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Abstract

Review comments are a major building block of modern code reviews. Ensuring

the quality of code review comments is essential, but manually writing high-quality

review comments is technically challenging and time-consuming. Over the years,

there have been numerous attempts to automatically assess and recommend code

review comments, but they could be limited in several aspects. First, according

to existing evidence, various development practices including code reviews could be

drastically different between open and closed-source systems. However, only a little

research has been done to better understand how existing techniques might perform

differently when assessing the code reviews from open and closed-source systems.

Second, existing techniques that recommend or generate code review comments often

suffer from a lack of scalability (e.g., requirements of specialized hardware by Deep

Learning models) and generalizability (e.g., use of only one programming language).

In this thesis, we (a) conduct an empirical study to better understand the chal-

lenges of existing techniques for code review assessment and (b) propose a novel,

scalable technique for review comment recommendation. First, we empirically inves-

tigate how existing techniques perform in assessing code reviews from open-source

and closed-source systems. We find that the performance of existing techniques sig-

nificantly differs when assessing code reviews from these two types of systems. Our

findings also suggest that less experienced developers submit more non-useful review

comments to both systems, which warrants for automated support in writing code

reviews. Second, to help developers write better review comments, we propose a

novel technique – RevCom – that recommends relevant review comments by leverag-

ing various code-level changes with structured information retrieval. Our technique

outperforms both IR-based and DL-based baselines while being lightweight, scalable

and has the potential to reduce the cognitive effort and time of the reviewers.
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Chapter 1

Introduction

1.1 Motivation

Peer code review is an engineering practice where software developers submit changed

code to peers (a.k.a., reviewers). The reviewers then check if the code is suitable for

integration into the main code base and recommend useful changes. Besides finding

fine-grained defects (e.g., logical errors), code review helps improve the readabil-

ity [13, 82, 93], maintainability [82], and design quality [63] of source code.

Recently, a lightweight review process, namely Modern Code Review (MCR),

often assisted by specialized software tools [11], has gained significant popularity in

both industry and open-source development. In MCR, change suggestions are made

by reviewers in the form of review comments, one of the main building blocks of

code reviews [15]. These comments are generally discussed by the developers and

the reviewers before making any corrections to the code and then submitting the

next version of the changed code. Hence, ensuring the quality of review comments

is essential in code reviews. However, manually writing high-quality code review

comments could be technically challenging and time-consuming, which warrants for

automated tools and techniques.

Past studies [22, 15, 44, 76, 34, 51, 88] use automated tools and techniques to

assess or recommend code review comments. Unfortunately, they could be limited in

several aspects. First, according to Khanjani and Sulaiman [42], various development

practices of open-source systems (e.g., code review, software design, documentation)

could be drastically different from that of closed-source systems. However, to the

best of our knowledge, there exists no study that investigates how existing tools and

techniques differ when assessing the code reviews from open-source and closed-source

systems. An investigation using both types of software systems is essential to compre-

hensively understand the behaviours of automated tools and techniques towards these

systems. It not only can deliver actionable insights for stakeholders (e.g., developers,

1
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reviewers) but also can reveal potential gaps in the literature. Second, recommended

reviews can help a reviewer write better review comments with reduced effort and

a code submitter by reducing the wait time [34]. However, existing techniques that

recommend or generate code review comments suffer from a lack of scalability and

generalizability. For instance, existing DL-based techniques require specialized com-

puting resources and long training time, which could be costly. On the other hand,

the IR-based technique [34] recommends code review comments only for method-level

changes, which makes it unsuitable for code changes outside of a method body.

1.2 Problem Statement

Past studies [22, 15, 44, 76] use automated tools and techniques to analyze several

quality aspects of code review comments such as sentiments or usefulness. El Asri

et al. [22] detect sentiments in review comments and show that the reviewer’s senti-

ments could affect a code submitter’s perception about the reviews. However, they

only use open-source subject systems for their analysis. On the other hand, Rahman

et al. [76] and Hasan et al. [32] use several textual and historical properties of code re-

views to classify the useful and non-useful code review comments where they use only

closed-source software systems. Thus, existing studies use either open or closed-source

subject systems to investigate the quality aspects of review comments. However, ac-

cording to Khanjani and Sulaiman [42], various development practices including code

reviews could be drastically different between open and closed-source systems. In

other words, open-source and closed-source software systems could be different in

terms of the sentiments and usefulness of their review comments. Such differences

might influence the performance of automated tools and techniques assessing the code

reviews. However, to the best of our knowledge, there exists no work that investigates

how existing tools and techniques can differ when assessing review quality aspects –

sentiments and usefulness – from both open and closed-source systems. Such a com-

parison not only can deliver actionable insights for stakeholders (e.g., developers and

reviewers) but also can encourage better tool supports for modern code reviews.

Although several approaches exist to automatically assess different quality aspects

of code review comments, manually writing high-quality review comments is signifi-

cantly challenging. To address this challenge, several existing approaches [29, 88, 98,
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50] recommend or generate code review comments using Deep Learning (DL) tech-

niques. Earlier works [29, 88] use Long Short-term Memory (LSTM) networks with an

attention mechanism [8] to recommend code review comments. Later approaches [98,

50] employ more sophisticated architecture such as Text-To-Text Transfer Trans-

former (T5) [101] to generate code review comments. However, they require special-

ized computing resources (e.g., 16 × 40GB GPU [101]), which could hurt their scala-

bility. They also require long training time (e.g., 12 days [101]), which could be costly.

Recent studies [26, 33, 54, 60] suggest that simpler approaches, such as Informa-

tion Retrieval (IR), can perform better than complex deep learning models with less

computational time and resources. Hong et al. [34] propose an IR-based approach that

leverages method-level similarity in recommending code review comments. Although

their approach outperforms deep learning models, it could be limited in several as-

pects. First, they use the Bag of Words (BoW) model [72] that represents source code

as token vectors ignoring the code structures and semantics. Source code contains

both structured (e.g., methods, library information) and unstructured items (e.g.,

code comments). Second, they report their findings for only Java-based systems,

which might not generalize to other programming languages (e.g., C++, Python).

Finally, their approach to recommending review comments was evaluated only using

method-level information in the source code. However, method bodies might not

cover all the changes that require code reviews. Thus, the existing approaches might

not perform well in recommending reviews for the code changes outside of a method

body (see listing 4.1, 4.2). According to Li et al. [50], structured information such

as diff contains all types of changes in the source code and thus can help better

understand the semantics of any code changes. However, the work of Hong et al.

[34] overlooks this structured information and recommends code reviews only for the

changes in the method.

1.3 Our Contribution

In this thesis, we conduct two separate but complementary studies to address the

above gaps from the literature as follows.

In the first study, we conduct an empirical investigation with seven automated

tools and techniques and contrast their performance when assessing the quality of



4

2,183 code review comments from open and closed-source systems. First, we de-

tect sentiments in the review comments using five sentiment detection approaches –

Stanford Core NLP [57], SentiStrength [39], Senti4SD [16], SentiCR [3], and Senti-

Moji [19]. We then contrast the performance of these tools and techniques between

open-source and closed-source systems. Second, we determine the usefulness of code

review comments using two usefulness classification techniques – RevHelper [76] and

CRA-model [32]. We then contrast the performance of these techniques between open

and closed-source systems. Finally, we investigate the role of sentiments in classifying

the useful and non-useful code review comments from two types of systems.

We evaluate the performance of existing tools and techniques in terms of accuracy,

precision, recall, and F1-score and report several findings. First, the performance of

automated tools and techniques can vary from 1.12% to 14.67% between open and

closed-source systems when detecting sentiments in the review comments. Second,

the performance of review usefulness classification techniques can vary from 13.33%

to 18.42% between open and closed-source systems, which is significant. Finally, the

sentiments can improve the usefulness classification of review comments by 2.94%

for open and 1.67% for closed source systems. Our findings also suggest that less

experienced developers submit more non-useful review comments in both open-source

and closed-source systems, which warrants for automated support in writing code

review comments.

To help developers write better review comments, in the second study, we propose

a novel technique, namely – RevCom – that recommends relevant review comments

leveraging various code-level changes captured with structured information retrieval.

Our work is inspired by the work of Hong et al. [34] that relies on method-level

similarity and the Bag of Words (BoW) to recommend code review comments. How-

ever, unlike their work, RevCom leverages the structured information from all types

of code changes and thus can recommend code reviews for both method-level and

non-method-level changes.

We evaluate our proposed approach with ≈ 56K changed code and comment pairs

from eight projects (four Python + four Java). We use three different metrics – BLEU

score [69], perfect prediction, and semantic similarity [31] to evaluate the performance

of RevCom. We find that RevCom can recommend review comments with an average
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BLEU score of ≈ 26.63%. According to Google’s AutoML Translation documenta-

tion1, such a BLEU score indicates that the review comments can capture the original

intent of the reviewers with some grammatical errors. We also find that structured

information plays a significant role in our approach. Furthermore, a comparison with

two state-of-the-art techniques – CommentFinder [34] and CodeReviewer [50] show

that RevCom outperforms them in all three metrics.

1.4 Related Publications

Several parts of this thesis have been submitted and accepted at different conferences.

We provide the list of publications here. In each of these papers, I am the primary

author, and all the studies were conducted by me under the supervision of Dr. Masud

Rahman. While I wrote these papers, the co-authors took part in advising, editing,

and reviewing the papers.

• Ohiduzzaman Shuvo, Parvez Mahbub, and M. Masudur Rahman. Recommend-

ing Code Reviews Leveraging Code Changes with Structured Information Re-

trieval. In Proceeding of The 39th IEEE/ACM International Conference on

Software Maintenance and Evolution (ICSME 2023), pp.13, Bogota, Colombia,

October 2023 (In press).

Apart from the aforementioned paper, our another paper is ready to be submitted to

a major software engineering conference.

• Ohiduzzaman Shuvo, Parvez Mahbub, and M. Masudur Rahman. Mind the

Gap: Contrasting the Quality of Comments in Code Reviews between Open

and Closed-Source Systems. In Proceeding of The 31st IEEE International

Conference on Software Analysis, Evolution, and Reengineering (SANER 2024),

pp. 12, Rovaniemi, Finland, March 2024 (to be submitted).

Finally, the idea of using structural and contextual information from source code

inspired other research in major software engineering conferences, where I am the

second author.

1https://bit.ly/3wGpCIx
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• Parvez Mahbub, Ohiduzzaman Shuvo, and M. Masudur Rahman. Explaining

Software Bugs Leveraging Code Structures in Neural Machine Translation. In

Proceeding of The 45th IEEE/ACM International Conference on Software En-

gineering (ICSE 2023), pp. 13, Melbourne, Australia, May 2023.

• Parvez Mahbub, Ohiduzzaman Shuvo, and M. Masudur Rahman. Defectors: A

Large, Diverse Python Dataset for Defect Prediction. In Proceeding of The 20th

International Conference on Mining Software Repositories (MSR 2023), pp. 5,

Melbourne, Australia, May 2023.

1.5 Outline of the Thesis

The thesis contains five chapters in total. To assess and recommend code review

comments, we conduct two independent but interrelated studies, and this section

outlines different chapters of the thesis.

• Chapter 2 discusses several background concepts (e.g., modern code review,

word embeddings) that will be required to follow the rest of the thesis.

• Chapter 3 discusses our first study, How do Automated Tools and Techniques

Differ between Open and Closed Source Systems in Assessing their Code Review

Quality? An Empirical Study.

• Chapter 4 discusses our second study that proposes RevCom, which recommends

relevant review comments leveraging various code-level changes with structured

information retrieval.

• Chapter 5 concludes the thesis with a list of directions for future works.



Chapter 2

Background

In this chapter, we introduce the required terminologies and concepts to follow the

remainder of this thesis. Section 2.1 introduces the concept of modern code re-

view. Section 2.2 discusses the sentiments in the code review comments. Section 2.3

discusses the usefulness of review comments and differentiates between useful and

non-useful review comments using corresponding examples. Section 2.4 discusses the

formulation of review recommendation as an information retrieval problem. Sec-

tion 2.5 describes embedding – a process of translating high-dimensional numerical

data into low-dimensional semantic representations. Finally, Section 2.6 summarizes

this chapter.

2.1 Modern Code Review

In Modern Code Review (MCR), a code author submits a changed code to implement

new features or fix bugs in the old version. Let us denote the original and updated

codes as C0 and C1. Once the changed code (D : C0 → C1) is ready for review, the

author creates a pull request with the code review tool (e.g., GitHub) and invites

peers (a.k.a., reviewers) for the review. Then, the reviewers inspect the changed code

and provide feedback (i.e., review comments) on the specific parts of it. Based on

these comments, the author submits a new version of the changed code C2. Note that

the review process is not finished yet. The reviewers can further provide feedback as

the code review comments on the changed code C2, and the authors might revise the

code again. This process repeats until the submitted code Cn has sufficient quality

to be integrated into the code repository. However, manually writing the review

comments could require significant time and cognitive effort from a reviewer. Our

work (Chapter 4) automatically recommends relevant code review comments, which

could reduce the time and effort required for modern code review.

7
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2.2 Sentiments in Review Comments

El Asri et al. [22] show that beyond technical information, code review comments

could contain reviewers’ sentiments, which could affect a code submitter’s percep-

tion about the reviews. For example, negative sentiments in the review comments

could delay the review acceptance by 1.32 days on average [22], which is a signif-

icant delay. In the same vein, Kononenko et al. [44] suggests that well-done code

reviews warrant clear, constructive, and timely feedback from a domain expert who

has strong interpersonal skills (e.g., encouraging, supportive, optimistic). Manually

detecting sentiments in code review comments could be time-consuming and error-

prone. Thus, recently, many tools and techniques (e.g., SentiCR [3], SentiMoji [19])

attempt to automatically detect the sentiments in code review comments. However,

most of the existing works [3, 22, 19] investigate sentiments only in the open-source

code reviews. According to the existing evidence [42], various aspects of software de-

velopment, including code reviews could be drastically different between open-source

and closed-source systems. We thus analyze the sentiments in the code review com-

ments from both types of systems, which might provide useful insights for better tools

support in modern code reviews.

2.3 Usefulness of Review Comments

A review comment is considered to be useful by the developers if it triggers code-

level changes within its vicinity (e.g., 1–10 lines of the comment location) [15]. For

instance, the review comment1 in Fig. 2.1(a) (bottom row) – “We don’t need single

quotes here, And also not below” – triggered a code change within its vicinity (i.e.,

Line-359, Fig. 2.1(b)). According to Bosu et al. [15], the comment was useful to the

developers, as was explained by the changes made to the code. On the contrary, the

review comment2 in Fig. 2.2 (bottom row) – “This is a breaking change, no?”– did

not trigger any code-level change, which indicates that this comment might be found

non-useful by the developers. Although previous studies [76, 15, 32] investigate the

usefulness of review comments, their investigation is limited to only closed-source

1http://bit.ly/412bXJ7
2http://bit.ly/3YSJJPg
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in the sense that a single value in the vector does not convey any meaning; rather,

the vector as a whole represents the semantics of the input word [56]. Word embed-

ding overcomes many limitations of other Vector Space Model, such as the sparse

representation problem of one-hot encoding or the vocabulary mismatch issue of TF-

IDF. Several techniques employ neural networks to learn richer word representations,

such as Word2Vec [62]. It uses fully connected layers to understand the context sur-

rounding each word and generates a vector for each word. In our work, we train a

Word2Vec model using GitHub CodeSearchNet [38] dataset to generate embeddings

for our analysis.

2.6 Summary

In this chapter, we introduce different terminologies and background concepts that

would help one to follow the remaining of the thesis. We discuss the modern code

review process. We then discuss the sentiments and the usefulness of code review

comments. We also discuss review recommendation using Information Retrieval (IR)

approach. Finally, we discuss the word embedding which has been used by our pro-

posed approach to extract the semantic information from code review comments.



Chapter 3

How do Automated Tools and Techniques Differ between

Open and Closed Source Systems in Assessing their Code

Review Quality? An Empirical Study

Review comments play a major role in modern code reviews. Ensuring the high

quality of review comments is essential for effective code reviews. Existing work [42]

suggests that various development practices including code reviews could be drasti-

cally different between open-source and closed-source systems. Such differences might

impact the performance of automated tools and techniques in assessing the code re-

views from both types of systems. However, to the best of our knowledge, there exist

no studies that assess the quality of code reviews from both open-source and closed-

source systems using automated tools and techniques. An investigation using both

types of software systems is essential to comprehensively understand the behaviours

of automated tools and techniques towards these systems. In this chapter, we discuss

our first study that empirically investigates this gap in the literature and reports

several meaningful insights.

The rest of this chapter is organized as follows. Section 3.1 introduces the study

and highlights the novelty of our contribution. Section 3.2 presents our experimental

design, datasets, and performance metrics. Section 3.3 discusses our experimental

results. Section 3.4 discusses our key findings and the implications of our research.

Section 3.5 identifies possible threats to the validity of our work. Section 3.6 discusses

the existing studies related to our research. Finally, Section 3.7 summarizes this study.

3.1 Introduction

Peer code review is an engineering practice where developers submit changed code to

peers (a.k.a. reviewers). The reviewers then check the eligibility of that code to be

integrated into the main code base and recommend useful changes. Beside finding

12
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code-level defects (e.g., logical errors), the review process ensures that the changed

code does not degrade the quality of the overall project.

Recently, a lightweight review process, namely Modern Code Review (MCR), often

assisted by specialized software tools [11], has gained significant popularity in both

industry and open-source development. In MCR, change suggestions are made by

reviewers in the form of review comments, one of the main building blocks of code

reviews [15]. These comments are generally discussed by the changed code submitter

and the reviewers before making any corrections to the code and then submitting

the next version of the changed code. Hence, the quality of review comments plays a

vital role in MCR. However, manually assessing the quality of code review comments

could be both time-consuming and error-prone. Thus, past studies [22, 15, 44, 76]

use automated tools and techniques to analyze several comment quality aspects such

as sentiments or usefulness of code review comments.

El Asri et al. [22] detect sentiments in the review comments and show that the

reviewer’s sentiments could affect a code submitter’s perception about the reviews.

However, they only use open-source subject systems for their analysis. On the other

hand, Rahman et al. [76] and Hasan et al. [32] use several textual and historical

properties of code reviews to classify the useful and non-useful code review comments

where they use only closed-source software systems. Thus, existing studies use either

open or closed-source subject systems to investigate various quality aspects of review

comments. According to Khanjani and Sulaiman [42], various practices (e.g., code

review, software design, documentation) of open-source systems could be drastically

different from that of closed-source systems. Thus, open-source and closed-source

software systems could also be different in terms of the sentiments and usefulness

of their review comments. Such differences might influence the performance of au-

tomated tools in assessing the quality aspects of code reviews from these systems.

Thus, analyzing both types of systems is essential to comprehensively understand

the behaviours of automated tools and techniques towards them. To the best of our

knowledge, there exists no work that assesses the review quality aspects – sentiments

and usefulness – from both open and closed-source systems using automated tools

and then contrasts their performance between the two types of systems. Such a

comparison not only can deliver actionable insights for stakeholders (e.g., developers,
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reviewers) but also can encourage better tool supports for modern code reviews.

In this paper, we conduct an empirical study using 2,183 code review comments,

assess their two quality aspects – sentiment and usefulness – using seven automated

tools and techniques. We then contrast the performance of these automated tools

and techniques between open and closed-source software systems. First, we detect

sentiments in the review comments using five sentiment detection approaches – Stan-

ford Core NLP [57], SentiStrength-SE [39], Senti4SD [16], SentiCR [3], and Senti-

Moji [19]. We then contrast the performance of these tools and techniques between

open-source and closed-source systems. Second, we determine the usefulness of code

review comments using two usefulness classification techniques – RevHelper [76] and

CRA-model [32]. We then contrast the performance of these techniques between open

and closed-source systems. Finally, we investigate the role of sentiments in classifying

the useful and non-useful code review comments from two types of systems. We also

provide a curated dataset1 of 2,183 code review comments from six open-source and

four closed-source software systems that could be useful for third-party replication

and reuse. Thus, we answer three important research questions as follows.

(a) RQ1: How do existing tools and techniques perform in detecting the

sentiments in code review comments from open-source and closed-source

systems?

Existing studies [67, 66, 3] provide meaningful insights from their detection and analy-

sis of sentiments in code review comments. For example, El Asri et al. [22] shows that

negative sentiments in the review comments could delay the review acceptance by 1.32

days on average. However, their analyses were limited to mostly open-source systems,

which might not generalize to closed-source systems. We thus contrast the perfor-

mance of five existing sentiment detection tools and techniques [3, 16, 39, 57, 19] be-

tween six open-source and four closed-source software systems. We find that the per-

formance of the automated approaches in sentiment detection can differ from 1.12% to

14.67% between open and closed-source systems. Although the performance can also

differ among the projects from the same type of domain, the difference is significantly

higher between the cross-domain. We conduct a follow-up manual analysis to under-

stand the reason behind the varying detection performance across our subject systems.

1https://bit.ly/3n9sfRj
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We find that reviewers from these two types of systems have varying levels of reviewing

experience, which might have led to varying prevalence of sentiments in their code re-

view comments. Since existing tools and techniques were trained on these comments,

their sentiment detection performance thus might also have been affected. Thus, our

findings provide actionable insights which could be useful for tool development in

modern code reviews. For instance, the behaviour of existing sentiment detection

tools and techniques could vary based on the development practice of the subject sys-

tems, which warrants better tool that takes development practices into consideration.

(b) RQ2: How do existing techniques perform in classifying the use-

fulness of code review comments from open-source and closed-source sys-

tems?

Rahman et al. [76] developed RevHelper [76] that uses textual and historical features

from reviews to classify the useful and non-useful code review comments. They fo-

cus on classifying useful and non-useful review comments using the features that are

available during the submission of a review comment. On the other hand, Hasan

et al. [32] developed CRA-model [32] to determine the usefulness of a review com-

ment using post-review attributes. However, both of them evaluate their technique

using only closed-source subject systems, which might not generalize to open-source

systems. We thus contrast the performance of these two techniques between six open

and four closed-source subject systems. We find that the performance of the auto-

mated techniques in classifying useful and non-useful review comments could vary

from 13.33% to 18.42% between open and closed-source systems, which is significant.

Although the performance can also differ among the projects from the same type

of domain, the difference is significantly higher for the cross-domain. Our follow-up

manual investigation shows that open-source reviewers have more reviewing experi-

ence than closed-source reviewers, which might explain the presence of more useful

review comments in open-source systems (Table 3.1). Since the number of useful

review comments differs between open and closed-source systems, the performance of

the automated tools could also be influenced by this factor. Furthermore, we find that

the usefulness of review comments is positively correlated with the reviewer experi-

ence. That is, reviewers with more reviewing experience tend to submit more useful
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review comments. Thus, our findings provide meaningful insight regarding the useful-

ness of review comments from both open and closed-source systems, which could be

useful for improving the existing reviewer recommendation tools like CORRECT [75],

RevRec [104], and RevFinder [94].

(c) RQ3: How do sentiments influence the classification of useful and

non-useful code reviews in open and closed source systems?

Although previous studies [15, 32] consider sentiments to classify the useful and non-

useful review comments, they only used closed-source systems in their experiment.

We thus investigate the influence of sentiments in classifying the useful and non-useful

review comments from both open and closed source systems using two existing tech-

niques – RevHelper [76] and CRA-model [32]. We find that sentiments can improve

the usefulness classification of review comments by 2.94% for open and 1.67% for

closed source subject systems. Since the performance of the machine learning model

can be influenced by the size of the training data, we further combine the review

comments from both types of systems and evaluate the performance of the selected

techniques. We also find that sentiments can improve the usefulness classification

of review comments up to 2.94% for the combined dataset, which is promising. To

classify the useful and non-useful review comments, existing techniques depend on

both textual and historical features (e.g., developer’s experience). However, calculat-

ing historical features requires analyzing the whole codebase or code change history,

which could be both costly and infeasible. Thus, sentiments, a textual feature, could

be an inexpensive and feasible alternative to them for improving the classification of

review usefulness.

3.2 Study Design

Fig. 3.1 shows the schematic diagram of our conducted study in this paper. We

first contrast the performance of five existing sentiment detection tools and tech-

niques [3, 16, 39, 57, 19] between open and closed-source systems. Second, we contrast

the performance of two existing comment usefulness classification techniques [76, 32]

between open-source and closed-source systems. Finally, we investigate the influence

of sentiments in classifying the review’s usefulness. This section discusses the major

steps of our study design as follows.
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Figure 3.1: Overview of our empirical study

3.2.1 Construction of Review Usefulness Dataset

We conduct our empirical study using two different datasets based on open-source

and closed-source subject systems. We construct our first dataset using 1,111 review

comments from six popular open-source projects in three popular programming lan-

guages – Python, Java, and JavaScript. The second dataset (closed-source based) was

constructed using 1,116 review comments from an existing benchmark by Rahman

et al. [76].

3.2.1.1 Construction of Open-Source Dataset

We used two popular filters for collecting the top projects from GitHub. First, we

collect the top three projects from each programming language based on their star

counts at GitHub [5, 6], which results in nine projects. Second, we sort the collected

projects by the number of their pull requests and take the top two projects from each

programming language, which results in six projects for our dataset. These projects

contain at least 1000 pull requests in each of them. In GitHub, pull requests contain

code changes for reviews and represent the activity or relevance of a project. This

filtration keeps only the active projects and removes the forked repositories, as the

pull requests are not inherited [51]. To determine the feasibility of our idea, we then
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collect the 180 (i.e., 6 X 30) most recent merged pull requests (hereby PR) using

GitHub GraphQL API [28] from each project. We note that 16.67% of the PRs have

reviewing history containing review comments. Being equipped with this evidence,

we attempt to find only the eligible PRs. We consider a PR eligible for our analysis

if it has at least one code review comment and a follow-up change commit.

After the feasibility analysis above, we collect 1800 (i.e., 6 X 300 PRs) most re-

cently merged PRs from the six selected project repositories. Existing techniques [76,

32] extract various features from the changed source files to predict the usefulness

of review comments. However, due to frequent changes in a large active project, old

source code files might not always be available on GitHub. This might also happen

due to any administrative tasks, such as quashing multiple commits from an old ver-

sion into a new one. We thus collect only the most recent PRs (by PR number) to

ensure that the necessary source code files are available at the correct version for our

analysis. Rahman et al. [76] report that Pull Requests could be created for scaffolding

rather than merging the code changes. Therefore, we collect only the PRs that are

merged into the main code base. Such an approach helped us discard the noisy Pull

Requests (i.e., pull requests created for scaffolding) from our dataset.

In GitHub, two types of review comments, pull request comments and in-line

comments are submitted by the reviewers. Similar to a former study [76], we focus

only on in-line review comments since they are directly connected to some parts of the

source code. To collect code review comments, we first manually separate 357 eligible

PRs out of 1,800 previously collected PRs. We then create a GitHub API crawler to

collect all the review comments, source files, and other meta-information (e.g., pull

request author and commit information) for our analysis. We run the crawler and

collect 2,575 comments and other associated meta information to construct our initial

dataset. Note that the comments we collect in this step include both reviewer’s and

the author’s comments.

To further ensure the quality of our dataset, we perform two filtration steps. We

find that ≈ 39% comments in our initial dataset are not code review comments (i.e.,

submitted by the pull request authors). Since our goal is to evaluate various facets of

code review comments, we first carefully exclude the non-reviewer comments, which

results in 1,578 review comments in our dataset. Similar to prior studies [97, 88],
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Table 3.1: Study dataset

Systems Projects PLs PRs Useful Comments Non-useful Comments Total

OSS

Square
Java

58 166 (64.34%) 92 (35.65%) 258

Elastic Search 32 62 (59.61%) 42(40.39%) 104

Meteor
JavaScript

57 73 (50%) 73 (50%) 146

Polymer 81 148 (69.48%) 65 (30.52%) 213

Keras
Python

58 119 (70%) 50 (30%) 169

Numpy 71 116 (52.48%) 105 (47.52%) 221

Total 357 684 (61.56%) 427 (38.44%) 1,111

CSS

CS

Python

80 153 (59.77%) 103 (40.23%) 256

SM 97 164 (58.36%) 117 (41.64%) 281

MS 88 155 (58.32%) 133 (46.18%) 288

SR 101 146 (50.17%) 145 (49.38%) 291

Total 366 618 (55.53%) 498 (44.47%) 1,116

OSS = Open-source Systems, CSS = Closed-source systems, PLs = Programming

Languages, PRs = Pull Request

we also filter out trivial or short comments (e.g., ‘nice’, ‘thank you’, ‘LGTM’), which

results in 1,111 review comments in our final dataset.

Then the first author of this article carefully annotates each review comment in our

dataset either as useful or non-useful by applying the change triggering heuristic as

described in Section 2.3. According to our annotation, 684 (61.56%) review comments

are useful, and 427 (38.44%) are non-useful in the open-source dataset. Since we

use a clearly-defined heuristic to annotate the review comments, the possibility of

subjective bias in our dataset could be negligible. However, to analyze the quality

of the annotated dataset, the second author also annotated a statistically significant

subsample of 286 review comments (95% confidence level and a 5% error margin).

We observe almost perfect agreement (0.95 kappa value) between the two annotators,

which indicates the consistency of our annotation. The summary statistics of our

dataset are shown in Table 3.1.

3.2.1.2 Collection of Closed-Source Dataset

We also collect 1,116 review comments from four closed-source, python-based subject

systems provided by an existing benchmark of Rahman et al. [76]. It contains a total

of 618 (55.53%) useful and 498 (44.47%) non-useful review comments.
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3.2.2 Construction of Sentiment Polarity Goldset

To detect sentiments in review comments using existing sentiment detection tools,

the ground truth sentiment label is necessary for each review comment. We thus

annotate 1,111 review comments from open-source and 1,116 from closed-source sys-

tems involving four human annotators to construct the ground truth. Novielli et al.

[66] suggest that the absence of clear guidelines in the annotation process could lead

to noisy ground truth, which might negatively affect the performance of sentiment

analysis tools. In particular, they show that SE-specific customization in sentiment

detection tools for software engineering texts might not guarantee a reasonable accu-

racy if ad hoc annotation is followed. Here, ad hoc annotation refers to the assignment

of sentiment polarity based only on the subjective perception of the annotator. Shaver

et al. [86] proposed a theoretical framework that follows a tree-based structure for

the hierarchical classification of emotions. Using this theoretical framework, Calefato

et al. [16] designed a model-driven schema for annotating their sentiment classifica-

tion dataset. A model-driven schema is a concrete approach that involves detailed

guidelines and training of the annotator. We adopt this model-driven annotation

schema to annotate the review comments in our datasets.

3.2.2.1 Participant Selection and Training

We employed four participants for the annotation task, where each participant was

a graduate student and had previous experience in code review activities. First, we

conduct a 30-minute session with the participants and then share a tutorial video2

to explain the guidelines for the annotation task. We also conduct a pilot study and

assign ten random review comments to each annotator to assess their expertise in

annotating review comments. We then conducted a follow-up discussion to clarify any

possible ambiguities in interpreting the annotation guidelines. As shown in Table 3.2,

we organize four annotators into two groups – {A1, A2, A4} and {A1, A2, A3},

where each group has three members. Our goal was to annotate each comment by

three annotators and then use a majority voting to determine the sentiment label

of each comment. A similar approach of majority voting was used by the existing

literature [16, 65]. It should be noted that annotating each review comment by four

2https://youtu.be/wHYHgt27Ae8



21

Table 3.2: Weighted Cohen’s Kappa and observed agreement for the annotators from
the annotation study

Dataset Pairs
Weighted Cohen’s

Kappa

Observed

Agreement

Open-source

A1 & A2 0.63 0.86

A1 & A4 0.56 0.82

A2 & A4 0.57 0.84

Closed-source

A1 & A2 0.68 0.89

A1 & A3 0.64 0.85

A2 & A3 0.60 0.85

Average 0.61 0.84

participants would not have been helpful for the majority voting. The first group

was assigned to open-source review comments, while the second one was assigned

to annotate the closed-source review comments. Thus, each review comment was

assigned to three participants to annotate its sentiment polarity.

3.2.2.2 Sentiment Polarity Annotation

We asked the annotators to indicate the sentiment polarity with one of these four

possible values – {negative→ -1, neutral → 0, positive → 1 and mixed → 2}.

Similar to Calefato et al. [16], we annotate love or joy as positive; anger, sadness, or

fear as negative; and mixed for the presence of both positive and negative sentiment.

For surprises, we annotate based on the existence of sentiment polarity in the meaning

of the comments. The deadline for the annotation task was set to two weeks. The

study was finished following a plenary meeting after the deadline.

Once we had all the annotations, there were three types of situations for each

review comment.

(a) Where all three annotations are the same: We just use this annotation as the

gold sentiment label.

(b) Where one of the three annotations was different : We use majority voting to

resolve the conflict following an earlier study [65].
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(c) Where all three annotations were different : We resolved this disagreement

through a discussion with the corresponding annotators in the plenary meeting

after the annotation study.

The third case (all annotators annotated differently) is a tiny fraction of the whole

dataset, which is 2.25% for open-source and 1.62% for closed-source review comments.

Sentiment annotation is an inherently subjective task [67]. The label assigned to a

given text could be influenced by the personality traits of the human annotators re-

gardless of the presence of clear annotation guidelines [83]. In the third case, we

observe that some annotators are conservative and provide a neutral label for mild

expressions of sentiments, while others are liberal and provide either a positive or

negative label for the same expression of sentiments. Such a phenomenon might con-

tribute to the disagreement between annotators. We thus conduct a plenary meeting

with all annotators and resolve this disagreement. Furthermore, we exclude around

2% from open-source and 3% review comments from closed-source that express the op-

posite sentiments simultaneously, i.e., the sentiment polarity is mixed (e.g., Thanks!

Sorry it took so long to merge). Thus, our final dataset consists of 2,183 review

comments, 1,098 (50.30%) from open-source and 1,085 (49.70%) from closed-source

subject systems. Table 3.3 shows the statistics of review comments and their ground

truth sentiment labels.

Table 3.3: Distribution of sentiments and usefulness of review comments in the ground
truth dataset

Dataset
Sentiment Polarity Usefulness

Total

Positive Negative Neutral Useful Non-usefule

Open-source 180 (16.27 %) 49 (4.43 %) 869 (78.50 %) 676 (61.56 %) 422 (38.44 %) 1098

Closed-source 103 (9.45 %) 120 (11.09 %) 862 (79.08 %) 612 (56.40 %) 473 (43.60 %) 1085

Total 283 (12.86 %) 169 (7.76 %) 1731 (78.79 %) 1288 (59.00 %) 895 (41.00 %) 2183

3.2.2.3 Inter-annotator Agreement Analysis

Although majority voting was used above, we further calculate weighted Cohen’s

Kappa [24] to determine the agreements between each pair of annotators. As done
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by Jongeling et al. [40], we follow the interpretation of κ by Wilson [102]. According

to the interpretation, the agreement is random if κ ≤ 0, slight if 0.01 ≤ κ ≤ 0.20

, fair if 0.21 ≤ κ ≤ 0.40, moderate if 0.41 ≤ κ ≤ 0.60, substantial if 0.61 ≤ κ ≤

0.80 and almost perfect if 0.81 ≤ κ ≤ 1.0. As shown in Table 3.2, we notice a

substantial agreement (i.e., average Kappa value of 0.61) between the annotators.

We also measure observed agreement, which is the percentage of agreement between

each pair of annotators. As shown in Table 3.2, the average observed agreement is

0.84, which indicates almost perfect agreement.

3.2.3 Selection of Sentiment Detection Tools

Although sentiments are subjective perceptions of the texts, manually annotating

them could be costly and time-consuming, as such, not always feasible. Therefore

researchers proposed several tools [57, 39, 16, 3, 19] to automatically detect sentiments

in the text. Sentiment detection tools can be categorized into three types based on

their adopted methodologies as follows.

• Lexicon-based : It exploits a lexicon dictionary to detect sentiments in a text.

• Machine learning based : It uses several textual features and trains machine

learning algorithm to detect sentiment in the text.

• Deep learning based : It uses deep learning techniques to detect sentiments in

the text.

Despite the popularity of these tools, researchers suggested that the sentiment

detection performance of these tools could vary due to semantic shifts, domain-specific

jargon, communication style or quality of the dataset [67, 40, 52, 55]. Therefore, using

one tool to contrast the performance of detecting review sentiments between open and

closed-source systems might not be sufficient. We thus apply two criteria for selecting

the sentiment detection tools for our analysis. First, we select the representative

tools from the aforementioned categories. Second, we also select such tools that are

open-source and have replication packages. Following these criteria, we chose five

different sentiment detection tools – Stanford Core NLP [57], SentiStrengthSE [39],

SentiCR [3], Senti4SD [16] and SentiMoji [19] – that adopt three different approaches
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for detecting sentiments. Except for Stanford Core NLP, these sentiment detection

tools are specially designed for sentiment analysis in software engineering texts.

Stanford Core NLP [57] classifies sentiments in a single sentence, and it returns

a sentiment value and corresponding polarity. The tool is designed as a Recursive

Neural Tensor Network and is trained on the Stanford Sentiment Treebank [89].

SentiStrength, proposed by Thelwall et al. [92], is a lexicon based approach for

sentiment classification. It contains several dictionaries that consist of both formal

and informal words (e.g., emoji, slang). In these dictionaries, each term has its own

sentiment strength. Along with this sentiment information, SentiStrength outputs

two integers for a sentence – one for positive emotion and one for negative emotion.

Later, Islam and Zibran [39] adopted it for the software engineering domain by adding

a domain-specific dictionary. They named it SentiStrength-SE.

SentiCR, proposed by Ahmed et al. [3], is a sentiment classification tool especially

designed for code review comments. To adapt to the nature of code review comments,

SentiCR involves several preprocessing stages. It uses TF-IDF [4] and Bag of Words

as the feature set. It also applies SMOTE [18] for over-sampling to minimize the

class-imbalance problem.

Senti4SD, proposed by Calefato et al. [16], is a supervised machine learning

based sentiment classification tool. It uses three different types of features – (i)

generic sentiment lexicons from SentiStrength, (ii) different keyword features includ-

ing occurrences of uni-grams, bi-grams, upper case words, and slang expressions (iii)

word embedding trained on Stack Overflow data using Continuous Bag of Words

(CBOW) algorithm [61]. They preprocessed the text by removing URLs, HTML el-

ements and code snippets and finally classified the sentiment polarity using Support

Vector Machine (SVM).

SentiMoji is a customized sentiment analysis tool that is trained on a small

amount of labelled software engineering data and a large-scale emoji labelled data

from Twitter and GitHub. It reuses the architecture of the DeepMoji model [23] that

follows a two-stage approach. First, to incorporate technical knowledge, it fine-tunes

the DeepMoji architecture using emoji labels. Second, it uses this fine-tuned model to

generate vector representation of sentiment labelled text and then train the sentiment

classifier based on these vectors.
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3.2.4 Selection of Techniques for Classifying Review Usefulness

Review comments could be either useful or non-useful (see Section 2.3 for examples).

However, their manual classification is time-consuming and might not always be fea-

sible. Therefore, we select existing techniques trained on our dataset to determine

the usefulness of review comments from open and closed-source subject systems. Pre-

viously, Bosu et al. [15] proposed an automated classifier to classify useful and non-

useful review comments. However, they used only closed-source systems, and many

of their features might not be available during the submission of a review comment.

On the other hand, Rahman et al. [76] conducted an empirical study to compare

different attributes of useful and non-useful review comments. They also propose a

model – RevHelper [76] that uses three different machine learning algorithms – Naive

Bayes (NB), Logistic Regression (LR), and Random Forest (RF) – to classify the

useful and non-useful review comments. They use seven textual (e.g., code element

ratio, conceptual similarity, stop word ratio) and eight historical features (e.g., de-

veloper experience) to classify the review comments [76]. Recently, Hasan et al. [32]

conduct an empirical study at Samsung Research Bangladesh (SRBD) and developed

a framework namely Code Review Analytics (CRA), to improve the review effec-

tiveness. They also propose an automated model (hereby, CRA-model) that uses 26

different textual and historical features to classify the review comment. Rahman et al.

[76] focus on classifying the usefulness of review comments using the features that are

available during the submission of a review (e.g., sentiments, code elements). On the

other hand, Hasan et al. [32] focus on classifying the usefulness of review comments

using post-review attributes (e.g., number of patches, review thread length).

To build knowledge through a family of experiments, replications are crucial in the

software engineering domain [10]. According to Shull et al. [87], software engineering

replication can be categorized into two types: 1) exact replications and 2) concep-

tual replication. In exact replication, the study and procedures are closely followed,

whereas, in conceptual replication, different methodologies are used to study the same

set of questions. Furthermore, exact replication can be divided into subcategories: i)

dependent, in which all the variables and conditions are kept as close to the original

study as possible; ii) independent, in which some aspects of the original study are

modified to fit a new context. Since the existing usefulness classification techniques
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were developed for specific industries (e.g., RevHelper for an anonymous company

and CRA-model for SRBD), some of the features can not be computed in this study.

Therefore, we decide to conduct an exact independent replication [87].

To replicate the RevHelper, we consider all the 15 features used by Rahman

et al. [76]. We also include the majority of the features used by Hasan et al. [32]

to replicate the CRA-model. In particular, we use 20 out of 26 features for this

replication. First, we exclude two sentiment-related features (comment sentiments

and reply sentiments) as we plan to separately investigate the influence of sentiment

in our third research question. Second, we also exclude change trigger and status

features since we followed the change triggering heuristics to determine the usefulness

of review comments. Finally, line change and thread length could not be computed as

the corresponding artefacts were not published by Hasan et al. [32], and the required

details were missing in the description of their study. For each of the features in our

replication, Table 3.4 provides a brief description and indicates whether the feature

was adopted either by Rahman et al. [76] or by Hasan et al. [32].

3.2.5 Model Training

We contrast the performance of existing tools and techniques in detecting two review

quality aspects (e.g., sentiment and usefulness) between open-source and closed-source

systems. We use five existing tools and techniques for sentiment detection from three

different aspects – lexicon-based, machine learning, and deep learning for our exper-

iment. A recent study by Novielli et al. [68] suggests that domain-specific tuning or

retraining is necessary since jargon from different domains might hurt the performance

of a sentiment detection tool. Therefore, we retrained two machine learning-based

techniques (Senti4SD and SentiCR) and fine-tuned the deep learning-based technique

(SentiMoji) using our training set. To replicate these tools, we use the replication

packages provided by the original authors [16, 3, 19]. Stanford Core NLP [57] and

Sentistrength-SE [39] leverage a lexicon-based approach where retraining is not nec-

essary. To ensure a fair comparison, we report the average performance based on

ten-fold cross-validation settings, as was suggested by the existing literature [66, 3].

We randomly divided our dataset into ten groups, and each of the ten groups was used

as the test data once, while the remaining nine groups were used as the training data.
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Table 3.4: Features used in our replication to predict code review usefulness

Feature Description CRA-model RevHelper

comment message
The message text is turned into a fixed

dimensional vector using TF-IDF.
Yes No

question ratio Ratio of interrogative sentences in a comment. Yes Yes

code element number Number of source code tokens in a comment. Yes Yes

code element ratio The ratio of source code tokens in the comment. Yes Yes

similarity
Cosine similarity between the source code and

review comment.
Yes Yes

readability Flesch-Kincaid readability score. Yes Yes

word count Number of words in a comment. Yes Yes

stop word ratio The ratio of stop words in the comment. Yes Yes

author responded If the author responded to the review comment. Yes No

review interval
The time interval between the code

upload and comment submission.
Yes No

num patches Total number of patchsets for this code review. Yes No

confirmatory response If the code author responds with “Done”, “Fixed”. Yes No

gratitude If the code author responds with “Thank you”. Yes No

is last patch
If the patch associated with the comment

is the last patchset for the review.
Yes No

patch id
The patch number of the source code

where the comment is submitted.
Yes No

num participant Number of participants in the comment thread. Yes No

code ownership
The number of code changes the reviewer

has committed for the current file.
Yes Yes

code reviewership
The number of prior code changes of the

current file the reviewer has reviewed before.
Yes Yes

reviewing experience
The number of code changes the reviewer has

reviewed for current project.
Yes Yes

developer experience
The number of code changes the code author

has committed for current project
Yes Yes

committed twice Whether the developer committed twice No Yes

reviewing twice Whether the developer reviews the PR twice No Yes

reviewed PRs Total number of PRs reviewed by the devloper No Yes

ext lib similarity
Developer’s working experience with the

dependencies of a target file
No Yes
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To determine the usefulness of code review comments from open and closed-source

systems, we use RevHelper and CRA-model. We use the replication package provided

by the original authors [76, 32]. Furthermore, we report the average performance

based on ten-fold cross-validation settings following the existing literature [76, 32].

3.2.6 Performance Metrics

We evaluate the performance of existing tools and techniques in terms of accuracy,

precision, recall, and F1-score. This choice is in line with the previous research and

standard methodology adopted for review quality aspects analysis [52, 66, 19]. We

define these metrics as follows.

3.2.6.1 Accuracy

Accuracy is the most commonly used performance metric for classification tasks [27].

It refers to the ratio between the number of correctly classified samples and the total

number of samples. Mathematically, it can be defined as follows.

Accuracy =
n

N
(3.1)

where n is the number of correctly classified samples, and N is the total number of

samples.

Despite being the most popular performance metric for classification tasks, accu-

racy is often biased towards an imbalance dataset [1]. To mitigate such issues, we

also use precision, recall, and F1-score.

3.2.6.2 Precision

Precision measures how precisely a model can identify the classes of the instances.

Formally, for any class C, precision is the ratio of the number of correctly classified

instances and the number of instances that are classified to the class C [2]. Mathe-

matically,

Precision(C) =
TP

TP + FP
(3.2)

where TP is the number of items correctly classified as an instance of class C, and

FP is the number of items wrongly identified as an instance of class C.
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3.2.6.3 Recall

Recall measures the ability of a model to correctly identify all positive instances out

of all actual positive instances. Formally, for any class C, recall is the ratio between

the total number of correctly classified instances and the total number of instances

of class C [2]. Mathematically,

Recall(C) =
TP

TP + FN
(3.3)

where TP is the number of items correctly classified as an instance of class C, and

FN is the number of instances of class C that the model could not identify.

3.2.6.4 F1-score

While high precision pushes a model to make fewer mistakes, high recall pushes a

model to identify all instances. These requirements are often contradictory. When

a model tries to identify all instances of class C (i.e., high recall), it might identify

some instances as class C with low confidence. Such identification might, in turn,

cause more mistakes and low precision. To balance between these two conflicting

requirements, the F-1 score is used. Formally, the F-1 score is the weighted harmonic

mean of precision and recall. Mathematically,

F1(C) =
2 · Precision(C) ·Recall(C)

Precision(C) + Recall(C)
(3.4)

Precision, recall, and F1-score are defined only for binary classification. Since we have

three classes for sentiment classification, we combine these measures using both macro

and micro-averaging. Macro-averaging calculates the average of metric scores for each

class and then computes the arithmetic mean of these scores. On the other hand,

micro-averaging computes the measurements for all data points in all classes [106].

The formula for calculating macro and micro-average F1-score (F) is shown below:

Fmacro =

∑k

i=1 Fi

k
(3.5)

Fmicro =

∑k

i=1 TPi
∑k

i=1 TPi +
∑k

i=1 FPi

(3.6)

Fmacro and Fmicro represent the macro and micro-averaged F1-score respectively. Fi,

TPi, and FPi represent the F1-score, number of true positives, and number of false
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positives for the ith class, respectively, where k denotes the number of sentiment

polarity classes. We can calculate the macro and micro-averaged precision and recall

similarly. We consider that a model performs better than another only when it

achieves higher values for both F1macro and F1micro.

Table 3.5: Comparing the performance of existing approaches in detecting sentiments
in code review comments from open and closed-source subject systems

Approach Dataset
Positive Neutral Negative Macro-avg Micro-avg

P R F1 P R F1 P R F1 P R F1 P R F1

CoreNLP

OSS 0.55 0.49 0.52 0.86 0.43 0.57 0.07 0.85 0.14 0.49 0.59 0.41 0.45 0.45 0.45

CSS 0.44 0.56 0.49 0.91 0.49 0.64 0.19 0.83 0.31 0.51 0.63 0.58 0.53 0.53 0.53

Merged 0.43 0.36 0.39 0.83 0.45 0.58 0.12 0.71 0.20 0.46 0.50 0.39 0.46 0.46 0.46

Senti-SE*

OSS 0.71 0.73 0.72 0.93 0.86 0.90 0.14 0.36 0.20 0.59 0.65 0.61 0.83 0.83 0.83

CSS 0.64 0.72 0.68 0.91 0.92 0.92 0.48 0.37 0.42 0.68 0.67 0.67 0.85 0.85 0.85

Merged 0.75 0.65 0.70 0.90 0.88 0.89 0.29 0.39 0.33 0.64 0.64 0.64 0.82 0.82 0.82

Senti4SD

OSS 0.74 0.47 0.58 0.88 0.97 0.92 0.0 0.0 0.0 0.54 0.48 0.50 0.86 0.86 0.86

CSS 0.76 0.52 0.62 0.86 0.95 0.91 0.33 0.14 0.20 0.65 0.54 0.58 0.83 0.83 0.83

Merged 0.84 0.52 0.64 0.86 0.90 0.92 0.56 0.10 0.17 0.75 0.53 0.58 0.80 0.80 0.80

SentiCR

OSS 0.73 0.67 0.70 0.90 0.93 0.91 0.14 0.09 0.11 0.59 0.56 0.58 0.86 0.86 0.86

CSS 0.31 0.52 0.39 0.87 0.85 0.86 0.37 0.25 0.30 0.52 0.54 0.39 0.75 0.75 0.75

Merged 0.64 0.49 0.55 0.87 0.90 0.88 0.35 0.37 0.36 0.62 0.59 0.60 0.80 0.80 0.80

SentiMoji

OSS 0.89 0.55 0.68 0.88 0.99 0.93 0.82 0.28 0.42 0.86 0.61 0.68 0.88 0.88 0.88

CSS 0.90 0.69 0.78 0.90 0.98 0.94 0.50 0.21 0.30 0.77 0.63 0.67 0.89 0.89 0.89

Merged 0.90 0.64 0.75 0.89 0.98 0.93 0.68 0.25 0.37 0.82 0.63 0.68 0.88 0.88 0.88

OSS= Open-source system, CSS= Closed-source system,

Senti-SE*=SentiStrength-SE, P = Precision, R = Recall, F1 = F1-score

3.3 Study Result

3.3.1 Answering RQ1: How do existing sentiment detectors perform in

detecting sentiments of code review comments from open-source

and closed-source systems?

We contrast the performance of five existing tools and techniques in detecting senti-

ments of review comments between six open and four closed-source subject systems.

Existing tools for sentiment detection can be divided into three different categories

– lexicon-based, machine learning-based, and deep learning-based. Table 3.5 shows
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Figure 3.4: Comparison of commit-level reviewing experience between open and
closed-source systems.

whereas the core developers (a.k.a., experienced developers) remain neutral when sub-

mitting their review comments. Thus, we investigate the reviewing experience of each

reviewer, which might have contributed to the differences in sentiment prevalence and

detection performance above. In particular, we investigate the reviewers’ commit and

document reviewing experience as a proxy of their experience in the context of our

selected subject systems. We determine the commit reviewing experience by calcu-

lating the total number of commits reviewed by a developer from a subject system.

Similarly, we determine the document reviewing experience by calculating the total

number of source file reviewed by a developer from a subject system. Since both com-

mit and document reviewing experience can be affected by project size, we further

determine the percentages of all commits and all documents from a system that are

reviewed by a developer. Fig. 3.4 contrasts the reviewers’ commit reviewing expe-

rience between open-source and closed-source systems. We perform Mann-Whitney

Wilcoxon tests following the existing literature [76] to determine the statistical sig-

nificance of reviewing experience.

From Fig. 3.4, we see that the distribution of commit-level reviewing experience

is significantly different (i.e., p = 2.2e−16 < 0.05, Cliff’s δ = 0.83) between open and

closed-source systems. Specifically, the median measure of commit-level reviewing ex-

perience is ≈ 42% for open-source and ≈ 2.5% for closed-source subject systems. That
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Figure 3.5: Comparison of document-level reviewing experience between open and
closed-source systems.

is, open-source reviewers have ≈ 17 times more experience than closed-source review-

ers, regardless of the project size. Moreover, we also observe that open-source review-

ers have significantly higher reviewing experience from their quartile-based analysis.

Since the above analysis suggest that the closed-source reviewers have less commit-

level experience than open-source reviewers, for more granular insights, we further

compare the document-level reviewing experience between the two types of systems.

Fig. 3.5 contrast the reviewers’ document reviewing experience between open-source

and closed-source systems. Similarly, we perform Mann-Whitney Wilcoxon tests fol-

lowing the existing literature [76] to determine the statistical significance of reviewing

experience.

From Fig. 3.5, we see that the distribution of document-level reviewing experience

is not statistically significant (i.e., p = 0.2 > 0.05, Cliff’s δ = 0.26). For more granular

insight, we compare the distribution of each quartile of document-level reviewing

experience between open and closed-source reviewers. From Fig. 3.5, we see that

the median document-level reviewing experience is ≈ 0 for the first two quartiles,

Q1 and Q2, in open and closed-source systems. However, in the fourth quartile,

open-source reviewers have a higher median for document-level reviewing experience.

Furthermore, this difference in distributions of reviewing experience is statistically

significant (p = 2.2e−16 < 0.05 and Cliff’s δ = 0.9). Thus, we see that reviewers from

the closed-source systems have less reviewing experience than the reviewers from the

open-source systems.
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(a) Reviewers’ sentiments based on commit-
review experience

(b) Reviewers’ sentiments based on document-
review experience

Figure 3.6: Comparison of reviewer’s sentiments based on reviewing experience

Since the above analysis suggests that open-source systems have more experienced

reviewers than closed-source ones, we further investigate how sentiments in the re-

view comments could be affected by the experience of corresponding reviewers. In

particular, we compare the experiences of code reviewers expressing strong sentiments

(i.e., positive, negative) with that of reviewers expressing no sentiments (i.e., neutral).

From Fig. 3.6(a), we see that the distribution of commit reviewing experience is sig-

nificantly different(i.e., p = 3.2e−06 < 0.05, Cliff’s δ = 0.14) between the reviewers

expressing strong sentiments and neutral sentiments. More specifically, the reviewers

who frequently express strong sentiments have a median measure of ≈ 7% for commit-

level reviewing experience. In contrast, the median measure of commit-level reviewing

experience is ≈ 15% who remain neutral. Thus, reviewers who frequently express posi-

tive or negative sentiments have ≈ 2 times less commit reviewing experience. Further-

more, in Fig. 3.6(b), the distribution of document-level reviewing experience is also

significantly different (i.e., p = 6.28e−16 < 0.05, Cliff’s δ = 0.25) between reviewers

expressing strong sentiments and neutral sentiments. Specifically, the reviewers who

frequently express sentiments have a median measure of ≈ 0.06% for document-level

reviewing experience. In contrast, the median measure of document-level reviewing

experience is ≈ 0.23% who remain neutral. Thus, reviewers who frequently express

strong sentiments have ≈ 4 times less document-level reviewing experience.

Based on the above analysis, we further investigate the correlation between the re-

viewer’s sentiments and reviewing experience (i.e., commit-level and document-level)

using the Point-Biserial correlation coefficient [45]. This correlation test measures
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the relationship between the dichotomous nominal variable (i.e., binary variable) and

numeric variable. Since we have sentiments as the dichotomous nominal variable (e.g.,

sentiments, neutral) and review experience as the numeric variable, the Point-Biserial

correlation measure is well suited for our purpose. According to this correlation anal-

ysis, we find that the sentiments are negatively correlated with the review experience.

That is, reviewers with less reviewing experience frequently express strong sentiments

in their review comments. Furthermore, the correlation between reviewing experience

and sentiments was found to be statistically significant. For commit-level experience,

correlation coefficient rb = −0.18 and p = 1.60e−17 < 0.05. For document-level ex-

perience, correlation coefficient rb = −0.08 and p = 0.00 < 0.05. That is, although

the correlation was not strong, it was still statistically significant.

Therefore, our analysis suggests that reviewers with less experience frequently

express both positive and negative sentiments in closed-source systems. Our findings

from this comprehensive analysis generalize the findings of El Asri et al. [22] for

open-source systems as well.

Summary of RQ1: The performance of the automated tools in detecting sen-

timents in the code review comments could differ from 1.12% to 14.67% between

open-source and closed-source subject systems. We also observe that review-

ers from these two types of systems have varying levels of reviewing experience,

which might have led to varying prevalence of sentiments in their code review

comments. Since existing tools and techniques were trained on these comments,

their sentiment detection performance thus might also have been affected.

3.3.2 Answering RQ2: How do existing techniques perform in

classifying the usefulness of code review comments from

open-source and closed-source systems?

We contrast the performance of two existing techniques for comment usefulness clas-

sification between six open-source and four closed-source subject systems. Table 3.6

shows the accuracy, precision, recall, and F1-score of two techniques in classifying re-

view usefulness. From there, we see that CRA-model [32] outperforms RevHelper [76]

with an accuracy of 0.76 for open-source, 0.66 for closed source, and 0.71 for the

merged dataset. However, the accuracy metrics could be biased towards the majority
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Table 3.6: Performance comparison of RevHelper and CRA-model with different
features and datasets

Approach Features Dataset A
Useful Non-useful

P R F1 P R F1

CRA-model

Textual+Experience+Context*

Open-source 0.76 0.76 0.90 0.83 0.79 0.54 0.64

Closed-source 0.66 0.68 0.78 0.72 0.65 0.52 0.57

Merged 0.71 0.71 0.85 0.78 0.71 0.50 0.58

Textual+Experience+Context*+Sentiment

Open-source 0.77 0.77 0.91 0.83 0.80 0.55 0.64

Closed-source 0.68 0.69 0.79 0.73 0.66 0.53 0.58

Merged 0.72 0.72. 0.87 0.79 0.74 0.51 0.60

Sentiment

Open-source 0.69 0.68 0.93 0.79 0.74 0.31 0.44

Closed-source 0.61 0.61 0.87 0.72 0.63 0.28 0.38

Merged 0.64 0.63 0.92 0.75 0.69 0.24 0.35

RevHelper

Textual+Experience

Open-source 0.75 0.76 0.88 0.82 0.75 0.56 0.63

Closed-source 0.65 0.69 0.76 0.71 0.62 0.51 0.56

Merged 0.70 0.71 0.84 0.77 0.69 0.50 0.58

Textual+Experience+Sentiment

Open-source 0.76 0.77 0.88 0.82 0.75 0.57 0.64

Closed-source 0.66 0.68 0.77 0.72 0.64 0.53 0.58

Merged 0.72 0.72 0.85 0.78 0.71 0.53 0.60

Context*=Review Context, A = Accuracy, P = Precision, R = Recall, F1 = F1-score

open-source domain and ranges from 0.62 to 0.73 across the projects in the closed-

source domain. That is, the F1-score can differ by 16.27% across the projects in the

open-source domain and by 15.06% across the projects in the closed-source domain.

However, from Fig 3.8(a), we see that this metric score ranges from 0.62 to 0.86,

which is ≈ 28% difference between the two types of systems. From Fig 3.7 (c) and

Fig 3.7 (d), we see that the F1-score in classifying non-useful comments ranges from

0.36 to 0.56 across the projects in the open-source domain and ranges from 0.47 to

0.56 across the projects in the closed-source domain. That is, the F1-score score can

differ by 35.71% across the projects in the open-source domain and by 16% across

the projects in the closed-source domain. However, From Fig 3.8(b), we see that the

metric ranges from 0.47 to 0.56, which is ≈ 16% difference between the two types of

systems.

We also compare the accuracy of classifying both useful and non-useful review

comments. From Fig 3.9(a), we see that the accuracy of the CRA-model ranges

from 0.64 to 0.79 across the projects in the open-source domain and ranges from
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0.57 to 0.67 across the projects in the closed-source domain. That is, the accuracy

can differ by 18.98% across the projects in the open-source domain and by 14.92%

across the projects in closed-source domain. However, from Fig 3.9(b), we see that

the same metric ranges from 0.57 to 0.79, which is ≈ 28% difference between the two

types of systems. Thus, the performance of the existing tool can differ in classifying

the usefulness of review comments across the same type of systems. However, the

performance difference is much higher between open-source and closed-source systems.

The performance of existing techniques in classifying review usefulness differs

between open and closed-source systems. To gain better insights regarding the differ-

ence, we thus further compare the prevalence of their useful review comments using

ground truth information. From Table 3.3, we see that open-source subject systems

have 61.56% useful review comments, whereas the ratio is 56.40% for closed-source

subject systems. Thus, closed-source subject systems have ≈ 8% less useful review

comments. Such a difference in the prevalence of useful review comments might have

contributed to the performance difference in the existing techniques between open

and closed-source systems.

According to Rahman et al. [76], the developer’s experience is more effective than

textual content in classifying the usefulness of code review comments. In RQ1, we

observe that review experience can be different between open-source and closed-source

systems. We found that open-source reviewers were more experienced in terms of code

reviews (See Fig. 3.5). We thus investigate how reviewers’ experience could affect the

usefulness of their review comments. We compare the experience of code reviewers

submitting useful and non-useful review comments.

From Fig. 3.10(a), we see that useful and non-useful review comments are sig-

nificantly different (i.e., p = 2.46e−14 < 0.05 and Cliff’s δ = 0.20) in terms of the

distribution of their reviewer’s reviewing experience. More specifically, the review-

ers who submit useful review comments have a median measure of ≈ 23.58% for

commit-level review experience. In contrast, the median measure of commit-level re-

view experience is ≈ 5.87% for the reviewers who submit non-useful review comments.

Thus reviewers who submit useful review comments have ≈ 4 times more commit-level

review experience. Furthermore, in Fig. 3.10(b), the distribution of document-level

review experience is also significantly different (i.e., p = 2.2e−16 < 0.05 and Cliff’s
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(a) Comment usefulness based on commit-
review experience

(b) Comment usefulness based on document-
review experience

Figure 3.10: Comparison of useful and non-useful review comments based on review-
ing experience

δ = 0.25 ) between reviewers who submit useful and non-useful review comments.

Specifically, reviewers who submit useful review comments have a median measure

of ≈ 0.27% for document-level review experience. On the other hand, the median

measure of document-level review experience is ≈ 0.06% for reviewers who submit

non-useful review comments. Thus, reviewers who submit useful review comments

have ≈ 5 times more document-level review experience. This finding might be ex-

plainable since previous study [76] suggests that review experience is one of the crucial

factors for identifying useful review comments.

Similar to RQ1, we also investigate the correlation between reviewing experience

and comment usefulness. According to the Point-Biserial correlation measure, the

correlation coefficient rb = 0.16 for commit-level review experience and rb = 0.14

for document-level review experience. That is, both reviewing experience exhibits a

marginal positive correlation with the review comment usefulness. Interestingly, the

correlation between reviewing experience and comment usefulness is also statistically

significant. For commit-level experience, p = 2.92e−13 < 0.05 and document-level

experience, p = 1.74e−11 < 0.05. Thus reviewers with more reviewing experience

tend to submit more useful review comments.

Thus, our analysis suggests that the reviewers who submit useful comments have

more reviewing experience than reviewers who submit non-useful code review com-

ments. Since existing techniques leverage the reviewer’s experience to classify useful

review comments, the difference in the reviewer’s experience might contribute to their
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varying performance between open and closed-source systems.

Summary of RQ2: The performance of automated techniques in classifying

the usefulness of review comments could differ up to ≈ 18% between open and

closed-source systems in our constructed dataset. We also observe that open-

source reviewers have more reviewing experience, and consequently, they submit

more useful review comments, which might contribute to the varying performance

levels of existing techniques between the two types of systems.

3.3.3 Answering RQ3: How do sentiments influence the usefulness of

code reviews in open and closed source systems?

Although previous studies [32, 15] use sentiments to classify the useful and non-useful

review comments, their investigation was limited to only closed source systems. Ac-

cording to Khanjani and Sulaiman [42], various factors (e.g., code reviews) in open-

source software systems could be significantly different from those of closed-source

systems. Thus, we investigate the influence of sentiments in classifying the usefulness

of review comments from both open and closed-source systems. We use comment

sentiments with other textual, historical, and review features and evaluate the per-

formance of RevHelper and CRA-model on two different types of systems. Table 3.6

shows the performance of RevHelper and CRA-model in classifying review usefulness

where review sentiment was used as a feature. From there, we see that the sentiments

can improve the accuracy of both techniques marginally. We found that sentiments

improve the accuracy of Revhelper from 0.75 to 0.76 for open-source and from 0.65

to 0.66 for closed-source, which is 1.67% improvement for both types of systems. On

the other hand, sentiments improve the accuracy of CRA-model from 0.76 to 0.77

for open-source and from 0.66 to 0.68 for closed-source, which is 1.67% improvement

for open-source systems and 2.94% improvement for closed-source systems, respec-

tively. Nevertheless, the performance of a machine learning model can be affected by

the size of the training data. Hence, we combine review comments from both open

and closed-source systems and assess the performance of RevHelper and CRA-model.

From Table 3.6, we see that the performance improvement for both techniques is

still marginal (e.g., 1.67% –2.94%). In our RQ1, we observe that reviewers with less

reviewing experience frequently express strong sentiments. In our RQ2, we also see
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that reviewing experience exhibits a weak but positive correlation with the review

comment usefulness. Since sentiments, reviewing experience and usefulness are corre-

lated to each other, the performance improvements of usefulness classification using

sentiments might be explainable. Interestingly, these improvements are also statis-

tically significant according to Wilcoxon Signed Rank test [71], for RevHelper p is

0.000 < 0.05, and Cliff’s δ is 0.88 and for CRA-model, p is 0.008 < 0.05 and Cliff’s δ

is 0.88. Thus, we observe from the above analysis that the sentiments can improve the

classification of comment usefulness marginally (e.g., ≈ 3%), but the improvement is

statistically significant.

Since we notice that sentiments have significant impacts in detecting the useful-

ness of review comments, we further assess the performance of the best classification

model (i.e., CRA-model) using only the sentiments feature. Interestingly, sentiment

alone can classify useful and non-useful review comments with up to 0.69 accuracy

(Table 3.6). Our follow-up investigation suggests that ≈ 64% of neutral comments are

useful, whereas ≈ 64% comments with positive/negative sentiments are non-useful.

Such a finding indicates a direct relationship between the sentiments and the useful-

ness of review comments. Furthermore, we also perform the Chi-square test [25] of

independence to investigate the dependency between the sentiments and usefulness

of review comments. Our null hypothesis is sentiments and usefulness of review com-

ments are independent. According to this statistical test, we found that the p-value

is 0.0002 < 0.005, and the effect size is 0.03. Although the effect size is small, we

can still reject the null hypothesis according to our p-value and accept the alternative

hypothesis. That is, sentiments and usefulness are dependent on each other.

Thus, our experiment above suggests that sentiment can significantly influence

the usefulness classification of code review comments. Our statistical analysis also

suggests the dependence between the usefulness and sentiments of review comments,

which is actionable insight for improving automated tools and techniques. For in-

stance, the usefulness classification technique like RevHelper uses textual and histor-

ical features to classify useful and non-useful review comments. Since sentiment is a

strong factor for detecting the review usefulness (see Table 3.6), it could be a feasible

alternative to various costly metrics (e.g., authoring experience, reviewing experience)

for the usefulness classification of review comments. Sentiment-based classifiers can
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also be used to prevent non-useful code reviews as a lightweight solution.

Summary of RQ3: Sentiments can improve the classification accuracy of review

usefulness by 3%, which is promising. It also could be a feasible alternative to

various costly metrics (e.g., authoring experience, reviewing experience) that are

often used to classify useful and non-useful review comments.

3.4 Key Findings and Implications

3.4.1 Experienced reviewers provide more useful review comments.

In our dataset (open and closed-source), in terms of document-level review, the writ-

ers of non-useful comments are ≈ 77% less experienced than the writers of useful

comments. We also notice similar findings in our second research question (Sec-

tion 3.3.2). Thus, our study complements the finding of Rahman et al. [76] about the

importance of experience in writing useful comments. This finding can not only bene-

fit the review usefulness classification but also can help improve the existing reviewer

recommendation tools like CORRECT [75], RevRec [104], and RevFinder [94].

3.4.2 Less experienced developers express stronger sentiments in their

review comments.

We find that developers who express sentiments in their review comments have ≈ 70%

less reviewing experience than the developers who do not express strong sentiments

(i.e. neutral sentiment) in review comments. Thus, our study complements the

findings of El Asri et al. [22] with similar findings in closed-source systems. We

further find that in open-source systems, reviewers who express sentiments have a

median of ≈ 0.0% reviewed document, where for closed-source systems, it is 0.16%.

This indicates that in open-source systems, only the absolute newcomers express

sentiments in their review comments. Since sentiments play an important role in

the usefulness classification of review comments (Section 3.3.3), our findings could

be useful for recommending reviewers capable of writing useful review comments

containing neutral sentiments.
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3.4.3 Use of sentiments improves the automatic classification of review

usefulness.

We show that the use of sentiment label in usefulness classification can improve

the accuracy by ≈ 3%. Interestingly, among all the feature set for classifying the

usefulness of review comments, sentiment can be easily computed from the review

comments text. All other historical and review features require searching the full

codebase or even the whole code-change history. Therefore, an inexpensive feature

like sentiment could be a feasible choice for improving the usefulness classification of

review comments.

3.4.4 Open-source code reviews are more sparse and diverse.

While, in general, reviewers of open-source systems are more experienced, counter-

intuitively, a significant portion of them are totally inexperienced. For instance, 8.38%

of our open-source review comments have reviewers who have zero commit reviewing

experience, which is 0.65% for closed-source. Furthermore, a significant amount of

feature values in open-source reviews are zero (e.g., 72.04% external library experi-

ence), making the dataset sparse. These characteristics suggest that automatic tool

support for code review in open-source systems should employ appropriate techniques

that are robust to data sparsity.

In addition, open-source projects have more diverse metric values than closed-

source projects based on standard deviation. For example, open-source systems have

a standard deviation of 17532 for commit reviewing experience, while closed-source

systems have only 713 for the same metric. Likewise, open-source systems have a

standard deviation of 58.48 for source file reviewing experience, while closed-source

systems have only 19.91 for the same metric. These findings suggest that code review

metrics vary more in open-source than in closed-source projects. Interestingly, these

variations are more noticeable among open-source projects with different program-

ming languages. For instance, two Java-based projects have a standard deviation

difference of 6.38 for source file reviewing experience. However, this difference in-

creases to 54.77 between Java and JavaScript-based projects and to 62.90 between

Java-based and Python-based projects. Therefore, special attention should be paid to

data-diversity when developing cross-project tool support for different programming
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language domains.

3.5 Threats To Validity

The threats to internal validity relate to experimental errors and biases [95]. Our

dataset construction involves manual analysis where we followed the change triggering

heuristics of Bosu et al. [15]. While human errors are unavoidable during analysis,

the first and second authors performed the analysis in parallel and cross-checked with

each other under the constant supervision of the third author to mitigate errors.

We also manually cross-check for false positives using random samples. Finally, we

construct our open-source dataset with 1,111 review comments from six open-source

subject systems spending 80 person-hours. However, there might still be a little risk

that the overall characteristics of open and closed-source systems might deviate from

our selected systems due to confounding factors such as language domains and code

review practice at different companies.

Furthermore, we construct our sentiment benchmark through manual annotation.

Sentiment annotation is a subjective process since individual perception can be influ-

enced by personality traits [83]. To mitigate this threat, we provide clear guidelines

to the annotators based on the theoretical framework of Shaver et al. [86] and three

annotators annotated each review comment. In addition, we exclude around 2% and

3% review comments from open and closed-source systems, respectively, that contain

mixed and complex sentiments. The inter-annotator agreement (average weighted

Cohen’s Kappa, κ = 0.61) and observed agreement (percentage of agreement be-

tween a pair of annotators = 0.84) confirm the substantial reliability of our ground

truth sentiment benchmark [40]. Finally, we construct our sentiment benchmark

with 2,183 review comments from both open and closed-source systems spending 60

person-hours.

Threats to external validity relate to the generalization of a study [74]. We use

six open-source and four closed-source subject systems for our analysis, while the

choice of project selection can introduce potential bias. To mitigate this threat,

we choose our subject systems based on a feasibility analysis where we consider the

project’s popularity using their star counts on GitHub. Furthermore, we also filter out

inactive projects based on the number of pull requests. However, the characteristics of
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our selected subject systems might not be an absolute representation of open-source

subject systems.

Finally, the threat to construct validity relates to the suitability of the experimen-

tal design. As we mentioned in Section 3.2.1, we only consider eligible pull requests.

However, this might introduce a bias towards the useful review comments. Further-

more, we select seven automated tools and techniques from the literature and evaluate

their performance in assessing code review comments. However, in accordance with

the previous work [19, 66, 3, 39, 16, 57], we use several appropriate metrics such as

precision, recall, micro and macro-averaged F1-score, and accuracy to evaluate those

tools and techniques, which indicates a little to no threat to the construct validity of

our findings.

3.6 Related Work

Review comments are one of the main building blocks of modern code review since

reviewers submit the change suggestions in the form of comments. Hence, the quality

of the comments plays a significant role in ensuring an effective code review process.

Previous studies [3, 15, 12, 76] analyze several quality aspects of review comments

such as sentiments and usefulness. Ahmed et al. [3] analyzed the sentiments in the

code review comments and proposed an automated sentiment classification technique

– SentiCR. On the other hand, Efstathiou and Spinellis [21] studied the language of

code review comments and reported that language does matter. Furthermore, Paul

et al. [70] conduct an empirical study using six open-source projects to contrast the

sentiments of review comments between male and female developers. They observe

that male developers express more sentiments in the review comments than females.

El Asri et al. [22] showed that peripheral developers (i.e., newcomers) express more

sentiment than the core developers (a.k.a., experienced developers) during code re-

views. At the same time, Huq et al. [37] reported that fix-inducing changes (changes

that introduce bugs in the system) are preceded by positive review comments, which

can help anticipate the bug in the codebase. Although these studies provide useful

insight into the sentiments and their impact on the code review process, their analysis

is limited to open-source subject systems.

Apart from sentiment detection, a few studies were conducted to analyze the
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usefulness of code review comments using textual characteristics and reviewer expe-

rience [15, 76, 49]. Baysal et al. [12] studied the impact of various technical and non-

technical factors that affect the duration of the code review process. They observed

that reviewer experience could significantly affect the outcome of code reviews. Sim-

ilarly, Kononenko et al. [43] conducted an empirical study using a large open-source

system Mozilla to investigate code review quality. They observed that personal met-

rics such as reviewer experience are associated with the quality of the code review

process. Moreover, existing studies also reported that the reviewer’s expertise has

the strongest relationship with the incidence of software post-release defects [46, 59].

Later, Rahman et al. [76] investigated various textual properties and reviewer ex-

periences to determine the usefulness of review comments using four closed-source

systems. They also propose a classification model that uses 15 different textual and

historical attributes of reviews to classify useful and non-useful comments. Recently,

Hasan et al. [32] proposed another classification model that uses 26 different textual,

historical, and review attributes to classify useful and non-useful comments. While

Rahman et al. [76] focuses on identifying the usefulness of a comment during the sub-

mission of a review, Hasan et al. [32] focus on identifying the useful comment after

the submission of a review. Nevertheless, these studies provide useful insight into

several comment attributes, However, their analysis is limited to only closed-source

systems, which might not generalize to open-source systems.

Thus, to summarize, unlike the relevant literature, we analyze two review quality

aspects (e.g., sentiments, usefulness) from both open and closed-source software sys-

tems using automated tools and techniques. We also investigate the interplay between

sentiments and usefulness, and report that sentiment is an important factor for clas-

sifying the usefulness of review comments. Finally, we also provide a comprehensive

benchmark dataset based on open and closed-source subject systems. To the best

of our knowledge, there exists no work that comprehensively assess the performance

of automated tools and techniques in measuring the quality of review comments and

then compare their performance between open-source and closed-source software sys-

tems, which makes our work novel.
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3.7 Summary

To summarize, we perform an empirical study using code review comments from six

open-source and four closed-source subject systems. Our study aims to assess the

performance of automated tools and techniques in measuring two quality aspects –

sentiments and usefulness – of review comments and then contrast their performance

between open and closed-source subject systems. We found that the performance

of the automated tools significantly differs between open and closed-source subject

systems. Moreover, we also observe that sentiment can improve the automatic clas-

sification of review usefulness up to ≈ 3%, which is promising. Our manual analysis

also reveals that experienced reviewers submit more useful review comments than

less experienced (a.k.a novice developers) reviewers. Given the significance of code

review experience in writing useful review comments, the review process can be fur-

ther enhanced with automated support in review comments recommendations for the

novice developer. In Chapter 4, we thus propose a novel technique for relevant review

comments recommendation – RevCom – that leverages various code-level changes us-

ing structured information retrieval. In particular, our technique can automatically

recommend the review comments, which could reduce the cognitive effort and time

required to write the review comments by the developer.



Chapter 4

RevCom – Recommending Code Reviews Leveraging Code

Changes with Structured Information Retrieval

Our first study in Chapter 3 empirically assesses two review quality aspects – sen-

timents and usefulness – of code reviews from both open-source and closed-source

systems using automated tools and techniques. It also shows how these quality as-

pects could vary between open-source and closed-source systems when assessing them.

This study also reveals that less experienced developers submit more non-useful re-

view comments to both types of systems, which warrants automatic support in writing

code review comments. In this chapter, we discuss our second study that proposes a

novel approach to help developers write better code review comments.

The rest of this chapter is organized as follows. Section 4.1 introduces the study

and highlights the novelty of our contribution. Section 4.2 illustrates the useful-

ness of our technique with motivating examples. Section 4.3 presents our proposed

technique for recommending code review comments using structured information re-

trieval. Section 4.4 discusses our experimental design, datasets, and evaluation met-

rics. Section 4.5 discusses the evaluation result of our proposed technique. Section 4.6

discusses the existing studies related to our research. Section 4.7 identifies possible

threats to the validity of our work. Finally, Section 4.8 summarizes this study.

4.1 Introduction

Modern code review (MCR) has been reported as one of the popular quality assur-

ance practices in software development and maintenance [9, 30]. In MCR, change

suggestions are made by reviewers in the form of review comments, one of the main

building blocks of code reviews. However, manually writing code review comments

is still a challenging task, which requires significant time and cognitive effort. MCR

involves examining the source code from different aspects such as logic, functionality,

complexity, code style, and documentation [50]. Due to the size and complexity of

50
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modern software projects, the number of review requests is also high [105, 80]. A

code submitter might need to wait for 15 – 64 hours before receiving any code re-

view [35], which could hurt their productivity. Thus, an automated recommendation

of meaningful code review comments could benefit both a code submitter and a code

reviewer. Recommended reviews can help the reviewer write better review comments

with reduced effort while shortening the wait time for the code submitter [34].

Several existing approaches [29, 88, 98, 50] recommend or generate code review

comments using Deep Learning (DL) networks. Earlier works [29, 88] use Long Short-

term Memory (LSTM) networks with an attention mechanism [8] to recommend code

review comments. Later approaches [98, 50] employ more sophisticated architec-

ture such as Text-To-Text Transfer Transformer (T5) [101] to generate code review

comments. However, they require specialized computing resources (e.g., 16 × 40GB

GPU [101]), which could hurt their scalability. They also might require long training

time (e.g., 12 days [101]).

Recent studies [26, 33, 54, 60] suggest that simpler approaches, such as Informa-

tion Retrieval (IR), can perform better than complex Deep Learning models with less

computational time and resources. Hong et al. [34] propose an IR-based approach that

leverages method-level similarity in recommending code review comments. Although

their approach outperforms Deep Learning models, it could be limited in several as-

pects. First, they use the Bag of Words (BoW) model [72] that represents source code

as token vectors ignoring code structures and semantics. Source code contains both

structured (e.g., methods, library information) and unstructured items (e.g., code

comments). Second, they report their findings for only Java-based projects, which

might not generalize to other programming languages. Finally, their approach to rec-

ommending review comments was evaluated only using method-level information in

the source code. However, method bodies might not cover all the changes that require

code reviews. Thus, the existing approaches might not perform well in recommending

reviews for the code changes outside of a method body (see listing 4.1, 4.2). Accord-

ing to Li et al. [50], structured information such as diff contains all types of changes

in the source code and thus can help better understand the semantics of any code

changes. However, the work of Hong et al. [34] overlooks this structured information

and recommends reviews only for the changes in the method.
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In this study, we propose a novel technique for relevant review comments recom-

mendation – RevCom – that leverages various code-level changes using structured

information retrieval. RevCom uses different structured items from source code and

can recommend relevant reviews for all types of changes (e.g., method-level and non-

method-level). Our evaluation using three performance metrics show that RevCom

outperforms both IR-based and DL-based baselines by up to 49.45% and 23.57%

higher BLEU score in recommending review comments. We find that RevCom can

recommend review comments with an average BLEU score of ≈ 26.63%. According to

Google’s AutoML Translation documentation1, such a BLEU score indicates that the

review comments can capture the original intent of the reviewers. All these findings

suggest that RevCom can recommend relevant code reviews and has the potential to

reduce the cognitive effort of human code reviewers.

4.2 Motivating Example

To demonstrate the capability of our approach – RevCom, let us consider the ex-

ample in Listing 4.1. The code snippet is taken from the elastic/elasticsearch Java

repository2. The example shows a class-level change. According to the review com-

ment in line 8, the reviewer suggests changing the privacy of variable key (see line 6)

from public to private. We see that RevCom recommends exactly the same comment

that the reviewer suggests (a.k.a. ground truth). RevCom retrieves the suggested

review comment from a similar pull request from the same repository. Reviewers

often provide similar types of review comments for similar code changes [34]. Our

approach can exploit structured information from those changes and can recommend

exact review comments occasionally.

Listing 4.2 shows another example containing a library-level change. The code

snippet is from the ansible/ansible Python repository3. We see that even though

the recommended Comment from RevCom does not exactly match the ground truth,

both of them express the same semantic information.

1https://bit.ly/3wGpCIx
2https://bit.ly/3H7jvCt
3https://bit.ly/3QTO6H4
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1 Code Change:

2 @@ -50,7 +52,7 @@

3 public static class Bucket extends InternalMultiBucketAggregation.

InternalBucket implements Histogram.Bucket {

4

5 - final long key;

6 + public final long key;

7 -------------------------------------------

8 Ground Truth: "Could you explain why this needs to be public now? I

think we should try to keep this package private if possible".

9

10 Recommended Comment: "Could you explain why this needs to be public

now? I think we should try to keep this package private if

possible."

Listing 4.1: Example of class-level code change

Unfortunately, the state-of-the-art IR-based technique – CommentFinder [34] could

be limited for these change scenarios. First, in Listing 4.1, the change is related to

a class-level variable which is declared outside of a method. Second, in Listing 4.2,

this change is related to library information which is also not a part of any method.

On the other hand, since our approach captures various code-level changes, it can

recommend code reviews for both method-level and non-method-level changes.

1 Code Change:

2 @@ -0,0 +1,125 @@

3 +#!/ usr/bin/python

4 +from __future__ import absolute_import , division , print_function

5 +from ansible.module_utils.aws.core import AnsibleAWSModule

6 + from ansible.module_utils.ec2 import ( camel_dict_to_snake_dict ,

7 ec2_argument_spec)

8 ----------------------------------------------

9 Ground Truth: "These imports aren’t needed but you will need ‘

camel_dict_to_snake_dict ‘ from ‘ansible.module_utils.ec2 ‘"

10

11 Recommended Comment: "Sorry , use ‘camel_dict_to_snake_dict ‘ from ‘

ansible.module_utils.ec2 ‘"

Listing 4.2: Example of library-level code change
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4.3 Approach

In this section, we present our proposed technique – RevCom – that recommends

relevant review comments by leveraging structured information from the source code.

Figure 4.1 shows an overview of our technique, which consists of four steps. We

describe the details of each step below.

4.3.1 Structured Information Extraction from Query and Corpus

RevCom uses a structured IR-based approach to recommend relevant code review

comments. Since IR-based techniques do not require any training phase, it sig-

nificantly reduces computational time compared to DL-based alternatives [54, 34].

RevCom takes a diff and corresponding source code document as input (Step a, Fig-

ure 4.1). A diff hunk is a sequence of code that represents the code changes between

two versions of the same source file [88]. It follows a structured format containing the

number of changed lines (denoted by @...@), added lines (denoted by +), deleted lines

(denoted by −), and other contextual information (e.g., surrounding lines of added

and deleted lines) from the source code (see Listing 4.1, 4.2). We extract added lines,

deleted lines and contextual information from the diff as changed code fragment for

the corresponding review comments. In our dataset, the changed code has a median

of 14 lines.

Rahman et al. [76] suggest that experience with structured information from

source code (e.g., library information) could help code reviewers write better review

comments. Although a diff could contain the changed library information, unchanged

libraries from the source code can provide additional contexts (e.g., existing depen-

dencies), which could be valuable for code reviews. We thus extract the changed and

unchanged library information (e.g., import statement or package name) from the diff

and source code, respectively.

Li et al. [48] uses file path similarity to determine a reviewer’s expertise and

then recommend the relevant code reviewers. On the other hand, Hong et al. [34]

suggests that similar code segments (e.g., method bodies) are likely to receive similar

code review comments. Inspired by these works, we hypothesize that similar source

files are likely to receive similar review comments. Thus RevCom also uses file path
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Figure 4.1: An overview of our proposed approach– RevCom

information to recommend the relevant review comments.

4.3.2 Vectorization of Query and Corpus

To facilitate similarity calculation, we represent all changed code fragments, library

information, and file paths in TF-IDF vector space. To do so, we perform a code

tokenization to break each changed code fragment, import statement, and file path

into a sequence of code tokens. As suggested by Rahman et al. [78], we remove

punctuation characters (except ‘+’ and ‘−’) to ensure that the code tokens are not

artificially repetitive. After that, we convert the sequence of tokens into the frequency

vector of code tokens using the TfidfVectorizer function of scikit-learn library (Step b,

Figure 4.1). Since our studied programming languages are case-sensitive, we neither

convert them to lowercase nor use any normalization technique (e.g., lemmatization

and stemming) to reduce the inflectional forms.
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4.3.3 Structured Information Retrieval

Source code contains both structured (e.g., methods, library information) and un-

structured (e.g., code comments) items. Our approach extracts three structured items

from three different sections of the source file – changed code, file path, and library

information. To leverage all three structured items, we perform separate searches

for each based on their lexical similarity score. For each single instance (e.g., code

change), we first formulate three different queries using the structured items. Then

we search for similar vectors in the corpus based on their lexical similarity. To calcu-

late the lexical similarity between the query and corpus, we use the BM25 similarity

score. BM25 is a probabilistic framework which overcomes several limitations of TF-

IDF similarity, such as term saturation and document length issue [81]. We perform a

weighted sum of the similarity scores for all three structured items using Equation 4.1

(Step c, Figure 4.1).

LexSim(Q, T ) =
∑

qϵQ

wq · BM25(q, Tq) (4.1)

Here, Q is the set of query instances, T is a single instance from the corpus, Tq is

the same structured item as q from T , BM25(q, Tq) is the BM25 similarity between

q and Tq, and wq is the optimized weight for query term q. To generate an optimized

weight for each structured item, we follow an existing algorithm by Tian et al. [95].

The minimum and maximum values for the weight are 1 and 3. This weighted sum

approach prioritizes a query term over others, even if the term is small in size (e.g.

library information). Since context makes certain query terms more important than

others, the weighted sum approach performs better than a simple arithmetic sum.

Based on this combined similarity score between query and corpus, we rank top-N

changed code fragments from the corpus, which have the highest similarities with the

query. Following relevant studies from the literature [34, 88], we use N = 10 in our ex-

periment. We thus retrieve the top-10 similar changed code fragments from the corpus.

4.3.4 Review Comment Recommendation

Review comments associated with the retrieved changed code fragments might be

relevant for a given changed code (e.g., query instance). However, the lexical similarity

calculated above (Section 4.3.3) does not consider the actual order of code tokens. The
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order of code tokens in retrieved changed code fragments could be different from the

query changed code fragment, which could render the similarity measure spurious. For

example, in a function, the order of parameters such as a, b and b, a are not the same.

Therefore, it is important to consider the order of the tokens to compute the similarity.

We thus use Gestalt Pattern Matching (GPM) to calculate the textual similar-

ity between the top-N retrieved changed code fragments and the query changed code

fragment following an existing study [34]. This similarity measure calculates the

textual similarity between the two documents while preserving the order of the char-

acters. Given a query changed code fragment and top-N retrieved changed code frag-

ments, GPM first searches for the Longest Common Substring (LCS) between the

two changed code fragments. Then it uses the following equation to calculate their

similarity.

GMP (diffQ, diffR) =
2 ×NC

NQ + NR

(4.2)

Here, NQ is the number of characters in the query changed code fragment, NR

is the number of characters in the retrieved changed code fragment, and NC is the

number of characters in the longest common substring. Based on this textual sim-

ilarity, we again rank the retrieved top-10 changed code fragments (step-c) against

the query instance. Then, we collect the corresponding comments from these changed

code fragments and recommend them as code review comments for a given changed

code. (a.k.a. query instance).

4.4 Experimental Setup

We curate a dataset of ≈ 56K diff and review comment pairs from eight (four Python

and four Java-based) popular projects. We evaluate the performance of RevCom using

three appropriate metrics from relevant literature – BLEU score [69], perfect predic-

tion, and semantic similarity [31]. We also compare the performance of RevCom with

two state-of-the-art baselines [34, 50]. In our experiments, we thus answer the four

research questions as follows.

• RQ1: How does RevCom perform in recommending review comments in terms

of different evaluation metrics?
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• RQ2: How do different structured information influence the performance of

RevCom?

• RQ3: How do different vectorization techniques influence the performance of

RevCom?

• RQ4: Can RevCom outperform the state-of-the-art IR-based and DL-based

techniques?

4.4.1 Dataset Construction

To conduct our experiments, we curate a dataset of ≈ 56K diff and review comment

pair from GitHub4 using its REST API. We first collect the top 20 Java and the

top 20 Python repositories based on their star count from GitHub [5, 6]. In order

to ensure the quality of our dataset, we then sort the projects by the number of

pull requests and filter out projects with less than 1500 pull requests. As discussed

in section 2.1, pull requests contain the code change for the review and represent

the activity or relevance of a project. This filtration keeps only the active projects

and removes forked repositories, as the pull requests are not inherited [50]. After this

filtration process, we find four Java and four Python repositories with more than 1500

pull requests. For each selected project, we create a GitHub API crawler to collect

all the diff, source code, and corresponding reviews. We run the crawler and collect a

total of ≈ 297K comments and other associated meta-information (e.g., pull request

and commit information) to construct the initial dataset. Note that the comments

we collect in this step include both reviewers’ and the authors’ comments.

To further ensure the quality of our dataset, we perform three filtration steps.

We find that ≈ 64% comments in our initial dataset are not code review comments

(e.g., submitted by the pull request authors). Since our goal is to recommend code

review comments, we first carefully exclude the non-reviewer comments, which results

in ≈ 189K review comments in our dataset. Similar to prior studies [97, 88], we also

filter out trivial or short comments (e.g., “nice”, “thank you”, “LGTM”), which

results in ≈ 122K review comments. Since RevCom leverages various structured

information to recommend relevant review comments, it requires the file path and

4Accessed: October 12, 2022
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Table 4.1: Statistics of the experimental dataset

PL Repository #PR
#Total

Comments

#Reviewer

Comments

#Filtered

Reviewer

Comments

#Review Comments

for Python /

Java Files

Ansible 48371 59142 43080 31095 16608

Keras 5777 6164 4347 3025 1729

Django 16366 48280 35871 24644 13021
Python

Youtube-dl 4788 8723 6325 4514 4182

Springboot 5500 3979 2598 1786 934

Elasticsearch 61060 69303 47109 22930 9682

Kafka 13062 97402 47109 32864 9437
Java

RxJava 3744 4689 3146 2000 475

Total 297,612 189,585 122,858 56,068

library information from the source code. We thus eliminate the reviews that are

related to documentation or other kinds of source files (e.g., .md or .rst files). In this

step, we also carefully investigated a statistically significant sample of 383 comments

(95% confidence level, 5% error margin) and found that none of the bot comments

(41 in total) were associated with any source code. Since each valid comment should

be connected to the source code, we removed all comments lacking an association to

code, which essentially discarded all bot comments from our final dataset. Finally,

our dataset contains ≈ 56K review comments, their associated diff, and source files.

The summary statistics of our dataset are shown in Table 4.1.

Once we complete the filtration and have a refined dataset, we split it into corpus

and query. Similar to earlier work [34], we keep 70% of the instances for corpus

and the remaining as the query. If multiple comments are made against the same

changed code of a diff, we consider these comments as separate instances. However,

to handle the overlapped between the query and corpus set, we carefully keep the

query instances different from the corpus instances during the dataset split.
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4.4.2 Embedding Generation

In this work, we adopt Word2Vec [62] – a popular algorithm to generate word embed-

ding for our experiment. There are quite a few pre-trained Word2Vec-based word em-

beddings available for reuse. However, these word embeddings are trained on natural

language, which might not be able to capture semantics in the source code [73]. There-

fore, we train a Word2Vec model using GitHub CodeSearchNet [38] dataset and use

the word embedding for our analysis. CodeSearchNet contains ≈ 6M methods written

in popular programming languages accompanied by natural language documentation.

The Out-of-vocabulary (OOV) issue is common in code-related task [47, 103, 90,

36] as source code contains not only typical API methods but also randomly-named

tokens such as class names and variable names. Although word-level embeddings can

represent the semantics of tokens in the source code, the OOV issue still exists since

low-frequency words are discarded during the training of the Word2Vec model. To

mitigate the OOV issue, we use a RoBERTa tokenizer [53]. This tokenizer leverages

Byte-Pair Encoding (BPE) subword tokenization, which splits a word into a sequence

of frequently occurring subwords [84]. Since the vocabulary contains all letters and

common subwords, it can address the OOV issue. Moreover, prior studies also show

that BPE also handles large vocabulary issues, which is a common concern in Natural

Language Processing (NLP) for prediction [41].

4.4.3 Evaluation Metrics

To evaluate the performance of our proposed approach, we use three different metrics

– BLEU score [69], perfect prediction, and semantic similarity [31]. These evaluation

measures were also used by the relevant studies [101, 103, 34, 73, 50, 56], which

justify our choice. We report all metric scores in terms of percentage. We define

these metrics as follows.

4.4.3.1 Bi-Lingual Evaluation of Understanding (BLEU)

BLEU score [69] is a widely used textual similarity metric with significant use in the

software engineering context [34, 103, 36, 101, 50, 56]. BLEU score calculates the

similarity between the recommended reviews and the ground truth reviews in terms
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of their n-gram precisions as follows.

BLEU = BP · exp

(

N
∑

n=1

wn log(pn)

)

(4.3)

Here, pn is the ratio between overlapping n-grams (from both recommended and

ground truth reviews) and the total number of n-grams in the recommended reviews,

and wn is the weight of the n-gram length. Following the existing studies [34, 50, 56],

we use N = 4 and wn = 0.25 for all n. The brevity penalty, BP , penalizes the

recommended review comments that are too small and ensures a moderate length of

comments.

4.4.3.2 Perfect Prediction (PP)

Perfect prediction measures the exact match between recommended review comments

and ground truth review comments. Previous studies [34, 98] use perfect prediction

to evaluate the performance of their code review recommendation approach. In our

study, we use four different top-k candidates (i.e., k=1, 3, 5, 10) for code review

recommendations. For a given changed code fragment, if one of the k-recommended

review comments matches the ground truth reviews, we consider that our approach

achieves the perfect prediction in the review recommendation.

4.4.3.3 Semantic Similarity (SS)

Although the BLEU score is a widely adopted metric for measuring textual similarity,

it omits the semantic meaning of the text. For instance, the BLEU score considers

“this is good” and “this is nice” as different 3-grams. Haque et al. [31] conduct

a human study to identify which metric captures the perception of human raters

the best. According to them, Sentence-BERT encoder [79] with cosine similarity

has the highest correlation with the human-evaluated similarity. Therefore, we use

stsb-roberta-large5 pre-trained Sentence-BERT model to generate the embedding

for the input text. We compute the semantic similarity between the recommended

and ground truth reviews as follows.

SemSim(G,R) = cos(sbert(G), sbert(R)) (4.4)

5https://bit.ly/3dR9mxD
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Here, sbert(X) is the numerical representation from Sentence-BERT for any input

text X, G is the ground truth review, and R is the recommended review.

4.4.4 Baseline for Comparison

We compare the effectiveness of our approach with the state-of-the-art IR-based tech-

nique for code review recommendation – CommentFinder [34]. To replicate this tech-

nique, we use the replication package provided by the original author [34]. Given a

changed method, CommentFinder recommends review comments based on method-

level similarity. On the other hand, RevCom uses different structured information

from the source code to recommend the relevant review comments. To make a fair

comparison between these two techniques, we needed the changed methods associ-

ated with the review comments in our dataset. Similar to prior study [34], we thus

extract the changed methods from the relevant source file. We found that ≈ 48% of

the review comments discuss the changes outside of a method. Thus, we keep the

changed methods field empty for those comments, resulting in ≈ 52% method-level

code changes in our dataset.

We also compare the effectiveness of RevCom with the state-of-the-art DL-based

technique for code review generation – CodeReviewer [50]. Given a code diff, CodeRe-

viewer generates review comments relevant to the diff. To replicate this technique,

we use the pre-trained model provided by the original author [50] and fine-tuned it

using our dataset. We fine-tuned their model on NVIDIA V100 GPUs with 32GB

of memory. We use the same hyper-parameter settings as provided in their replica-

tion package [50]. The average model training time is one day for the within-project

settings and two days for cross-project settings.

4.5 Study Result

In this section, we discuss the experimental results and answer our research questions.

4.5.1 Answering RQ1 – Performance of RevCom:

Table 4.2 shows the performance of RevCom in terms of BLEU score, perfect predic-

tion, and semantic similarity. We evaluate its performance based on four top-k values
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Table 4.2: Performance of RevCom

PL Repo
Top-1 Top-3 Top-5 Top-10

BLEU PP SS BLEU PP SS BLEU PP SS BLEU PP SS

Python

Ansible 17.19 3.23 32.3 24.37 4.52 40.94 26.72 4.71 43.68 29.22 4.78 46.77

Keras 14.19 3.47 28.22 20.4 4.62 37.25 23.24 4.82 40.79 26.54 5.2 44.51

Django 12.57 1.11 31.01 18.93 1.48 39.89 21.49 1.66 43.02 24.49 1.95 46.6

Youtube-dl 11.11 1.23 29.18 17.79 2.23 37.9 20.34 2.31 41.12 23.22 2.39 44.47

Java

RxJava 14.25 2.8 30.67 21.94 2.8 41.6 24.29 2.8 43.81 26.62 3.5 47.79

Kafka 15.32 1.55 33.75 22.01 2.22 42.31 24.55 2.51 45.19 27.64 2.79 48.56

Elasticsearch 13.86 1.11 31.43 20.29 1.48 40.33 22.58 1.51 43.51 25.21 1.55 46.84

Springboot 20.21 4.63 31.65 25.8 4.98 36.68 27.79 4.98 41.31 30.08 4.98 44.38

Average (%) 14.84 2.39 31.03 21.44 3.04 39.61 23.88 3.16 42.80 26.63 3.39 46.24

Table 4.3: Performance of RevCom in cross-project settings

PL Dataset
Top-1 Top-3 Top-5 Top-10

BLEU PP SS BLEU PP SS BLEU PP SS BLEU PP SS

Python Cross-project 8.05 0.01 25.79 11.70 0.01 33.24 13.77 0.01 36.71 16.49 0.02 40.57

Java Cross-project 8.56 0.00 25.95 14.14 0.03 35.15 16.71 0.03 38.62 19.55 0.03 42.42

Average (%) 8.30 0.003 25.87 12.92 0.004 34.19 15.24 0.01 37.67 18.02 0.01 41.49

(k = 1, 3, 5, 10), where k is the number of recommended review comments for a given

changed code fragment.

From Table 4.2, we see that RevCom achieves an average BLEU score of 14.84%

when the top-k candidate is 1. Interestingly, for the top 10 candidates, the average

BLEU score of the recommended reviews improves up to 26.63%, which is promising.

According to Google’s AutoML Translation documentation, such a BLEU score indi-

cates that the review comments can deliver the actual intent of reviewers regarding

the code change while containing minor grammatical issues.

Recommended review comments from RevCom also have a perfect prediction of

2.39% when the top-k candidate is 1. This score improves up to 3.39% when the

top-k candidate is 10. Since RevCom recommends the review comments from the top

10 candidates, the improved perfect prediction might be explainable. Furthermore,

we see that recommended review comments from RevCom have an average semantic

similarity of 31.03% when the top-k candidate is 1. This score improves up to 46.24%

when the best among the top-10 recommended reviews is considered. Such a semantic

similarity score indicates that recommended review comments from Revcom have a



64

major semantic overlap with the actual review comments from the reviewer [56]. All

these statistics are highly promising and demonstrate the potential of our approach

in recommending relevant code review comments.

While our approach performs well for the within-project setting, we also evaluate

the performance of RevCom in a cross-project setting. In the cross-project setting, we

use the instances from three Java projects and three Python projects as the corpus

and the remaining two projects for evaluation. To avoid any bias in this project

selection, we apply a cross-validation approach and report the average performance

for four different cross-validation results. From Table 4.3, we see that even though the

performance of RevCom decreases in the cross-project setting, it is still promising,

especially in terms of the semantic similarity metric. For the top 1 candidate, RevCom

achieves an average BLEU score of 8.30%, which is ≈ 44% lower than the within-

project setting. According to existing literature [56, 91], a performance drop in the

cross-project setting is expected. However, we see interesting results in the case of

the semantic similarity score. That is, for the top 1 candidate, recommended review

comments from RevCom achieve a semantic similarity score of 25.87% in the cross-

project setting. Even though it is ≈ 17% lower than the within-project setting, this

drop is not as significant as the BLEU score. Such findings indicate that recommended

review comments from RevCom might express similar information but with different

words in the cross-project setting.

To verify this case, we manually compare 100 randomly sampled recommended

reviews from RevCom (cross-project setting) with the ground truth reviews. The first

and second authors annotate each pair as one of similar, partially similar and dissim-

ilar categories. We also perform an agreement analysis and find an almost perfect

agreement (0.95 kappa value) between the two annotators. Then, the first and second

authors sit together and resolve the disagreement through discussions. We find that

16% of review pairs are semantically similar, while 37% are partially similar. Thus,

53% of recommended reviews from RevCom discuss the same changes with different

phrases, which might cause the BLEU score to be low. For instance, for a particular

code change, RevCom recommends – “We would like to avoid wildcard import in the

code base.”, whereas the ground truth is “Please don’t use star imports.”. Although

the recommended review comment and ground truth review comment suggest the
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same change, they have a semantic similarity of 0.51 and their BLEU score is only

0.16. Such a phenomenon might explain the low BLEU score and comparatively high

semantic similarity score for the cross-project setting of RevCom.

Summary of RQ1: RevCom can recommend reviews that can express the intent

of the reviewers regarding the code change. It also shows promising results in

terms of three evaluation metrics. Interestingly, it maintains a promising semantic

similarity score even in the cross-project setting.

4.5.2 Answering RQ2 – Role of structured information in RevCom:

In this experiment, we analyze the impact of structured information from source code

on review comment recommendations. First, we evaluate the performance of RevCom

with each of three structured items – changed code fragment, library information and

file path. We then combine these structured items and evaluate the performance of

RevCom. Such an experiment helps us understand the contribution of individual

structured items toward RevCom.

We first use only the file path as input for RevCom. From Table 4.4, we see

that the average BLEU score, perfect prediction and semantic similarity of RevCom

reduce by 24.80%, 70.29%, and 13.27%, respectively, when the top-k candidate is 1.

The performance of RevCom also drops when the top 3, 5, and 10 results are analyzed.

Since the file path only contains the name and path of the source file rather than any

code change, the low performance of RevCom with the file path might be explainable.

We further evaluate the performance of RevCom using only the library informa-

tion as input. From Table 4.4, we see that the average BLEU score, perfect prediction,

and semantic similarity of RevCom reduce by 15.90%, 49.79%, and 2.15%, respec-

tively, while recommending reviews from the top 1 candidate. We also observe a

performance drop of RevCom when the top 3, 5, and 10 candidates are used for re-

view recommendations. Interestingly, library information improves the performance

by 11.83%, 69.01%, and 5.78% compared to file paths in terms of BLEU score, per-

fect prediction, and semantic similarity, respectively, when the top-k candidate is 1.

Library information comprises import statements that capture important code to-

kens (e.g., class names, library names) relevant to a source file, whereas the file path
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Table 4.4: Role of structured information in Revcom

Approach
Structured

Information

Top-1 Top-3 Top-5 Top-10

BLEU PP SS BLEU PP SS BLEU PP SS BLEU PP SS

RevCom

file 11.16 0.71 28.70 17.87 1.18 37.32 20.86 1.46 40.74 24.34 1.93 43.96

library 12.48 1.2 30.36 19.43 1.76 38.04 22.21 2.20 41.05 25.49 2.80 44.94

changed code 13.96 2.10 30.41 20.75 2.66 38.85 23.27 2.80 41.72 26.36 3.18 46.05

all (%) 14.84 2.39 31.03 21.44 3.04 39.61 23.88 3.16 42.80 26.63 3.39 46.24

contains only the name and path of the file. Thus library information might contain

more salient information, and hence, the higher performance might be explainable.

Finally, we evaluate the performance of RevCom using changed code fragments

from diff as input. From Table 4.4, we see that the average BLEU score, perfect

prediction, and semantic similarity of RevCom reduce only by 5.92%, 12.13%, and

2.01%, respectively, for the top-1 candidate in the review recommendation. We also

observe a similar performance drop of RevCom when the top 3, 5, and 10 candidates

are used for recommendation. Interestingly, the metrics score from only using changed

code fragments is significantly closer to RevCom than that of only file path or library

information. Li et al. [50] show that diff can help better understand the structure

of the code changes. It also contains more information about the changed code than

file path or library information. Therefore, a performance close to RevCom by using

only changed code fragments from diff might be explainable.

In summary, we see different amounts of performance drops in RevCom while

evaluating separately with file paths, library information or changed code fragments.

However, our approach performs best when all the structured items are combined.

Summary of RQ2: Structured items have a major contribution to the perfor-

mance RevCom. Among them, changed code from diff contributes the most to

the performance of RevCom. Furthermore, they are most effective when all three

items are used together.
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Table 4.5: Role of different vectorization in Revcom

PL Approach
Vectorization

Technique

Top-1 Top-3 Top-5 Top-10

BLEU PP SS BLEU PP SS BLEU PP SS BLEU PP SS

Python

RevCom

TF-IDF 13.77 2.26 30.18 20.37 3.21 39.01 22.95 3.38 42.15 25.87 3.58 45.59

word2vec + Cosine 14.28 2.44 30.98 20.95 3.45 40.27 23.92 3.58 43.17 26.89 3.88 47.83

Improvement (%) 3.70 7.96 2.65 2.85 7.48 3.23 4.23 5.92 2.42 3.94 8.38 4.91

Java

TF-IDF 15.91 2.52 31.88 22.51 2.87 40.23 24.81 2.95 43.46 27.39 3.21 46.89

word2vec + Cosine 16.52 2.76 32.89 23.38 3.12 41.59 25.89 3.19 44.63 28.15 3.46 48.96

Improvement (%) 3.83 9.52 3.17 3.86 8.71 3.38 4.35 8.14 2.69 2.77 7.79 4.41

4.5.3 Answering RQ3 – Role of different vectorization techniques in

RevCom:

In this experiment, we analyze the impact of different vectorization techniques in rec-

ommending review comments. In particular, we evaluate the performance of RevCom

with two vectorization techniques – TF-IDF and word embedding. To generate the

word embedding, we use a popular technique named Word2Vec [62], and train it on

GitHub CodeSearchNet [38].

From Table 4.5, in the context of Python-based projects, we see that the word

embedding improves the average BLEU score, perfect prediction, and semantic simi-

larity of RevCom by 3.70%, 7.96%, and 2.65%, respectively, when the top-k candidate

is 1. We also observe performance improvement when the top 3, 5, and 10 candidates

are used for review comment recommendations. According to Shapiro-Wilk test [85],

the metrics score obtained from RevCom is normally distributed. We thus perform

paired Student’s t-test [14] to determine the performance difference of RevCom using

two different vectorization techniques. According to this test, this improvement is not

statistically significant (p = 0.84 < 0.05). Similarly, for Java-based projects, word

embedding improves the performance of RevCom by 3.83%, 9.52%, and 3.17% in

terms of BLEU score, perfect prediction, and semantic similarity, respectively, when

the top-k candidate is 1. The performance of RevCom also improves when the top 3,

5, and 10 candidates are analyzed for review recommendations. However, according

to statistical test, this improvement is not statistically significant (p = 0.76 < 0.05).

According to the existing study [88], word embedding can capture the semantics in

the changed code effectively. We also use subword tokenization [84] to overcome the

OOV issues of word embedding. Thus, the performance improvement of RevCom
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Table 4.6: Performance comparison with the baselines

Approach
Top-1 Top-3 Top-5 Top-10

BLEU PP SS BLEU PP SS BLEU PP SS BLEU PP SS

CommentFinder 9.93 1.77 26.12 17.25 1.77 37.24 20.08 1.87 39.77 22.85 2.17 43.05

RevCom 14.84 2.39 31.03 21.44 3.04 39.61 23.88 3.16 42.80 26.63 3.39 46.24

Improvement (%) 49.45 35.03 18.80 24.29 71.75 6.36 18.92 68.98 7.62 16.54 56.22 7.41

Code Reviewer 13.95 2.17 29.87 17.35 2.66 35.86 19.97 3.01 39.35 22.94 3.26 43.18

RevCom 14.84 2.39 31.03 21.44 3.04 39.61 23.88 3.16 42.80 26.63 3.39 46.24

Improvement (%) 6.38 10.14 3.88 23.57 14.29 10.46 19.58 4.98 8.77 16.09 3.99 7.09

with word embedding might be explainable.

However, word embedding-based vectorization requires 5X time compared to TF-

IDF vectorizer to calculate the similarity between the query vectors and corpus vec-

tors. Furthermore, it requires domain-specific training to extract the meaningful

embedding for any analysis. Thus, in terms of cost-benefit analysis, word embedding-

based vectorization might not be a cost-effective choice. Since the goal of RevCom is

to reduce the time and effort for both reviewers and the changed code submitter, we

keep the TF-IDF vectorizer as the default vectorization technique in RevCom, given

the above analysis. However, as demonstrated above, our approach has the potential

to perform even better with more sophisticated vectors.

Summary of RQ3: Word embedding-based vectorization can improve the per-

formance of RevCom. However, it requires 5X time compared to the TF-IDF

vectorizer, which makes it a costly choice for our approach.

4.5.4 Answering RQ4 – Comparison with the existing baselines:

In this research question, we compare RevCom with existing techniques from the

literature and investigate whether RevCom can outperform them in terms of various

evaluation metrics. To the best of our knowledge, CommenFinder [34] is the only IR-

based technique to recommend review comments, whereas CodeReviewer [50] is the

state-of-the-art DL-based technique to generate review comments. We thus compare

RevCom with two baselines CommentFinder and CodeReviewer in our experiment.
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Table 4.7: Performance comparison with the baselines in cross-project settings

Approach
Top-1 Top-3 Top-5 Top-10

BLEU PP SS BLEU PP SS BLEU PP SS BLEU PP SS

CommentFinder 6.11 0.00 24.43 12.72 0.00 33.07 14.88 0.00 36.3 17.86 0.00 40.74

RevCom 8.30 0.00 25.87 12.92 0.00 34.19 15.24 0.01 37.67 18.02 0.01 41.49

Improvement (%) 35.84 0.00 5.89 1.57 0.00 3.39 2.42 0.00 3.77 0.90 0.00 1.84

Code Reviewer 10.76 0.01 29.62 12.86 0.01 34.11 14.19 0.02 36.77 16.46 0.03 40.68

RevCom 8.33 0.00 25.87 12.92 0.00 34.19 15.24 0.01 37.67 18.02 0.01 41.49

Improvement (%) 0.00 0.00 0.00 0.47 0.00 0.23 7.40 0.00 2.45 9.48 0.00 1.99

Table 4.6 shows the comparison between RevCom and two baselines in terms of

BLEU score, perfect prediction, and semantic similarity. We find that RevCom out-

performs CommentFinder in BLEU score, perfect prediction and semantic similarity

with 16.54% – 49.45%, 35.03% – 71.75% and 6.36% – 18.80% margins, respectively,

when top 1, 3, 5, and 10 candidates are used for review comment recommendation.

According to Shapiro-Wilk test [85], the metrics score obtained from each technique is

normally distributed. We thus perform paired Student’s t-test [14] to understand the

performance difference between any two techniques. According to this test, RevCom

performs significantly higher than CommentFinder, i.e., p-value= 5.17e−06 < 0.05,

Cohen’s d = 0.93 (large) for all three metrics. The dataset for evaluating the baseline

contains ≈ 48% non-method-level changes (see Section 4.4.4). Since RevCom lever-

ages different structured information from the diff, library, and file path information,

the improved performance of our approach might be explainable.

Furthermore, From Table 4.6, we see that RevCom outperforms the DL-based

baseline – CodeReviewer in BLEU score, perfect prediction and semantic similarity

with 6.38% – 23.57%, 3.99% – 14.29% and 3.88% – 10.46% margins respectively when

top 1, 3, 5, and 10 candidates are used for review comment recommendation. Accord-

ing to Student’s t-test, the performance of RevCom is also significantly higher than

CodeReviewer, i.e., p-value= 0.001 < 0.05, Cohen’s d = 0.64 (medium) for all three

metrics. While generative AI models can generate new review comments, IR-based

approaches recommend from an existing corpus. Given an unseen code change, the

IR-based technique searches for a similar code change in the corpus and recommends

the corresponding comments as review comments. On the other hand, generative AI
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models generate review comments based on their training data. However, we find that

a structured information retrieval technique can outperform existing deep-learning

models. This further confirms the finding of Hong et al. [34] that IR-based techniques

perform better than DL-based techniques in recommending code review comments.

Although existing studies do not evaluate the performance of our selected baseline

techniques in a cross-project setting, we compare RevCom with the baselines using

a cross-project setting. In the cross-project setting, we use the instances from three

Java projects and three Python projects as the corpus and the remaining two projects

for evaluation. To avoid any bias in this project selection, we apply a cross-validation

approach and report the average performance for four different cross-validation re-

sults. From Table 4.7, we see that the performance of RevCom, CommentFinder and

CodeReviewer drops significantly in the cross-project setting. However, RevCom out-

performs CommenFinder in BLEU score and semantic similarity with 0.90% – 35.84%

and 1.84% – 5.89% margins, respectively, when top 1, 3, 5, and 10 candidates are used

for review comment recommendation. On the other hand, RevCom also outperforms

CodeReviewer in BLEU score and semantic similarity with 0.47% – 9.48% and 0.23% –

2.45% margins, respectively, when top 3, 5, and 10 candidates are used for review com-

ment recommendation. However, we see no improvement in RevCom over CodeRe-

viewer when the top-1 candidates are used for review comment recommendations.

According to statistical tests, the performance of RevCom is also statistically signif-

icant compared to the baseline techniques. For CommentFinder, p = 0.007 < 0.05

and Cohen’s d = 0.31 (small), where for CodeReviewer, p = 0.02 < 0.05 and Cohen’s

d = 0.21 (small).

Although the performance of RevCom and baselines drops in the cross-project

setting, RevCom still shows better performance than the baselines in terms of two

similarity metrics. Thus, our idea of leveraging structured information has high po-

tential in recommending relevant code review comments.

Summary of RQ4: RevCom outperforms the IR-based and DL-based baselines

by up to 49.45% and 23.57% margins in BLEU score respectively in within-project

settings. In cross-project settings, it also outperforms both baselines by up to

35.84% and 9.48% margins in the BLEU score.
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4.6 Related Work

Review comments are one of the main building blocks of modern code reviews (MCR).

Prior studies found that review comments are beneficial for finding software defects or

designing impactful changes in the source code [7, 20, 58, 99]. Existing studies on auto-

mated code review focus on code review generation and code review recommendation.

Review Generation: Several existing approaches [98, 50] use Neural Machine

Translation (NMT) to generate code review comments. Tufano et al. [98] pre-trained

a Transformer model [100] for automating the code review activities. However, they

did not integrate the changed code into the pre-trained model. Furthermore, their pre-

training data is not directly related to code reviews. Recently, Li et al. [50] propose

CodeReviewer – a pre-train encoder-decoder transformer model to automate different

code review activities. Unlike the previous work, CodeReviewer is pre-trained on a

large code review dataset, consisting of diff hunks and review comments. Although

existing approaches show the potential of generating code reviews using NMT, they

require specialized computing resources (e.g., 16 × 40GB GPU [101]) and long com-

puting time (e.g., 12 days of training time [101]), which might not always be available.

Different from these approaches, we propose an IR-based approach to recommend rel-

evant code reviews for any code change using structured information retrieval. We

consider CodeReviewer as a baseline and compare it with RevCom using experiments.

Please consult Section 4.5–RQ4 for a detailed comparison between the two techniques.

Review Recommendation: Prior approaches use both deep learning and infor-

mation retrieval (IR) based techniques to recommend relevant review comments for a

given code change. Gupta and Sundaresan [29] propose the LSTM-based model Deep-

Mem, which recommends review comments based on existing code reviews and code

changes. Siow et al. [88] employs an attention-based deep neural network that cap-

tures the semantics from both source code and reviews to recommend relevant review

comments. They represent the semantics in the source code and review comments

using multi-level word embedding. They show that their technique can mitigate the

Out-of-vocabulary problem [47, 103, 36]. Recently, Hong et al. [34] propose an IR-

based technique – CommentFinder, which recommends the review comments based

on the method-level similarity. However, their approach overlooks the structured in-

formation in code change and recommends reviews only for the method-level change.
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Their work serves as our baseline, and we compare our work with theirs experimen-

tally (Table 4.6, RQ4). Unlike the prior approach, our technique, RevCom, leverages

various code-level changes (i.e., both method and non-method-level changes) and per-

forms structured information retrieval to recommend relevant code review comments,

which makes our work novel.

4.7 Threats To Validity

Threats to internal validity relate to experimental errors and biases [95]. Replication

of the existing baseline technique could pose a threat. However, we use the replica-

tion package provided by the original author of CommentFinder [34] and CodeRe-

viewer [50]. Thus, threats related to replication might be mitigated.

The quality of the dataset and the change granularity could impact the result of

RevCom. However, we follow an existing work [96] to perform rigorous data cleaning

and filtering (e.g., removal of author comments) to mitigate the noise in the dataset.

Furthermore, to capture various changes in the source code, RevCom leverages dif-

ferent structured information and can recommend relevant code reviews for both

method-level and non-method-level changes. Thus, threats related to datasets and

change granularity might be mitigated.

Finally, the threat to external validity relates to the generalizability of our work [74].

To mitigate this threat, we evaluate RevCom using the code changes from both Java-

based and Python-based projects. As we see from Table 4.2 and 4.3, the perfor-

mance of RevCom does not vary significantly between Python-based and Java-based

projects. Furthermore, we evaluate the performance using both within-project and

cross-project settings. Thus threat to external validity might be mitigated.

4.8 Summary

While our previous study (Chapter 3) focuses on assessing various facets (e.g., sen-

timents, usefulness) of code review comments, in Chapter 4, we propose RevCom,

a novel technique that uses structured information retrieval to recommend relevant

review comments. Our technique leverages different structured information and can

recommend relevant reviews for both method-level and non-method-level changes.
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We evaluate our technique using eight (four Python + four Java) projects and three

popular metrics (i.e., BLEU score, perfect prediction, and semantic similarity), where

our technique outperforms both IR-based and DL-based baselines by up to 49.45%

and 23.57% margins in BLEU score respectively.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Review comments play a significant role in modern code reviews. It is crucial to

ensure the quality of review comments. However, manually writing high-quality re-

view comments could be technically challenging and time-consuming. A number of

existing studies [3, 22, 16, 19, 76, 32, 88, 34] use automated tools and techniques

to assess and recommend code review comments, but they could be limited in sev-

eral aspects. First, according to an existing work [42], various development practices

including code reviews could be different between open-source and closed-source sys-

tems, but only a little research has been done to investigate how existing techniques

perform differently when assessing review comments from these two types of systems.

Second, existing review generation or recommendation techniques either require spe-

cialized resources or suffer from a lack of generalizability. In this thesis, we attempt

to address the above two challenges by empirically assessing and recommending code

review comments. We conduct two separate but complementary studies (Chapter 3

and Chapter 4), and we have the following outcomes.

• The first study (Chapter 3) empirically assesses the performance of seven ex-

isting tools and techniques in measuring two quality aspects – sentiments and

usefulness – of review comments and then contrasts their performance between

open and closed-source systems. We find that the performance of these auto-

mated tools significantly differs between open and closed-source systems. We

also observe that reviewers from these two types of systems have varying lev-

els of reviewing experience, which might have led to the varying prevalence of

sentiments and usefulness in their code review comments. Since existing tools

and techniques were trained on these comments, their sentiment and usefulness

detection performance thus might also have been affected.

74
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• The second study (Chapter 4) proposes a novel technique that recommends

relevant review comments using structured information retrieval. We evaluate

our technique using eight (four Python + four Java) projects and three popular

metrics (i.e., BLEU score, perfect prediction, and semantic similarity), where

our technique outperforms both IR-based and DL-based baselines by achieving

up to 49.45% and 23.57% higher BLEU scores respectively. Our technique

leverages different structural information (e.g., diff, library information) and

can recommend relevant reviews for both method-level and non-method-level

changes where existing IR-based technique [34] might fall short.

5.2 Future Work

Given our conducted studies and findings, there are several potential directions for

future work. We discuss them in detail as follows.

5.2.1 Code Review Assessment

The finding from our first study suggests that the performance of existing tools and

techniques can vary significantly when assessing the code review comments from open-

source and closed-source systems. In future, we will focus on designing novel tools and

techniques that are (a) customizable for open-source and closed-source code reviews,

(b) can recommend reviewers capable of writing useful code review comments, (c) can

leverage cost-effective features (e.g., sentiments) instead of costly metric (e.g., review

history) for detecting useful review comments.

5.2.2 Code Review Recommendation

In our second study, we found that structured information in the source code plays

a significant role in recommending code review comments. In future, we plan to

investigate the following potential research problems.

• How to encode different structured information from source code in a more

compact and efficient manner? The idea is to keep the approach lightweight

while capturing high-quality embeddings representing the semantics of code-

level changes.
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• Design a hybrid code review recommendation system by combining both infor-

mation retrieval and deep learning techniques. First, train a model using pairs

of changed code and review comments. The model’s task is to predict whether

a given code snippet is relevant to a review comment. Then, the recommender

system can use information retrieval to quickly retrieve a pool of candidate

code changes and use the deep learning model to further rank and refine the

recommendations.
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Appendix A

Complementary Materials

A.1 Replication Package

A.1.1 Code Review Assessment

GithHub Repository: https://github.com/wahid-shuvo/Code-Review-Assessment

A.1.1.1 Sentiment Annotation

Sentiment Annotation tutorial- https://bit.ly/3qaakvx

Sentiment Annotation guidelines- https://bit.ly/3OeO77B

A.1.2 Code Review Recommendation

GithHub Repository: https://github.com/wahid-shuvo/RevCom-Replication
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