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Abstract

The emergence of the COVID-19 pandemic has led to a great deal of scientific interest

in strategies to effectively deal with epidemics. Compartmental models, such as the

Susceptible-Exposed-Infectious-Removed (SEIR) model, are popular tools that allow

us to study the behaviour of various epidemics. The SEIR model classifies people

into groups according to their health status. However, this model assumes that the

population is well-mixed which does not take into account public health policies

such as social distance and bubble strategies. In this thesis we will construct the

Bubble SEIR model based on the continuous-time Markov chain SEIR model. The

Bubble SEIR model divides the population into subpopulations called bubbles. The

model assumes that each subpopulation is well-mixed and also allows the possibility

of movements between bubbles. The purpose of the thesis is studying the impact of

the bubble strategies on the epidemic by simulations using the proposed model. Our

simulations demonstrate that bubble strategies are effective in controlling the spread

of infectious diseases. In the simulation study, we will discuss the effects of parameters

of the model including rate of movement between bubbles, basic reproduction number,

latency period, population size and initial number of infecteds, on the final size and

the duration of the epidemic. Specifically, although changes in the infection rate

and the removed rate could influence the final size of the epidemic, the variations

in the basic reproduction number have a significantly greater impact. The increase

of the latency period and the rate of movement between bubbles increases the final

size and the duration respectively. When the population size increases, having more

bubbles prove more effective in controlling epidemics. Furthermore, the final size

of the epidemic is smaller when the initial number of infectious individuals in the

population is small.
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Chapter 1

Introduction

The spread of infectious diseases is a significant public health concern that affects

millions of people worldwide each year. There is a great deal of concern about the fre-

quent international outbreaks of infectious diseases such as Ebola, SARS, coronavirus

and many others. With public health and life safety at stake, understanding and pre-

dicting epidemic behaviour as well as informing decisions related to disease control

and prevention is invaluable. Epidemic modelling, in turn, is a tool for knowing the

dynamics of disease transmission and assessing the effectiveness of various control

measures. One class of models, referred to as compartmental models, classifies people

into several compartments, such as susceptible compartment S, exposed compartment

E, infected compartment I and removed compartment R, and then different models

are created based on feasible compartment transitions. Classical models of infectious

disease include the Susceptible-Infectious-Susceptible(SIS) model, which allows a per-

son to return from an infected compartment to a susceptible compartment and then be

re-infected. The Susceptible-Infectious-Removed(SIR) model allows for an individual

who has removed from an infection and is not re-infected. The Susceptible-Exposed-

Infectious-Removed(SEIR) model allows that the infectious disease under study has

an incubation period and that once in contact with a susceptible person one can be-

come a potential carrier of the virus with a certain incubation period. Variations of

SEIR models will be a focus of this thesis.

Compartmental models like SEIR are frequently expressed deterministically through

a set of differential equations. Such models implicitly assume relatively large popula-

tion sizes. In deterministic models, if the rate of secondary infections, referred to as

the basic reproduction number, is high enough, everybody in the population is even-

tually expected to get infected. Stochastic versions of SEIR models apply regardless

of population sizes. Due to their stochastic nature, even with large reproduction num-

bers, there is some chance that not everyone in the population will be infected. By
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simulating the dynamics of disease transmission under different scenarios, stochastic

epidemic models can help us to better understand the potential impact of interven-

tions, and to design strategies for mitigating the spread of infectious diseases. Scholars

at Dalhousie University, for instance, used a modified age-stratified SEIR model and

genetic algorithms to investigate optimal budgetary solution for Nova Scotia’s clo-

sure policies, travel restrictions and other policies (Gillis et al., 2021). This provides

a pragmatic direction for the application of epidemiological models.

In this thesis, we will develop stochastic epidemic models to analyse the impact

of bubble strategies. Specifically, we focus on the Bubble SEIR model where the pop-

ulation is divided into subpopulation, individuals can move between compartments

in subpopulations or individuals can move between subpopulations. Our objectives

are twofold: first, to develop a stochastic SEIR model that can segment the overall

population and accurately capture the dynamics of disease transmission within and

between population groups; second, to use the model to study the effects of various

parameters on the number of infecteds, such as the rate of movement between bub-

bles, basic reproduction number, the latency rate, the total population size and the

initial number of infecteds. We then explore whether bubble strategies help to control

the spread of the epidemic.

To achieve these objectives, we begin by reviewing the existing literature on

stochastic epidemic models and the SIS model in particular. We then develop a

continuous-time Markov chain Bubble SEIR model to simulate the spread of disease

which we have implemented in R. We use measures like the final number of people

infected by the disease and the expected duration. Overall, this thesis contributes

to our understanding of the dynamics of infectious disease transmission and provides

valuable insights into the design of effective control measures.



Chapter 2

Background

2.1 Markov Chain

The Russian mathematician Andrey Markov studied and proposed a model to try

to explain mathematically the general laws of natural variation, which was named

Markov Chain (Gagniuc, 2017). Markov chains are stochastic processes that assume

that, given the entire past history of the process, the probability distribution of the

next state is determined by the current state, and that the events preceding it in the

time series are irrelevant. This is a special property of Markov chains, which we call

the Markov property.

We may explain Markov chains in a mathematical way. If we have a set of random

variables and define each random variable as Xt, then the set {Xt, t ∈ T} represents
stochastic process (Ross, 2014). We consider the index t as time and Xt as the

state of the process for each time t. When T is a countable set, we have a discrete-

time stochastic process. When T is an uncountable set, we have a continuous-time

stochastic process. We define the state space as the set of all possible values. Suppose

we have non-negative, integer-valued sequential states X0, X1, X2,..., Xn and Xn is

the present state, then the process is a Markov chain if the conditional probability of

Xn+1 only depends on the Xn. Formally, if we have

P{Xn+1 = j
∣∣Xn = i,Xn−1 = in−1, ..., X0 = i0} = P{Xn+1 = j

∣∣Xn = i} (2.1)

whenever P{Xn = i,Xn−1 = in−1, ..., X1 = i1, X0 = i0} > 0, we call this dis-

crete stochastic process a discrete-time Markov chain (DTMC). Furthermore when a

DTMC has probabilities pij = P{Xn+1 = j
∣∣Xn = i} that are independent of time n,

we say that this Markov chain is time homogeneous. A transition probability matrix

3
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is one way to represent a time-homogeneous Markov chain. If is defined as

P =



p00 p01 p02 · · ·
p10 p11 p12 · · ·
...

...
...

pi0 pi1 pi2 · · ·
...

...
...


where the term pij in the matrix is the probability that the process moves to state j

at time n+ 1 given that the process is in state i at time n.

By analogy with the previous definition, we can refer to a continuous stochastic

process {X(t), t ≥ 0} having the Markov property as a continuous-time Markov chain

(CTMC). A CTMC is a system that evolves continuously, allowing transitions be-

tween compartments to occur at any time rather than just at discrete intervals. The

probability of moving from one state to another depends solely on the present state

of the chain and ∆t, which is referred to as the Markov property. In this case, the

Markov property will be

P{X(t+∆t) = j
∣∣X(t) = i,X(u) = x(u), 0 ≤ u < t} = P{X(t+∆t) = j

∣∣X(t) = i}
(2.2)

for all t,∆t ≥ 0 and nonnegative integers i and j. Here we let X(u) be the past state,

X(t) be the present state and X(t+∆t) be the state at time t+∆t. The CTMC is

time homogeneous if P{X(t +∆t) = j
∣∣X(t) = i} =: pij(∆t) which does not depend

on t.

Let P (t) be the matrix with ijth entry pij(t). The Markov property can be used

to show that P (t) is determined by a time-independent rate matrix Q. We define the

rate at which the chain moves from state i to j as qij = lim∆t→0
pij(∆t)

∆t
for j ̸= i and

we define qii = −
∑

j ̸=i qij. Then, Q = (qij) is the instantaneous rate matrix of the

CTMC. The rate matrix is used to calculate the probability of the chain being in a

particular state at a given time, and how that probability changes over time.

By the Kolmogorov’s equations (Pinsky and Karlin, 2010), we know that the

relationship between rate matrix Q and transition probability matrix P (t) is

P (t) = eQt =
∞∑
i=0

ti

i!
Qi (2.3)
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where Q is

Q =


q00 q01 q02 · · · q0n

q10 q11 q12 · · · q0n
...

...
...

...
...

qn0 qn1 qn2 · · · qnn

 .

2.1.1 The Embedded Markov Chain

In order to simulate from the CTMC model, there is an alternative characterization

of a CTMC that will be useful. We can consider the CTMC as a combination of

two parts. One is the existence of a DTMC, known as a jump chain or an embedded

Markov chain. The other is the time that the individual stays in the current state

until moves to next state, we call the time as holding time. We let Yn denote the state

of the system at the nth transition and let Tn denote the holding time between the

n − 1st and nth transition. Then {Yn} and {Tn} provide an alternative, equivalent

description of the process to {X(t)}. We have Y0 = X(0) = i, Y1 = X(T1) = j, Y2 =

X(T1 + T2) = k, .... The {Yn} are a DTMC with transition probabilities pij that are

determined by the qij through

P [yn = j
∣∣yn−1 = i] = pij =

qij∑
j ̸=i qij

pii = 0.
(2.4)

The random variables T1, T2, ... satisfy that, conditional on the past history of the

process, Tn has a distribution that depends only on yn−1, given that yn−1 = i has an

exponential distribution with rate
∑

j ̸=i qij.

2.2 Stochastic Epidemic Models

2.2.1 CTMC SIS Epidemic Model

In this study we mainly use the CTMC SEIR epidemic model. We start with a

review of the simple CTMC SIS model and then based on a similar theoretical basis

we describe the SEIR model. Much of the development here follows that of Allen

(2008).

We denote observation time as 0 ≤ t0 < t1 < ... < tn+1, and denote the number of

susceptible and infected individuals at time t as S(t), I(t) ∈ {0, 1, 2, ..., N}. The SIS



6

model assumes that the total population N remains constant. To construct the SIS

stochastic model, we only need to consider the number of individuals in the infected

compartment I as the only independent random variable I(t), because the number of

individuals in the other compartment S can be represented as S(t) = N − I(t). In

this case, the number of infected individuals I(t) at continuous time is a stochastic

process with state probabilities pi(t) = P{I(t) = i} and it has Markov property

P{I(t+∆t) = j
∣∣I(t) = i, I(u) = i(u), 0 < u < t} = P{I(t+∆t) = j

∣∣I(t) = i}. (2.5)

To simplify the formula, we make the assumption that the time period ∆t is set

small enough that the probability of two or more events occurring in the time period

∆t is approximately 0. Thus under this assumption the SIS model has only three

possible transitions in a time period ∆t. The number of infecteds, I(t), can increase

by one, decrease by one or remain the same. We can denote the current infected

compartment I(t) by i. Then the next state I(t+∆t) = j can be j=i+1, j=i -1 and

j=i, which indicate a new infection, a remove or no change respectively. In summary

we have that

pij(∆t) =



βi(N−i)
N

∆t+ o(∆t), j = i+ 1

γi∆t+ o(∆t), j = i− 1

1− βi(N−i)
N

∆t− γi∆t+ o(∆t), j = i

o(∆t), j ̸= i+ 1, i− 1, i.

(2.6)

In (2.6), the infection rate β is a combination of the rate at which each individual

comes into contact with the other individual and the rate at which it causes infec-

tion. Allen (2008) does not mention the derivation of β in the chapter, which may

be expressed differently than in (2.6). Specifics on the derivation of the transition

probabilities in the model are in Appendix A. The most intuitive way to understand

the dynamic development of the model is from its compartmental diagram in Figure

2.1.

According to the transition probabilities in (2.6), the transition rate matrix of the

stochastic SIS model can be formed. We use the entry qij to denote the transmission

rate for infected individual from state i to state j,

qij =

{
βi(N−i)

N
, j = i+ 1

γi, j = i− 1.
(2.7)



7

Susceptible Infected
β

γ

Figure 2.1: Compartmental diagram of SIS model. β is the infection rate, which is
the rate of change from a susceptible individual to an infected individual. γ is the
removed rate, which is the rate of change from an infected individual back to the
susceptible compartment.

When the states are ordered from 0 to N, the state {0} is an absorbing state since

there will be no more transition between compartments when the number of infecteds

is 0.

There is a crucial coefficient in epidemic modelling known as the basic reproduc-

tion number R0. The basic reproduction number is the number of secondary infections

caused by an already infected individual in a susceptible population before they are

removed from the infected compartment (Anderson and May, 1991; Hethcote, 2000).

The R0 under the SIS model is formed as

R0 =
β

γ
. (2.8)

This equation depends on the infection rate β and the average time for an infected

individual to be cured, which is 1
γ
. When R0 ≤ 1, the epidemic will die out quickly.

When R0 > 1, the epidemic will persist and majority of people or everyone will be

infected.

2.2.2 CTMC SEIR Epidemic Model

We use the same principles to construct the SEIR model. Since we do not take into

account the natural birth and death rates, the transition probabilities we need are

succinct and there are only three transitions: from a susceptible compartment to an

exposed compartment, from an exposed compartment to an infected compartment,

and from an infected compartment to a removed compartment. Since the total pop-

ulation is constant, we can focus on the multivariate process {S(t), E(t), I(t)}t≥0 and

its joint probability function

p(s,e,i)(t) = P{(S(t), E(t), I(t)) = (s, e, i)} (2.9)

where S(t), E(t), I(t) ∈ {0, 1, 2, ..., N} and 0 ≤ S(t) + E(t) + I(t) ≤ N .
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Because at the beginning of an epidemic there are only susceptible and infected

people in the population, when the susceptible and infected people have been in con-

tact, the susceptible people move to the exposed compartment. Thus the probability

of transition of an individual from the susceptible compartment to the exposed com-

partment is the same as the probability of infection in the SIS model. For an infected

individual removed, the probability is the same as the one calculated for the SIS

model. Relative to the SIS model we add the probability of the individual’s health

status from an exposed to infected. We use κ as the latency rate, the derivation is in

the Appendix A.

We let x represents the current state (s, e, i, r) and x′ represents the next state

(s′, e′, i′, r′) that the individual could move to. The transition probabilities are for-

mulated as,

pxx′(∆t) =



βsi
N
∆t+ o(∆t), s′ = s− 1, e′ = e+ 1

κe∆t+ o(∆t), e′ = e− 1, i′ = i+ 1

γi∆t+ o(∆t), i′ = i− 1, r′ = r + 1

1− βsi
N
∆t− κe∆t− γi∆t+ o(∆t), (s′, e′, i′, r′) = (s, e, i, r)

o(∆t), otherwise.

(2.10)

We can give the compartmental diagram for the SEIR model,

Susceptible Exposed Infected Removed
β κ γ

Figure 2.2: SEIR Compartmental diagram. β is infection rate, κ is latency rate and
γ is removed rate. κ−1 means the incubation period.

We can use (2.10) to get the transition rate matrix Q by denoting the entry qxx′ ,

qxx′ =


βsi
N
, s′ = s− 1, e′ = e+ 1

κe, e′ = e− 1, i′ = i+ 1

γi, i′ = i− 1, r′ = r + 1.

(2.11)

DTMC SEIR Model

Once we have derived the CTMC epidemic model, it is easy to understand the DTMC

model. In contrast to CTMC models, DTMC models define time as a countable set
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of time periods where t ∈ {0,∆t, 2∆t, ...}. The DTMC model simply assumes that

each time period is small enough that only one inter-individual transfer can occur in

each time period. This means that the transition probabilities of the DTMC model is

the transition probabilities of the CTMC model without the o(∆t) term. For DTMC

SEIR model, the transition probabilities are

pxx′(∆t) =



βsi
N
∆t, s′ = s− 1, e′ = e+ 1

κe∆t, e′ = e− 1, i′ = i+ 1

γi∆t, i′ = i− 1, r′ = r + 1

1− βsi
N
∆t− κe∆t− γi∆t, (s′, e′, i′, r′) = (s, e, i, r)

0, otherwise.

(2.12)

Deterministic Epidemic Model

When discussing stochastic models, it is essential to relate to deterministic models

because the dynamics of the deterministic model are widely known (Hethcote, 1976).

We already know the difference between the two models, but the connection between

the two models is also worth mentioning.

The dynamics of the compartmental model can be explained by differential equa-

tions, as the SEIR model is formulated as

dS
dt

= − β
N
SI

dE
dt

= β
N
SI− κE

dI
dt

= κE − γI

dR
dt

= γI

(2.13)

where β > 0, γ > 0, κ > 0, N = S(t) + E(t) + I(t) + R(t). The initial conditions are

S(0) > 0, E(t) > 0, I(0) > 0, R(0) > 0, N = S(0) + E(0) + I(0) + R(0).

We can use the SIR model as an example to explore the connection between

deterministic models and stochastic models. Note that the SIR model is a special case

of SEIR model when κ → ∞. The SIR model expressed as a system of differential

equations is,

dS
dt

= − β
N
SI

dI
dt

= β
N
SI− γI

dR
dt

= γI

(2.14)
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where β > 0, γ > 0, N = S(t)+I(t)+R(t). The initial conditions are S(0) > 0, I(0) >

0, R(0) > 0, N = S(0) + I(0) + R(0).

Britton et al. (2019) shows the SIR model will be characterized by the Poisson

processes. Given the history of the process up to the time t, we have

S(t) = S(0)− P1

(
β
N

∫ t

0
S(u)I(u)du

)
I(t) = I(0) + P1

(
β
N

∫ t

0
S(u)I(u)du

)
− P2

(
γ
∫ t

0
I(u)du

)
R(t) = R(0) + P2

(
γ
∫ t

0
I(u)du

) (2.15)

where {P1(t
′
1)} and {P2(t

′
2)} are two independent Poisson processes with rate 1.

We can check if (2.15) gives the same process with SIR model. To illustrate

we will calculate P [S(t + ∆t) − S(t) = 1] conditioned upon the history up to time

t. This probability is the probability that the Poisson process {P1(t
′
1)} has a single

event in the interval of time [ β
N

∫ t

0
S(u)I(u)du, β

N

∫ t+∆t

0
S(u)I(u)du]. Properties of the

standard Poisson process give that this probability is the width of the time interval

with the term o(∆t),

P [S(t+∆t)− S(t) = 1] =
β

N

{∫ t+∆t

0

S(u)I(u)du−
∫ t

0

S(u)I(u)du

}
+ o(∆t)

=
β

N

∫ t+∆t

t

S(u)I(u)du+ o(∆t)

=
β

N
S(t)I(t)∆t+ o(∆t)

(2.16)

which matches the probabilities from the SIR model.

We let s(t), i(t), r(t) denote the proportions S(t)
N

, I(t)
N
, R(t)

N
, then

s(t) = s(0)− P1

(
βN

∫ t
0 s(u)i(u)du

)
N

i(t) = i(0) +
P1

(
βN

∫ t
0 s(u)i(u)du

)
N

− P2

(
γN

∫ t
0 i(u)du

)
N

r(t) = r(0) +
P2

(
γN

∫ t
0 i(u)du

)
N

.

(2.17)

The Poisson process {Pj(τ)} at time Nt can be expressed as

Pj(Nt) =
N∑
k=1

Xk (2.18)

where Xk is the number of events in
(
(k − 1)t, kt]. By the properties of a Poisson

process, the events are independent and they have Poisson distributions with rate
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parameter t. The law of large numbers (LLN) gives

Pj(Nt)

N
=

∑N
k=1 Xk

N
→ t as N →∞. (2.19)

Applying the LLN in (2.17) gives

s(t) = s(0)− β
∫ t

0
s(u)i(u)du

i(t) = i(0) + β
∫ t

0
s(u)i(u)du− γ

∫ t

0
i(u)du

r(t) = r(0) + γ
∫ t

0
i(u)du.

(2.20)

Taking derivatives of both sides of (2.20) gives the differential equations

s′(t) = −βs(t)i(t)
i′(t) = βs(t)i(t)− γi(t)

r′(t) = γi(t)

(2.21)

which are same as (2.14).

2.3 Properties of Stochastic Epidemic Models

There are many ways in which we can analyse the information brought to light by

epidemiological models. Two of the main summary quantities that we consider are

the final size of the epidemic and the duration of the epidemic. The final size is

the number of people initially infected plus the number of additional infected people

during the epidemic. The duration of the epidemic corresponds to the time until the

number of infecteds is zero, that is, the time from the start of the epidemic to the end

of the epidemic. In this thesis, instead of the usual definition, we will scale the final

size to be a proportion. In subsequent simulation sections, we will design experiments

to compare how different initial values of infection will affect a bubble strategies, and

for consistency we will always use the following notation of the final size:

R(∞)− In
N − In

(2.22)

where R(∞) = N − S(∞) is the final size of the epidemic as defined by Allen (2008)

and In is the initial number of infected individual. We note that an epidemic is more

severe if the final size is larger.
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When the final size of two epidemics appears to be similar, we can track the

epidemic duration to compare the trends of the two epidemics. A short duration is

usually associated with a large increase in the number of infecteds in a short period

of time. Such an increase can overwhelm health care resources. Allen (2008) suggests

that the duration depends on the initial value of the number of infecteds, the total

population and the basic reproduction number. We can verify this through simula-

tions. However, when comparing two epidemics, if the two final sizes are different,

the duration is sometimes not as meaningful. Example will be explained later in the

simulation section.

Allen (2008) shows how to manually calculate the probability distribution of the

final size for the SIR model. The method was originally developed by Foster (1955)

and is based on the embedded Markov chain. Because the SIR model has independent

variable pair (s,i), Allen (2008) lists the possible pairs as a set, which is {(s, i) : s =

0, 1, 2, ..., N ; i = 0, 1, 2, ..., N−s}. The author gave an example with a total population

of 3 and listed 10 pairs of (s,i), then listed a 10× 10 transition matrix.

However, we will not be using this method next because it would be very compu-

tationally intensive. If applied to the SIR model with a larger population size, the

growth of the pairs will result in a voluminous matrix and the power of the matrix

will be calculated, which is a limitation of this method. Instead, we use simulation

to approximate distribution of the final size of an epidemic. Let us test this method

under the SIR model and compare it with Allen’s method to see if the two final size

distributions derived from the two methods are the same.

Figure 2.3 shows the final size distribution of the simulation. It is similar to

Figure 3.13 from Allen (2008), which provides evidence that our simulation method

is working correctly.
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Figure 2.3: Final size distribution simulated by stochastic SIR model. We use γ=1,
N=20 and I0=1 with three R0 values 0.5, 2, 5.
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2.4 Bubble Strategies

The bubble strategies, as the way of helping to control epidemics that we consider

in our research, derives its concept from the social distance that people are asked

to maintain during an epidemic outbreak. A bubble usually consists of two or three

households. Each individual is required to have contact only with those in the same

bubble and to avoid contact with individuals in other bubbles. During the outbreak,

many governments tried to control the spread of the virus by reducing person-to-

person contact through bubble strategies. In Nova Scotia, the government introduced

the household bubble on May 15, 2020 and allowed two families to meet without

social distance (B. Roth, 2021). However, after a month the bubble restrictions were

loosened.

2.4.1 Related Works

In 2020, the COVID-19 pandemic broke out worldwide, and many scholars conducted

a lot of studies on the public health policies including bubble strategies.

New Zealand has had success in terms of its bubble strategies. New Zealand

reported no new cases more than a month after the policy was implemented (Cousins,

2020). Kearns et al. (2021) did an online survey to study the size characteristics of

bubbles. The survey was implemented quickly, with 14,876 surveys used to calculate

the average size of a household unit or bubble, the average number of households in

each bubble, the proportion of bubbles containing essential staffs and/or vulnerable

groups, and the average number of times per week that a person left the house.

However the experiment was a cross-sectional study mainly based on data obtained

from online platforms such as Facebook, email lists etc. and has the limitation of

selection bias. They performed simple calculations on the data and did not use the

SEIR model. Our study will also analyse bubble size. Unlike this survey, we use

simulated data instead of actual data. The impact of bubble strategies on the spread

of pandemics is illustrated by comparing large bubble sizes to small bubble sizes.

The UK also released a Bubble Strategy in 2020, but unlike New Zealand’s policy,

the UK is divided into a Support Bubble, a Childcare Bubble, a Christmas Bubble and

so on, depending on the period and status (Danon et al., 2021). Instead of an SEIR
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model, Danon et al. (2021) used percolation theory and networks of households to

explore the effect of bubble strategies. They used the network without family bubble

as a baseline network, then merged multiple households into larger units, thereby cre-

ating additional external connections. Once the merged network is established, they

examined its resilience to random removal of these external links. They set up eight

scenarios and through percolation analysis concluded that a single-person household

bubble had the least impact on the spread of the epidemic. It is also believed that

the greater number of families forming bubbles will make it difficult to control the

epidemic, but that the likelihood of transmission can be reduced by controlling out-

side contact. Hill (2023) has conducted a simulation study of the Christmas bubble.

He used a stochastic individual-based SEIR model, while classifying infection sta-

tus as asymptomatic and symptomatic. He simulated five scenarios to estimate the

epidemiological impact of the Christmas bubble and the continued expansion of the

bubble. In the simulations, he also divided the population into three age groups and

also studied the effects of the bubble strategies on different age groups. In contrast,

the study in this thesis has done very little scenario modelling of the bubble strategies

itself; we have focused more on whether the presence or absence of a bubble strategy

has an effect on the spread of the epidemic and the impact of the parameters of the

model.

Willem et al. (2021) have also conducted research on bubble strategies. They used

the open source individual-based model (STRIDE) to simulate interactions between

Belgium’s 11 million inhabitants. The contact tracing strategy and the impact on

hospitalisation rates are explored by increasing the connection between household

bubbles and the outside world. They believe that the tracking strategy has great

potential to reduce the spread of the epidemic and believe that the bubbling is effective

if people are open to contact. Individual-based model is used to track one person

if he is susceptible, exposed, infected, or removed. This increases computational

complexity. Unlike their study, we did not track the dynamics of each individual, but

recorded the overall number of infecteds. Our main focus was on the impact of the

bubble strategies. However, a similar limitation to the above study is that our model

is a simple one, but the actual situation is more complex due to regional and climatic

influences.
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2.5 Mann-Whitney U Test

In this thesis we will simulate different scenarios for populations with and without

bubbles. When we want to compare the difference between the two populations in

the final size distribution and the duration distribution, the Mann-Whitney U test

is an appropriate choice. Suppose we define P1 and P2 are random variables from

each of the two populations. The U-test statistic approximates the probability that

a random observation from the first population is larger than the second population.

We define the U -statistic as

U =
n∑

i=1

m∑
j=1

S(P1i, P2j)

with

S(P1, P2) =


1, P1 > P2

1
2
, P1 = P2

0, P1 < P2

where P1i, i = 1, . . . n and P2j, j = 1, . . . ,m are random samples from the two popula-

tions. In this thesis we normalized the statistical value by using U
nm

. That normalized

value gives an estimate of the effect size P [P1 > P2] +
1
2
P [P1 = P2] where P1 is a

randomly chosen final size without bubbling and P2 is a randomly chosen final size

with bubbling.

To test whether the distributions are the same for the two populations, we can

use the Mann-Whitney hypothesis test which is based on the value |U/(mn) − 1/2|.
The hypothesis of Mann-Whitney U test is that Ho : P [P1 > x] = P [P2 > x] for all x

and HA : P [P1 > x] > P [P2 > x]. The test that we use computes a two-sided p-value

calculated as

P

[
|Z| >

| U
mn
− 1

2
|

SD( U
mn

)

]
where Z ∼ N(0, 1) and SD( U

mn
) is the standard deviation of the test statistic under

Ho.

We will use the function wilcox.test() in R since it gives that the Mann-Whitney

test statistic and p-value. The Mann-Whitney test is equivalent to the Wilcoxon

rank-sum test. We have used a simple example to check if this function works, it

gives the same statistical values as Mann-Whitney test and found that the returned
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value statistic is the same as U
mn

. In the simulation we will use symbol to indicate

the significance of the test.

Symbol P-value
∗ ∗ ∗ p ≤ 0.001
∗∗ p ≤ 0.01
∗ p ≤ 0.05
ns p > 0.05

Table 2.1: The meaning of the symbol used to indicate statistical significance.



Chapter 3

Methodology

3.1 The Bubble SEIR

This thesis focuses on whether bubble strategies have an impact on the spread of

epidemics. In this section we develop an extension of the SEIR model that has

bubbling and we derive an algorithm to simulate from it. We would like to simulate

the process of epidemic change using a CTMC stochastic SEIR model to investigate

the effects of a bubble strategy by varying different parameter settings. The proposed

model keeps track of the number of individuals in each bubble. We name this model

the Bubble SEIR. As a stochastic model, the probability of having two transitions

within a period of ∆t is o(∆t) and movements can be divided into two different

types in our model. One category is transition within a bubble, where a person

can move from a susceptible compartment to an exposed compartment, or from an

exposed compartment to an infected compartment, or from an infected compartment

to a removed compartment. The other type of movement is between bubbles. For

example, an infected person can move from group i to group j. Because two or more

events in a small interval of time are unlikely to occur, when an individual moves

from one group to another, that individual’s health status remains the same.

Since the Bubble SEIR model divides the population into K bubbles, then we

denote the current state x = (s1, e1, i1, r1, s2, e2, i2, r2, ..., sK , eK , iK , rK), where

(sk, ek, ik, rk) ∈ {0, 1, ..., N} for k = 1, 2, . . . , K. There are on the order of N4K−1

states in the model with N = ∥x∥ − 1. We denote x′ = (s′1, e
′
1, i

′
1, r

′
1, s

′
2, e

′
2, i

′
2, r

′
2, ...,

s′K , e
′
K , i

′
K , r

′
K). When individuals move within the bubble, the probabilities of an

individual in the current state moving between compartments in the model are the

same as the regular SEIR model in Section 2.2.2. Note that the infection rate is

dependent on the number of individuals in each bubble Nk rather than the overall

population size N . Restricting attention to transitions within a bubble k for which

18



19

x′ ̸= x, the transition probabilities are

pxx′(∆t) =



βskik
Nk

∆t+ o(∆t), s′k = sk − 1, e′k = ek + 1

κek∆t+ o(∆t), e′k = ek − 1, i′k = ik + 1

γik∆t+ o(∆t), i′k = ik − 1, r′k = rk + 1

o(∆t), otherwise.

(3.1)

When individuals move between bubbles, the transition parameters in the regular

SEIR model no longer apply. We let M(∆t) be the event that some individuals move

from one bubble to another in a period of ∆t unit of time. Let IMkl be the event that

an individual M in bubble k moves to the bubble l. We assume that the probability

that any particular individual moves from bubble k to the bubble l is r
K−1

∆t+o(∆t).

Then

P{M(∆t)} =
K∑
k=1

∑
M∈Bk

K∑
l=1,l ̸=k

P{IMkl}+ o(∆t)

=
K∑
k=1

Nk(K − 1)
r

K − 1
∆t+ o(∆t)

= N(K − 1)
r

K − 1
∆t+ o(∆t)

= Nr∆t+ o(∆t)

(3.2)

where Bk is the set of individuals from bubble k. Thus the total rate of movement is

Nr and the rate of movement per individual is r. There will be more movements

in large population N than in small population. Restricting attention to move-

ments from bubble k to bubble l, or equivalently to x′ that differ from x because

(s′k, e
′
k, i

′
k, r

′
k) ̸= (sk, ek, ik, rk) and (s′l, e

′
l, i

′
l, r

′
l) ̸= (sl, el, il, rl), the transition probabil-

ities are

pxx′(∆t) =



sk
r

K−1
∆t+ o(∆t), s′k = sk − 1, s′l = sl + 1

ek
r

K−1
∆t+ o(∆t), e′k = ek − 1, e′l = el + 1

ik
r

K−1
∆t+ o(∆t), i′k = ik − 1, i′l = il + 1

rk
r

K−1
∆t+ o(∆t), r′k = rk − 1, r′l = rl + 1

o(∆t), otherwise.

(3.3)

Every other choice of x′ ̸= x either has probability 0 of occurring or requires two or

more events and thus has pxx′(∆t) = o(∆t). The first set of non-zero entries of the
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rate matrix Q correspond to transitions within a bubble. These rates are obtained

from (3.1) as

qxx′ =


βskik
Nk

, s′k = sk − 1, e′k = ek + 1

κek, e′k = ek − 1, i′k = ik + 1

γik, i′k = ik − 1, r′k = rk + 1

(3.4)

for all k = 1, 2, . . . K. The other non-zero entries corresponding to movements be-

tween bubbles are obtained from (3.3) as

qxx′ =


sk

r
K−1

, s′k = sk − 1, s′l = sl + 1

ek
r

K−1
, e′k = ek − 1, e′l = el + 1

ik
r

K−1
, i′k = ik − 1, i′l = il + 1

rk
r

K−1
, r′k = rk − 1, r′l = rl + 1

(3.5)

for all k ̸= l. The Figure 3.1 gives an example of how the Bubble SEIR works.
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(a) Three bubbles in the population. β, κ and γ could be different, but here we
assume the parameters are constant for every bubble.

(b) Movements between susceptible compartments within the three bubbles.

Figure 3.1: We divide the population into three bubbles as shown in (a), and in each
bubble there exists a SEIR model to represent the epidemic compartment that occurs,
which is what we call intra-group transition. We also allow for contact and movement
between bubbles as shown in (b), where the rate of movement per individual between
the three susceptible compartments is r

K−1
, K = 3.

3.1.1 Embedded Markov Chain Characterization

The order of N4K−1 states poses a difficulty in constructing the transition proba-

bility matrix P (t) if we use the equation P (t) = eQt. The rate matrix is of such a
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high dimension, a matrix exponentiation is infeasible except for very small popula-

tion sizes. We will utilize the embedded Markov chain theory in Section 2.1.1 for

simulation. Given the current state of the system, x, we can generate the next state

x′ according to all the possible non-zero probabilities qxx′/
∑

x′ ̸=x qxx′ . The waiting

time before the next transition can be generated from an exponential distribution

with rate
∑

x′ ̸=x qxx′ .

A complication for the method described above is that the summation is across

all states which can be massive. Fortunately, given the current state of the system x,

the number of states, x′ ̸= x, with a non-zero rate qxx′ > 0 is small. This is because

the probability of two or more events occuring in a small interval of time is assumed

small.

Recall that for the embedded Markov chain, P [yn = x′
∣∣yn−1 = x] = pxx′ =

qxx′∑
x′ ̸=x qxx′

. Although we have described both the rate of movement within a bubble

and the rate of movement between bubbles separately above, in the simulation both

rates are the chances that an individual can move. To use the embedded Markov

chain characterization we need to compute the normalizing constant µ =
∑

x′ ̸=x qxx′

where x is the current state of the system. In the current state, the possible moves

are at most 3K ways within the bubble, and at most 4K(K − 1) ways for individuals

to move to another bubbles, respectively. Let Wk denote the set of x′ ̸= x that give

non-zero qxx′ and that correspond to transitions within bubbles. Let Bkl denote the

set of x′ ̸= x that give non-zero qxx′ and that correspond to movements between

bubbles.

µ =
K∑
k=1

∑
x′∈Wk

qxx′ +
K∑
k=1

K∑
l=1,l ̸=k

∑
x′∈Bkl

qxx′

=
K∑
k=1

(βskik
Nk

+ κek + γik
)
+

K∑
k=1

K∑
l=1,l ̸=k

(
sk

r

K − 1
+ ek

r

K − 1
+ ik

r

K − 1
+ rk

r

K − 1

)
=

K∑
k=1

(βskik
Nk

+ κek + γik
)
+

K∑
k=1

(
sk

r

K − 1
+ ek

r

K − 1
+ ik

r

K − 1
+ rk

r

K − 1

)(
K − 1

)
=

K∑
k=1

(βskik
Nk

+ κek + γik
)
+

K∑
k=1

(
skr + ekr + ikr + rkr

)
=

K∑
k=1

(βskik
Nk

+ κek + γik
)
+

K∑
k=1

Nkr
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= β

K∑
k=1

skik
Nk

+ κe+ γi+Nr. (3.6)

Then the transition probabilities of the jump process under the Bubble SEIR

model can be expressed as

pxx′ =


βiksk
Nk

/µ, s′k = sk − 1, e′k = ek + 1

κek/µ, e′k = ek − 1, i′k = ik + 1

γik/µ, i′k = ik − 1, r′k = rk + 1

(3.7)

for all k = 1, 2, . . . , K and

pxx′ =


sk

r
K−1

/µ, s′k = sk − 1, s′l = sl + 1

ek
r

K−1
/µ, e′k = ek − 1, e′l = el + 1

ik
r

K−1
/µ, i′k = ik − 1, i′l = il + 1

rk
r

K−1
/µ, r′k = rk − 1, r′l = rl + 1

(3.8)

for all k ̸= l. Once we have defined all the transition probabilities, we can then

randomly sample the next state of the system based on the probabilities. Recall that

we can sample the waiting time t via an exponential distribution with rate µ.

3.2 Implementation

In Section 3.1.1 we addressed the way to simulate the Bubble SEIR through embedded

Markov chain. Next we deal with how to indicate the path of an individual moving

through the model in the implementation. We can implement the Bubble SEIR in

programming language by the Algorithm 1.

Algorithm 1 Bubble SEIR Pseudo-code

Input: K: The number of groups (bubbles).

sk, ek, ik, rk: The initial number of susceptible, exposed, infected, and removed

individuals in each group.

β: The number representing infection rate of the disease.

γ: The number representing recovery rate of the disease.

κ: The number representing latency rate of the disease.

r: The number representing the movement rate per individual between groups.

Output: Lists of the number of sk, ek, ik, rk for each group and at each time at which

an event occurs as well as the corresponding cumulative random time period.



24

1: while
∑

E +
∑

I ̸= 0 do

2: Create the non-zero transition rate vector q and fill in the rate values.

3: for k ∈ 1 : K do

4: The population Nk in each group: Nk ← sk + ek + ik + rk.

5: The first 3K elements are the rates that an individual moves within the

bubble k, the rates are β
Nk

skik, κek, γik.

6: The remaining 4K(K − 1) elements are the rates that an individual moves

from bubble k to others, the rates are sk
r

K−1
, ek

r
K−1

, ik
r

K−1
, rk

r
K−1

.

7: end for

8: Generate the next event index y from 1 : 3K + 4K(K − 1) according to the

probabilities q/
∑

q.

9: Generate a random time t for the event occurrence based on an exponential

distribution with rate
∑

q.

10: Update the sk, ek, ik, rk and time according to the selected event.

11: end while

This is a complete simulation. To approximate key quantities via simulation, like

the distribution of the final size of the epidemic, in the simulation, we will simulate

a thousand epidemics to obtain the data. With the SEIR model we get changes in

the compartment of the system at irregular time intervals. In order to normalise the

data patterns in the way that they would be seen in practice we sometimes converted

this raw data to daily counts. With the framework above, we can analyse the effect

of bubble strategies in various different scenarios.



Chapter 4

Simulations Study

In the simulations, we will use the estimated parameter values from (Read et al.,

2021), as a baseline to investigate the impact of the bubble strategies. Our baseline

is with a total population N of 100, divided into 5 groups of 20 people each. In

each group the initial values are S0 = 19, I0 = 1, E0 = R0 = 0. The transition rates

between compartments are β = 1.94, κ = 0.25, and γ = 1
1.61

, and at baseline our basic

reproduction number R0 is 3.12. In each simulation scenario, we explore the impact

of a parameter on the spread of an epidemic by changing its value while keep other

parameters fixed. For each scenario we will run 1000 simulations.

Scenario A - changing movement rate r: We keep the other parameter values

in the baseline. In each bubble we have β = 1.94, κ = 0.25, γ = 1
1.61

, N = 100, K

= 5, S0 = 19, I0 = 1. We set the value of the movement rate r to 0, 0.01, 0.05, 0.1.

According to the result of this scenario, we will use r = 0.01 in the later scenarios.

One way to explain the movement rate is that for a population of size 100, this

means 1 movement per day is expected. For a population of size 1000, we expect 10

movements per day.

Scenario B - Changing infection rate β and recovery rate γ:

B1 - Changing infection rate β: We set R0 to four different values, 0.8, 1, 2.5 and

5. Only the value of β is changed to match the R0 value. In this case, our β values

are 0.5, 0.62, 1.55 and 3.11. The other parameter values remain the same in each

bubble, κ = 0.25, γ = 1
1.61

, N = 100, K = 5, S0 = 19, I0 = 1, r = 0.01.

B2 - Changing recovery rate γ: We set R0 to four different values, 0.8, 1, 2.5 and

5. Only the value of γ is changed to match the R0 value. In this case, our γ values

are 2.425, 1.94, 0.776 and 0.388. Other parameter values remain the same in each

bubble, β = 1.94, κ = 0.25, N = 100, K = 5, S0 = 19, I0 = 1, r = 0.01.

B3 - Scaling β and γ: We keep the R0 to remain at 3.12, scale the R0 = 1.94
0.62

by

changing β and γ. We use 0.485
0.155

, 0.97
0.31

, 3.88
1.24

, 7.76
2.48

. Other parameter values remain the

25
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same in each bubble, κ = 0.25, N = 1000, K = 5, S0 = 19, I0 = 1, r = 0.01.

Scenario C - Changing latency rate κ: In this section we only change the

values of κ to 0.05, 0.1 and 0.5. We still use the baseline parameter values in each

bubble, β = 1.94, γ = 1
1.61

, N = 100, K = 5, S0 = 19, I0 = 1, r = 0.01.

Scenario D - Changing population N : We will increase the population to

500, 1,000, 5,000, and 10,000, but we consider two situations based on the bubble

strategies.

D1 - Equal number of bubbles: Each population is divided into 5 bubbles, where

K = 5 with different the number of individuals n in each bubble. In addition to these

we use baseline parameter values, β = 1.94, κ = 0.25, γ = 1
1.61

, I0 = 1, S0 =
N
K
−1, r =

0.01.

D2 - Equal size of bubbles: Each population is divided into bubbles with 20 people,

where n = 20 with different K. In addition to these we use baseline parameter values

in each bubble, β = 1.94, κ = 0.25, γ = 1
1.61

, I0 = 1, S0 = 19, r = 0.01.

Scenario E - Changing infected initial values I0: We set different initial

values for the infection: only 1 infected individual in the population, population

with 5% infected individuals and population with 10% infected individuals. We also

consider large population sizes in this scenario and the transition rates are same as

baseline.

Histograms and density curves will be plotted for detailed analysis, primarily for

the final size and duration of the number of infecteds. Here our final size is the

number of infecteds growing in the epidemic as a percentage of the number of people

not initially infected, that is R(∞)−In
N−In

. It is generally accepted that the smaller the final

size the less damaging the epidemic. When the final size distributions of two epidemics

are similar, we can look at the duration distributions of the epidemics. The duration

distribution allows us to determine whether the epidemic spreads faster in one scenario

or another. If there is a significant increase in the number of people infected in a

short period of time, it will pose a challenge to the health care system. The rapid

increase in cases can place a heavy burden on health care facilities and services. We

are concerned mostly with the final size distribution. When there is a significant

difference between the final size distributions of two populations, comparing duration

distributions may be meaningless. When everyone is eventually infected, a setting
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with a short duration is less desirable than a setting with a long duration because

hospital resources are more likely stretched in the former case. However, when only a

fraction of the population is infected, one might have a short duration simply because

the epidemic died out quickly, without there ever being a period with large number

of infected.

4.1 The Movement Rate r

In this section we will simulate the data according to different settings of the move-

ment rate (Scenario A). We begin by investigating the impact of bubbling, i.e.,

dividing the population into groups, on the spread of epidemics. Using the baseline

parameters, we will compare the scenarios with and without bubbles. In the absence

of bubbles, the population is treated as a single unit, whereas with bubbles, the pop-

ulation is divided into subpopulations where the movements between these groups

are limited. To examine the effect of bubbles, we will vary the movement rate r, with

values of 0, 0.01, 0.05, and 0.1. The movement rate determines the probability of in-

fection transmission from one individual to another. By incorporating group-to-group

transmission, bubbles enable more targeted control measures. Our simulations indi-

cate that bubbles are effective in controlling epidemic transmission, as not everyone

in the population will eventually be infected, and the epidemic will die out early.

Let us look at the final size distribution for the number of infecteds given in

Figure 4.1. Here the value of R0 is 3.12, a relatively large value. This means that

eventually the vast majority will be infected and accordingly final size distribution is

left-skewed. When the movement rate r is 0, no transmission can take place between

the 5 bubbles and the infected people can only move within the bubble. Each bubble

has a single initial infection, the stochastic nature of the epidemic can cause it to end

within some bubbles with few individuals in the bubble getting infected. Because

there is not movement between bubbles, this results in 5 modes in the final size

distribution. In this case, not everyone ends up infected. In contrast, the population

without bubbles has only one peak and most everyone ends up infected. While as the

movement rate increases, the final size distribution of the population with 5 bubbles

gets closer to the distribution of the population without bubbles. However, we can

see that the final number of infecteds in the population with bubbles is consistently
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smaller than in the population without bubbles. The U -statistics approximate the

probability that the final size for the population without bubbles is greater than

the final size for the population with bubbles. The U -statistic becomes smaller as

r increases, while p-value is consistently smaller than 0.05, indicating that the two

populations are still significantly different.

***  U−statistic: 0.956
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Figure 4.1: Final size distribution plots for simulations with R0 = 3.12, β = 1.94, κ =
0.25, γ = 1

1.61
, N=100. We compare two populations, one that treats the population

as a whole and the other that divides the population into 5 bubbles. We let In=5
for both populations and arrange that each bubble in the bubbled population has 1
infected individual.
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r
I(∞)

1 2-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40

0 25.82 9.42 2.38 4.5 57.88 0 0 0 0
0.01 13.52 11.04 3.64 9.94 42.08 19.26 0.52 0 0
0.05 1.1 4.74 8.68 20.1 34.88 24.12 5.66 0.66 0.06
0.1 0.62 1.34 7.32 23.12 35.8 23.8 6.94 1.02 0.04

Table 4.1: The distribution of infected individuals within a bubble at the end of the
epidemic. The numbers in the table represent the percentage of the final number of
infected individuals in each bubble of 1000 simulations for different movement rates.

To better understand the reasons for the differences between bubbling and not

in Figure 4.1, we looked at the distribution of the final number of infected over all

bubbles and all simulations (Table 4.1). The distribution of the number of infecteds

has a bimodal distribution if there is no movement between the bubbles. There is a

25.82% chance that there will end up being only one infected individual within the

bubble, which means that no other individual is infected in these bubbles and this one

infected individual is the initial infection. With 20 individuals in each bubble, in more

than half of the cases the vast majority even all of the individuals in the bubble were

infected. Thus upon partitioning the population into five bubbles, the appearance of

five modes in Figure 4.1. (a) signifies the distribution as: one bubble with the entirety

of its individuals infected, two bubbles with every individual infected, three bubbles,

four bubbles, and finally, five bubbles. As the rate of movement increased, so did the

mobility between bubbles. At the end of epidemic, the number of bubbles with only

one infected individual decreased rapidly, while the number of infected individuals

in some bubbles exceeded 20. This change shifted the distribution of infecteds from

bimodal to unimodal. Due to the presence of individuals moving between bubbles,

there is a situation for infected individuals to move into another bubble, resulting

in continued infection within the bubble. The difference in the distribution of the

number of infecteds for r = 0.01 and r = 0.05 in the table can show that allowing

more movements per day leads to more people being infected.

The histograms in Figure 4.2 illustrate the duration of the baseline under different

movement rates. When there is no movement of infected individuals between groups,

the epidemic duration is shorter for the population with five bubbles compared to

the population without bubbles. However, when infected individuals move between
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groups, the opposite is observed. The shorter epidemic duration of the bubbled

population does not necessarily indicate poor performance, as evidenced by the bumps

in the final size distribution at 0.2, 0.4, 0.6, and 0.8, respectively. This suggests that

the small size of each bubble and the lower number of infected individuals at the

end of the epidemic still make bubbles more effective for epidemic control. Based

on the final size of the population with and without bubbles, we can conclude that

larger final size tails correspond to longer epidemic durations when almost everyone

is infected.

***  U−statistic: 0.589
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Figure 4.2: Duration distribution plots for simulations with R0 = 3.12, β = 1.94, κ
= 0.25, γ = 1

1.61
, N=100. We let In=5 for both populations and arrange that each

bubble in the bubbled population has 1 infected individual.

However, the assumption of assigning only one initially infected individual to each

bubble might lean toward idealism. In a more realistic scenario, it is plausible that five
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initial infected individuals could be allocated randomly among the bubbles. Figure 4.3

shows the final size distributions for different values of movement rate (Scenario A)

with randomly arranged initial values. When the rate of movement is 0, the final size

distributions for the two arrangements of initial values are somewhat different. The

randomization of initial values introduces instances where certain bubbles commence

with zero initially infected individuals. Consequently, bubbles devoid of initially

infected individuals remain disease-free throughout the simulation. However, when

movement between bubbles is allowed, the two final size distributions are similar.

Even if some bubbles are initially free of infected individuals, there will be instances

where infected individuals move into these bubbles, which may result in individuals

within the bubbles getting infected. Thus, the final size distribution of a population

with fixed initial values exhibits similar behaviour as a population with randomly

arranged initial values. Since the two ways of assigning initial values did not have a

substantial effect, in subsequent simulations we use constant initial sizes as described

in the introduction to this chapter.
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***  U−statistic: 0.994
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Figure 4.3: Final size distribution plots for simulations with R0 = 3.12, β = 1.94, κ =
0.25, γ = 1

1.61
, N=100. We compare two populations, one that treats the population

as a whole and the other that divides the population into 5 bubbles. We set 5 initial
infected individuals in total and randomly assign to each bubbles.

4.2 The Basic Reproduction Number R0

In this section, we look at the impact of basic reproduction number R0 in the spread

of epidemics (Scenario B). Recall that R0 = β
γ
, is the average of how many other

people an infected person can infect. So we consider R0 to be an important parameter

in determining the size of the epidemic, playing a dominant role in the distribution

of the final size. In the coming subsections we look at epidemic trends by fixing

several values of R0, such as the four values 0.8, 1, 2.5 and 5, varying the parameter

β (Scenario B1) and varying the parameter γ (ScenarioB2). And finally we keep
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the value of R0 as 3.12 by scaling β and γ (Scenario B3). We explore how changing

the R0, as well as keeping it, would affect the spread of the epidemic.

4.2.1 Varying β

The parameter β in the epidemic model, is the rate of infection for an individual whose

health status changes from susceptible to exposed. In this part, we keep the other

parameter values constant and change the value of β according to R0. In Section

4.1, with Figure 4.1 we can observe that the the final size distribution of bubbled

population is similar to the final size distribution of population without bubbles when

r is large. The big value of r means that an individual in each compartment within

each bubble can have a lot of movements per day. While the simulation is unrealistic

when r is 0, since it is difficult to control the absence of contact between individuals

across bubbles in the bubble strategies. When r is 0.01, individuals do not move

between bubbles a lot. It can give us a clear view of difference between the population

with bubbles and population without bubbles, we will use r = 0.01 in subsequent

scenarios.

At the same rate of recovery γ, the distributions of final sizes giving in Figure 4.4

(a) and (b) are similar with bubbling and without when the R0 ≤ 1. In both cases,

there is a more concentrated distribution of final sizes with 5 groups than with 1 group.

The distributions of the final size are right-skewed because of the smaller R0 values,

meaning that the epidemic often results in a small number of people being infected.

Figure 4.4 (c) gives results when R0 = 2.5 and exhibits a behaviour similar to the

corresponding baseline case in Figure 4.1 (b) where R0 = 3.12. Whereas Figure 4.4

(d) shows a very extreme performance, with the population without bubbles having

almost no tail and almost everyone eventually being infected. The population with 5

groups has a longer tail but all to the extent of 50% or more. The disparity between

the (b), (c) and (d) plots in Figure 4.4 suggests that bubbling is particularly effective

with R0 > 1.
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***  U−statistic: 0.557
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Figure 4.4: Final size distribution plots for simulations with κ = 0.25, γ = 1
1.61

,
r=0.01, N=100. We let In=5 for both populations and arrange that each bubble in
the bubbled population has 1 infected individual.
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***  U−statistic: 0.554
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(a) β=0.5, R0=0.8
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(b) β=0.62,R0=1
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(c) β=1.55,R0=2.5
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Figure 4.5: Duration distribution plots for simulations with κ = 0.25, γ = 1
1.61

,
r=0.01, N=100. We let In=5 for both populations and arrange that each bubble in
the bubbled population has 1 infected individual.

For smaller R0 values, most simulated epidemics end up with only a small number

of people infected. Smaller final size distributions indicate that epidemics die out

quickly and will be of short duration. Figures 4.5. (a) and (b) show the mode of

duration is about 20 days. For large R0 values, more people end up being infected,

the larger final size distribution cause the duration shifts to the right. The mode of

duration is around 40 days in (c) and (d).

4.2.2 Varying γ

In the previous subsection for varying β, the R0 value increases and so does the β.

In this subsection, the opposite is true, as R0 increases and γ decreases.
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Figure 4.6 gives the final size distribution for this scenario. Comparing it to the

final size distribution when β was varying but gamma was fixed, given in Figure 4.4,

we see that the distributions are very similar in both cases across different values of

R0. It is because although the values of β and γ change, the value of R0 does not,

and from these two sets of plots we can confirm that the value of R0 is the more

important determinant of differences in the final size distribution.
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Figure 4.6: Final size distribution plots for simulations with β = 1.94, κ = 0.25,
r=0.01, N=100. We let In=5 for both populations and arrange that each bubble in
the bubbled population has 1 infected individual.

Next we look at the distributions of duration in Figure 4.7, and since the his-

tograms and density curves are also extremely close to the plots in Figure 4.5 for

varying β, we will use the boxplots to compare the duration of epidemic for these two

groups.
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Figure 4.7: Duration distribution plots for simulations with β = 1.94, κ = 0.25,
r=0.01, N=100. We let In=5 for both populations and arrange that each bubble in
the bubbled population has 1 infected individual.
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(a) β = 0.5, R0 = 0.8
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(b) β=0.62, R0 = 1
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(c) β=1.55, R0 = 2.5
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(d) β=3.11, R0 = 5

Figure 4.8: Boxplots for simulations with varying the value of β, γ = 1
1.61

, κ = 0.25,
r=0.01, N=100. We let In=5 for both populations and arrange that each bubble in
the bubbled population has 1 infected individual.
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(b) γ=1.94, R0 = 1
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(d) γ = 0.388, R0 = 5

Figure 4.9: Boxplots for simulations with varying value of γ , β = 1.94, κ = 0.25,
r=0.01, N=100. We let In=5 for both populations and arrange that each bubble in
the bubbled population has 1 infected individual.

Comparing Figure 4.8 and Figure 4.9, the epidemic lasts longer when the R0 ≤
1 for smaller β values, and longer when the R0 > 1 for smaller γ values. This

phenomenon occurs because when R0 ≤ 1, the values of β are also less than 1.

Smaller infection rate means that it takes more time for an individual to be infected,

which leads to longer durations. The values of γ are inversely small when R0 > 1,

which are small recovery rates. Individuals take longer to remove from infection

status, again making epidemics last longer. The boxplot was constructed with the

x-axis sufficiently large that the epidemic had ended at some time on the x-axis for

every simulated epidemic, which means there were no infections in the population. In

order to provide a clear view of the boxes, the boxplots in Figures 4.8 and 4.9 show



40

the trajectory of epidemic in every 5 days. The boxplot not only looks at the number

of days the epidemic lasts, but also shows the overall trend of the epidemic and the

variability of the number of infecteds per day. But we do not focus on that in this

thesis.

4.2.3 Scaling β and γ

In the previous subsections, we only considered changing the value of β or γ depending

on the different R0 values. In this subsection, we will fix the R0 value by scaling up

and down the values of β and γ. We consider doubling and quadrupling both beta

and gamma, as well as reducing them to half and a quarter of their original values.

The plots in Figure 4.10 will be arranged from smallest to largest values of β and γ.

From the Figure 4.10 above we can see that the final size distributions for the

population without bubbles and the population with five bubbles are very different

for each of the five different β and γ values. In each scenario, the population without

bubbles behaves similarly, with three-quarters and more of the population ending up

infected in almost all of the thousand simulations. In contrast, the distribution of the

bubbled population gradually shifts to the left and has a longer tail. Consistent with

this, the U -statistic exhibited a continuous increase. As β and γ values increase, the

rate of movement from susceptible compartment to exposed compartment and from

infected compartment to removed compartment increases, and we can see through

Figure 4.11 that the duration of the epidemic will be shorter. Increasing β and γ

speeds up the occurrences of events leaving the number of secondary infections fixed.

This provides a greater chance for the epidemic to dissipate due to stochastic effects,

even if the R0 is relatively high. Such stochastic effects have a larger end result on

bubbled populations because the bubble sizes are smaller.
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(d) β=3.88, γ=1.24
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Figure 4.10: Final size distribution plots for simulations with κ = 0.25, r=0.01,
R0=3.12. We let In=5 for both populations and arrange that each bubble in the
bubbled population has 1 infected individual.
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Figure 4.11: Duration distribution plots for simulations with κ = 0.25, r=0.01,
R0=3.12. We let In=5 for both populations and arrange that each bubble in the
bubbled population has 1 infected individual.
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4.3 The latency rate κ

Now we look at the effect of changing κ (Scenario C). The latency rate, denoted

as κ, signifies the rate of transition from the exposed compartment to the infected

compartment within the epidemic model. Furthermore, the 1
κ
signifies the expected

time taken for the transition from exposed to infected compartments. In other words,

the value of κ is not influenced by the number of the individuals, but depends on the

nature of the virus. Changing the value of κ has no effect on the R0 value, so we

change the value of κ by setting the number of days from the exposed compartment to

the infected compartment. Here we choose κ values of 0.05, 0.1 and 0.5, corresponding

to 20, 10 and 2 days respectively.
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Figure 4.12: Final size distribution plots for simulations with R0 = 3.12, β = 1.94, γ
= 1

1.61
, r=0.01.We let In=5 for both populations and arrange that each bubble in the

bubbled population has 1 infected individual.
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Results for the final size distributions are given in Figure 4.12. The R0 and

r values are constant, the final size distribution is left-skewed and the difference

between the distribution of population without and with bubbles is significant. The

final size distribution of bubbled population has longer tails than the distribution of

population without bubbles, and the shorter the latency period, the longer the tails

for the bubbled population.
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Figure 4.13: Duration distribution plots for simulations with β = 1.94, γ = 1
1.61

, R0 =
3.12.We let In=5 for both populations and arrange that each bubble in the bubbled
population has 1 infected individual.
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It is apparent from Figure 4.13 that the greater the value of κ, the shorter the

relative duration of the epidemic. It is evident that the duration of the epidemic

significantly extends with a κ value of 0.05, spanning approximately 420 days.. An

increase in the κ value means that the time from exposure to infection is decreasing,

so the duration of the epidemic is also decreasing. Similarly as in the case of fixed

R0, shorter durations lead to stochasticity playing a greater role and that affects

populations that have been bubbled more than those that have not.

In this case we can compare the rate of transmission r to see if the presence or

absence of transmission can have an impact when κ changes.
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Figure 4.14: Final size distribution plots for simulations with R0 = 3.12, β = 1.94,
γ = 1

1.61
, r=0.We let In=5 for both populations and arrange that each bubble in the

bubbled population has 1 infected individual.
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Figure 4.14 shows the final size distributions with r = 0. When there is no inter-

group transmission, the final size distribution remains largely unaffected by changes

in the value of κ. However, as shown in Figure 4.13, duration distributions appear

similar for any given κ whether r = 0 or r = 0.01. Results of the Mann-Whitney

test indicate, however, that there are significant differences. In the presence of in-

tergroup transmission, the duration distributions of populations without and with

bubbles become increasingly similar until there is no significant difference between

the two distributions. However, in the absence of intergroup transmission, the dura-

tion distributions of the two populations become significantly different as the latency

period decreases. The observed phenomenon suggests that when the latency period

is prolonged and there is mobility between groups, it allows individuals more time to

migrate between groups. As a result, the chance that an infected individual from one

group will carry the epidemic to other groups increases that otherwise would have

seen it drop out.

4.4 Populations and Initial Values

Having examined the impact of various transmission parameter values in the stochas-

tic SEIR model in earlier sections, we will now investigate how different populations

and initial values influence the epidemic. We will discuss Scenario D and Scenario

E together. Our analysis will rely on the same parameter values from the literature,

and we will represent the simulated data visually. Whereas previously we utilized a

total population of 100 for the simulations, we will now investigate the impact of pop-

ulation size by considering total populations of 500, 1000, 5000 and 10000. To enable

comparisons across the different total populations, we will explore two scenarios: one

in which each population is divided into 5 bubbles, and another in which each pop-

ulation is divided into varying numbers of bubbles, each comprising 20 individuals.

As the population size increases, we will also establish the initial value of infected

individuals, limiting our analysis to one initial infected individual, as well as 5% and

10% of the total population.
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4.4.1 Equal number of bubbles

If the total population increases while bubbles remain unchanged, the number of

individuals in each group will increase. This, in turn, leads to a shorter and more

concentrated distribution in the final size distribution. In other words, a larger total

population, with constant transmission parameters, results in more people becoming

infected. Thus, the final size distribution observed in the Figure 4.15 is consistent

with this trend.
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Figure 4.15: Final size distribution plots for simulations with R0 = 3.12, β = 1.94, κ
= 0.25, γ = 1

1.61
, r=0.01. We divide each population into 5 bubbles and with 5% of

initial infected individuals for each group.
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Figure 4.16: Duration distribution plots for simulations with R0 = 3.12, β = 1.94, κ
= 0.25, γ = 1

1.61
, r=0.01. We divide each population into 5 groups and with 5% of

initial infected individuals for each group.

As the population size increases, the duration distribution in Figure 4.16 becomes

more concentrated and stable, with around 50 days. When comparing the final size

distribution of large populations with and without bubbles, both distributions lack a

trailing tail, and the corresponding U -statistics are approximately 0.5. As a result,

the duration distribution comparisons are not statistically significant. This implies

that dividing a larger population into only five groups is less effective in controlling

an epidemic.

When the proportion of initial infection values increases, it is possible that the

trailing tail of the final size distribution shifts to the right. However, the overall

distribution trend with increasing population size remains similar to that observed
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with 5% initial infection values. Figure 4.17 supports this speculation, and we can see

that there is no substantial difference in the percentage of initial infections increasing

from 5% to 10% as the population size grows. Additionally, the expected duration

distributions remain highly similar.
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Figure 4.17: Final size distribution plots for simulations with R0 = 3.12, β = 1.94, κ
= 0.25, γ = 1

1.61
, r=0.01. We divide each population into 5 groups and with 10% of

initial infected individuals for each group.
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Figure 4.18: Duration distribution plots for simulations with R0 = 3.12, β = 1.94, κ
= 0.25, γ = 1

1.61
, r=0.01. We divide each population into 5 groups and with 10% of

initial infected individuals for each group.

If we set the initial number of infected individuals to 1, this implies that only

one group will have an infected person while none of the other groups will have

any infected individuals. It’s important to note that there will be no individuals

infected during the simulation if the first transition is from the infected compartment

to the removed compartment. As a result, no one will transition from the susceptible

compartment in the next step.
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***  U−statistic: 0.695
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Figure 4.19: Final size distribution plots for simulations with R0 = 3.12, β = 1.94, κ
= 0.25, γ = 1

1.61
, r=0.01. We divide each population into 5 groups and with only 1

infected individual for each population.

In cases where there is only one group, there is no movement between bubbles,

and the final size distribution is typically concentrated at 0 and 0.9. However, when

bubbles are introduced, the infected individual can move both within and between

groups, leading to more diverse outcomes. Figure 4.19 (a) displays the final size dis-

tribution for a total population of 500. Since each group has a small population and

a low initial infection rate, the infection rates fluctuate at all stages of the simula-

tion, but it is rare for almost everyone to become infected. As the total population

increases, the final size distribution of the bubbled population gradually approaches

that of the population without bubbles.
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Figure 4.20: Duration distribution plots for simulations with R0 = 3.12, β = 1.94, κ
= 0.25, γ = 1

1.61
, r=0.01. We divide each population into 5 groups and with only 1

infected individual for each population.

In cases where there is only one infected individual in the simulation, the duration

of the epidemic will only be 0 days. This leads to a bimodal distribution of duration.

When we compare the increase in initial infection values over time, we can observe that

smaller initial infection values provide greater assistance in controlling the epidemic

when we divide the population into bubbles. This indicates that we should begin

dividing the population at the outset of the epidemic, and the earlier we do so, the

better.



54

4.4.2 Equal size of bubbles

The simulations of populations with equal group size exhibit a contrasting pattern

to the simulations of equal group numbers. As the population increases, the final

size distribution in Figure 4.21 shifts towards the left and the trailing tail diminishes,

although it remains wider than the distribution without bubble. Notably, when the

total population exceeds 1000, the final size distributions of the two comparison pop-

ulations on the same plot do not overlap, resulting in a U -statistic value of 1. This

is accompanied by a more distinct difference in the duration distributions as demon-

strated in the Figure 4.22.
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Figure 4.21: Final size distribution plots for simulations with R0 = 3.12, β = 1.94,
κ = 0.25, γ = 1

1.61
, r=0.01. We divide each population into different numbers of

groups and each group has 20 individuals with 1 initial infected individual. The
initial infection value is therefore a 5% of the total population.
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Figure 4.22: Duration distribution plots for simulations with R0 = 3.12, β = 1.94,
κ = 0.25, γ = 1

1.61
, r=0.01. We divide each population into different numbers of

groups and each group has 20 individuals with 1 initial infected individual. The
initial infection value is therefore a 5% of the total population.

From the final size distribution in Figure 4.21 and duration distribution in Figure

4.22, we can observe that as the population size and subgroup size increase, the num-

ber of final infections becomes more concentrated and the duration of the epidemic

increases. This suggests that bubbling can be effective, and in fact, increasingly effec-

tive, with large populations if the number of individuals per bubble can be kept fairly

constant. Furthermore, if we increase the percentage of initial infected individuals,

we can expect to observe the same trend.
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***  U−statistic: 0.995
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Figure 4.23: Final size distribution plots for simulations with R0 = 3.12, β = 1.94,
κ = 0.25, γ = 1

1.61
, r=0.01. We divide each population into different numbers of

groups and each group has 20 individuals with 2 initial infected individuals. The
initial infection value is therefore a 10% of the total population.
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Figure 4.24: Duration distribution plots for simulations with R0 = 3.12, β = 1.94,
κ = 0.25, γ = 1

1.61
, r=0.01. We divide each population into different numbers of

groups and each group has 20 individuals with 2 initial infected individual. The
initial infection value is therefore a 10% of the total population.

In Section 4.4.1, the expected duration distribution (Figure 4.18) showed less

significant differences with increasing population size. However, in this section, the

opposite is true. As we divide the population into more groups, the differences in the

expected duration distributions (Figure 4.24) become more significant.

Similarly to the Section 4.4.1, when we increase the number of groups while keep-

ing the size of each group fixed and only have 1 initial infected individual, the final

size distributions (Figure 4.25) still shifts to the left. Additionally, there is no scenario

where everyone ends up infected.
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Figure 4.25: Final size distribution plots for simulations with R0 = 3.12, β = 1.94, κ
= 0.25, γ = 1

1.61
, r=0.01. We divide each population into different numbers of groups

and each group has 20 individuals. There is only 1 initial infected individual in total.

The analysis of various population and initial value scenarios indicates that early

implementation of population division strategies is preferable when aiming to con-

trol epidemics. Furthermore, for larger populations, a more granular approach to

population division is recommended for greater effectiveness.



Chapter 5

Conclusion

Within the framework of this paper, firstly, we reviewed Markov chains, the CTMC

SIS model, the CTMC SEIR model, the DTMC SEIR model, as well as the connec-

tion between stochastic and deterministic models. A stochastic CTMC bubble SEIR

model was then constructed that allowed for the division of the population and the

mobility of individuals between bubbles. The main objectives were twofold:to assess

the effectiveness of epidemic containment using bubble strategies, and to analyse sce-

narios by systematically varying each parameter in the model. Finally we explored

the feasibility of the bubble strategies by analysing the final size distributions and

duration distributions of the epidemics in different scenarios.

The results and analyses elucidated in Chapter 4’s simulations study yield sub-

stantial insights. In Section 4.1, where distinct movement rate values were assigned

to baseline parameters, the outcomes establish the efficacy of the bubble strategies

in controlling disease propagation. Shifting our focus to Section 4.2, we proceeded to

change the values of β and γ so that R0 changed or remained consistent. The final size

distributions shown in Figures 4.4 and 4.6 indicate the mode of the percentage of in-

fections is approximately 10% for infections with smaller R0 values, whereas a higher

R0 prompts infection of the majority of the population. At the same time, Figure

4.10 establishes that changes in β and γ are not as important as R0, suggesting that a

significant proportion of the population will eventually become infected at a constant

R0 of 3.12. Changes in the transmission parameters β and γ emphasize the key role of

the basic reproduction number R0 in determining the final epidemic distribution. In

Section 4.3 an exploration into the impact of the latency rate κ was undertaken. With

the extension of the latency period, the mobility across bubbles increases, providing

individuals with raised opportunities for movement between bubbles. Consequently,

the duration of the epidemic is prolonged.

Another factor that was investigated was the most effective bubbling strategy
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with larger populations. When insisting on dividing the population into the same

number of bubbles, the final size distribution of the bubbled population will gradu-

ally become extremely similar to the final size distribution of the population without

bubbles. However, holding the number of individuals within each bubble constant, the

bubbled populations show that about 70% of individuals are inevitably infected with

the virus. Due to stochastic effects that lead to premature extinction of epidemics

in some populations, in small populations, infections may not happen. This is the

reason that 70% of individuals are eventually infected and with 30% of individuals are

not infected. The final size of the bubbled population will be much smaller compared

to the population without bubbles, which for large population sizes and the value of

R0 = 3.12 considered here, almost always results in 100% of the population getting

infected. As population size grows, the final size gradually concentrates around the

70% threshold. Bubbling is an effective strategy, and its effectiveness is particularly

acute in dividing larger population sizes into more bubbles. In addition, the adjust-

ment of initial infection values highlights the crucial role of early population division.

By comparing the same population at different values of initial infection, regardless of

whether the number of bubbles or the size of the bubbles remains constant, a single

initial infected individual results in a smaller final epidemic size than if the initial

infection was 5% or 10% of the population.

In essence, this paper enhances our understanding of the dynamics of infectious

disease transmission and provides valuable insights for the development of effective

control strategies. However, it is important to acknowledge the limitations inherent in

the current study. The study in this paper is based on the SEIR model. In actuality,

epidemic dynamics consist of more compartments and involve time-varying parame-

ters due to a range of interventions including quarantine policies and vaccination. As

demonstrated by Gillis et al. (2021), utilizing a more complex SEIR model in con-

junction with genetic algorithms can produce better policy budget. In addition, the

application of the bubble SEIR model developed in this thesis to the practical data

is a worthwhile direction for continued research. We hope that our work will inspire

further research in this area and contribute to the effort to control and prevent the

spread of infectious diseases.
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Appendix A

CTMC Stochastic Epidemic Model

The individual level assumptions that lead to SIS and SEIR models are often not

indicated in text book treatments such as Allen (2008). In this appendix we derive

the form of the small time interval transition probabilities and, in doing so, indicate

the assumptions that are being made. To calculate the probability that the next

event is an increase in the number of infecteds, we let I and S denote the current

set of infected and susceptible individuals. We let Imn denote event that an infected

individual, m, interacts with a susceptible individual n and Ĩ be the event that the

interaction between the two individuals results in an infection. Then

P{I(t+∆t) = i+ 1
∣∣I(t) = i} =

∑
m∈I

∑
n∈S

P{ImnĨ}+ o(∆t)

=
∑
m∈I

∑
n∈S

P{Ĩ
∣∣Imn}P{Imn}+ o(∆t)

(A.1)

where the o(∆t) is a term that represents probabilities that involve two or more events.

These probabilities are assumed small. Recall that o(∆t) represents a function g(∆t)

satisfying that lim∆t→0
g(∆t)
∆t

= 0. We assume that the probability that an interaction

results in an infection, P (Ĩn
∣∣Imn), is δ. We also assume that the probability of an

interaction between m and n, P (Imn) is η
N
∆t + o(∆t). Note that we are assuming

that the probability of interaction between any pair of individuals tends to decrease

as population size increases. With these assumptions,

P{I(t+∆t) = i+ 1
∣∣I(t) = i} = i(N − i)δ(

η

N
∆t) + o(∆t). (A.2)

We let β be the rate of infection per contact between individuals. The rate depends

on δ and η through β := δη alone. Thus,

P{I(t+∆t) = i+ 1
∣∣I(t) = i} = i(N − i)

β

N
∆t+ o(∆t). (A.3)

To calculate the probability that the next event is an decrease in the number of

infecteds, we let S̃ be the event that the infected individual m removed, then
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P{I(t+∆t) = i− 1
∣∣I(t) = i} =

∑
m∈I

P{S̃m}+ o(∆t). (A.4)

We assume that P (S̃m) is γdt+ o(∆t). Then

P{I(t+∆t) = i− 1
∣∣I(t) = i} = iγ∆t+ o(∆t). (A.5)

In the SEIR model, once a susceptible individual comes into contact with an

infected individual, then the susceptible individual will become exposed. We consider

the probability that an susceptible individual moves to the exposed compartment e

is si β
N
∆t+ o(∆t). The probability that an infected individual moves to the removed

compartment i is the same as the one calculated for the SIS model and is iγ∆t+o(∆t).

Let E denote the set of exposed individuals and let Ẽl denote the event that individual
l moves from exposed compartment to infected. We assume that P (Ẽl) = κ∆t+o(∆t).

Then

p(s,e,i),(s,e−1,i+1)(∆t) =
∑
l∈E

P{Ẽl}+ o(∆t)

= eκ∆t+ o(∆t).

(A.6)
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