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Abstract

Competing interactions have long been recognized as a fundamental mechanism driv-

ing the emergence of complex phases in a wide range of physical systems. In mag-

netic systems, these competitions arise from the geometry of the underlying lattice

and manifest as geometric frustration or various spin-orbit coupling effects. A proto-

typical example of geometrically frustrated systems is the antiferromagnetic kagome

lattice. Although the exotic properties of the 2D kagome layers have been investi-

gated extensively over the years, a relatively small number of studies considered the

effects of a 3D stacking.

This work concerns the magnetic properties of compounds composed of AB-

stacked kagome layers. We perform the analysis from the ground up, starting with a

derivation of a spin Hamiltonian from symmetry principles. The resulting magnetic

model exhibits a fascinating self-duality property: different sets of model parame-

ters are related to each other through changes of the reference frame. By exploiting

these relationships, we are able to provide a very general description of the mag-

netic properties of AB-stacked kagome lattices, including a detailed classification of

possible magnetic phases, which we obtain by performing numerical Monte Carlo

simulations. Some of the phases, characterized by the magnetic wavevector Q = Γ,

correspond to magnetic ground states in known compounds, such as Mn3X systems,

where X = {Sn,Ge,Ga}. To aid the experiments and resolve recent controversies in

the literature, we investigate the effects of the magnetic anisotropy in these struc-

tures and provide analytical solutions for changes in the spin configurations induced

by these interactions. Finally, we study a more exotic set of phases, where the spin

structure consists of irregular Ising-like patterns.

The theoretical results reported here are relevant to a number of known magnetic

compounds with the AB-stacked kagome structure. Throughout this work, we refer to

potential experiments that may verify our predictions. We hope that the present study

would lead to further theoretical and experimental investigations of these fascinating

systems.
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Chapter 1

Introduction

Antiferromagnets are extremely

interesting from the theoretical

viewpoint but do not seem to have

any applications.

Louis Néel, Nobel Lecture

Antiferromagnets, first predicted by Louis Néel in 1936 [1], initially were noth-

ing more than an academic curiosity. The absence of spontaneous magnetization in

zero magnetic field rendered them useless for any practical applications, as noted by

Néel himself during his Nobel Prize lecture [2]. Lack of magnetization also resulted

in a controversy about the magnetic structure of these systems, until in 1949 the

first neutron scattering experiments confirmed the anticollinear spin configurations

in antiferromagnets [3].

Nowadays, Néel’s statement in 1936 is no longer accurate: recent developments

in the data storage industry have indicated a need to go beyond the conventional

ferromagnetic storage devices in order to meet the ever-increasing demands for mate-

rials with higher storage capacity [4,5]. In an effort to reduce the power consumption

and increase the writing speed of the modern storage technologies, a recently emerged

field of antiferromagnetic spintronics has put out proposals for antiferromagnetic data

storage devices [6, 7]. On the academic front, the investigation of antiferromagnetic

systems catalyzed a chain reaction of discoveries, which completely changed the land-

scape of condensed matter research. Two important examples of impactful discover-

ies that resulted from studies of antiferromagnets are the geometric frustration and

Dzyaloshinskii-Moriya (DM) interactions. Both situations describe competitions be-

tween magnetic interactions that arise as a result of the geometry of the underlying

lattice.

1
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In nature, competing forces frequently lead to the formation of complex structures,

from the fractal patterns of snowflakes to the intricate architecture of living organisms.

This phenomenon is ubiquitous across different physical systems and holds important

implications for a range of scientific fields, from physics to biology. The work discussed

in this thesis focuses on different magnetic competitions and the properties that may

arise from them. Therefore, this chapter is dedicated to the discussion of the origins

of competing interactions in magnetic systems. At the same time, we will introduce

the subject of our studies: the AB-stacked kagome layers.

1.1 Geometrical frustration

1.1.1 Exchange interaction

It was rigorously established in the early 1900’s first by Niels Bohr and later by

Hendrika van Leeuwen that a system, in which the magnetic fields originate from

an angular motion of charged particles, cannot develop an equilibrium magnetization

at any finite temperature, even in the presence of an applied magnetic field [8, 9].

This theorem appeared to be in clear contradiction to the observed phenomena: after

all, there are lots of examples of magnetic systems in nature. The resolution of this

dilemma came with the development of quantum mechanics. After the discovery

of spin by Pauli in 1924 [10], Heisenberg and Dirac [11, 12] proposed a coupling

mechanism between two spins, thus concluding that the origin of magnetic order is

purely quantum-mechanical.

Heisenberg interactions arise when in addition to spin-independent energy terms,

such as kinetic energy and Coulombic interactions, we also consider quantum-mechanical

constraints imposed by the Pauli exclusion principle. Specifically, the total many-

electron wavefunction, which includes spin degrees of freedom, must be antisymmetric

with respect to odd permutations of particles. This constraint leads to a difference

in Coulomb energy between the singlet and triplet spin states, which results in an

effective spin interaction

E(r, r′) = J(r− r′)S(r) · S(r′), (1.1)

where the spins S(r) are labeled by their positions in space, r, and J(r − r′) is the
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coupling constant, which depends on the types and relative contributions of electron

interactions in a given system. This interaction is known as the Heisenberg exchange

coupling, in reference to the imposed permutation symmetry due to the Pauli princi-

ple. Since the original derivation, many other mechanisms of magnetic exchange have

been discovered [13].

Although eq. (1.1) is only strictly correct for a system with two spins, these

exchange interactions are often generalized in an effective Hamiltonian, which includes

many spins:

HJ =
∑︂
rr′

E(r, r′) =
∑︂
rr′

J(r− r′)S(r) · S(r′), (1.2)

where the sum is over all pairs of spins in the system. Note that since this definition

is essentially an approximation to the true many-body interaction, the exact values

of the exchange constants, J(r− r′), are often less important than their signs, which

can often be obtained without the use of electronic structure calculation methods. In

many systems, the magnitude of the exchange coupling constant is an exponentially

decaying function of the distance between two spins. Therefore, it is common in the

initial analysis of the problem to restrict the sum in Eq. (1.2) to nearest-neighbours

(NN) only1.

Strictly speaking, the spin variables are quantum objects, and the model in

eq. (1.2) describes a quantum many-body system. In practice, most compounds2

are well described by a “classical” approximation, where the quantum operators are

replaced by components of real vectors with fixed magnitude: |S(r)| = S. In this

thesis we will use classical spins with S = 1 (which is equivalent to rescaling the

coupling constants by a factor S2).

1Note that in metallic systems, the itinerant electrons lead to the so-called Ruder-

man–Kittel–Kasuya–Yosida (RKKY) exchange, which is characterized by a slowly decaying and

oscillating exchange coupling of the form J(r − r′) ∼ cos
(︁
kF |r− r′|

)︁
/|r − r′|3, where kF is the

Fermi momentum.

2Typically, quantum effects are strongest for spins with quantum number s = 1
2 . The properties

of compounds in which the magnetic ions have a total spin that is larger than s = 1 are often

indistinguishable from classical predictions [14].
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Figure 1.1: An illustration of geometric frustration. (a) Antiferromagnetic exchange
interactions can be satisfied on each bond on a square. On a triangle, a collinear
configuration will always result in at least one parallel pair of spins, which means
that the system is frustrated. (b) Continuous spins on a triangle minimize antifer-
romagnetic exchange interactions by forming the 120 degree configurations. These
structures break the mirror symmetry and are therefore chiral.

Note that the exchange interactions are isotropic3, meaning that we can apply any

global orthogonal transformation (e.g. a rotation) to a spin configuration without

changing its energy. In practice, changing the relative orientations of spins with

respect to the lattice also changes the energy due to magnetic anisotropy, which will

be discussed in Sec. 1.2.

1.1.2 Lattice connectivity constraints

The exchange interaction in eq. (1.1) is minimized when two spins are parallel (ferro-

magnetic coupling J(r−r′) < 0) or antiparallel (antiferromagnetic coupling J(r−r′) >
0) to each other. We see that in order to minimize the exchange interactions on each

bond in the system, we have to ensure that each bond corresponds to either a parallel

or antiparallel orientation of a spin pair. This geometric constraint can always be

satisfied if all interactions are ferromagnetic, since in this case all spins simply have

the same orientation. On the other hand, antiferromagnetic arrangements require the

possibility of splitting the lattice into two sublattices. For example, the geometric

constraint is satisfied on a square lattice, but fails on a triangular lattice, since on

each triangle there would always be a single parallel pair of spins (fig. 1.1 (a)). Gener-

ally, the system is said to be geometrically frustrated when the geometric constraints

imposed by the interactions on each bond cannot be satisfied simultaneously.

3Because the scalar product only depends on the relative orientations of the vectors.



5

If we restrict the orientations of spins to be along a single axis (i.e. if we consider

Ising spins), the frustrated antiferromagnetic structures on a triangular geometry

would have a degeneracy, associated with the location of the ferromagnetic bond.

The implications of this degeneracy are much greater for lattices formed by tiling

equilateral triangles, since the large multiplicity of the ground state (WG.S.) leads to

a finite residual entropy per spin SG.S = limN→∞
1
N

ln(WG.S.), where N is the total

number of spins. This was first investigated by Wannier in 1950, who concluded that

antiferromagnetic Ising triangular lattice remains disordered down to T = 0 [15, 16].

He also calculated the residual entropy of this system to be S
(tri
G.S ≈ 0.323.

Removing the Ising constraint and introducing continuous Heisenberg spins allows

one to minimize the exchange energy of a triangle by introducing a non-collinear 120

degree configuration (fig. 1.1 (b)). In the triangular lattices, the 120 degree ground

state corresponds to a commensurate helix with period 3 and has zero residual entropy.

1.1.3 Kagome lattice antiferromagnet

Besides the antiferromagnetic triangular lattice, one of the most famous examples

of geometric frustration is the NN antiferromagnetic kagome4 lattice, which is con-

structed from corner-sharing equilateral triangles, as shown in fig. 1.2.

Kano and Naya [17] calculated the residual entropy in the antiferromagnetic Ising

kagome system to be even larger than in the triangular lattice: S
(kag)
G.S ≈ 0.502. For

continuous spins, the exchange interaction in eq. (1.2) can be rewritten as a sum over

the elementary triangles:

HJ = J
∑︂
⟨rr′⟩

S(r) · S(r′)

= J
∑︂
△

[︁
S△,1 · S△,2 + S△,2 · S△,3 + S△,3 · S△,1

]︁
= −JN +

J

2

∑︂
△

|L△|2, (1.3)

4The name comes from the Japanese woven bamboo pattern, 籠目, where kago means “basket” and

me means “eye”, referring to the hexagonal holes in the pattern.
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Figure 1.2: Antiferromagnetic configurations on a 2D kagome lattice. The lattice
is formed by corner-sharing triangles. The two ordered spin configurations shown
here correspond to the famous (a) Q = 0 and (b) Q =K (also known as

√
3 ×
√

3)
structures.

where N is the number of lattice sites, J > 0, ⟨· · · ⟩ represent NN bonds, △ labels

elementary triangles composed of three spins S△,i, i ∈ {1, 2, 3}, and

L△ = S△,1 + S△,2 + S△,3. (1.4)

The ground state corresponds to L△ = 0 for every triangle in the system, which is

equivalent to setting a 120 degree configuration on each kagome triangle. Note that

we can rotate the plane of the 120 degree structure in fig. 1.1 by an arbitrary angle

without distorting the spin configuration and thus leaving the energy unchanged.

These rotations are therefore referred to as the zero-energy (or simply zero) modes.

It turns out that as we go from individual triangles to the connected kagome lattice,

a large number of these zero modes survive, leading to a continuous manifold of

ground state configurations [18–21]. We show two possible ordered structures in

fig. 1.2 (a) and (b), but in general these systems remain disordered, as a result of

the entropic cost to form periodic structures. For this reason, the ground state of

antiferromagnetic kagome lattice is often called the classical spin liquid phase5. As a

result of this classical degeneracy, the properties of the system become very sensitive

5The name comes from the fact that the spins exhibit local correlations, but remain disordered on

a macroscopic scale, just like atoms or molecules in a liquid.
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to various perturbations, including changes in the connectivity as well as thermal

and quantum fluctuations. Thus, at low temperatures quantum effects determine the

physical quantities of the system [22].

1.2 Anisotropic interactions

Apart from site connectivity, the effects of the underlying lattice on the magnetic

structure may manifest through the spin-orbit coupling (SOC), which allows the

spins to “feel” the local electronic environment of the atom6. In turn, the local

environment imposes the symmetry of the crystal onto the spins, leading to magnetic

anisotropy. All magnetic compounds are anisotropic to some degree, and therefore

it is often necessary to consider anisotropic spin interactions in order to provide a

realistic description of the material properties. Importantly, these interactions some-

times compete with the isotropic exchange couplings, resulting in more complicated

spin arrangements.

1.2.1 Single-ion anisotropy

The most common type of anisotropic interactions arises from the crystal electric fields

acting on the magnetic site. Depending on the nature of the surrounding atoms, elec-

trostatic interactions may either decrease or increase the energy of certain orbitals,

and, via spin-orbit coupling, impose favourable and unfavourable directions for the

spins [23]. Due to the nature of this anisotropy, it is commonly referred to as the

single-ion anisotropy (SIA). SIA results in effective couplings between spin compo-

nents on the same atomic site. Typically, the lowest order terms are quadratic7:

HK =
∑︂
r

∑︂
α

Kα

(︁
n̂α(r) · S(r)

)︁2
, (1.5)

where n̂α(r) label principal axes of anisotropy (labelled by α) for each site r, and

Kα are the corresponding SIA coefficients. Note that if Kα is negative (positive), the

6Without spin-orbit coupling, spin and lattice degrees of freedom are decoupled. In this case, there

is no preferred global orientation of the structure with respect to the lattice.

7This is not the case in cubic systems, where the lowest order of SIA is 4. In general, the order of

spin interactions must be even, as a result of the time-reversal symmetry, as discussed in Sec. 2.2.
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spins prefer to lay parallel (perpendicular) to n̂α(r), which are then called easy (hard)

axes.

Depending on the strength of the SOC, the strength of the SIA varies from one

compound to another. In most cases, the anisotropy is much weaker than exchange

and can be treated as a perturbation to the exchange interaction, while in other it

may be the dominant type of interactions. However, sometimes, it is possible to

deduce the relative strengths of different SIA couplings based on the symmetry. For

example, in a monoclinic crystal with sides a ≈ b≪ c or a ≈ b≫ c we would expect

the anisotropy in the ab plane to be less significant than along the c-axis.

1.2.2 Dzyaloshinskii-Moriya interactions

During the late 1950’s, one of the biggest questions in the magnetic community was

the origin of weak ferromagnetism in several antiferromagnetic materials, such as

α− Fe2O3 and MnCO3. These compounds exhibit antiferromagnetic spin ordering

that is distorted by a small spin canting, which in turn leads to a small magnetic

moment. Models with isotropic exchange and SIA were not sufficient to explain

this phenomena, which pointed towards another type of magnetic interactions. This

puzzle was first solved by Dzyaloshinskii [24], who used a symmetry approach in

order to construct a phenomenological model, which included antisymmetric spin

invariants. Several years after Dzyaloshinskii’s article, following the success of An-

derson’s superexchange formulation [13], Moriya attempted to provide a microscopic

origin of antisymmetric exchange by proposing a perurbative calculation with included

Coulombic and SOC interactions. Moriya showed that the SOC and the symmetries

of the underlying lattice result in antisymmetric exchange interactions of the form

E(r, r′) = D(r− r′) · [S(r)× S(r′)], (1.6)

where D is a vector with an antisymmetric property, D(r−r′) = −D(r′−r) [25]. This

type of interactions is referred to as the Dzyaloshinskii-Moriya (DM) interaction, in

tribute to the pioneering work of the two researchers. Similar to the case of Heisenberg

exchange, one can generalize this two-body interaction to an effective Hamiltonian:
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HD =
∑︂
rr′

D(r− r′) · [S(r)× S(r′)]. (1.7)

The form (orientation) of the DM vector is determined by the local symmetry of the

bond, whereas the magnitude and sign (i.e. direction along a specified axis) depend on

the details of the electronic structure. In addition to the derivation of the microscopic

model, Moriya proposed a set of simple rules for determining the direction of the DM

vector, D(r− r′), for two spins at r and r′ forming a bond ρ = r− r′ with midpoint

O:

1. If there is a point of inversion at O, D = 0

2. If there is a mirror plane that passes through O and is perpendicular to ρ,

D ⊥ ρ

3. If there is a mirror plane which includes ρ, D ⊥ mirror plane

4. If there is a two-fold rotation axis, Ĉ2, that passes through O and is perpen-

dicular to ρ, D ⊥ Ĉ2

5. If there is an n-fold rotation axis (n ≥ 2), Ĉn, along ρ, D ∥ ρ

Symmetric and antisymmetric exchange interactions in eqs. (1.1), (1.6) produce

competitions between collinear and orthogonal spin configurations, resulting in spin

canting away from the collinear order. Since DM interactions favour non-collinear

configurations, they are known to be crucial for stabilization of helical structure with

a particular chirality (depending on the sign of D). Furthermore, these chiral inter-

actions have been shown to stabilize exotic spin textures, such as skyrmions [26,27].

1.2.3 Anisotropic exchange

Moriya’s derivation produced another anisotropic interaction, which was symmetric

with respect to the exchange of spins in a given bond. These interactions are generally

referred to as the anisotropic exchange and can be written as

HA =
∑︂
rr′

∑︂
αβ

A(αβ)(r− r′)Sα(r)Sβ(r′), (1.8)
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where the form of the coupling matrix A(αβ)(r− r′) = A(αβ)(r′ − r) is determined by

the symmetry of the local environment of the bond.

From Moriya’s perturbation theory it follows that while the DM couplings depend

linearly on the strength of the SOC, the symmetric part of the anisotropic exchange

shows quadratic dependence on the SOC parameter. As a result, anisotropic exchange

interactions are typically much weaker perturbations than the DM interactions. How-

ever, they are always present in the crystal environment and may sometimes account

for the properties that are incompatible with other interactions. Several studies also

indicated situations where the anisotropic exchange may exactly balance the DM cou-

plings [28,29]. More recently, anisotropic interactions received a considerable amount

of attention due to their role in stabilizing exotic phases, especially the Kitaev spin

liquids [30].

1.3 AB-stacked kagome lattices

We have already introduced kagome antiferromagnets as a paradigmatic example of

geometric frustration. The properties of these systems, including the extensive de-

generacy of the ground state are extremely sensitive to various perturbations, such

as anisotropic interactions or changes in the geometry. For this reason, the clas-

sical spin liquid ground state opens a wide playground for stabilizing various un-

conventional phases. For example, recently, in a series of works dedicated to the

effects of anisotropic interactions in kagome magnets, Essafi, Rosales, and Jaubert

demonstrated that DM interactions allow for a stabilization of unusual chiral phases,

including chiral spin liquids, skyrmions, and bimeron glass [31–33].

Most theoretical studies that have been conducted on the magnetic properties of

kagome typically concern 2D systems. The bulk limit is achieved by stacking the

kagome layers on top of each other. The most common types of stacking are the

AA, AB, and ABC stacking. The AA layered kagome (fig. 1.3 (a)) is the simplest

type of layering, which preserves the symmetry of the 2D kagome layers. The studies

of this category of bulk kagome compounds are rather sparse [34, 35]. However, we

note that because the AA stacking does not introduce any additional frustration, the

properties of the 3D systems are expected to be similar to those in the 2D limit. On

the other hand, the ABC-stacking (fig. 1.3 (c)) introduces frustrated octahedral units
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Figure 1.3: Examples of stacked kagome lattices. (a) AA-stacked, (b) AB-stacked,
and (c) ABC-stacked kagome layers. In (b), the solid and dashed lines indicate the
two inequivalent triangles in the case of a breathing anisotropy.

in each crystallographic unit cell, which both increases the symmetry of the system

and introduces additional frustration compared to the 2D limit. The most well-

studied ABC-stacked kagome system is the metallic Mn3Ir compound [36–44]. The

properties of Mn3Ir is of high interest for industrial applications, such as spin-valve

technologies [45].

Until recently, the AB-stacked kagome layers (fig. 1.3 (b)) (AB-SKL) have re-

mained relatively unstudied. Like the 2D kagome, the AB-SKL have a hexagonal

symmetry but the inter-layer interactions introduce additional frustration, similar to

the ABC stacking. An interesting consequence of the AB stacking is a possibility of

the breathing anisotropy, where the “up” and “down” kagome triangles have different

sizes (fig. 1.3 (b)).

The interest in these systems has grown rapidly in recent years, due to the experi-

mental discovery of the anomalous Hall effect (AHE) in a class of metallic compounds

with a general formula Mn3X, X = {Ge,Sn,Ga} [46–49]. The AHE has been an

open problem in theoretical and experimental physics for over a century since it inter-

twines the concepts of topology and geometry [50,51]. Moreover, until the discovery

of this effect in Mn3X compounds, which host non-collinear antiferromagnetic order,

the AHE has only been observed in ferromagnetic materials with strong spin-orbit

coupling [46,52–55].

Besides the Mn3X family, there are other examples of compounds in which the
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magnetic ions form the AB-SKL structure. We will list some of the examples below.

R3Ru4Al12, R = {Gd,La,Pr,Nd,Ce,Yb,Dy,U} are metallic compounds with

AB-SKL formed by the magnetic rare-earth R atoms, identical to the Mn atoms in

the Mn3X family. The properties of R3Ru4Al12 change depending on the R atom, and

at low temperatures can manifest in ferromagnetic, non-collinear antiferromagnetic,

or more complicated partially-ordered phases [56–64].

T3X2, T = {Fe,Mn,Cr}, X = {Ge,Sn} is another family of metallic compounds.

However, in this case the crystal structure is different from the previous two examples,

since the AB kagome bilayers of T atoms are separated from each other by significant

distances. Therefore, to a good level of accuracy these systems can be approximated

as isolated AB kagome bilayers. The most studied member of the family is Fe3Sn2,

which is ferromagnetic at room temperature, but has recently been shown to stabilize

complex phases at lower temperatures, such as magnetic bubbles [65–69].

R3BWO9, R = {Pr,Nd,Gd,Ho} is a family of recently discovered compounds

with a distorted kagome structure. The first magnetic measurements conducted

on Nd3BWO9 found commensurate and incommensurate orders at significantly sup-

pressed temperatures [70].

Surprisingly, despite the plethora of experimental results, the theoretical studies

of the AB-SKL remain relatively sparse. Most of the recent effort has been dedicated

to the ground state properties of the Mn3X [71–75]. In view of this, the thesis work

presented here attempts to provide a more general study of the effects of AB stacking

on the properties of kagome magnets.

From a technological standpoint, the magnetoelectronic properties of certain com-

pounds presented above make them promising candidates for spintronic applications,

such as magnetic storage devices. Notably, the aforementioned Mn3Ir, has been used

in almost all hard drives as the antiferromagnetic pinning layer in spin valves. How-

ever, the high cost of metallic Ir, as well as undesireable domain formation, makes

the devices based on the AB-SKL Mn3X compounds even more promising, especially
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since novel techniques have already been proposed for imaging and writing of mag-

netic domains in Mn3Sn [76–79]. This further motivates a thorough investigation of

magnetic properties of the AB-SKL compounds.

1.4 Outline of this thesis

The rest of this work is outlined as follows.

Any theoretical discussion of the magnetic properties must begin with the definition

of the magnetic model. Therefore, we dedicate Chapter 2 to a derivation of possible

magnetic interactions in AB-SKL using symmetry principles. This chapter is loosely

based on Ref. [75] and the corresponding supplemental material, but we introduce the

derivation using a geometric perspective, without relying on heavy group-theoretical

formalism.

In Chapter 3 we introduce an extremely important property of our model, namely

self-duality. We will discuss in detail the meaning and consequences of self-duality

and attempt to provide an approximate relationship between the possible self-duality

transformations and the strength of SOC in AB-SKL. This material was first intro-

duced in Ref. [80]. Here, we again choose a geometry-based approach for deriving the

self-duality transformations, rather than the group theory-based methodology used

in the original reference.

Chapter 4 gives some background on the numerical Monte Carlo methods that we

employ to study our systems.

In Chapter 5 we present an extensive numerical study of the ground state prop-

erties of our magnetic model, the main focus of Ref. [80]. For simplicity, we separate

the discussion into three cases, corresponding to isotropic limit, weak-SOC limit, and

strong-SOC limit. The resulting magnetic phases are characterized according to the

spatial periodicity and self-duality principles.

The strong-SOC limit is relevant for experimental studies of AB-SKL compounds,
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especially for the Mn3X family. Therefore, Chapter 6 provides an in-depth analytical

analysis of the effects of in-plane anisotropy on the spin structure of experimentally-

relevant magnetic phases. The material in this chapter was partially covered in

Ref. [75] and its supplemental material, but it is presented here in a more general and

precise form.

Chapter 7 we will serve as an introduction to the properties of the most exotic struc-

tures in this study: the Ising-like phases. These results are contained in the recently

submitted work in Ref. [81]. This chapter describes the analytical coarse-graining of

the magnetic Hamiltonian, which serves to uncover the effective biquadratic interac-

tions, which are expected to stabilize the Ising-like configurations.

Finally, Chapter 8 presents the results of the finite-temperature numerical MC simu-

lations of the Ising-like phases, which reveal a complex three-step nucleation process.

The data presented in this chapter is included in Ref. [81] and the corresponding

supplemental material.

1.5 Work not presented in this thesis

Although the material in this work already covers a large number of topics, there is a

number of projects that the author chose not to present here, in order to focus on a

single consistent story. Below are the main topics that are not covered in this thesis,

but can be found in Refs. [75], [80], [81], and the corresponding supplementals.

Group theory. As already mentioned, many of the original derivations in Refs. [75]

and [80] made heavy use of group theory (specifically, representation theory). To sim-

plify the discussion and eliminate potential confusion, these calculations were focused

on more simple geometrical concepts.

Spin waves. The most significant part of Refs. [75] and [80] that is not presented

here is the description of the spin wave excitations in the AB-SKL. In Ref. [75], we an-

alyzed the effects of the in-plane anisotropy on the spin wave dispersions and showed

that the inelastic neutron scattering intensity is extremely sensitive to small changes
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in anisotropic constants. These results can be used to fit experimental data and po-

tentially used to determine the relative strengths of different anisotropic interactions.

In Ref. [80], we studied spin wave spectra of several magnetic phases, while varying

the strength of the SOC. Furthermore, the dispersions corresponding to the collinear

configurations in the weak-SOC limit allowed us to demonstrate that thermal fluctu-

ations tend to rotate these structures perpendicular to the kagome layers.

Ising-like phases. Chapters 7 and 8 introduce the reader to some of the properties

of the Ising-like phases, but some of the important analytical results are not included

here. In particular, the derivation of the Landau theory and the analysis of the fluctu-

ations, which confirmed the Brazovskii-type fluctuation-induced first-order transition

are omitted from this thesis and instead are qualitatively described in Chapter 8.

However, these results are included in the recently submitted manuscript in Ref. [81]

(and its supplemental material). A potential future publication will include thermal

properties of Ising-like phases in bulk 3D systems.



Chapter 2

Symmetry and magnetic interactions in AB-SKL

Reality favours symmetry.

Jorge Luis Borges, Ficciones

Symmetry shapes the physical interactions in our universe. It is no coincidence

that the classical gravitational and electromagnetic forces, which we deal with on a

daily basis, depend only on relative distances between objects and not their absolute

positions. This distance dependence comes from the fact that the space in which

all matter exists is uniform, and therefore possesses translational symmetry. Trans-

lational symmetry in turn postulates that the interactions between objects must re-

main the same if all of them are simultaneously moved to another location in space,

while preserving the relative positions. Similarly, the isotropy of space also implies

rotational symmetry, which leads to the spherical symmetry of most fundamental in-

teractions. Thus, for example, the gravitational and electrostatic interactions depend

on the scalar distance, rather than the vector displacement between the objects.

These concepts equally apply to systems with reduced symmetry, such as crys-

tal lattices. Although the emergent interactions could be calculated via quantum

mechanical principles, the phenomenological symmetry-based approach is more ap-

pealing, since the calculations do not require the heavy machinery of numerical meth-

ods. By requiring that interactions between spins are invariant with respect to the

symmetries of the underlying lattice, one can deduce the spin invariants, which will

correspond to different types of magnetic couplings. The limitation of this approach

is that nothing can be said about the strength of these interactions in a given sys-

tem, since the invariants only reflect the generic symmetry properties of the crystal

and not the specific electronic environments of physical compounds. To overcome

this issue, one has to either consider more sophisticated calculation techniques, which

inevitably leads back to quantum mechanical algorithms, or to consult experimental

16
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data to at least narrow down the parameter space. In the present case, the symmetry

approach is sufficient, since we are simply concerned with finding all of the possible

types of interactions in order to characterize the phases that can occur when some of

the parameters are varied.

The methodology for symmetry-based model derivation, based heavily on group

theoretical tools [82], has been developed over the past several decades (see, for exam-

ple [32,83–85]). However, a consistent approach suitable for physicists with introduc-

tory knowledge of mathematical groups is still missing in the literature. Therefore,

this section is dedicated to a step-by-step derivation of the magnetic model for AB-

SKL using basic symmetry principles, making only occasional references to group

theory.

2.1 Transformation properties of spins

To effectively use the symmetry toolbox, one must first understand how the degrees

of freedom transform under various symmetry operations. Magnetic systems are

characterized by spins, which are three-component vectors. However, it would be a

mistake to simply state that spins transform like regular vectors. To understand why

this is the case, we recall that spin is a quantum-mechanical property of particles,

which describes a type of angular momentum. A conventional angular momentum,

which describes orbital motion, is defined as

L = r× p, (2.1)

where r and p label the position and linear momentum of the object. Because it is

defined as a cross product, angular momentum and spin are axial vectors (as opposed

to more familiar polar vectors). To determine the transformation properties of axial

vectors, we can apply a general orthogonal transformation R to r and p in eq. (2.1),

such that

L′ = (Rr)× (Rp)

= det(R)R(r× p)

= det(R)RL, (2.2)
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Figure 2.1: Transformation properties of polar and axial vectors. Polar vectors trans-
form “intuitively”, meaning that the mirror reflections and inversion act on the object
itself. On the other hand, axial vectors are analogous to magnetic moments origi-
nating from a current loop (according to the right-hand rule). This means that their
orientation after a transformation depends on whether the direction of the current
has been reversed. Such is the case, for example, for reflections with mirror planes
lying perpendicular to the current loop. However, inversion operation leaves the axial
vector invariant, since it does not change the direction of the current.

where in the second line we used a transformation property of cross products (see

Appendix A). Therefore, if R describes a rotation (det(R) = 1), the axial and po-

lar vectors transform in exactly the same way. However, if R represents inversion,

improper rotation, or a mirror symmetry (det(R) = −1), the axial vectors acquire

an additional orientation flip after the transformation. To better understand these

differences, it is useful to look at a classical analogue of spin: a magnetic moment

generated by current in a loop circuit. Fig. 2.1 demonstrates various transformations

applied to the magnetic moment.

A current-loop magnetic moment representation is a useful tool for any type of

transformation applied to spins. In the following sections, we will consider symmetries

that typically arise in magnetic crystals and determine how they influence the form

of the spin interactions in AB-SKL.
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Figure 2.2: Examples of time-reversal operation. (a) given some initial conditions at
starting time t = −T/2, a particle follows a trajectory, specified by its equations of
motion, until we stop the motion at time t = T/2. The circles denote positions at
regular time intervals ∆t and arrows represent the direction of particle’s momentum
p(t). Time-reversal changes the direction of motion (T (p(t)) = −p(−t)), such that
it begins at r(T/2) and moves towards r(−T/2). If the energy is conserved, the
reversed trajectory will be exactly the same as the original one. (b) Time-reversal
operation reverses the momentum of the charge carriers, thus changing the direction
of the current and flipping the magnetic moment.

2.2 Time-reversal symmetry

Before we discuss crystals, it is worth talking about a symmetry that characterizes all

spin systems, namely, the time-reversal symmetry. Unlike the translations and rota-

tions, which act on the spatial degrees of freedom, time-reversal, which we will denote

as T , reverses the arrow of time, such that T : t→ −t. In the absence of dissipative

forces1, a given physical variable will either be invariant (even) or change sign (odd)

under T . For example, the position of an object is even under the time-reversal

operation (T (r(t)) = r(−t)), while its momentum is odd (T (p(t)) = −p(−t)), as

demonstrated in fig. 2.2 (a). Therefore, the angular momentum, defined in eq. (2.1),

and consequently the spin, are also odd under the time-reversal. This is more easily

understood from the current-loop magnetic moment picture, as shown in fig. 2.2 (b).

1i.e. in an isolated system.



20

At a microscopic level, a Hamiltonian of the system must be T -invariant in order

to ensure the conservation of energy. For this reason, in the absence of the magnetic

field2, the magnetic Hamiltonian will contain only terms that have an even number of

spin components. Typically, quadratic terms are sufficient to describe most magnetic

properties3 and we can write a generic model as

H =
∑︂
ρρ′

H(ρ,ρ′) =
∑︂
ρρ′

∑︂
αβ

Aαβ(ρ,ρ′)Sα(ρ)Sβ(ρ′), (2.3)

where ρ and ρ′ are the positions of spins, α and β label the spin components, and

Aαβ(ρ,ρ′) is a general coupling matrix, which must reflect the symmetry of the

crystal.

2.3 Lattice translational symmetry

A crystal is a periodic array of atoms. The periodicity is determined by discrete

lattice translations, specified by three lattice vectors a1, a2, and a3. Analogous to

the continuous translations discussed above, to ensure the invariance of the magnetic

interactions with respect to lattice translations, a coupling between spins on sites ρ

and ρ′ only depends on the displacement ρ− ρ′:

H(ρ,ρ′) =
∑︂
αβ

Aαβ(ρ− ρ′)Sα(ρ)Sβ(ρ′). (2.4)

The situation is slightly more complicated when we are dealing with a lattice

with an atomic basis. This is the case for kagome lattices, which are formed by

replacing each vertex point on a triangular lattice with an equilateral triangle of

basis atoms. Non-Bravais lattices are characterized by Bravais lattice vectors r =

n1a1+n2a2+n3a3 (ni are integers), as well as the basis vectors ri. Vectors r determine

the positions of the unit cells, while ri label the locations of the atoms in each cell,

see fig. 2.3 (b). Importantly, while r are periodic, ri are not, which implies that the

interaction between spins on ρ = r + ri and ρ′ = r′ + rj can be written as

2Similarly to the magnetic moments, magnetic field is odd under T . For non-zero magnetic field, a

Hamiltonian will include a Zeeman term, −H ·∑︁ρ S(ρ), which is odd in spin.

3Higher-order spin interactions do arise in some systems due to, for example, magnetoelastic cou-

pling [86], or the itenerant electrons [87,88].
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Figure 2.3: Symmetries of the 2D (a) triangular and (b) kagome lattices. On both
figures, the black arrows represent lattice vectors a1 and a2, while blue and green
areas correspond to the conventional and Wigner-Seitz unit cells. In (b), ri is one
of the basis vectors, and the numbers denote the sublattice atoms. Both lattices
have the same point group symmetry, which is more easily seen from the symmetry
of the Wigner-Seitz cells. However, while point group operations leave the atoms
of the triangular lattice unchanged (assuming translation modulo, see text), they
interchange inequivalent sublattice atoms on the kagome lattice.

H(ρ,ρ′) =
∑︂
αβ

Aij,αβ(r− r′)Siα(r)Sjβ(r′), (2.5)

where the basis (sublattice) labels i and j are used as matrix indices to simplify the

notation.

2.4 Point group symmetry

Besides lattice translations, crystals generally have a number of other symmetries,

including n-fold proper and improper rotations (Cn and Sn respectively), inversion

(I), and mirror (σ) transformations. In addition, in non-symmorphic crystals some

operations are combined with fractional translations. Examples of such transforma-

tions are glide plane and screw-axis rotations. The transformations listed above form
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Figure 2.4: Point group symmetries of AB-SKL. The 24 elements are organized into
12 classes of equivalent symmetries. Here, black shapes indicate the type of rotation
around the z-axis, white circle implies inversion center, and solid and dashed lines
represent the mirror planes. Note that all operations that interchange atoms of A
and B layers are non-symmorphic.

the crystallographic point group4. In Bravais lattices, point groups contain symme-

tries of an individual atom in the crystal environment (fig. 2.3 (a)). More generally,

point groups represent the symmetries of the crystal unit cell, which, in the case of

non-Bravais lattice, may generally permute the atoms inside the cell (fig. 2.3 (b)). A

combination of translations and point group symmetries produces the space group of

the crystal. Importantly, point group operations can be obtained by imposing “trans-

lation modulo” on all space group operations: if a space group transformation takes

some atoms outside of a reference unit cell, we apply an appropriate translation to

bring these atoms back inside the cell. For AB-SKL, the point group is D6h, which

has 24 elements, illustrated in fig. 2.4. The precise definitions of these symmetry

transformations can be found in crystallographic tables [89] (space group 194).

So far, all of the operations discussed here permute the bonds on the lattice, but

4An observant reader would object to this statement by noting that the non-symmorphic operations

described above do not qualify a point group symmetries, as they displace all points from their

original positions. However, in crystallography, we still include these operations after removing the

fractional translations. This transforms a screw-axis into a rotation and a glide plane into a mirror

reflection, which are both valid point group symmetries.
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Figure 2.5: (a) Site labels used in the text for the derivation of the intra-layer spin
invariants. (b) Global and local spin coordinates on a single triangle. Local axes are
obtained by rotations of the global frames on atoms i and j by 120 and -120 degrees
respectively.

do not change their magnitudes. A valid magnetic coupling will therefore contain all

bonds with the same bond length that transform into each other:

H =
∑︂
n

Hn, (2.6)

Hn =
∑︂
⟨rr′⟩n

∑︂
⟨ij⟩n

∑︂
αβ

Aij,αβ(r− r′)Siα(r)Sjβ(r′), (2.7)

where n label different “families” of symmetry-related bonds, and ⟨. . . ⟩n represent

positions of bonds in a given family. In practice, the label n usually represents nth

nearest-neighbour shell. However, there are situations where two bonds that are

unrelated by symmetry have the same length5.

Besides bond permutations, point group symmetries may also change the orienta-

tions of spins. We can determine the possible spin invariants for a given bond family

via a simple procedure. For the purpose of demonstration, consider the family of

intra-layer NN bonds. First, we select a single bond in this family and determine

which point group symmetries leave it in the same location (the atoms on the ends of

5Such is the case for triangular lattice, where there are two types of 20th neighbours, which have

the same bond lengths but are not related by symmetry. Similarly, in kagome lattice, there are

two types of 3rd neighbours, since this lattice can be constructed from a triangular lattice with 1/4

depleted sites.



24

the bond are allowed to be interchanged). Consider the bond between sites i and j in

fig. 2.5 (a). Recall that we assume translation modulo for all point group operations.

With these rules, there are four qualifying operations: a trivial identity operation E,

C2 rotation around y-axis, xy mirror plane (σh), and yz mirror plane (σd). These

operations compose the C2v point group. The particular choice of a representative

bond ensures that the symmetry operations do not permute the components of spins.

Next, we analyze how the different couplings between the components of spins i and

j transform under these operations. The summary of these transformations is pre-

sented in table 2.1 (recall that spins transform like axial vectors). Note that SiαSjα

E C2 σh σd
SixSjx SixSjx SixSjx SixSjx

SiySjy SiySjy SiySjy SiySjy

SizSjz SizSjz SizSjz SizSjz

SixSjy −SiySjx SixSjy −SiySjx

SiySjx −SixSjy SiySjx −SixSjy

SixSjz SizSjx −SixSjz −SizSjx

SizSjx SixSjz −SizSjx −SixSjz

SiySjz −SizSjy −SiySjz SizSjy

SizSjy −SiySjz −SizSjy SiySjz

Table 2.1: Transformation properties of quadratic spin expressions on a representative
intra-layer NN bond in AB-SKL.

terms are already invariant under all operations of C2v. In principle, one could sim-

ply take these terms as three independent couplings, namely JxxSixSjx, JyySiySjy,

and JzzSizSjz. However, it is more instructive to construct the invariants from linear

combinations of these terms, such that

H
(1)
ij = J(SixSjx + SiySjy + SizSjz) = JSi · Sj, (2.8)

H
(2)
ij = A(xy)(SixSjx − SiySjy), (2.9)

H
(3)
ij = A(z)SizSjz. (2.10)

Here, J , A(xy), and A(z) are the isotropic and two anisotropic exchange coupling

constants, respectively. The particular set of the linear combinations in eqs. (2.8 -

2.10) is useful because it separates the isotropic and anisotropic interactions, and

because the two anisotropic couplings reflect the symmetry of the kagome lattice.
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The remaining invariants can be obtained by simply adding terms in a given row

of table 2.1. If the resulting sum is non-zero, the expression corresponds to a valid

invariant. This gives us an extra term:

H
(4)
ij = D(SixSjy − SiySjx) = Dẑ · [Si × Sj], (2.11)

where D is the DM constant, with arbitrarily selected sign.

We have found all spin invariants for a single bond, but how do we extend these

expressions to the full bond family? There are two ways to proceed, and these will

be reviewed next.

2.4.1 Method 1

The first approach is to perform the same type of symmetry analysis on the remaining

non-equivalent bonds. For example, consider the bond between the spins j and k in

fig. 2.5 (b). Unsurprisingly, the bond point group is again C2v. However, this time,

the C2 and σd operators mix the x- and y-components of spins, which leads to a table

of transformations that is different from table 2.1. This change is rather unfortunate,

since it implies that the same analysis has to be repeated for all non-equivalent bonds,

while yielding the same or similar invariants. To avoid these unnecessary calculations,

we employ a useful trick: rather than writing the coordinates of each spin in the same

global coordinates (x, y, z), we choose local coordinates for each site (x̃i, ỹi, z̃i), such

that the angles between the local coordinates on each bond are the same. This is

shown in fig. 2.5 (b). Now, the transformations of quadratic terms ˜︁Siα
˜︁Sjβ will be

identical for all bonds. Fortunately, the expressions in local coordinates transform

the same way as presented in table 2.1, and the local bond invariants become

˜︁H(1)
ij = ˜︁J(˜︁Six

˜︁Sjx + ˜︁Siy
˜︁Sjy + ˜︁Siz

˜︁Sjz) = ˜︁J˜︁Si · ˜︁Sj, (2.12)˜︁H(2)
ij = ˜︁A(xy)(˜︁Six

˜︁Sjx − ˜︁Siy
˜︁Sjy) (2.13)˜︁H(3)

ij = ˜︁A(z) ˜︁Siz
˜︁Sjz, (2.14)˜︁H(4)

ij = ˜︁D(˜︁Six
˜︁Sjy − ˜︁Siy

˜︁Sjx) = ˜︁Dẑ · [˜︁Si × ˜︁Sj], (2.15)

for all bonds. Here, the local and global z-components are the same. Therefore, in the

local coordinates, the coupling matrix ˜︁Aij,αβ(r−r′) for the NN intra-layer interactions
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reads

˜︁Aij(r− r′) =

⎡⎢⎢⎢⎣
˜︁J + ˜︁A(xy) ˜︁D 0

− ˜︁D ˜︁J − ˜︁A(xy) 0

0 0 ˜︁J + ˜︁A(z)

⎤⎥⎥⎥⎦ . (2.16)

Note that the local coupling constants are different from the global ones. The rela-

tionship between the global and local parameters can be determined by expanding˜︁H(1,...,4)
ij and relating the resulting expressions to the original H

(1,...,4)
ij terms. In com-

pact notation, this reads

˜︁Si(r) = RiSi(r), (2.17)˜︁ST
i (r) ˜︁Aij(r− r′)˜︁Sj(r

′) = ST
i (r)Aij(r− r′)Sj(r

′), (2.18)

Aij(r− r′) = RT
i
˜︁Aij(r− r′)Rj. (2.19)

In the examples used so far, the rotation matrices are

Ri = RT
j =

⎡⎢⎢⎢⎣
−1

2
−

√
3
2

0
√
3
2
−1

2
0

0 0 1

⎤⎥⎥⎥⎦ ,Rk = I, (2.20)

where I is the identity matrix. These transformations give

RT
i
˜︁AijRj =

⎡⎢⎢⎢⎣
−1

2
˜︁J + ˜︁A(xy) +

√
3
2
˜︁D −

√
3
2
˜︁J − 1

2
˜︁D 0

√
3
2
˜︁J + 1

2
˜︁D −1

2
˜︁J − ˜︁A(xy) +

√
3
2
˜︁D 0

0 0 ˜︁J + ˜︁A(z)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
J + A(xy) D 0

−D J − A(xy) 0

0 0 J + A(z)

⎤⎥⎥⎥⎦ = Aij, (2.21)
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RT
j
˜︁AjkRk =

⎡⎢⎢⎢⎣
−1

2
˜︁J − 1

2
˜︁A(xy) +

√
3
2
˜︁D −

√
3
2
˜︁J +

√
3
2
˜︁A(xy) − 1

2
˜︁D 0

√
3
2
˜︁J +

√
3
2
˜︁A(xy) + 1

2
˜︁D −1

2
˜︁J + 1

2
˜︁A(xy) +

√
3
2
˜︁D 0

0 0 ˜︁J + ˜︁A(z)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
J − 1

2
A(xy) D +

√
3
2
A(xy) 0

−D +
√
3
2
A(xy) J + 1

2
A(xy) 0

0 0 J + A(z)

⎤⎥⎥⎥⎦ = Ajk, (2.22)

RT
k
˜︁AkiRi =

⎡⎢⎢⎢⎣
−1

2
˜︁J + 1

2
˜︁A(xy) +

√
3
2
˜︁D −

√
3
2
˜︁J +

√
3
2
˜︁A(xy) − 1

2
˜︁D 0

√
3
2
˜︁J +

√
3
2
˜︁A(xy) + 1

2
˜︁D −1

2
˜︁J − 1

2
˜︁A(xy) +

√
3
2
˜︁D 0

0 0 ˜︁J + ˜︁A(z)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
J − 1

2
A(xy) D −

√
3
2
A(xy) 0

−D −
√
3
2
A(xy) J + 1

2
A(xy) 0

0 0 J + A(z)

⎤⎥⎥⎥⎦ = Aki, (2.23)

where we dropped the unit cell labels. The interactions on the B triangle can be

obtained similarly and end up being the same as their counterparts on triangle A.

The reciprocal interactions (i.e. Aji, Akj, and Aik) are conveniently obtained from

the transposes of the above matrices. After a few algebraic manipulations, we obtain

the following relations between global and local coupling constants:

J = −1

2
˜︁J +

√
3

2
˜︁D, (2.24)

A(xy) = ˜︁A(xy), (2.25)

A(z) = ˜︁A(z) +
3

2
˜︁J − √3

2
˜︁D, (2.26)

D = −
√

3

2
˜︁J − 1

2
˜︁D. (2.27)

Note that the anisotropic exchange interaction, characterized by A(xy) (from now

on referred to as the in-plane anisotropic exchange) is bond-dependent, while the

exchange, DM, and the A(z) (out-of-plane) anisotropic exchange are not.
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2.4.2 Method 2

The above analysis suggests an even simpler method for obtaining all invariant ex-

pressions. Given the bond invariants H
(1,...,4)
ij , we can simply apply operations in the

crystallographic point group (D6h) that are not contained in the bond point group

(C2v). The most natural choice are the repeated C6 rotations. The exchange inter-

action is invariant with respect to all spin rotations and therefore does not change

from one bond to the next. The out-of-plane anisotropic exchange and the DM term

are invariant under spin rotations around the z-axis (see Appendix A), and also stay

the same. Finally, the form of the in-plane anisotropic exchange changes, leading to

matrices (2.21 - 2.23) above.

To demonstrate this, consider a C3 operation, which rotates bond ij to ki, as in

fig. 2.5 (a). In the matrix form, it reads

R3 =

⎡⎢⎢⎢⎣
−1

2

√
3
2

0

−
√
3
2
−1

2
0

0 0 1

⎤⎥⎥⎥⎦ . (2.28)

Applying this matrix to Aij yields

Aki = RT
3AijR3

=

⎡⎢⎢⎢⎣
−1

2
−

√
3
2

0
√
3
2
−1

2
0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
J + A(xy) D 0

−D J − A(xy) 0

0 0 J + A(z)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
−1

2

√
3
2

0

−
√
3
2
−1

2
0

0 0 1

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
J − 1

2
A(xy) D −

√
3
2
A(xy) 0

−D −
√
3
2
A(xy) J + 1

2
A(xy) 0

0 0 J + A(z)

⎤⎥⎥⎥⎦ , (2.29)

which is identical to the expression derived using the local coordinates. This method is

much faster than the first one and should generally be preferred for model derivation.
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Figure 2.6: (a) Interaction pathways in AB-SKL. The Ak label the set of parameters

{Jk, Dk, A
(xy)
k , A

(z)
k }. In the absence of breathing anisotropy, the dashed lines become

identical to the solid lines of the same color. The arrows in the top right corner
indicate the DM pathways, corresponding to the same sign of D1 (grey) and D2

(black). (b) Local anisotropic axes. The numbers indicate the indices we assign to
each sublattice atom and the grey and black arrows represent n̂ix and n̂iy respectively.

2.5 Final Hamiltonian

Having demonstrated the method, we now apply the same principles to other bonds,

assuming a general structure with potentially non-zero breathing anisotropy6, men-

tioned in Sec. 1.3. Under these assumptions, we calculate invariants up to 5th neigh-

bours: NN inter-layer (index 1), NN intra-layer (intra-cell - index 2, inter-cell - index

3), and next-nearest neighbours (NNN) (intra-cell - index 4, inter-cell - index 5).

Fig. 2.6 (a) further illustrates these interaction pathways. In a compact form, the

Hamiltonian reads

6The effects of breathing anisotropy will not be explored in this work. However, we will keep the

discussion general, to make it more useful for future studies.
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H = HJ +HD +HA +HK , (2.30)

HJ =
1

2

∑︂
rr′

∑︂
ij

Jij(r− r′)Si(r) · Sj(r
′), (2.31)

HD =
1

2

∑︂
rr′

∑︂
ij

Dij(r− r′)ẑ ·
[︁
Si(r)× Sj(r

′)
]︁
, (2.32)

HA =
1

2

∑︂
rr′

∑︂
ij

∑︂
α

A
(α)
ij (r− r′

)︁
(n̂iα · Si(r)

)︁ (︁
n̂jα · Sj(r

′)
)︁
, (2.33)

HK =
∑︂
r

∑︂
i

∑︂
α

Kα

(︁
n̂iα · Si(r)

)︁2
, (2.34)

where we recall that r and r′ label the unit cell positions, while i and j label the

positions of the sublattice atoms inside the unit cells. Note that the sums run over all

sites, and the factors of 1/2 in eqs. (2.31 - 2.33) are used to prevent double-counting.

Regular exchange interactions are always allowed by symmetry on every bond in

the system because these interactions are completely invariant with respect to all

spin rotations and reflections. This isotropic character also reflects the fact that

exchange interactions have purely electronic origins and do not depend on the SOC

(see Sec. 1.1.1).

The DM interactions are non-zero for the intra- and inter-layer NN bonds (in-

dices 1-3) and zero otherwise (DM interactions on NNN bonds cancel because they

pass through the inversion centre). One can verify that the form of the DM vec-

tor automatically satisfies Moriya’s rules (see Sec. 1.2.2). Although DM interactions

originate from the SOC, the anisotropy is weak, since these couplings preserve the

in-plane rotational symmetry, as mentioned in Sec. 2.4.2.

Finally, for all types of neighbours considered in the derivation, there are non-zero

anisotropic exchange interactions. We use A
(y)
ij = −A(x)

ij = A
(xy)
ij as in the derivation

in the previous section. The vectors n̂iα represent the local anisotropy axes (see

fig. 2.6 (b)), and can be written as

n̂ix =

⎡⎢⎢⎢⎣
cosαi

sinαi

0

⎤⎥⎥⎥⎦ , n̂iy =

⎡⎢⎢⎢⎣
− sinαi

cosαi

0

⎤⎥⎥⎥⎦ , n̂iz =

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦ , (2.35)

where
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αi =
πli
3
, (2.36)

with

{l1, l2, l3, l4, l5, l6} = {3, 1, 5, 0, 4, 2}. (2.37)

These vectors are also used to define the single-ion anisotropy (SIA),HK in eq. (2.34).

The allowed couplings of spin components on the same site can be derived using the

same methods described in the previous section, where instead of bond point group

one would be dealing with the site point group (which also happens to be C2v in the

AB-SKL). We note that the number of the SIA parameters can be reduced using the

spherical representation of the spins

Si(r) =

⎡⎢⎢⎢⎣
cos

(︁
θi(r)

)︁
sin

(︁
ϕi(r)

)︁
sin

(︁
θi(r)

)︁
sin

(︁
ϕi(r)

)︁
cos

(︁
ϕi(r)

)︁
⎤⎥⎥⎥⎦ , (2.38)

and the definition of the local axes in eq. (2.35), such that

∑︂
α

Kα

(︁
n̂iα · Si(r)

)︁2
= Kx cos2(θi(r)− αi) sin2(ϕi(r))

+Ky cos2(θi(r)− αi) sin2(ϕi(r))

+Kz cos2(ϕi(r))

= Ky + K̄x cos2(θi(r)− αi) sin2(ϕi(r)) + K̄z cos2(ϕi(r)), (2.39)

where θi(r) and ϕi(r) are the spherical angles, K̄x = Kx−Ky and K̄z = Kz−Ky. We

see that the normalization constraint on the spin variables leaves only two independent

SIA parameters. Therefore, in the remainder of this work, we will set Ky = 0.

While the out-of-plane anisotropy preserves rotational symmetry in the xy-plane,

the in-plane anisotropic interactions reduce these continuous symmetries down to the

discrete rotations of the point group. For this reason, we will refer to models with

the in-plane anisotropic interactions as “strong SOC” cases.
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2.6 Summary of important results and open questions

In this chapter, we demonstrated in a pedagogical manner the procedure of symmetry-

based derivation of magnetic Hamiltonian for AB-SKL. The results of this deriva-

tion were published in Ref. [75]. Note that the original derivation, presented in the

supplemental material of this reference, made use of concepts from group theory,

which contrasts the simplified approach presented here. Although previous stud-

ies [71–73, 90–92] have discussed some of the terms in the model (2.30), the analysis

in Ref. [75] was the first work to identify all allowed quadratic spin invariants. In

doing so, we have demonstrated that the intra-layer DM interactions can only have

a DM vector oriented along the ẑ-axis. This contrasts the results in Ref. [71], which

included a second type of DM interactions with the DM vectors lying parallel to the

kagome plane. Importantly, the analysis above revealed that the NN inter-layer bonds

may also host DM interactions, which has not been discussed in any of the previous

literature. These inter-layer DM couplings will be shown to host a wide range of

phenomena in the later chapters. Lastly, the derivation has identified the anisotropic

exchange interactions, which have been excluded from all previous models of AB-SKL.

The effects of these interactions may be non-negligible in some compounds, since the

systems like Mn3X have been previously experimentally shown to have a considerable

magnetic anisotropy (see Chapter 6).

Having established the general model here, it would be interesting to investigate

how the changes in symmetry modify the spin interactions. For example, at the

surface, the symmetry is reduced, because the operations that interchange the A

and B layers are no longer valid symmetry operations. As a result, the number of

spin invariants will increase and the model will include terms that couple the planar

and z-components of spins. The surface effects are important for the studies of thin

magnetic films, which can be grown at the facilities in Dalhousie University.



Chapter 3

Self-duality transformations

Nothing in physics seems so hopeful

as the idea that it is possible for a

theory to have a high degree of

symmetry that was hidden from us

in everyday life.

Steven Weinberg

In the previous chapter, Sec. 2.4, we demonstrated two methods for extending

the spin invariants on a single bond to other bonds in the same family. The first

method, involving a change to local coordinates, may seem unnecessarily convoluted,

considering simple rotations are able to achieve equivalent results. However, in the

process of defining bond invariants in local coordinates, we accidentally stumbled

onto a very interesting property: the local terms ˜︁H(1,...,4)
ij had exactly the same form

as the global invariants H
(1,...,4)
ij , despite describing very different interactions (recall

that the global coupling constants were defined as linear combinations of the local

ones). This equivalence is called the self-duality1 of the Hamiltonian.

Self-duality and symmetry transformations have a lot in common, since both types

of operations describe some form of invariance of a given model. However, self-duality

should be viewed as a generalization of symmetry, since it maps one set of parameters

of the model to another, whereas a symmetry leaves it unchanged. Nevertheless, the

existence of self-duality has important consequences on the physical properties of

the corresponding model. For example, notice that if we treat the local and global

coupling constants as independent parameters and set them equal to the same values

1By self -duality, we imply a transformation that maps a model consisting of some number of inter-

actions into itself, without producing any new interactions. In this way, a symmetry is a trivial

self-duality, since it leaves the model unchanged.

33
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(i.e. ˜︁J = J = J0, ˜︁D = D = D0, . . . ), the energy would be exactly the same. Notably,

the local transformations change the spin structure of the system, thus mapping

between different magnetic phases. Therefore, self-duality transformations describe

hidden symmetries of the parameter space, which leave the energy unchanged, while

modifying the spin structure.

Self-duality has played an significant role in statistical physics, an important ex-

ample being a Kramers-Wannier duality that relates the ordered and paramagnetic

phases in the two-dimensional Ising model on a square lattice [93–98]. Another fa-

mous example is the duality of electromagnetic fields, which is a consequence of the

Lorentz symmetry of the Maxwell equations [99]. More recently, self-duality trans-

formations have gained some interest in the studies of strongly anisotropic magnets,

mostly in the context of the Kitaev systems [100–102]. In 2D kagome systems, Essafi

and Jaubert used self-duality maps to study the emergent chiral spin liquids at the

points of accidental symmetry [31, 32]. Note that some sources also refer to these

transformations as spin gauge transformations [103, 104]. However, up to date, no

formal description of emergent self-dualities exists for generic magnetic systems. The

task of developing a general formalism for self-duality is an ambitious endeavour, and

we will not pursue it here. Nevertheless, we will describe some of the self-duality

transformations for the AB-SKL and approximately relate them to the strength of

the SOC. The last section will be dedicated to the properties and applications of

self-duality.

3.1 Conditions for self-duality

To understand the origin self-duality in our model, we should go back to the definition

of the local coordinates. In order to have self-duality, in addition to eqs. (2.17 - 2.19),

we must ensure that

H
(︃{︃

Aij(r− r′);Si(r)

}︃)︃
= H

(︃{︃˜︁Aij(r− r′); ˜︁Si(r)

}︃)︃
, (3.1)

where the model is written explicitly in terms of the elements of the coupling matrices

Aij(r − r′) and spin variables, which could either be in a local or global form. In

the following, for the sake of compactness, we will abbreviate the coupling constants

to Aij, i.e. we will omit the unit cell positions. Eq. (3.1) essentially ensures that
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the local and global invariants are equivalent on every bond. The process for finding

self-dualities then consists of the following steps:

1. Select a local coordinate frame using eq. (2.17). In principle, the transformation

matrices can be further generalized by allowing them to be different for different

unit cells (Ri → Ri(r)), but this will not be done in this work for the sake

of simplicity. We constrain the local transformation matrices to be real and

orthogonal, in order to preserve the magnitude of the spin vectors.

2. Calculate the new bond coupling matrices using the inverse of eq. (2.19).

3. Solve eq. (3.1) to find the local transformations that correspond to the self-

duality. In principle, this procedure could be performed numerically, in which

case we would iterate through steps 2 and 3 while adjusting the local transfor-

mations until convergence is achieved.

We will demonstrate this procedure on the magnetic model in eq. (2.30) starting with

only exchange interactions (i.e. no SOC), then adding the DM interactions and out-

of-plane anisotropy (weak-SOC limit), and, finally, including the in-plane anisotropy.

Before proceeding, it is important to mention the uniqueness of duality transfor-

mations. Consider local transformation matrices Ri and Rj. Consider also a symme-

try transformation described by matrix M. We can define new local transformations

R̄i = RiM and R̄j = RjM. Then

˜︁Aij = RiAijR
T
j

= Ri(MAijM
T )RT

j

= R̄iAijR̄
T
j , (3.2)

where in the second line we used the fact that the coupling matrix is invariant under

the symmetry transformation M. Hence, if the local transformations describe a self-

duality, we can construct new local matrices using the symmetries of the Hamiltonian

that describe the same self-duality. This allows us some freedom to select the exact

form of the local transformations.
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3.2 Isotropic limit

The simplest form of the magnetic model only includes exchange interactions, H =

HJ . Then, all bond coupling matrices have the same form:

Aij =

⎡⎢⎢⎢⎣
Jij 0 0

0 Jij 0

0 0 Jij

⎤⎥⎥⎥⎦ = JijI, (3.3)

where I is the identity matrix. Eqs. (2.19) and (3.1) imply that

˜︁Aij = RiAijR
T
j

= JijRiR
T
j

= ˜︁JijI, (3.4)

which suggests that RiR
T
j = rijI, such that ˜︁Jij = rijJij, where rij is a constant. Since

the transformation matrices are orthogonal, the only possible values for rij are ±1.

If rij = 1, then the matrices are identical, Ri = Rj, and correspond to a symmetry

transformation, leaving the model unchanged. Therefore, the only possibility for

self-duality is when rij = −1, or, equivalently,

Ri = −Rj. (3.5)

Note that Ri can be any orthogonal matrix, so we can choose it to be the identity

matrix. The only way to satisfy condition in eq (3.5) on every bond is if the underlying

lattice consists of two independent sublattices. If this is the case, then we can assign

the local transformations to be I for one sublattice, and −I for the other.

This is not possible for a 2D kagome lattice, and therefore it does not have the

exchange self-duality. However, in the AB-SKL we have A and B sublattices, which

allows us to define Ri = giI, where

gi =

⎧⎪⎨⎪⎩ 1, if i = 1, 2, 3,

−1 if i = 4, 5, 6,
(3.6)
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we get a map between models with positive and negative inter-layer exchange param-

eters:

γ :

⎧⎪⎨⎪⎩J1,4,5 −→ −J1,4,5
J2,3 −→ J2,3.

(3.7)

This self-duality can be interpreted in two ways. First, assume that we know the

spin structure that is stabilized by some set of parameters. When all out-of-plane

coupling constants change sign, the new spin structure can be obtained by simply

flipping the spins on the B (or A) layers. We will refer to the structures related

via self-duality as dual images. Dual images are extremely useful for constructing

phase diagrams: once the stability regions of a phase are known, we can apply self-

duality transformations to obtain the phase boundaries of the dual images. The

converse is also true: when the spins on either A or B layers are flipped (for any spin

configuration), the corresponding energy change comes from the inter-layer couplings

changing sign.

Although these properties might seem trivial, they demonstrate the usefulness of

self-duality. Regardless of the number of model parameters, as long as they are of the

same type2, the duality transformations will remain valid.

3.3 Weak-SOC limit

It was mentioned in Sec. 2.5 that the DM as well as the out-of-plane anisotropic

interactions (which includes both anisotropic exchange and SIA) are invariant under

rotations of spins around the z-axis. Since in this case the SOC-induced interactions

do not break continuous rotational symmetry, we will refer to this type of spin symme-

try as the weak-SOC limit. The out-of-plane spin rotations change these interactions

and are no longer valid symmetry operations of the system. Let’s consider a coupling

matrix of the form

2More precisely, the interactions must have the same symmetry properties. In the first exam-

ple, exchange interactions were shown to be invariant under arbitrary orthogonal transformations.

Anisotropic interactions reduce this symmetry, and can therefore introduce new self-duality trans-

formations.
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Aij =

⎡⎢⎢⎢⎣
Jij Dij 0

−Dij Jij 0

0 0 Jij + A
(z)
ij

⎤⎥⎥⎥⎦ , (3.8)

where in the special case of i = j we can take

Aii =

⎡⎢⎢⎢⎣
0 0 0

0 0 0

0 0 Kz

⎤⎥⎥⎥⎦ . (3.9)

The block-diagonal structure of eq. (3.8) suggests that we should have separate lo-

cal spin transformations for the in-plane and out-of-plane spin components. The

corresponding general transformation matrix is also block-diagonal:

Ri =

⎡⎢⎢⎢⎣
R

(xx)
i R

(xy)
i 0

R
(yx)
i R

(yy)
i 0

0 0 R
(zz)
i

⎤⎥⎥⎥⎦ . (3.10)

In order for this matrix to be orthogonal, we must enforce that both blocks are

independently orthogonal, meaning that R
(zz)
i = ±1. Since the z-components trans-

form independently from the in-plane ones, we can study them independently of each

other. To simplify the discussion, we will consider the transformation of the in-plane

components first. The most general 2× 2 orthogonal matrix is

Ri =

⎡⎣εi cos(θi) −εi sin(θi)

sin(θi) cos(θi)

⎤⎦ , (3.11)

where εi, εj = ±1. Applying this transformation to the top block of eq. (3.8) gives

˜︁Aij =

⎡⎣Jijεiεj cos
(︁
θij

)︁
+Dijεiεj sin

(︁
θij

)︁
−Jijεi sin

(︁
θij

)︁
+Dijεi cos

(︁
θij

)︁
Jijεj sin

(︁
θij

)︁
−Dijεj cos

(︁
θij

)︁
Jij cos

(︁
θij

)︁
+Dij sin

(︁
θij

)︁
⎤⎦ , (3.12)

where θij = θi−θj. To ensure the self-duality, we must set εi = εj = ε. The equations

for the dual exchange and DM coupling constants are then
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˜︁Jij = Jij cos
(︁
θij

)︁
+Dij sin

(︁
θij

)︁
(3.13)˜︁Dij = −Jij sin

(︁
θij

)︁
+Dijε cos

(︁
θij

)︁
. (3.14)

Next, we have to make sure that the local coupling constants are the same on each

bond. Let us consider the constraints imposed on the angles θi by the NN inter- and

intra-layer interactions. In order for the inter-layer constants to be the same, we set

˜︁J1 = ˜︁J16 = ˜︁J62 = ˜︁J24 = ˜︁J43 = ˜︁J35 = ˜︁J51, (3.15)˜︁D1 = ˜︁D16 = ˜︁D62 = ˜︁D24 = ˜︁D43 = ˜︁D35 = ˜︁D51. (3.16)

Similarly, for the intra-layer interactions we equate

˜︁J2 = ˜︁J12 = ˜︁J23 = ˜︁J31 = ˜︁J45 = ˜︁J56 = ˜︁J56, (3.17)˜︁D2 = ˜︁D12 = ˜︁D23 = ˜︁D31 = ˜︁D45 = ˜︁D56 = ˜︁D56. (3.18)

We obtain

θ1 − θ6 = θ6 − θ2 = θ2 − θ4 = θ4 − θ3 = θ3 − θ5 = θ5 − θ1, (3.19)

θ1 − θ2 = θ2 − θ3 = θ3 − θ1 = θ4 − θ5 = θ5 − θ6 = θ6 − θ4. (3.20)

These constraints are satisfied if θi = mαi, where m is an integer and αi are defined

in eq. (2.36). With these angles, we obtain self-duality maps

µ(ε)
m :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1 −→ J1 cos
(︁
πm
3

)︁
+D1 sin

(︁
πm
3

)︁
,

D1 −→ −J1 sin
(︁
πm
3

)︁
+D1ε cos

(︁
πm
3

)︁
,

J2,3 −→ J2,3 cos
(︁
2πm
3

)︁
+D2,3 sin

(︁
2πm
3

)︁
,

D2,3 −→ −J2,3 sin
(︁
2πm
3

)︁
+D2,3ε cos

(︁
2πm
3

)︁
,

J4,5 −→ (−1)mJ4,5.

(3.21)

Returning now to the out-of-plane components, the local transformation reads
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˜︁A(zz)
ij = r

(z)
ij

(︂
Jij + A

(zz)
ij

)︂
− ˜︁Jij (3.22)

˜︁Kz = r
(z)
ij Kz, (3.23)

where r
(z)
ij = R

(z)
i R

(z)
j . Here, the expression for ˜︁Jij is determined by the in-plane

transformation in eq. (3.21). Following similar arguments as for exchange, we can

write the complete the self-duality maps above:

µ(ε,ζ)
m :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1 −→ J1 cos
(︁
πm
3

)︁
+D1 sin

(︁
πm
3

)︁
,

D1 −→ −J1 sin
(︁
πm
3

)︁
+D1ε cos

(︁
πm
3

)︁
,

J2,3 −→ J2,3 cos
(︁
2πm
3

)︁
+D2,3 sin

(︁
2πm
3

)︁
,

D2,3 −→ −J2,3 sin
(︁
2πm
3

)︁
+D2,3ε cos

(︁
2πm
3

)︁
,

J4,5 −→ (−1)mJ4,5,

A
(z)
1 −→ ζA

(z)
1 + J1

(︂
ζ − cos

(︁
πm
3

)︁)︂
−D1 sin

(︁
πm
3

)︁
,

A
(z)
2,3 −→ ζA

(z)
2,3 + J2,3

(︂
ζ − cos

(︁
2πm
3

)︁)︂
−D2,3 sin

(︁
2πm
3

)︁
,

A
(z)
4,5 −→ ζA

(z)
4,5 + J4,5

(︁
ζ − (−1)m

)︁
,

Kz −→ ζKz,

(3.24)

where ζ = ±1. Although the transformation of the z-components of spins is necessary

to make the self-duality maps exact, we will show that most magnetic structures in

AB-SKL are planar, with spins lying in the kagome planes. Therefore, the maps

defined in eq. (3.21) are often sufficient to describe all necessary properties. The

corresponding local coordinate frames are shown in fig. 3.1. Note that the integer m

characterizes a discrete “winding number” around a fictitious hexagon formed by the

xy-positions of the sublattice atoms. On the other hand, the role of the value of ε can

be understood by considering the µ
(−1,+1)
0 self-duality. The only coupling constants

that change under this transformation are the DM parameters, which simply flip the

sign. In matrix form, this transformation is equivalent to a mirror symmetry, which

explains why it affects the DM interactions. For these reasons, we can view ε as the

chirality control parameter.



41

Figure 3.1: An illustration of the µ
(+1,+1)
m self-dualities in the weak-SOC limit. The

configurations represent the local coordinate frames, where for the sake of simplicity
we only show the local y-axes. The z coordinates point out-of-plane, and the local
x-axes can be obtained using the right-hand rule on each site. From the top of the
diagram, the winding number starts at zero, and increases by integer increments going
counter-clockwise. Application of the µ

(+1,+1)
m transformation is equivalent to moving

m steps around the diagram in the counter-clockwise direction.

3.4 Strong-SOC limit

Finally, when we include the in-plane anisotropy, the system loses all continuous

rotational symmetries. To indicate this, we will refer to this situation as the strong-

SOC limit. Nevertheless, the coupling matrices Aij remain block-diagonal, and we

can still use matrices of the type (3.10) to derive the self-duality transformations.

So far, we have been lucky to have relatively simple equations that constrain

the local transformation matrices in order to yield self-duality. The calculations

presented in the last section were considerably longer that those for the exchange

interactions, but were still tractable. Here, our luck somewhat runs out, since in

order to explicitly derive the allowed self-duality transformations for the most general

case of the coupling matrix requires a significantly longer analysis. Most of the

matrix transformations that result from this analysis have already been derived in

the previous section: these correspond to maps µ
(+1,ζ)
0 , µ

(−1,ζ)
1 , µ

(+1,ζ)
3 , µ

(−1,ζ)
4 :
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µ
(+1,ζ)
0 , µ

(−1,ζ)
4 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(xy)
1 −→ A

(xy)
1 ,

A
(xy)
2,3 −→ A

(xy)
2,3 ,

A
(xy)
4,5 −→ A

(z)
4,5,

Kx −→ Kx,

Ky −→ Ky,

(3.25)

µ
(−1,ζ)
1 , µ

(+1,ζ)
3 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(xy)
1 −→ −A(xy)

1 ,

A
(xy)
2,3 −→ A

(xy)
2,3 ,

A
(xy)
4,5 −→ −A(xy)

4,5 ,

Kx −→ Kx.

(3.26)

The remaining self-duality transformation corresponds to a global 90-degree rotation

around the z-axis:

Rη =

⎡⎢⎢⎢⎣
0 ∓1 0

±1 0 0

0 0 1

⎤⎥⎥⎥⎦ , (3.27)

which flips the sign of the in-plane anisotropic interactions:

η :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(xy)
1 −→ −A(xy)

1 ,

A
(xy)
2,3 −→ −A(xy)

2,3 ,

A
(xy)
4,5 −→ −A(xy)

4,5 ,

Kx −→ −Kx.

(3.28)

The sign of the SIA parameters defines either the easy-axis (Kα < 0), or easy-plane

(Kα > 0) anisotropy for each spin, while the sign of the anisotropic exchange se-

lects the easy-axis for all spins globally. Thus, the self-duality maps above provide

connections between phases with different easy-axes.
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3.5 Summary of important results and open questions

In this chapter, we introduced self-duality transformations of the magnetic Hamilto-

nian in the isotropic, weak-, and strong-SOC settings. The derivation provided here

can serve as a guide for identifying self-duality in other systems. Interestingly, we

see that two limiting SOC cases (isotropic and strong) have fewer transformations

than the weak-SOC case, where we get 24 different transformations. In compari-

son, in 2D kagome only two non-trivial self-duality transformations have been dis-

cussed [31, 32]. This illustrates how a simple AB-stacking of kagome layers enriches

the magnetic properties of the system. The self-dual properties of AB-SKL demon-

strate how changes in the local spin structure, such as winding or chirality, change

the model parameters. The smallest number of self-dualities is found in the isotropic

limit, where we have a single map γ ≡ µ
(+1,−1)
3 , which reflects the two-sublattice

structure of the lattice and persists in all SOC limits.

Let us now conclude by discussing the applications and some unanswered questions

regarding the origins of self-duality.

3.5.1 Applications of self-duality

So far, we have focused on deriving the possible self-duality maps but didn’t really

discuss why they are useful. A simple explanation of the usefulness of self-duality is

that it describes the symmetry of the parameter space. Given a self-duality transfor-

mation, we can apply it to some spin configuration to obtain a new structure with

exactly the same energy. Similarly, if we know that at a given point of the parameter

space we have a certain ground state structure, we can change the parameters of the

model according to a self-duality map and obtain the ground state configuration at

this new point via the corresponding local transformation. As a result, self-duality

maps are helpful for constructing ground state phase diagrams. By analyzing a small

portion of the parameter space and characterizing a subset of phase pockets, we can

obtain new phases by applying different self-duality transformations.

The power of self-duality extends far beyond our simple examples of ground state

energies. Since the Hamiltonian is self-dual, most3 properties of the system will

3There are small caveats that complicate this general discussion. For example, properties that
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display the same duality. For example, it is not difficult to show that the self-duality

extends to the partition function,

Z = Tr
{︂
e−βH

}︂
, (3.29)

where β = 1
kBT

is inverse temperature (scaled by Boltzmann constant), and the trace

implies integration over all degrees of freedom. Therefore, self-duality extends to all

of the thermodynamic properties of the system, which allows us to make very general

statements about our model. Similarly, the discussion is not limited to the classical

systems, since self-duality has been shown in the past to extend to quantum ground

states [100,102].

One of the most common applications of the self-duality is in identifying points

of accidental degeneracy. For example, consider applying the self-duality maps on

the NN antiferromagnetic kagome model. By the conservation properties, the new

points with potentially non-zero anisotropic interactions will also have ground states

with macroscopic degeneracy, which may host exotic quantum phases [31]. Another

interesting consequence of this is that a fully anisotropic system may develop acci-

dental rotational symmetry, leading to zero-energy excitations, the so-called “pseudo-

Goldstone” modes [102].

From an experimental point of view, knowledge of potential self-duality transfor-

mations is important when comparing the experimental data to theoretical predic-

tions. Because the measured experimental properties may possess self-duality, several

different sets of parameters could produce identical fits to a theoretical model. A case

of this has already been reported for an inelastic neutron scattering experiment of

a Kitaev system [105]. The solution in this situation is to add constraints to the

fit based on other experimental observations that directly sample the local structure

(e.g. elastic neutron scattering).

depend on the local spin structure (such as magnetization) are not generally preserved by the

self-duality transformations. Another example is spin dynamics, where the local transformations

must preserve the “right-handedness” of the coordinate frames in order to map the dynamics

of one structure onto another. In general, these constraints need to be worked out for specific

applications. However, in most cases, a lot of the self-duality properties extend to the properties

of interest, making these transformations extremely useful.
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3.5.2 Improvements of the derivation method

The main disadvantage of the method that we used to determine the possible self-

duality transformations is efficiency: for a more complicated system it might not be

possible to make good predictions about the correct form of the local transformation

matrices. This issue can be resolved by automating the procedure using numerical

programs, where the initially random matrices are modified until they satisfy eq. (3.1).

Similar algorithms have been proposed for Kitaev systems [100]. However, although

the numerical approach would be more thorough, it may be more difficult to gain

insight about the bigger picture.

The self-duality transformations derived here were included in Ref. [80]. In the

article, the derivation approach is different and is more focused on the connections

between the effective spin symmetry and self-duality. By the effective spin symmetry

we refer to the spin-only transformations that we may have in a system in addition

to the space-group symmetries. For example, in the isotropic limit, we gain a full

rotational spin symmetry, while in the weak-SOC limit it is reduced to only the axial

rotations. These additional symmetries have important effects on the mathematical

structure of the symmetry groups, which manifest in different irreducible represen-

tations (irreps) of these groups. Irreps provide a connection between the abstract

symmetry operations and the transformations acting directly on a physical system.

It turns out, that the number and type of the irreps in a group is closely related

to the number of possible self-duality transformations [80]. However, the details of

this derivation require a more sophisticated group-theoretical treatment and are not

yet completely general. Obtaining a general connection between the symmetry and

self-duality is an important challenge that would help with the characterization of

novel systems and could potentially answer some of the long-standing questions, such

as origins of accidental degeneracy.



Chapter 4

Monte Carlo simulations

You insist that there is something a

machine cannot do. If you tell me

precisely what it is a machine

cannot do, then I can always make

a machine which will do just that.

John von Neumann

Most modern problems in physics (and, generally, in science) revolve around some

form of complexity, which arises from interactions between many1 variables (objects

or bodies). In a great majority of cases, this complexity makes analytical calculations

extremely difficult, and often impossible2. In this regard, the advances in computa-

tional sciences have allowed us to circumvent this problem by studying the many-body

problems numerically.

Monte Carlo (MC) methods are a class of algorithms, which use random sampling

in order to make numerical estimations of unknown quantities. Since the first applica-

tions of computation to physical problems, MC methods have quickly become a widely

used technique in physics used to calculate various statistical properties [106,107]. In

this chapter we will review basic principles of MC simulations and introduce the

common algorithms used to study continuous spin systems.

1In physics tradition, the counting generally goes as one, two, many, infinite.

2The two ends of the spectrum (i.e. one- and infinite-body problems) usually correspond to the

simplest cases, which have been studied for decades, while in the best case scenario, the two-body

problem is barely solvable. The remaining cases are either impossible to solve or 1) can be shown

to be exactly equivalent to the one/infinite-object problem; 2) have been solved by a frighteningly

gifted individual with the help of an obscure field of mathematics, such that the proof would require

other scholars more than four years to decipher [94].

46
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4.1 Basic ideas

To start, let the state of a magnetic system be completely determined by the orien-

tations of N normalized spin vectors. In this way, a point in the configuration space

can be written as ν =
(︁
S(r1),S(r2), . . . ,S(rN)

)︁
. As the directions of the spins in the

system fluctuate at some temperature T , ν traces a trajectory in the configuration

space, ν(t), where t represents a time measure. Alternatively, t may label different

states of the system, prepared under the same conditions (same model parameters

and temperature). The physical properties of the system will change as the trajectory

progresses, and the average of some property Gν = G
(︁
S(r1),S(r2), . . . ,S(rN)

)︁
over

the spin configurations visited during a trajectory with τ steps is

⟨G⟩τ =
1

τ

τ∑︂
t=1

Gν(t). (4.1)

The true average of this property is given by ⟨G⟩ = limτ→∞⟨G⟩τ . This limit is taken in

order for the sampled distribution to properly account relative frequencies with which

different configurations are visited. This is the foundation of MC simulations: the

properties of the system are estimated by averaging over a large number of randomly

generated system configurations.

In order for the MC method to be useful, however, we must address several issues.

Firstly, in order for the states in ν(t) to be representative of the statistical distri-

bution, we must ensure that the evolution of the trajectory is ergodic, i.e. that the

system can reach every state in the configuration space given enough time. This can

be achieved by generating a random configuration at every new step. However, even

in the simplest case of binary (Ising) spins, the number of possible configurations in-

creases exponentially with increasing system size and quickly becomes astronomically

large, making the straightforward sampling of these states impractical. In models

with continuous degrees of freedom, the number of states is, by definition, infinite.

For this reason, MC algorithms are designed such that the sampling of new configu-

rations is biased towards the states that are statistically important. This importance

sampling strategy allows us to make good estimates of physical properties by sampling

only a small fraction of the total number of configurations.
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In many cases, we are interested in sampling the properties of a system in ther-

mal equilibrium. A sufficient requirement for the existence of stationary equilibrium

is the so-called detailed-balance condition, which requires that a transition from a

configuration ν to a different configuration µ is reversible, or

pνPν→µ = pµPµ→ν , (4.2)

where pν is the probability of a given state ν, and Pν→µ is the probability of a

transition from ν to µ. In thermal equilibrium, the probability distributions are

given by the Boltzmann distribution:

pν =
e−βEν

Z
, (4.3)

where β = 1
kBT

is inverse temperature (scaled by Boltzmann constant), Eν is the

energy of the configuration, and Z is the partition function:

Z =
∑︂
ν

e−βEν . (4.4)

Eq. (4.2) can be rearranged to read

Pν→µ

Pµ→ν

=
pµ
pν

= e−β(Eµ−Eν) = e−β∆Eνµ . (4.5)

A given MC algorithm is then determined by a particular form of the transition

probability. The two most common algorithms used for studying spin systems are

the Metropolis and the heat-bath algorithms.

4.2 Metropolis algorithm

Metropolis algorithm [106, 107] was developed in the early days of computer simula-

tions, and it remains one of the most ubiquitous and robust numerical methods in

scientific computing. The transition probability is defined in a piece-wise form:

Pν→µ =

⎧⎪⎨⎪⎩1, ∆Eνµ ≤ 0,

exp
(︁
−β∆Eνµ

)︁
, ∆Eνµ > 0.

(4.6)

At each step, the orientation of a randomly chosen spin is modified and the resulting
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Figure 4.1: Unrestricted and restricted Metropolis steps. The current spin orienta-
tion is indicated by the black arrow. In the unrestricted case, the new orientation is
sampled uniformly on the unit sphere, resulting in a large number of discarded con-
figurations at low temperatures. On the other hand, in the restricted move scheme,
the sampling is restricted to a section of the sphere bounded by the base of the cone,
centred around the current spin orientation. The height of the cone is chosen to be
∆Sz = 1−aT , where a ∼ 1 is a simulation parameter. At low temperatures, the base
of the cone shrinks, leading to higher acceptance rate.

configuration is accepted with probability Pν→µ. The Metropolis method for a single

MC step is given in algorithm 1 in the Appendix B.

This algorithm works well for systems with one-dimensional spin vectors (e.g.

Ising model), but becomes less efficient for continuous degrees of freedom, especially

at lower temperatures. The reason for this is that at low temperatures the proba-

bility of large spin fluctuations becomes very small, and therefore most of the pro-

posed configurations are discarded. The situation can be improved by implementing

a restricted-step update [108], whereby a selected spin is rotated within a cone with a

given width, as in fig. 4.1. The width of the cone can then be parameterized such that

it would monotonically decrease with the decreasing temperature. This restricted up-

date procedure has been shown to be extremely effective in simulations of frustrated

XY and Heisenberg models [21].

4.3 Heat-bath algorithm

Heat-bath sampling [109] further improves the sampling statistics by generating new

spin orientations from the probability distribution

P
(︁
S′(r);H(r)

)︁
=

eβS
′(r)·H(r)∫︁

dS′(r)eβS′(r)·H(r)
=
eβS

′(r)·H(r)

C(r)
, (4.7)
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where Hα(r) = − ∂H
∂Sα(r)

is the effective field acting on spin at site r. In the following,

we drop the site labels for clarity. Note that S′ ·H = H cos θ, such that

C =

∫︂ 2π

0

dϕ

∫︂ π

0

dθ sin θeβH cos θ =
4π sinh(βH)

βH
, (4.8)

where H = |H|, and θ is the angle between H and S′. The probability distribution

can be written in terms of two independent distributions, P (ϕ) and P (cos θ):

P (ϕ) =
1

2π
, (4.9)

P (cos θ) =
βHeβH cos θ

2 sinh(βH)
, (4.10)

P
(︁
S′;H

)︁
= P (ϕ)P (cos θ). (4.11)

For any random variable x with probability distribution P (x), the cumulative distri-

bution function F (x′) represents the probability of choosing the value of x to be less

than or equal to x′:

F (x′) =

∫︂ x′

−∞
dxP (x). (4.12)

For P (ϕ) and P (cos θ) Eq. (4.12) becomes

F (ϕ) =
1

2π

∫︂ ϕ

0

dϕ′ =
ϕ

2π
= r1, (4.13)

F (cos θ) =
βH

2 sinh(βH)

∫︂ cos θ

−1

dcos θ′eβH cos θ′ =
eβH cos θ − e−βH

2 sinh(βH)
= r2. (4.14)

When r1 and r2 are uniformly distributed on [0, 1), the equations above translate into

ϕ = 2πr1, (4.15)

cos θ = 1 +
1

βH
ln
(︂
r2 + (1− r2)e−2βH

)︂
. (4.16)

Thus, by generating two random numbers, r1 and r2, it is possible to determine the

new orientation of spin S(r) with respect to its effective field H(r). This procedure

is summarized in algorithm 2 in the Appendix B.
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At low temperatures, the exponential term vanishes leading to

cos θ ≈ 1

βH
ln(r2). (4.17)

This simplified equation can be used to speed up the program at low temperatures

(since we do not have to calculate computationally “expensive” exponential func-

tions). However, one should be cautious of numerical errors at very small values of

r2
3.

The heat-bath algorithm works well for the continuous spin systems, where the

ground state has zero-energy excitations (i.e. the Goldstone modes). Crucially, the

closed form solutions of the integrals in (4.8) and (4.14) above depend on the fact

that the effective field on a given site is independent of the orientation of the spin on

the same site. When this condition is not satisfied (for example in a system with non-

zero SIA), the algorithm can lead to significant errors,4 and thus Metropolis algorithm

should be used instead.

4.4 Microcanonical updates

Although the heat-bath algorithm improves the sampling at low temperatures in

models with continuous degrees of freedom, the system may still get stuck in a single

state. Physically speaking, at low temperatures the dominant spin excitations (spin

waves), are the small-frequency Goldstone modes, which correspond to zero-energy

global spin rotations. To improve the sampling and allow the system to explore

a larger portion of the phase space, we can introduce intermediate microcanonical

updates, i.e. updates that do not change the energy of the system.

Note that we may write a spin vector S(r) in terms of components parallel and

perpendicular to the local field H(r):

S(r) = S∥(r)ŝ∥(r) + S⊥(r)ŝ⊥(r), (4.18)

where

3When βH ≤ 0.2, eq. (4.17) is valid for r2 ≥ 5× 10−5.

4For example, if the SIA coefficient is positive (easy-plane anisotropy) the heat-bath algorithm

defined here will tend to maximize the energy, instead of minimizing it.



52

S∥(r)ŝ∥(r) =
S(r) ·H(r)

H2(r)
H(r). (4.19)

Since the perpendicular component of the spin S⊥(r)ŝ⊥(r) does not contribute to the

dot product, it also does not contribute to the energy of the system. Therefore, a

rotation of spin around its local field does not cost any energy. A microcanonical

move may then consist of such a rotation, according to the Landau-Lifshitz dynamic

equation:

d

dt
S(r) = H(r)× S(r). (4.20)

This microcanonical update is often referred to as over-relaxation method [107,110].

In order to move the system away from the current configuration, each update should

rotate the spin by 180 degrees around the local field, which corresponds to flipping

the sign of the perpendicular spin component. Thus, the new value of spin is

S′(r) = S∥(r)ŝ∥(r)− S⊥(r)ŝ⊥(r)

= 2S∥(r)ŝ∥(r)− S(r)

=
2S(r) ·H(r)

H2(r)
H(r)− S(r), (4.21)

where S(r) and S′(r) represent the old and new orientations of the spin5.

Over-relaxation method is deterministic and therefore should be applied in combi-

nation with algorithms discussed above (Metropolis or heat-bath) in order to produce

a valid canonical distribution. Typically, one performs a single (stochastic) update

of the system, followed by several (5-10) microcanonical updates of the lattice (see

Algorithm 3 in Appendix B). This strategy is often used when studying complicated

structures in continuous models, where the system tends to get stuck in local min-

ima [21,111,112].

5As before, one should be cautious in applying this method when the model includes the SIA

interactions.



Chapter 5

Ground state phase diagrams

If people do not believe that

mathematics is simple, it is only

because they do not realize how

complicated life is.

John von Neumann

Having determined the symmetry allowed magnetic interactions in the AB-SKL,

we can now explore the magnetic ground state structures that these couplings stabi-

lize. As there are many parameters in the model (2.30), it makes sense to start the

analysis with a simplified model and then gradually add other interactions. From this

point on, we also ignore the breathing anisotropy by setting A3 = A2 and A5 = A4,

where Ak = {Jk, Dk, A
(xy)
k , A

(z)
k } is a shortened representation of the coupling ma-

trices Aij(r − r′), and k denotes the kth neighbours. We will explore the properties

of our model by starting with an isotropic limit (exchange only) and then “turning

on” the SOC and considering the weak (DM and out-of-plane anisotropy) and strong

(in-plane anisotropy) limits.

5.1 Methods

5.1.1 Details of the MC simulations

In the following, we will present the ground state phase diagrams, obtained from low-

temperature MC simulations, discussed in Chapter 41. To reduce the total number

1In principle, the task of obtaining the ground state of the model is a simple energy minimization

problem. The stochastic nature of the MC methods allows them to more effectively avoid local

energy minima and converge to the true ground state of the system. However there is no numerical

method that would guarantee a convergence to a global minimum, and MC may fail in cases where

the energy landscape has many local minima with similar energies (see Sec. 5.2).

53
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of parameters, we set |J2| = 1. This defines the energy scale of the system and we

redefine the Hamiltonian and the temperature as H = H/|J2| and T = kBT/|J2| (i.e.
also setting kB = 1). In all cases, we cooled down the system down to T = 10−6

and used ∼ 104 MC heat-bath updates per temperature to ensure convergence to the

global energy minimum. We also considered systems with L3 unit cells with L as

small as 6 and as large as 18 to account for a large number periodic structures.

For most phase diagrams, we used the self-duality properties discussed in Chap-

ter 3, to reduce the simulation time. The boundaries and structures of the dual

phases were verified by additional numerical calculations and were always in perfect

agreement with the ones obtained via the self-dual transformations.

5.1.2 Tools for identifying distinct magnetic phases

Even with the help of self-duality maps, an extensive description of the parameter

phase space requires a large number of simulations. To characterize the ground state

phase pockets, we perform scans along one or two parameters at a time, generating

data for each point of the discretized parameter space. This leads to a very large

amount of data (thousands of spin structures), which often corresponds to only a

few distinct phases. Furthermore, the spin configurations are often periodic, meaning

that storing the full spin structure is often unnecessary.

To resolve these issues, we choose a set of representative quantities that help us to

identify the phase boundaries. The simplest such quantity is the ground state energy

E(Ak). The ground state energy is continuous at the boundary of two phases, but its

derivatives with respect to the parameters, ∂E
∂Ak

often become discontinuous at these

points2. Note that if the change in the spin structure is continuous, one might require

higher order derivatives of energy to identify the transition boundary. To extract the

useful information about the spin structure, we calculate the Fourier transform of the

form

2Consider a square lattice model with NN exchange interactions defined by a coupling constant J .

For J < 0 (J > 0) the ground state is ferromagnetic (antiferromagnetic) with ground state energy

Eg = −2|J |N . The Eg is a continuous function of J , while
∂Eg

∂J = −2Nsgn(J) has a discontinuity

at J = 0.
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Γ K

M
b1

b2

Σ

Figure 5.1: First Brillouin zone of the hexagonal lattice. The arrows represent the
reciprocal lattice vectors b1 and b2, while the markers denote the relevant high-
symmetry points. The bold black line from Γ to M point represents one of the six Σ
lines.

Si(q) =
1√
N

∑︂
r

Si(r)e
−iq·r, (5.1)

where the sum is over the Bravais lattice vectors (see Sec. 2.3), N is the total number

of unit cells, and q are the points in the reciprocal space. From these, we calculate

the effective3 structure factor

S(q) =
1

6

∑︂
i

|Si(q)|2, (5.2)

where the prefactor of the sum represents dividing by the number of sublattices. If

the configuration is periodic, S(q) will consist of one or several4 delta functions or

magnetic Bragg peaks at wavevectors Qi lying in the first Brillouin zone, which is

shown in fig. 5.1.

Therefore, in a given MC simulation, we calculate S(q), and then identify and

store the positions and the values of its maxima. These quantities are used to identify

3The true structure factor is calculated as S(q) = 1
6

∑︁
ij Si(q) · Sj(−q)e−iq·(ri−rj). This equation

takes into the account the magnetic form factor, which reflects the spin structure inside a single

unit cell. However, this quantity is more cumbersome to calculate, and the periods become harder

to extract.

4Since the spin vectors are real, the S(±Q) will have the same values. Therefore, generally, the

magnetic structure factors are symmetric with respect to the origin of the Brillouin zone.
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the phase boundaries and to choose the appropriate system size for spin structure

identification.

5.1.3 Visualizing spin configurations

Real-space spin configurations often provide valuable information about the properties

of the system. Nevertheless, in some cases, simply plotting a spin configuration does

not provide enough information for identifying the hidden structural patterns. The

key to a useful visualization of a spin structure is then to take advantage of colour

in order to effectively highlight the most useful features of a given configuration.

To achieve this, one must design a “filter” function that brings out the important

details that characterize the structure. Unfortunately5, there is no “universal” filter

that yields helpful information for any given spin structure, and so engineering the

effective visualization tools is often an empirical process, based on trial and error.

However, there are two visualization methods that were designed and used extensively

for studying the magnetic phases in AB-SKL, and which can in principle be employed

in any system. To demonstrate the effectiveness of these methods, we will apply the

different filters to a spin configurations of the Ising-like phase Λ4, which will be

introduced in the next section.

The first method consists of highlighting features defined globally for all spins. The

simplest examples of these are the x, y, and z components of spin vectors defined

with respect to global coordinates. Often, these filters fail to identify the global

ordering pattern, but provide some information about the local structure (e.g. spin

configurations inside individual unit cells). These filters are also useful for determining

if the structure is collinear, coplanar, or non-coplanar. Fig. 5.2 (a) illustrates this for

the Ising-like structure. We see that although highlighting the x and y components

does not yield much useful information, the z-component filter reveals that the spins

lie in the plane of the kagome layers. In some cases, it is also useful to set the colours

to S(r) · S(0) (or Si(r) · S1(0) in systems with sublattices), which then represents

spatial correlations.

5Or, probably, fortunately, since the diversity of structures brings out the beauty of a physical

system.
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Figure 5.2: Designing filters to determine the structure of the Λ4 Ising-like phases.
For all cases, the colours correspond to the values on the bar at the top right of
the figure. (a) Highlighting the global z-components of spins reveals that they are
uniformly zero, such that the structure lies in the plane of the kagome layers. (b)
Ultimately, a filter of the form Si(r) · Si(0), which discards the microscopic details
of the intra-cell structure, is able to extract the unusual global structure, revealing
non-periodic patterns.

The second method involves designing filters that highlight global features. In AB-

SKL, and, more generally for systems with sublattices, the noisy details of the local

structure are often easy to hide using the local anisotropic axes. However, an even

simpler approach is to use Si(r) · Si(0) function, which describes an overlap of spins

on each site with spins on the same sublattice i in the 0th unit cell. Although these

types of correlations is blind to the structure inside of individual unit cells, it reveals

the global variations going from one cell to the other. This is clearly demonstrated

in fig. 5.2 (b), where the local filters reveal complicated spatial patterns.
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Φ(Γ)
m Φ(K)

m Λm Ψ(M)
m

Φ(Q) Ψ(K/2) M[QxQy0] MΣ

Figure 5.3: Sketches of the Fourier transforms of the spin configurations discussed
in this chapter. The four most common phases are shown on the top row, while the
less frequently occurring states are shown on the bottom. The markers represent
Bragg peaks, solid lines in diagrams for Λm andMΣ phases represent 1D degenerate
manifolds, and the shaded Brillouin zone corresponding to theM[QxQy0] represents a
2D degenerate manifold in the Qz = 0 plane.

5.2 Magnetic structures

Before looking at the phase diagrams obtained by the MC simulations, it is worth

describing the magnetic structures observed in our studies. As discussed in Chapter 3,

the self-duality transformations provide mappings between phases with different spin

structures. Since the weak-SOC limit provides the largest number of such mappings,

and, as a result, the largest number of dual structures, it is convenient to present

the magnetic phases observed in this limit as “basis” structures. The phases in the

the decoupled and strong-SOC limits can then be described as linear combinations of

these configurations.

The periodicity of a given magnetic structure is determined with respect to the

underlying lattice. A spin configuration will either have the same period as the lattice,

or form a magnetic superlattice with a period extending over several unit cells, or can

even be incommensurate to the lattice period. As discussed before, the periodicity of

a magnetic structure is captured by the Fourier transform of the magnetic structure.

The Fourier transforms of all phases discussed below are presented in fig. 5.3. In these

studies, all structures obtained in the numerical simulations have Qz = 0, i.e. every
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Φ(Γ)
0 Φ(Γ)

1 Φ(Γ)
2 Φ(Γ)

3 Φ(Γ)
4 Φ(Γ)

5

Figure 5.4: Spin structure of the Φ
(Γ)
m phases. Red-coloured spins are used to indicate

structures with antiferromagnetically stacked A and B triangles. Note that in the
isotropic and weak-SOC limits, these structures are defined up to an arbitrary in-
plane rotation.

AB bilayer appears exactly the same.

5.2.1 Q=Γ and Q=K structures

The simplest type of magnetic ordering corresponds to spin configurations with the

same periodicity as the underlying lattice. Such structures have a single Bragg peak

at Q = Γ, which is at the center of the Brillouin zone. In this case, we only have

to consider the possible structures on a single unit cell. In AB-SKL, all Q = Γ

structures can be obtained by applying the µ
(+1,+1)
m self-duality maps from Sec. 3.3

to the ferromagnetic configurations where spins lie either parallel or perpendicular

to the kagome planes. We label these as Φ
(Γ)
m and present them in fig. 5.4. The

Φ
(K)
0 Φ

(K)
1 Φ

(K)
2

Φ
(K)
3 Φ

(K)
4 Φ

(K)
5

Figure 5.5: Spin structure of the Φ
(K)
m phases. The colouring scheme is the same as

in fig. 5.4.
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meaning of the m-index is the same as in Sec. 3.3: it corresponds to the winding

number around the hexagon. The Φ
(Γ)
0 and Φ

(Γ)
3 configurations are special because

they are the only collinear structures (ferro- and antiferromagnetic, respectively).

The remaining non-collinear configurations lie in the plane of the kagome layers and

correspond to the 120 degree configurations on the A and B triangles stacked ferro-

or antiferromagnetically.

The next set of magnetic phases consists of periodic structures described by Q =

K, which lies on the corners of the Brillouin zone (fig. 5.3). These configurations have

a period equal to three unit cells. However, the spin structure in each crystal unit

cell is the same as in fig. 5.4 for Q = Γ, except rotated by 120 degrees with respect to

the spins in the neighbouring cells, as shown in fig. 5.5. To emphasize this similarity,

we label these phases as Φ
(K)
m .

5.2.2 Ising-like structures

Another family of dual magnetic phases where at the level of individual unit cell the

spin structure is approximately the same as Φ
(Γ)
m describes Ising-like configurations,

labelled generically as Λm. Unlike Φ
(K)
m , these structures generally lack well-defined

long-range order, but sometimes display stripe correlations, as shown in fig. 5.2 (b).

Note that configurations with m ̸= 4 are obtained by changing the unit cell sublattice

spin structure to the corresponding order in fig. 5.4. The Fourier transform of an Ising-

like structure is characterized by a ring of incommensurate wavevectors (fig. 5.3).

The disordered structure of the Λm phases is peculiar, and was proven to be

difficult to study. Therefore we will dedicate Chapters 7 and 8 to the analytical and

numerical analysis of these structures at finite temperatures.

5.2.3 Other magnetic structures

There are several other spin structures that are stabilized in certain regions of the pa-

rameter space, which we will briefly discuss here. Most of these phases are ordered and

have well-defined periods. The most prominent of them are the M-star structures,

where the spin configurations are defined by four Bragg peaks in the Brillouin zone:

three at the distinct M points, and one at the Γ point, as shown in fig. 5.3. The spin
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Ψ
(M)
0 Ψ

(M)
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(M)
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Figure 5.6: Spin structure of the Ψ
(M)
m phases. Different colours indicate spins related

by the rotational symmetry.

configurations of these phases, labelled as Ψ
(M)
m , are shown in fig. 5.6. The M-star con-

figurations have been reported in other systems, including Kitaev-Heisenberg models

on honeycomb lattice [113]. The Ψ
(M)
m are examples of the multiple-Q structures,

since their Fourier transforms are defined by more than one inequivalent wavevectors.

The most famous examples of multiple-Q configurations are the skyrmion textures6,

which are actively studied due to their topological properties [26, 27].

The remaining spin configurations appear very infrequently in our MC simulations,

often close to the phase boundaries, where the energetic competitions are strongest.

As a result, we will simply describe their Fourier structure, without going into details

about the spin configurations. Here, we will give these structures a general labels

that reflect their Fourier structure, but it is important to keep in mind that there are

always dual copies of such phases in other parts of the parameter space.

Incommensurate single-Q structures. In typical helical magnets, the spins rotate

throughout the lattice, forming wave-like patterns, characterized by a single Q vector.

6Categorizing skyrmions as multiple-Q structures remains controversial in the literature. Although

a Fourier transform of a skyrmion lattice produces three inequivalent Bragg peaks, the defining

property of skyrmions is their topology, characterized by a non-zero winding number [114]. Because

not every triple-Q structure has non-trivial topology, skyrmions are often grouped separately. Since

our discussion here does not concern topological textures, we consider all magnetic phases defined

by multiple wavevectors to be multiple-Q configurations.
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In a system with sublattice structure, the spins in a given unit cell can have more

complicated arrangements, which then rotate as we go from one cell to the next. As

already discussed for Φ
(K)
m , in AB-SKL we sometimes observe spatially non-uniform

structures where in the individual unit cells the spin arrangements are identical to

the Φ
(Γ)
m structures. In Φ

(K)
m , the spatial patterns are commensurate, meaning that

the period of the magnetic structure is an integer multiple of the crystal period, but

in some rare cases we may also have incommensurate patterns, where the magnetic

period is equal to a non-integer multiple of the crystal period. These structures are

generally labelled as Φ(Q).

Multiple-Q structures. There is at least one other multiple-Q configuration that

appears in our MC simulations: the 1
2
K-star structure, defined by Bragg peaks at

the 1
2
K and K points. These phases are periodic in the kagome plane, with the period

equal to six crystal unit cells. Similar to the M-star phases, we give these a general

label Ψ(K/2).

Degenerate ground state manifolds. There are two types of highly degener-

ate spin configurations, defined by a very large number of magnetic wavevectors. In

the first case, all wavevectors Q = [Qx, Qy, 0] are degenerate, giving a 2D ground

state manifold, similar to the antiferromagnetic kagome lattice. In the second case,

the degeneracy occurs along the Γ-M lines (or Σ lines), producing a 1D ground state

manifold. These are denoted as M[QxQy0] and MΣ respectively.

5.3 Isotropic limit

Since exchange interactions are always present in magnetic systems and are typically

the largest contribution to the energy, an isotropic system is a reasonable starting

point for the analysis of magnetic properties of AB-SKL. Ignoring the breathing

anisotropy, we have three parameters: J1, J2, and J4. Recall that for J1 = J4 = 0,

the problem reduces to either ferromagnetic (J2 < 0) or antiferromagnetic (J2 >

0) decoupled kagome layers. Therefore, in fig. 5.7 we present the J1 − J4 phase

diagrams for negative and positive values of J2. Before discussing the structure of

these diagrams, we note that they display the “inversion” symmetry, corresponding
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Figure 5.7: Magnetic phase diagrams of the AB-SKL in the isotropic limit. (a) and (b)
correspond to ferromagnetic and antiferromagnetic intra-layer exchange (J2) values.
The stripy regions correspond to phases with mixed chirality, as discussed in the text.
The dashed and dash-dotted lines correspond to the highly degenerate statesMΣ and
M[QxQy0], respectively.

to changing the signs of both J1 and J4. This is consistent with the γ self-duality, as

derived in Sec. 3.2.

Since the AB-stacking results in two independent sublattices, the first effect that

the inter-layer couplings have on the magnetic structure is fixing the relative ordering

of the A and B layers (either ferromagnetic or antiferromagnetic). The simplest case

correspond to the two possible collinear phases and occurs when J1 and J4 have the

same sign and J2 < 0 (fig. 5.7 (a)): the individual kagome planes realize ferromagnetic

order and the A and B layers are either ferromagnetic J1, J4 < 0 or antiferromagnetic

J1, J4 > 0, leading to Φ
(Γ)
0 and Φ

(Γ)
3 phases, respectively. When J2 < 0 and the signs

of the J1 and J4 are different, the system becomes frustrated and at large values of

both inter-layer coupling constants, it stabilizes non-collinear 120 degree structures.

Since the exchange interactions do not differentiate between the two types of chirality,

we get degenerate Φ
(Γ)
1 , Φ

(Γ)
5 states for (J1 < 0, J4 > 0), and Φ

(Γ)
2 , Φ

(Γ)
4 states for

(J1 > 0, J4 < 0). Interestingly, at intermediate values of J1 and J4 in the competing

regime, the competitions “compromise” by stabilizing the period 3 structures Φ
(K)
0
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and Φ
(K)
3 . This compromise satisfies the J1 and J2 interactions, as well as the inter-cell

J4 interactions, but frustrates the intra-cell J4 interactions.

When J2 > 0 in the decoupled limit we realize a 120 degree state with macroscopic

degeneracy. Inter-layer couplings generally remove this degeneracy, as seen from the

phase diagram in fig. 5.7 (b). As in the previous case of the ferromagnetic J2, for large

values of the inter-layer couplings, the system stabilizes either collinear (if J1 and J4

have the same sign), or 120 degree (if J1 and J4 have different signs) spin structures.

The more interesting phases occur for intermediate values of these couplings. From

the phase diagram in fig. 5.7 (b) we see that when −1
2
≤ J4 ≥ 1

2
, the system can

stabilize the multiple-Q structures Ψ
(M)
m (m ̸= 0, 3), or, like in the case of J2 < 0,

period 3 configurations Φ
(K)
0 and Φ

(K)
3 . These results indicate that the degenerate

ground state in the decoupled limit permits stabilization of complex phases when the

system is further frustrated by the inter-layer couplings.

Before turning to anisotropic interactions, we note that it is still possible to obtain

states with macroscopic ground state degeneracy in the stacked limit. These phases

occur at certain phase boundaries, where the competitions between different interac-

tions are strongest. For example, the boundaries between the Φ
(K)
0 (Φ

(K)
3 ) and Φ

(Γ)
0

(Φ
(Γ)
3 ) result in M[QxQy0] states, where within each unit cell the spins are collinear

to each other, with ferromagnetic (antiferromagnetic) inter-layer ordering. Another

highly degenerate ground state occurs at the boundaries of the Ψ
(M)
m and the non-

collinear Φ
(Γ)
m phases. In these cases, the spin configurations correspond to the 120

degree structures in each unit cell and display degeneracy along the Σ lines in the

Brillouin zone, leading to the MΣ ground state. These states should be of interest

for potential realizations of the exotic spin liquid phases in 3D kagome materials,

but further analysis is required to fully understand their properties in the AB-SKL

systems.

5.4 Weak-SOC limit

Next, we would like to go from the fully isotropic to the weak-SOC limit, which

preserves the axial rotations around the z-axis. In principle, this lets us introduce

the DM, as well as the z-component SIA and anisotropic exchange interactions. In

practice, however, this creates too many free parameters, making the exploration of
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Figure 5.8: Examples of magnetic phase diagrams of the AB-SKL in the weak-SOC
limit. The exchange parameters used to construct these diagrams were (written in
the form (J1, J2)): (a) (1,1), (b) (1.6,1), (c) (0.5,-1), (d) (-1,1), (e) (-1.6,1), and (f)
(-0.5,-1).

the parameter space intractable. From the preliminary calculations we were able to

conclude that the SIA and the anisotropic exchange interactions lead to very similar

effects and generally only induce trivial changes of the spin structure. Therefore, we

focus in this section only on the effects of the D1 and D2 interactions. To simplify

matters even further, we fix the value of J4 = 0, since it produces most of the expected

phases.

The resulting D1 − D2 phase diagrams are shown in fig. 5.8. There are a few

general remarks that can be made about all of these diagrams. First, note that

there is again an “inversion” symmetry in each diagram, which this time changes

the signs of the DM constants. This comes as a result of the µ
(−1,+1)
0 self-duality

map, which reverses the chirality of the spin structures. Furthermore, comparing
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figs. 5.8 (a)-(c) and (d)-(f), we still see the manifestation of the γ = µ
(+1,+1)
3 self-

duality, originating from the sign reversal of J1. Second, note that since the DM

interactions select configurations with specific chirality, there is no longer ambiguity

between the structures with m = 1, 5 or m = 2, 4. In fact, we see that when the

magnitudes of both D1 and D2 are large, the ground state is always a non-collinear

Q = Γ state, where the sign of D1 determines if the ordering of the A and B triangles

is ferromagnetic or antiferromagnetic, while the sign of D2 specifies the chirality of

the 120 degree structure. However, it is the intermediate values of these coupling

constants that seem to stabilize the more complicated magnetic structures.

The DM interactions in AB-SKL systems result in a number of complex phases,

some of which we have already observed in the isotropic limit: these are the com-

mensurate Φ
(K)
m and Ψ

(K)
m phases. However, specific to the competitions between

the exchange and DM couplings are the unusual Λm structures. Depending on the

strength of the exchange, these phases are typically stabilized at intermediate values

of D2 and extend to very large (or even indefinite) magnitudes of D1. We will provide

a more detailed discussion of the properties of these phases in Chapters 7 and 8. Close

to the phase boundaries of the Λm phases we often find other interesting phases. For

example, the Φ(Q) are stabilized at the boundary of Φ
(Γ)
5 and Λ4 (fig. 5.8 (a), (b),

(d), (f)), while Ψ(K/2) are found in small regions between Λ4 and Φ
(Γ)
4 (as well as

the equivalent dual phase boundaries). This rich phase behaviour further indicates

strong competitions as a result of high geometric frustration and DM interactions.

The last thing that is worth addressing is the effects of the DM interactions on

the collinear phases, i.e. when J2 < 0 (figs. 5.8 (c), (f)). Note that it takes very

large values of DM constants to suppress the collinear structure. Since the energy

of the collinear structures is exactly independent of D1 and D2 (because the spin

cross-products are equivalently zero), to a good approximation, the DM interactions

should have no effect on the collinear phases in any reasonable physical system7.

7This statement is not exactly correct due to the so-called order-by-disorder. This phenomenon

describes a situation where in a degenerate system the fluctuations stabilize one of the degenerate

configurations over the others [18, 115, 116]. In the context of DM interactions and the collinear

phases in AB-SKL, thermal order-by-disorder (or entropy) breaks the full rotational symmetry of

these structures and forces the spins to point along the z-axis [80]. However, in a physical system

there will always be some amount of SIA or exchange anisotropy, which will determine either the
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Figure 5.9: Effects of the in-plane anisotropy on the structure of the phase diagram
in fig. 5.8 (a). The grey dashed lines indicate the new phase boundaries, calculated
by adding SIA with Kx = −0.1.

5.5 Strong-SOC limit

Finally, let us briefly discuss what happens when we add the in-plane anisotropy to

our model. As discussed previously, these interactions select a set of preferred orien-

tations (fig. 2.6) in the plane of the kagome layers thus breaking the axial rotation

symmetry. In this section, we would like to analyze how such anisotropic pertur-

bations8 modify the overall structure of a given phase diagram. This is important

because we would like to test how the exotic phases discussed in the previous sections

respond to symmetry-breaking terms in our model. If the phases of interest per-

sist, there is a higher chance that they may be discovered experimentally in realistic

physical systems.

The effects of the in-plane anisotropy on the spin structure of Q = Γ phases will

in- or out-of-plane ground state.

8There are cases in certain compounds, such as magnetic pyrochlore oxides, when the strength of the

SIA becomes even larger than the exchange [117]. Such systems are better modelled by Ising-type

interactions. Although these systems are interesting on their own, there is no experimental evidence

that any of the known AB-SKL compounds possess such strong in-plane anisotropy.
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be discussed in detail in the next chapter. Intuitively, however, we expect that the

spin configurations in which most of the spins point along the relevant anisotropic

axes would be favoured by the in-plane SIA and anisotropic exchange. This turns out

to be true, as seen from the phase diagram in fig. 5.9 calculated using a weak SIA in-

teractions9. We see that the stability regions of the Φ
(Γ)
m (m = 1, 4) are extended the

most, since the corresponding spin structures align the most with the local anisotropic

axes. Note that the application of SIA breaks the µ
(+1,+1)
0 self-duality, which com-

plicates the calculations of the phase diagram. Nevertheless, the overall structure of

the diagram remains similar to that in the weak-SOC limit. We also confirm that the

spin configurations remain nearly identical before and after application of the SIA,

which suggests that the phases observed in our simulations are robust against the

perturbations and may be stabilized in experimental systems.

5.6 Summary of important results and open questions

In this chapter we presented a near-extensive overview of ground state properties

of the magnetic model for AB-SKL in eq. (2.30). Our results yielded an extremely

rich phase behaviour, which we attributed to different types of energetic competitions

that occur in our system. The results of this chapter are summarized in Ref. [80].

Note that this publication did not include some of the rare multiple-Q structures that

occur close to the phase boundaries.

Here, we considered the effects of gradually increasing the strength of the SOC

by first describing the properties of an isotropic system, then adding the DM interac-

tions, and finally including the in-plane anisotropy. Our numerical calculations have

determined that there is a large number of interesting phases, some of which corre-

spond to the multiple-Q structures. Importantly, we were able to show that many

of such exotic phases are stabilized in large pockets of parameter space and persist

against various perturbations, such as the in-plane anisotropy. The numerical data

also confirmed the existence of symmetry in the several phase diagrams, as a result

of the self-duality transformations introduced in Chapter 3. Overall, self-duality was

found to be an extremely helpful tool for studying the ground state properties of our

9Independently, we also calculated the phase diagram with a small exchange anisotropy, but the

resulting phase boundaries looked nearly identical to fig. 5.9.
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model.

One parameter that we have left unexplored is the applied magnetic field. How the

different structures change in the non-zero field is an important question for experi-

mental studies, and would be a logical next step in investigating the magnetic phases

presented here. We have performed some preliminary calculations in the weak-SOC

limit with fields oriented parallel and perpendicular to the kagome layers. In some

cases, the magnetic configurations evolved smoothly until ferromagnetic saturation,

while in other cases, the fields stabilized unusual intermediate structures. As a result

these results require further analysis and will hopefully result in a separate study.



Chapter 6

Effects of the in-plane anisotropy on the structure of Q=Γ

phases

Most important part of doing

physics is the knowledge of

approximation.

Lev Landau

At the end of the last chapter, we analyzed how the in-plane SIA modifies the

structure of the magnetic phase diagrams. Including these interactions results in more

free parameters in our model, which complicates the general analysis. However, as

discussed in Sec. 1.2, magnetic anisotropy originates from the symmetry of the crystal

environment, and is therefore always present in some capacity in real compounds.

As a result, understanding how the anisotropic interactions influence the magnetic

properties may be important for an accurate description of experimental results. For

example, in Mn3X compounds, the significant role of the SIA has been established

early on [90, 118, 119]. However, until recently, the exact effects of this anisotropy

on the Q = Γ ground state spin structure remained controversial [71–75]. Ref. [71]

provides a derivation of the six-fold anisotropy and the induced magnetic moment

in Mn3X compounds (m = 2). Nevertheless, the impact of anisotropic exchange in

these systems has not been considered at all, prior to our study in Ref. [75]. For these

reasons, the goal of this chapter is to demonstrate how the perturbations in the form

of the SIA and the anisotropic exchange modify the structure of the Φ
(Γ)
m phases with

any value of m.

6.1 Anisotropic energies of fixed structures

The first question that we would like to answer is how do the energies of the Q = Γ

structures change when we apply the in-plane anisotropy? For clarity, we recall that

70
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we are considering the structures in fig. 5.4, which we allow to rotate in the plane of

the kagome layers. In the previous chapter, we used simple reasoning to deduce that

Q = Γ phases with m = 1, 4 would be stabilized the most by these interactions rela-

tive to the other phases. We can now demonstrate this analytically, by substituting

the spin configurations into the energy expressions. (2.33) and (2.34). We will assume

that the spins lie in the plane of the kagome layers, e.g. as a result of the DM inter-

actions. First, as a crude approximation, we will calculate the anisotropic energy for

each configuration assuming that the anisotropy does not modify the spin structure.

Writing the spins in the polar form (i.e. substituting ϕi(r) = π
2

in eq. (2.38)) and

using the expressions for the local anisotropic axes in eq. (2.35), we obtain through

some algebraic manipulations

E
(m)
K (θ) = Kx

∑︂
r

∑︂
i

(︁
Si(r) · n̂ix

)︁2
= Kx

∑︂
r

∑︂
i

cos2
(︁
θi(r)− αi

)︁
= NKx

∑︂
i

cos2
(︃
πli
3

(m− 1) + θ

)︃
, (6.1)

E
(m)
Ak

(θ) = A
(xy)
k

∑︂
⟨rr⟩k

∑︂
⟨ij⟩k

(︁
Si(r) · n̂ix

)︁ (︁
Sj(r

′) · n̂jx

)︁
−
(︁
Si(r) · n̂iy

)︁ (︁
Sj(r

′) · n̂jy

)︁
= A

(xy)
k

∑︂
⟨rr⟩k

∑︂
⟨ij⟩k

cos
(︁
θi(r) + θj(r

′)− αi − αj

)︁
= 2NA

(xy)
k

∑︂
⟨ij⟩k

cos

(︃
π

3
(li + lj)(m− 1) + 2θ

)︃
, (6.2)

where N is the total number of unit cells in the crystal, and we imposed the Q = Γ

structure by setting θi(r) = πlim
3

+ θ, with θ representing the in-plane rotations. The

A
(xy)
k are the anisotropic exchange constants and ⟨. . . ⟩k indicates the summation over

kth NN. Table 6.1 shows these energetic contributions for the six Φ
(Γ)
m phases. These

values lead to a few interesting observations. First, in agreement with our predictions,

we see that the m = 1, 4 phases are always stabilized by the anisotropic interactions

(after adjusting the global phase θ), regardless of the signs of the coupling constants.

In the other four states (m = 0, 2, 3, 5), most of the spins are not aligned with

the corresponding local anisotropic axes (see fig. 6.1), leading to higher energetic
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Figure 6.1: Effects of anisotropy on the Φ
(Γ)
m spin configurations corresponding to (a)

θ = 0 and (b) θ = π
2
. The vectors are coloured in the same way as in fig. 5.4. The grey

dashed lines represent the local (a) x and (b) y anisotropic axes. The curved arrows
indicate the directions of the spin distortion when the values of gm in eqs. (6.18 -
6.23) are positive (orange) and negative (dark grey).

m 0 1 2 3 4 5

1
N
E

(m)
K (θ) 3Kx 6Kx cos2(θ) 3Kx 3Kx 6Kx cos2(θ) 3Kx

1
N
E

(m)
A1

(θ) 0 12A
(xy)
1 cos(2θ) 0 0 −12A

(xy)
1 cos(2θ) 0

1
N
E

(m)
A2

(θ) 0 12A
(xy)
2 cos(2θ) 0 0 12A

(xy)
2 cos(2θ) 0

Table 6.1: Approximate anisotropic energies of the Φ
(Γ)
m phases calculated using

eqs. (6.1) and (6.2). Note that these values are inexact since we ignored the dis-
tortion of the spin structure.

penalties. Since the misalignment angle is always at 60 degrees to the anisotropy

axis, the energies of these four states turn out to be the same. Yet, it comes as

a surprise that the anisotropic energies of the Φ
(Γ)
m structures with m = 0, 2, 3, 5

are independent of their in-plane orientations, determined by θ. In other words, the

results in table 6.1 suggest that these four structures retain axial rotational symmetry.

However, these predictions fall short when compared to the experimental data. For

example, the ground state structure of the Mn3Sn and Mn3Ge has been experimentally

established to be the Φ
(Γ)
2 phase with θ = 0 and θ = π

2
respectively [118, 120–124].

If this structure was in fact degenerate with respect to the in-plane rotations (as per

column m = 2 in table 6.1), the excitation spectrum, measured by inelastic neutron

scattering experiments, would be gapless, i.e. the in-plane rotations would yield
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zero-excitation energy. However, these experiments do, in fact, show a gap in the

excitation spectrum, meaning that it costs a finite amount of energy to rotate the

spins [72, 90, 125]. To explain this discrepancy between the experiment and theory,

several works suggested a sixth-order SIA term in the model, which ultimately does

produce energy spitting [71, 72, 90, 118]. The issue with this explanation is that in

order to reproduce the experimental results, the sixth-order anisotropy must be quite

large, which is highly unusual. These controversies prompt us to reconsider the above

analysis in hopes of restoring the consistency with the experimental data.

6.2 Distortions of spin structure induced by anisotropy

The main flaw of the analysis in the previous section is that it assumes that the

spin configurations remain unchanged when subjected to the in-plane anisotropy. In

practice, for m = 0, 2, 3, 5 phases, these couplings introduce energetic competitions

that result in tilting of the spins toward the anisotropic axes. Such distortion of the

spin structure has been reported in the Mn3X very early on, as it manifests in a small

magnetic moment [118,126,127].

We can show that the anisotropic interactions distort certain spin structures ana-

lytically by considering the full energy of a planar spin configuration. We will keep the

derivation general for all values of m to make sure that our predictions are sensible.

The relevant terms in the model can then be written as

H = HJ +HD +HK +HA, (6.3)

HJ =
1

2

∑︂
rr′

∑︂
ij

Jij(r− r′) cos
(︁
θij(r; r

′)
)︁
, (6.4)

HD = −1

2

∑︂
rr′

∑︂
ij

Dij(r− r′) sin
(︁
θij(r; r

′)
)︁
, (6.5)

HK = Kx

∑︂
r

∑︂
i

cos2(θi(r)− αi), (6.6)

HA =
1

2

∑︂
rr′

∑︂
ij

A
(xy)
ij (r− r′) cos

(︁
θ̄ij(r; r

′)− ᾱij

)︁
, (6.7)

where θij(r; r
′) = θi(r)− θj(r′), θ̄ij(r; r′) = θi(r) + θj(r

′), and ᾱij = αi +αj. Next, we

can set
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θi(r) =
πlim

3
+ θ + δθi, (6.8)

where θ again describes the in-plane rotations and δθi are small deviations from

the unperturbed state structures. We will use these deviations to write down a

harmonic expansion of the energy. To further simplify the analysis, we assume that

the anisotropic interactions are of the order ∼ δθi. We obtain the following harmonic

expansion of the energy per spin:

1

N
E(m)

(︃
θ; {δθi}

)︃
= E

(m)
0 (θ) +

∑︂
i

g
(m)
i (θ)δθi +

1

2

∑︂
ij

h
(m)
ij δθiδθj

= E
(m)
0 (θ) + g(m)(θ) · δθ +

1

2
δθTh(m)δθ. (6.9)

The constant in eq. (6.9) is equal to

E
(m)
0 (θ) = 12J

(m)
1 + 12J

(m)
2 + E

(m)
K (θ) + E

(m)
A1

(θ) + E
(m)
A2

(θ), (6.10)

where J
(m)
1 and J

(m)
2 are defined exactly the same as for duality transformations

µ
(+1,+1)
m in eq. (3.24). The Hessian matrices can be written in a compact form as

h(m) =

⎡⎣h(m)
1 h

(m)
2

h
(m)
2 h

(m)
1

⎤⎦ , (6.11)

h
(m)
1 =

⎡⎢⎢⎢⎣
−4J

(m)
1 − 4J

(m)
2 2J

(m)
2 2J

(m)
2

2J
(m)
2 −4J

(m)
1 − 4J

(m)
2 2J

(m)
2

2J
(m)
2 2J

(m)
2 −4J

(m)
1 − 4J

(m)
2

⎤⎥⎥⎥⎦ , (6.12)

h
(m)
2 =

⎡⎢⎢⎢⎣
0 2J

(m)
1 2J

(m)
1

2J
(m)
1 0 2J

(m)
1

2J
(m)
1 2J

(m)
1 0

⎤⎥⎥⎥⎦ . (6.13)

Eq. (6.9) describes a generalized quadratic function which can be minimized accord-

ing to the procedure in the Appendix C. We can diagonalize the Hessian matrices

simultaneously using an orthogonal matrix R:
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R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
6

1√
3

0 1√
6

1√
3

0

1√
6
− 1√

12
1
2

1√
6
− 1√

12
1
2

1√
6
− 1√

12
−1

2
1√
6
− 1√

12
−1

2

1√
6

1√
3

0 − 1√
6
− 1√

3
0

1√
6
− 1√

12
1
2
− 1√

6
1√
12
−1

2

1√
6
− 1√

12
−1

2
− 1√

6
1√
12

1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.14)

The columns of matrix R in eq. (6.14) represent normal rotation modes of the spins

in each unit cell. Note, however, that the first column describes a uniform rotation of

spins in the plane. Since we already designated this mode to θ, we will remove it from

further calculations. The remaining five modes describe different kinds of distortions

of the spin structure. The eigenvalues of h(m) corresponding to these five modes are

diag(RTh(m)R) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6J
(m)
1 − 6J

(m)
2

−6J
(m)
1 − 6J

(m)
2

−8J
(m)
1

−2J
(m)
1 − 6J

(m)
2

−2J
(m)
1 − 6J

(m)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.15)

One can verify that in the regions of parameter space where Φ
(Γ)
m are stable, the

eigenvalues of the Hessian are positive, meaning that the matrix is positive-definite.

Next, we obtain

RTg(m) = −gm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin(2θ)

ϵm cos(2θ)

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.16)
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where

ϵm =

⎧⎪⎨⎪⎩+1 if m = 0, 1, 3, 4

−1 if m = 2, 5,
(6.17)

g0 =
√

3(Kx + 2A
(xy)
1 − 2A

(xy)
2 ), (6.18)

g1 = 0, (6.19)

g2 =
√

3(Kx + 2A
(xy)
1 − 2A

(xy)
2 ), (6.20)

g3 =
√

3(Kx − 2A
(xy)
1 − 2A

(xy)
2 ), (6.21)

g4 = 0, (6.22)

g5 =
√

3(Kx − 2A
(xy)
1 − 2A

(xy)
2 ). (6.23)

Unsurprisingly, the gradients for m = 1, 4 structures are zero. In the remaining cases,

minimization of the energy yields a distortion

RT δθ(m) = −gm
jm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin(2θ)

ϵm cos(2θ)

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.24)

where jm = 6(J
(m)
1 + J

(m)
2 ). As expected, this distortion rotates the “misalligned”

spins in the m = 0, 2, 3, 5 structures towards the anisotropic axes, as shown in fig. 6.1

for the specific cases of θ = 0, π
2
.

6.3 Consequences of the anisotropic distortion

We have shown in the previous section that the in-plane anisotropy leads to the

expected distortion of some of the spin structures. From eq. (C.6) in Appendix C

we conclude that the energetic contribution of the anisotropy-induced distortion is

simply

δE(m)(θ) =
g2m
2jm

, (6.25)
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which is negative (since we’ve established that the eigenvalue −6(J
(m)
1 +J

(m)
2 ) is posi-

tive). This expression is still independent of the in-plane rotation angle, θ. Therefore,

in order to demonstrate that the structural distortion removes the accidental axial

rotational degeneracy, we must include the anisotropic couplings in the Hessian. To

simplify things, we will only consider the relevant structures with m = 0, 2, 3, 5. This

changes the form of the matrix from diagonal to block-diagonal:

RThR =

⎡⎣h̄2×2 02×3

03×2 h̃3×3

⎤⎦ , (6.26)

where 0i×j is a zero matrix with i rows and j columns. We see that the anisotropy

introduces cross-coupling between the two relevant modes, but luckily, they remain

uncoupled to the remaining three modes of the Hessian. Since the inverse of a block-

diagonal matrix is calculated by independently inverting the blocks, we can focus

solely on h̄2×2:

h̄2×2 =

⎡⎣−jm − fm cos(2θ) −ϵmfm sin(2θ)

−ϵmfm sin(2θ) −jm + fm cos(2θ)

⎤⎦ , (6.27)

where

f0 = Kx − A(xy)
1 + A

(xy)
2 , (6.28)

f2 = Kx − A(xy)
1 + A

(xy)
2 , (6.29)

f3 = Kx + A
(xy)
1 + A

(xy)
2 , (6.30)

f5 = Kx + A
(xy)
1 + A

(xy)
2 . (6.31)

After inverting the Hessian and simplifying the expressions through some tedious

algebra, we can obtain the new value of the distortion energy, using eq. (C.6) in

Appendix C and assuming |Jm| ≫ |fm|:

δE(m)(θ) =
g2m
2jm

+
g2mfm
2j2m

cos(6θ). (6.32)

This simple equation elegantly demonstrates how the anisotropy-induced distortions

in the spin structure break the continuous rotational symmetry and simultaneously

establish the six-fold crystal symmetry. Similar equation has been derived for the m =
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2 ground state of the Mn3X compounds by Liu and Balents in Ref. [71]. Importantly,

the rotational symmetry is broken at a cubic order of the anisotropic parameters,

which means that one requires a fairly large in-plane anisotropy in order to gap the

m = 0, 2, 3, 5 Q = Γ structures.

Let us now discuss the implications of this equation. In a given structure, the

sign of fm determines if the spin configuration aligns with the local x axes (fm < 0,

θ = nπ
3

) or the local y-axes (fm > 0, θ = (2n+1)π
6

). Once this direction is specified, gm

controls the distortion of the spin structure, as per eq. (6.24). The expressions for gm

in eqs. (6.18), (6.20), (6.21), and (6.23) lead to two interesting observations. Firstly,

note that the anisotropic exchange parameters result in distortions that are twice as

large as the distortions due to the SIA of equivalent strength. This difference comes

from the fact that the former are two-site interactions and benefit from anisotropic

stabilization on the neighbouring atoms. As a result, a small exchange anisotropy

may produce a more noticeable distortion in the spin structure than a small SIA

perturbation. Secondly, we note that Kx and A
(xy)
2 have opposite signs in all relevant

expressions for gm, and simultaneously have the same signs in the expressions for fm

in eqs. (6.28 - 6.31). This means that while these parameters favour the same type of

anisotropic axes (local x-axes for Kx < 0 and A
(xy)
2 < 0 and local y-axes for Kx > 0

and A
(xy)
2 > 0), they lead to deviations in the opposite directions, as presented in

fig. 6.1. This provides a signature for the two types of interactions on a kagome

lattice, which can be observed in experiments, such as elastic neutron scattering.

6.4 Implications for the ground state of Mn3X

As discussed in the beginning of this chapter, the results derived in the previous

section are relevant to the properties of the magnetic ground state of the Mn3X

systems. The anisotropic gap follows from eq. (6.32) and can also be obtained using

the spin-wave approach [75].

The magnetic moment per spin in Mn3X induced by the anisotropic distortion of

the spin structure has been shown to be equal to

|M| = 1

3

⃓⃓⃓⃓
⃓1 + 2 cos

(︃
2π

3
− g2

2j2

)︃⃓⃓⃓⃓
⃓ , (6.33)
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where the distortion is written to linear order in the anisotropic parameters [71]. The

orientation of the magnetic moment is controlled by the signs and relative values of

Kx, A
(xy)
1 , and A

(xy)
2 , as discussed previously. Since the magnetic moment is relatively

easy to measure in experiments, it can be used to estimate the relative contributions

of the anisotropic interactions. To aid the experimental studies, Ref. [75] presents

numerical results showing how the value of the magnetic moment changes with varying

model parameters. This work also shows calculations of the static and dynamic

structure factors, relevant to the elastic and inelastic neutron scattering experiments.

Notably, the spin wave excitations were shown to be more sensitive to the small

changes in the spin structure, which can hopefully be utilized in establishing the role

of the anisotropic exchange in these systems.

6.5 Summary of important results and open questions

This chapter presents an analytic study of in-plane anisotropy in AB-SKL, as applied

to the Q = Γ ground states. We compare the effects of anisotropic interactions on the

spin structures of the six characteristic configurations and demonstrate that in four of

these phases this anisotropy induces a distortion, which pins these structures to the

local anisotropy axes. This study is unique in that it includes exchange anisotropy,

which has been traditionally neglected from the discussion. We show that although

the application of SIA and exchange anisotropy leads to qualitatively the same results,

the specific structural changes that they produce may be very different.

A version of the above analysis applied to m = 2 ground states of the Mn3X was

published in Ref. [75], and the generalization to other values of m was discussed in

Ref. [80]. The derivation presented in this thesis provides a consistent approach for

studying the effects of the in-plane anisotropy in the Q = Γ structures summarized

in a compact form in eq. (6.32). Many of the previous attempts at explaining the

anisotropy in the Mn3X systems relied on group-theoretical classification of different

structures, attempting to describe the induced magnetic moment as a linear combina-

tion of the m = 0 and m = 2 states [73]. Although this approach is extremely useful

for systematic studies of magnetic configurations, it fails to take into account the

normalization of spin vectors (|S(r)|2 = 1), which inevitably lead to the erroneous

conclusion that the second-order SIA does not gap the in-plane rotations. Before
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Ref. [75], this mistake was also pointed out in [74,92].

To conclude, we note that like in the previous chapter, the most logical extension

of this work is in adding external magnetic fields. This only slightly modifies the

harmonic energy in eq. (6.9) and should add an energetic dependence on cos(θ) and

sin(θ). This generalization is very important for the experimental studies, since in

most magnetic experiments the spin structure is studied with applied external fields.

Furthermore, analyzing these properties at finite temperatures is another important

problem, since large enough thermal fluctuations may reduce the anisotropic pinning.

The author would like to express a special gratitude to Jason McCoombs, who

first realized the inconsistency of the linear combinations of m = 0, 2 states with

the creation of the anisotropic energy gap. The work outlined in this chapter is a

consequence of many fruitful discussions with Jason about the effects of the SIA in

the Mn3X compounds.



Chapter 7

The mysterious Ising-like phases

The beginning of knowledge is the

discovery of something we do not

understand.

Frank Herbert

Among the magnetic structures presented in Chapter 5, the properties of the Λm

phases stand out for several reasons. The most striking difference between these struc-

tures and other magnetic configurations revealed in our numerical simulations is the

absence of a conventional long-range order. Absence of translational symmetry in the

magnetic structure indicates large degeneracy and often points to exotic physical phe-

nomena, as in the case of the 2D kagome antiferromagnet (Sec. 1.1.3). Secondly, the

Ising-like structure of these phases is surprising, since we are dealing with continuous

spin vectors, and since the exchange and DM interactions allow for continuous spin

rotations in the kagome plane. Typically, phases with incommensurate wavevectors

manifest in structures with continuously varying spins, such as simple spiral states,

rather than sharp, domain-like arrangements.

It took the author over two years to come up with a coherent story that could

explain why these structures appear in the AB-SKL, and still, some questions remain

unanswered. In this chapter, we would like to use analytical methods in order to

provide explanations for the nature of their unusual ordering. These results will allow

us to better understand the numerical results in Chapter 8, where we will consider

the finite-temperature properties of the Ising-like phases.

7.1 Why should we study Ising-like phases

Here, we are proposing to conduct a study of exotic magnetic structures, which, how-

ever, have not yet been observed experimentally. In the introductory paragraph above

81
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we mentioned several reasons for why these phases are interesting from a theoretical

standpoint, but we have not provided any reasoning for why one should pursue fur-

ther in-depth studies. After all, there is a great number of magnetic systems where

it is possible to stabilize various exotic magnetic structures.

The main reason for studying these Ising-like phases is the relatively high proba-

bility of experimental discovery. Let us justify this with an example. Currently, some

of the most intriguing magnetic states are the spin liquids, which do not display any

long-range order down to zero temperature. To this day, experimental studies have

identified dozens of spin liquid candidate compounds, but an actual experimental dis-

covery of this phase has not been declared so far. The two most famous examples of

theoretical predictions of spin liquids are the 2D kagome antiferromagnet, which we

have discussed in Sec. 1.1.3, and the Kitaev model on a honeycomb lattice, where the

disordered ground state is established by unique anisotropic interactions [30]. The

main challenge with both of these examples is that the exotic properties only hold

in a very narrow region of parameter space1. For example, the degeneracy in the 2D

kagome is easily removed by introducing anisotropic interactions, while the addition

of exchange completely removes the spin liquid phase in Kitaev systems. As a result,

these exotic states are very difficult to access experimentally, since one can never fully

control the interactions in a given compound2. This weakness is shared among most

frustrated systems that manifest complex structures with large degeneracy: it is very

unusual for such phases to persist over a wide range of model parameters.

On the contrary, we have seen in Sec. 5.4 and 5.5 that the Ising-like phases are

stable with respect to variation of different model parameters and occupy a rela-

tively large total volume of the parameter space. The fact that these structures do

not require fine-tuning of parameters and persist even in the presence of SIA and

anisotropic exchange makes the prospects of experimental realization of these struc-

tures very promising. Additionally, the self-duality properties of the model discussed

1Both examples given in the text describe exotic phases that exist as isolated points in the parameter

space. Yet, a considerable experimental effort has been put forward to search for these states in

hopes that these phases might persist beyond the theoretically established boundaries.

2In addition, experimental systems often introduce other perturbing factors, such as structural

disorder and impurities.
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in Chapter 3 even further increases the chances of discovering these structures in real

compounds.

Before proceeding to our analysis, it is useful to identify the objectives for this

chapter. We have discussed two interesting features of Ising-like phases: absence of

long-range order and binary (Ising-like) character of the spin structures. In this chap-

ter, we will provide an explanation for the second property using analytical analysis of

the Hamiltonian. The origin of disorder turns out to be a more difficult question. We

will therefore limit our discussion to hints obtained from the numerical simulations,

which will hopefully guide the future studies of this question.

7.2 First attempt: ignoring the spin deviations

To simplify our analysis, we will focus on a simplified Hamiltonian of the form

H = HJ +HD, (7.1)

where both exchange and DM interactions are restricted to NN. Furthermore, since

we have seen in fig. 5.2 (a) that the spin configurations lie in the plane of the kagome

layers, we will ignore the z components of spins. Finally, since all structures in this

work are characterized by Qz = 0, we will only consider a single AB bilayer. This leads

to simplified expressions for HJ and HD as given by eqs. (6.4) and (6.5) respectively.

Consider different Λ4 spin configurations, shown in fig. 7.1, which were calculated

by varying the values of D1 and D2. As noted previously, the spin arrangements in

each unit cell are approximately the same as those of the Φ
(Γ)
4 . Therefore, as a first

approximation, we may set

θi(r) =
πlim

3
+ θ(r), (7.2)

where the θ(r) describe the rotations of the sublattice spin configurations in each unit

cell. Thus, we reduce the total number of degrees of freedom from 6N (where N is the

number of unit cells) to N . Such a procedure of eliminating the microscopic details

of the model is typically referred to as coarse-graining3. The resulting Hamiltonian

can be shown to reduce down to

3Technically speaking, the analysis in the previous chapter was an extreme case of coarse-graining:

we reduced 6N degrees of freedom to a single one (in-plane rotations, described by θ).
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Figure 7.1: Examples of Λ4 spin configurations, calculated using MC simulations.
The parameters used to obtain these structures were J1 = 1, J2 = 1 and (D1, D2)
equal to (a) (-1,-0.5), (b) (-1,-0.6), (c) (-4, -0.5), and (d) (-4,-0.6). The colours are
chosen in the same way as in fig. 5.2.

E
(m)
0 (r) = E

(m)
0 + J

(m)
2

∑︂
⟨rr′⟩

cos
(︁
θ(r; r′)

)︁
, (7.3)

where E
(m)
0 = 6J

(m)
1 + 6J

(m)
2 , ⟨· · · ⟩ implies summation over the nearest-neighbours

of a triangular lattice, and θ(r; r′) = θ(r) − θ(r′). As in the previous chapter, the

J
(m)
1 , J

(m)
2 , D

(m)
1 , and D

(m)
2 can be calculated from the corresponding µ

(+1,+1)
m duality

transformations in eq. (3.24). Let us define a unit vector Â(r) on each site of the

triangular lattice, described by r, such that

Â(r) =

⎡⎣cos
(︁
θ(r)

)︁
sin

(︁
θ(r)

)︁
⎤⎦ . (7.4)

Then, eq. (7.3) can be re-written as
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E
(m)
0 ({θ(r)}) = E

(m)
0 + J

(m)
2

∑︂
⟨rr′⟩

Â(r) · Â(r′), (7.5)

which is equivalent to an effective exchange model on triangular lattice. Then, if

J
(m)
2 < 0, the ground state structure is ferromagnetic in Â(r), meaning that we

obtain a Φ
(Γ)
m structure. If J

(m)
2 > 0, the system becomes frustrated, and the ground

state corresponds to the 120 degree arrangement of the Â(r) vectors, which is the

same as one of the Φ
(K)
m structures, which are not Ising-like. Therefore, the above

coarse-graining approach is only capable of producing ordered states with Q = Γ

or Q = K. This suggests that the deviations from the perfect Φ
(Γ)
m structures in

each unit cell are important and must be taken into account in our coarse-graining

procedure.

7.3 Effects of spin deviations

The small deviations from the perfect 120 degree configurations seen in fig. 7.1 are

reminiscent of the the spin twists induced by the in-plane anisotropy, as discussed

in the previous chapter. Notably, in structures with larger magnitude of D1 (e.g.

fig. 7.1 (c) and (d)) these deviations are smaller than in those with smaller magnitude

of D1 (e.g. fig. 7.1 (a) and (b)). The similarity of the two problems suggests an

approach akin to that in Sec. 6.2. This time, let us take

θi(r) =
πlim

3
+ θ(r) + δθi(r), (7.6)

where δθi(r) describe the small deviations of each spin. Expanding the energy up to

quadratic order in δθi(r) gives

E(m)({θ(r); δθi(r)}) = E
(m)
0 ({θ(r)}) +

∑︂
r

∑︂
i

g
(m)
i (r)δθi(r)

+
1

2

∑︂
rr′

∑︂
ij

h
(m)
ij (r, r′)δθi(r)δθj(r

′) (7.7)

= E
(m)
0 ({θ(r)}) + g(m) · δθ +

1

2
δθTh(m)δθ. (7.8)

The gradient vector is given by
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g(m) = −D(m)
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(r;−a2;−a1 − a2)

C(r;−a1; +a2)

C(r; +a1 + a2; +a1

C(r; +a2; +a1 + a2)

C(r; +a1;−a2)

C(r;−a1 − a2;−a2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.9)

where

C(r;ρ;ρ2) = cos
(︁
θ(r; r + ρ1)

)︁
− cos

(︁
θ(r; r + ρ2)

)︁
, (7.10)

and θ(r; r′) = θ(r)− θ(r′). Note that we are considering both the unit cell positions

r and the sublattice labels i as the vector indices of g(m). As a result, the Hessian

matrix h(m) is a 6N × 6N matrix, which presents a challenge for our analysis, since

we cannot diagonalize or invert for arbitrary values of θ(r)4. Therefore, we must

determine an approximate form of the Hessian in order to make further analytical

progress. The solution comes from the relative values of the model parameters in the

regions where the Ising-like phases are stable. Consider the boundaries of the Λ4 in

diagram 5.8 (a). We estimate

J
(4)
1 ≲ −0.93, (7.11)

−0.20 ≲J (4)
2 ≲ 0.15, (7.12)

1.0 ≲D(4)
2 ≲ 1.24, (7.13)

where we omitted D
(4)
1 since these couplings do not appear anywhere in (7.8). These

value ranges remain valid for the dual phases with arbitrary m. In most cases, we

have |D(m)
2 |/|J (m)

1 | < 1, |J (m)
2 |/|J (m)

1 | ≪ 1. If we also assume that |D(m)
2 | ∼ O(δθ),

we can remove both J
(m)
2 and D

(m)
2 from the Hessian in order to keep the expansion

in eq. (7.8) quadratic in δθ. With these approximations, we can write the Hessian in

4The issue here is that θ(r) generally breaks translational symmetry of the Hamiltonian, which is

reflected in the Hessian. Without translational symmetry, this matrix cannot be diagonalized with

Fourier transforms, which requires us to turn to approximation methods.
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terms of J
(m)
1 only:

h(m) ≈ J
(m)
1 δ(r− r′)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0 1 1

0 −2 0 1 0 1

0 0 −2 1 1 0

0 1 1 −2 0 0

1 0 1 0 −2 0

1 1 0 0 0 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.14)

where δ(r− r′) is a delta function. This matrix is diagonalized by R in eq. (6.14). As

before, we ignore the eigenvectors that describe uniform rotations of spins in each cell

and focus on the remaining five modes, which yield the following eigenvalues (each

repeated N times):

diag(RTh) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3J
(m)
1

−3J
(m)
1

−4J
(m)
1

−J (m)
1

−J (m)
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7.15)

Since J
(m)
1 is always negative in the stability region of the Ising-like phases, the Hessian

is always positive-definite. Minimizing eq. (7.8) with respect to δθ gives the effective

model in θ(r) modes:

H(m)
eff = E

(m)
0 ({θ(r)}) + δE(m)({θ(r)}), (7.16)

where the energy correction is calculated according to eq. (C.6) in Appendix C:

δE(m)({θ(r)}) =− 5K(m)
∑︂
ρ

cos2 θ(r; r + ρ)

+K(m)
∑︂
ρ1 ̸=ρ2

cos θ(r; r + ρ1) cos θ(r; r + ρ2), (7.17)

with ρ = r− r′ labelling the NN sites on the triangular lattice and

K(m) = −

(︂
D

(m)
2

)︂2

12J
(m)
1

(7.18)
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is a positive constant. We can also write eq. (7.16) in terms of the Â(r) vectors:

H(m)
eff = E

(m)
0 +

∑︂
r

[︄
J
(m)
2

∑︂
ρ

Â(r) · Â(r + ρ)− 5K(m)
∑︂
ρ

(︂
Â(r) · Â(r + ρ)

)︂2

+K(m)
∑︂
ρ1 ̸=ρ2

(︂
Â(r) · Â(r + ρ1)

)︂(︂
Â(r) · Â(r + ρ2)

)︂]︄
. (7.19)

We see that in addition to the effective exchange interactions governed by J
(m)
2 (first

term in the square brackets), spin deviations induce through D
(m)
2 an effective bi-

quadratic5 (second term) and three-site interactions (third term), which are controlled

by parameter K(m). From the parameter ranges in (7.11 - 7.13) we can estimate that

0.1|J (m)
2 | ≲ |K(m)| ≲ |J (m)

2 | in the stability region of the Ising phases. This tells us

that the effective interactions from δE(m)({θ(r)}) are non-negligible and could play

a crucial role in stabilizing the ground state structure.

Before proceeding to the next stage of the analysis, we would like to stop to

appreciate these results. Firstly, recall that for m = 0 the dual parameters are the

same as the regular model parameters, i.e. (J
(0)
1 , J

(0)
2 , D

(0)
1 , D

(0)
2 ) = (J1, J2, D1,

D2). Therefore, the Ising-like phase Λ0 is obtained for |D2|/|J1| < 1, |J2|/|J1| ≪ 1

with J1 < 0. This situation is very unusual, since the DM couplings correspond

to the dominant intra-layer interactions. It is extremely unlikely that this scenario

would ever be realized in real compounds. However, thanks to the self-duality, we

can obtain models that stabilize the same types of phases but have more realistic

parameter requirements.

7.4 Quadrupole moments

Let us take a closer look at the biquadratic term in eq. (7.19). Since K(m) > 0,

the coefficient of the biquadratic interaction (−5K(m)) is negative. Therefore, these

effective couplings will favour both ferromagnetic and antiferromagnetic collinear ar-

rangements of Â(r). This type of ordering is characteristic of nematic liquid crys-

tals [128, 129]. Liquid crystals are typically composed of rod-like particles that do

5By biquadratic interactions, we imply any terms of the form (Â(r) · Â(r′))2.
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not have a specified direction6. The orientation of each rod is instead specified by a

quadrupole moment :

Qαβ = nαnβ −
1

3
δαβ, (7.20)

where n̂ is called a director of the particle, and δαβ is the Kronecker delta. Note

that the prefactor of the delta function depends on the number of components in the

director. We can similarly define a quadrupole moment on each site r as

Qαβ(r) = Aα(r)Aβ(r)− 1

2
δαβ. (7.21)

From this point, we will also refer to Â(r) as dipoles. With this, we can define

different products involving quadrupoles and dipoles:

Q(r) ·Q(r′) =
∑︂
αβ

Qαβ(r)Qαβ(r′)

=
(︂
Â(r) · Â(r′)

)︂2

− 1

2
, (7.22)

Â
T

(r1)Q(r)Â(r2) =
∑︂
αβ

Aα(r1)Qαβ(r)Aβ(r2)

=
(︂
Â(r) · Â(r1)

)︂(︂
Â(r) · Â(r2)

)︂
− 1

2
Â(r1) · Â(r2). (7.23)

using these definitions, the effective Hamiltonian in eq. (7.19) becomes

H(m)
eff = E

(m)
0 +

∑︂
r

[︄
J
(m)
2

∑︂
ρ

Â(r) · Â(r + ρ)− 5K(m)
∑︂
ρ

Q(r) ·Q(r + ρ)

+
1

2
K(m)

∑︂
ρ1 ̸=ρ2

Â(r + ρ1) · Â(r + ρ2)

+K(m)
∑︂
ρ1 ̸=ρ2

Â
T

(r + ρ1)Q(r)Â(r + ρ2)

]︄
. (7.24)

Finally, by grouping similar terms together we can write eq. (7.24) in a compact form

as

6i.e. in the same sense that a vector would have a direction.
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H(m)
eff = E

(m)
0 +H(m)

D +H(m)
Q +H(m)

DQ, (7.25)

H(m)
D =

1

2

∑︂
rρ

J (m)
D (ρ)Â(r) · Â(r + ρ), (7.26)

H(m)
Q =

1

2

∑︂
rρ

J (m)
Q (ρ)Q(r) ·Q(r + ρ), (7.27)

H(m)
DQ =

1

2

∑︂
rρ1ρ2

J (m)
DQ (ρ;ρ′)Â

T
(r + ρ)Q(r)Â(r + ρ′), (7.28)

whereH(m)
D ,H(m)

Q , andH(m)
DQ are the dipole-dipole, quadrupole-quadrupole, and dipole-

quadrupole interactions, respectively.

7.5 Qualitative description of the effective interactions

The multipolar terms in the effective model in eq. (7.25) significantly complicate

the analysis of the ground state. Here, we will analyze each of the three effective

interactions in order to get a better idea about which states might be favoured by

our model.

7.5.1 Dipole-dipole interactions

The first type of the effective couplings is the familiar exchange-like dipolar inter-

action. To get an idea of which states this interaction might select, it is helpful to

introduce lattice Fourier transforms of the form

Â(r) =
1√
N

∑︂
q

A(q)eiq·r. (7.29)

The Fourier transform simplifies the dipole-dipole interactions to

H(m)
D =

1

2

∑︂
q

J (m)
D (q)A(q)A(−q), (7.30)

where

J (m)
D (q) =

∑︂
ρ

J (m)
D (ρ)eiq·ρ. (7.31)
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Figure 7.2: Plots of J (m)
D (q), m = 2 in eq. (7.31) and SD(q) in eq. (7.32) calculated

using the MC simulations at T = 0.25 (see Chapter 8 for details). In both cases we
used J1 = 1, J2 = 1, D1 = −1, and D2 = −0.5. In both cases we have qz = 0. The
intensity values of the two plots are different, but the colour scheme is consistent in
both cases and chosen such that the dark and bright colours represent low and high
values, respectively.

The J (m)
D (q) gives the energy of the Fourier amplitudes A(q) corresponding to

wavevector q. Therefore, the ground state of H(m)
D will typically consist of the am-

plitudes at the wavevectors that minimize J (m)
D (q)7. In fig. 7.2, we plot J (m)

D (q) for

q = [qx, qy, 0]. Note that the minima of this function form a degenerate “ring” of

incommensurate wavevectors. This ring feature is consistent with the Fourier trans-

forms of the structure factors of the Ising-like phases,

SD(q) =
1

N
⟨A(q) ·A(−q)⟩, (7.32)

observed in the MC simulations (figs. 5.3 and 7.2). Note that the maxima of SD(q)

occur at the locations of the minima in J (m)
D (q). The minimum value of J (m)

D (q) at

7This is the so-called Luttinger-Tisza [130–132] or, equivalently, a mean-field analysis [133] of a spin

Hamiltonian. By minimizing J (m)
D (q) we obtain the lowest energy single-Q state. The disadvantage

of this method is that it does not take into account the normalized magnitudes of spin vectors and

therefore may often predict an unphysical ground state. It is, nevertheless, useful in the context of

mean-field, where we deal with thermal averages and don’t require strict normalization of variables.
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each wavevector in this ring can be calculated to be

min(J (m)
D (q)) = −6K(m) −

(︂
J
(m)
2

)︂2

K(m)
. (7.33)

Therefore, there are many degenerate incommensurate structures that can form in

the system, which could support the emergence of disorder8.

7.5.2 Qudrupole-quadrupole interactions

We can perform the same Fourier analysis on the quadrupole-quadrupole interactions.

Defining the quadrupole amplitudes according to

Q(r) =
1√
N

∑︂
q

Q(q)eiq·r, (7.34)

we obtain

H(m)
Q =

1

2

∑︂
q

J (m)
Q (q)Q(q)Q(−q), (7.35)

where, similarly,

J (m)
Q (q) =

∑︂
ρ

J (m)
Q (ρ)eiq·ρ. (7.36)

As we discussed before, these interactions favour nematic arrangements of Â(r), i.e.

both ferromagnetic and antiferromagnetic collinear configurations. This corresponds

to a minimum at q = Γ of J (m)
Q (q), as shown in fig. 7.3. This is consistent with the

numerically calculated quadrupolar structure factor,

SQ(q) =
1

N
⟨Q(q) ·Q(−q)⟩, (7.37)

as shown in fig. 7.3. The minimum value of J (m)
Q (q) is

8Recall that the effective model in eq. (7.25) is an approximation for |D(m)
2 |/|J (m)

1 | < 1,

|J (m)
2 |/|J (m)

1 | ≪ 1. Higher-order corrections will likely break the degeneracy of the ring in J (m)
D (q),

stabilizing a discrete number of wavevectors. However, this splitting is likely to be small, which

could lead to metastable configurations.
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Figure 7.3: Plots of J (m)
Q (q), m = 2 in eq. (7.36) and SQ(q) in eq. (7.37), calculated

using the same parameters as in fig. 7.2.

min(J (m)
Q (q)) = −15K(m), (7.38)

which is almost three times lower than min(J (m)
D (q)), for all values of J

(m)
2 . Since there

is no direct competitions betweenH(m)
D andH(m)

Q , the quadrupolar interactions set the

nematic order, while the dipolar interactions select collinear states characterized by

wavevectors on the degenerate ring, min(J (m)
D (q)), which, in turn, creates the Ising-

like patterns. Note that nematic order means that Â(r) = v(r)n̂, where v(r) = ±1

and n̂ is the director, pointing in an arbitrary direction. This leads to

H(m)
D =

1

2

∑︂
rρ

J (m)
D (ρ)v(r)v(r + ρ) (7.39)

H(m)
Q = 15NK(m). (7.40)

In other words, H(m)
D becomes an Ising Hamiltonian, while H(m)

Q becomes a constant.

7.5.3 Dipole-quadrupole interactions

Finally, the coupling between dipolar and quadrupolar variables, H(m)
DQ, is non-local,

since it couples variables on three different sites, and cannot be simplified with Fourier
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transforms. When the system becomes nematic, as discussed above, we obtain

H(m)
DQ =

1

2

∑︂
rρ1ρ2

J (m)
DQ (ρ;ρ′)v(r + ρ)v(r + ρ′), (7.41)

which is also an Ising Hamiltonian. Thus, H(m)
DQ enhances the H(m)

D and will modify

the radius of the degenerate ring in J (m)
D (q).

To conclude, we note that in Ref. [81] we determined that ignoring these inter-

actions still produces qualitative agreement with the numerical simulations, which

might indicate secondary importance of the dipole-quadrupole coupling. However,

further numerical analysis is required to fully understand the role of H(m)
DQ in the

formation of disordered configurations.

7.6 Summary of important results and open questions

This chapter provides a brief introduction to the physics of the exotic Λm phases.

The main goal of the analysis presented here was to explain the Ising-like character

of these structures using analytical coarse-graining of the spin Hamiltonian. This was

done by first fixing the Φ
(Γ)
m spin configurations in each unit cell and then allowing for

small deviations from these idealized structures. A simplified version of this method

was first introduced in Ref. [80], and a more general scheme, which is described in

this chapter, was later devised in Ref. [81]. The coarse-graining procedure revealed

that, in a truly remarkable fashion, the DM interactions induce effective biquadratic

interactions, which tendto stabilize nematic arrangements, leading to the Ising-like

patterns.

The argument for the nematic ordering presented here is largely qualitative and

requires further numerical confirmation, which we will provide in the next chapter.

Furthermore, simplified versions of the effective model eq. (7.25) (i.e. with ferromag-

netic dipolar interactions and no dipole-quadrupole coupling) have been studied in

other references, which showed separate nematic and Ising phase transitions [134–144].

There are many questions about the nature of the Ising-like phases that remain

unanswered. As we mentioned in the beginning of this chapter, the effective model

in eq. (7.25) does not provide a clear answer to why the resulting spin configurations

lack long-range order. The answer to this question requires comparison of the energy
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landscape for the effective model and the full Hamiltonian in eq. (7.1). If in both

cases we see many degenerate or nearly degenerate states, then it is likely that H(m)
DQ

is responsible for the disorder. If, on the other case, the effective Hamiltonian does

not produce disordered configurations, then the neglected terms with J
(m)
2 and D

(m)
2

in the Hessian (7.14) are important for the full description of the system. Finally, as

with other magnetic phases in this thesis, the effects of an applied magnetic field are

both interesting and important for the future experimental studies.



Chapter 8

Numerical analysis of the Ising-like phases

No, no! The adventures first,

explanations take such a dreadful

time.

Lewis Carroll,

Alice’s Adventures in Wonderland

In the previous chapter, we were able to show via analytical coarse-graining that

the DM interactions in AB-SKL systems induce strong effective quadrupolar inter-

actions that would explain the Ising-like nature of the Λm phases. To analyze the

validity of the approximations made in our analysis, it is desirable to compliment these

analytical results with numerical data. Therefore, in this chapter, we will present the

finite-temperature analysis of the Λ4 phases using the MC methods outlined in Chap-

ter 4. These results can be further generalized to other Ising-like phases with m ̸= 4,

thanks to the self-duality properties of the model discussed in Chapter 3.

The numerical results presented here assume some familiarity with the theory

of phase transitions in 2D systems. Appendix D contains a summary of important

concepts and provides references to the helpful resources on this topic.

8.1 Methods

8.1.1 Details of the MC simulations

Following the results of Chapter 5, which demonstrated that in all of the observed

ground state phases the spin configurations assumed Qz = 0, in this chapter, we will

study the thermal properties of a single AB-stacked kagome bilayer. This simplified

setup allows us to study large quasi-2D systems with N = L2 unit cells, where

18 < L < 108. However, the energy scale of a bilayer system is different from that

of a 3D system, since the latter includes additional inter-layer interactions. As a

96
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result, in order to match the properties of a bilayer system with the phase diagrams

in fig. 5.8, we have to double the inter-layer interactions, J1 and D1. In this work,

we set J1 = 2, J2 = 1, and D1 = −2, D2 = −0.5, which corresponds to a point on

the Λ4 phase on diagram (a) in fig. 5.8. As before, the temperature values are set in

units of |J2|.
To achieve high-quality numerical data, we use ∼ 104 MC steps to equilibrate the

system at every temperature, and then ∼ 105 steps to calculate the thermodynamic

averages. Microcanonical overupdates (Sec. 4.4) were shown to improve the quality

of averages, especially in the case of the correlation functions. After each MC step we

performed 4-7 over-relaxation updates to generate a sufficiently broad distribution of

spin configurations.

8.1.2 Quantities of interest

Heat capacity

Since there is no trivial order parameter for the Ising-like patterns, we considered a

number of quantities to help us understand the properties of the system. The simplest

of these are the average energy ⟨E⟩ and the heat capacity per spin:

Cv =
β2

6N
(⟨E2⟩ − ⟨E⟩2), (8.1)

where, as before, 6N gives the total number of spins.

As discussed in the Appendix D.2, at the phase transition point the heat capacity

becomes singular. However, this singularity is strictly valid for the thermodynamic

limit (N → ∞). In a finite-size system, it is often smoothed down, and may appear

as a broadened maximum. This makes the analysis of the phase transitions more dif-

ficult, since other crossover phenomena that are not related to phase transitions may

sometimes result in a maximum in Cv
1. To overcome this challenge, it is important

to consider how the heat capacity (and other thermodynamic quantities) scales as the

system size increases. This type of finite-size analysis is often able to identify and

characterize the phase transitions in a given system.

1For example, a simple two-level system leads to a well-known Schottky anomaly, which does not

correspond to a phase transition.
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Energy components

One of the most challenging problems in the studies of the continuous spin systems is

the identification of weak first-order transitions. When the energy difference between

the ordered and disordered phases is small, the average energy may appear continuous,

which may lead to incorrect conclusions about the order of the phase transition. This

issue is even more significant in the finite systems, which makes the MC studies of

these transitions difficult. A famous example of this is the phase transition that

occurs in the antiferromagnetic triangular lattice with three-component (Heisenberg)

spins. The order of this transition was a subject of a 30 year controversy, until it

was resolved first by studies of short-time dynamics [145], and then by high-precision

numerical MC calculations [146,147]. Thanks to this controversy, a considerable effort

was put into developing numerical tools for studying weak first-order transitions.

One of the most successful tests of a first-order transition consists of collecting

histograms of the total energy at the transition temperature. If there are several states

that co-exist at this temperature (e.g. a disordered and ordered states), the energy

histogram will display several peaks (one for each state), which would indicate a first-

order transition. However, if the energies of these states are similar, the multiple-peak

feature could be more difficult to resolve. In these situations, it is helpful to consider

histograms of other quantities that may better distinguish the different states in the

simulation. In this work, we found that analyzing histograms of different energy

contributions to be more effective than looking at the total energy. In particular, the

self-dual in-plane exchange interactions, corresponding to the µ
(+1,+1)
2 in eq. (3.24)

with a coupling constant J
(4)
2 , were proven to be very useful in characterizing the

nature of the phase transitions in our system.

Chirality

Next, we would like to define quantities that could help us to analyze the average

properties of the Ising-like configurations. As discussed in the previous chapter and

seen from figs. 7.1, the spin structure of the Λ4 in each unit cell corresponds to

approximately Φ
(Γ)
4 . Since the resulting 120 degree configuration is chiral, it is useful

to define a measure of chirality in each cell. For a single triangle, the vector chirality

is typically defined [148,149] as
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χt =
2

3
√

3
[S1 × S2 + S2 × S3 + S3 × S1] , (8.2)

where Si are spins on a triangle and indices indicate clockwise or anti-clockwise di-

rection (depending on notation). The constant in front of the expression is used to

normalize the vector. For AB-stacked kagome, we can define chirality in a given unit

cell as

χ(r) =
1

3
√

3

[︂
S1(r)× S2(r) + S2(r)× S3(r) + S3(r)× S1(r)

+S4(r)× S5(r) + S5(r)× S6(r) + S6(r)× S4(r)
]︂
. (8.3)

The z-component of χ(r) is an invariant2, and thus we define χ(r) = ẑ · χ(r). The

average unit cell chirality per cell is defined as

⟨χ⟩ =
1

N

∑︂
r

⟨χ(r)⟩. (8.4)

Since the DM interactions generally select one type of chirality, we may be interested

in calculating the average sign of chirality,

⟨sgn(χ)⟩ =
1

N

∑︂
r

⟨sgn
(︁
χ(r)

)︁
⟩, (8.5)

which provides information about the presence of domains with opposite chirality.

Local order parameter

In the previous chapter, we derived an effective model for the Ising-like systems, de-

scribed by the unit vectors Â(r), which describe the in-plane rotations of spins in

each unit cell. To test the analytical predictions, we would like to obtain average

quantities written in terms of these unit vectors from the MC simulations. However,

calculating the in-plane rotation angles of the six sublattices is computationally ex-

pensive, since it requires a frequent use of inverse trigonometric functions. We also

2This is because the definition of the chirality in eq. (8.3) is proportional to the cross products in

the intra-layer DM interactions in eq. (2.30).
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noticed that the values calculated using this direct method tend to be very noisy and

require more MC steps to resolve the averages.

A simpler and quicker approach is to study a quantity defined as a linear combi-

nation of the spin vectors

A(r) =
1

6

∑︂
i

⎡⎣n̂(4)
ix · Si(r)

n̂
(4)
iy · Si(r)

⎤⎦ , (8.6)

where

n̂
(4)
ix =

⎡⎢⎢⎢⎣
cos(4αi)

sin(4αi)

0

⎤⎥⎥⎥⎦ , n̂(4)
iy =

⎡⎢⎢⎢⎣
− sin(4αi)

cos(4αi)

0

⎤⎥⎥⎥⎦ , (8.7)

and αi are defined in eq. (2.36). We will refer to these vectors as the local order

parameters (LOPs). These vectors are not normalized since the magnitude |A(r)|
can range between 0 and 1. However, if we define the in-plane spin angles as θi(r) =

θ(r) + δθi(r), one can show that

A(r) ·A(r′)

|A(r)||A(r′)| ≈ cos
(︁
θ(r)− θ(r′)

)︁
= Â(r) · Â(r′). (8.8)

This approximation is further improved by considering the thermal averages of these

quantities. Therefore, in the remainder of this chapter, we will assume that

1

|A(r)|A(r) ≡ Â(r). (8.9)

The average magnitude of the LOPs is defined as

⟨|A|2⟩ =
1

N

∑︂
r

⟨|A(r)|2⟩, (8.10)

and we can further calculate the fluctuations in the magnitude via

C|A| =
1

N

∑︂
r

⟨︂(︂
|A(r)|2 −

⟨︁
|A(r)|2

⟩︁)︂2 ⟩︂
, (8.11)

which will help us to test the approximation in eq. (8.9). Since the magnitude of

the LOP vectors does not depend on their orientation, the C|A| can be viewed as
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a measure of the longitudinal fluctuations. The correlations between the transverse

modes of the LOPs are defined as

SD(ρ) =
1

N

∑︂
r

⟨︁
Â(r) · Â(r + ρ)

⟩︁
, (8.12)

where ρ = r− r. In terms of distance, this function reads

SD(ρ) =
1

Nρ

∑︂
ρ̂

⃓⃓
SD(ρ)

⃓⃓
, (8.13)

where ρ = |ρ|, and the sum is taken over all equivalent neighbors (Nρ in total)

separated by distance ρ. The absolute value inside the sum is taken for plotting

conveniences. Since the A(r) vectors lie on a triangular lattice, one can define a

Fourier transform:

A(q) =
1

N

∑︂
r

Â(r)e−iq·r. (8.14)

In the Fourier form, the LOP correlation function reads

SD(q) =
1

N

⟨︁
A(q) ·A(−q)

⟩︁
, (8.15)

which is the same as in eq. (7.32) in the previous chapter. Since at low temperatures

the Ising-like structures tend to select wavevectors lying on a ring with radius Q, we

can calculate average correlation functions at Q = QQ̂, where Q̂ is parallel to either

the Γ−M line or the Γ−K line. The two averages are then defined as

⟨|A(QΓ−M)|2⟩ =
1

6N

∑︂
q̂∈QΓ−M

⟨|A(q)|2⟩, (8.16)

⟨|A(QΓ−K)|2⟩ =
1

6N

∑︂
q̂∈QΓ−K

⟨|A(q)|2⟩, (8.17)

where the sums are over the six symmetry-equivalent directions in the Brillouin zone.

These averages can be viewed as the approximate dipolar order parameters3.

3Similar to the previous section, we use “dipolar” order parameter in the sense of the multipole

expansions, i.e. as opposed to the quadrupolar order parameter, which lacks a sense of vector

direction.
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Quadrupole moment

The quadrupole moment is a 2 × 2 tensor, which is defined in eq. (7.21). In the

simulations, we will consider the average magnitude of the quadrupole moment:

⟨Q2⟩ =
1

N

∑︂
r

⟨︁
Q(r) ·Q(r)

⟩︁
=

1

N

∑︂
r

∑︂
αβ

⟨︁
Q2

αβ(r)
⟩︁
, (8.18)

where the dot product is assumed to be analagous to the vector dot product. The

quadrupolar correlations can be defined in a similar way to the dipolar ones:

SQ(ρ) =
1

N

∑︂
r

⟨︁
Q(r) ·Q(r + ρ)

⟩︁
, (8.19)

SQ(ρ) =
1

Nρ

∑︂
ρ̂

SQ(ρ), (8.20)

SQ(q) =
1

N

⟨︁
Q(q) ·Q(−q)

⟩︁
, (8.21)

with

Q(q) =
1

N

∑︂
r

Q(r)e−iq·r. (8.22)

Note that the quadrupolar correlation function is defined in the same way as the

structure factor in eq. (7.37).

Collinearity parameter

In addition to the LOP quadrupole moment, it is useful to define a measure of the

local nematic order. We consider the following overlap function:

ψ(r) =
1

3

∑︂
ρ

⟨︁
Q(r) ·Q(r + ρ)

⟩︁
(8.23)

=
1

6

∑︂
ρ

⟨︃
2
(︂
Â(r) · Â(r + ρ)

)︂2

− 1

⟩︃
, (8.24)
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where the sum is taken over the nearest neighbours. The lattice-averaged value of

ψ(r) is given by

⟨ψ⟩ =
1

N

∑︂
r

ψ(r). (8.25)

We will refer to ψ(r) as the collinearity parameter.

Figure 8.1: Thermodynamic averages of the relevant quantities, defined in Sec. 8.1.2.
(a) Average chirality (⟨χ⟩), magnitude of the LOP (⟨|A|2⟩), and the collinearity pa-
rameter (⟨ψ⟩) reflect the evolution of local order. (b) Heat capacity (Cv), fluctuations
in the relative LOP magnitude (C|A|/max(C|A|)), and the distribution of chiral do-
mains (⟨sgn(χ)⟩) illustrate the establishment of the chiral paramagnet phase (see
text). Grey dashed lines indicate the temperatures at which the system undergoes
qualitative changes. All quantities were obtained from MC simulations using L = 54.
The error bars are much smaller than the markers.
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8.2 Chiral paramagnetic phase

We will now discuss the results of the MC simulations. Some of the thermodynamic

averages of quantities defined in the previous section are presented over a wide tem-

perature range in fig. 8.1. The system displays qualitative changes at three distinct

temperatures, T ∗ ≈ 0.46, TQ ≈ 0.21, and TD ≈ 0.13. Let us first focus on the

properties of the system at temperatures T ≥ T ∗.

Note that the average chirality |⟨χ⟩| and the average magnitude of the LOPs

⟨|A|2⟩, plotted in fig. 8.1 (a), both monotonically increase, which signals the formation

of the 120 degree Φ
(Γ)
4 order in each unit cell. The fluctuations in the magnitude,

determined by C|A|, reach a maximum at T ≈ 1.2 and then decay as the temperature

is decreased, as shown in fig. 8.1 (b). We calculate the maximum value of C|A| to be

Figure 8.2: Snapshots of spin configurations from MC simulations in the region
T ≥ T ∗. Blue and pale red represent the cells in which the local spin structure has
negative and positive chirality, respectively.
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max
T

(C|A|) ∼ 5× 10−5, (8.26)

which suggests that the longitudinal fluctuations of the LOPs remain small at all

temperatures. Interestingly, the average sign of the chirality |⟨sgn(χ)⟩| saturates at

T = T ∗, after a broad peak in the heat capacity, as shown in fig. 8.1 (b). The

snapshots of the spin configurations in fig. 8.2 display distorted Φ
(Γ)
4 structures with

an arbitrary phase (i.e. rotated in the kagome plane) in each unit cell. Thus, at

this temperature, the system forms a single chiral domain with ferromagnetically

ordered chirality vectors in each unit cell. At this point, the fluctuations in the

magnitude of the LOPs are small, as indicated by the plot of the C|A|. However,

both the dipolar and quadrupolar correlation functions, represented by SD(ρ) and

Figure 8.3: Distance dependence of the (a) dipolar and (b) quadrupolar correlation
functions calculated at different temperatures for the L = 108 system. The temper-
atures are chosen to analyze the behaviour of the correlation functions above and
below T ∗ ≈ 0.46, as well as at and below TQ ≈ 0.21. Here, ρ/a is the distance per
kagome bond length.
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SQ(ρ) in fig. 8.3 just below T ∗ display exponential decay with the distance. This

implies that despite the apparent ordering of the chiralities, the system continues

to fluctuate and the thermal fluctuations are sufficient to destroy the correlations

between the LOPs. From the definitions of SD(ρ) and SQ(ρ) in eq. (8.13) and (8.20),

we see that both of these correlation functions reflect the transverse fluctuations of

the LOP vectors. Therefore, from the plots of C|A| (fig. 8.1 (b)), SD(ρ) and SQ(ρ)

(figs. 8.3 (a) and (b) respectively), we conclude that the transverse fluctuations, which

correspond to the in-plane rotations of spins, promote the disordered configurations

in the temperature region TQ < T ≤ T ∗. At these temperatures, the system behaves

as an XY paramagnet, characterized by the 2-component LOP vectors. Finally, since

each A(r) describes a chiral 120 degree structure, we refer to the state of the system

in this temperature region as a chiral paramagnet.

The existence of a crossover to the chiral paramagnetic phase validates the an-

alytical coarse-graining procedure that we introduced in the previous chapter. The

XY nature of this phase provides a rationale for the omission of the out-of-plane spin

components from our calculations, and the smallness of C|A| further justifies the per-

turbative analysis. As a result, we expect that the effective model in eq. (7.24) would

be most accurate for T < T ∗.

8.3 Chiral nematic phase

As we further decrease the temperature to T = TQ, the system develops a quadrupole

moment, while the heat capacity displays a sharp peak, as shown in figs. 8.4 (a), (b).

From the finite-size analysis we see that as the system size increases, the appearance

of the quadrupole moment becomes more and more sharp, which is consistent with

a continuous phase transition (see Appendix D.2). At the same time, in figs. 8.4 (c),

(d), we present the values of ⟨|A(QΓ−M)|⟩ and ⟨|A(QΓ−K)|⟩ defined in eqs. (8.16)

- (8.17), respectively. Evidently, there is no qualitative change in the behaviour of

these functions at TQ. Moreover, as the system size increases, these values gradually

decay, suggesting the absence of the dipolar order in the thermodynamic limit.

A spontaneous quadrupole moment would break the in-plane rotational symmetry



107

Figure 8.4: Low-temperature finite-size data for (a) heat cpacity, (b) average
quadrupole moments, and (c), (d) the dipolar order parameters. The error bars
are shown on all plots but are smaller than the markers in sub-plot (b). As before,
the grey dashed lines indicate the locations of T ∗, TQ, and TD (in the order of de-
creasing temperature).

of the system but remain invariant under the discrete time-reversal symmetry4. How-

ever, since the system under consideration is quasi-2D, the broken continuous sym-

metry would contradict the Mermin-Wagner theorem, which states that no broken

4This is because the quadrupole variables Q(r) are written as the squares of the components of LOP

vectors A(r), which themselves depend linearly on the spin variables. Since the application of the

time-inversion gives Si(r) → −Si(r), it would also lead to A(r) → −A(r), which, after squaring,

leaves the quadrupoles unchanged: Q(r)→Q(r).
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Figure 8.5: Examples of topological defects in XY models. The cores of the defects are
represented by small circles (blue and red for negative and positive winding numbers,
respectively). Black circles with arrows are drawn around the cores to help identify
the winding numbers. (a) and (b) represent respectively an antivortex and vortex
defects in an XY ferromagnet, where as we trace a closed loop around the circle, the
spins rotate by 2π, leading to winding numbers ±1. (c) and (d) show nematic defects
with negative and positive windings (a disclination and a dislocation), respectively.
Given the symmetry of the ellipsoids, a full rotation corresponds to an angle of π,
which gives winding numbers ±1/2. The coloured lines are used to clearly indicate
the Y and U defects.

continuous symmetry occurs in systems with dimensions d ≤ 2 (see Appendix D.4).

This is further supported by the plots of the correlation function SQ(ρ) at temper-

atures T ≤ TQ in fig. 8.3 (b), which displays a crossover from an exponential to an

algebraic decay, SQ(ρ) ∼ ρ−η(T ). Since the correlations decay at temperatures below

TQ, the long-range order is destroyed by the thermal fluctuations, meaning that the

observed quadrupolar ordering is only quasi-long-range.

Nevertheless, the existence of a crossover in the decay of the correlations suggests

a transition of Kosterlitz-Thouless (KT) type (Appendix D.5). To demonstrate that

this transition does, in fact, take place in our system, we need to show the formation of
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Figure 8.6: Topological defects in the chiral nematic phase. (a) A fragment of the
spin structure with the colours determined by Â(r) · Â(0) (yellow, green, and purple
corresponding to 1, 0, and -1 respectively). (b) the same configuration, where the six
sublattices were replaced by the LOPs, represented as ellipses and coloured using ψ(r)
function as described in the text. The snapshots were obtained by quickly cooling a
L = 54 system below T = TQ.

topological defects. In a typical ferromagnetic XY model, these correspond to vortices

and antivortices, which are characterized by integer winding numbers (see discussion

in Appendix D.5). Examples of these are given in figs. 8.5 (a), (b). However, in

the present case, the system displays a quasi-long-range nematic ordering, which

changes the nature of the topological defects. Since the quadrupolar order parameter

is invariant under the time-reversal (or spin inversion), it is said to be defined up to

rotations by π, rather than 2π, as in a regular XY model. Therefore, the rotation

of this order parameter by π should count as a single winding. This means that the

topological defects in the nematic phase5 are equivalent to “half-integer vortices”, as

shown in figs. 8.5 (c),(d). The nematic defects with winding numbers −1/2 and 1/2

are also sometimes called the “Y” and “U” defects, due to their shape.

To obtain the topological defects, we simulate a quick cooling of the spin configu-

rations below T = TQ and analyze the resulting snapshots of the spin configurations.

To provide a better presentation of the quadrupolar order, we replace the spin struc-

ture in each unit cell by the corresponding LOP vector A(r). Furthermore, rather

than presenting these as arrows, we instead display ellipsoids, which properly capture

5Commonly called disclinations in the liquid crystal literature.
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the symmetry of the quadrupole moment. Finally, we choose the collinearity parame-

ter ψ(r), defined in eq. (8.24) as a colour map to highlight the regions in space where

the LOPs deviate from the collinear arrangements. The resulting structures are pre-

sented in fig. 8.6. We see that our simulations reveal pairs of topological defects with

winding numbers equal to ±1/2. The fact that these defects appear as bound pairs

(not, for example, a pair of defects in the upper right corner of fig. 8.6 (b)) below

T = TQ qualitatively confirms the KT transition.

These results are quite remarkable since they demonstrate a stabilization of a

nematic phase in a magnetic system at a finite temperature. The existence of spin

nematics has been hypothesized for a long time, typically through exaggerated models

with unusually large biquadratic interactions between the spins [150–156]. To date,

there is no experimental evidence that these models could be compatible with real-

istic magnetic systems [156]. The Ising-like phases in AB-SKL provide a completely

different mechanism for stabilizing nematic states, which relies on moderate values

of DM interactions and thermal fluctuations. Another important difference comes

from the fact that the nematic order described here is also chiral, as a result of the

120 degree structure in each cell. The coexistence of chirality and nematicity is un-

usual, since they are typically associated with opposite structures (non-collinear and

collinear, respectively). Note that this coexistence is not analogous to the cholesteric

phase in liquid crystals, since the ordering of the LOPs (in the absence of defects) is

precisely collinear and generally does not display any chiral twisting over macroscopic

distances [128].

8.4 Nucleation of Ising-like phases

Finally, as the temperature of the system decreases further below TQ, in the vicin-

ity of T = TD we observe a series of jumps in the heat capacity, as shown in

fig. 8.4 (a). These jumps are also reflected in the plots of the dipolar order pa-

rameters, ⟨|A(QΓ−M)|⟩ and ⟨|A(QΓ−K)|⟩ (figs. 8.4 (c), (d)), which also acquire larger

error bars. The error bars indicate a distribution of structures with distinct spin

configurations in different simulations, which is consistent with the formation of the

disordered Ising-like patterns. Fig. 8.7 shows the MC snapshots of these structures

at different temperatures. We see that the Ising degrees of freedom fluctuate, which



111

leads to dissimilar patterns at each temperatures.

To analyze the nature of this behaviour close to TD, we collect histograms of

the energy components at different temperatures. The energy values, correspond-

ing to the self-dual intra-plane exchange, and labelled as E
J
(4)
2

were shown to be

very sensitive to the fluctuations in the Ising-like patterns. In fig. 8.8, we present

the histograms of the E
J
(4)
2

at different temperatures. We see that as the tempera-

ture is lowered, the histograms start to display multiple peaks, which corresponds to

many coexisting configurations. Note that compared to the average energy of about

⟨E⟩ ≈ 3.0, the energy differences between the peaks are quite small. The presence

of metastability indicates a weak first-order transition, although in the present case,

instead of two coexisting phases (ordered and disordered), there appears to be up to

7 different metastable states at once. This suggests a presence of a complicated free

energy landscape, meaning that many distinct Ising-like patterns have very similar

energies and are metastable near TD, which allows thermal fluctuations to drive the

system in a sort of a random walk through the configuration space. However, this

high configurational entropy could also prevent the system from reaching the true

equilibrium state, leaving it stuck in one of the metastable configurations.

The last point that we would like to discuss is the origin of the weak first-order

transition. Since the time-reversal symmetry is broken once the Ising-like structures

are formed, we would expect a second-order type transition between the chiral ne-

matic and low-temperature Ising-like phases6. Therefore, a first-order transition is

somewhat surprising. The explanation of this inconsistency comes from the large

volume of fluctuations, concentrated along the ring in the Brillouin zone, as seen

from the plots of the dipolar correlation functions in fig. 8.7. As discussed in the

previous chapter, the dipolar interactions in the effective model in eq. (7.24) yield a

quasi-degenerate7 ring of states. As a result, the thermal fluctuations in the vicinity

of this ring cost very little energy, meaning that the Ising degrees of freedom continue

to fluctuate as long as the resulting configurations are described by the wavevectors

6Recall that a broken discrete time-reversal symmetry in a 2D system does not contradict the

Mermin-Wagner theorem, since the latter only applies to the continuous symmetries.

7As mentioned in the discussion of the last chapter, the neglected terms in the Hessian in eq. (7.14)

could yield small effective interactions that break the exact degeneracy of this ring.
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Figure 8.7: Evolution of the spin structure during the nucleation of the Ising-like
phases. The snapshots of the spin configurations at the specified temperatures are
shown on the left (colour scheme is the same as in fig. 8.6 (a)), and the corresponding
plots of the dipolar correlation functions SD(q) are presented on the right (brighter
colours indicate higher intensity). The results are obtained from the MC simulations
of the L = 108 systems.
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Figure 8.8: Evolution of the histograms of the energy components E
(4)
2 during the

nucleation of the Ising phases. The energy components were collected from an equi-
librated L = 54 system after each MC update (with the total of 2× 106 MC updates
per temperature).

that lie inside of this ring. Since the Ising fluctuations prevent the breaking of the

time-reversal symmetry, this quasi-degeneracy leads to the entropic stabilization of

the nematic phase by thermal fluctuations 8. Eventually, the energetic penalties be-

come sufficiently large and the structures nucleate into Ising-like patterns. However,

this transition cannot happen in a continuous fashion, since any fluctuation would

stabilize a nematic phase. Therefore, the nucleation occurs as a weak first-order tran-

sition. Although this discussion is only qualitative, in Ref. [81] we confirmed it by

performing a field theory analysis of the effective model in eq. (7.24). This type of a

fluctuation-induced first-order transition is known as the Brazovskii transition [157].

The original subject of Brazovskii’s study was a 3D isotropic systems with a degen-

erate manifold of states located on a surface of a sphere in the reciprocal space. This

mechanism for a first-order transition was demonstrated in a number of very distinct

systems, from the theory of weak crystallization of solids to the formation of biological

8In other words, the chiral nematic phase acts as the Ising paramagnet.
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membranes [158–162].

8.5 Summary of important results and open questions

In this final chapter, we presented a numerical MC study of the thermal properties

of Ising-like phases. Our results reveal that the nucleation of the Ising-like patterns

at finite temperatures displays a surprising complexity and occurs in three stages: a

crossover to a chiral paramagnetic state, a KT transition to a chiral nematic phase,

and an unusual first-order transition into the low-temperature Ising-like phase.

The crossover from the Heisenberg to the chiral XY paramagnetism is driven en-

tirely by the DM interactions, since the remaining exchange couplings are isotropic.

Interestingly, similar qualitative change from isotropic to the chiral paramagnetic

state was reported in a chiral helimagnet MnSi, which is well-know for the ex-

perimental realization of magnetic skyrmions [163, 164]. Furthermore, the transi-

tion from the chiral paramagnet to the helimagnetic phase is also said to display

the fluctuation-induced first-order behaviour, as prescribed by the Brazovskii sce-

nario [165–167]. These surprising similarities might indicate universal properties of

the Heisenberg-DM models that are valid in both centrosymmetric (e.g. AB-SKL)

and non-centrosymmetric (e.g. MnSi) systems.

The most intriguing state revealed by our analysis is the chiral nematic phase.

As stated in the main discussion, the existence of nematic phases in spin systems

continues to be a subject of controversy. The quadrupolar order presented in this

work is fundamentally different in that we demonstrate a nematic ordering of the

LOPs, rather than individual spins. Since the Ising-like phases in the AB-SKL are

robust against various perturbation, we propose that these systems could be promising

candidates for experimental realization of these exotic phases. An important question

that should be addressed in the future studies is whether these phases persist in 3D. A

theoretical discovery of a long-range nematic order in a magnetic system could bring

us a step closer to an experimental realization of these states in realistic magnetic

compounds.

Finally, the transition from the chiral nematic phase to the low-temperature Ising-

like state was shown to be of first-order with the use of energy histograms. Inter-

estingly, these histograms revealed up to seven coexisting metastable configurations
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at once, suggesting a complex free energy landscape. It remains unclear if the final

spin configuration obtained in the MC simulations is a true ground state with a large

degeneracy, or if it is simply an arrested metastable configuration. This will be the

subject of future investigations. The mechanism of the fluctuation-driven first-order

transition discussed here and confirmed in Ref. [81] also deserves further investigation

in 3D systems. We would expect the situation in bulk systems to be different, since

the relative number of the quasi-degenerate wavevectors with respect to the total

volume of the Brillouin zone would be smaller in 3D compared to 2D. It would there-

fore also be interesting to study these differences in thin-film systems with different

numbers of layers.



Chapter 9

Summary and conclusions

What you do in this world is a

matter of no consequence. The

question is what can you make

people believe you have done.

Arthur Conan Doyle,

A Study in Scarlet

In the Introduction, we stated that the effects of 3D stacking of kagome layers re-

main relatively unknown. We motivated an investigation into the magnetic properties

of AB-SKL by referring to a wealth of experimental data and potential importance

of these compounds for industrial applications. In what followed, we quickly realized

that this simple modification of the well-known 2D system leads to fascinatingly rich

phenomena, some of which evaded our best attempts at characterizing them.

In our studies, we made use of various analytical and numerical methods. Symme-

try analysis was first used to derive the magnetic Hamiltonian for AB-SKL systems

and then to describe the emergent self-duality properties of the parameter space of

the resulting model. The properties of the spin Hamiltonian were studied numer-

ically using MC simulations to characterize the magnetic ground states in a large

portion of the parameter space. MC methods were also used to study the finite-

temperature properties of the unusual Ising-like phases. Finally, we developed an

analytical coarse-graining method that allowed us firstly to obtain the exact effects

of the in-plane anisotropy in Mn3X compounds, and secondly to derive an effective

model for the Ising-like phases, written in terms of the averaged local order parameter

variables.

It would be a significant overstatement to say that this work provides, in any

sense, a complete description of the properties of AB-SKL. After all, there are still

116
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many unanswered questions, some of which we pointed out at the end of each chapter.

It is, nevertheless, important to summarize the most significant results of this thesis

and potential avenues for the future studies.

Before summarizing the results in this thesis, let us briefly discuss the poten-

tial applications of the magnetic AB-SKL systems for high-speed spintronic devices.

Even without an overall magnetization, the magnetic properties of antiferromagnetic

metals can be utilized with the use of spin-polarized currents, since the principles of

magnetic interactions between the localized free electron spins are exactly the same

as in ferromagnets [6, 7, 168]. As a result, the spin-polarized currents may be used

to switch the direction of the aniferromagnetic order, thus providing a way to write

the information in antiferromagnetic devices. The rate of this switching depends on

both the energetic cost of inducing a magnetic moment as well as the strength mag-

netic anisotropy [6]. One of the potential advantages of antiferromagnetic memory

storage is that the switch rates of the antiferromagnets have been shown to be as

large as two orders of magnitude higher than those of the ferromagnets [169]. When

it comes to the antiferromagnetic AB-SKL compounds, such as the Mn3X family, the

anisotropically induced magnetic moment is of high utility, since it may interact with

the spin-polarized free electrons and thus lower the energy barrier for the magnetic

switching [76]. Therefore, the study of the in-plane anisotropy in Chapter 6 is relevant

for the understanding of the six-fold switching in these systems. We also note that the

large AHE, observed in Mn3Sn and Mn3Ge is connected to the non-trivial topology

of the electronic band structure [46, 52, 55]. This topological character arises from

the non-collinear magnetic structure and provides extremely robust exotic electronic

properties, which can be manipulated by polarized currents [170]. Finally, we note

that since many of the phases studied in this thesis, including the exotic Λ4 Ising-like

phases, are chiral. Since spin chirality is known to couple to the electron currents

to produce emergent electomagnetic fields [171,172], it may be possible to utilize the

spin structures in AB-SKL for manipulation or generation of spin-polarized currents.
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9.1 Summary of important results

9.1.1 Derivation of the magnetic Hamiltonian

The first main achievement of this work is the derivation of the phenomenological

spin Hamiltonian in Chapter 2, eq. (2.30) using symmetry principles. As stated in

Ref. [75], this is the first general model, which was derived rigorously from symmetry,

that provides all possible two-spin magnetic interactions in AB-SKL. Our analysis

identified previously ignored interactions, such as the inter-layer DM couplings and

anisotropic exchange interactions. This model served as the backbone for the char-

acterization of all magnetic properties of AB-SKL in this thesis. The derivation was

presented in a pedagogical way, which will hopefully be useful to anyone new to the

symmetry analysis. At the same time, the supplemental material of Ref. [75] provides

a group theory-based analysis, serving as an alternative reference for this derivation.

9.1.2 Self-duality transformations

Arguably the most important discovery that helped us to devise a very general char-

acterization of different phenomena is the existence of self-duality transformations

in Chapter 3. Self-duality was shown to describe the symmetries of the parameter

space of the model through various local reference-frame transformations. We de-

vised a procedure for identifying self-duality maps in our model and were able to

relate the existence of certain transformations to the approximate strength of the

SOC. Ref. [80] further extends this analysis and proposes a general procedure for de-

riving self-duality in arbitrary anisotropic magnetic systems. It is hard to overstate

the importance and utility of self-duality. By using these transformations properly,

one can make extremely general statements about the properties of the magnetic sys-

tem, while significantly reducing the time of computation. One could also potentially

relate the properties of models with non-physical parameters to ones with more real-

istic parameter sets, thus improving the chances of experimental discovery of various

exotic phases.

Knowledge of possible self-dualities is important for experimental studies. Since

certain quantities of interest may be exactly the same in distinct self-dual phases, in

some cases a single experimental study may not be sufficient to conclusively determine
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the magnetic structure of the system [105]. Therefore, our results may be helpful for

future experimental studies of magnetic properties of novel compounds with AB-SKL

structure.

9.1.3 Ground state phase diagrams

In Chapter 5, we used numerical simulations to study general ground state properties

of our model in the three SOC limits: isotropic, weakly-coupled and strongly-coupled.

We discovered a large number of non-trivial magnetic structures, many of which are

unique to the AB-SKL systems. Self-duality properties allowed us to separate these

phases into families of self-dual configurations, which greatly simplified the overall

analysis. These results should be of use for the future experimental characterization

of magnetic phases in AB-SKL compounds and may serve as a good starting point

for further in-depth theoretical studies.

9.1.4 In-plane anisotropy in Q=Γ phases

Chapter 6 concerned a question of in-plane anisotropy in Φ
(Γ)
m structures, which is

directly relevant to the experimental studies of Mn3X compounds. We used an an-

alytical procedure to derive the expression for the six-fold anisotropy from the SIA

and anisotropic exchange interactions and showed that it removes the continuous

rotational symmetry, in agreement with the experimental observations. Somewhat

surprisingly, we found that while both SIA and anisotropic exchange lead to small

twisting of spins towards the anisotropic axes, the direction of this twisting depends

on the type of anisotropic interactions. This is relevant to the observed small magne-

tization in Mn3X compounds, since the direction of the magnetic moment, induced

by the anisotropy, depends on whether the SIA or the anisotropic exchange dominate

in these systems. Ref. [75] takes this analysis a step further by providing numerical

studies of the effects of other interactions in AB-SKL on the magnitude of the induced

magnetic moment, as well as calculating the effects of the in-plane anisotropy on the

static and dynamic structure factors for the elastic and inelastic neutron scattering

experiments. These results could be used to determine the relative strengths of the

different anisotropic interactions in Mn3X compounds.
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9.1.5 Ising-like phases

The last two chapters, 7 and 8 specialized on the properties of the most complex

phases in our system – the Ising-like Λm structures. These studies are motivated

by their considerable stability in the parameter space, which increases the possibil-

ity that these phases may be discovered in future experiments. Through analytical

coarse-graining of the spin Hamiltonian in Chapter 7, we were able to derive an ef-

fective model for these structures, written in terms of the soft mode variables, corre-

sponding to the in-plane rotations of the spins on the six sublattices in each unit cell.

We parameterized these rotations using two-component local order parameter vec-

tors, which resulted in the effective Hamiltonian in eq. (7.19). Upon further analysis,

we found that the interactions in this coarse-grained model can be divided into cou-

plings between dipolar and quadrupolar degrees of freedom. Since the quadrupolar

interactions were the largest, we suggested that they are responsible for the Ising-

like structure in these phases. This was confirmed in Chapter 8 by the numerical

simulations of the AB-stacked kagome bilayers, which showed that the nucleation of

the Ising-like structures occurs in three stages: a crossover from Heisenberg to XY

paramagnet, a KT transition to a nematic phase, and finally a fluctuation-induced

first-order transition to the low-temperature Ising-like phase.

These results provide a unique example of stabilization of nematic order in a

magnetic system via DM interactions. Furthermore, in our analysis we considered the

Λ4 phases, for which both the XY paramagnet and the nematic phase were shown to

be chiral, which is highly unusual. Ref. [81] provides further analytical confirmation

of the Brazovskii fluctuation-induced first-order transition at low temperatures, which

indicates interesting connections between the properties of the Ising-like structures in

AB-SKL and the magnetic phases in a chiral MnSi compound, where this transition

has been discussed in the context of several experimental studies.

9.2 Future areas of study

This work provides, first of all, an invitation for other researchers to learn about and,

hopefully, to extend the existing knowledge about the magnetism of AB-SKL.

The most natural extension of the results in most of the chapters in this work
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is the addition of the external magnetic field. The two most important studies that

should be considered in the future are as follows. First of all, the generalization of the

results in Chapter 6 to finite magnetic fields along arbitrary directions would provide

a nice theoretical component to an experimental study of anisotropic interactions in

AB-SKL, such as Mn3X compounds. Secondly, analyzing the properties of the Ising-

like structures under applied field would help to design potential experiments that

would facilitate the discovery of these structures in real compounds.

Extending the symmetry analysis to finite systems, such as thin films is an in-

teresting and important problem. The surface reduces the point group symmetry

from D6h to D3d, which would introduce new spin invariants on each bond. Thus,

the resulting surface interactions may lead to very different phenomena compared to

the bulk, or further stabilize the exotic orders presented in this work. The symmetry

analysis tools provided in Chapter 2 should be sufficient to derive these new inter-

actions, and the bulk magnetic ground states in Chapter 5 would provide a starting

point for the analysis of the surface magnetic properties.

Finally, we hope that our studies of the Ising-like phases would encourage further

extensive experimental and theoretical investigations of these structures.

Beyond that, the author of this thesis made an attempt to introduce different tools

– analytical, numerical, and data processing – that helped him to bring this work to

life. It is his hope that the reader would find these tools useful and helpful in solving

problems that may have nothing to do with the magnetic properties of AB-SKL.
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of Theoretical Physics, vol. 10, pp. 158–172, 08 1953.

[18] J. T. Chalker, P. C. W. Holdsworth, and E. F. Shender, “Hidden order in
a frustrated system: Properties of the Heisenberg Kagomé antiferromagnet,”
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[56] R. Troć, M. Pasturel, O. Tougait, A. P. Sazonov, A. Gukasov, C. Sulkowski,
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[72] P. Park, J. Oh, K. Uhĺı̌rová, J. Jackson, A. Deák, L. Szunyogh, K. H.
Lee, H. Cho, H.-L. Kim, H. C. Walker, D. Adroja, V. Sechovský, and J.-G.
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[157] S. A. Brazovskǐi, “Phase transition of an isotropic system to a nonuniform
state,” Soviet Journal of Experimental and Theoretical Physics, vol. 41, p. 85,
1 1975.
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Appendix A

Transformation properties of cross products

We are going to prove that

a ·
(︁
(Rb)× (Rc)

)︁
= det(R)(RTa) · (b× c), (A.1)

where a, b, and c are vectors, and R is an orthogonal transformation matrix. This

equation can be used to define the transformation properties of axial vectors (see

Sec. 2.3) and to demonstrate the rotational symmetry of DM interactions in AB-SKL

(Sec. 2.5). Although these properties are often quoted in the literature, the actual

proof is almost always omitted and, as a result, is difficult to find in the literature.

First, the left side of eq. (A.1) can be written in index notation as

∑︂
αβγ

∑︂
ζη

εαβγaαRβζbζRγηcη, (A.2)

where we use Greek letters for matrix components, and εαβγ is the Levi-Civita tensor.

Note that the Levi-Civita tensor is also used in the definition of the determinant of a

matrix:

det(R) =
∑︂
δβγ

εδβγRδ1Rβ2Rγ3. (A.3)

Let us define a new tensor

Tµζη =
∑︂
δβγ

εδβγRδµRβζRγη. (A.4)

Tensor Tµζη is completely antisymmetric with respect to permutations of the indices

and therefore must be proportional to the Levi-Civita symbol, Tµζη = Cεµζη. But

from eq. (A.3) it follows that

T123 = Cε123 = C = det(R), (A.5)
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so Tµζη = det(R)εµζη. Multiplying this equation by Rαµ and summing over µ gives

det{R}
∑︂
µ

εµζηRαµ =
∑︂
δβγµ

εδβγRδµRβζRγηRαµ

=
∑︂
βγ

εαβγRβηRγµ, (A.6)

where in the last step we used the orthogonality property of R:

I = RTR =
∑︂
µ

RδµRαµ = δδα. (A.7)

Returning to eq. (A.2), we see that

∑︂
αβγ

∑︂
ζη

εαβγaαRβζbζRγηcη = det(R)
∑︂
αζηµ

εµζηRαµaαbζcη, (A.8)

or, in vector form

det(R)a ·
[︁
R(b× c)

]︁
= det(R)(RTa) · (b× c), (A.9)

as required.



Appendix B

Monte Carlo algorithms

Algorithm 1: Metropolis MC step

input : array of N spin vectors, S; array of effective field vectors, H; inverse

temperature, β; array of uniformly distributed random numbers,

rn ∈ [0, 1)

for i← 0 to N do

select a random lattice site r;

generate a new random orientation for spin at r, S′(r);

∆E = −H(r) ·
(︁
S′(r)− S(r)

)︁
;

if ∆E ≤ 0 then

S(r)← S′(r);

update H values;

end

else if exp(−β∆E) >rn then

S(r)← S′(r);

update H values;

end
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Algorithm 2: Heat-bath MC step

input : array of N spin vectors, S(r); array of effective field vectors, H(r);

inverse temperature, β

for i← 0 to N do

select a random lattice site r;

generate random numbers r1 and r2;

ϕ(r)← 2πr1;

cos θ(r)← 1 + 1
βH(r)

ln
(︂
r2 + (1− r2)e−2βH(r)

)︂
;

S(r) = [cosϕ(r) sin θ(r), sinϕ(r) sin θ(r), cos θ(r)];

rotate S(r) to the global coordinate frame;

update H(r) values;

end

Algorithm 3: Over-relaxation lattice update

input : array of N spin vectors, S(r); array of effective field vectors, H(r);

inverse temperature, β

for i← 0 to N do

select ith lattice site r;

S(r)← 2S(r)·H(r)
H2(r)

H(r)− S(r);

update H(r) values;

end



Appendix C

Quadratic optimization

In chapters 6 and 7 we obtain harmonic expansions of the energy of the form

E(x) = e0 +
∑︂
i

gixi +
1

2

∑︂
ij

hijxixj

= e0 + g · x +
1

2
xThx, (C.1)

where x are the expansion variables contained in a M -dimensional vector, e0 is a

constant, g is a vector of M linear coefficients (alternatively, a gradient vector), and

h is a symmetric M ×M matrix of quadratic coefficients (or the Hessian matrix).

The condition for the minimum can be determined by calculating the derivative with

respect to variable xk:

∂E

∂xk
= gk +

1

2

⎛⎝∑︂
i

hikxi +
∑︂
j

hkjxj

⎞⎠
= gk +

∑︂
i

hkixi = 0, (C.2)

or, in vector form,

∇xE = g + hx = 0. (C.3)

To simplify the problem, it often helps to switch to a basis that diagonalizes the

Hessian. We will denote the variable and gradient vectors in the new basis as x̃

and g̃, and the kth eigenvalue of the Hessian as h̃k. The condition for the minimum

becomes

g̃k + h̃kx̃k = 0. (C.4)
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Therefore, in order to be able to minimize the energy function, we must ensure that

the eigenvalues of the Hessian are non-negative. This is equivalent to saying that the

energy must be convex and the Hessian matrix is positive semidefinite. Note that

a function will have a unique minimum if and only if it is strictly convex, meaning

that the Hessian is positive definite. The difference between definite and semidefinite

matrices is that the latter has one or several zero eigenvalues. The only way to

satisfy eq. (C.4) when h̃k is zero is by ensuring that g̃k is also zero. If this cannot be

achieved, the minimization problem is ill-defined. If both g̃k and h̃k are equal to zero,

the corresponding eigenvector describes a collective zero-energy mode. In all other

cases, the solution is simply

x̃
(min)
k = − g̃k

h̃k
. (C.5)

Since the energy is invariant under a change of basis, we obtain the minimum energy

value

E(min) = e0 + δE

δE = −
∑︂
k

g̃2k
2h̃k

= −1

2
gTh−1g. (C.6)



Appendix D

Phase transitions in 2D spin systems

In Chapter 8, we study thermal properties of a single AB-stacked bilayer, which

corresponds to a quasi-2D system. We therefore dedicate this appendix to a review

of the phase transition theory in 2D.

D.1 Thermodynamic quantities

In statistical mechanics, the partition function Z describes all of the equilibrium

properties of a given physical system. It can be written as

Z = Tr
{︂
e−βH

}︂
, (D.1)

where the trace indicates a summation or integration over all possible degrees of

freedom in a system described by the Hamiltonian H. A statistical average of any

quantity X is defined as

⟨X⟩ =
1

Z
Tr

{︂
Xe−βH

}︂
. (D.2)

An important identity that connects the statistical theory of the microscopic

degrees of freedom to the macroscopic thermodynamics is the expression of the

Helmholtz free energy as a logarithm of the partition function:

F = −kBT lnZ. (D.3)

Using this equation, we can define most thermodynamic quantities either in terms of

the statistical averages in eq. (D.2) or as derivatives of the free energy F . We will

demonstrate this with a few examples.

Internal energy and heat capacity

The average internal energy of the system is simply calculated using
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⟨H⟩ =
1

Z
Tr

{︂
He−βH

}︂
= − 1

Z

∂Z

∂β

= − ∂

∂β
lnZ = −∂(βF )

∂β
. (D.4)

The heat capacity is simply the temperature derivative of ⟨H⟩:

Cv =
∂⟨H⟩
∂T

= kBβ
2∂

2(βF )

∂β2
(D.5)

= kBβ
2

[︄
−
(︃

1

Z

∂Z

∂β

)︃2

+
1

Z
Tr

{︂
H2e−βH

}︂]︄
= kBβ

2
[︁
⟨H2⟩ − ⟨H⟩2

]︁
. (D.6)

The heat capacity is a measure of thermal fluctuations and is typically used to identify

qualitative changes in the structure of the system, such as phase transitions.

Order parameters, susceptibilities, and correlation functions

One of the most profound observations in physics is that we can characterize the

properties of a macroscopic system, composed of an uncountable number of degrees

of freedom, using only a few important parameters. These important parameters de-

scribe the collective behaviour of the degrees of freedom and can be used to represent

the overall state of the system. In the studies of phase transitions, we often try to

identify a quantity that characterizes the ordered phase, which is then simply called

the order parameter. An ideal order parameter quantity is zero in the disordered

phase and non-zero in the ordered phase. For example, in the case of a ferromagnetic

phase, the appropriate order parameter is a uniform magnetization, m =
∑︁

r S(r).

In order to calculate the average magnetization, it is useful to temporarily add an

applied field H, such that the energy of the system is modified as H → H−H ·m.

As a result, we obtain
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⟨mα⟩ =
1

Z
Tr

{︂
mαe

−β(H−H·m)
}︂

=
1

Z

∂Z

∂βHα

=
∂

∂βHα

lnZ =
∂F

∂Hα

⃓⃓⃓⃓
H=0

, (D.7)

where in the last step we took the limit of zero field to recover the original Hamilto-

nian. The susceptibility, which determines the response of the system to a magnetic

field, is defined as

χαβ =
∂⟨mα⟩
∂Hβ

⃓⃓⃓⃓
H=0

=
∂2F

∂Hα∂Hβ

⃓⃓⃓⃓
H=0

(D.8)

= β
[︁
⟨mαmβ⟩ − ⟨mα⟩⟨mβ⟩

]︁
, (D.9)

such that is provides the information about the fluctuations of the magnetization.

These definitions can be extended to any quantity of interest. For example, by in-

cluding an inhomogeneous field H(r) in the system, we can obtain

⟨Sα(r)⟩ =
1

Z
Tr

{︂
Sα(r)e−β(H−

∑︁
r H(r)·S(r))

}︂
=

1

Z

∂Z

∂βHα(r)

=
∂F

∂Hα(r)

⃓⃓⃓⃓
H(r)=0

, (D.10)

from which the generalized spin susceptibility is

χαβ(r, r′) =
∂2F

∂Hα(r)∂Hβ(r′)

⃓⃓⃓⃓
H(r)=0

(D.11)

= β
[︁
⟨Sα(r)Sβ(r′)⟩ − ⟨Sα(r)⟩⟨Sβ(r′)⟩

]︁
. (D.12)

If we assume that the system is isotropic and possesses the translational symmetry,

we may rewrite eq. (D.12) as
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kBTχ(ρ) = S(ρ), (D.13)

where ρ = r− r′ and

S(ρ) =
1

N

∑︂
r

[︁
⟨S(r) · S(r− ρ)⟩ − ⟨S(r)⟩ · ⟨S(r− ρ)⟩

]︁
(D.14)

is the two-point correlation function. Note that in the disordered phase, ⟨S(r)⟩ = 0,

which eliminates the second term in the brackets in eq. (D.14).

D.2 Types of phase transitions

In the previous section we introduced the concept of an order parameter. As we

cross a phase transition point from disordered to the ordered phase, the value of the

order parameter changes from zero to non-zero. The way in which this change occurs

determines the two main types of phase transitions: if the order parameter changes

in a discontinuous (continuous) fashion, we say that the phase transition is first (sec-

ond) order. This classification is due to Ehrenfest [173], who distinguished the phase

transitions based on the derivatives of the free energy that become discontinuous at

the transition point. From the previous section, we see that the average energy and

order parameters are related to the first-order derivatives of F , and therefore change

abruptly during a first-order transition. At the same time, in a second-order transi-

tion, these quantities remain continuous, while the properties like the heat capacity

and susceptibility, which derive from the second-order derivatives of the free energy,

still become singular.

Most phase transitions in nature are first-order transitions. At the transition

point, most of the properties change abruptly to their new values, often without any

precursors1. The central concept in the theory of first-order transitions is metasta-

bility. We will illustrate this using a phenomenological description of the free energy

as a function of the order parameter Ψ in fig. D.1 (a). At high enough temperatures

1For example, consider liquid water, which at 0 ◦C becomes ice, and at 100 ◦C – vapour. Both

transitions correspond to an abruptly changing density, and occur without any intermediate phases,

such as slush or mist.
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Figure D.1: A phenomenological illustration of the free energy F (Ψ) as function of
the order parameter Ψ at different temperatures during a first-order (a) and second-
order (b) phase transitions. The meaning of the temperatures is explained in the
main text.

(e.g. T = T
(1)
1 in fig. D.1 (a)), the fluctuations dominate in the system and the disor-

dered state at Ψ = 0 is the only stable minimum of the system. As the temperature

is decreased (T = T
(2)
1 ), the energetic interactions become sufficient to stabilize the

ordered configurations with Ψ ̸= 0. However, if the fluctuations are still large, the

free energy will favour the high entropy disordered state, and F (Ψ = 0) will remain

the global minimum. Thus, at temperatures T
(1)
3 < T ≤ T

(1)
4 , the ordered state at

Ψ ̸= 0 produces a local minimum in the free energy and is therefore metastable,

since it does not correspond to the equilibrium phase. As the temperature is lowered

to T = T
(1)
4 , the two minima become equal, leading to coexisting states. Finally,

below the transition point, the ordered state becomes the global free energy mini-

mum, while the disordered state becomes metastable, as shown for T = T
(1)
5 . Often,

the metastability persists for a wide range of temperatures, which means that if the

system passes through the transition point too quickly, it may get trapped in the

metastable minimum, leading to an out-of-equilibrium state.

In second-order transitions, the system evolves continuously from the disordered

phase to the ordered one. In this case, at any temperature, the free energy has only

a single minimum, as shown in fig. D.1 (b). As in the previous example, at high

temperatures (e.g. T = T
(2)
1 ) the system starts off in the disordered state where
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the free energy has a single minimum at Ψ = 0. This time, no metastable states

form, and the system undergoes a transition at T = T
(2)
2 from the disordered to the

ordered state, shifting the minimum of the free energy from Ψ = 0 to Ψ ̸= 0 in a

continuous fashion. At lower temperatures (e.g. T = T
(2)
3 ), the free energy has a

single minimum corresponding to the ordered state. In the vicinity of a second-order

phase transition, the singular parts of the thermodynamic quantities follow power

laws in control variables (such as temperature and external field), measured with

respect to the transition point. Each thermodynamic property is therefore associated

with a critical exponent that determines the singular behaviour. For example, if Ψ

is the order parameter and S(ρ) is the corresponding correlation function (with ρ

representing distance), close to the transition point at T = Tc we would have

Ψ ∼ (Tc − T )β, (D.15)

S(ρ) ∼ ρ2−d−η, (D.16)

where β and η are typically used to label the critical exponents for the order parameter

and correlation function, and d is the spatial dimensionality of the system. Surpris-

ingly, the critical exponents turn out to be independent of the microscopic details of

the model, and instead are specified by the overall symmetry of the system and the

type of the order parameter. Therefore, the critical exponents provide a universal

classification of the second-order phase transitions. The discovery of universality is

an extremely important achievement of the celebrated renormalization group theory.

Although we will not discuss it here, these concepts are covered in most of the modern

statistical mechanics books, such as in Refs. [174–176].

The last important concept that we would like to mention here is the spontaneous

symmetry breaking. Frequently, a transition into a more ordered phase is accompanied

by the lowering of the symmetry. For example, when a liquid freezes into a crystalline

solid, the average distribution of particles (atoms or molecules) changes from spatially

uniform to periodic. This means that the continuous translations and rotations are

reduced to the discrete crystal symmetries, as dictated by the corresponding space

group. Second-order transitions are always associated with a broken symmetry, while

the first-order transitions may occur without any change in symmetry. The example
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of the latter is a liquid-gas transition, where the symmetry of both states is unchanged

by the abrupt change in the density. Importantly, the spontaneous symmetry breaking

occurs solely as a result of minimization of the free energy, and not because of the

symmetry-lowering terms in the model Hamiltonian.

D.3 2D Ising ferromagnet

One of the simplest models to allow for a phase transition is the 2D Ising model on

a square lattice:

H = J
∑︂
⟨rr′⟩

S(r)S(r′), (D.17)

where the sum is over the NN on a square lattice, and S(r) = ±1 are the discrete Ising

spins. Originally invented by Wilhelm Lenz in 1920, the 1D version of this model

was solved by his student, Ernst Ising, who showed that there was no phase transi-

tion [177]. The 2D model was later realized to possess a phase transition [178], but

its solution evaded the scholars for over a decade. Arguably the most significant and

impressive achievement in the theory of phase transitions was the analytical solution

of the 2D Ising model by Lars Onsager in 1944 [94]. Onsager’s solution revealed a

second-order transition between the disordered and the ferromagnetic phases. In this

case, the ferromagnetic state breaks the discrete time-reversal symmetry (see Chap-

ter 2.2) by establishing a spontaneous magnetization. In the vicinity of the transition

temperature Tc, the magnetization behaves as

m ∼ (Tc − T )
1
8 , (D.18)

where as in eq. (D.15), 1/8 is the Ising critical exponent for the order parameter.

The original 1944 paper by Onsager is extremely complicated, and it took another

decade for various authors to simplify this solution. Nevertheless, it provided the first

rigorous example of a phase transition at which various thermodynamic functions

become singular, with the singularities described by the critical exponents. It also

established the foundation for the studies of phase transitions in more complicated
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magnetic systems2. For further reading on the Ising model, we suggest the material

in Refs. [174,176].

D.4 Mermin-Wagner theorem

A natural generalization of the 2D Ising model is an exchange model with continuous

spins (typically either 2-component XY, 3-component Heisenberg spins), as presented

in eq. (1.2). For simplicity, we will continue the discussion assuming the same system

as in the last section: a ferromagnetic NN model on a square lattice. The order

parameter of this model is still the magnetization, although it will now be a vector

quantity with the same number of components as the spin vectors. As discussed in

Chapter 2, the exchange model with continuous spins is isotropic and will have a

continuous rotational symmetry. This means that in the ferromagnetic phase, we can

rotate the magnetization vector in an arbitrary angle, without changing the energy

of the system. In contrast, in the Ising model, the degeneracy of the ground state

is discrete, since the corresponding time-reversal symmetry simply changes the sign

of the magnetization. An important consequence of the rotational symmetry in a

system with continuous spins is that the low-energy excitations correspond to spin-

wave fluctuations with large wavelengths, which cost significantly less energy than

individual spin flips in the Ising systems.

Since the 2D Ising model is known to display a second-order phase transition,

naively we might assume that the continuous models will also have one, albeit be-

longing to a different universality class. However, let us consider the value of the

correlation function S(ρ) (eq. (D.14)) in the ferromagnetic phase in the limit of large

spin-spin separation (ρ = |ρ| → ∞). If the ferromagnetic order is stable against fluc-

tuations, this limit should yield a finite value, meaning that the spins are correlated

over macroscopic distances. One can show that in the presence of the long-wavelength

spin fluctuations, the correlation function becomes

S(ρ) ∝ exp
(︁
−KCd(ρ)

)︁
, (D.19)

2For example, the seminal paper on the antiferromagnetic Ising model on a triangular lattice by

Wannier was based on Onsager’s derivation [15]
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where K = kBT
J

and

Cd(ρ) =

⎧⎪⎨⎪⎩
ρ2−d−a2−d

(2−d)Sd
, if d ̸= 2,

ln(ρ)−ln(a)
2π

, if d = 2,
(D.20)

Sd =
2πd/2

(d/2− 1)!
, (D.21)

where d is the spatial dimension of the system, and a is the inter-atomic distance.

Therefore,

lim
ρ→∞
S(ρ) =

⎧⎪⎨⎪⎩S if d > 2,

0 if d ≤ 2,
(D.22)

where S is a positive constant. We see that the long-range order is only possible in 3D

systems, while in 1D and 2D it is completely destroyed by the fluctuations. This is a

manifestation of a much more general theorem, which states that there is no sponta-

neous breaking of continuous symmetry in systems with short-range interactions and

dimensions d ≤ 2. This theorem is named after Herbert Wagner and David Mermin,

who first proved it for ferromagnetic and antiferromagnetic phases [179]. Importantly,

this theorem does not apply to the Ising model in the previous section, since it does

not have any continuous symmetries.

D.5 Kosterlitz-Thouless transition

Although the Mermin-Wagner theorem places a strict constraint on the existence of

a long-range order in systems with continuous symmetry, one may notice that in 2D,

the correlation function in eq. (D.19) becomes

S(ρ) ∝ ρ−η(T ), (D.23)

where

η(T ) =
kBT

2πJ
. (D.24)

This leads to a few interesting observations. Firstly, in the high-temperature limit,

we expect the correlations to decay exponentially, regardless of the dimensionality of
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the system. However, at low-temperature the correlations in a 2D system display an

algebraic decay, as evident from eq. (D.23). This implies a qualitative change in the

properties of the system at some finite intermediate temperature. Secondly, the ex-

pression in eq. (D.23) is of the same form as eq. (D.16), which describes correlations

near a second-order transition. The difference comes from the fact that the expo-

nent in (D.23) is non-universal, since it depends on the coupling constant J , and is

temperature-dependent, which is inconsistent with a singular transition point. These

observations lead to a conclusion that there may be a sort of a phase transition in a

2D system with continuous symmetry, which, however, does not yield a long-range

order.

The answer to this puzzle was provided in a series of works on a ferromagnetic XY

model, which revealed a novel type of phase transitions, namely a topological phase

transition [180, 181]. This transition is often named after John Kosterlitz and David

Thouless, who first discovered it. In order to understand the origin of this transition,

we must take a more careful look at the low-energy excitations in the XY model. We

have already discussed the role of small amplitude spin-wave fluctuations, which can

be viewed as simple harmonic excitations with respect to the ferromagnetic state.

However, there is another type of excitations that cannot be obtained from a ferro-

magnetic configuration by any continuous rotations. These are the topological defects,

which in the XY model manifest as the magnetic vortices, shown in figs. 8.5 (a), (b).

The reason for the term “topological” is that these excitations possess an integer

winding number, as illustrated in the figures. We refer to defects with positive and

negative winding numbers as vortices and antivortices, respectively. The vortices

and antivortices behave similarly to charged particles, such that the defects with the

opposite winding numbers attract, while those with the same windings repel. For

this reason, the winding number is also sometimes called the topological charge. At

high temperatures, vortices and antivortices are generated simultaneously, but they

remain isolated (or free), leading to a high-entropy disordered state. However, as the

temperature is lowered, the effective interactions between the defects with opposite

topological charges become more and more prominent. Eventually, every vortex in

the system is paired with an antivortex, simultaneously minimizing the energy and

lowering the entropy. The temperature at which this pairing occurs corresponds to
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the Kosterlitz-Thouless (KT) phase transition.

It is important to point out some of the differences between the conventional

phase transitions and the KT transition. In terms of the Ehrenfest classification, the

KT transition does not correspond to either a first or second-order transition, since

the quantities related to the first and second derivatives of the free energy remain

non-singular3. Most importantly, the KT transition does not lead to a long-range

order, since the correlations still decay at large distances. However, since the decay is

algebraic rather than exponential, the low-temperature phase is often said to possess

a quasi-long-range order.

3In fact, it is considered to be an infinite-order transition, since the free energy remains smooth at

all temperatures.
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