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Abstract

Accurate wave predictions safeguard maritime operations, coastal communities, and

marine ecosystems. Significant wave height, an average height of the highest one-third

of the waves recorded during the sampling period, plays a crucial role in analyzing

wave conditions and assessing coastal hazards among various wave fields. Forecasting

significant wave height for various future timeframes, starting from 0.5 hours ahead,

is vital for estimating coastal storm surges, issuing weather warnings, and preventing

coastal disasters, especially during imminent large waves. Numerical methods are

commonly used for wave forecasting; however, due to their computational intensity,

they often require more time. In emergency situations, data-driven models offer faster

wave predictions while maintaining accuracy, for shorter timeframes into the future.

Data-driven forecasting models often treat data reported by buoys individually and

forecast significant wave height based on the historical data of the respective buoy.

Models trained on data from multiple buoys might leverage combined insights. How-

ever, training a single model on all different buoys may reduce forecasting accuracy

when the data is from buoys in different environments. This study proposes a two-

step approach to improve significant wave height predictions on a set of Environment

and Climate Change Canada (ECCC) buoy data. First, we cluster buoys with sim-

ilar data, enabling the formation of clusters with similar environmental conditions.

Second, we train a global forecasting model on each cluster and predict significant

wave height for individual buoys. We evaluate our proposed approach for significant

wave height forecasting using data collected by 28 ECCC buoys distributed across

the Atlantic, Pacific, and Great Lakes regions of Canada. Our results demonstrate

that the clustering-based forecasting models, which leverage the shared patterns and

relationships among multiple related buoy data, show competitive performance com-

pared to the data-driven models trained on individual buoy data or universal model

trained on all buoy data, in extreme events where wave height exceeds 6 meters.
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Chapter 1

Introduction

Ocean waves play a fundamental role in shaping coastal environments, ecosystems,

and a wide range of human activities (Young and Babanin [2020]). Accurate wave

predictions are vital for safeguarding maritime operations, coastal communities, and

marine ecosystems (Davidson-Arnott et al. [2019], Barange et al. [2010]). Among

various wave fields, significant wave height holds particular importance. It represents

the average height (in meters) of the highest one-third of waves during a sampling

period, typically lasting 20 minutes or more, depending on the measurement principles

of the measuring devices. This measurement is essential for analyzing wave conditions,

marine ecosystem assessment (Holthuijsen [2007]), and evaluating coastal hazards

(Tucker [1991]).

Forecasting significant wave height helps to estimate coastal storm surges and

issue coastal weather warnings (Finkl and Makowski [2013]). Forecasting imminent

large waves, specifically extreme significant wave heights, is crucial in protecting

wave energy converters (Li et al. [2012]). Forecasting significant wave heights is

thus a critical area of study, essential for assessing the risk or potential impact on

aforementioned activities. Smart buoys, also called marine environmental monitoring

systems, are one of the sources for collecting information on significant wave height.

Environment and Climate Change Canada (ECCC) maintains several such buoys

along coastal and marine regions of Canada, effectively monitoring and collecting

data related to wave conditions, climate, and environmental factors.

Numerical methods are the most commonly used approach for forecasting waves.

Researchers created initial wave models in the late 1960s and early 1970s that em-

ployed numerical techniques to mimic wave behavior. These numerical models encap-

sulate wave propagation in mathematical differential equations that consider factors

like wind patterns, currents, depths, and coastal features. Environmental and Climate

1
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Change Canada(ECCC), relies on third-generation model numerical model, WAVE-

WATCH III (NOAA National Centers for Environmental Prediction [2005]). Typi-

cally, these numerical models require a high-performance computing infrastructure to

solve the equations, coupled with long time periods (Yoon et al. [2011]).

In case of emergencies arising in the ocean, where rapid wave height predictions

are crucial, faster and dependable forecasting techniques become essential. The chal-

lenges and limitations associated with traditional numerical methods used for pre-

dicting waves lead to the idea of using machine learning methods that require less

computational resources while still being able to provide accurate predictions for

predicting sea wave behavior in the short term. This new approach is considered

interesting because it has the potential to solve the computational difficulties while

still achieving accurate predictions about wave behavior for shorter lead-times (as

discussed by Wang et al. [2018], Berbić et al. [2017]).

Various data-driven models, including statistical, machine learning, and hybrid

approaches are often used for forecasting significant wave height. For instance, Em-

manouil et al. [2020] used Bayesian Networks to forecast significant wave heights in

Liverpool Bay, situated in the eastern part of the Irish Sea. Deka and Prahlada [2012]

utilized Artificial Neural Networks with wavelet transformation to forecast significant

wave height near Mangalore, India, up to 48 hours ahead. Ali et al. [2020b] employed

a multiple linear regression (MLR) model optimized with the covariance-weighted

least squares (CWLS) estimation algorithm to predict near real-time significant wave

height using climate and oceanic inputs.

Existing statistical, machine learning, or hybrid models used for forecasting signif-

icant wave heights rely on data from individual buoys during training. These models

can only predict based on the historical data collected by that specific buoy. Training

a forecasting model with data from multiple buoys would enable the forecasting model

to learn how significant wave height responds to different environmental conditions or

weather events across various regions, leading to better predictions at multiple buoy

locations. Also, during extreme events in coastal regions, certain buoys may have ob-

served unique conditions that other buoys have not yet encountered. A data-driven

model trained on the data with such extreme events could improve predictions for

unseen conditions that other buoys have not yet encountered.
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Across various domains, such as sales forecasting, researchers are exploring the

development of forecasting models that leverage the collective information from mul-

tiple time series. However, this approach has not yet been extended to the specialized

field of significant wave height forecasting. In the context of sales forecasting, Trapero

et al. [2014] employed a pooled regression model by aggregating related time series,

resulting in a 30 percent reduction in observed forecast error compared to forecasts

provided by human experts for reliable promotional predictions in the absence of his-

torical sales data. Hartmann et al. [2015] propose a cross-sectional regression model

for sets of related time series, aiming to address missing values and rapidly attain

accurate forecasting results at diverse aggregation levels, enhancing the model fore-

casting performance. In recent times, following the M4 (Semenoglou et al. [2021])

and M5 (Makridakis et al. [2022b]) competitions, there has been a growing emphasis

on leveraging cross-series information to enhance forecasting accuracy. This trend

reflects the recognition of the potential benefits of considering multiple time series

simultaneously in forecasting tasks. However, training forecasting models across dis-

parate time series may reduce overall accuracy (Bandara et al. [2020]).

Adapting the idea of leveraging cross-series information in the context of signif-

icant wave height forecasting, we hypothesize that within the ECCC buoy dataset

collection, grouping the buoys with similar data, and training a forecasting model on

each group, will lead to improved significant wave height predictions for each buoy

compared to the predictions generated by forecasting models trained on the data from

individual buoy.

We believe training the forecasting model on related buoy data can exploit col-

lective information from multiple buoy data within each group and thereby enhance

the accuracy of significant wave height forecasts for regular daily data and during

extreme events where significant wave heights exceed 6 meters. These enhancements

in significant wave height forecasts are valuable for making maritime activities safer,

improving offshore operations, and reducing the potential damage from unexpected

and extreme waves. Reliable significant wave height forecasts provide valuable in-

formation for navigation, shipping, coastal management, and disaster preparedness,

contributing to safer and more efficient activities in marine environments.
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1.1 Research Objective

Our primary research objective is to enhance significant wave height forecasting for

individual buoy data of the ECCC dataset collection. By leveraging historical data

from related buoys, we seek to provide improved forecasts in coastal and marine

regions during regular and extreme events with significant wave heights exceeding 6

meters.

1.2 Research Methodology and Findings

To achieve our research objective, we propose a two-step approach. First, we identify

similar buoy data through clustering techniques. Second, we train a global forecasting

model on each cluster and use the corresponding clustering-based model to predict

significant wave height for each buoy.

Each buoy records data over time as a sequence of data points, with each data

point containing values of multiple fields measured or reported by the buoy. So

each buoy data can be considered a multivariate time series (Tsay [2013]), leading us

to frame the clustering task as a multivariate time series clustering problem. How-

ever, traditional clustering algorithms, such as centroid-based, hierarchical-based, and

density-based algorithms, are not well-suited for multivariate time series for various

reasons, including high-dimensionality and irregular or unequal lengths (Liao [2005]).

For this reason, we use a feature-based clustering approach where we extract tempo-

ral features from each buoy data and apply traditional clustering algorithms to the

extracted features.

Various clustering algorithms, such as K-means, Affinity, DBSCAN, OPTICS,

and Agglomerative, are tested on the extracted temporal features to select the most

suitable algorithm for grouping buoy data. After clustering the buoy data, we train

a forecasting model on each cluster using the LightGBM algorithm. This forecasting

model considers the 24 most recent measurements of significant wave height and

provides forecasts for forecasting horizons at 1hr, 6hr, and 12hr for each buoy during

regular environmental conditions.

Predicting imminent large waves is useful for coastal disaster prevention and pro-

tecting wave energy converters (Li et al. [2012]). While forecasting significant wave
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height for extended lead times during extreme weather events, such as severe storms

or hurricanes, is crucial for making decisions related to evacuations, resource alloca-

tion, and risk mitigation strategies, shorter-term forecasts for significant wave height,

such as 1-hour predictions, also hold significance in specific contexts. For example,

these 1-hour forecasts help in optimizing ocean wave energy converters. By enabling

operators to make real-time adjustments to converter systems, they maximize energy

extraction from strong waves while prioritizing safety. Moreover, these forecasts sup-

port preventive maintenance efforts, allowing operators to proactively safeguard con-

verters from damage during extreme wave conditions. Additionally, they contribute

to personnel safety by assisting operators in anticipating hazardous wave intensities

and implementing essential safety measures.

Hence, we evaluate the forecasting performance of the clustering-based forecast-

ing models in extreme events where the significant wave heights exceed 6 meters,

considering a forecasting horizon of 1 hour. This evaluation helps assess the ability

of clustering-based forecasting models to accurately predict significant wave heights

during severe weather events such as storms or hurricanes. We conducted all the

experiments using data from 28 active ECCC buoys across Canada.

In our study, we employ silhouette score (Rousseeuw [1987]) to evaluate the ef-

fectiveness of the formed clusters. The silhouette score evaluates clustering quality

by measuring how well data points group within each cluster and how distinct the

clusters are from each other. Our goal is to use plausible clusters of related buoys

for creating models. We leverage the silhouette score as a metric to assess the effec-

tiveness of clustering algorithms. We are particularly interested in observing whether

the clustering algorithm yielding the highest silhouette score corresponds to improved

forecasting results.

Common statistical metrics such as Mean Absolute Error (MAE), Root Mean

Squared Error (RMSE), and R-squared (R2) are widely used in research to assess the

performance of data-driven models for predicting significant wave heights. We use

these metrics to compare the output of trained models with the actual target values.

To evaluate our clustering-based forecasting models, we focus on MAE, which treats

all errors equally. MAE treats both overestimations and underestimations equally

during the evaluation process.
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We compare the MAE values of clustering-based forecasting models with the MAE

values of models trained on each buoy data (referred to as local models) and with the

MAE values of a model trained using data from all buoys (referred to as the universal

model). By comparing MAEs across the ECCC buoy dataset, we can assess how well

our approach performs for each buoy. To assess whether the observed differences in

improvements resulting from the comparison between clustering-based models, local

models, and a universal model are statistically significant or are due to random chance,

we employ a statistical test called the Wilcoxon signed-rank test(Scheff [2016]).

In our experiments, K-means yielded the highest silhouette score of 0.417 among

the tested clustering algorithms, indicating better cluster separation and coherence

than other clustering algorithms. However, the forecasting results based on K-means

clustering did not consistently exhibit the lowest MAE compared to other clustering

approaches such as Affinity, DBSCAN, OPTICS, or Agglomerative. This indicates

that our hypothesis, associating better silhouette scores with enhanced forecasting

results, is not supported.

Examining the forecasting results across 28 buoys, we find that under regular con-

ditions, clustering-based models consistently reported equal or lower MAE (with an

average MAE of 0.11 meters) in comparison to local models for 1-hour forecasts, with

a single exception. In the case of 6-hour and 12-hour forecasts, performance varied de-

pending on the clustering algorithm used. For 6-hour forecasts, the clustering-based

forecasting models exhibited equal MAE for 12 buoys, lower MAE for 11 buoys,

and higher MAE for 5 buoys compared to local models. For 12-hour forecasts, the

clustering-based forecasting models exhibited equal MAE for 10 buoys, lower MAE

for 11 buoys, and higher MAE for 7 buoys compared to local models. In the con-

text of 1-hour forecasts during extreme events, out of 17 buoys, the clustering-based

forecasting models exhibited equal MAE for 6 buoys, lower MAE for 10 buoys, and

higher MAE for 1 buoy compared to local models.

Comparing the results of clustering-based forecasting models and the universal

model across 28 buoys, we find that clustering-based models exhibited either equal

or lower MAE (for 4 buoys) compared to universal models for 1-hour forecasts. For

6-hour forecasts, the clustering-based forecasting models exhibited equal MAE for 17

buoys, lower MAE for 9 buoys, and higher MAE for 1 buoy compared to the universal
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model. For 12-hour forecasts, the clustering-based forecasting models exhibited equal

MAE for 10 buoys, lower MAE for 13 buoys, and higher MAE for 5 buoys compared

to the universal model. In the context of 1-hour forecasts during extreme events,

out of 17 buoys, the clustering-based forecasting models exhibited equal MAE for 4

buoys, lower MAE for 11 buoys, and higher MAE for 2 buoys compared to universal

model.

In summary, our hypothesis is valid during extreme events when significant wave

heights exceed 6 meters. For the 1-hour forecasting horizon, clustering-based mod-

els exhibited significant performance improvements over both local models and the

universal model by an average of 11 centimeters and 2 centimeters respectively, and

with p-values of 0.02 and 0.01. Across 1-hour, 6-hour, and 12-hour forecasts under

regular conditions, clustering-based models reported lower MAE, achieving an aver-

age improvement of 2 centimeters compared to the universal model across 28 buoys.

The corresponding p-value was 0.02. Compared to local models, the p-values are

above 0.05, indicating that there is no significant statistical difference between the

clustering-based models and the local models in terms of forecasting significant wave

heights.

1.3 Outline

The rest of the thesis is structured as follows. Chapter 2 reviews the related work

on significant wave height forecasting models, global or cross-learning models, and

time-series clustering, including literature and architectures of models used in our

study. It also discusses feature extraction techniques, clustering algorithms, algorith-

mic frameworks, and architectures. Chapter 3 defines the problem and discusses the

limitations of current data-driven forecasting models trained on individual buoy data.

Additionally, we describe the problem of forecasting significant wave height from a

time series perspective and provide information on the data source and details about

the buoy data collection.

Furthermore, Chapter 4 presents our research methodology, outlining the approach

and providing the workflow of our proposed clustering-based forecasting models. We

also explain the evaluation process used to verify the effectiveness of the clustering-

based approach. Chapter 5 details the exploratory data analysis conducted on the
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ECCC buoy dataset collection to understand the relation between buoy data fields

and feasibility assessment for clustering. The experiments conducted and their results,

along with an analysis of the results, are presented in Chapter 6. Finally, Chapter 7

concludes the thesis by providing key findings, limitations, and recommendations for

future research.



Chapter 2

Related Work

In this chapter, we will explore the evolution of significant wave height forecasting

models, beginning with traditional numerical models and progressing to the latest

advancements in the field. We will also discuss the concept of global models for time

series forecasting and time series clustering techniques.

Section 2.1 provides an overview of existing numerical models used for predicting

significant wave height, followed by a discussion of data-driven models, including sta-

tistical and machine learning approaches. In Section 2.2, we delve into recent research

on the development of global models for time series forecasting, which leverages in-

formation from multiple related time series. We also present the architecture of the

global forecasting model used in our study. Lastly, in Section 2.3, we review the

techniques employed in the clustering of time series data and present the algorithmic

architecture of the clustering algorithms used in our study

2.1 Significant Wave Height Forecasting : Literature Review

2.1.1 Background on Numerical Models

Wave forecasting numerical models are computer-based simulations used to predict

the behavior of ocean waves, including the significant wave height. These models are

designed to mimic the complex dynamics of waves by using mathematical equations

that consider various factors such as wind patterns, ocean currents, water depths,

and coastal features (Komen et al. [1964]). The concept of wave prediction was first

introduced in the 1960s and 1970s by Komen et al. [1964]. They developed the initial

wave models by representing physical processes through mathematical relations that

approximate the underlying physical laws. However, these early models had limi-

tations as they did not fully calculate the wave spectrum from the energy balance

equation (SWAMP [1985]). Consequently, they overestimated the influence of wind

9
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and neglected nonlinear transfer in the energy balance equation. Due to these short-

comings, the first-generation wave models had challenges in accurately representing

the development of waves.

After conducting extensive wave growth experiments, researchers identified the

relative significance of nonlinear transfer and wind input. Subsequently, Hasselmann

et al. [1985] worked on the development of second-generation wave models over a

period of seven years. According to SWAMP [1985], second-generation wave models

encountered challenges in accurately representing wave characteristics. Specifically,

they struggled to properly simulate complex wave fields generated by rapidly chang-

ing winds, such as those seen during hurricanes, small-scale cyclones, or fronts. This

limitation hindered their ability to provide accurate forecasts in such dynamic and

intense weather conditions. To address the shortcomings of both first and second-

generation wave models, the Sea Wave Modelling Project (SWAMP) was initiated.

The SWAMP project aimed to compare and evaluate ten different wave prediction

models in-depth, including the second-generation models. The project extensively

discussed the limitations observed in these early models and aimed to drive improve-

ments in wave forecasting techniques.

Following the limitations identified in first and second-generation wave models,

Tolman [1999] developed a third-generation model, WAVEWATCH III, with WAve

Model (WAM) as the baseline, to address the shortcomings and improve the accu-

racy of wave forecasting. The WAVEWATCH III model computes the wave spectrum

by integrating the energy balance equation without any preconceived restrictions on

the spectral shape. Over time, the model has been adopted by various institutions

worldwide, with slight variations in its implementation. The latest version of WAVE-

WATCH III, 6.07 (Tolman et al. [2019]), includes the latest scientific advancements

making it more accurate and capable of providing better predictions and simulations

of wave behavior in various oceanic and coastal conditions. Additionally, Booij et al.

[1999] developed another third-generation numerical wave model known as Simulating

Waves Nearshore (SWAN) as an alternative to WAVEWATCH III (WAM) for specific

applications. SWAN was specifically designed to compute random short-crested waves

in coastal regions with shallow water and ambient currents. It addresses some limita-

tions of the WAM model in scenarios where the water depth is less than 20-30 meters,
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making it more suitable for simulating wave behavior in nearshore environments with

complex coastal features and varying water depths.

2.1.2 Data-Driven models

One of the alternative approaches for the aforementioned physically-based models is

data-driven models. As highlighted in the work by Berbić et al. [2017], numerical

models excel in estimating wave characteristics across an entire geographical region,

while the data-driven approach is typically applied to specific locations, particularly

those equipped with buoys. Numerical models rely on measurements from particular

sites to validate their results, whereas data-driven models, including machine learning

methods, necessitate measured data that includes input variables like wave height,

period, wind velocities, fetch, air pressures, and temperatures along with desired

output like wave height or wave period. In scenarios with time limitations, data-

driven models offer efficiency advantages, making them suitable for swift short-term

predictions of sea waves. Researchers have employed various data-driven models,

encompassing statistical and machine learning approaches, to forecast significant wave

height. We delve into these models in the subsequent sections.

Statistical Models

Traditional forecasting models, like ETS, ARIMA, or Theta, have been widely in

time series forecasting (Hyndman and Khandakar [2008]). However, statistical mod-

els like Seasonal Autoregressive Integrated Moving Average (SARIMA) (Box et al.

[1994]) were used for forecasting significant wave height. Yang et al. [2019] have

used SARIMA models to predict long-term wave height in specific regions, such

as the South China Sea and Adjacent Waters, using third-generation wave model

WAVEWATCH-III simulated data and observed Root Mean Squared Error (RMSE)

of 0.339m for 12-step prediction.

SARIMA models are built on the assumption that time series data can be di-

vided into trend, seasonality, and random components (Hyndman and Athanasopou-

los [2018]). The trend component represents long-term behavior, the seasonality

component captures periodic patterns, and the random component accounts for short-

term variability or noise. By separating these components, the SARIMA model can
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effectively model the relationships between variables. However, it is essential to note

that SARIMA models handle data with regular and predictable seasonal patterns

((Wang et al. [2021])), while significant wave height in oceans often exhibits irregular

and unpredictable fluctuations (Woolf et al. [2002]).

Machine Learning Models

Machine learning models are alternatives to traditional statistical models and they

possess the ability to capture relationships, trends, or structures within the data.

They have the capabilities to account for temporal dependencies and handle variable-

length sequences, which is useful in modeling time series data (Längkvist et al. [2014]).

In the context of significant wave height forecasting, various machine learning

techniques have been applied. For instance, James et al. [2018] trained a multi-

layer perceptron model as a surrogate for the physics-based SWAN model to simulate

the wave field in Monterey Bay. Their study revealed that the multi-layer perceptron

model exhibited superior performance compared to the physics-based SWAN model in

terms of Root Mean Squared Error (RMSE), resulting in up to 80 percent reduction

in errors. Similarly, Berbić et al. [2017] used Support Vector Machine (SVM) and

Artificial Neural Networks (ANNs) to predict significant wave height at two different

locations in the Adriatic Sea. They compared the results with the predictions of

numerical models for an 11-step forecast. Their study found that SVM performed

better overall than the neural networks and numerical models, achieving an average

MAE of 0.137 meters.

In another study, Nikoo and Kerachian [2017] developed an Artificial Immune

Recognition System (AIRS) for predicting significant wave height with different time

lags in Lake Superior, North America. They compared the results with five other

models, including artificial neural networks, support vector regression, bayesian net-

works, and rough set theory. The results showed that both the AIRS and artificial

neural network models outperformed the other data-driven models. AIRS performed

exceptionally well in predicting significant wave heights specifically during extreme

weather events, with a Root Mean Squared Error (RMSE) of 0.139 meters.

Similarly, Shamshirband et al. [2020] used three models, namely artificial neural

networks (ANNs), extreme learning machines (ELM), and support vector regression
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(SVR), to predict wave heights at Bushehr and Assaluye ports. Comparing the results

of the different machine learning-based models indicated that ANNs, ELM, and SVR

models provided similar predictions for both stations. However, the ELM model

slightly outperformed the others, achieving a Mean Absolute Error (MAE) of 0.21

meters.

Deep learning models, such as Recurrent Neural Networks (RNNs) and Long-Short

Term Memory Networks (LSTMs), have proven to be effective in capturing non-linear

and hierarchical dependencies within data. For instance, Sadeghifar et al. [2017]

employed Nonlinear Autoregressive eXogenous inputs (NARX) with RNNs to predict

coastal wave height in the South Caspian Sea, achieving an RMSE of 0.38 meters for

a 12-step prediction. Similarly, Fan et al. [2020] utilized LSTMs for significant wave

height prediction, covering a forecasting range from 1 hour to 3 days. Additionally,

Song et al. [2022] used the deep learning method, Convolutional Long-Short Term

Memory Networks(ConvLSTM) with a masking technique to predict significant wave

height across the entire Beibu Gulf, showing promising results compared to other

ConvLSTM variants with different inputs.

Researchers have also explored variants of machine learning models and hybrid

approaches, combining various data-driven models to forecast significant wave height

at different locations (Ali et al. [2021], Londhe et al. [2016], Ali et al. [2020a], Ali et al.

[2020b], Dixit et al. [2015], Dogan et al. [2021]). However, a common limitation of

these studies is their focus on training and forecasting for a single location or specific

time series data. The potential of leveraging cross-series information across various

locations and related buoy datasets remains untapped in these studies.

Model Evaluation and Comparison in Significant Wave Height

Forecasting Studies

In the aforementioned studies, statistical metrics like Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE), and R-squared (R2) were used to evaluate ma-

chine learning models for significant wave height forecasting with varying inputs and

forecasting horizons. These metrics provide valuable insights into the performance

of the models, with lower values indicating higher accuracy and better agreement

between the prediction of the models and observed data. The studies compared their
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proposed model metrics with those of various other model metrics to determine which

one exhibits superior performance.

However, a notable observation in these studies is that none of them explicitly

defines how much difference in MAEs is considered substantial enough to prefer one

model over another. For instance, it is demonstrated that SVM improves accuracy,

for some time steps, in the study by Berbić et al. [2017], where SVM reported an

MAE of 0.137 meters and ANNs reported an MAE of 0.142 meters. Shamshirband

et al. [2020] considered ELM as a better model with an MAE of 0.21 meters than

ANNs with an MAE of 0.22 meters. Despite this lack of a clear benchmark, these

studies consistently prioritized the reduction of prediction errors, with low MAE or

RMSE being a key factor in evaluating model performance.

2.2 Global or Cross-Learning Models

2.2.1 Literature review

Although cross-series information across various locations remains untapped in wave

height forecasting, it has been actively explored in other domains of time series fore-

casting, particularly after the M4 competition. The main principle behind this ap-

proach is to develop global models (Januschowski et al. [2020]) that leverage informa-

tion from multiple time series simultaneously, rather than creating separate models

for each series (referred to as local models in our study).

A few studies have incorporated cross-series learning into their forecasting models

using deep neural networks. For instance, the winning solution of the M4 competition

(Smyl [2020]) approach combining exponential smoothing methods, machine learning

techniques, and hierarchical forecasting to achieve the best performance over a wide

range of domains, including sales, finance, inventory, and more. Similarly, Salinas

et al. [2020] used DeepAR to produce accurate probabilistic forecasts, based on train-

ing an auto-regressive recurrent network model on a large number of related time

series, specifically focusing on electricity and traffic data. Bandara et al. [2020] em-

ployed a clustering-based approach for forecasting across time series databases using

recurrent neural networks. The results showed that their approach outperformed the

winning model of the CIF2016 forecasting competition (Štěpnička and Burda [2017])
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in terms of forecasting accuracy.

More recently, following the M5 competition (Makridakis et al. [2022b]), Light-

GBM (Ke et al. [2017]), a decision tree-based machine learning approach, has gained

significant recognition as a superior cross-learning forecasting model. The M5 compe-

tition focused on accurate predictions for 42,840 hierarchical time series representing

Walmart sales. Participants were required to submit 30,490 point forecasts for var-

ious levels of aggregation. According to Makridakis et al. [2022a], LightGBM was

employed by almost all of the top 50 competitors, and the top 5 winning teams

achieved accuracy improvements greater than 20 percent compared to previous com-

petitions. This success highlights the effectiveness of LightGBM in handling multiple

related series, making it an excellent choice as a global forecasting model.

2.2.2 LightGBM for global forecasting models

The success of LightGBM in various forecasting problems across different domains

highlights its robustness and ability to handle complex data interactions and missing

values. For instance, researchers in Deng et al. [2021] achieved significant forecasting

improvements by using LightGBM to predict daily sales for an online retail platform,

surpassing the performance of LSTM and XGBoost models. Likewise, in the domain

of energy consumption, Di Persio and Fraccarolo [2023] demonstrated the superiority

of LightGBM in accurately forecasting hourly electricity consumption in commercial

buildings compared to models like ARIMA and random forest. Additionally, Light-

GBM has exhibited its effectiveness in cryptocurrency forecasting, as evidenced by

Sun et al. [2020], where it outperformed LSTM and ARIMA models in predicting

the prices of three cryptocurrencies. Given the extensive evidence of the superior

performance of LightGBM in diverse forecasting scenarios, we have selected it as the

forecasting model for our study.

LightGBM: LightGBM (Light Gradient Boosting Machine) is an open-source gra-

dient boosting framework that uses tree-based learning algorithms. It is developed

by Ke et al. [2017] and it is designed to be efficient in terms of memory usage and

training speed while maintaining high accuracy. This algorithm is based on the Gra-

dient Boosting Decision Tree (GBDT) algorithm. However, it differs from other
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GBDT algorithms in several ways, such as its handling of categorical features, the

use of the histogram-based approach for binning, and the way it handles missing data.

LightGBM also employs a novel algorithm called Gradient-based One-Side Sampling

(GOSS) that reduces the training time and memory usage by sampling the data

instances based on their gradients.

The following is a brief overview of LightGBM

1. Decision Trees: LightGBM builds decision trees that partition the data into

smaller subsets based on a set of splitting criteria. Each tree consists of nodes

and leaves, where the nodes are the splitting points and the leaves are the

terminal points that contain the predicted output.

2. Gradient Boosting: This algorithm uses a gradient boosting approach to com-

bine multiple decision trees into an ensemble. The idea is to add new trees to

the ensemble that improve the accuracy of the current prediction. The gradient

descent algorithm is used to optimize the loss function.

3. Objective Function: The objective function in LightGBM is a combination of

the loss function and a regularization term. It is defined as follows:

Obj(ϕ) =
n∑

i=1

l(yi, f(xi;ϕ)) +
K∑
k=1

Ω(zk)

where ϕ is the model parameters, l is the loss function, f is the prediction

function, xi is the input data, yi is the target output, K is the number of trees

in the ensemble, and Ω(zk) is the regularization term.

4. Splitting Criteria: This algorithm uses a histogram-based approach to select

the best-split points for each node in the decision tree. The histogram-based

approach groups the continuous features into discrete bins and then selects the

best-split point based on the distribution of data within each bin.

5. Leaf-wise Tree Growth: This algorithm uses a leaf-wise tree growth algorithm,

where each new split is made on the leaf that will result in the largest reduction

in the loss function. This approach lead to faster training times and better

accuracy compared to other algorithms that use level-wise tree growth.
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6. Categorical Features: It has built-in support for categorical features, which are

usually represented as integer values. The algorithm can automatically handle

categorical features by splitting them based on the values of the integers.

7. GPU Acceleration: It supports GPU acceleration for training and prediction,

which can significantly speed up the process and handle larger datasets.

2.3 Time Series Clustering

Time-series data are dynamic, with feature values changing over time. Clustering

time series data presents unique challenges, such as selecting appropriate similarity

measures, handling varying lengths of samples, and representing time series with

suitable features (Liao [2005]). Various algorithms have been developed for clustering

different types of time series data, depending on the type of application. The survey

by Liao [2005], described three main approaches to whole time-series clustering: a raw-

data-based approach where clustering is directly based on the distance calculated on

the raw data points, a feature-based approach where features are extracted from the

raw data and clustering algorithms are applied on the extracted feature vectors, and

model-based approaches where model parameters are extracted from the raw data

and then clustering algorithms are applied on the extracted model parameters.

In the raw-data-based clustering approach, performance is greatly influenced by

the distance metric used. Aghabozorgi et al. [2015] discuss distance measures for

time series clustering and highlight the challenges of identifying a suitable distance

metric for raw time series data, especially when the data has noise, different lengths,

and different dynamics. Similarly, Fraley and Raftery [2002] highlights that model-

based approaches can be sensitive to the choice of initial starting values, particularly

for complex models with many parameters. In contrast, feature-based clustering

techniques do not rely on a distance metric to capture the similarity of point values

and instead use sets of global features obtained from a time series to summarize and

describe the salient information of the time series (Fulcher [2018]). Therefore, feature-

based approaches do not suffer from the challenges of identifying a suitable distance

metric for raw time series data or the sensitivity to the choice of initial starting values

that model-based approaches face.
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Feature-based clustering involves extracting global features from data before ap-

plying clustering algorithms to group similar data points based on these extracted

features. The global features capture complex temporal patterns produced by various

underlying mechanisms on different timescales and represent them as low-dimensional

vectors, providing valuable insights into the generative processes behind the time se-

ries (Fulcher [2018]). Given these advantages, we choose to focus on feature extraction

techniques followed by traditional clustering for our use case.

2.3.1 Feature Extraction Techniques: Literature

Time series feature extraction has a broad literature in various fields. This approach

can be more interpretable and more resilient to missing and noisy data. At first, many

researchers started extracting basic features like max, min, skewness, and generic pat-

terns such as peaks but later on, researchers in various fields analyzed time series and

explored specialized features. For instance, Mierswa and Morik [2005] extracted fea-

tures related to peak sounds that are helpful to classify audio data, Yen and Lin [2000]

extracted wavelet-based features to monitor vibrations, Fulcher and Jones [2014] col-

lected more than 9000 features from 1000 different feature-generating algorithms that

are discussed in fields such as medicine, astrophysics, finance, mathematics, climate

science, industrial applications.

In the literature, several feature extraction packages are available to analyze time

series data. Notable examples include FATS (Nun et al. [2015]), designed initially

for astronomical light curve data but applicable to various applications, CESIUM

(Naul et al. [2016]), which offers an end-to-end time series analysis framework with a

Python library and web front-end interface, and HCTSA (Fulcher and Jones [2017]),

enabling extensive feature extraction and comparison of over 7,700 features from

interdisciplinary time-series analysis literature. Additionally, TSFRESH (Christ et al.

[2018]) and TSFEL (Barandas et al. [2020]) are feature extraction packages that focus

on statistical hypothesis tests and comprehensive analysis of temporal complexity.

TSFRESH, in particular, provides an automatic configuration of statistical tests based

on the machine learning problem and feature type, while TSFEL classifies features

into temporal, statistical, and spectral domains, expanding its scope for in-depth

temporal feature analysis. These packages offer a diverse set of tools for extracting
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relevant features from time series data, catering to various applications and machine

learning models.

The success of TSFEL in various forecasting problems across different domains

highlights its effectiveness and versatility as a feature extraction algorithm. Its ability

to handle big data and extract meaningful features from time series data has made it a

valuable tool in diverse applications of time series analysis tasks (Kurian et al. [2021],

Tlachac et al. [2021], Bhattacharyya et al. [2021]). Given the presence of sensor noise

and missing readings, TSFELs robustness and efficiency in feature extraction in these

cases with less computation time (Henderson and Fulcher [2021]) make it a suitable

choice for our study.

2.3.2 Clustering Algorithms

Clustering is a fundamental technique in machine learning and data analysis used to

group similar data points into distinct clusters based on their similarities. The pri-

mary goal of clustering is to identify inherent patterns, structures, or natural group-

ings in the data without the need for predefined labels or categories. The process

involves assigning each data point to a cluster in such a way that points within

a cluster are more similar to each other than to points in other clusters. Xu and

Wunsch [2005] provides a survey on clustering algorithms for data sets appearing in

statistics, computer science, and machine learning, and illustrate their applications

in various problems. Also, Berkhin [2006] gives an overview of different clustering

methods. In this study, we apply conventional clustering algorithms to the extracted

features to find the optimal groupings between the buoy data. We test different

kinds of clustering algorithms, including K-means, Affinity, DBSCAN, OPTICS, and

Agglomerative algorithms, to assess the robustness of the proposed framework.

Clustering Algorithmic Frameworks and Architectures

K-means: K-means was originally proposed by MacQueen [1967] and is a widely-

used and straightforward clustering technique that is often employed to address clus-

tering problems. The method involves partitioning the given dataset into k clusters,

where k is determined by the user. The main idea behind K-means is to identify k

groups of data, with each group represented by a centroid at the center of the data.
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The objective function J is given as follows

Minimize J =
k∑

i=1

∑
x∈Ci

|x− µi|2

Here, k represents the number of clusters, Ci represents the ith cluster, x represents

the data points in the cluster, and µi represents the centroid of the ith cluster. The

objective function quantifies the sum of squared distances between data points and

their assigned centroids. By minimizing the objective function, K-means aims to

find the optimal positions for the cluster centroids such that the within-cluster vari-

ation is minimized. The algorithm iteratively updates the centroid positions until

convergence, resulting in the final partitioning of the data into k clusters.

The procedure of the K-means algorithm is composed of the following steps

1. Initialization: Suppose we decide to form k-clusters for any given dataset. Now

take k distinct random points. These points represent the initial group of cen-

troids. As these centroids changes after each iteration before clusters are fixed,

these can be chosen randomly.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the k centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move within a reasonable

threshold. This produces a separation of the objects into groups from which

the metric to be minimized can be calculated.

The only difference between K-means and K-medoids is that K-means uses the mean

of all data points within each group to define the center of a cluster, and K-medoids

use an actual data point in the cluster that is closest to all other points. From a

performance perspective, we have conducted experiments with K-means.

Affinity Propagation: Affinity Propagation proposed by Frey and Dueck [2007]

is a clustering algorithm that operates based on the concept of "message passing"

between data points. Unlike other clustering algorithms, Affinity Propagation does

not require a predefined number of clusters. Instead, it determines the number of
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clusters based on the data itself. The algorithm starts by assigning each data point as

its own exemplar. It then iteratively updates "responsibility" and "availability" values

for each pair of data points. The responsibility value reflects how well-suited a point is

to be the exemplar for another point, considering the similarity between their features.

The availability value represents how well-suited a point is to be assigned to a cluster

based on the exemplars of other points. During each iteration, the responsibility and

availability values are updated based on messages exchanged between data points.

The algorithm continues to iterate until convergence is reached. At convergence, the

exemplars are determined based on the responsibility and availability values. Each

data point is then assigned to the cluster represented by its corresponding exemplar.

Following steps outline the main procedure of the Affinity Propagation algorithm.

1. Similarity Matrix: Calculate the similarity between all pairs of data points using

a similarity function. The similarity function, s, could be any function that

measures the similarity or dissimilarity between data points. Let the similarity

between data points i and j be represented by s(i, j).

2. Responsibility: Initialize the responsibility matrix r(i, j) to θ for all data points

i and j. The responsibility matrix represents the amount of responsibility that

point i assigns to point j to be its exemplar.

3. Availability: Initialize the availability matrix a(i, j) to θ for all data points i

and j. The availability matrix represents the amount of availability that point

j has for being an exemplar.

4. Message Passing: For each iteration t, update the responsibility and availability

matrices using the following equations:

Responsibility Update: r(i, j) = s(i, j)−maxk ̸=j(a(i, k) + s(i, k))

Availability Update: a(i, j) = min
(
0, r(j, j) +

∑
k ̸=i,k ̸=j(max(0, r(k, j)))

)
5. Exemplars: After convergence, the exemplars are the data points that have the

highest value of the sum of the responsibility and availability matrices:

e(i) = argmaxj(r(i, j) + a(i, j))
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where e(i) is the exemplar of data point i.

6. Clustering: Assign each data point to its corresponding exemplar to form clus-

ters. The algorithm can be formulated mathematically using the following equa-

tions:

s(i, j) - the similarity between data points i and j

r(i, j) - the responsibility of point i to point j

a(i, j) - the availability of point j for being an exemplar

e(i) - the exemplar of data point i

Initialization: R(i, j) = 0, A(i, j) = 0

Responsibility Update: r(i, j)t+1 = s(i, j)−maxk ̸=j(a(i, k) + s(i, k))t

Availability Update: a(i, j)t+1 = min 0, r(j, j)t +
∑

k ̸=i,k ̸=j max 0, r(k, j)t

Exemplars: e(i) = argmaxj(r(i, j) + a(i, j))

After assigning data points to their corresponding exemplars, the algorithm forms

clusters by grouping together data points with the same exemplar. Overall, the AP

algorithm aims to find a set of exemplars that represent the input data set and to

group similar data points together into clusters based on their similarity.

DBSCAN: The DBSCAN (Density-Based Spatial Clustering of Applications with

Noise) algorithm introduced by Ester et al. [1996], depends on a density-based notion

of clusters. The algorithm groups together the points that are closely packed together

and classify them as a cluster. It defines a neighborhood around each point and

then looks for densely populated neighborhoods. Points that are not within these

dense neighborhoods are classified as noise or outliers. The algorithm has two main

parameters: epsilon (ϵ), which defines the radius of the neighborhood around each

point, and minPts, which defines the minimum number of points required to form a

dense neighborhood.

The procedure of the DBSCAN algorithm is composed of the following steps

1. Initialize the algorithm by selecting an arbitrary point from the dataset and

checking its ϵ-neighborhood, which consists of all points that are within a dis-

tance ϵ from the selected point.
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2. If the ϵ-neighborhood contains at least the minimum number of points (minPts),

then the selected point is marked as a core point, and all points in its ϵ-

neighborhood are added to its cluster.

3. Repeat the process for all points in the core points ϵ-neighborhood until there

are no points to add added to the cluster.

4. If the ϵ-neighborhood does not contain enough points, the selected point is

marked as a border point and added to a cluster if it is in the ϵ-neighborhood

of a core point.

5. If the selected point is neither a core nor a border point, it is marked as a noise

point and excluded from any cluster.

6. Steps 1 to 5 are repeated until all points have been assigned to a cluster or

marked as noise.

In summary, DBSCAN starts with an arbitrary point and iteratively expands clusters

by adding points that are close to core points. Border points are assigned to clusters,

while noise points are discarded.

OPTICS: OPTICS (Ordering Points To Identify the Clustering Structure) algo-

rithm proposed by Ankerst et al. [1999] is a powerful clustering method that can

identify clusters of various shapes and sizes. It can handle noise and outliers effec-

tively, and it can detect clusters of different densities and shapes. Unlike k-means or

hierarchical clustering algorithms, OPTICS does not require the number of clusters

to be specified beforehand. The algorithm utilizes two parameters: ϵ, that describes

the maximum distance (radius) to consider, and MinPts, that describes the number

of points required to form a cluster.

In OPTICS algorigthm a point p is a core point if at least MinPts points are

found within its ϵ-neighborhood Hϵ(p) (including point p itself). Each core point is

assigned a core distance, which represents the distance to its MinPtsth closest point.

This implies:

core− distϵ,MinPts(p) =

undefined, if |Hϵ(p)| < MinPts

minq∈Nϵ(p),q ̸=p d(p, q), otherwise.
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The reachability distance(r-dist) of another point o from a point p is either the dis-

tance between o and p, or the core distance of p, whichever is bigger. This implies:

r − distϵ,MinPts(o, p) =

undefined, if |Hϵ(p)| < MinPts

max(core-distϵ,MinPts(p), d(p, o)), otherwise.

If p and o are nearest neighbors, this is the ϵ’< ϵ we need to assume to have p and o

belong to the same cluster.

The procedure of the OPTICS algorithm is composed of the following steps

1. Calculate the pairwise distances between all points in the dataset.

2. Choose a distance threshold (ϵ) and a minimum number of points (minPts) for

the clustering.

3. For each point, calculate its local density by counting the number of points

within a distance of ϵ.

4. For each point, calculate its reachability distance, which is the maximum dis-

tance to a core point along a path of points with increasing density.

5. Order the points based on their reachability distance, with the lowest values

first.

6. Traverse the ordered list of points and update the reachability distances of their

neighbors as necessary.

7. Identify clusters by extracting the local maxima in the reachability distance

plot.

In summary, the OPTICS algorithm offers a flexible and robust approach for

identifying clusters of various shapes and sizes, providing a valuable tool for data

analysis and pattern recognition.

Agglomerative: Agglomerative hierarchical clustering is a bottom-up clustering

method where each observation begins in its own cluster, and pairs of clusters are

merged based on their similarity. This process continues until all observations be-

long to a single cluster, resulting in a dendrogram that illustrates the hierarchical
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relationships between the clusters. The algorithm can be divided into two phases:

merging and cutting. In the merging phase, the two most similar clusters are itera-

tively merged, while in the cutting phase, the dendrogram is cut at a certain level to

obtain the desired number of clusters. The procedure of Agglomerative hierarchical

clustering can be summarized as follows:

1. Assign each data point to its own cluster.

2. Compute the proximity matrix that contains the distances between each pair

of clusters.

3. Merge the two closest clusters into a single cluster.

4. Update the proximity matrix by computing the distances between the new clus-

ter and each of the remaining clusters.

5. Repeat steps 3-4 until all data points are in a single cluster, or until the desired

number of clusters is reached.

6. Construct a dendrogram to represent the hierarchical structure of the clustering.

Here, the proximity between two clusters can be measured using various distance met-

rics, such as Euclidean distance or cosine similarity. Different linkage criteria, such as

single linkage (minimum distance), complete linkage (maximum distance), or average

linkage (average distance), can be employed to determine the distance between two

clusters. The choice of distance metric and linkage criteria can significantly impact

the resulting clusters and dendrogram, providing different perspectives on the data

grouping patterns and hierarchical structure.



Chapter 3

Problem Definition and Buoy Data Description

In this Chapter, we define the problem and highlight the limitations of existing data-

driven forecasting models trained on individual buoy data in Section 3.1. In Section

3.2, we describe the data source for ECCC buoy data collection and a description of

the buoy data. Lastly, in Section 3.3, we explain our predictive goal and the measure

of success in our study.

3.1 Problem Definition

In the context of machine learning, the task of predicting significant wave height is

approached as a time series problem. This involves transforming the accumulated

historical data of significant wave heights over time into a univariate time series.

Various machine learning models, as listed in Section 2.1.2, are commonly used for

forecasting the significant wave height of a buoy at a specific global location.

This study focuses on increasing the accuracy (or minimizing prediction errors)

of significant wave height for each buoy within 28 ECCC buoys located across the

Pacific, Atlantic, and Great Lakes of Canada. We forecast significant wave heights

with 1hr, 6hr, and 12hr forecasting horizons under normal conditions, providing a

single value prediction for each hour in the case of 6hr and 12hr forecasts. During

extreme events characterized by wave heights exceeding 6 meters, we focus on 1-hour

forecasts.

3.2 Dataset Collection and Description

The buoy dataset collection (ECCC) contains the data collected from 28 buoys across

Canada. These buoys actively report data every hour, each with their unique wave

sampling period start time. Among the 28 buoys, 16 are positioned along the Pacific

Ocean coast, 8 are situated within the Great Lakes and St. Lawrence Seaway, and

26
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Figure 3.1: Buoy locations across Canada

4 are placed along the Atlantic Ocean coast. These buoys are maintained by En-

vironment and Climate Change Canada (ECCC), and their geographic locations are

shown in Figure 3.1. The data collected by the buoys are made available to the public

by the Marine Environmental Data Service (MEDS), a division of the Department of

Fisheries and Oceans Canada (Fisheries and Oceans [2019]).

Each buoy data encompasses wave fields such as significant wave height, maximum

wave height, wave period, and other Meteorological and Oceanographic fields, along

with buoy station ID and reporting time. Table 3.1 describes the fields in the buoy

dataset. The buoy data is recorded at 1-hour intervals. Each buoy independently

collects its data. Buoys may have different sampling periods, like 20 minutes or

40 minutes, depending on the measurement principles of the devices and distinct

wave acquisition start times. To ensure a consistent time frame across all buoys, we

standardize the data by grouping it hourly.

Buoy data is collected from sensors, so it is common to encounter missing values

for certain fields and noisy data. In the context of buoy data, noisy data refers to

information that contains errors or inconsistencies, typically arising from issues like

sensor inaccuracies or incorrect measurements. The percentage of missing data for
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Fields related to Wave Height
VCAR Characteristic significant wave height (calculated by MEDS) (m)
VWH$ Characteristic significant wave height (reported by the buoy) (m)
VCMX Maximum zero crossing wave height (reported by the buoy) (m)
Fields related to Wave Period
VTPK Wave spectrum peak period (calculated by MEDS) (s)
VTP$ Wave spectrum peak period (reported by the buoy) (s)
Meteorological & Oceanographic fields
WDIR Direction from which the wind is blowing (° True)
WSPD Horizontal wind speed (m/s)
WSS$ Horizontal scalar wind speed (m/s)
GSPD Gust wind speed (m/s)
ATMS Atmospheric pressure at sea level (mbar)
DRYT Dry bulb temperature (°C)
SSTP Sea surface temperature (°C)

Table 3.1: Various fields reported by buoy

each buoy is given in Appendix A.2. The median percentage of missing data across

all buoys in the dataset ranges from 11 percent to 48 percent.

From Table 3.1, we see that there are duplicate fields for characteristic significant

wave height (VCAR) and wave spectrum peak period (VTPK). Of these duplicate

fields, the buoy reports one, and the other variable is recomputed from the spectra

by MEDS. However, since 2 April 2020, MEDS discontinued recomputing significant

wave height and peak period from the spectra. Although the rationale for this recal-

culation by MEDS has not been explicitly stated, we observed an average difference

of 2 centimeters between the recalculated values and those directly reported by the

sensors on the buoys.

3.3 Predictive Goal and Measure of Success

The main objective of our study is to improve the accuracy of significant wave height

forecasting across all the ECCC buoys. We measure the success of the forecasting

models, each trained on a group of related buoy data, by assessing the reduction in

error achieved by the proposed model under both regular conditions. As per NOAA

[2005], during extreme events, the average wave height of the highest 10 percent of
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Figure 3.2: Significant Wave Height Time Series measurements for Buoy C44150.
Redline marks wave heights above 6 meters.

the wave will be around 7 meters (which are rare as shown in Figure 3.2). We have

considered the significant wave heights exceeding 6 meters, as this would consider the

records close to 7 meters as well.

To assess whether the forecasting models trained on groups of related buoy data

have improved the forecasting performance of significant wave height across all ECCC

buoys, we first collect the baseline level of performance. In the existing literature,

only one research study by Fasuyi et al. [2020] measured the Mean Absolute Error

(MAE) for one of the 28 ECCC buoys using the Random Forest model. Since this

study focuses on multiple buoys, we establish a baseline for comparison across all 28

ECCC buoys.

To create this baseline, we train individual forecasting models for each of the

28 buoys. For our comparison, we adopt the same model architecture (LightGBM)

for training the individual buoy-based models and the proposed forecasting models

that leverage cross-series information. Furthermore, we assess whether our proposed

forecasting models improve performance compared to a single model trained on all

28 buoys.

As highlighted in subsection 2.1.2, the literature commonly uses statistical met-

rics, such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and

R-squared (R2), to evaluate the performance of data-driven forecasting models, em-

ploying either one or a combination of these metrics. Also, in the literature, the model

with the lowest error is typically considered more accurate for significant wave height
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forecasting. Our study uses the Mean Absolute Error (MAE), which treats all errors

with equal weight, as our evaluation metric. During our comparative analysis for

each buoy, we compare the MAE of our proposed forecasting models with the MAE

of individual buoy-based models and the model trained on all buoys separately. We

also prioritize the model that demonstrates the lower error, following the common

practice in the literature.

We use the Wilcoxon signed-rank test (Scheff [2016]), to assess whether a signifi-

cant difference in improvement is achieved (across the entire ECCC buoy dataset) by

the proposed forecasting models compared to the baseline models. Subsection 4.3.2

details the Wilcoxon signed-rank test and how it helps with decision-making.



Chapter 4

Methodology

In this chapter, we describe our research methodology. In Section 4.1, we outline the

proposed approach. In Section 4.2, we present the workflow of our proposed approach,

covering the data preparation, the process of clustering, and training forecasting mod-

els, along with the methods used. In Section 4.3, we explain the evaluation process

used to verify the effectiveness of both the clustering algorithms and forecasting mod-

els.

4.1 Proposed Approach

This study aims to enhance the forecasting performance of significant wave height for

each buoy within the ECCC buoy dataset collection by leveraging historical data from

multiple related buoys. To achieve this, we propose a two-phase approach. First, we

cluster the buoy data based on their wave patterns and environmental conditions to

identify related buoys. Second, we train a global forecasting model on each cluster

of related buoys, which we refer to as clustering-based models. This approach is

depicted in Figure 4.1.

Before delving into clustering the buoy data, let us look at the buoy data from

a time series perspective. To illustrate this, we will use one of the buoy datasets

(C44137) as an example. This understanding helps formulate our approach for clus-

tering the buoys and training a forecasting model for each cluster.

Buoy dataset
collection

Train a model on
each cluster

Cluster buoys with
shared patterns

Figure 4.1: Proposed Approach for Significant Wave Height Prediction
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Figure 4.2: Sample Data points of the buoy with station id C44137

4.1.1 Buoy DataSet Collection from Time series Perspective

A univariate time series involves only one variable observed over time, while a mul-

tivariate time series involves multiple variables observed over time, each forming its

own time series (Wilson [2016]). Each buoy data is a multivariate time series because

it contains multiple variables or measurements recorded for each observation at reg-

ular intervals. For example, consider the buoy with station id C44137, which collects

ten distinct Meteorological and Oceanographic measurements, apart from sampling

collection start time and buoy station id, every hour (Figure 4.2). The collected data

for this buoy forms a time series, where each data point consists of values for all ten

distinct fields at each reported timestamp.

4.1.2 Clustering Buoy Data

Various approaches can be employed to identify related buoy data, such as manual

selection based on domain knowledge or automated techniques like clustering. We

use clustering techniques to group similar buoy data based on shared wave patterns

and environmental conditions.

As mentioned in Section 4.1.1, each buoy data is a multivariate time series, leading

us to frame the clustering task as a multivariate time series clustering problem. We

employ time series clustering to group buoy data, specifically adopting a feature-

based approach. In this approach, we first extract temporal features from each field

for each buoy data. These temporal features then become inputs for traditional

clustering algorithms, enabling us to form clusters of related buoys based on their
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wave patterns and environmental conditions. Therefore, this step consists of two

sub-steps: Feature Extraction and Clustering.

Feature Extraction

We have data collection from n buoys. Each buoy data Bi, is depicted as a d-

dimensional vector, with each dimension of the vector being a time series. The length

of the time series differs across buoys. Given the quantity of data for each buoy and

the inconsistency in the length of each time series, it is difficult to apply traditional

clustering algorithms to the collection of buoy data. Consequently, we want to reduce

the data into a common length vector of values for each buoy.

For each buoy Bi, we construct a feature vector Ei as follows. First, we summarize

each d time series by 18 characteristics. These characteristics are given in Table 4.1.

For each time series, for example, VWH$, we compute each characteristic and produce

a vector in R18. The feature vector Ei is the catenation of the d vectors from R18.

Thus, Ei is a vector from R18d. We use the set of n feature vectors E = E1, E2, . . . , En

to cluster.

Clustering

Given the set of feature vectors that describe the buoy data, the next step is to

cluster them using traditional clustering algorithms. Clustering can be formulated

as defining a function g(E) which takes the set of feature vectors and produces a

set of clusters C = C1, C2, . . . , Ck. Here, k is the number of clusters formed. Each

cluster Ci is a subset of E. Upon completing the clustering phase, we save the

resulting cluster information, which will be utilized in the subsequent training of the

forecasting models.

4.1.3 Training Global Forecasting Models

After the clustering step, we obtain clusters of buoy data that coarsely share similar

wave patterns and environmental conditions. We now proceed to train a forecasting

model on each cluster. We train each forecasting model on all the buoy data of each

cluster sequentially. This process results in a set of forecasting models denoted as
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M1,M2, ...,Mk where k represents the number of clusters of related buoys, and the

value of k is dependent on the clustering algorithm employed.

4.2 Workflow of Proposed Approach

The workflow of our proposed approach involves two key steps: feature-based clus-

tering and training forecasting models. We employ various methods in each of these

steps to implement our approach. Also, before proceeding with any of these tasks,

we first clean the data to ensure its quality and consistency.

4.2.1 Data Preparation

We preprocess the buoy data to manage records containing missing or noisy data. Our

study focuses on the dataset from January 1, 2010, to December 31, 2021. We apply

data processing steps to the buoy data collected during this timeframe to prepare

it for downstream tasks. To handle missing or noisy data of significant wave height

(VWH$), we replaced any noisy or missing VWH$ values occurring before April 2,

2020, with the corresponding calculated values (VCAR-denoting calculated values),

if available. Similarly, for the wave spectrum peak period (VTP$), we replaced noisy

or missing values with the corresponding calculated values (VTPK). We chose this

replacement method because we believe that substituting with calculated values was a

more reliable approach compared to interpolation, where the data is estimated based

on neighboring values or outright removal, given that the calculated values are in close

agreement (upto 2 centimeters) with the original data points. After replacement, we

remove data records with missing or noisy data from the dataset.

For the variables VCAR, VCMX, and VTPK, any values surpassing 20 meters, 20

meters, and 60 seconds were treated as noise. The maximum wave height recorded

in North Atlantic as of 2016, is of 19 meters (WMO [2016]). So, we assumed the

wave measurements, VCAR and VCMX, above 20 meters as potentially be outliers

or the result of sensor inaccuracies. For VTPK the value range, as we check all the

buoy data, is usually below 60 unless it is noise or sudden change in value. We

remove the corresponding data records from the preparation dataset. We observe

no noisy values for other buoy data fields during the period considered for training

and testing. Removing noisy records ensures the overall quality and reliability of the
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dataset used in our analyses. Considering the timeframe we utilized for training and

testing, excluding a relatively small number of noisy records is unlikely to impact the

overall process.

The sampling periods for wave collection at each buoy have distinct start times

and hence the data collected from various buoys is not uniformly aligned. To address

this, we standardized the time frame across all buoys by calculating hourly aver-

ages, resulting in consistent one-hour intervals. This ensures that buoy behavior can

be more easily compared over time. Consolidating the buoy dataset collection, we

normalized the values to a range between 0 and 1 (for feature extraction and cluster-

ing). This preprocessing step ensures consistency and comparability of the data as it

brings all the values to a common scale. We save the prepared data for further use

in clustering and forecasting steps.

We split the preprocessed data into training and test sets during feature extraction,

clustering, or model training. We divided the dataset into two segments, allocating

75 percent of the data for training and the remaining 25 percent for testing. This

deviation from the traditional 80-20 rule was due to missing data for an extended

period in some buoys during 2020. Thus training set includes data from January 1,

2010, to December 31, 2018, while the test set covers the period from January 1,

2019, to December 31, 2021.

We use the training data for feature extraction, clustering, and model training.

Additionally, as part of data preparation for model training, the input data under-

goes time delay embedding (Takens [1981]), called the auto-regression process. This

involves constructing input features by considering the past twenty-four values of sig-

nificant wave height; a choice arrived after exploratory data analysis and experiments

detailed in Chapter 5. Consequently, we train the forecasting model using the pre-

ceding 24 values, also called lags, of significant wave height to accurately predict the

target variable at any given moment. Furthermore, the model predicts the value for

the next one-hour interval when making target predictions. We use this prediction as

input for subsequent predictions in 6-hour and 12-hour forecasts.
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Figure 4.3: Feature Extraction and Clustering Workflow

4.2.2 Feature-Based Clustering

Identification of clusters of buoys with similar wave patterns and environmental con-

ditions plays a crucial role in the overall proposed approach as this clustering decides

on what data forecasting models get trained on and hence directly affects the per-

formance of the forecasting results. In this step, we extract features from the buoy

dataset collection and apply clustering algorithms (one at a time) to determine pos-

sible clusters. The feature extraction and clustering process are illustrated in Figure

4.3, and the steps involved in this phase are as follows:

1. Extract temporal features from cleaned data resulting in a feature vector for

each buoy.

2. Apply a clustering algorithm on the feature vectors to identify buoys with similar

wave patterns and environmental conditions.

3. Store the cluster labels of individual buoys for the downstream task of training

forecasting models.

Feature Extraction

Each ECCC buoy reports 14 data fields, including timestamp, station id, and 12

fields listed in Table 3.1. In our study, we deliberately chose specific fields that we

considered relevant to waves and the environmental factors influencing them. We

focus on specific fields: VCAR, VTP, VCMX, WSPD, GSPD, ATMS, and SSTP.

For each of these selected fields, we extract a set of features that capture the overall

characteristics of the data related to that specific field.

Analyzing all the available libraries listed in subsection 2.3.1 and the kind of

features extracted by each of these different libraries, we found TSFEL(Barandas

et al. [2020]) as the most suitable choice for our dataset for two reasons. First, the

temporal features extracted by TSFEL are highly robust to noise (asserted by its
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developers), which is particularly important for buoy data that often contains sensor

noise (if any is available after cleaning the data). Second, these features are unaffected

by the varying lengths of buoy data, ensuring consistent and reliable feature extraction

across all buoys in our dataset. Table 4.1 presents the list of features extracted for

each field of every buoy data. Clustering algorithms then use these extracted features

to identify related buoys.

Clustering

To identify clusters of buoys exhibiting similar wave and environmental patterns,

we test a variety of clustering algorithms such as K-means, Affinity Propagation,

DBSCAN, OPTICS, and Agglomerative. Each of these algorithms operates on the

extracted feature vectors of the buoy dataset collection. In each of these clustering

algorithms, the number of clusters is determined based on the specific clustering

algorithm employed. The parameter settings for each algorithm are given in Chapter

6.1.

4.2.3 Training Global Forecasting Models

After identifying clusters, we train a global forecasting model on each cluster. We

employ a holdout estimation approach to divide the buoy dataset collection into

separate training and test datasets for each buoy of the buoy dataset collection. The

training dataset consists of data from January 1, 2010, to December 31, 2018, while

the testing dataset covers the period from January 1, 2019, to December 31, 2021.

Training process for a single cluster is illustrated in Figure 4.4, and the steps

involved in this phase are as follows:

1. From buoy dataset collection choose the buoys that are part of same cluster.

2. Split each buoy data into training and test datasets

3. Combine training datasets of all the buoys in the cluster.

4. Train a forecasting model (referred as clustering-based model) using LightGBM

on the aggregated training datasets.
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Feature Name Feature Description
Absolute energy Sum of the squared magnitudes of the signal val-

ues.
Area under the curve Integral of the time series over a specified time

interval.
Autocorrelation Measure of how closely a time series is related to

itself over time.
Centroid Center of mass of the time series and represents

the average value of the signal.
Entropy Measure of the randomness or unpredictability of

the signal values.
Mean absolute diff Average absolute difference between adjacent sig-

nal values.
Mean diff Average difference between adjacent signal values.
Median absolute diff Median absolute difference between adjacent sig-

nal values.
Median diff Median difference between adjacent signal values.
Negative turning points Points in a time series where the signal value

changes from positive to negative.
Neighborhood peaks Peaks in a time series that are above a certain

threshold and occur within a time interval.
Peak to peak distance Distance between the highest and lowest points of

a signal.
Positive turning points Points in a time series where the signal value

changes from negative to positive.
Signal distance Euclidean distance between two signals.
Slope Average rate of change of the signal values over

time.
Sum absolute diff Sum of the absolute differences between adjacent

signal values.
Total energy Sum of the squared magnitudes of the signal val-

ues.
Zero crossing rate Number of times the signal crosses the zero axis

per unit time.

Table 4.1: Features extracted for each variable reported by buoy



39

Predict Significant
Wave Height for each

buoy separately

Buoy dataset
Collection

Choose the buoys
that are part of

the same cluster.

Split each buoy
data into training
and test datasets

Gather training
dataset from each

buoy

Gather test
dataset from each

buoy

Combine the training
data of each buoy

sequentially

Trained model

  Train the clustering-
based  forecasting

model 

Figure 4.4: Forecasting workflow for single cluster

5. Pass each test dataset of the buoys to predict significant wave height.

We repeat this procedure for each cluster identified by the clustering algorithm, result-

ing in a number of models corresponding to the clusters determined by the algorithm.

Each clustering algorithm generates distinct clusters.

Method

The global forecasting model utilized in our study is LightGBM, as detailed in sub-

section 2.2.2. A few reasons to select LightGBM as a forecasting model for our

experiments is that LightGBM offers a range of useful features and capabilities for

time series forecasting, such as regularization techniques, efficient gradient boosting,

and scalability (Ke et al. [2017]). These features can help improve the generalization

ability of the model, handle overfitting, and efficiently use computing resources. Also,

LightGBM has been shown to perform well compared to other popular forecasting

models in various benchmark tests (Makridakis et al. [2022b]). This gives us confi-

dence that the model will provide accurate and reliable forecasts for each time series

in our analysis. The parameter settings for LightGBM can be found in Chapter 6.1.
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4.3 Evaluation

4.3.1 Cluster Evaluation

The clustering process applied to the feature-extracted buoy data is an unsuper-

vised approach, indicating that no predefined ground truth clusters are available

for comparison. We rely on intrinsic measures to assess the quality of the clusters.

Specifically, we use the silhouette score (Rousseeuw [1987]). The silhouette score is

calculated for each data point and represents how similar the data point is to its

cluster compared to other neighboring clusters. It ranges from -1 to 1.

A silhouette score close to -1 indicates that the data point is incorrectly clustered

and would be better placed in a neighboring cluster. Conversely, a score of 1 indi-

cates the opposite. A silhouette score 0 indicates that the data point is close to the

decision boundary between two clusters. It implies that the data point could belong

to either cluster. Our primary goal is not to determine the best clustering algorithm

for segregating and finding related buoy data. We use the silhouette score to see how

well each clustering algorithm separates the data into distinct groups. We test our

workflow using the clustering algorithms: K-means, Affinity Propagation, DBSCAN,

OPTICS, and Agglomerative.

4.3.2 Forecasting model Evaluation

Evaluation Procedure

To assess the effectiveness of clustering-based models in improving forecasting results,

we initially need to establish the baseline level of performance of existing models.

Since we do not have baseline results of any model trained on each of ECCC buoy

dataset collections (except one by Fasuyi et al. [2020]) to compare the clustering-based

forecasting results, we consider two alternative forecasting models to assess the perfor-

mance of our proposed model: local forecasting models and the universal forecasting

model. Local models are trained individually for each buoy, using only its training

data (resulting in 28 models for 28 buoys). These individual models then forecast

the corresponding test set of the buoy. On the other hand, we train the universal

forecasting model using all the available training data from all buoys (resulting in 1

model). This one universal model then forecasts the test set of individual buoys. By
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examining the performance of the clustering-based models against these local models

and the universal model separately, we can gain insights into the effectiveness and

potential advantages of our proposed approach.

Evaluation metric

To assess the accuracy of the predictions on the buoy dataset, we compare the Mean

Absolute Error (MAE) of the clustering-based forecasting models with that of the

local models and universal model for each buoy. We employ the Wilcoxon signed-

rank test (Scheff [2016]) to assess whether a significant difference in improvement

exists between the compared models: clustering-based vs. local and clustering-based

vs. universal.

The Wilcoxon signed-rank test is a non-parametric statistical test. It is used to

evaluate whether a significant difference exists between paired observations, where

each data point in one dataset corresponds to a data point in another dataset for

comparison. We opt for this test because it is less influenced by outliers and is

non-parametric, which avoids assumptions about the specific distribution of the data

(Scheff [2016]). Also, Demšar [2006] recommends this test to compare pairs of pre-

dictive models.

This test gives us information about the p-value. The p-value is a measurement

of how strong the evidence is against the idea that there is no real difference between

the two sets of data we are comparing. A small p-value suggests that the observed

difference is likely genuine and not due to chance fluctuations. P-values of 0.05 and

0.01 are commonly used as a standard threshold (Moore et al. [2012]), and we adopt

the threshold of 0.05 for our study. We input the actual MAE differences between

the compared models in this test to obtain the p-value.

Once the overall procedure is in place, for any new buoy data, we extract the

features and identify the cluster that particular buoy data belongs to and then use

the corresponding clustering-based forecasting model to train on the new buoy data

and generate forecasts.



Chapter 5

Exploratory Data Analysis of ECCC Buoy Data

In this Chapter, we explore the ECCC buoy dataset to understand its characteristics

and assess the feasibility of clustering buoys with similar wave patterns and environ-

mental conditions based on raw data examination. Additionally, we also explore the

relationships between different fields of buoy data.

5.1 Feasibility Assessment for Buoy Clustering

In our study, one of the fundamental steps involves clustering buoys based on their

wave patterns and environmental conditions. To achieve this, we have opted for a

feature-based clustering approach. However, before proceeding with this method,

it is essential to understand the raw data to determine if clusters are feasible. For

instance, if each buoy reports distinct wave patterns, it may result in the absence of

meaningful clusters. Therefore, this initial data exploration will help us assess the

feasibility and to obtain a rough estimation of potential clusters within the buoy data

based on wave characteristics.

Figures 5.1 and 5.2 offer insights into the variations in significant wave heights

observed in the Pacific and Atlantic oceans. The figures depict that wave heights

in the Pacific and Atlantic range from 0.1 meters to around 9 meters. However, the

Pacific coast exhibits a higher frequency of observations in the range above 3 meters,

in contrast to the Atlantic. Additionally, this observation acknowledges that the

Pacific coast tends to experience higher waves than the Atlantic coast (Thompson

et al. [1972]). Furthermore, Figure 5.3 provides an overview of wave heights in the

Great Lakes, indicating that most observations fall within the range of 0.1 meters to

1 meter, with very few instances exceeding 1 meter.

In the Pacific and Atlantic oceans, examining the geographic distribution of buoys

reveals that the buoys are positioned across a range of depths along the coasts of

both oceans. For example, Figure 5.4, focusing on the Pacific buoys, illustrates the
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Figure 5.1: Histogram of significant wave heights reported by Pacific Ocean buoys
between January 2010 and December 2013.

varying distances of these buoys from the shore, spanning from deep ocean locations

to intermediate and nearshore areas. Based on the location of the buoys, we estimate

that buoys near the shore may experience shorter wave heights than those in the deep

ocean.

To check the wave height ranges of the buoys positioned across a range of depths

in the Pacific, we examined the data from three buoys positioned at different depths:

one from the deep end, another from an intermediate position, and a third from the

shallow end. The significant wave heights observed for these buoys are depicted in

line graphs in Figures 5.5, 5.6, and 5.7. These figures illustrate that the significant

wave height ranges differ based on the position of the buoy.

Similarly, we examined the Atlantic buoys at varying distances from the shore.

The data includes one buoy close to the shore and the other three in the deep ocean.

These details are included in Appendix A.

The insights derived from examining wave height variations and geographic dis-

tribution provide valuable cues for the rough estimation of clusters in our study. The

significant differences in wave height frequencies between the Pacific and Atlantic
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Figure 5.2: Histogram of significant wave heights reported by Atlantic Ocean buoys
between January 2010 and December 2013.
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Figure 5.3: Histogram of significant wave heights reported by Great Lakes and Seaway
buoys from January 2010 to December 2013.
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Figure 5.4: Buoys in Pacific Ocean
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Figure 5.5: Line graph illustrating 4-year significant wave height variations for buoy
C46036 in the deep Pacific Ocean.
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Figure 5.6: Line graph showing 4-year significant wave height changes for buoy C46132
in the mid-Pacific Ocean.
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Figure 5.7: Line graph depicting 4-year significant wave height changes for buoy
C46181 in the shallow Pacific Ocean.
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coasts suggest that buoys in each region might exhibit distinct patterns and charac-

teristics, potentially forming separate clusters. Furthermore, the observed variations

in the wave height range between buoys near the shore and buoys in mid to deep

ocean areas in both oceans propose that these buoys may form distinct clusters based

on their proximity to the shore.

5.2 Understanding Relationship between Buoy Data Fields

One of the initial steps in our analysis is to identify fields that exhibit a strong

correlation with the target variable, significant wave height, as these fields are likely

to influence the prediction or forecasting of significant wave height. We calculated a

correlation matrix to examine the relationship between significant wave height and

other fields. The correlation matrix aids in feature selection by identifying fields

that strongly correlate with a target variable, significant wave height, making them

potentially important for prediction or forecasting tasks. Figure 5.8 presents the

correlation between all buoy data fields. It is important to note that this correlation

is calculated using the combined data from all 28 buoys.

Correlation coefficient values between 0.7 and 1.0 (or -0.7 and -1.0) indicate a

strong positive (or negative) correlation. Values between 0.3 and 0.7 (or -0.3 and

-0.7) typically indicate a moderate positive (or negative) correlation. Values below

0.3 (or above -0.3) are commonly regarded as weak or negligible correlations (Cohen

[1988]). Analyzing the correlation coefficients from Figure 5.8, we find that significant

wave height (VCAR) demonstrates a strong correlation with maximum wave height

(VCMX), with a coefficient value of 0.98. This result aligns with our expectations, as

significant wave height is the average of the one-third highest waves, and therefore,

it is influenced by VCMX. Additionally, we observe that wind speed and gust speed

exhibit a moderate correlation, with coefficient values of 0.54 each.

Based on the analysis of the correlation matrix, the significant wave height has

a strong positive correlation with VCMX, as indicated by a correlation coefficient

of 0.98, suggesting a high level of association between these two fields. However,

including VCMX as an input feature may introduce unnecessary noise to the model as

it is the highest wave height reported during the sampling period, whereas significant

wave height is the average of one-third of the highest wave heights. Additionally, in
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Figure 5.8: Correlation between all buoy data fields

real-time, we never ask the model to forecast the significant wave height given the real

values of the VCMX, as both are related to wave measurements that buoy reports at

a time. Also, if we can get the VCAR, we can approximate the VCMX as, in most

cases, VCMX is approximately 1.86 times the significant wave height.

In addition to examining the correlation between significant wave height and other

fields, we also explore the Autocorrelation Function (ACF) specifically for significant

wave height. The ACF provides valuable insights into the relationship between a

variable and its past values, allowing us to assess the presence of any temporal de-

pendencies or patterns. By analyzing the ACF plot of significant wave height, we can

observe the decay in autocorrelation at different lags.

Figure 5.9 illustrates the ACF of significant wave height (VCAR), revealing im-

portant information about the temporal dynamics of the significant wave height. We

can see a slower decay in autocorrelation, indicating that the values of the series are

influenced by their past values, even at long lags. This suggests the presence of a

strong temporal dependency in the significant wave height, where each observation
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Figure 5.9: AutoCorrelation Function of Significant Wave Height

is dependent on its historical values. This indicates that incorporating the lagged

values of significant wave height as features in our forecasting models can effectively

capture the temporal dependencies.

Our forecasting approach aims to capture temporal dependencies and patterns in

significant wave height data. In the autocorrelation function (ACF) plot, we observe

a slower decay in autocorrelation, indicating that past values strongly influence the

current values of significant wave height. This suggests that historical data holds

crucial information for accurately predicting future significant wave heights.

To effectively capture these temporal patterns and dependencies specific to sig-

nificant wave height, we used only lagged values of significant wave height in our

forecasting models. By doing so, the model can directly incorporate the relevant

historical data to make focused and precise predictions for this particular variable.

We conducted experiments using 12, 24, and 36 lag values for one of the buoys to

determine the optimal number of lag values. We observed only marginal differences

between using 12 and 24 lags. However, considering that employing 24 lags allows
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the model to consider the effects of previous cycles within the whole day, we decided

to use 24 lags to capture the time dependencies effectively.



Chapter 6

Experiments and Results

This chapter focuses on the experimental setup, execution, and results. Section 6.1

provides an overview of the experimental setup, including infrastructure details and

parameter settings. We present the conducted experiments in the subsequent Section

6.2. Finally, we present an analysis and insights from the study in Section 6.3.

6.1 Experimental Setup and Configuration

Infrastructure Details

The experiments were conducted on a system with the following configuration and no

other processes running in the background: The machine featured a Quad-Core Intel

Core i5 processor with a clock speed of 2 GHz. The system had a single processor

with four cores, each with 512 KB of L2 cache and 6 MB of L3 cache. Hyper-

Threading Technology was enabled, allowing the processor to handle multiple threads

simultaneously. The system was equipped with 16 GB of memory. The operating

system used was macOS Monterey, with version 12.5.1.

Algorithm Parameter Settings

The specific parameters employed in each of the algorithms used in our study are:

1. K-means: To determine the optimal number of clusters, we employed the elbow

method. Applying the elbow method (Bishop [2006]) to our data, we found

that the optimal number of clusters for the given feature vectors is 3.

2. Affinity Propogation: During our experimentation, we explored various damp-

ing values ranging from 0.5 to 0.8 to determine their impact on the clustering

results. We observed that the silhouette score remained consistent across all

damping values within this range. However, when we increased the damping

51
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value to 0.9, the silhouette score exhibited a minor improvement of 0.01. De-

spite this improvement, we noticed that the forecasting results on the test set

deteriorated compared to the clustering performed with a damping value of 0.8.

As a result, use a damping value of 0.8 in our analysis, as it produced more

favorable forecasting outcomes.

3. DBSCAN: To determine the optimal value for the epsilon (eps) parameters

in the DBSCAN algorithm, we employed the use of a k-distance graph. By

analyzing the k-distance graph, we found appropriate eps value to be 2.75. Ad-

ditionally, we set the min_samples parameter to 2, specifying that a minimum

of two points should be present within the eps radius to form a dense region.

4. OPTICS: To determine the appropriate epsilon (eps) value, we examined the

reachability plot. We observed that with an epsilon value of 0.75, the reacha-

bility plot displayed significant changes in density-reachability distances. Addi-

tionally, we set the min_samples parameter to 4 after experimenting with few

values and checking the silhouette score.

5. Agglomerative: To determine the optimal number of clusters, we performed ex-

periments and evaluated the silhouette score and subsequent forecasting results.

After testing different number of clusters, we found that setting the number of

clusters to 4 yielded lower MAE compared to other cluster configurations for

this clustering.

6. LightGBM: We have chosen to train the LightGBM model for regression tasks,

with a relatively small number of leaves (15) to control the complexity of the

model. The learning rate was set to 0.05 to balance the speed of convergence

and the accuracy of the model. The performance of the models was evaluated

using the Mean Squared Error and Mean Absolute Error metrics. We also

enabled linear trees, which offer interpretability and competitive performance

in forecasting significant wave height.
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6.2 Experiments

In our study, the overall workflow consists of two steps: feature-based clustering and

forecasting. We tested our workflow using K-means, Affinity, DBSCAN, OPTICS,

and Agglomerative clustering algorithms. We use a single clustering algorithm for

each run to create clusters of related buoy data. Subsequently, we trained separate

forecasting models on each cluster and predicted significant wave height for the next

1 hour for each buoy. This approach allows us to assess how the forecasting results

may vary based on the specific clustering algorithm. We used LightGBM, with the

same hyperparameters, for training all the forecasting models.

We conducted experiments with forecasting horizons of 1-hour, 6-hour, and 12-

hour predictions under regular conditions. We predicted significant wave height with

a 1-hour forecasting horizon during extreme events. These extreme events are defined

by significant wave heights exceeding 6 meters.

We repeated the experiments twice to test for any differences in the forecasting

results, considering the variability of regression problems. We observed that the

clustering results were the same for the second run. The MAE of forecasting results

(measured in meters) did not change for up to 3 decimal places. The code used in

this study is available online.1

When considering the clustering approach, a natural consideration would be to

cluster based on the major regions where the buoys are located. Therefore, we orga-

nized the buoys into three clusters: Pacific, Atlantic, and Great Lakes, and trained a

forecasting model on each cluster. The forecasting results for each cluster, for fore-

casting horizons of 1hr, 6hr, and 12hr under regular conditions and 1hr under extreme

events are detailed in Section 6.3.

6.3 Results

Figures 6.1 through 6.5 depicts the results obtained for each tested clustering al-

gorithm. K-means and Affinity Propagation, centroid-based clustering algorithms,

grouped the buoy data into 3 and 4 clusters, respectively. DBSCAN and OPTICS,

density-based clustering algorithms, grouped the buoy data into 3 and 2 clusters,

1https://git.cs.dal.ca/chandrala/buoyclusterforecast.git

https://git.cs.dal.ca/chandrala/buoyclusterforecast.git
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Figure 6.1: K-means Clustering

respectively. Agglomerative clustering, a hierarchical-based algorithm, grouped the

buoy data into 4 clusters.

Table 6.1 presents the clusters identified by each clustering algorithm tested. We

observe that K-means achieves the highest silhouette score among the tested clustering

algorithms, indicating better cluster separation and coherence than other clustering

algorithms.

As described in Section 3.3, we establish local models and a universal model as

baseline models. To assess the effectiveness of our proposed approach, we compare

each baseline model (local and universal) with the clustering-based forecasting model

results. Hence, we will begin by presenting the forecasting results of the local models

and the universal model. Tables 6.2 and 6.3 present the forecasting results of the

local models and the universal model for forecasting horizons of 1-hr, 6-hr, 12-hr in

regular conditions and for 1-hr under extreme events, respectively. In Table 6.2 and

6.3, N/A indicates no data points in the test dataset where the significant wave height

exceeds 6 meters. All reported errors are in meters, rounded to two decimal places
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Figure 6.5: Agglomerative Clustering
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Algorithm # Clusters Cluster ID Buoys Associated Silhouette Score
K-means 3 1 3 0.417

2 9
3 16

Affinity 4 1 3 0.240
2 7
3 9
4 9

DBSCAN 3 1 3 0.341
2 8
3 16

outlier 1
OPTICS 2 1 11 0.398

2 17
Agglomerative 4 1 3 0.315

2 4
3 8
4 13

Table 6.1: Clustering results for the buoy dataset.

(centimeters), in alignment with the reporting standard used by MEDS, from which

we collected the ECCC buoy dataset.

Clustering-Based Forecasting Results: Regular Conditions (1-hr, 6-hr, 12-

hr)

The resulting MAEs for each clustering-based forecasting model are summarized in

Table 6.4 for 1-hour predictions, Table 6.5 for 6-hour predictions, and Table 6.6 for

12-hour predictions. For the 6-hour and 12-hour predictions, we used the previous

predictions as inputs for the subsequent forecasts sequentially. All reported errors are

measured in meters and rounded to two decimal places (centimeters).
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BuoyId 1-hr 6-hr 12-hr 1-hr extreme events
C44137 0.14 0.29 0.43 0.58
C44139 0.13 0.28 0.42 0.48
C44150 0.13 0.27 0.39 0.61
C44258 0.10 0.21 0.30 1.50
C45132 0.06 0.14 0.19 N/A
C45136 0.05 0.10 0.15 N/A
C45139 0.04 0.09 0.12 N/A
C45143 0.05 0.12 0.17 N/A
C45149 0.06 0.14 0.19 N/A
C45151 0.06 0.11 0.13 N/A
C45154 0.06 0.11 0.15 N/A
C45159 0.05 0.10 0.14 N/A
C46004 0.17 0.35 0.49 0.64
C46036 0.16 0.30 0.41 0.53
C46131 0.07 0.15 0.20 N/A
C46132 0.15 0.28 0.40 0.48
C46145 0.12 0.23 0.31 0.85
C46146 0.06 0.12 0.15 N/A
C46147 0.17 0.33 0.46 0.60
C46181 0.04 0.08 0.09 N/A
C46183 0.27 0.51 0.67 2.43
C46184 0.16 0.30 0.43 0.52
C46185 0.12 0.28 0.40 0.77
C46204 0.13 0.28 0.38 0.56
C46205 0.15 0.29 0.41 0.56
C46206 0.14 0.28 0.41 0.56
C46207 0.16 0.31 0.44 0.49
C46208 0.15 0.29 0.41 0.46

Table 6.2: MAEs of the Local forecasting models for the ECCC buoy dataset collection
for forecasting horizons of 1-hr, 6-hr, 12-hr and for 1-hr under extreme events.
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BuoyId 1-hr 6-hr 12-hr 1-hr extreme events
C44137 0.14 0.29 0.43 0.58
C44139 0.13 0.27 0.41 0.46
C44150 0.13 0.27 0.39 0.61
C44258 0.10 0.19 0.28 1.20
C45132 0.06 0.15 0.22 N/A
C45136 0.05 0.12 0.18 N/A
C45139 0.05 0.10 0.14 N/A
C45143 0.06 0.13 0.19 N/A
C45149 0.06 0.15 0.21 N/A
C45151 0.06 0.11 0.14 N/A
C45154 0.06 0.12 0.17 N/A
C45159 0.05 0.12 0.17 N/A
C46004 0.17 0.33 0.47 0.64
C46036 0.16 0.29 0.40 0.54
C46131 0.07 0.16 0.23 N/A
C46132 0.15 0.28 0.40 0.47
C46145 0.12 0.23 0.31 0.79
C46146 0.06 0.13 0.17 N/A
C46147 0.17 0.33 0.44 0.59
C46181 0.05 0.09 0.12 N/A
C46183 0.25 0.47 0.63 1.91
C46184 0.16 0.30 0.42 0.53
C46185 0.12 0.28 0.41 0.81
C46204 0.13 0.27 0.37 0.55
C46205 0.15 0.29 0.39 0.56
C46206 0.13 0.26 0.36 0.50
C46207 0.16 0.30 0.43 0.50
C46208 0.15 0.28 0.40 0.47

Table 6.3: MAEs of the Universal forecasting models for the ECCC buoy dataset
collection for forecasting horizons of 1-hr, 6-hr, 12-hr and for 1-hr under extreme
events.
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BuoyId K-means Affinity DBSCAN OPTICS Agglomerative
C44137 0.14 0.14 0.14 0.14 0.14
C44139 0.13 0.13 0.13 0.13 0.13
C44150 0.13 0.13 0.13 0.13 0.13
C44258 0.10 0.10 0.10 0.10 0.10
C45132 0.06 0.06 0.06 0.06 0.06
C45136 0.05 0.05 0.05 0.05 0.05
C45139 0.04 0.04 0.04 0.04 0.04
C45143 0.05 0.05 0.05 0.05 0.05
C45149 0.06 0.06 0.06 0.06 0.06
C45151 0.06 0.06 0.06 0.06 0.06
C45154 0.06 0.06 0.06 0.06 0.06
C45159 0.05 0.05 0.05 0.05 0.05
C46004 0.17 0.17 0.17 0.17 0.17
C46036 0.16 0.16 0.16 0.16 0.16
C46131 0.07 0.07 0.07 0.07 0.07
C46132 0.14 0.14 0.14 0.14 0.14
C46145 0.12 0.12 0.12 0.12 0.12
C46146 0.06 0.06 0.06 0.06 0.06
C46147 0.17 0.17 0.17 0.17 0.17
C46181 0.05 0.05 0.05 0.05 0.05
C46183 0.25 0.24 0.25 0.24 0.24
C46184 0.16 0.16 0.16 0.16 0.16
C46185 0.12 0.12 0.12 0.12 0.12
C46204 0.13 0.13 0.13 0.13 0.13
C46205 0.15 0.15 0.15 0.15 0.15
C46206 0.13 0.13 0.13 0.13 0.13
C46207 0.16 0.16 0.16 0.16 0.15
C46208 0.15 0.15 0.15 0.15 0.15

Table 6.4: MAEs of clustering-based forecasting models for the ECCC buoy dataset
collection in the context of 1-hour prediction.
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BuoyId K-means Affinity DBSCAN OPTICS Agglomerative
C44137 0.29 0.29 0.29 0.29 0.29
C44139 0.27 0.27 0.27 0.27 0.27
C44150 0.27 0.27 0.27 0.27 0.27
C44258 0.19 0.19 0.21 0.20 0.21
C45132 0.15 0.15 0.14 0.14 0.14
C45136 0.11 0.11 0.11 0.11 0.11
C45139 0.10 0.10 0.09 0.09 0.09
C45143 0.12 0.12 0.12 0.12 0.12
C45149 0.14 0.14 0.14 0.14 0.14
C45151 0.10 0.10 0.10 0.10 0.10
C45154 0.12 0.12 0.12 0.12 0.12
C45159 0.11 0.11 0.11 0.11 0.11
C46004 0.33 0.34 0.33 0.33 0.33
C46036 0.29 0.29 0.29 0.29 0.29
C46131 0.15 0.15 0.15 0.15 0.15
C46132 0.28 0.28 0.28 0.28 0.28
C46145 0.24 0.23 0.24 0.24 0.23
C46146 0.12 0.12 0.12 0.12 0.12
C46147 0.32 0.32 0.32 0.32 0.32
C46181 0.09 0.09 0.09 0.09 0.09
C46183 0.47 0.47 0.47 0.47 0.47
C46184 0.30 0.30 0.30 0.30 0.30
C46185 0.28 0.28 0.28 0.28 0.28
C46204 0.27 0.27 0.27 0.27 0.27
C46205 0.29 0.29 0.29 0.29 0.29
C46206 0.26 0.26 0.26 0.26 0.26
C46207 0.30 0.30 0.30 0.30 0.30
C46208 0.28 0.28 0.28 0.28 0.28

Table 6.5: MAEs of clustering-based forecasting models for the ECCC buoy dataset
collection in the context of 6-hour prediction.
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BuoyId K-means Affinity DBSCAN OPTICS Agglomerative
C44137 0.43 0.44 0.43 0.43 0.42
C44139 0.41 0.41 0.41 0.41 0.40
C44150 0.40 0.40 0.40 0.39 0.39
C44258 0.26 0.26 0.30 0.30 0.31
C45132 0.20 0.20 0.20 0.20 0.20
C45136 0.16 0.16 0.15 0.16 0.15
C45139 0.13 0.13 0.12 0.12 0.12
C45143 0.17 0.17 0.17 0.17 0.17
C45149 0.19 0.19 0.19 0.18 0.19
C45151 0.13 0.13 0.12 0.13 0.12
C45154 0.16 0.16 0.15 0.15 0.15
C45159 0.15 0.15 0.15 0.15 0.15
C46004 0.47 0.47 0.47 0.47 0.47
C46036 0.40 0.40 0.40 0.40 0.40
C46131 0.20 0.20 0.20 0.21 0.20
C46132 0.40 0.40 0.40 0.40 0.40
C46145 0.32 0.31 0.32 0.32 0.32
C46146 0.15 0.15 0.15 0.16 0.15
C46147 0.44 0.44 0.44 0.44 0.45
C46181 0.11 0.11 0.11 0.11 0.11
C46183 0.64 0.63 0.64 0.64 0.64
C46184 0.42 0.42 0.42 0.42 0.42
C46185 0.42 0.40 0.42 0.41 0.42
C46204 0.38 0.37 0.38 0.38 0.38
C46205 0.40 0.40 0.40 0.39 0.40
C46206 0.37 0.36 0.37 0.37 0.37
C46207 0.43 0.43 0.43 0.43 0.43
C46208 0.40 0.40 0.40 0.40 0.40

Table 6.6: MAEs of clustering-based forecasting models for the ECCC buoy dataset
collection in the context of 12-hour prediction.
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BuoyId K-means Affinity DBSCAN OPTICS Agglomerative
C44137 0.57 0.56 0.57 0.57 0.57
C44139 0.46 0.45 0.46 0.46 0.47
C44150 0.61 0.60 0.61 0.61 0.61
C44258 1.49 1.49 1.50 1.22 1.17
C46004 0.64 0.64 0.64 0.64 0.64
C46036 0.52 0.52 0.52 0.53 0.53
C46132 0.46 0.46 0.46 0.46 0.46
C46145 0.77 0.80 0.77 0.78 0.79
C46147 0.59 0.60 0.59 0.59 0.59
C46183 1.90 1.84 1.90 1.87 1.82
C46184 0.52 0.52 0.52 0.52 0.52
C46185 0.79 0.82 0.79 0.79 0.81
C46204 0.53 0.55 0.53 0.53 0.53
C46205 0.55 0.55 0.55 0.55 0.55
C46206 0.48 0.50 0.48 0.48 0.48
C46207 0.49 0.50 0.49 0.49 0.49
C46208 0.46 0.46 0.46 0.46 0.45

Table 6.7: MAEs of clustering-based forecasting models for the ECCC buoy dataset
collection in the context of 1-hour prediction under extreme events.

Clustering-based Forecasting Results: Extreme Events (1-hr)

Table 6.7 shows the clustering-based forecasting model results for significant wave

height under extreme events with a forecasting horizon of 1-hour. For evaluation

under extreme events, we selected data points from the test set where the target

variable, significant wave height, is greater than 6 meters for each buoy. These data

points were used to assess the performance of the forecasting models.

Region-Based Forecasting Results: Regular(1-hr,6-hr,12-hr) and Extreme

Events(1-hr)

Table 6.8 present the forecasting results of the local models and the universal model

for forecasting horizons of 1-hr, 6-hr, 12-hr in regular conditions and for 1-hr under

extreme events, respectively. In Table 6.8, N/A indicates no data points in the test

dataset where the significant wave height exceeds 6 meters. All reported errors are in

meters, rounded to two decimal places (centimeters), in alignment with the reporting

standard used by MEDS, from which we collected the ECCC buoy dataset.
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6.3.1 Observations from Clustering Results

All the clustering algorithms had some common patterns for certain buoys across

the clustering algorithms. Notably, all algorithms grouped the buoys in the Great

Lakes as one cluster, while those located near the shallow end of the Pacific Ocean

formed another cluster. K-means, OPTICS, and DBSCAN algorithms clustered the

buoys in the medium to deep ends of the Pacific Ocean and the buoys in the deep

ends of the Atlantic into a single cluster. The clustering results of Agglomerative

almost matched our assessment done in exploratory data analysis (refer to Section

5.1). In that section, we noted similar wave patterns among buoys in the shallow

Pacific Ocean regions. The buoys positioned in the medium to deep end of the Pacific

Ocean exhibited similar wave patterns. We also noticed differences in wave ranges

between buoys in the Pacific and Atlantic Oceans.

6.3.2 Observations and Analysis from Forecasting Model Results

Comparison of local and clustering-based models in regular conditions

We compared the results of the local forecasting models with those of clustering-

based forecasting models obtained from each clustering algorithm tested. We created

summary tables for each forecasting horizon summarizing the number of cases in which

a particular clustering-based forecasting model yielded lower MAE, higher MAE, or

equal MAE compared to the local models. Data from all 28 buoys were available for

testing when testing the models under regular conditions.

Examining the data in the summary Table 6.9, we see that for 1-hour forecasts

under regular conditions, clustering-based forecasting models showed equal perfor-

mance for 24 buoys and reported lower MAE for three buoys compared to the local

models. The clustering-based models exhibited a lower performance in a single case

than local models.

Considering these results, we cannot draw a conclusion about the superiority

or inferiority of clustering-based models compared to local models, given the equal
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BuoyId 1-hr 6-hr 12-hr 1-hr extreme events
C44137 0.14 0.29 0.42 0.57
C44139 0.13 0.27 0.40 0.47
C44150 0.13 0.27 0.39 0.61
C44258 0.10 0.21 0.31 1.17
C45132 0.06 0.14 0.20 N/A
C45136 0.05 0.11 0.15 N/A
C45139 0.04 0.09 0.12 N/A
C45143 0.05 0.12 0.17 N/A
C45149 0.06 0.14 0.19 N/A
C45151 0.06 0.10 0.12 N/A
C45154 0.06 0.12 0.15 N/A
C45159 0.05 0.11 0.15 N/A
C46004 0.17 0.33 0.47 0.64
C46036 0.16 0.29 0.40 0.53
C46131 0.07 0.17 0.24 N/A
C46132 0.14 0.28 0.40 0.46
C46145 0.12 0.23 0.31 0.80
C46146 0.06 0.13 0.18 N/A
C46147 0.17 0.32 0.44 0.59
C46181 0.05 0.10 0.12 N/A
C46183 0.24 0.46 0.62 1.80
C46184 0.16 0.30 0.42 0.52
C46185 0.12 0.28 0.40 0.81
C46204 0.13 0.27 0.38 0.54
C46205 0.15 0.28 0.39 0.56
C46206 0.13 0.26 0.36 0.48
C46207 0.16 0.30 0.42 0.49
C46208 0.15 0.28 0.40 0.46

Table 6.8: MAEs of the region-based clustering forecasting models for the ECCC
buoy dataset collection for forecasting horizons of 1-hr, 6-hr, 12-hr and for 1-hr under
extreme events.

K-means Affinity DBSCAN OPTICS Agglomerative
# with lower MAE 3 3 3 3 3
# with higher MAE 1 1 1 1 1
# with equal MAE 24 24 24 24 24

Table 6.9: Summary of Clustering-Based Forecasting Models: Comparing MAE with
Local Model for 1-hr Prediction.
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K-means Affinity DBSCAN OPTICS Agglomerative
# with lower MAE 11 11 10 11 10
# with higher MAE 7 6 5 5 4
# with equal MAE 10 11 13 12 14

Table 6.10: Summary of Clustering-Based Forecasting Models: Comparing MAE with
Local Model for 6-hr Prediction.

K-means Affinity DBSCAN OPTICS Agglomerative
# with lower MAE 10 12 11 11 12
# with higher MAE 9 8 6 7 6
# with equal MAE 9 8 11 10 10

Table 6.11: Summary of Clustering-Based Forecasting Models: Comparing MAE with
Local Model for 12-hr Prediction.

MAE reported for 24 buoys. However, we will further investigate this improvement

through statistical testing to find whether this observed improvement significantly

deviates from equivalent performance. Although it is not our main focus in terms

of measuring success, it is worth mentioning that the performance achieved by 28

local models is attained by a maximum of 4 (dependent on the clustering method

employed) clustering-based forecasting models, with only one exception.

From the summary Tables 6.10 and 6.11, we observe that the performance of the

clustering-based forecasting models for 6-hour and 12-hour forecasts under regular

conditions varies depending on the chosen clustering algorithm. Three clustering-

based models reported lower Mean Absolute Error (MAE) than local models in 11 out

of 28 instances for 6-hour forecasts. In the case of 12-hour forecasts, two clustering-

based models reported lower MAE in 12 out of 28 cases.

While MAE represents the absolute error magnitude, let us look at the distribution

of the difference in MAEs between clustering-based and local forecasting models using

a boxplot for 6-hour and 12-hour forecasts. The boxplot visualizes the spread of

improvements or deterioration in forecasting performance achieved by the clustering-

based models compared to the local models. To compute this difference, we subtract

the MAE of the local model from the MAE of clustering-based models. A greater
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K-means Affinity DBSCAN OPTICS Agglomerative
6-hr forecasts
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Figure 6.6: MAE Difference Boxplot: Clustering vs. Local Models (6-hr). Negative
values indicate clustering-based model superiority.

concentration of values towards the negative side indicates improved performance of

the clustering-based models (in terms of MAE). We used a centimeter scale for the

boxplots since all the differences are within the range of 1 meter, indicating that the

variations in errors are relatively small. Also, the dots in the boxplots represent data

points that exhibit unusually high differences in MAE between the clustering-based

and local forecasting models.

From the boxplot shown in Figure 6.6, the presence of data points below the

median (whiskers line indicated in orange) indicates instances where the clustering-

based models reported MAE and the data points above the whisker line indicates

instances where clustering-based models reported higher MAE compared to local

models. We observe that clustering-based forecasting models display a maximum

error difference of 1 centimeter compared to local models, while the improvements by

clustering-based models over local models span up to 2 centimeters, with an outlier

reaching 4 centimeters.
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K-means Affinity DBSCAN OPTICS Agglomerative
12-hr forecasts
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Figure 6.7: MAE Difference Boxplot: Clustering vs. Local Models (12-hr). Negative
values indicate clustering-based model superiority.

From the boxplot shown in Figure 6.7, we can observe that clustering-based fore-

casting models exhibit a maximum error difference of up to 2 centimeters compared

to local models. In the case of the agglomerative clustering algorithm, the difference

reaches up to 3 centimeters. The improvements made by clustering-based models

over local models span from 1 to 4 centimeters. Additionally, there is an outlier of 5

centimeters in one of the cases for the Affinity clustering algorithm.

Clustering-based model p-value(1-hr) p-value(6-hr) p-value(12-hr)
K-means 0.26 0.13 0.33
Affinity 0.26 0.11 0.15

DBSCAN 0.26 0.09 0.21
OPTICS 0.26 0.07 0.20

Agglomerative 0.26 0.06 0.16

Table 6.12: Comparing Clustering-Based Models with Local Models: Wilcoxon
Signed-Rank Test Results
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While box plots and summary tables provide visual and numerical insights into

the distribution and trends of MAE differences, they do not explicitly determine

whether these differences can be considered significant. To assess the significance

of the improvement between clustering-based models and local models, we turn to

the Wilcoxon signed-rank test for each of these forecasting horizons. We hypothesize

that clustering-based and local forecasting models perform equally in this test. If the

p-value is below 0.05, we reject this hypothesis; otherwise, we accept the hypothesis.

Analyzing the Wilcoxon test results (in Table 6.12), we observe that p-values are

above 0.05. This indicates that we accept the hypothesis of equivalent performance

between clustering-based and local models. From the summary tables, we see that the

performance differences between clustering-based models and local models are varied.

In some cases, clustering-based models showed improvements over local models, and

in others, it is the opposite.

Analyzing the instances where clustering-based models showed lower accuracy

than local models, we identified four buoys for which clustering-based models consis-

tently reported higher MAEs. Among these buoys, three are located in distinct lakes,

and we observed that all clustering algorithms clustered these buoys together. This

might indicate that the wave patterns of these buoys in these distinct lakes may not

align well with those of other Great Lakes buoys when clustered together. A similar

observation was made for a buoy in the Pacific region. This clustering of buoys with

diverse patterns might have contributed to the reduced forecasting accuracy in these

specific cases. Overall, based on the forecasting results and the Wilcoxon test results,

we conclude that employing clustering-based models for predicting significant wave

height under regular conditions, across various lead times (1, 6, and 12 hours), did not

exhibit improved performance across the 28 ECCC buoys compared to local models.

Comparison of local and clustering-based models in extreme events

Table 6.13 summarizes the cases in which a particular clustering-based forecasting

model yields lower MAE, higher MAE, or equal MAE compared to the local models

for extreme events. When evaluating all the forecasting models under extreme events,

only 17 buoys had test data with significant wave heights exceeding 6 meters.
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K-means Affinity DBSCAN OPTICS Agglomerative
# with lower MAE 11 11 10 10 10
# with higher MAE 1 1 1 1 1
# with equal MAE 5 5 6 6 6

Table 6.13: Summary of Clustering-Based Forecasting Models: Comparing MAE with
Local Model for 1-hr Prediction under extreme events.

K-means Affinity DBSCAN OPTICS Agglomerative
1-hr forecasts under extreme events
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Figure 6.8: MAE Difference Boxplot: Clustering vs. Local Models (1-hr, Extreme
Events). Negative values indicate clustering-based model superiority.

In the case of extreme events, for 1-hr forecasts, comparing the values from Tables

6.7, and 6.2, we observe the results are better (in terms of less MAE) than under

regular conditions. From Table 6.13 clustering-based models have reported lower

MAE for 10 out of 17 cases compared to local models.

We applied the same approach to visualize the distribution of MAE differences

between clustering-based and local forecasting models as we did when comparing

them under regular conditions. From the boxplot presented in Figure 6.8, we ob-

serve that the extent of error difference in instances of outliers for clustering-based
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Clustering-based model p-value(1-hr)
K-means 0.01
Affinity 0.03

DBSCAN 0.02
OPTICS 0.01

Agglomerative 0.01

Table 6.14: Comparing Clustering-Based Models with Local Models under Extreme
Events: Wilcoxon Signed-Rank Test Results

forecasting models, irrespective of the clustering algorithm used, implies better per-

formance compared to the local models for certain buoys. The maximum error where

clustering-based models showed degraded performance is limited to 5 centimeters (as

indicated by the actual data) compared to the local models.

To evaluate whether a significant difference in improvement exists between clustering-

based forecasting models and local models during extreme events, we turn to the

Wilcoxon signed-rank test. Examining the results of the Wilcoxon test displayed in

Table 6.14, we note that the p-values are consistently below the threshold of 0.05.

This finding indicates a statistically significant distinction in improvement between

the clustering-based forecasting models and the local models during extreme events.

Upon comparing the clustering-based and local forecasting models and consider-

ing the insights derived from the forecasting results, summary tables, and Wilcoxon

test results, we can conclude that leveraging the collective information from multiple

related buoys proves to be significantly advantageous during extreme events.

Comparison of universal and clustering-based models in regular

conditions

Using a similar procedure as employed in the comparison between local models and

clustering-based models, we proceeded to evaluate the performance of the univer-

sal forecasting model against clustering-based forecasting models generated by each

tested clustering algorithm. We summarize the number of cases in which a particular

clustering-based forecasting model yielded lower MAE, higher MAE, or equal MAE
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K-means Affinity DBSCAN OPTICS Agglomerative
# with lower MAE 3 4 3 4 5
# with higher MAE 0 0 0 0 0
# with equal MAE 25 24 25 24 23

Table 6.15: Summary of Clustering-Based Forecasting Models: Comparing MAE with
Universal Model for 1-hr Prediction.

K-means Affinity DBSCAN OPTICS Agglomerative
# with lower MAE 8 8 10 10 10
# with higher MAE 1 1 2 2 1
# with equal MAE 19 19 16 16 17

Table 6.16: Summary of Clustering-Based Forecasting Models: Comparing MAE with
Universal Model for 6-hr Prediction.

compared to the universal model. Data from all 28 buoys were available for testing

when testing the models under regular conditions.

Examining the data presented in the summary Table 6.15, we see that, in the con-

text of 1-hour forecasts under regular conditions, clustering-based forecasting models

reported equal MAE in 24 out of 28 instances and reported lower MAE in all other 4

cases, compared to the universal model.

From summary Tables 6.16, 6.17 for 6-hr and 12-hr forecasts under regular con-

ditions, the performance of clustering-based forecasting models varies based on the

clustering algorithm used. We find that in 9 out of 28 instances for 6-hour forecasts

and 13 out of 28 instances for 12-hour forecasts, the clustering-based models reported

K-means Affinity DBSCAN OPTICS Agglomerative
# with lower MAE 13 14 12 12 14
# with higher MAE 6 3 7 4 7
# with equal MAE 9 11 9 12 7

Table 6.17: Summary of Clustering-Based Forecasting Models: Comparing MAE with
Universal Model for 12-hr Prediction.
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Figure 6.9: MAE Difference Boxplot: Clustering vs. Universal Model (6-hr). Negative
values signify clustering-based model superiority

lower MAE, compared to the universal model. Also, the Agglomerative clustering-

based models reported only one instance with higher error than the universal model.

We use boxplots for visualizing the distribution of improvements or deterioration

in forecasting performance achieved by the clustering-based models compared to the

universal model. To calculate this difference, we applied the same process we used

for comparing local models with clustering-based models.

From the boxplot depicted in Figure 6.9, it is noticeable that most clustering-

based forecasting models exhibit a variation in their performance improvements or

deteriorations within a range of +1 to -1 centimeters. However, two specific clustering-

based models, DBSCAN and Agglomerative, show a deviation in their performance

deterioration, with a difference of 2 centimeters in one of the cases.

From the boxplot depicted in Figure 6.10, the error differences between affinity

clustering-based forecasting models and the universal model are notable. The max-

imum error difference for affinity clustering-based models compared to the universal

model is 1 centimeter. The improvements achieved by affinity clustering-based models
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K-means Affinity DBSCAN OPTICS Agglomerative
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Figure 6.10: MAE Difference Boxplot: Clustering vs. Universal Model (12-hr). Neg-
ative values signify clustering-based model superiority

over the universal model are within a range of 1 to 3 centimeters.

While box plots and summary tables offer visual and numerical insights into the

distribution and trends of MAE differences, they do not directly indicate whether

these differences hold statistical significance. To determine whether there exists a

significant difference in improvement between clustering-based forecasting models and

the universal model, we will turn to the Wilcoxon signed-rank test for each forecasting

horizon.

From the Wilcoxon test results shown in Table 6.18, we observe that the p-values

are below 0.05 in 12 out of 15 cases, indicating a significant difference in improvement

between the clustering-based models compared to the universal model. However,

there are a few exceptions, such as K-means and DBSCAN for 1-hour predictions and

DBSCAN for 6-hour predictions, where the p-values exceed 0.05. The differences in

these cases was not statistically significant.
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Clustering-based model p-value(1-hr) p-value(6-hr) p-value(12-hr)
K-means 0.083 0.019 0.028
Affinity 0.045 0.019 0.003

DBSCAN 0.083 0.071 0.037
OPTICS 0.045 0.02 0.031

Agglomerative 0.025 0.032 0.043

Table 6.18: Comparing Clustering-Based Models with Universal Model: Wilcoxon
Signed-Rank Test Results

When examining the actual Mean Absolute Errors (MAEs) generated by clustering-

based models with the MAEs of the universal model, we observed that each clustering-

based model exhibited either lower or equal MAEs across all Great Lakes buoys for

6-hour forecasts, and lower MAEs for 12-hour forecasts for the same buoys. This ob-

servation particularly highlights that training forecasting models on unrelated series

leads to reduced overall accuracy. This is evident from the forecasting outcomes of

the universal model for these specific buoys.

In the context of 6-hour forecasts, we observe that DBSCAN clustering reported

higher error for one of the Atlantic buoys (C44258), and reported the same MAEs

as OPTICS clustering-based models in other scenarios. In the case of DBSCAN,

this specific buoy was classified as an outlier, resulting in the clustering-based model

relying solely on its information for forecasting, while the universal model incorporates

information from multiple buoys. This particular scenario highlights the value of

utilizing cross-series information from multiple related buoys to improve the accuracy

of predictions.

Overall, from the Wilcoxon test results, we can conclude that three clustering-

based models demonstrate a significant improvement difference compared to the uni-

versal model under regular conditions. However, two clustering-based forecasting

models deviate from this trend.

Comparison of universal and clustering-based models in extreme events

We created the summary Table 6.19 summarizing the number of cases in which

a particular clustering-based forecasting model yielded lower MAE, higher MAE, or
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K-means Affinity DBSCAN OPTICS Agglomerative
# with lower MAE 12 8 11 12 11
# with higher MAE 2 5 2 2 1
# with equal MAE 3 4 4 3 5

Table 6.19: Summary of Clustering-Based Forecasting Models: Comparing MAE with
Universal Model for 1-hr Prediction under extreme events.

equal MAE compared to the universal model under extreme events. When evaluating

the models under extreme events, only 17 buoys had test data with significant wave

heights exceeding 6 meters.

In the case of extreme events, for 1-hr forecasts, from Table 6.7, and Table 6.3, we

observe the results are better (in terms of less MAE) than under regular conditions.

From Table 6.19, clustering-based models reported lower MAE for 11 out of 17 cases

compared to the universal model.

We visualize the spread of the difference in MAEs between clustering-based and

universal forecasting models using a boxplot for 1-hour forecasts. To compute this

difference, we subtract the MAE of the universal model from the MAE of clustering-

based models. A concentration of values toward the negative side indicates the im-

proved performance of the clustering-based models (in terms of MAE).

The boxplot shown in Figure 6.11 displays the extent of improvement, as measured

by MAE, achieved by clustering-based models compared to the universal model. We

observe that this improvement ranges from 1 to 5 centimeters, with a few outliers

exceeding 5 centimeters for Affinity and Agglomerative clustering-based models.

Outliers at 30 centimeters for K-means, Affinity, and DBSCAN indicate a specific

scenario where the universal model exhibited significantly improved forecasting per-

formance compared to the clustering-based models. The reason is that K-means and

Affinity clustered a particular buoy within the Great Lakes region. As the wave ranges

in the Great Lakes are typically less than 5 meters (confirmed by actual data and

shown in Histogram 5.3), the model did not have sufficient data on extreme events be-

yond the data collected from this specific buoy. For the OPTICS and Agglomerative

clustering-based models, this specific buoy is grouped with other buoys with data

about extreme events, leading to lower errors. This observation further highlights
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Figure 6.11: MAE Difference Boxplot: Clustering vs. Universal Model (1-hr, Extreme
Events). Negative values indicate clustering-based model superiority.
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Clustering-based model p-value(1-hr)
K-means 0.02
Affinity 0.203

DBSCAN 0.02
OPTICS 0.01

Agglomerative 0.004

Table 6.20: Comparing Clustering-Based Models with Universal Model in extreme
events: Wilcoxon Signed-Rank Test Results

the importance of using data from multiple related buoys. We also see that the im-

provements in forecasting performance by the Agglomerative clustering-based models

extend up to 10 centimeters, and the maximum error where clustering-based models

showed deteriorated performance is up to 1 centimeter compared to the universal

models.

To determine whether there is a significant difference in the improvement achieved

by clustering-based forecasting models over the universal model during extreme events,

we will examine the results of the Wilcoxon signed-rank test.

From the Wilcoxon test results shown in Table 6.20, we observe that the p-values

are below 0.05 in all cases, except for Affinity, indicating a significant difference in

improvement between the clustering-based models compared to the universal model.

In summary, leveraging collective information from multiple related buoys is ben-

eficial during extreme events in comparison to both local models and the univer-

sal model. In comparison with the universal model, the improvements achieved by

clustering-based forecasting models hold statistical significance in both regular and

extreme conditions, except for cases like DBSCAN clustering under regular condi-

tions and Affinity clustering under extreme conditions. Clustering-based models,

when compared to local models under normal conditions, did not exhibit improved

forecasting accuracy.
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BuoyId Agg.1-hr RB.1-hr Agg.6-hr RB.6-hr Agg.12-hr RB.12-hr
C46004 0.17 0.17 0.33 0.33 0.47 0.47
C46036 0.16 0.16 0.29 0.29 0.40 0.40
C46131 0.07 0.07 0.15 0.17 0.20 0.24
C46132 0.14 0.14 0.28 0.28 0.40 0.40
C46145 0.12 0.12 0.23 0.23 0.32 0.31
C46146 0.06 0.06 0.12 0.13 0.15 0.18
C46147 0.17 0.17 0.32 0.32 0.45 0.44
C46181 0.05 0.05 0.09 0.10 0.11 0.12
C46183 0.24 0.24 0.47 0.46 0.64 0.62
C46184 0.16 0.16 0.30 0.30 0.42 0.42
C46185 0.12 0.12 0.28 0.28 0.42 0.40
C46204 0.13 0.13 0.27 0.27 0.38 0.38
C46205 0.15 0.15 0.29 0.28 0.40 0.39
C46206 0.13 0.13 0.26 0.26 0.37 0.36
C46207 0.15 0.16 0.30 0.30 0.43 0.42
C46208 0.15 0.15 0.28 0.28 0.40 0.40

Table 6.21: Comparing Agglomerative Clustering-Based Models with Region-Based
Models for Pacific Buoys under regular conditions

Comparison of automated clustering-based and region-based clustering

models in regular and extreme conditions

The forecasting results of region-based clustering models, which are clustered man-

ually according to the region of buoy location, are similar to those of Agglomera-

tive clustering forecasting models. This alignment is anticipated since Agglomerative

clustering has clustered the buoys in a similar manner as the region-based approach,

except for the Pacific region where Agglomerative has created two clusters: one for

shallow-end buoys and the other for remaining Pacific buoys.

Given the similarity in clustering patterns between Agglomerative and region-

based clustering, we concentrate our analysis of forecasting results on Pacific buoys

and compare the Agglomerative clustering-based models with region-based clustering

models. This aids in determining whether the automated clustering procedure offers

any advantages compared to the intuitive approach of grouping clusters based on

geographical regions.
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From Table 6.21, we observe that the 1-hour forecasting results for both Agglomer-

ative clustering-based models and region-based clustering models are identical. Look-

ing at the 6-hour forecasts, we observe that Agglomerative clustering-based models

reported lower MAEs than region-based clustering models for 3 buoys (highlighted in

bold). These 3 buoys are the shallow end buoys, grouped together by Agglomerative

clustering. The 12-hour forecasts also show that the shallow-end buoys have lower

MAEs. In the 6-hour and 12-hour forecasts, there are instances where region-based

clustering models reported lower MAEs. From these observations, we can deduce that

for the shallow-end buoys, grouping them separately from other Pacific buoys yields

improved forecasting accuracy by 1 or 2 centimeters. The cases where region-based

clustering models reported lower MAE (by 1 or 2 centimeters) are the buoys in the

mid-range Pacific. It is plausible that data from the shallow-end buoys in these sce-

narios, particularly in dealing with shorter wave conditions where these shallow-end

buoys provide more data on such waves.



Chapter 7

Conclusion and Future work

7.1 Conclusion

Our study aims to enhance the forecasting performance of significant wave height for

each buoy within the ECCC buoy dataset collection. We hypothesized that leveraging

cross-series information from multiple related buoys can improve the accuracy of

the forecasting models. To test our hypothesis, we took an approach that involved

clustering buoys with similar data. Subsequently, we trained a forecasting model on

each group of related buoys (sequentially training the model on each buoy within the

group).

Based on our research findings, our hypothesis remains valid during extreme events

when the significant wave height exceeds 6 meters. This holds for the 1-hour fore-

casting horizon, where clustering-based showed significantly improved performance

compared to both local models and the universal model. Under regular conditions,

on 28 buoys, and across forecasting horizons of 1 hour, 6 hours, and 12 hours, the

clustering-based models exhibit significant improvements over the universal model.

The Wilcoxon test results accepted the null hypothesis of equivalent performance, in-

dicating there is no significant difference in improvements of clustering-based models

compared to the local models.

In conclusion, our study serves as an initial exploration into the potential benefits

of using cross-series information to enhance the forecasting performance of significant

wave height predictions. While our approach did not improve all 28 ECCC buoys

datasets, it did demonstrate the value of cross-series information in predicting rare

events more accurately. Under regular conditions, while there are instances where

clustering-based models exhibited lower MAE values, the extent of improvement is

relatively small. To identify buoys with related buoy data, we employed feature-

based clustering and tested five distinct clustering algorithms to identify clusters.

This method is found advantageous for forecasting only during extreme events.
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7.2 Limitations

Our study has certain limitations at every step of the process. The TSFEL library

offered the capability to extract features across temporal, statistical, and spectral

domains, but we only utilized features from the temporal domain due to variations

in the lengths of the buoy data. This limitation might have hindered any informative

features from statistical and spectral domains which capture different characteristics

of the time series and thereby lead to different clustering.

While the buoy data comprises ten distinct fields, excluding duplicates, buoy

station id, and reporting time, we selectively focused on seven fields that we believed

to influence wave patterns and environmental conditions. Although this selection

was made based on our understanding of the buoy data, it is plausible that other

unexplored fields could also contribute valuable information in the clustering process.

During the training of the forecasting models, we relied solely on lags of significant

wave height as input features. While this approach has been widely used, considering

additional relevant features in the training process could potentially enhance the

forecasting performance. Also, we only tested one regression model and the results

could be different from other models. Our forecasting horizons were focused on 1

hour, 6 hours, and 12 hours during regular conditions and for 1 hour during extreme

events. The results could be different for other forecasting horizons. During extreme

events, the dataset contained a relatively small number of observations due to the

infrequency of such events. It becomes challenging to extend these results to other

scenarios or purposes given the rare occurrence of these events. Also, we did not

compare our results to numerical models.

We have specifically tested our approach on 28 ECCC buoy data collection. The

results could be different for other datasets. Although significant in some cases, the

MAE differences were small for certain buoys and hence it should be checked with

the domain experts on whether they would make a difference in real-time usage.

Modifying any of the configurations used in our study could yield diverse outcomes,

as adjustments to one aspect may trigger a cascade of effects. For example, altering

the features extracted using the TSFEL library could lead to distinct feature vectors,

subsequently affecting the formation of clusters. The input data for forecasting models

would change with different clusters, ultimately influencing the results.
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7.3 Possible Future Directions

In our study, clustering plays an important role as it determines the data on which

forecasting models are trained, directly impacting the subsequent forecasting out-

comes. Although this approach has shown some enhancements in forecasting results,

it is worth considering alternate methods for grouping similar buoy data. Exploring

such alternatives could potentially amplify the effectiveness of the clustering process

and subsequently improve the accuracy of forecasting results.

One alternative approach worth considering is the application of spatial clustering,

where buoy locations and geographical characteristics are considered to form clusters.

This spatial clustering may provide valuable insights into the regional similarities

and differences in wave patterns and environmental conditions. Another approach

to explore is using deep learning techniques like graph neural networks, which can

directly learn the similarity between buoys from the raw data, bypassing the feature

extraction step.

Forecasting over extended horizons, such as beyond 1 hour for extreme events and

beyond 12 hours for regular conditions, helps in a better understanding of predictive

capabilities. Also, comparing the forecasting results with those of numerical models

aids in validating the reliability of our clustering-based approach. Also exploring a

diverse range of regression models beyond LightGBM could be beneficial.

Future research can also focus on models that use clustering information as an

input feature for forecasting models. This exploration can help determine if leveraging

clustering information more effectively improves prediction results. Additionally, it

would be valuable to explore the feasibility of forecasting the next 12-hour values at

the same time, rather than predicting one-hour intervals independently.

Expanding this research to other domains and other buoy datasets would provide

valuable insights into the generalizability and broader applicability of the proposed

approach. However, to apply the same approach, the dataset should exhibit a wide

range of patterns, trends, or behaviors, and the time series should be related based

on some underlying similarity.
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Nomenclature

B Single Buoy Data

C Cluster of buoy data

d Dimensionality of the vector representing the data for buoy

E Feature vector

g function that applies a clustering algorithm on a set of feature vectors

k number of clusters

M Model trained on a cluster

n Number of ECCC buoys

SWH Average height of the highest one-third of the waves collected during a sam-

pling period.
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Appendix A

Further details on Buoy Dataset Collection

A.1 Exploration of Atlantic Buoy Data

In the Atlantic Ocean, the buoys are located at varying distances from the shore,

with one buoy situated close to the shore and the other three in the deep ocean.

Line graphs representing the significant wave heights recorded at two of the Atlantic

buoys, one near the shore and the other in deep waters, can be found in Figures A.1

and A.2. Again, it is evident that the buoy positioned towards the deep end of the

Atlantic reports a larger variation in wave height range compared to the one near the

shore.

A.2 Information on Missing Buoy Data

The buoy data collected from sensors may contain missing values due to various fac-

tors, such as buoy damage or maintenance. Before proceeding with data preparation,

we conducted an assessment of the missing data by calculating the percentage of

missing values for each buoy. We considered an ideal scenario where the buoy reports

data at regular 1-hour intervals. The results, along with the total number of data

points and the corresponding percentage of missing data, are presented in Table A.1.
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Figure A.1: Line graph showing significant wave height variations over 4 years for
buoy C44150 in the deep Atlantic Ocean.

2010-01 2010-07 2011-01 2011-07 2012-01 2012-07 2013-01 2013-07 2014-01

0

1

2

3

4

5

6

Va
lu

es

Variations in significant wave height

Figure A.2: Line graph displaying significant wave height variations over 4 years for
buoy C44258 in the shallow Atlantic Ocean.
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Buoy ID DataPoints MissingData(%)
c44137 59957 24
c44139 59746 24
c44150 56785 28
c44258 40629 48
c45132 55163 30
c45136 47367 40
c45139 54772 31
c45143 52006 34
c45149 45634 42
c45151 48090 39
c45154 44530 44
c45159 48761 38
c46004 55384 30
c46036 59300 25
c46131 70126 11
c46132 52467 33
c46145 68150 14
c46146 64715 18
c46147 64342 18
c46181 66405 16
c46183 63801 19
c46184 63877 19
c46185 63973 19
c46204 62668 21
c46205 60065 24
c46206 59356 25
c46207 64076 19
c46208 56600 28

Table A.1: Table describing the characteristics of each buoy including Buoy ID, cur-
rent DataPoints, missing data %.
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