average accuracy score of 45%. The algorithms with the highest accuracy scores 

were the ridge classifier, decision tree, and multi-layer perceptron in a three-way tie, all 

with an accuracy score of 50%. Since the application data was not split for training, there 

are no cross-validation scores to report. Unlike with the application data, there are few 

individual scores that performed significantly higher than average. The decision tree and 

ridge classifier algorithms had accuracy scores of 67% for two separate participants, 

whereas the linear discriminant analysis and Naïve Bayes each had an individual 

accuracy score of 67% for one single participant (Figure 3). 

 Some participants had data that on average had higher classification accuracy than 

others. For instance, participant 5 had the highest total classification accuracy (78%) and 
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mean cross-validation score (68%) for the training data as well as the highest 

classification accuracy (52%) for the application data. The classifiers for the data of 

participant 4 had the lowest accuracy (36%) on the training data, though participant 3 had 

the lowest cross-validated score (48%) and participant 2 had the lowest accuracy for the 

application data (36%) (Figure 3).  

 

Figure 3. The accuracy and mean cross-validation scores for each participant and 

classifier per task with associated averaged totals. 

 

Note. Evaluation task classifiers do not have cross-validation scores. 

4.2 Questionnaire 

 The results of the questionnaire are summarized in Table 1. For Q1, using a 5-

point Likert scale, all participants but one agreed that they successfully accomplished the 

task, while the remaining participant responded that they found they neither agreed nor 

disagreed (mean = 4.2, median = 4). Similarly, for Q2, also using a 5-point Likert scale, 

all participants but one reported that they found the BCI easy to use, while the remaining 
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participant found that it was neither challenging nor easy to use (mean = 4.4, median = 

5).  

Table 2. Participants' responses to the post-task questionnaire. 

Were you 

able to 

successfully 

accomplish 

the task? 

How 

challenging 

did you 

find using 

the BCI? 

If you found the BCI challenging 

to use, what challenges did you 

encounter? If you found it easy to 

use, what made it easy to use? 

How do you think this tool can be helpful 

to use when meditating? How may it not 

be helpful? 

Strongly 
Agree (5) 

Easy (4) 

I found it easy as it was a wireless 
setup and could run it within a 
couple of minutes of starting it up. 
Also what was required of me was 
very simple. 

 
If users could see after one use what their 
brain looks like when they get off track 
from meditating, then in subsequent uses 
they could use the BCI to help them 
successfully meditate. It may not be 
helpful for those who already find it hard 
to meditate, as wearing the cap and 
running software could distract them 
further. 
 

Agree (4) 
Very easy 
(5) 

It seems reasonably easy to set up 
& start/stop. 

 
Being responsive to users' state of mind 
could be helpful, but it's possible that their 
awareness of the tool may be distracting 
(both physical sensation and knowledge 
that it's in use). 
 

Neither agree 
nor disagree 
(3) 

Neither 
challenging 
nor easy (3) 

The first half was easy except the 
birds were annoying. I typically do 
guided meditations that are more 
silent. I got a headache during the 
second half so I wasn't able to 
focus on much else. 

 
Maybe… I think a big part of practicing 
meditation is letting your mind wander 
while paying attention to how your mind 
and body feels. Now that I think about it, 
that might be mindfulness, not meditation. 
 

Strongly 
Agree (5) 

Very easy 
(5) 

No challenges. Apart from my own 
concentration skills. Very 
straightforward; relaxing even. 

 
Keeps the participant aware and cognizant 
of when they're off-task, which is helpful. 
Keeps you alert to the external 
environment which could be distracting. 
 

Strongly 
Agree (5) 

Easy (4) A little uncomfortable 

 
It would be helpful if it could 
capture/predict when your mind is 
wandering and provide you with some kind 
of reminder to stay focused. 
 

 

 Keywords extracted from Q3 were coded as either positive (1), neutral (0), or 

negative (-1). Of the 11 keywords that were extracted, 7 were of positive sentiment, 1 

was of neutral sentiment, and 3 were of negative sentiment. The median keyword 
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sentiment was 1, suggesting that the most common response was positive. Two out of 

five participants had an overall negative sentiment, while the remaining three had a 

positive sentiment (Table 2).  

Table 3. The sentiment for each keyword per participant. 

Participant Keyword Sentiment  

1 

Easy 1  

Simple 1  

Wireless 0  

2 Easy 1  

3 

Annoying -1  

Easy 1  

Headache -1  

4 

No challenge 1  

Relaxing 1  

Straightforward 1  

5 Uncomfortable -1  

Note. 1 = positive, 0 = neutral, -1 = negative sentiment. 

4.3 Mind Wandering 

 When creating the epochs from the EEG data, some epochs met the predefined 

rejection criteria (as discussed in Chapter 3) and were dropped (Table 3). 

Table 4. The number of epochs that were dropped for each participant and each task. 

Task 1 2 3 4 5 Total

Meditation 5 1 1 5 0 12

Evaluation 0 0 0 0 0 0

Total 5 1 1 5 0 12

Participant

 

4.3.1 Training Data 

 The subtraction analysis for the training data shows varied results, though there 

are some consistencies. Alpha band power is generally elevated across all participants, 

-1          0                 1

Sentiment 

Legend 
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except for participant 4 wherein only theta bands show increased power. Participant 3 

shows the most robust increase in alpha power with a marked peak at 10 Hz. In all 

participants, theta power is generally higher than other frequencies, though alpha power 

is higher than theta in participants 3 and 5 (Figure 4). 

 

 Insofar as space localizations, most theta is frontal with the exception of 

participants 3 and 4 who exhibited theta power in the left temporal and occipital regions, 

respectively. Alpha power showed varied localization, with areas ranging from left 

frontal in participant 1, left temporal in participants 2 and 3, parietal in participant 4, and 

Figure 4. The average evoked power spectral densities of the mind wandering condition 

subtracted from the on-task condition for each participant for the training data. 

Legend 
Delta 0.1 – 4 Hz Alpha 8 – 13 Hz 
Theta 4 – 8 Hz Beta 13 – 30 Hz 
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occipital in participants 4 and 5. Beta power was generally constrained to the occipital 

and left temporal areas, though there was a left frontal effect in participant 1 and a more 

central parietal effect in participant 4 (Figure 5).  
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Figure 5. The average evoked power spectral densities of the mind wandering condition 

subtracted from the on-task condition for each participant during the training task, 

plotted topographically to visualize the space dimension. 
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 Taken together, participants 1 and 2 showed the greatest difference in frontal theta 

power, participant 3 showed a robust left parietal alpha power difference, participant 4 

showed a slight occipital alpha power difference, and participant 5 exhibited a parietal 

alpha power difference.  

4.3.2 Application Data 

 The subtraction analysis for the application data generally shows a marked alpha 

power with some strong theta effects with some key exceptions. Participant 1 had equally 

strong theta and alpha power whereas participants 2 and 4 did not have any power bands 

that appeared higher than the others. Both participants 3 and 5 had very pronounced alpha 

activations (Figure 6). 
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 Insofar as spatial localizations, most theta activations were in frontal areas but for 

the exception of participant 3 who exhibited a marked left temporal activation and 

participant 4 who in addition to frontal theta also exhibited right temporal theta. During 

this task, though there were instances of frontocentral theta activation, both participants 1 

and 5 showed a frontolateral theta activation in the left hemisphere. Alpha band powers 

were generally focused in the left parietal area but for the exception of participant 1 and 

participant 5 who exhibited a left frontal activation and an occipital activation, 

respectively. Participant 4 presented both frontocentral and right temporal alpha 

Legend 
Delta 0.1 – 4 Hz Alpha 8 – 13 Hz 
Theta 4 – 8 Hz Beta 13 – 30 Hz 

 

Figure 6. The average evoked power spectral densities of the mind wandering condition 

subtracted from the on-task condition for each participant for the application data. 
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activations. Lastly, beta was mostly localized in the left hemisphere but for a bilateral 

activation in participant 4 and a midline parietal activation in participant 5 (Figure 7).  
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Figure 7. The average evoked power spectral densities of the mind wandering condition 

subtracted from the on-task condition for each participant during the application task, 

plotted topographically to visualize the space dimension. 



45 
 

 Taken together, results indicate that alpha and theta frequencies were of a 

relatively equal power, with theta activations elicited primarily from frontocentral regions 

and alpha activations most often originating from left temporal regions. Beta power 

bands, while not as present as other frequencies, generally occurred in the left hemisphere 

but showed no particular localization.  

 Since the epochs for the application data were structured around the presentation 

of auditory stimuli at specific points in time, an analysis into the time-frequency domain 

was required. Because of this structure, the end of a mind wandering evoked object 

corresponds to the time preceding the presentation of the stimulus and the beginning of 

an on-task evoked object corresponds to the time directly after the presentation of the 

stimulus.  

 Time frequency representations were calculated on the evoked application data 

using Morlet wavelets for both on-task and mind wandering conditions. Topographic 

maps were created for areas of interest that showed the highest signal intensity in the four 

seconds directly preceding and following the stimulus. In general, participants exhibited 

frontal theta activation during the four seconds prior to the presentation of the disparate 

stimulus. However, theta and alpha activations in the left temporal theta area were also 

observed. There were varied results following the presentation of the stimulus. Some 

participants showed frontal theta attenuation (participant 1) while others showed frontal 

theta activation (participant 2). Participant 3 showed slight parietal attenuation of alpha 

shortly followed by a left temporal activation of alpha. Participant 4 showed slight frontal 

attenuation of theta followed by a strong parietal activation. Participant 5 showed a slight 

alpha activation in the frontal areas followed by a strong activation of alpha in the 
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parietal areas. In general, the mind wandering condition showed greater intensity than the 

on-task condition (Figure 7). 
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Figure 8. Morlet wavelet time frequency representations of evoked data at points of 

interest. End of mind wandering interval occurs just before the on-task interval. 
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Chapter 5 Discussion 

5.1 UHB Device 

5.1.1 Hardware 

 The UHB consists of a cloth cap with eight holes into which the eight electrodes 

can be slotted into. There is also a magnetic “dock” of sorts at the back onto which the 

UHB rests. The EEG device itself consists of the electrodes and receiving ends, which are 

connected to a plastic case which wraps around to the other side of the head. At the back 

of the device, there is a magnet which allows for docking onto the cap as well as a 

charging port, a power button, and an indicator light. The electrodes themselves have a 

ring of spiky protrusions that jut downwards and rest on the scalp and a raised ring at the 

opposite side that fits through the cap onto which the receiving end of the electrodes 

attach. The device can be used with either wet or dry electrodes. The device transmits 

data via Bluetooth and comes with a Bluetooth USB dongle. 

 The UHB only comes with a medium-sized cap, though small and large sizes are 

available for purchase for €69 ($101.48 CAD, at time of writing) (Unicorn Hybrid Black, 

2023). No information on cap circumference or standard EEG cap size is available on the 

website, so there is guesswork involved in which sized caps will be required. For our 

purposes, we used a medium and a large size which generally fit most participants. That 

said, fitting participants with a cap was not as simple as measuring the circumference of 

their head and choosing the appropriate cap. Instead, it involved visually determining a 

participant’s cap size or asking them to try on both options for the best fit. The 

researchers tried on both sizes of cap and anecdotally report that neither of the sizes fit 

perfectly; on one researcher both caps were too small, and on the other researcher the 
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medium was too small yet the large was too big. Having too large a cap can decrease 

electrode contact and can negatively effect signal quality whereas too small a cap greatly 

increases participant discomfort. The UHB could benefit from having available an array 

of varying cap sizes with information on the standard sizes or circumference of each cap 

for greater clarity. 

 The design of the UHB is quite fragile and as such the device should be handled 

with care. The electrode wires are thin and easily tangled and rough treatment could 

easily break them. The electrode receivers are constructed of a plastic casing over the 

circuit board and when removing them from the electrodes the plastic casing can 

sometimes pop off, leaving the circuitry of the electrode receiver behind attached to the 

electrode. Though this would be acceptable and perhaps expected from a more 

inexpensive EEG, the UHB is available for purchase for €990 ($1,443.21 CAD, at time of 

writing) (Unicorn Hybrid Black, 2023). Though this is a tenth of the price of a typical 

medical- or research-grade EEG, it is still quite a costly piece of equipment and as such 

one would expect a more durable design. 

 One issue encountered during the study is the battery life of the UHB device. The 

device ran out of battery in the middle of the task for one participant, therefore making 

their data unusable. The charging port of the UHB is located on the underside of the 

magnetic docking station such that it cannot be worn while charging and likewise will not 

turn on when connected to a power source. Thus, one must ensure discipline in charging 

the device in advance of use. On the other hand, the UHB user manual suggests that the 

device be stored in a 50% charged state to maintain battery lifespan. Though the fact that 
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it operates on battery provides benefits in mobility and flexibility, one must be sure to 

charge the device after every use.  

 In order to operate the Bluetooth dongle that comes with the UHB, the computer 

to which it is inserted must either not have Bluetooth capabilities or have Bluetooth 

entirely disabled. The PC that was used for the study, like many PCs, had an internal 

Bluetooth drive which needed to be disabled prior to using the UHB. Rather than simply 

turning off Bluetooth in settings, the built-in PC Bluetooth adapter had to be entirely 

disabled in device management (thereby necessitating a restart) in order for the dongle to 

operate. While inconvenient, it also proved unnecessary—in the process of designing the 

interface, the dongle stopped working with the UHB and so the built-in Bluetooth adapter 

was used. This was the adapter that was used to collect all data used in the study. The 

rationale behind creating a Bluetooth dongle is clear since the UHB designers could not 

account for every make and model of Bluetooth adapter. However, it would be helpful to 

include those Bluetooth adapters that have been tested and proven to work with the 

device to save the inconvenience of rooting around in system settings. Furthermore, there 

are some systems, such as newer models of iMac, that have foregone USB ports in favour 

of USB-C, thereby requiring a USB-C to USB adapter to operate the dongle. These 

drawbacks aside, working with a wireless EEG is much easier than the cumbersome 

tethers of more traditional research and medical-grade EEGs. 

 Some participants expressed in both the post-task questionnaire and 

conversationally with the researchers after the task that they found the UHB 

uncomfortable. This is likely in part due to the spiky nature of the electrodes as they press 

into the scalp, but also due to ill-fitting cap sizes. This user discomfort can limit the 



51 
 

amount of time the UHB is able to be used and therefore has implications for its viability 

on the consumer market.  

 As previously mentioned, the UHB has both wet and dry electrode capabilities. 

Initially, we intended to record all participants with dry electrodes. Wet electrode EEGs, 

which use a conductive medium such as saline or gel inserted between the electrode and 

the participant’s scalp, require a more involved and laborious set up and leaves behind a 

gelatinous residue in a user’s hair (Cruz-Garza, 2017). For real-life applications of EEG, 

dry electrode would be preferable due to its relative convenience and its limited cleanup. 

Not only are dry electrodes easier to clean and set up, Hinrichs et al. (2020) report that 

between wet and dry electrode systems, most participants preferred using dry electrode 

headsets, particularly after use exceeding 60 minutes. As such, our first participant was 

recorded using a dry electrode headset. However, after further study on the differences 

between wet and dry electrodes, we had doubts that a dry electrode system would 

produce sufficient results. Since EEG is susceptible to signal noise from both physiologic 

and non-physiologic sources, the reduced impedance and potential loss of contact 

between the scalp and electrodes may enhance this susceptibility to produce more noise 

(Cruz-Garza, 2017; Laszlo et al., 2014). To confirm if there was indeed a marked 

difference between the quality of the recording, we tested the first task on one of the 

researchers with both wet and dry electrodes and found that the dry electrodes produced 

significantly more noise than did the wet electrodes (Appendix 1). This is consistent with 

past literature that reports that dry electrode recordings produce noisier signals (Cruz-

Garza et al., 2017; Halford et al., 2016; Hinrichs et al., 2020; Johnstone, Blackman, & 

Bruggemann, 2012; Spüler, 2017). 
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 Interestingly, our first participant and the only participant who was tested with dry 

electrodes did not have the data with the poorest classification accuracy.  In fact, for the 

training data, cross-validated training data, and application data, the participant tested 

with dry electrodes had the second-best performing classifiers. While this result is 

unexpected, one possible explanation is due to BCI illiteracy, a phenomenon wherein a 

minority of BCI users are unable to produce detectable patterns of brain activity required 

by a particular BCI paradigm (Maskeliunas et al., 2016). This will be discussed more in 

depth later in the chapter. Moreover, when testing wet versus dry electrodes on a member 

of the research team, the same task was performed twice in a row, perhaps leaving room 

for the confounding effects of fatigue (Appendix 1). Therefore, future research should 

look at testing the UHB’s dry versus wet electrodes between groups with a larger sample 

size to uncover any signal differences. 

5.1.2 Software 

 The UHB Python API was used to create a bespoke BCI from the ground up. 

While this offered much in terms of flexibility, it was challenging to use due to the in-

depth knowledge of Python that was required. This creates accessibility issues for 

researchers who intend to create BCIs that operate under specific paradigms. Though the 

UHB can be paired with other g.tec software for which the paradigms are already 

developed, one must purchase a license for each and are then constrained to the provided 

function, removing the flexibility that the Python API provides. As such, there is a trade-

off between flexibility and difficulty that must be considered when using the UHB. 
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5.2 Classification 

 On average, most classifiers performed poorly enough to be considered 

insufficient for appropriate classification. However, some algorithms performed 

reasonably well, particularly on specific datasets. Classification accuracy was 

significantly poorer on the application data than it was on the training data, indicating 

underlying issues with the experimental design. In addition, the classifiers performed 

significantly better on some datasets than others, suggesting modulation from individual 

differences. 

 The best performing classifiers in terms of accuracy were the decision tree, ridge 

classifier, Naïve Bayes, and nearest neighbours. After cross-validation, the best 

performing classifiers were the ridge classifier, Naïve Bayes, and nearest neighbours. 

There is little consensus in the literature on what is the best performing and most 

appropriate classifier in an EEG-based BCI. For instance, consistent with the results 

reported presently, one study found that in an EEG-based passive BCI, a least squares 

support vector machine with a linear kernel (i.e., a ridge classifier) has superior accuracy 

after cross-validation than other classifiers (Acı et al., 2019). Furthermore, Myrden and 

Chau (2017) found that a linear discriminant analysis algorithm had higher classification 

accuracy than did a support vector machine in an EEG-based passive BCI. On the other 

hand, Akella et al. (2021) report that a support vector machine with a non-linear kernel 

outperforms other classifiers on EEG data from the Trier Social Stress Test. Though our 

results suggest that a ridge classifier is the best algorithm to use for our specific 

paradigm, our limited sample size does not allow us to make definitive conclusions. 
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 Since classification accuracy was significantly poorer for the application 

data than it was for the training data, there is likely an issue with the interface design. The 

tasks for our training phase and application phase were fundamentally different; the 

training task relied on self-caught experience sampling whereas the application phase 

made use of a disparate audio stimulus intended to return participants to attention. We 

chose self-caught over probe-caught experience sampling because the latter comes at the 

cost of disrupting the cognitive processes of the participants (Conrad & Newman, 2019). 

In a meditation task, probe-caught experience sampling is particularly disruptive because 

it requires participants to open their eyes and respond to a probe on-screen rather than 

simply pressing a button when they become aware of their mind wandering.Firstly, self-

caught experience sampling was used in the first phase of our task which relies on meta-

awareness, defined as the explicit awareness of the contents of consciousness (Schooler 

at al., 2011; Seli et al., 2017; Smallwood, 2002). Past research has distinguished between 

two different states of unintentional mind wandering characterized by the presence of 

meta-awareness; “tune-outs” are mind wandering with meta-awareness, and “zone outs” 

are mind wandering without meta-awareness. Not only do these two states reflect 

different theoretical processes, but also different neurological processes (Christoff et al., 

2009; Seli et al., 2017; Smallwood, McSpadden, & Schooler, 2007). Our first task, the 

data collection and training phase, since it is characterized by the presence of meta-

awareness, can be said to be reflective of “zone outs”. However, our second task involves 

the purposeful interruption of mind wandering which is more reflective of a “tune out”. 

This could explain why the classifiers did not perform as effectively on the application 
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data as they did on the training data—the tasks were reflective of different mental 

processes. 

 That said, our intention for designing the second task in this way was to test 

whether the disparate sound presented at intervals (i.e., the traffic noises) was sufficient 

to bring participants out of a mind wandering state. The present study is a pilot study that 

performs an offline analysis to assess the efficacy of the classifiers on the EEG data 

collected. When adapting the system into a true BCI, the intent is to use the disparate 

audio as a mind wandering intervention so that upon hearing it, the participant breaks 

from their mind wandering and returns to attention. One potential issue with this 

paradigm is that it assumes that participants are experiencing mind wandering prior to the 

presentation of the stimulus, which may not be the case.  

 Another issue to consider is that there is high performance variability in using 

BCI systems both between and within subjects, a phenomenon known as BCI illiteracy. 

A non-negligible minority of BCI users are unable to produce detectable patterns of brain 

activity required by some paradigms (Maskeliunas et al., 2016). In essence, there are 

always neurological differences between individuals; some may exhibit an expected 

response to a stimulus, while others may not. This effect is exacerbated by small sample 

sizes which could explain the poor classification accuracy observed within the training 

phase. As such, future research should endeavour to replicate these results with a larger 

sample size to evaluate whether the poor classification observed in this study is due to 

poor performance on behalf of the UHB, BCI illiteracy, or some other factor. 
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5.3 Mind Wandering 

 For the training data, mind wandering was found to be primarily associated with 

greater theta activity at frontocentral areas and secondarily with alpha activation in left 

temporal areas. Our observed theta observations are consistent with past research that 

posits that theta activity in frontocentral areas are a strong marker of mind wandering 

(Braboszcz & Delorme, 2011; Conrad & Newman, 2021; Kam et al., 2022). However, 

the observed alpha activation in left parietal areas is not what has been observed in past 

literature; typically, alpha band activity is often reported to be attenuated during mind 

wandering, particularly across posterior, frontocentral, and temporal sites (Braboszcz & 

Delorme, 2011; Kam et al., 2022; van Son et al., 2019). Interestingly, parietal alpha 

oscillations are associated with processes such as working memory and shifts in 

visuospatial attention, two mechanisms that are not expected to be at play during a 

meditation paradigm (Meyer, Obleser, & Friederici, 2013; Schuhmann et al., 2019). One 

possible explanation is that during a mind wandering episode, the participant may have 

opened their eyes, either consciously or unconsciously, to look at the interface on which 

there was a stopwatch keeping track of elapsed time, thereby causing a shift in their 

visuospatial attention. 

 Similarly, for the application data, mind wandering was also found to be most 

often associated with greater theta activity at frontocentral areas and secondarily with 

alpha activation in left temporal areas. While this suggests that mind wandering was 

indeed captured in this phase and perhaps successfully corrected, there is perhaps another 

explanation for this result. Since the application phase task involves the presentation of a 

mismatched audio stimulus at semi-random intervals (i.e., traffic noises versus birdsong), 
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it can also be interpreted as an auditory change detection task. Auditory change detection 

is reflected in the ERP known as mismatch negativity (MMN). Past research has 

localized the MMN sources to the supratemporal cortex and the inferior frontal cortex, 

two areas that are near regions of interest implicated in mind wandering processes 

(Doeller et al., 2003; Marco-Pallarés et al., 2005; Rinne et al., 2005; Rosburg et al., 

2005). Furthermore, theta oscillations have been observed during MMN events in frontal 

regions, suggesting that frontal theta plays a role in auditory change detection 

(Fuentemilla et al., 2008; Ko et al., 2012). Since frontocentral theta is a shared marker 

between mind wandering and auditory change detection, it cannot be said with certainty 

whether the frontocentral theta observed in the application phase of the task is resulting 

from one process or the other. To confirm this, a more in-depth analysis should be 

conducted that compares these two processes. 

5.4 Usability 

 Generally, participants had a positive view of the system and considered it easy to 

use. Even so, they had valuable insights on ways in which the usability and function of 

the system could be improved. Many expressed a desire for a fully functional BCI and 

thus this questionnaire should be readministered once a true BCI is built to further 

investigate participant attitudes. 

 One participant discussed that the tool could be distracting, both because it is 

uncomfortable to wear and because of one’s awareness of the tool. This latter point is of 

particular interest because of the previously discussed meta-awareness. One possible 

interpretation of this response is that the awareness of the tool creates a heightened meta-

awareness, thereby leading to less instances of “zone outs”—not unlike a placebo effect. 
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 Another participant expressed that the tool may not be helpful for those who 

already find it difficult to meditate because going through the preparation of wearing the 

cap and running the software could distract them further. In order for a BCI to be an 

effective system, it must be demonstrably reliable in the long-term, easy to set up, use, 

and maintain, and through its use benefit mood, quality of life, and productivity 

(Wolpaw, 2013). Though participants generally agreed that the BCI in the present study 

was easy to use, the fact that this participant indicates that it could be cumbersome to go 

through the preparation of the system suggests that the questionnaire administered 

requires more pointed questions about how useful such a BCI would be in their everyday 

life. This is not necessarily a characteristic inherent only to the UHB—while EEG 

technology is still making great strides in streamlining and improving the hardware, most 

if not all EEGs with satisfactory signal quality are rather cumbersome. It should also be 

noted that many of the participants were recruited from within the Neurocognitive 

Imaging Lab and perceived the UHB as an easy-to-use and convenient device relative to 

the research-grade EEGs they have experience with. In order to assess the UHB’s 

convenience and usability from a consumer level, participants with no previous 

experience with EEG systems should be recruited so as to not affect the data. In addition, 

in a laboratory setting, the participant is neither putting the EEG device on themselves 

nor initializing the BCI and thus this does not replicate a real-world scenario. Perhaps if 

the participants were required to set up the system and equip the EEG device themselves, 

their responses would be different from what is reported here. 

 Another point of interest mentioned by a participant in the questionnaire is that 

the BCI keeps one alert to the external environment which may be distracting. One 
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possible interpretation of this statement is that the audio inherent to the BCI necessitates a 

level of auditory focus that is not generally present in unassisted meditation, leading to 

heightened perception of environmental sounds and thereby increasing the number of 

external distractions. While it seems like a relatively simple solution to incorporate 

headphones into the BCI, this would increase the price, complexity, and comfort of the 

system. As discussed previously, participants already report that the BCI is both 

uncomfortable and perhaps cumbersome. Though headphones could resolve the issue of a 

distracting external environment, they would exacerbate the issues already present. In an 

academic setting, this is less of an issue; in a laboratory, it is generally easier to find a 

quiet space for testing. In a real-world scenario, however, this is far from ideal since 

many people live in environments with plenty of external noise, whether it be from 

family, pets, neighbours, traffic, or otherwise.  

 One participant expressed that the tool may not be helpful because the main 

purpose of meditation is to let one’s mind wander while paying attention to how one is 

thinking and feeling. Though mind wandering can be disadvantageous in some situations 

and outright dangerous in others, it can also be a positive and creative process. This 

participant makes the point that an attention-recovery device is not particularly helpful 

during meditation since the goal of meditation is not necessarily to be focused on 

meditating with full intensity, but rather to be mindful of the thoughts and feelings 

resulting from mind wandering. A meditation BCI is useful in the context of academia 

and research since it is a simple paradigm and there are fewer visual artifacts from sensor 

data to process and filter. However, from a consumer perspective, not only is a 
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meditation BCI uncomfortable, cumbersome, and inconvenient, but it also serves little 

practical function. 
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Chapter 6 Conclusion 

 In conclusion, the UHB is not well-suited for use in a mind wandering BCI at the 

consumer level due to issues arising from both its hardware and software. That said, its 

ease of use when compared to research- and medical-grade EEGs as well as the flexibility 

that the Python API provides would make it an effective learning tool in the context of 

academic institutions and laboratories. Though we can tentatively claim that our 

intervention can successfully correct mind wandering, future research should closely 

examine the processes at work in order to distinguish between mind wandering and audio 

change detection. Similarly, we can cautiously claim that self-caught experience 

sampling is sufficient for use in a mind wandering BCI, though perhaps not in 

conjunction with the selected mind wandering intervention described herein. Lastly, a 

ridge classifier was found to be the most effective machine learning algorithm in terms of 

accuracy within the context of this specific paradigm.  

 At the consumer level, the UHB would not excel in a meditation-based mind 

wandering BCI. Participants report that the device is uncomfortable and that there would 

be some level of burden if required to equip the device in a real-world situation. 

Furthermore, one participant indicated that the BCI meditation paradigm itself may not 

have practical use in the real world. In addition, even though the UHB is considered low-

cost when compared to medical- and research-grade EEGs, it is a sizable investment for 

the average consumer. Since the hardware would also be paired with the actual BCI 

software, this would drive up the price even further. Thus, even in a scenario wherein the 

BCI provided real, practical value to the consumer, the inconvenience, discomfort, and 

cost associated with the BCI may not be able to justify its purchase.  
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 That said, the UHB would perform reasonably well in an academic environment 

as a research or learning tool. Compared to traditional medical- and research-grade EEGs, 

the UHB is more portable, easier to set up, and dry electrode capabilities can provide 

more comfort. The Python API can provide a lot of flexibility to researchers 

experimenting with different paradigms or to those interested in exploring programming 

in the field of BCI research. The BCI meditation paradigm can also be useful in the realm 

of research due to its simple experimental design and the fact that the EEG signal is not 

affected by artifacts from blinking.  

 The evidence reported herein on the intervention designed to correct mind 

wandering is inconclusive and we cannot say with any degree of certainty whether it 

works as intended. While some participants showed evidence of it being effective, most 

did not. Though there are a number of reasons why this could be, it is important to stress 

that the small sample size of this study prevents us from drawing any definitive 

conclusions, whether that be that our intervention does work or does not work. Future 

research should examine this intervention in further detail with a larger sample to 

determine if it is an effective mind wandering intervention, perhaps outside of the context 

of a BCI. One potential study of interest would be to compare the results of the 

intervention used herein with the results produced by that of the oddball auditory 

protocol—does this protocol require tones be used or can its elicited neural activity by 

different auditory stimuli? Until the mechanisms at play are well understood, it is difficult 

to say exactly what should be changed about the design of this study.  

 Results indicate that self-caught experience sampling is an effective method of 

capturing the neural markers of mind wandering, though it is important that there is a 
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distinction between “zone outs” and “tune outs”. It is possible that the mind wandering 

intervention returned inconclusive results because of potential mismatches between the 

neural signatures of these two different types of mind wandering. Future research should 

investigate if probe-caught experience sampling paired with the intervention described 

herein would return more conclusive results.  

 Finally, the ridge classifier algorithm showed the most promising results within 

this specific context, followed closely by the Naïve Bayes and decision tree algorithms. 

Whether these algorithms would retain their high performance once the paradigm 

undergoes the previously outlined changes should be investigated to determine if these 

particular classifiers are performing well due to the nature of the paradigm or due to the 

nature of the BCI.  

 In conclusion, this pilot study outlines the efficacy and practicality of the UHB 

EEG in a meditation-based mind wandering BCI and highlights some key insights into 

the design and theory behind the paradigm. Because of the exploratory nature of the 

study, conclusions drawn herein should be interpreted cautiously and future research 

should endeavour to confirm or deny these results.  
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Appendix 1 

 

Appendix 1. Power spectral density comparisons for both electrodes with gel and no gel. 
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Appendix 2 

 

Appendix 2. The questionnaire administered to participants upon completion of the task. 
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Appendix 3 

 
 
Project title: Project FOCUS: A Free and Open Computer Program for User Meditation Success 
 
Lead researcher:  
Dr. Colin Conrad, Faculty of Management, Dalhousie University, colin.conrad@dal.ca  
 
Other researchers 
Ms. Jenna Beresford, Faculty of Management, Dalhousie University, jn856019@dal.ca  
 
Funding provided by: The study is funded by Dalhousie University. 
 
Introduction 
We invite you to take part in a research study being conducted by, Dr. Colin Conrad, who is a 
researcher at Dalhousie University, and by Jenna Beresford, who is a graduate student at 
Dalhousie University. Choosing whether or not to take part in this research is entirely your 
choice. There will be no impact on your studies if you decide not to participate in the research.  
 
The information below tells you about what is involved in the research, what you will be asked 
to do, and about any benefit, risk, inconvenience or discomfort that you might experience. You 
should discuss any questions you have about this study with Colin Conrad or Jenna Beresford.  
Please ask as many questions as you like.  
 
Purpose and Outline of the Research Study 
As brain-computer interface (BCI) research has become increasingly popular over the years, 
many researchers have been conducting research in the field of brain-computer interface (BCI). 
Electroencephalography (EEG) is the most popular method of neural measurement used in BCIs. 
However, most BCI-related research involves research- and medical-grade EEGs with dense 
electrode arrays which are very expensive for researchers who have minimal or no funding. As 
such, we are interested in if low-cost EEGs featuring a small number of electrodes are viable 
within the context of BCI research. In order to do so, we have built a simple BCI that aims to 
detect mind-wandering during meditation.  
 
EEG measures electrical potentials in your cortical brain areas that will help us to determine the 
patterns in your brain when you experience mind-wandering. EEG is a silent and mobile 
measurement method which will be applied to your head like a cap. You will be asked to 
meditate while wearing the EEG cap to first collect information on the pattern your brain has 
during mind-wandering, then again while we use that information to test whether or not we can 
detect if and when your mind is wandering.  
 
We wish to study this not just to test how a low-cost EEG functions, but also to determine 
whether a BCI can successfully decrease the amount of mind-wandering experienced, thereby 
increasing on-task attention. If successful, this study could encourage the development of a BCI 
used to maintain attention for individuals in high-risk situations such as pilots or drivers. 

mailto:colin.conrad@dal.ca
mailto:jn856019@dal.ca
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Therefore, this study aims to investigate whether a low-cost EEG can successfully detect mind-
wandering and alert the user to recover attention. 
 
 
What You Will Be Asked to Do 
 
This study will take place in the Faculty of Management iLab, located in the Kenneth C. Rowe 
Management Building at 6100 University Avenue, Halifax. We expect that this session will take 
around 60 minutes total. The EEG headcap will be applied to your head and will be calibrated so 
that all electrodes have sufficient connectivity. During application, please inform the researcher 
if you feel any pain and discomfort due to the headcap. It will take about 10 minutes to prepare 
and test the EEG cap. 
 
When all preparations are finished, you will be asked to meditate in front of our interface. As 
you’re meditating, you will be asked to press a button when you become aware of your mind-
wandering. After this, you will be asked to meditate again, but this time without the button 
press—just meditation. During this time, we will play sounds that indicate whether you are 
meditating or if your mind is wandering. When meditating, try not to move your head too much 
in order to prevent the movement of the EEG electrodes. Given the length of the study, 
however, it is understandable if you move your head from time to time. This procedure will take 
approximately between 60-75mins—20mins for set up, 20mins for the first meditation task, 
20mins for the second meditation task, and a combined 15 minutes for a break between tasks 
and the administration of the questionnaire. When both meditation tasks are complete, the EEG 
headcap will be removed from your head. 
 
 
Possible Benefits, Risks and Discomforts 
Participating in the study might not benefit you, but we might learn things that will benefit 
others. 
 
The EEG measures we are using simply record the electrical signals that your body generates. 

Please inform the researcher if you are uncomfortable with having your head being touched, as 

this is required to prepare the equipment. If you feel discomfort or distress caused by the EEG 

set-up or task that we are using, please inform the researcher immediately—the experiment will 

be temporarily halted, and actions will be taken to reduce the sensation of discomfort. You can 

also discontinue your participation in the study at any point. 

Birdsong will be played during the first meditation task while a combination of birdsong and 

traffic noise will be played during the second meditation task. These noises may cause some 

discomfort or distress to some participants—if at any point you are feeling uncomfortable, again 

please inform the researcher immediately so we may halt the experiment to address your 

concerns. 

 
Compensation / Reimbursement 
To thank you for your time, we will give you $20. You will receive this even if you choose to 
discontinue participation in the study early. 
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How your information will be protected: 
No personally identifying information about you will be kept by the research team other than 

your name on the consent form, which will be kept in a locked file cabinet in Dr. Colin Conrad’s 

office for a period of two years, after which it will be destroyed. The data recorded from the 

experiment (EEG, questionnaire) do not contain any personally identifying information and will 

not be linked to your identity, including the name that you provide on this form.  

Anonymous data generated from the information you provide in this research may be shared 

publicly (most likely in digital form via the internet) to advance knowledge. We plan to deposit 

the data in a public research database called the Dalhousie DataVerse repository and in a public 

research database called open science foundation (OSF). We will remove any personal 

information that could identify you before the data are shared in an effort to ensure that no one 

will be able to identify you. Despite these measures, we cannot guarantee your anonymity or 

predict how those who access the data will use them.  

 
If You Decide to Stop Participating 
You are free to leave the study at any time. If you decide to stop participating during the study, 
you can decide whether you want any of the information that you have provided up to that 
point to be removed or if you will allow us to use that information. After you leave the lab, 
however, it will become impossible for us to remove your data because the data is anonymous 
and can no longer be traced back to you. 
 
How to Obtain Results 
We will provide you with a short description of group results when the study is finished. No 
individual results will be provided. You can obtain these results by including your contact 
information at the end of the signature page. 
 
Questions   
We are happy to talk with you about any questions or concerns you may have about your 
participation in this research study. Please contact Colin Conrad (at (902) 494-8378, 
colin.conrad@dal.ca) or Jenna Beresford (jn856019@dal.ca) at any time with questions, 
comments, or concerns about the research study (if you are calling long distance, please call 
collect). 
 
If you have any ethical concerns about your participation in this research, you may also contact 
Research Ethics, Dalhousie University at (902) 494-3423, or email: ethics@dal.ca (and reference 
REB file # 2023-xxxx).   

mailto:colin.conrad@dal
mailto:ethics@dal.ca
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Signature Page 
 
 
Project title: Project FOCUS: A Free and Open Computer Program for User Meditation Success 
 
Lead researcher:  
Dr. Colin Conrad, Faculty of Management, Dalhousie University, colin.conrad@dal.ca  
 
Other researchers 
Ms. Jenna Beresford, Faculty of Management, Dalhousie University, jn856019@dal.ca   
 
 
I have read the explanation about this study. I have been given the opportunity to discuss it and 
my questions have been answered to my satisfaction. I understand that I have been asked to 
take part in a laboratory experiment in which my subjective evaluations are assessed with 
questionnaires and my neural activity is assessed by means of electroencephalography (EEG).  
I agree to take part in this study. My participation is voluntary, and I understand that I am free 
to withdraw from the study at any time during measurements. After the measurement has been 
completed, I can no longer withdraw from the study because my data has been anonymized and 
can no longer be traced back to me. 
 
 
 
 
____________________________  __________________________ 
 ___________ 
Name         Signature  Date 
  
 
 
If you like to receive a two-page results report from the study after all measurements have been 
made, please fill in your email address in the field below: 
 
 
 
Email address: _________________________________  
 

Appendix 3. The consent form provided to participants prior to participating in the study. 
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