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Abstract

The prediction of Radio Link Failures (RLF) in Radio Access Networks (RANSs) is cru-
cial to ensure smooth communication and meet the demanding requirements of high
data rates, low latency, and improved performance in 5G networks. However, weather
conditions like precipitation, humidity, temperature, and wind have a significant im-
pact on these communication links. Typically, RLF prediction uses a learning-based
model to capture the relationships between historical radio link Key Performance
Indicators (KPIs) and nearby weather station data. However, existing models often
lack the capability to effectively encode context-aware time series sequences and fail
to be generalized for unseen radio links. To address these issues, this thesis pro-
poses a new RLF prediction framework that employs a state-of-the-art time series
transformer model as a temporal feature extractor and incorporates a graph neural
network (GNN) based dynamic aggregation method for surrounding weather stations’
data to achieve better model generalization. The proposed aggregation method can be
integrated into any existing prediction model to enhance its generalizability. The
framework was evaluated in rural and urban deployment scenarios with 2.6 million
KPI data points, demonstrating significantly higher F1 scores compared to previous

methods (0.93 for rural and 0.79 for urban).
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Chapter 1

Introduction

The rapid advancement of modern networking applications, such as Industry 4.0,
smart transportation systems, health informatics, and augmented or virtual reality
(AR or VR), has brought an increasing demand for high network bandwidth, high
reliability, and fast communication speeds [18]. The mobile and wireless networks
formed by these applications can be ad-hoc, mesh, sensor, or cellular networks [7,8,23,
30,32,33,36,37,48,51], where cellular can offer high speed and bandwidth along with
a high reliability. Specifically, fifth-generation (5G) cellular networks have emerged
with the goal of meeting diverse service level objectives (SLOs). To achieve this,
5G networks rely on millimeter-wave (mmWave) spectrums, which operate in the
frequency range of 24GHz to 100GHz. These mmWave frequencies offer the capability
to reliably transmit data over short distances, and they support a wide array of

applications.

A fundamental component of the 5G infrastructure is the 5G radio access network
(RAN), which plays a critical role in enabling seamless and eficient communication
between devices and the core network. The key to the success of 5G RAN lies in the
deployment of a dense array of base stations that communicate through mmWave
radio links. These base stations, being strategically positioned, ensure comprehensive
network coverage and eficient data transfer for the end-users. However, this dense
deployment also introduces challenges, particularly concern is the impact of weather
phenomena on the mmWave radio links. Weather phenomena, such as precipitation,
humidity, temperature, and wind, can significantly affect the performance of mmWave
radio links [62]. Distortions and attenuations arising from these weather conditions
can cause signal degradation, leading to interruptions and compromised reliability in
data transmission [2]. Consequently, maintaining a high level of robustness and
effectiveness in the face of these challenges becomes a paramount concern for 5G

network operators.
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To ensure a seamless and uninterrupted user experience, 5G radio links must
consistently adhere to stringent key performance indicators (KPls) [3]. These KPlIs
serve as benchmarks that measure the network’s eficiency, reliability, and overall
performance. Parameters such as signal strength, data latency, signal-to-noise ratio,
and connection stability are some of the critical metrics that are monitored and
evaluated regularly. By continually monitoring these KPls, network operators can
proactively address any potential issues and optimize the performance of the 5G
RAN.

In the domain of mobile networks, predicting link failures is of utmost importance
for mobile operators, who invest significantly in proactive measures to maintain a ro-
bust and uninterrupted live network. To achieve this, researchers have explored vari-
ous approaches that leverage historical radio link key performance indicators (KPls)
and weather station observations to forecast the probability of link failures in the up-
coming days [3,40,50]. Aktas et al. [3] introduce a branched LSTM architecture that
eficiently integrates time series and static data to improve predictive performance. Is-
lam et al. [40] emphasize the significance of data preprocessing and demonstrate the
potential of LSTM-autoencoder-based approaches. Meanwhile, Agarwal et al. [50]
leverage decision trees and random forests to achieve accurate predictions. These
research endeavours collectively contribute to the advancement of predictive analyt-
ics in the telecommunications industry and aid mobile operators in making informed

decisions to ensure optimal network performance and customer satisfaction.

To meet optimal network performance, machine learning has been successfully ap-
plied for failure management in different parts of the 5G RAN (e.g., robust base sta-
tion configuration) [59] in order to learn from data instead of having pre-programmed
instructions. By introducing such automation, network operators have removed hu-
man action. This way large quantity of performance data can be exploited using
learning based model and create solutions that scales to ever increasingly large 5G
networks [14]. As such, researchers have designed the deployment of a failure pre-
diction model in a 5G network data center from where it will monitor radio link
KP1 metrics of all base stations and reliably predict failure probability for coming

days [69].

The ideal machine learning based failure prediction system does not only predicts
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failures but also initiates proactive and reactive solutions to mitigate the effects of
failure and maintain customer satisfaction [55]. The scope of such networks encom-
passes Self-Configuration, Self-Optimization, and Self-Healing [21]. One of the scopes
involves networks to have self healing properties which allows the network to take ac-
tions in order to mitigate the effects of failures. The RLF prediction system enables
this self-healing property by identifying potential link failures and allowing the net-
work to automatically select another optimal route for trafic so that the overall delay in
the network is minimized [14]. In order to build a RAN routing topology with more than
one route between base stations, we can choose any state-of-the-art approaches like
(31,33, 34,38].

Cutting-edge solutions have recognized the importance of sequence modelling and
have utilized LSTM to process time series data for predicting link failures [3, 40].
However, these models face scalability issues in large deployments with numerous
links and struggle to capture long-term dependencies due to vanishing gradients.
Moreover, existing methods for associating radio links with weather stations rely on
heuristics and lack generalizability for different network topologies. To address these
challenges, an effective and scalable prediction approach must employ a reliable
temporal feature extraction algorithm and a weather station aggregation method that

can be applied to new links.

In this thesis, a new radio link failure prediction framework is introduced. The
framework combines a time-series transformer architecture and a graph neural network-
based node aggregation method to effectively handle temporal dependencies and
weather station context. This approach leads to exceptional performance in real-world
radio access network deployment data. The time-series transformer model assigns
varying attention levels to each element in the input sequence to capture temporal
dependencies. Treating surrounding weather stations as a graph structure allows the
model to learn weather effects on a link through graph representation learning. The
learned embeddings enable the model to generalize to new links by capturing neigh-
bourhood topologies and feature dependencies. Additionally, the GNN-aggregation
method further enhances the performance of existing prediction architectures for radio

link failure.



1.1 Motivation

In the rapidly evolving landscape of mobile networks, ensuring the seamless and
reliable operation of radio links has become a critical concern for mobile operators.
Predicting link failures in advance can offer significant advantages, enabling operators
to take proactive measures and make informed decisions to maintain a robust live
network. In recent years, state-of-the-art solutions have leveraged the power of Long
Short-Term Memory (LSTM) models for effective sequence modelling of time series
data, which includes historical radio link Key Performance Indicators (KPIls) and
weather station observations [ [50], [3], [40]]. However, despite their success, these
models exhibit certain limitations that hinder their scalability and overall performance
in real-world deployment data.

One of the primary challenges faced by LSTM-based models is their sequential
processing nature when dealing with time series data. This sequential processing can
lead to ineficiencies, making them less suitable for large-scale deployments with a vast
number of interconnected elements. As the number of elements grows, the sequential
nature of LSTM causes a linear increase in computational time, which ultimately
impacts the model’s ability to process the data in a timely manner.

Moreover, the vanishing gradients issue remains a significant concern in LSTM-
based architectures [83]. This issue occurs when the gradients used for training the
model become extremely small, leading to dificulties in updating the network’s pa-
rameters effectively. Consequently, long-term dependencies within the time series
data might not be adequately captured by the model, which can lead to suboptimal
performance and reduced prediction accuracy.

In addition to the vanishing gradients issue, LSTM models also lack the abil-
ity to weigh the importance of different elements within a sequence when making
predictions [71]. This limitation can be attributed to the inherent structure of the
LSTM architecture, where each element in the sequence is treated equally during the
processing, without considering its relative significance in contributing to the overall
prediction.

In addition to the challenges related to sequence modelling, correctly associating
each link to the relevant weather stations is another critical aspect in accurately

predicting link failures (RLF). The link-weather station association plays a pivotal



role in understanding the impact of weather conditions on the link performance.

Currently, the existing approaches resort to heuristics for establishing the link-
weather station associations. These heuristics often lack the generality required to
handle diverse Radio Access Network (RAN) topologies effectively. Consequently,
when faced with a new deployment scenario, these models need to be retrained or

modified, which can be time-consuming and resource-intensive.

One common heuristic used in these approaches involves associating each radio site
with the closest weather station. This simple proximity-based association assumes
that the closest weather station data will have the most significant impact on the
link’s performance [50]. While this may hold true in some cases, it oversimplifies the
complex interplay between weather conditions and link failures, leading to suboptimal

performance in certain scenarios.

Another heuristic employed is the aggregated k-nearest weather stations associa-
tion. Here Aktas et al. [3], instead of relying on a single weather station, the model
considers the influence of multiple nearby weather stations. The number of weather
stations considered is controlled by the hyperparameter k. While this approach cap-
tures a broader view of the weather conditions surrounding the link, determining the
optimal value of k can be challenging, and the model’s performance heavily relies on

this choice.

Alternatively, Islam et al. [40] calculate the optimal distance between the radio link
and its surrounding weather sites for the association. The maximum of the minimum
distances of radio link and weather station pairs is considered to be the optimal
distance. Then, any weather station within this optimal distance from a radio link, is
concatenated with the link features to create multiple link-weather station pairs with
the same link feature values. While this tries to capture the combined effect of
surrounding weather stations, it only considers one pair of link-weather stations at
a time. This approach increase the problem complexity as the model needs to learn
from different data points with same link but different weather stations and also gives
the same weight to each associated weather stations. Not to mention, this optimal
distance hyperparamter needs to be recomputed when the topology changes as it has

great influence on model performance.

To overcome the limitations of these heuristics and to develop an effective RLF



prediction system, two key components must be addressed:

1. Robust Temporal Feature Extraction Algorithm: To capture long-term de-
pendencies effectively, the RLF prediction model needs an effective temporal feature
extraction algorithm. This algorithm should be capable of identifying patterns and
trends within the time series data that may not be apparent in a LSTM based ap-
proach.

2. Generalizable Weather Station Aggregation Method: Instead of relying on
fixed heuristics, the link-weather station association process should be flexible and
adaptable to different RAN topologies. An ideal approach would be to utilize machine
learning techniques that can learn the association from the data itself. By learning
the associations from the data, the model can be generalized to unseen links and new

deployments, reducing the need for retraining.

1.2 Research Objective

To develop a robust and generalized RLF prediction system, two key components need
addressing. First, a temporal feature extraction algorithm is required to capture tem-
poral dependencies effectively and identify patterns and trends in time series data.
Second, a generalizable weather station aggregation method using machine learning
techniques should be employed to adapt to different network topologies, learn asso-
ciations from data, and reduce the need for retraining. By incorporating these com-
ponents, the RLF prediction system can achieve higher accuracy and generalization,
better addressing weather-induced link failures in modern communication networks.
Thus, the objective of our research is to create a cutting-edge framework, which aims to
revolutionize radio link failure (RLF) prediction in real-world Radio Access Net-work
(RAN) deployments. By effectively incorporating temporal dependencies and
weather station context, this novel approach promises to outperform existing RLF
prediction architectures.

The core of the framework lies in its utilization of a time-series transformer ar-
chitecture. Unlike traditional methods (e.g., an LSTM-based one) that struggle to
capture long-term dependencies in sequential data, the time-series transformer model
excels at encoding temporal dependencies. It achieves this by dynamically assigning

attention weights to each element of the input sequence, allowing it to focus on the
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most relevant information [81]. This capability ensures that the framework can ef-
fectively capture the complexities of real-world link KP| and weather station data,
where temporal patterns and trends play a crucial role.

Moreover, weather conditions can significantly impact signal propagation and
link performance, so taking them into account is crucial for accurate predictions. To
achieve this, the framework treats the surrounding weather stations as a graph
structure and adopts graph representation learning techniques [28]. By doing so, it
effectively captures the weather effects on radio links and learns meaningful embed-
dings that encode topological structures and feature dependencies present within the
neighbourhood.

Additionally, the framework leverages Graph Neural Network (GNN)-based node
aggregation to enhance the predictive capabilities of existing architectures. The GNN
method effectively aggregates information from neighbouring weather stations and
incorporates it into the prediction process. This approach leads to improved perfor-

mance compared to non-GNN aggregation RLF prediction architectures.

1.3 Contribution

In this research, we present a novel approach to address the challenge of link failure
prediction in 5G Radio Access Networks (RANs) using a combination of transformer
based time-series modeling and graph neural networks (GNNs). Our model eficiently
processes variable number of weather station data for each radio link, capturing es-
sential spatial and temporal dependencies from historical observations.

The first step of our approach involves leveraging a time-series transformer model
to effectively model the temporal aspects of the radio link KP| and weather station
data. This allows us to learn patterns and trends in the historical observations, aiding
in accurate link failure prediction. Through a pooling layer, we create temporal
representation vectors, which serve as condensed vectors of the time-series data.

To account for the spatial correlations between radio links and their surrounding
weather stations, we apply graph neural network based aggregation. This aggregation
step is crucial in capturing the intricate spatio-temporal relationships that influence
link failures. The resulting latent vector captures the joint effect of the radio link and its

surrounding weather stations, creating a spatio-temporal representation vector.
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In parallel with the spatio-temporal processing, we handle the categorical features
using a feed-forward network that operates separately from the transformer model
branch. This approach allows us to incorporate non-numeric information, such as
modulation type and surrounding station environment, into the prediction process.
By combining these categorical representation vectors with the spatio-temporal ones,
we obtain a holistic view of the factors influencing link failure events.

The integration of the spatio-temporal and categorical representation vectors is
facilitated through concatenation, leading to a rich feature representation for each
radio link. Subsequently, a feed-forward network is employed to predict the likelihood
of link failure for the upcoming day.

The main contributions of our work are as follows:

e State-of-the-art Performance: Through the combination of time-series trans-
formers and GNN-based aggregation, we achieve impressive results in 5G RAN
link failure prediction, attaining an Fl-score of 0.92. This performance outper-
forms existing approaches and demonstrates the effectiveness of our proposed

framework.

e General Framework for RLF Prediction: To the best of our knowledge,
our work is the first to introduce a generalized RLF prediction framework that
can be seamlessly integrated with existing models. This flexibility allows re-
searchers to extend their current models by incorporating our approach, leading

to enhanced predictive capabilities.

e Robust Generalization Capability: We conducted rigorous experiments
using real-world deployments with varying network topologies. The results show
that our framework exhibits high generalization capability even when trained
on a partial topology. This attribute is crucial in real-world scenarios, where

networks often undergo dynamic changes.

e Enhancement of Existing Models: We validate the effectiveness of our ap-
proach by applying it to existing RLF schemes, such as LSTM+ and LSTM
autoencoder. The incorporation of our framework leads to significant improve-

ments in Fl-score, showcasing its versatility and superiority.
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e Open-source Implementation: In an effort to promote reproducibility and
foster further research, we openly share the proposed framework (GNNTrans-
former) [1] prototype code. This allows others to not only replicate our experi-
ments but also adapt and extend our proposed framework to suit their specific

requirements.

1.4 Thesis Outline

The remainder of this thesis is organized structurally as follows: Chapter 2 is divided
into two sections, the first of which, Section 2.1, lays the fundamental background
required to better understand the work in this thesis. Next, Section 2.2 presents
the important research works relevant to our work. Chapter 3 delves into the de-
tailed methodology and design of the framework implemented. Here, the workflow
and problem definition is also explored in Section 3.1 and Section 3.2. This is then
followed by the detailed description of the dataset 3.3, comprehensive data prepro-
cessing steps 3.4, and design details of model training 3.5. Following these, Section
3.6 presents the evaluation of the proposed framework, in terms of performance met-
rics and generalization capability, along with comparison with previous approaches.
Chapter 4 discusses future research directions in Section 4.1 and concludes this thesis

in Section 4.2.



Chapter 2

Background and Related Work

In this chapter, we begin by providing the essential context needed to understand the
content presented in this thesis. Subsequently, we conduct a thorough examination

of existing literature relevant to our research.

2.1 Background

2.1.1 5G RAN

The adoption of 5G technology has surged significantly owing to its ability to cater
to emerging applications that demand high bandwidth, exceptional reliability, and
ultra-low latency [25]. The deployment of 5G networks leverages millimeter waves
(mmWaves) to achieve these remarkable capabilities, but this comes at the cost of
reduced coverage area and increased penetration+ loss [80]. Nevertheless, to address
these limitations, 5G deployment strategies have embraced the utilization of small
cells, which act as intermediaries to collect and transfer user network trafic to the
radio sites (RS). These radio sites are interconnected via 5G radio links (RL) that
facilitate communication with each other and the core network, ultimately providing
seamless internet connectivity to end-users [27]. These 5G radio links are also sur-
rounded by a multitude of weather stations (WS) and the weather variations of these
stations can significantly impact the performance and stability of the radio links [3].
Fig. 2.1 illustrates an overview of the described 5G deployment scheme, show-
casing the strategic placement of small cells, radio sites, and weather stations in
a coordinated manner. The relationship between these components require the 5G
network to adapt to changing conditions and optimize its performance accordingly.
The central focus of this study is to utilize key performance indicators (KPls)
from the radio sites, coupled with the relevant weather station data, to develop a

predictive model for forecasting radio link failures in advance, specifically for the

10



11

forthcoming day. By accurately predicting such failures, network providers can take
preemptive measures and implement necessary precautions to safeguard critical ser-
vices and maintain a seamless user experience.

The integration of weather station data into the prediction model holds significant
promise. Weather conditions, such as heavy rainfall, extreme temperatures, or dense
fog, can cause signal attenuation and degradation of radio link performance [2, 62].
Furthermore, factors like ice buildup on antennas or strong winds may lead to physical
damage, disrupting the radio links’ functionality. By incorporating weather-related
variables into the prediction algorithm, the system gains the ability to discern patterns
and correlations between weather patterns and radio link failures, thereby enhancing
the accuracy of the forecasts. Note that once we predict a failure, we can deploy
various measures of protection. For instance, one common is approach is constructing a
reliable routing topology and redirect affected trafic over the alternative available
routes, which is common both in wired [35,53,58, 65,67,68] and wireless [31, 34, 36,
37, 63] networks.

(q)

WS ry WS
. “ RS‘ ...
L L 2
. RL ¢ - RL Y& ((R)
“ -
Q) o .
& (| s RL
. ws . RS
x
“ ... |
. RS RL ... (( )) fﬁ\%
L J |||
WS
RS

Figure 2.1: An example of 5G RAN deployment.

2.1.2 Imbalanced dataset

The presence of radio link failures constitutes a relatively minor portion when com-

pared to normally operating links, resulting in imbalanced data that necessitates
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careful processing. The dataset utilized in our research, the ITU dataset [3], show-
cases this phenomenon, with rural deployments showing a 0.3% failure rate and urban
deployments experiencing a 0.06% failure rate [3]. Consequently, when employing
deep learning models on such highly imbalanced datasets without addressing data

imbalance issues, their performance tends to excel solely on the majority class [43].

Addressing the challenges posed by imbalanced data is a critical task, and re-
searchers have proposed several typical approaches to tackle this issue. One such
technique involves random undersampling of the majority class [3]. The underlying
principle of this method is straightforward; it involves randomly removing instances
from the majority class until a more balanced class distribution is achieved. While
this approach may enhance the performance of models on minority class samples, it
does come with a caveat. The random removal of majority class instances might in-
advertently lead to the loss of informative data points [57]. Consequently, this might
undermine the overall effectiveness of the model in handling the data distribution

accurately.

On the other hand, another approach for dealing with imbalanced data is known
as Synthetic Minority Over-sampling Technique (SMOTE) [40]. Unlike random un-
dersampling, SMOTE aims to enhance the representation of the minority class by
generating synthetic examples. The underlying principle of SMOTE involves select-
ing individual minority class samples and creating synthetic instances along line seg-
ments that connect them to their k nearest neighbours [15]. This process expands
the minority class, providing the model with more examples to learn from. While
SMOTE offers an effective way to handle imbalanced data, it is not without its lim-
itations. One of the drawbacks of SMOTE is that it might generate noisy synthetic
samples. Although SMOTE usually improves the model performance on minority
class to some extent, it also has the risk of introducing noisy instances and overfitting
problems because it doesn’t consider the distribution of adjacent samples [42]. This
can also adversely impact the model’s generalization ability. These artificially cre-
ated examples might not accurately represent the underlying distribution, leading to
potential misclassifications during inference. Additionally, the selection of k nearest

neighbours in the SMOTE process could introduce bias into the generated synthetic
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samples [42]. In certain cases, sub-optimal neighbour selection might lead to an in-
accurate expansion of the minority class, further affecting the overall performance of

the model.

To tackle the limitations of SMOTE several augmentations have been proposed.
One of the popular method is Borderline-SMOTE [29], which concentrates on enhanc-
ing class boundary information by targeting samples within a specific region. Another
technique, RCSMOTE [66], manages the range of artificially generated instances. But
SMOTE and it’s variants do not consider the effects of spatially correlated data points.
We cannot directly apply these techniques to synthesize link KP | data that considers
the effect of surrounding weather stations. There has also been other approaches for
synthetic data generation. For example, Alzantot proposed [4] a deep learning model
with LSTM based generator and discriminator architecture to create synthetic sensor
data. As this is an LSTM based model, it is unable to capture long term dependencies

and focus on important elements in a time series.

To address the limitations of undersampling, oversampling and synthetic data
generation techniques, we employ a weighted cross-entropy loss function, which pro-
vides an alternative and effective approach to handle imbalanced data [6,56,61]. This
specialized loss function tackles the challenge of imbalanced datasets by incorporating
prior probabilities as weights, making it a cost-sensitive approach [6]. The standard
cross-entropy loss function is symmetrical and treats both classes equally, aiming to
minimize the error for all classes at the same logarithmic rate. However, in the
context of imbalanced data, this can lead to biased results, as the majority class
tends to dominate the total loss during training, overshadowing the importance of
the minority class [6]. The weighted cross-entropy loss function addresses this issue
by introducing class-specific weights, which effectively balance the influence of each

class on the overall error.

The incorporation of prior probabilities as weights is a crucial step in this ap-
proach. By utilizing prior probabilities, we assign higher weights to the minority
class and lower weights to the majority class, effectively leveling the playing field
during training [6]. As a result, the model pays more attention to the minority class,

leading to improved performance and better generalization on imbalanced datasets.
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-y ' log(y)(1-A) - (1~ y')log(l- y')A (2.1)

i=1

J(B) =

3|+

In Equation 2.1, J(8) and m are the total loss and number of samples, respectively.
The weight for actual failure event is represented as A. y is the ground truth (y = 1
for failure) and y is the model prediction. This weighted crossy entropy loss function
is only for binary predictions as we can only have failure or normal events. By
utilizing the weighted cross-entropy loss function, we effectively mitigate the effects of
class imbalance in the dataset without resorting to undersampling or oversampling.
This approach allows the model to learn from the entire dataset, avoiding the loss of
informative data points or the introduction of synthetic samples. As a result, the
model becomes more adeptive at handling imbalanced data and is better equipped
to make accurate predictions on real-world scenarios where class distributions are
often skewed. Incorporating prior probabilities as weights into the cross-entropy loss
function represents a significant step forward in addressing the challenges posed by
imbalanced datasets and contributes to the development of more robust and effective

RLF prediction models.

2.1.3 Attention

An attention mechanism can be defined as a process that takes a query along with
a collection of key-value pairs and produces an output [71]. In this setup, all the
components - the query, keys, values, and the output - are represented as vectors.
The resulting output is determined by calculating a weighted sum of the values (Figure
2.2. Each value’s weight is determined by a compatibility function that assesses the

relationship between the query and the corresponding key.

Mask(opt.) '—» SoftMax MatMul
Scale MatMul

Q K Vv

Figure 2.2: Scaled Dot-Product Attention.
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The inputs to this mechanism include queries and keys, both having a dimension
of dk, as well as values with a dimension of dv. The process involves computing
the dot product between the query and each key, and then dividing the results by
the square root of dk. The obtained values are then processed through a softmax
function to obtain the weights assigned to the values. This entire attention mechanism
is performed collectively on a set of queries, which are grouped together in a matrix
Q. Similarly, the keys and values are arranged in matrices K and V, respectively.

The ultimate matrix of outputs is calculated following [71] as:

K
Attention(Q, K,V ) = softmaxQ —\7k
4

2.1.4 Multi-head Attention

Linear

Concat
Mt
£ |

‘ Scaled Dot-Product

Attention

A\l | l\! | A\|

. C [ ( i ( ( |
(Linear UJ( Linear UJ‘ Linear UJ

Figure 2.3: Multi Head Attention

Instead of using a single attention function with keys, values, and queries, it is
advantageous to project the queries, keys, and values h times using distinct learned
linear transformations to dimensions di, di, and d,, respectively. The attention func-
tion is then applied concurrently to each of these transformed versions of queries,
keys, and values, producing output values of dimension d,. These outputs are com-

bined after concatenation and subjected to another projection to obtain the ultimate
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values, as illustrated in Figure 2.3. Multi-head attention enables the model to simul-
taneously focus on information from various representation sub-spaces at different

locations.

MultiHead(Q, K, V) = Concat(heady, ..., headn)Wo (2.2)

where

head; = Attention(QWq,, KW, VWy,) (2.3)

Wllere t||e ro'ections are parameter lnatrices W Rd °de'xdk, WK Rd Ode'xdk,
Q
WV Rd Ode'xdv, and Wo R xdyxd odel,

2.1.5 1D Convolution

1D convolution is an operation used for feature extraction and transformation. It
involves sliding a filter or kernel over an input to compute the output [47]. The
input can be x, where x = [Xg, X1, X2,...,Xn-1] iS a sequence of N elements. The
kernel, also known as the filter, is another sequence of values that slide over the input
signal. The kernel is h, where h = [hg, hy, hy, ..., hm-o1] is a sequence of M elements.
The convolution operation at position i is calculated by multiplying corresponding
elements of the input signal and the kernel and then summing up the results. The
resulting output after performing the convolution operation is denoted as y. It is a
sequence of values obtained by sliding the kernel over the input signal and calculating

the convolution at each position. The operations can be expressed as:

(y@h); = Xi+j * hj
where:

(y @ h); : Output value at position i
Xi+j : Input value at position i + j
h; : Kernel value at position j

M : Length of the kernel
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y = [(y@h)o, (y&h)y, (yBh)y,...,(yBh)yim-2]

2.1.6 Time-series Transformer

The RLF prediction problem entails the utilization of historical radio link and weather
station data as inputs, where learning-based models are employed to capture temporal
dependencies. In recent years, there has been a surge in the popularity of transformer-
based time series representation learning models [43]. These Transformer models are
rooted in a multi-head attention mechanism [71], which imparts them with a spe-cial
suitability for handling time-series data [74]. The crux of the matter lies in the self-
attention module, which exhibits the remarkable capability of concurrently
representing each element within the input sequence by encompassing dependencies
with other elements in the same sequence [71]. Furthermore, the presence of mul-
tiple attention heads within the Transformer architecture enables it to account for
diverse representation contexts [81]. In other words, different attention heads can
aptly capture various types of relevance existing between input elements in the time
series sequence. These varied types of relevance may correspond to multiple kinds of
periodicities observed in the multivariate data.

The architecture of the time-series transformer module, as illustrated in Fig. 2.4,
is composed of two essential sub-modules, each contributing distinct functionalities to
the overall model. This design is tailored to effectively address the challenges posed
by time-dependent data while capturing both local and global patterns.

In the first sub-module, the input time series sequence undergoes a series of oper-
ations to facilitate effective feature extraction and temporal representation learning.
To begin with, batch normalization is applied across the feature dimension of the
input sequence (Fig 2.4). This normalization process enhances the stability and con-
vergence of the model during training, as it reduces internal covariate shift [39]. By
normalizing the features, the model can focus on learning meaningful representations
from the data without being hindered by the scale of individual features.

Subsequently, the key aspect of the first sub-module comes into play - the multi-
head attention mechanism [71]. This mechanism enables the model to jointly attend to

information from different representation sub-spaces at different positions in the input
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Figure 2.4: Transformer module for time-series representation learning.

sequence. By doing so, the model can effectively capture long-range dependencies
and temporal patterns that may span across various segments of the time series. The
multi-head attention mechanism has proven to be highly effective in sequence-to-
sequence tasks, as it empowers the model to weigh the importance of each element’s

context with respect to others, thereby generating a robust temporal representation.

To ensure the seamless flow of information and mitigate the vanishing gradient
problem, which is often encountered in deep neural networks, residual connections are
established around each of the two sub-modules (Fig 2.4). These connections enable
the preserved information from the input to be directly added to the output of each
sub-module. This mechanism ensures that the gradients can propagate effectively
through the network during backpropagation, allowing the model to learn and adapt to
complex temporal dependencies in the data. The presence of residual connections in

the transformer architecture is a distinguishing feature from traditional LSTM
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(Long Short-Term Memory) networks, as LSTMs do not inherently have residual

connections [82].

Moving on to the second sub-module, its primary role is to further extract local
patterns and features from the time series representation generated by the first sub-
module. This additional extraction process is performed to enrich the representation
with fine-grained details and intricate temporal features. Within the second sub-
module, there is a batch normalization layer, which serves the same purpose as in the

first sub-module, promoting stability and faster convergence during training [11].

The feature extraction process is accomplished through the use of two 1D convo-
lution layers with a ReLU activation function in between. These convolutional layers
effectively act as filters, sliding across the time series representation to detect and
emphasize local patterns and relevant features. The use of convolutional layers in
this context is inspired by the success of convolutional neural networks (CNNs) in
image-related tasks, where the filters can detect spatial patterns in two-dimensional
data. Similarly, in the time-series domain, the 1D convolution layers act as effective

tools for recognizing and capturing temporal patterns [52].

As a result of the processing within the second sub-module, the output is a set
of compressed vector representations of the original time series sequence. These rep-
resentations are highly enriched with both global temporal dependencies captured
by the multi-head attention mechanism and local patterns extracted through the 1D
convolution layers. The compressed vectors retain essential information from the
original sequence while eficiently summarizing the data in a way that is conducive

to classification and regression.

In summary, the architecture of the time-series transformer module is a well-
thought-out design that harnesses the power of multi-head attention and 1D convo-
lution to effectively handle time-dependent data. The combination of the two sub-
modules, along with residual connections, ensures the seamless extraction of global
and local temporal features, thus enabling the model to produce compact yet infor-
mative vector representations that can be readily employed in various downstream

tasks.
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2.1.7 Weather station aggregation

The propagation of 5G waves is affected by various challenges, including attenuation,
interference, loss, and interruptions caused by adverse weather conditions such as
rain, fog, snow, wind, and temperature variations [62], [2]. To make reliable RLF
prediction, previous studies [3], [40], [50] have integrated information from surround-
ing weather stations of a radio link. They achieved this by utilizing derived features,
optimal distance, and data from the nearest weather stations to enhance the perfor-
mance of radio link failure prediction. Despite these efforts, relying on a fixed number
of neighbouring weather stations proved to be ineffective since the optimal number
may vary across different links, even within the same deployment scenario. To over-
come this limitation, it becomes imperative to adopt a learning-based approach that
dynamically selects the most relevant surrounding stations, thereby better capturing
their impact on the radio link.

Another critical consideration is the weight assigned to each neighbouring weather
station. Treating all stations equally could introduce bias into the prediction since
their influence on the radio station should be proportional to various aspects, e.g.,
their distance from a link. Hence, it is essential to deploy deep learning techniques
that can learn the weighted aggregation of these neighbouring weather stations to
ensure an accurate prediction.

Moreover, it is important to recognize that 5G deployments can significantly vary,
ranging from densely populated urban areas to sparser rural regions. Even within a
single deployment, there may be patches of densely populated regions. Consequently,
conventional algorithms that fail to extract all contextual information struggle to
generalize effectively over new radio links. These traditional methods may rely on
different sampling techniques, such as oversampling minority samples to enhance
generalization [40], undersampling majority samples to introduce regularization [3],
or employing ensemble models to avoid overfitting [50]. However, a more generalized
and robust algorithm should possess exceptional representation learning capabilities
to encode relevant context for each radio link and incorporate effective regularization
properties to reduce overfitting.

In order to address the aforementioned challenges in predicting radio link failure

in 5G wave propagation, we propose leveraging the power of graph neural networks
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(GNNs) [16,28,76,78]. GNNs have shown great promise in various applications and are
particularly well-suited for handling graph-structured data, such as the relationships
between radio stations and their surrounding weather stations.

At the core of GNNs lies the concept of node embedding, which plays a crucial role
in compressing the high-dimensional information of a node’s neighbourhood into a
lower-dimensional vector representation. This node embedding is then fed into neu-
ral networks for tasks such as classification, clustering, and prediction. By effectively
capturing the relevant features and relationships from a variable number of neigh-
bouring weather stations, GNNs enable us to create informative and compact node
embeddings that can be used to enhance the prediction performance.

One popular GNN model that we will employ in our approach is GraphSAGE [28].
GraphSAGE is a versatile framework that excels at aggregating features from a local
neighbourhood, allowing it to generalize effectively across different radio links and
weather station configurations. By leveraging the power of GraphSAGE, we can
aggregate information from variable number of surrounding weather stations for each
radio link, thereby improving the accuracy of our prediction model. Formally, the

graph aggregation step can be described by Equation 2.4.

{ey, 'AN(1)} = o(W.{zy, ' EN(I)})

, (2.4)
e = max({er,| AN(1)})

Here, N(I) is the set of neighbouring nodes for | and z; is the set of feature
representations of these nodes. A transformation by weights W (can be any neural
network) and non-linear function o generates the set of learned feature vectors {e;, I
N (1)} of the neighbouring nodes. Finally, a max operation over these vectors produces
the aggregated embedding e, for the node |.

The utilization of GNNs and, in particular, GraphSAGE, holds several advantages
for our prediction task. Firstly, GNNs can naturally handle graphs with varying num-
bers of neighbours, making them ideal for scenarios where the number of surrounding
weather stations varies across different radio links. This inherent flexibility ensures
that our model can dynamically adjust its focus on the most relevant weather sta-
tions for each prediction, thereby avoiding the limitations of fixed or arbitrary station

selection.
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Secondly, GNNs excel at capturing complex relationships and dependencies within
the graph. In our case, this means that the model can effectively learn and exploit the
spatial and temporal patterns between radio stations and weather stations, thereby
enhancing the prediction accuracy under diverse weather conditions.

Moreover, the node embeddings generated by GNNs offer a concise yet informative
representation of each radio link’s context. By compressing the high-dimensional
neighbourhood information into low-dimensional vectors, we can significantly reduce
the computational overhead while still retaining the essential information necessary
for accurate predictions.

In summary, the adoption of graph neural networks, with a focus on the powerful
GraphSAGE model, provides a compelling solution to the challenges faced in aggre-
gating information from surrounding weather stations for each radio link. Leveraging
the node embedding capabilities of GNNs helps creating informative and compact rep-
resentations for each radio link. This, in turn, enhances our prediction model’s ability
to generalize across diverse deployment scenarios and weather conditions, making it
a promising approach for achieving more reliable and accurate 5G communication

networks.
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2.2 Related Works

The popularity of deep learning-driven failure predictions is on the rise due to the
ability of these models to effectively grasp the intricate spatio-temporal characteristics
in 5G networks and handle the vast volumes of data generated. As a result of this
finding, we introduce two sets of studies in this section: one focused on learning-
based failure predictions in 5G, and the other exploring the utilization of graph neural

network (GNN) aggregation for capturing spatial correlations.

2.2.1 Learning-based Failure Prediction

In their respective studies, Khunteta et al. [45] and Boutiba et al. [12] introduced the
Long Short-Term Memory (LSTM) network in RLF prediction, which proved effec-
tive in capturing temporal feature correlations for predicting link failures. However,
one limitation of their approach was the lack of consideration for weather effects,
which can significantly impact the performance of radio links. Subsequent research
endeavours sought to address this gap by incorporating historical radio link Key Per-
formance Indicators (KPIs) in conjunction with weather observation data, similar to
the dataset utilized in our present study.

For instance, Agarwal et al. [50] took a step further and combined individual link
features with data from the closest weather station, employing the Random Forest
classifier as their prediction model. This hybrid approach proved to be quite promising
in capturing both the temporal dynamics of link failures and the potential influence
of weather conditions. Meanwhile, Aktas et al. [3] devised a sophisticated branched
architecture, which integrated LSTM and feed-forward networks to account for both
temporal and categorical feature dependencies, respectively. Their work highlighted
the significance of considering various types of dependencies in link failure prediction.

In another study, Islam et al. [40] harnessed the power of LSTM-autoencoder’s
reconstruction capabilities. They trained their model on normal link data and used
high reconstruction errors during testing to identify potential link failures, achieving
remarkable results in link failure prediction. Although these previous approaches
made use of LSTM’s ability to extract valuable information from temporal sequences,

they still faced challenges in quantifying the importance of individual elements within
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a time series and capturing all possible influences among time series variables [71]. On
the other hand, Tunnell et al. [24] and Zhao et al. [83] both used statistical methods to

show that LSTM cannot fully represent long memory effects in the input.

Recently, transformer models have emerged as a promising alternative for time
series forecasting [74]. Unlike traditional LSTM-based approaches, transformers can
effectively capture long-range dependencies and selectively weigh the importance of
different elements in a time series sequence [81]. It is these distinct advantages that
motivated us to explore the application of a time series transformer model in the con-
text of link failure prediction. Building upon this foundation, we propose a novel
branched architecture that leverages the strengths of the time series transformer
model. One of the key innovations of our approach lies in the graph aggregation
technique applied to each link’s surrounding weather stations. By aggregating data
from these stations, we aim to gain a more comprehensive understanding of the impact of
weather conditions on individual links’ performance. The graph aggregation pro-cess
ensures that each link’s weather-related influences are appropriately considered

during the prediction task.

Our comprehensive experiments and rigorous evaluations demonstrate that our
proposed approach outperforms previous works in the domain of link failure pre-
diction. The incorporation of transformer models and the strategic use of graph
aggregation enable our method to not only accurately capture temporal dependen-
cies but also to effectively weigh the importance of different elements within a time
series. Moreover, the ability to model long-range dependencies grants our approach

a distinct advantage over traditional LSTM-based methods.

2.2.2 GNN Aggregation to Capture Spatial Correlations

Effectively capturing the spatial dependencies of surrounding weather station data
plays a crucial role in predicting Radio Link Failure (RLF). This step is of paramount
importance in the accurate estimation of RLF, which is vital for ensuring reliable and
seamless communication in wireless networks. To achieve this objective, researchers
have turned to Graph Neural Networks (GNNs) and their aggregation methods, which

have demonstrated their effectiveness in various applications.
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For instance, Wu et al. [75] utilized a GNN-based aggregation method to cap-
ture spatio-temporal relationships of weather radar data for precipitation forecasting,
showcasing the potential of GNNs in handling complex weather patterns. Similarly,
Fan et al. [20] applied GNN-based aggregation techniques to aggregate weather data
for crop vyield prediction, leading to improved accuracy in forecasting agricultural
outcomes. Moreover, Gao et al. [22] made use of GNNs to encode weather param-
eters for solar radiation prediction, highlighting the versatility of GNNs in different

environmental contexts.

In contrast, previous works on RLF prediction using weather station data adopted
simpler heuristics in their data pre-processing steps to account for spatial relations
of weather stations. For example, Agarwal et al. [50] opted to combine only the
closest weather station features with each radio link, which overlooked potentially
valuable information from more distant but still relevant weather stations. Likewise,
another study by Aktas et al. [3] involved calculating derived features based on a
fixed number (k) of nearest weather stations, neglecting the dynamic nature of radio
links’ relationships with their surrounding weather stations. Furthermore, Islam et
al. [40] introduced an optimal distance threshold to associate all weather stations
within that range with a particular radio link, overlooking the varying degrees of

influence weather stations might have on different radio links.

To address the limitations of these prior approaches and harness the power of
GNNs for RLF prediction, our proposed model leverages GNN-based aggregation
methods. By employing GNNs, we can dynamically consider a variable number of
relevant weather stations for each radio link, acknowledging the varying impact of
different weather stations on different links. Additionally, we use a max function
in the aggregation process, effectively selecting the most influential weather station
features for each radio link. This allows our model to capture and emphasize the

most significant spatial relationships, further improving its predictive capabilities.

An important advantage of our approach is the regularization effect introduced by
the GNN aggregation. The GNN inherently learns to emphasize important connec-
tions and discard noisy or irrelevant signals, thereby enhancing the model’s robustness
and reducing overfitting tendencies. Consequently, our model demonstrates superior

generalization performance compared to previous heuristic-based methods.
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Our work showcases the potential of GNN-based aggregation methods in captur-
ing spatial dependencies from surrounding weather station data for RLF prediction.
By dynamically considering varying numbers of relevant weather stations and em-
ploying a max function, our model effectively addresses the limitations of previous
approaches. Furthermore, the regularization properties of GNNs enhance the model’s
generalization capabilities, making it a promising solution for accurate RLF predic-

tion in wireless communication networks.



Chapter 3
Design and Evaluation

3.1 Research Methodology

The chapter introduces the dataset and design details of transformer-based weather
station aggregation framework for radio link failure (RLF) prediction, along with
LSTM+ and LSTM Autoencoder architectures. The workflow is composed of four
main components: dataset description, data preprocessing, model training and vali-

dation, and model testing. The entire RLF prediction workflow is visually represented

» (DX

in Figure 3.1.
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Figure 3.1: Link failure prediction workflow.

At first the dataset is introduced in great detail. Then the second stage, data
preprocessing, involves preparing the data for the prediction models. It begins by
cleaning the raw data, ensuring its quality and reliability. Handling missing values
is essential to maintain data completeness and accuracy. The approach further em-
ploys encoding techniques for categorical features, transforming them into numerical
representations for model compatibility. To understand the model’s performance at
different time of the year, a time series cross validation split is also performed.

In the third stage, the focus shifts to model training and validation. The frame-

work evaluates two existing models, LSTM+ and LSTM-autoencoder, alongside the

27
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proposed transformer-based model. This comparison allows for a comprehensive as-
sessment of the transformer’s potential advantages in RLF prediction. Rigorous vali-
dation ensures that the chosen models are well-performing and capable of generaliza-
tion.

Lastly, the framework tests the selected models’ performance on real-world, un-
seen link Key Performance Indicators (KPIs) and weather observations. This testing
phase assesses the models’ ability to make accurate predictions in practical scenarios,

offering valuable insights into their real-world applicability.

3.2 Problem Statement

Mobile operators invest significantly in predicting link failures within live networks
to proactively implement preventive measures. Researchers have explored various
approaches to forecast link failure probability, including using historical radio link KP |
and weather station data. Some propose specialized LSTM architectures to process
both time series and static data in a single model, while others employ decision trees
and random forest classifiers.

However, these state-of-the-art solutions face challenges. LSTM models do not
consider all possible influences of each element in a time series, and they are inca-
pable of putting different weights to different elements in a sequence. Additionally,
associating each link with the relevant weather station remains a problem, often rely-
ing on heuristics, which limits the generalizability of these models to different network
topologies.

An effective and scalable solution for predicting radio link failures must address
these challenges by incorporating a robust temporal feature extraction algorithm and a

weather station aggregation method that can be applied to new, unseen links.

3.3 Dataset Description

The dataset used in this study encompasses a collection of information related to
radio link configuration and key performance indicators (KPIs) data, and time-aligned
weather station observations from, two distinct deployments: urban and rural. The

data spans a period, ranging from January 2019 to December 2020 for the urban
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deployment and January 2019 to December 2019 for the rural deployment.

To ensure data privacy and confidentiality, certain configuration parameters and
performance data of the radio links have been anonymized. This process involves
removing sensitive information such as equipment names and link IDs without sac-
rificing the overall integrity and value of the data. Furthermore, the dataset does
not disclose the exact Global Positioning System (GPS) locations of the radio sta-
tions. Instead, it provides pairwise relative distances between the stations, enabling

researchers to maintain spatial relationships without revealing precise locations.

A comprehensive understanding of the dataset requires a thorough examination
of the tables. First, we have the “rl-sites” table, which contains identifiers for the
radio sites. Each entry in this table includes site-specific parameters like height and
clutter class, which describes the surrounding environment of the site (e.g., open
urban, open land, dense tree area). It is important to note that a single radio site
can have multiple radio links, as each site communicates with different sites through

different links.

The ”“rl-kpis” table presents daily KPIs for each radio link. Some of the essential
KPIs include severe error seconds, error seconds, unavailable seconds, block bit error,
etc. Moreover, this table also comprises link-specific configuration parameters such as
card type, modulation, frequency band, and others. To uniquely identify each link, a

pair of radio site ID and mini link ID is used as a composite key.

The "met-stations” table contains data for unique weather stations, and each entry
includes parameters like height and clutter class information. The clutter class values
describe the surrounding environment of the weather station, including categories like
dense tree areas, open land, airport, and more. These features provide insights into
the spatial characteristics of the weather stations.

For a holistic analysis of weather-related trends, the “met-real” table plays a cru-
cial role. It offers hourly historical weather observations, such as temperature, humid-
ity, precipitation, etc. These observations are then daily aggregated to align with the
radio link KP| data. By capturing the temporal properties of the weather stations,
researchers can investigate how weather conditions influence radio link performance.

Furthermore, the “met-forecast” data provides valuable information about the up-

coming five-day weather forecast for each weather station. This includes predictions
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for weather phenomena like snow, rain, scattered clouds, as well as numerical values
for humidity, temperature, wind speed, etc. Additionally, the maximum and mini-
mum predictions for forecast features like temperature and humidity are also made
available. This comprehensive weather forecast data allows researchers to study the

potential impact of anticipated weather conditions on radio link performance.

Lastly, the “distances” table contains pairwise relative distances between all radio
sites and weather stations. These distances are expressed in specific units, which are
not explicitly mentioned but may vary depending on the location and context of the
study. By considering the distances between different radio sites and weather stations,
researchers can incorporate spatial aspects into their analyses and potentially identify

relationships between performance metrics and geographic proximity.

Precipitation and Failure
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Figure 3.2: Effects of precipitation on failure.

To better understand the dataset and the relationship between weather effects
and radio link failure, we plot the precipitation of weather station against one of the
radio links that suffered failure (Fig. 3.2). It is worth noting that although the urban
and rural deployments share similar features across the datasets, they differ in terms

of the number of radio sites and weather stations included (Table 3.1).
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Table 3.1: Summary of the Dataset.

Urban Rural
Number of radio sites 1674 1674
Number of weather stations 20 117
Number of time-series radio link 7 7
KP1 features
Number of time-series weather fea- 9 9
tures
Total sample size around 1.8 million | around 0.4 million
Total Number of features with miss- 3 5
ing values > 20%

3.4 Data Preprocessing

3.4.1 Data Preparation

The calibration of training data plays a crucial role in determining the effectiveness,
precision, and complexity of machine learning tasks, as emphasized by Gupta et al. in
their research [26]. In our own investigation, we encountered a significant challenge
related to inconsistent values present in both weather station and radio link data.
These inconsistencies, such as unexpected string values in the radio and weather
data, have a detrimental impact on subsequent data transformations, hindering the
casting of features into their appropriate data types.

To address these issues and ensure the integrity of our dataset, we adopted a multi-
step approach. Our first priority was to handle the inconsistent values effectively. For
instance, we employed a method of removing data samples that contained unexpected
string values in numerical features. This step helped us eliminate potential errors
and inconsistencies that could have otherwise affected the accuracy of our machine
learning model.

With the data inconsistencies addressed, our next focus was on preparing the
dataset for the machine learning process. To achieve this, we systematically cast all
numerical features to the floating data type while converting categorical features to
the string data type. This conversion process was crucial in ensuring that each feature
was appropriately formatted and ready for the subsequent stages of our analysis.

Real weather data alignment. Our dataset has data from different entities
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(e.g., weather stations and their observations, radio sites and their link performance
data). In order to merge weather observations with radio link KPls, their temporal
frequencies need to be maintained. Radio site KPIs and real weather realizations
are collected in the chosen dataset over daily and hourly time intervals, respectively.
We use the standard mean aggregation [3] to transform hourly realizations into daily

weather data to align historical weather realizations with radio link KPlIs.

Data imputation. The majority of statistical and machine learning algorithms
lack robustness in handling missing values, thereby being susceptible to the impact of
incomplete data [41]. We calculate the percentage of missing values for each feature in
our dataset. Some features from historical radio link KP s and real weather station data
have a high percentage of missing values. We use a simple heuristic of dropping
features with missing values of 20% or higher. Also, some numerical features suffer
from missing segments over time, but the data can be reliably interpolated if the
percentage of missing values is under 15% [49]. Thus, we deploy time series linear
interpolation to impute missing numerical KPIs and historical weather observations
[60].

Data Merging. We need to use historical KPIs and weather data to predict
following-day link failure. Thus, we append a label column in the KPIs table, repre-
senting the next-day link status. Also, each radio site can have multiple links, so we
merge the KP | features with the corresponding site features by matching the site id.

Weather station features are also merged with weather observation data similarly.

Tackling data imbalance. We use the weighted cross-entropy loss function to
tackle the data imbalance, which incorporates prior probabilities into a cost-sensitive
cross-entropy error function. Unlike traditional cross-entropy, this weighted approach
accounts for the imbalanced nature of the data, giving a larger influence to the ma-
jority class while minimizing overall error. The loss function puts the prior minority to
majority class ratio A (0.003 for rural and 0.0006 for urban) into the regular cross
entropy (Eq. 2.1). In rural deployment, this ensures that both classes have an equal
influence because when y = 0 for a non-failure instance, the remaining term (1 -
y')log(1 - y') only contributes A = 0.3 percent to the loss. Similarly, wheny = 1 for
a failure instance, the remaining term -y ' log(y') contributes (1 -A) = 99.7 percent to

the loss.
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Time series split.Our dataset contains time series data for radio link KP | metrics
and weather station observations [3]. Time series prediction models are essential
to understand historical context and predict future radio link failures (RLF) [54].
Researchers when they propose a new model, are interested to know whether the new
method performs better than the state-of-the-art models. The standard procedure
for non-time series regression and classification problems is to use cross validation as
the model selection procedure. Cross-validation is a technique where a dataset is split
into different folds to train and evaluate a model’s performance multiple times, aiding
in estimating its effectiveness on unseen data [10]. However, in time series
prediction, the method for understanding model effectiveness can vary from problem
to problem. This is because characteristics of the series such as the number of observed
values, periodicity, or training complexity can be very different, as well as the types

of forecasts needed (one-step-ahead, many-step-ahead, etc.) [13].

Cross-validation makes complete use of the available data for both training and
validating [10]. But if the same method is used with time series data, the training and
validation set will not be independent even if randomly chosen because time series
might be generated by a process that evolves over time; affecting the fundamental
assumptions of cross-validation that data is independent and identically distributed
[5]. The problem of time dependency within training and validation can be solved
by using blocks of data rather than choosing data randomly. Usually for time series,
the end of each series is reserved and not used during model training. This kind of
validation by taking a block from the end of series is called ”last block validation”
[70]. By simulating real-world application, last block validation overcomes the issues
with traditional cross validation. Performing validation this way corresponds to real

systems where continuous forecasting of upcoming values is needed.

However, there are variants of last block evaluation in terms of how to make differ-
ent folds of training and validation sets. One evaluation technique is rolling-window
evaluation [70], where the amount of training data is kept constant in each fold, by
discarding old data from beginning of the train series. This is method can be effective
if the model needs to be retrained in every window and has statistical advantages by
providing model confidence on closely sized training data. Another similar evalua-

tion technique is known as rolling-origin technique [70], which is probably the most
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common use case for applications. Forecasts are performed by sequentially moving
values from validation set to training set and changing the forecast origin accordingly.
This produces folds with increasingly more train series. This method is also known
as n-step-ahead evaluation, with n being the forecast horizon used during evalua-
tion. This is appropriate for our use case because for real-world application model
will be built once by experts and later the model will be used with updated data as
new values become available. Also, if needed the model will be fine tuned with the
combined dataset (existing and new values) to make future predictions. Given, the
KPI and weather time series data for our real world use case, we choose rolling-origin

evaluation technique.
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Figure 3.3: Time series folds for urban deployment.

We use rolling-origin evaluation technique and create the 5 folds by first sorting the
data across time and splitting them into the first 70% train, the next 20% validation,
and the last 10% test set to create the first fold with largest training set. For instance, in
the urban deployment - data ranging from January 2019 to December 2020 - this
results in train, validation, and test set containing January 2019 to April 2020, May
2020 to September 2020, and October 2020 to December 2020 data, respectively. The
last 10% test data for this largest fold is considered the test block size. Subsequent
folds are created by offsetting the splits by the number of samples in the test block.
So the second fold would contain first 60% as train, next 70%-80% as validation, and
the next 80%-90% as test. (Fig. 3.3). Similarly, we create the rest of the folds for

both deployment scenario.
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3.5 Model Training and Validation

This section begins by introducing our GNN aggregation approach. Subsequently, we
elaborate on the model training process for our proposed transformer-based frame-
work and also provide a comprehensive explanation of the existing LSTM+ and

LSTM-autoencoder models along with their GNN aggregation augmented versions.

3.501 GNN Aggregation

The GNN aggregation process consists of two crucial components, as depicted in
Algorithm 1. These components play a vital role in handling the variable number of
weather station (WS) inputs and performing maximum aggregation of representation
vectors. In the context of each mini-batch of m links, an essential step involves
randomly selecting k closest weather stations (Line 2). The subsequent procedure
entails iterating over the k closest weather stations for each radio link (RL) within
the mini-batch (Line 5). During this iteration, the KP | feature vector is concatenated
with the time-aligned weather station observation vectors, resulting in the generation
of Kk WS + RL vectors for the selected radio link (Line 6).

To obtain context-aware representation vectors, these k WS + RL vectors are
passed through the Transformer module (Line 7). This module plays a critical role in
transforming the vectors, thereby enabling them to effectively capture the contextual
dependencies. Following this transformation, global average pooling is employed to
create k temporal embedding vectors, which are instrumental in capturing the time
series dependencies for the radio link. An important step is the subsequent max
aggregation across these vectors (Line 11). This process leads to the derivation of the
final node embedding vector denoted as L™N odeEmbd for the chosen radio link.

It is worth emphasizing that this process is carried out for all m links, resulting in
the calculation of node embedding vectors for each of them. The iterative nature of
the algorithm and the involvement of various steps make it highly eficient in handling
variable inputs and ensuring effective aggregation of representation vectors.

Expanding on the method, the random selection of k closest weather stations
serves a crucial purpose in mitigating potential biases and ensuring a representative

set of inputs for each radio link. By incorporating randomness in the selection process,
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Algorithm 1 Weather Station Aggregation
Input: Historical Radio Link KPIs of | links for t days, where each link L =

{LY, L2, L3, ..., L'}, and L B RIxtxfeatures. Historical weather station observations of n
stations for t days, where W = {W?, W2, W3,..,,W"}, and W [ Rxtxfeatures. Trang_
former weight matrices T; Differentiable aggregator function max; M mini batches
with each of size m.
Output: Node embeddings for all links in a mini batch

1: for minibatch < 1 to M do

2: k €& Random(1, n]

3: for L™ < 1tomdo

4: EmbdList <

5: for Wk & 1 to k closest stations do

6: WS + RL < concat(L™, Wk)

7: ConReps < T(WS + RL)

8: TempEmbd < AvgP ooling(ConReps)
9: EmbdList < append TempEmbd

10: end for

11: L™NodeEmbd ¢ max(EmbdList)

12: end for

13: end for
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the algorithm becomes robust and is better equipped to handle diverse scenarios.
Additionally, the iterative concatenation of KPI| feature vectors with time-aligned
weather station observation vectors is a powerful technique that facilitates the fusion of
different data sources. This fusion is particularly useful in the context of radio link
performance, as it enables the algorithm to take into account the influence of various
weather conditions on the link’s behaviour.

The utilization of the Transformer module for generating context-aware represen-
tation vectors is an innovative approach. Transformers have gained immense popu-
larity in natural language processing tasks for their ability to effectively model de-
pendencies among sequence elements. In this context, applying them to capture
dependencies between the WS + RL vectors allows the algorithm to effectively un-
derstand and utilize the temporal relationships in the data. As a result, the node
embedding vectors derived from this process are rich in context and carry valuable
information about the radio link’s behaviour over time.

The global average pooling step, which generates temporal embedding vectors,
is an essential technique for aggregating temporal information from the WS + RL
vectors. This pooling operation helps to summarize the temporal aspects of the
data while preserving its key characteristics. The subsequent max aggregation step
is a strategic decision in generating the final node embedding vector. By choosing
the maximum value from the temporal embedding vectors, the algorithm focuses on
the most relevant and salient features, leading to a more compact yet informative

representation of the radio link’s behaviour.

3.5.2 Transformer GNN Architecture.

The primary objective of the transformer-based framework presented in this research
is to convert time series sequences into probability vectors. The model utilizes pre-
processed radio link Key Performance Indicators (KPIs) and weather station ob-
servations, following the mentioned steps, as inputs. Subsequently, it generates a
probability vector predicting the occurrence of link failures on the subsequent day.
By leveraging this approach, the study aims to enhance the accuracy of link failure
prediction and contribute to the understanding of time series analysis in relation to

radio link performance and weather data.
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Figure 3.4: TransformerGNN architecture

This work presents a comprehensive approach for radio link failure prediction
using a time series transformer module and a variable weather station aggregation
method. The main goal is to predict the probability of link failure and no failure for
the following day based on the input data of radio link and weather station time series.

The complete architecture of the proposed model is depicted in Figure 3.4. It
consists of three main parts: the generalized transformer branch, the static feature
branch, and the feed-forward output branch. The transformer module (illustrated in
Figure 2.4) plays a crucial role in processing the time series data and capturing the

contextual information of radio links and relevant weather stations.
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The model’s working mechanism involves feeding the radio link and weather sta-
tion time series data as inputs to the transformer module, followed by global average
pooling and max aggregation functions. This process results in an embedding vec-tor
that encapsulates the contextual information of the radio link and its associated
weather station. Additionally, a feed-forward network processes the one hot encoded
static feature, representing configuration parameters of the link and weather station.
The static feature branch outputs a latent representation that complements the con-
text feature vector derived from the transformer module. These two feature vectors
are concatenated and further passed to another feed-forward network responsible for
generating the final output vector. The output vector contains two elements: one ex-
pressing the probability of link failure for the following day and the other expressing
the probability of no failure.

By dividing the model into distinct branches, each with a specific purpose, the
approach effectively combines both temporal and static information to enhance pre-
diction accuracy. This holistic architecture demonstrates a well-rounded method for
radio link failure prediction that considers the influence of dynamic and static factorsin

the prediction process.

Generalized transformer branch. The research introduces a generalized trans-
former branch that processes input data from radio links (RL) and weather stations
(WS). The RL time series data consist of 9 features, such as severe error seconds,
available time, and bbe, while the WS time series data include 7 features, such as
temperature, humidity, and precipitation. All features are available daily, and to
incorporate temporal information into the transformer, a time step is added as an
extra feature as part of positional encoding. The incorporation of positional encoding
enables the transformer to consider temporal patterns effectively and make accurate

predictions.

The time series vectors for a radio link are denoted as L, whereL = L4, L,, L3, ..., Lt,
and each L; represents the data for a specific day. The dimension of L is t x9, where
t is the total number of days. On the other hand, the weather station vectors are
denoted as W, where W = W, W2, W3, ..., W", ordered by ascending distance from
the radio link. Here, n represents the total number of weather stations in the de-

ployment. Each weather station, W', contains its own time series data, denoted as
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Wi= W), Wi Wi .., W/ The dimension of W is nx tx 7, capturing data from all
weather stations across time.

The research focuses on predicting link failure probability on a daily basis using
KPIs from the previous five days, as it yields the best prediction performance (Islam
et al. [40]). The input data consists of concatenated feature vectors from radio links
and weather stations, denoted as WS1+ RL and WS2 + RL, where WS1 and WS2
represent the first and second closest weather station time series data, respectively.
These vectors contain nine link features, seven weather features, and one time-step
number column, resulting in an input tensor of shape (batchsize,3 x 5x 17) for the
transformer module (Fig. 3.4). Each weather station time series passes through the
transformer module and the number of weather station time series can vary. This
mimics the variable number of neighbouring nodes in a graph structure. So, we use
GNN based variable number of neighboring node processing to capture dependencies

for each time series using a transformer module.

The study identified that using a small batch size (e.g., 32 or 64) with extremely
low minority-to-majority class ratios (0.003 for rural and 0.0006 for urban) caused
unstable training. To address this, we adopted larger batch sizes of 1024 for rural
deployment and 6000 for urban deployment. This decision aimed to ensure that each
batch contains at least two link failure events on average, which stabilized the model

training process.

The architecture depicted in Fig. 3.4 involves a transformer module that operates
on the time series vectors W S + RL, producing embedding vectors that encompass the
interactions between elements within the sequence. During the training phase, each
batch comprises only the initial n WS + RL(5, 17) tensors, where n ranges from 1 to
3. Consequently, a radio link may be associated with its n nearest weather stations at
different iterations. This data augmentation technique enhances the model’s ability
to generalize effectively.

However, during the inference stage, the augmentation step is removed, and n is
set to 3, allowing all surrounding weather station contexts to be provided for a given
link. This configuration ensures comprehensive contextual information for accurate

predictions in real-world scenarios.

The transformer module utilized in the study comprises four heads, each with a
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size of 32, alongside two 1D convolution filters of sizes 32 and 17, respectively (see
Fig. 2.4). Both the input and output shapes of the transformer remain consistent,
being (batchsize,3 x 5x 17). The objective is to capture temporal dependencies for
each weather station and radio link pair. To achieve this, global average pooling is
performed across the time dimension, generating an output of shape (batchsize, 5, 17)

for each pair, where different colors represent different pairs.

In order to further condense the information, the max function is employed as
an aggregator, performing an element-wise max operation across the embedding vec-
tors. As a result, a single feature vector of shape (batchsize, 17) is generated. This
final feature vector effectively encapsulates the effects of a variable number of closest
weather stations on each radio link, thereby facilitating a concise representation of
the data. By adopting this generalized transformer module approach, the study aims
to capture and leverage the interactions between weather stations and radio links in

a flexible and eficient manner, paving the way for improved performance.

Static and output branch. This work focuses on utilizing the generalized
transformer module to handle time series radio links and weather station data. To
complement this, a feed-forward network is employed to encode static radio links and
weather station features. The radio link features (e.g., modulation type, frequency
band) and weather station features (e.g., clutter class, weather day) are treated as
categorical features, and one hot encoding is used to process them before passing to

the feed-forward network, which comprises two layers with 32 and 17 neurons.

The outcome from the static branch and the generalized transformer branch is
merged through concatenation, forming a representation vector of size (batchsize, 34).
This representation vector effectively captures both temporal and static dependencies.
The concatenated vector is then fed into another feed-forward network with 2 layers,
consisting of 16 and 2 neurons, respectively. To obtain the final probability vector for

link failure, a Softmax layer is employed.

During the model training process, a weighted categorical cross-entropy loss func-
tion is utilized, and the Adam optimizer with learning rate of 0.001 is employed.
Subsequently, during inference, a binary prediction for each input is made by select-

ing the maximum probability score from the two calculated probabilities.
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353 LSTM+

In this thesis report, we employ the LSTM+ method proposed by [3] as a basis for
comparison with our proposed framework. To ensure consistency, we adopt the same
data pre-processing steps as previously mentioned, with a single modification: we
compute derived features (mean, minimum, maximum, standard deviation) based on
the 7 weather station features for each radio link, utilizing data from its 3 nearest
weather stations, following the methodology in [3].

The pre-processed data is then fed into the LSTM+ model, which incorporates
separate branches to capture temporal and spatial features (depicted in Fig. 3.5). For
this purpose, the model employs 4 LSTM layers to capture temporal dependencies
between radio links and derived weather station features. In contrast, configuration
parameters are encoded using one-hot encoding and processed by a feed-forward net-
work, similar to the approach utilized in Transformer GNN model. Subsequently, the
output vectors from both branches are concatenated and fed into another feed-forward

network to obtain the final probability score vector.

Derived WS+ RL (LSTM Layers Temporal
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Figure 3.5: LSTM+ Architecture

In this study, we enhance the LSTM+ architecture by incorporating our gener-
alized graph aggregation method to assess the performance boost achieved by our
framework. To achieve this, we follow a data pre-processing procedure similar to that of
our proposed framework. We introduce two key components of our aggregation
method: the incorporation of a variable number of weather station inputs and the
utilization of a max aggregation step (illustrated in Fig. 3.6).

During the batch processing, the LSTM layers analyze data from n weather sta-

tions, where n varies from 1 to 3, generating diverse feature representations that
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effectively capture the temporal dependencies between radio link and weather station
pairs. Subsequently, a max aggregation function is applied to merge the representa-
tion vectors. The static and output branches of this augmented model remain con-
sistent with our proposed approach. Furthermore, to maintain uniformity and ensure
fair comparisons, we employ the same optimizer and loss function for both LSTM +
and the augmented model experiments. This comprehensive evaluation allows us
to gauge the eficacy of our generalized graph aggregation method in enhancing the

LSTM+ model’s overall performance.
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Figure 3.6: LSTM+ with proposed GNN aggregation.

3.5.4 LSTM-AutoEncoder

In this thesis report, we conduct a comparative study by implementing the LSTM-
Autoencoder approach introduced in [40] and comparing its performance against GN-
NTransformer and other models. The data preprocessing steps remain consistent with
those mentioned earlier. A crucial distinction between GNNTransformer and LSTM-
Autoencoder lies in how we handle the ”scalability score” feature, which is considered
as numerical rather than categorical due to its floating-point values and high cardinal-
ity (1200). As such, an encoder-decoder LSTM model is utilized to transform normal
input sequences into latent representations, which are then decoded back to output

sequences closely resembling the original sequences (Fig. 3.7) [64].
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Figure 3.7: LSTM Autoencoder architecture.

It is important to note that only normal radio links are employed to train the
encoder-decoder LSTM network, enabling the capture of feature dependencies in a
normal scenario [40]. During the validation and testing phases, where both failure
and normal link data are present, the trained model may not effectively decode failed

input sequences back to their original forms, indicating a link failure.
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Figure 3.8: LSTM Autoencoder with proposed GNN aggregation..

To further enhance the LSTM-Autoencoder architecture, we integrate our gen-
eralized graph aggregation method to evaluate potential performance improvements.
We incorporate the variable number of weather station input handling and max ag-
gregation techniques (Fig. 3.8), similar to those utilized in GNNTransformer. This
augmented network employs encoding of input sequences into a single latent vector,
which is then replicated n times, where n represents the number of weather stations
in the current batch. Subsequently, the replicated vectors pass through a decoder net-
work, such as the LSTM Decoder, to generate output sequences closely resembling
the input sequences.

By conducting a thorough analysis of the LSTM-Autoencoder approach and as-
sessing its performance with the integration of the generalized graph aggregation

method, this study aims to provide valuable insights into the effectiveness of the



45

techniques in addressing link failure detection and overall model robustness.

3.6 Evaluation and Results

This section of the thesis report we fist present the evaluation metrics and setup for our
experiments. Then we showcase the outcomes of our transformer-based framework, in
real-world settings encompassing both urban and rural deployments. Comparative
analyses are conducted against LSTM+ and LSTM-autoencoder models, considering
the incorporation of the proposed GNN aggregation step. Additionally, the assess-
ment also focuses on the generalization ability of the framework, its potential beyond
the specific deployment scenarios. The results shed light on the framework’s eficacy

and versatility.

3.6.1 Performance Metrics and Evaluation Setup

The evaluation process involves assessing various methodologies through precision,
recall, and F1-score metrics. Each approach’s performance is measured by calculating
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)
for both failure and non-failure events. True positives represent correctly predicted
failures in the test dataset, while true negatives indicate accurately predicted non-
failure events. False positives occur when non-failure events are mistakenly predicted
as failures, and false negatives happen when failures are incorrectly predicted as non-
failures.

To quantify the evaluation, we compute the metrics for both failure and non-

failure classes using the following formulas: Precision = Recall =

_TP _TeP
TP+FP’ TP+FN ’

and Flscore = F%m The reported results encompass the average precision,
recall, and F1-score for both failure and non-failure scenarios, providing a comprehen-
sive assessment of the methodologies’ effectiveness in handling both types of events.
The combined evaluation outcomes gives valuable insights into the overall perfor-
mance of each approach and enable a thorough comparison of their capabilities.

The experiments were conducted on a machine equipped with an Intel(R) Xeon(R)
Silver 4210R CPU running at 2.40GHz, 32 GB of memory, and an Nvidia Quadro
RT X 8000 GPU boasting 50GB VRAM. The operating system and GPU versions em-

ployed were Ubuntu 20.04.6 LTS and CUDA 11.7, respectively. Data pre-processing
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utilized numpy, pandas, and sklearn libraries, while the models were implemented
using TensorFlow [1]. This robust hardware and software setup ensured eficient and

accurate execution of the experiments, facilitating reliable results and analysis.

3.6.2 Performance comparison of different models

In this study, we trained and evaluated several models, including Transformer GNN
(GNNTransformer), LSTM+ with GNN aggregation (GNNLSTM+), LSTM+, and
LSTM-autoencoder with GNN aggregation (GNNLSTMAE), along with LSTM au-
toencoder. Here, we use rolling-origin evaluation method to compare the performance
of different models. The models were trained on different training folds where each
fold has training set of different size, and their performances were assessed on the
5-fold test data. This let’s us understand how these models perform when the train-ing
size is gradually increasing as new data is available similar to real world scenario. The
evaluation focuses on predicting radio link failure for the following day. The results,
presented in Table 3.2, include Fl1-scores along with corresponding precisions and
recalls.

Notably, GNNTransformer emerged as the top performer, consistently surpass-
ing all other existing approaches. For rural deployments, GNNTransformer achieved
an average Fl-score of 0.93, while for urban deployments, it attained an average
F1-score of 0.79. These findings demonstrate the superior predictive capabilities of
GNNTransformer and highlight its potential for accurate failure prediction in both
rural and urban scenarios. The impressive and consistent performance of GNNTrans-
former showcases its effectiveness as a transformative framework in the field of radio
link failure prediction. One limitation of the evaluation scheme is that we run each
training fold only once. That is why we did perform any evaluation of the uncertainty
(in terms of standard deviation of the achieved F1 scores) in our results. Ideally, we
would want to run the experiments multiple time for each training fold and report
the average and standard deviation of the F1 scores for each fold. We have further
discussed the advantages and limitations of our evaluation scheme in the future work
section.

The subpar performance of LSTM+ and LSTM Autoencoder can be attributed

to their inability to assign varying weights to previous day data, lacking an internal
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Table 3.2: The performance comparison of GNNTransformer for rural deployment.

Date Range Approach Precision Recall F1-Score
GNNTransformer| 0.9994 0.8600 0.9183
GNNLSTM+ 0.8456 0.8593 0.8523
Nov-Dec 2019 | LSTM+ 0.7049 0.7581 0.7049
GNNLSTMAE 0.6860 0.6192 0.6452
LSTMAE 0.6650 0.5793 0.6070
GNNTransformer| 0.9775 0.913 0.9431
GNNLSTM+ 0.8949 0.9275 0.9105
Oct-Nov 2019 | LSTM+ 0.7713 0.7973 0.7837
GNNLSTMAE 0.5092 0.5336 0.5138
LSTMAE 0.5241 0.5455 0.5314
GNNTransformer| 0.9622 0.9758 0.9689
GNNLSTM+ 0.8571 0.9999 0.9166
Sep-Oct 2019 | LSTM+ 0.8172 0.6687 0.7198
GNNLSTMAE 0.6520 0.7128 0.6771
LSTMAE 0.5790 0.5255 0.5377
GNNTransformer| 0.8571 0.9999 0.9166
GNNLSTM+ 0.8425 0.8466 0.8445
Aug-Sep 2019 | LSTM+ 0.5881 0.7993 0.6359
GNNLSTMAE 0.5052 0.6909 0.5103
LSTMAE 0.5033 0.5980 0.5032
GNNTransformer| 0.9020 0.9115 0.9067
Jul-Aug 2019 | GNNLSTM+ 0.7600 0.7875 0.7731
LSTM+ 0.6634 0.8451 0.7214
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Table 3.3: The performance comparison of GNNTransformer for urban deployment.

Date Range Approach Precision Recall F1-Score
GNNTransformer| 0.8999 0.9799 0.9363
Oct-Dec 2020 | GNNLSTM+ 0.7544 0.9197 0.8168
LSTM+ 0.7247 0.8347 0.7688
GNNTransformer| 0.7383 0.8404 0.7803
Aug-Oct 2020 | GNNLSTM+ 0.6711 0.9061 0.7407
LSTM+ 0.7527 0.7361 0.7441
GNNTransformer| 0.6693 0.7378 0.6978
Jun-Aug 2020 | GNNLSTM+ 0.7270 0.6189 0.6560
LSTM+ 0.5414 0.5057 0.5100
GNNTransformer| 0.6734 0.8694 0.7360
Apr-Jun 2020 | GNNLSTM+ 0.6025 0.8476 0.6583
LSTM+ 0.5822 0.7824 0.6273
GNNTransformer| 0.8332 0.7856 0.8076
Feb-Apr 2020 | GNNLSTM+ 0.6599 0.6903 0.6738
LSTM+ 0.5940 0.6902 0.6257

mechanism to prioritize crucial information such as recent feature values or significant
weather events. Additionally, the limited context window of LSTM, restricted to the
previous context, results in the vanishing gradients issue, limiting its ability to capture

long-spanning complex dependencies in sequences.

In contrast, the transformer architecture addresses these limitations through its
self-attention mechanism, enabling it to focus on the most relevant elements within
the input sequence. Furthermore, the transformer’s larger context window allows
for a more comprehensive understanding of the relationships between feature values
that are distantly spaced in the sequence. These inherent advantages of transformer-
based time series encoding contribute significantly to the superior performance of

GNNTransformer.

By leveraging the transformer’s self-attention and expanded context window capa-
bilities, GNNTransformer excels in capturing intricate temporal patterns and crucial
dependencies, surpassing the performance of LSTM-based approaches. The ability
to effectively prioritize relevant information and capture long-range dependencies en-
hances GNNTransformer’s predictive power and showcases the transformative poten-
tial of the transformer-based framework in advancing time series analysis for radio

link failure prediction.
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Figure 3.9 displays the distribution and variability of Fl-scores for various ap-
proaches using a box and whiskers plot. The box in the plot represents the in-
terquartile range (IQR), encompassing the middle 50% of the data. Notably, the
GNNTransformer scores are more tightly clustered in the middle of the box, indicat-
ing less variability and a more consistent performance across different evaluations.

Conversely, the Fl-scores from other approaches exhibit a broader spread, sug-
gesting greater variability in their performance across the test data. The observed
concentration of GNNTransformer scores within a narrower range implies a more
robust and stable predictive ability compared to the other methods.

To understand if our proposed method is qualitatively and quantitatively signifi-
cant compared to previous approaches we use box plot and perform One-way ANOVA
test respectively. This box and whiskers plot visualization offers valuable insights into
the distribution and spread of Fl-scores, illustrating how the GNNTransformer out-
performs other approaches by demonstrating higher consistency and reliability in its
predictions. The plot’s clear depiction of the data distribution allows for a quick and
comprehensive comparison of different methods, supporting the conclusion of GN-
NTransformer’s superiority in this evaluation. We also perform One-way ANOVA
test to understand if the performance improvement of GNNTransformer is statisti-
cally significant compared to all other approaches. We also perform the same test to
investigate the performance gain of GNN Aggregation. We achieve a p value of 0.03
and 0.003 for the GNNTransformer and GNN Aggregation test respectively; (a p
value lower than 0.05 indicates that the results are significant) which shows the

results produced are statistically significant.

3.6.3 Performance improvement from GNN Aggregation

The research demonstrates the superiority of GNNLSTM+ over the non-graph aggre-
gation method (LSTM+) in both rural and urban scenarios. GNNLSTM+ achieves
remarkable F1-scores of 0.85 and 0.70 in rural and urban deployments, respectively,
surpassing the scores of 0.71 and 0.65 obtained by LSTM+. Similarly, GNNLST-
MAE also exhibits enhancement, with its F1-score rising from 0.60 to 0.64 in rural
deployment.

Comparing the LSTM-Autoencoder results with other models, a discrepancy is
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Figure 3.9: Distribution and variability of F1-scores of different approaches.

noticed. Our model’s reported Fl-score of 0.60 performs worse than that of the pre-
vious study [40]. We attribute this difference to our consideration of the scalability
score as a numerical feature instead of a categorical one. Furthermore, the dissimi-
larity in the test dataset could be a contributing factor, as the previous work utilized
failure events from approximately 6 months, whereas our test data covered only 2
months. We also observed the model struggled to fit with the complete dataset and so
we used random undersampling to train the model. Due to scalability limitations, the
rural deployment result for LSTM-Autoencoder is reported, as the model cannot
handle larger urban deployments. Nonetheless, the introduction of GNN aggregation

remains a potential avenue for enhancing model performance.

The LSTM+ and LSTM-Autoencoder models utilized k nearest weather stations
and determined an optimal distance based on a radio link. The reason for their com-
paratively lower performance lies in their reliance on heuristic-based weather station

association methods, which do not allow for dynamic learning from all nearby weather
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Table 3.4: Generalization comparison of GNNTransformer and LSTM+ for rural
deployment.

Training link GNNTransformer LSTM+

fraction Precision Recall Flscore | Precision Recall Flscore
0.5 0.7157 0.7587 0.7352 0.6840 0.6987 0.6910
0.4 0.8857 0.8396 0.8612 0.6024 0.7365 0.6423
0.3 0.6480 0.7775 0.6927 0.6006 0.7561 0.6436
0.2 0.6068 0.6578 0.6272 0.5655 0.6951 0.5969
0.1 0.5867 0.6178 0.5998 0.5846 0.5981 0.5908

stations. Both the k nearest and optimal distance approaches require constant tun-
ing when topology changes occur, making them susceptible to outliers. Additionally,
they treat all associated weather stations equally, disregarding the potential influence
of closer stations. We believe that this static nature of weather station association
contributes to the observed decline in performance.

In contrast, our proposed approach introduces a GNN aggregation step that en-
hances existing architectures like LSTM+ and LSTM-Autoencoder by facilitating
dynamic learning of relevant weather stations for each link. By leveraging GNN ag-
gregation, the models become capable of generalizing effectively to previously unseen
links. This adaptability enables them to focus on the most informative weather sta-
tions, leading to improved performance compared to the conventional methods. The
ability to dynamically update the station association based on context and proximity

enhances the overall effectiveness of the models in predicting radio link performance.

3.6.4 Generalization comparison of GNNTransformer

The primary focus of the study is to assess the generalization capability of GNNTrans-
former in comparison to LSTM+. To achieve this, both networks are trained on a
subset of radio links and then evaluated on the complete deployment, allowing for an
evaluation of their ability to learn from a smaller topology and apply that knowledge to
a larger one. The fractions of links taken from the rural topology range from 0.1 to
0.5. The results indicate that GNNTransformer consistently outperforms LSTM+
across all fractions, demonstrating an average F1-score of 0.70 and 0.87 for rural (Ta-
ble 3.4) and urban (Table 3.5) deployment respectively, in comparison with 0.63 and
0.75.
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Table 3.5: Generalization comparison of GNNTransformer and LSTM+ for urban
deployment.

Training link GNNTransformer LSTM+

fraction Precision Recall Flscore | Precision Recall Flscore
0.5 0.9103 0.9349 0.9222 0.7121 0.8647 0.7681
0.4 0.9051 0.9699 0.9351 0.7104 0.8996 0.7756
0.3 0.9036 0.9399 0.9210 0.7227 0.8897 0.7834
0.2 0.8345 0.9248 0.8743 0.6486 0.9543 0.7237
0.1 0.8827 0.6799 0.7447 0.6687 0.7493 0.7013

For rural scenario, the improvement appears to be more pronounced for larger
fractions (0.3, 0.4, 0.5) with an average increase from 0.65 to 0.76, while smaller frac-
tions (0.1, 0.2) exhibit a comparatively smaller improvement, increasing from 0.59 to
0.61 on average. This suggests that GNNTransformer exhibits stronger generaliza-
tion capabilities, particularly when with a larger fraction of the topology. Similarly,
for urban scenario, we observe a similar and consistent improvement over LSTM+,
exhibiting a greater improvement for larger fractions. One key distinction with the
rural setting, is the decrease in performance is relatively lower; e.g. from 0.5 to 0.2
fractions GNNTransformer Fl-score dropped from 0.92 to 0.87 while in the rural it
dropped from 0.73 to 0.62. This is most likely due to the denser deployment of ra-dio
links for an urban setting, as relatively higher number of links share the same
surrounding weather stations.

In previous approaches, the absence of a dedicated architecture component for
generalizing to unseen links and effectively utilizing each link’s data was evident.
The LSTM+ method, for instance, calculates derived features from k nearest weather
stations for individual links, limiting its consideration to each link only once.

However, in contrast, our proposed GNNTransformer incorporates a variable weather
station input feature within the GNN aggregation method. This allows for data
augmentation, enabling the model to consider different numbers of weather stations
for the same link during training. This inherent data augmentation technique in
GNNTransformer is credited with the observed improvement in generalization per-
formance. By leveraging diverse weather station combinations during training, GN-
NTransformer can effectively learn from varying contexts and conditions, ultimately

enhancing its ability to handle previously unseen links.



Chapter 4

Conclusion and Future Work

4.1 Future Work

In this section we talk about, the limitations of this work from design and evaluation
perspective and also discuss how those limitations should be taken care of in future
studies.

Comprehensive evaluation. To understand differences in model performance,
we utilized rolling-origin [70] evaluation method to compare our proposed model with
existing architectures. This evaluation approach has its advantages and disadvan-
tages. The primary advantage is that it matches real world application scenario
where model is updated after certain period by fine tuning on new data. So, we
are able to evaluate these models as if they were deployed in cellular network data
centers. On the other hand, statistically the evaluation technique does not give good
confidence as the training set size differs from one fold to the other. It leads to unfair
comparison across different data splits because the fold with more data is likely to
perform better. So, we are not able to get an average across these folds and provide
a statistically sound technique to compare with previous methods. These limitations
can be addressed by performing rolling-window evaluation [70] where the training set
in each fold is of the same size because we discard samples from the beginning as
we offset the window forward in time. Rolling-window evaluation provides the sta-
tistical advantages to measure the performance of different models and provide error
deviation to understand the reliability of these models.

To have high confidence, it is a common standard to run the model training,
validation and testing experiment multiple times for the same dataset and report the
average and standard deviation scores. In our evaluation method, we do not perform
multiple runs for the same fold of train, validation and test data. For each fold we
evaluate the model once. As each fold has different sized training set, this leads to

low confidence on the results obtained. So, it also does not provide any information
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on the deviation of F1 score. Ideally in each fold, we must run the model for multiple
times with different initialization to get the average and standard deviation of F1

scores for each fold. This will provide high confidence in the obtained results.

Other potential models. We considered LSTM+ and LSTM Autoencoder as
benchmarks to compare against because these models were directly applied to the
same ITU dataset used in this thesis. There are several other competing time series
modeling techniques such as Gated Recurrent Unit (GRU) and Ordinary Differential
Equations (ODE). Similar to LSTM, GRU can employ gates to select which informa-
tion should be kept and which should be discarded [17] and it has been successfully
used in different domains [79]. It has some benefits over LSTM [77] such as using
smaller number of parameters and computational cost. On the other hand, Neu-ral
Ordinary Differential Equation (NODE) is able to achieve reasonable result even when
data is intermittently sampled [46]. A simpler model may work better for our RLF
prediction problem and so GRU and NODE can be a possible avenue for fu-ture
exploration. There are also variants of these networks such as GRU and LSTM with
attention. Future work can consider comparing other state-of-the-art time se-ries
modeling techniques to perform a comprehensive analysis of existing time series

modeling techniques for RLF prediction problem.

Extending existing architecture. We show how utilizing a time series Trans-
former and GNN aggregation can lead to better performance and generalization on un-
seen links. This work can be further extended by incorporating recent advancements
in pretrained transformer and attention GNN because, unsupervised pretraining of
transformer has proven to increase performance in time series forecasting [81] and
graph attention has improved neighbourhood aggregation in capturing spatial corre-
lations [72]. We can also utilize the GNN aggregation to capture not only weather
station effects but also inter-base station effects such as interference. We envision the
same architecture principle can be applied to perform purely unsupervised approaches

where the input consists of a variable number of weather stations for each radio link.

Synthetic data generation and model explainability. Our datasets have an
extremely low minority-to-majority class ratio. Because of that, a small volume of
data (minority class) penalizes the model performance. The failure cases present in

the dataset may not capture all possible and important cases. We believe a reliable



55

and truthful generation of synthetic failure cases, with the help of simulations [44] or
deep generative models [73], will improve the data quality and thus increase the faith-
fulness of deep learning models. Another important line of work from the perspective of
making these models more faithful, is exploring interpretable and explainable ma-
chine learning models. Interpretable machine learning models [19] aim to have such
transparency so that a human can understand why the model makes a certain pre-
diction. But these models might not be actually explainable from model’s internal
workings. Explainable machine learning models [9] are able to point towards internal
mechanism that resulted in certain prediction. Using such models will lead to a clear
insight into the decision making process of these models and so it would be easier to

get them deployed in live networks where network operators can rely on these models.

4.2 Conclusion

The study focuses on addressing the challenges in predicting radio link failures (RLF)
in 5G RAN caused by weather changes. A proactive RLF prediction system is crucial
for enhancing user experience and optimizing network operator resources. To achieve
this, we investigate existing link failure prediction models’ limitations and propose a
novel time-series transformer-based framework. This framework incorporates GNN
aggregation, considering a variable number of surrounding weather stations for each
link, resulting in improved prediction accuracy.

The experiments conducted on real-world deployments demonstrate the effective-
ness of the proposed framework in accurately predicting next-day RLF. Moreover, the
study highlights the potential of applying the GNN aggregation to existing models, en-
hancing their prediction performance as well. As part of future work, the researchers
plan to explore synthetic data generation methods and develop interpretable deep-
learning models to further improve RLF prediction capabilities. By addressing these
aspects, the research contributes valuable insights and solutions to the vital area of
RLF prediction in 5G RANs.
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