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Abstract 
The biomedical literature is expanding exponentially, generating a vast amount of knowledge that 
frequently goes unnoticed. Consequently, there is an urgent need to develop methods to mine 
knowledge from published literature to facilitate the automated discovery of hidden biomedical 
knowledge. Literature-Based Discovery (LBD) is a novel paradigm that aims to uncover new 
knowledge from the literature via transitive inference. Advances in text mining and knowledge 
extraction methods have enabled semantics-based LBD, which extracts knowledge in the form of 
subject-predicate-object semantic triples represented in a Knowledge Graph (KG). The subject and 
object are normalized biomedical concepts, and the predicate denotes the semantic relation between 
them.  
Semantics-based LBD has not seen large scale adoption due to several challenges. Firstly, 
knowledge extraction methods result in incomplete knowledge extraction due to missing semantic 
relations. Secondly, extracted biomedical entities are represented by granular and ambiguous 
representations, leading to a large discovery search space. Thirdly, the over-generation of 
spurious discoveries as output obscures meaningful discoveries. This dissertation investigates 
semantics-based methods and KG representation learning to develop novel solutions addressing 
the fundamental challenges in semantic-based LBD. Specifically, we address the challenges by: 
(i) incorporating state-of-the-art knowledge extraction to acquire semantic-based knowledge from 
the literature; (ii) utilizing concept disambiguation and semantic alignment techniques to resolve 
ambiguity and granularity of concept representations; (iii) leveraging a multi-step Knowledge 
Graph Completion (KGC) methodology to augment the literature-based KG by predicting 
missing relations using KG embeddings; and (iv) presenting a knowledge filtering and ranking 
approach based on the principles of information theory to prioritize interesting discoveries. The 
outcome of this dissertation is the novel Augmented Knowledge Graphs for LBD (AKG-LBD) 
framework that enhances traditional semantics-based LBD frameworks. The AKG-LBD 
framework is assessed by replicating biomedical discoveries published in peer-reviewed journals. 
The results indicate that AKG-LBD can discover meaningful knowledge with high precision 
relative to baseline approaches. The main implication of this dissertation is that KGC methods, 
combined with semantic alignment, enhances the performance of semantics-based LBD by 
generating augmented literature-based KGs. Additionally, the knowledge filtering and ranking 
methods are capable of prioritizing interesting knowledge which facilitates the exploration of 
meaningful biomedical discoveries.  
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Chapter 1  Introduction 
Finding and reviewing relevant scholarly literature is one of the key aspects of scientific 

knowledge synthesis and discovery. With the recent exponential growth in the volume of 

published literature, the research community is struggling to stay up-to-date with the latest 

developments and knowledge published in the literature. It is estimated that the doubling 

time of biomedical knowledge has increased from 3.5 years in 2010 to just 73 days in 2020 

(Densen, 2011). Furthermore, the substantial increase in the number of specialized 

scientific journals, and  articles per journal, has led to fragmentation of evidence-based 

knowledge (Jaradeh et al., 2019; Landhuis, 2016). Consequently, researchers tend to deal 

with fragments of incomplete knowledge rather than complete and complementary 

knowledge, and therefore many valuable implicit connections that exist between disparate 

bodies of knowledge remain undiscovered.  

Literature-Based Discovery (LBD) has emerged as a novel computational approach to 

discover and synthesize knowledge by connecting and reasoning over disparate bodies of 

literature, to uncover implicit connections which have not been explicitly stated or 

connected (Henry & McInnes, 2017). LBD is premised on Don Swanson’s ABC theory 

that if two unrelated articles explicitly specify an association between biomedical concepts 

A-B (in one article) and B-C (in another article), then it is indicative of an A-C association 

– which was not explicitly specified in any of the explored articles (Swanson, 1986b). 

Swanson’s theory was used to propose dietary fish oil (A) as a treatment for Raynaud’s 

disease (C) due to their shared association with blood viscosity and platelet aggregation 

(B) (Swanson, 1986a). This LBD-driven hypothesis was later confirmed in a clinical study 

by DiGiacomo et al. (DiGiacomo et al., 1989). Subsequently, Swanson continued to utilize 

LBD methods to propose other discoveries on migraines and magnesium (Swanson, 1988), 

Alzheimer’s disease and estrogens (Smalheiser & Swanson, 1996), and somatomedins and 

arginine (Swanson, 1990).  

Over the years, LBD has assisted in countless discoveries and hypotheses generation in the 

biomedical field, including drug development and repurposing (R. Zhang et al., 2021), and 

adverse drug event prediction (Bougiatiotis et al., 2020). For example, Zhang et al. applied 

LBD to discover novel treatments for prostate cancer using drug-gene, gene-cancer, and 

https://www.zotero.org/google-docs/?Iswyuz
https://www.zotero.org/google-docs/?od6eUH
https://www.zotero.org/google-docs/?PXEss8
https://www.zotero.org/google-docs/?rJqnIs
https://www.zotero.org/google-docs/?SVpJXa
https://www.zotero.org/google-docs/?QdZpkz
https://www.zotero.org/google-docs/?M9QxGC
https://www.zotero.org/google-docs/?SwZ1tH
https://www.zotero.org/google-docs/?Eaw2v0
https://www.zotero.org/google-docs/?dnKjOz
https://www.zotero.org/google-docs/?ERdXuJ
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gene-gene associations extracted from literature (R. Zhang et al., 2014). The authors found 

three drugs already used for prostate cancer therapy and 18 candidate drugs which have not 

been previously identified as prostate cancer medications. In another recent study, a graph-

based LBD approach was introduced to develop a novel drug repurposing framework for 

COVID-19 (R. Zhang et al., 2021). This study resulted in identifying five novel 

medications (i.e., paclitaxel, SB 203580, alpha 2-antiplasmin, metoclopramide, and 

oxymatrine) for COVID-19. Similarly, LBD was applied to propose new treatments for 

cataracts (Kostoff, 2008), Parkinson’s disease (X. Zhang & Che, 2021), and multiple 

sclerosis (Kostoff, Briggs, et al., 2008). LBD have been applied to areas outside 

biomedicine, such as climate change (Marsi et al., 2017) and discovering novel water 

purification techniques (Kostoff, Solka, et al., 2008), however, the vast majority of LBD 

research remains within the biomedical domain.  

Applicability of LBD methods in biomedicine is due to its potential to connect silos of 

knowledge  that describe underlying biological interactions related to diseases. Such 

knowledge can provide a better understanding of underlying pathological mechanisms, 

thus allowing researchers to deduce previously unknown knowledge (Deftereos et al., 

2011). As such, the LBD principles resemble the domain of systems medicine, which seeks 

to understand pathological disease mechanisms from a holistic perspective incorporating 

biochemical, physiological, and environmental interactions (Saqi et al., 2016). 

1.1 The Literature-Based Discovery (LBD) Process: 
LBD is a relatively mature field which has incorporated various computational methods 

and techniques to uncover novel discoveries from disparate literature-based knowledge 

instances. A high-level overview of the LBD process is depicted in Figure 1.1. 

 

https://www.zotero.org/google-docs/?1mAN0L
https://www.zotero.org/google-docs/?n9Ia4S
https://www.zotero.org/google-docs/?fyoO1E
https://www.zotero.org/google-docs/?Q0zKNi
https://www.zotero.org/google-docs/?XJo1xJ
https://www.zotero.org/google-docs/?LHhToF
https://www.zotero.org/google-docs/?yPpT3C
https://www.zotero.org/google-docs/?MlyGsx
https://www.zotero.org/google-docs/?MlyGsx
https://www.zotero.org/google-docs/?NwzGuk
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Figure 1.1: Schematic of the LBD Process 

 
The LBD process is generally initiated by defining a discovery task and literature relevant 

to the discovery domain (Thilakaratne et al., 2019), to identify and extract literature-based 

knowledge. As various methods have been employed in LBD to extract literature-based 

knowledge, it is important to establish a clear definition of what constitutes literature-based 

knowledge. Conceptually, knowledge in scientific literature is asserted as statements (i.e., 

sentences) describing a set of concepts and how they relate to one another. A concept is 

universally defined as meaning expressed by different domain-specific terms and/or 

phrases. However, the definition of what constitutes a relationship between concepts can 

vary across different LBD approaches. Broadly, LBD can be categorized based on the 

employed approach for knowledge extraction: co-occurrence and semantic-based LBD. 

The semantic-based approach characterizes a relationship between concepts based on 

verbal clauses in sentences that denote some notion of associative or causal predicate 

(Cairelli et al., 2013). This approach applies Natural Language Processing (NLP) and 

relation extraction methods on literature corpora, thereby representing instances of 

literature-based knowledge as subject-predicate-object semantic triples (Kilicoglu et al., 

2020). The subject and object concepts are normalized to concepts from standardized 

terminologies, such as the Unified Medical Language System (UMLS) or Medical Subject 

Headings (MeSH), while the predicate is an annotated ontological relation. As such, the 

semantic-based approach provides meaningful and expressive semantic relations denoting 

functional relationships between biomedical concepts.  

In contrast, the co-occurrence based approach is based on the assumption that the co-

occurrence of two biomedical concepts in a sentence implies a form of association between 
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them (Swanson & Smalheiser, 1997). This approach utilizes rudimentary text mining 

methods to identify normalized ontological concepts from literature corpora, and represents 

instances of literature-based knowledge as a co-occurrence network. While co-occurrence 

methods have the advantage of simplicity, the underlying assumption of association is 

inherently weak as co-occurrences do not adequately capture the semantics in text, which 

is a crucial factor in the discovery process to elucidate causal, mechanistic, or associative 

relations between concepts (Hristovski et al., 2006). Hence, co-occurrence-based 

knowledge instances can only be interpreted as associations and not as domain-specific 

relations, which complicates the interpretation of the generated knowledge. Conversely, 

semantic-based methods seek to exploit the semantics of text to capture meaningful 

knowledge and extract annotated semantic relations linking concepts (Ahlers et al., 2007).  

The extraction of literature-based knowledge is typically followed by the discovery task, 

whereby a well-defined discovery model is applied to logically connect disparate instances 

(spanning multiple unrelated documents) of knowledge to infer novel discovery paths, 

characterized by a chain of associations or relations between a source and target biomedical 

concepts, established through one or more intermediate concepts which expound the 

indirect relation/association between the source and target. Most contemporary LBD works 

utilize discovery models influenced by Swanson’s ABC model (Swanson, 1986a). The 

popular ABC model has two variants: open-discovery and closed-discovery (Thilakaratne 

et al., 2019). In open-discovery, the discovery task starts with a predefined concept of 

interest (referred to as A) and seeks to identify implicit connections with an unknown target 

concept (referred to as C). In closed-discovery, the source (A) and target (C) concepts are 

predefined, and the aim is to find meaningful intermediate (B) concepts that may explain 

the indirect association or relation between (A) and (C). Extensions of the ABC model 

include: the AnC model where n represents multiple intermediates (i.e., B1, B2, B3…Bn) 

(Wilkowski et al., 2011), context-based ABC model (Kim & Song, 2019), and context-

assignment ABC model (Kim & Song, 2019). Regardless of the applied discovery model, 

the output consists of discovery paths which are explored to generate novel knowledge 

relevant to the predefined discovery task.  

The final task in the LBD process is to assign ranking scores for the output discovery paths 

according to some notion of statistical association, semantic relatedness, or interestingness-
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based measure. This task is necessary to sort the LBD output, thereby ensuring that the 

most meaningful and novel discovery paths are prioritized over nosy and trivial paths. 

Common ranking metrics include: co-occurrence frequencies (Heo et al., 2019), linking 

term counts (Yetisgen-Yildiz & Pratt, 2009), association-based measures (e.g., Pearson’s 

Chi-square, odds ratio, and log-likelihood ratio) (Henry & McInnes, 2019), graph-based 

measures (e.g., Jaccard index, common neighbours, centrality, and PageRank) (Kastrin et 

al., 2016), and nearest neighbour analysis (e.g., cosine or Euclidean distance) (Henry & 

McInnes, 2019).  

1.2 Challenges of Semantic Literature-Based Knowledge 
Discovery: 

Despite its promise, semantic LBD remains confined within research settings and has not 

seen wide-scale adoption among the scientific community.  This can be attributed to several 

challenges, such as incomplete literature-based knowledge extraction (Henry & McInnes, 

2017), representation and normalization of biomedical entities in text (H.-T. Yang et al., 

2017), ranking output discoveries (Rastegar-Mojarad, Elayavilli, Li, Prasad, et al., 2015; 

Sebastian et al., 2017), differentiating noise from meaningful discoveries (Raja et al., 

2020), and evaluating the generated discoveries (Gopalakrishnan et al., 2019). These 

challenges have a significant impact on the knowledge discovery process and adoption of 

LBD by the scientific community (Phang et al., 2022), and addressing these challenges is 

important for the performance of LBD.  

In this thesis, the following research challenges are pursued: 

1. Ambiguity and granularity of biomedical concept representations: Existing 

semantic-based knowledge extraction tools (i.e., semantic parsers) entail the 

mapping of biomedical terms in text to standardized concepts from medical 

terminological resources, such as the Unified Modeling Language System (UMLS), 

and representing them by unique concept identifiers (Demner-Fushman et al., 

2017). This process creates several challenges in LBD owing to the ambiguity and 

granularity of biomedical concept representations in medical terminological 

systems. For instance, biomedical semantic parsers, such as SemRep, fail to 

disambiguate genes and proteins terms in text to standardized concepts. This 
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limitation results in mapping genes/proteins in text to multiple concepts on the basis 

of shared aliases and exact string matching (Kilicoglu et al., 2020). For example, 

given the following sentence: “TTF1 gene-expression in human proliferating 

thyroid-diseases”, the TTF1 gene term is mapped to two distinct gene concepts in 

UMLS: C1384616 (thyroid transcription factor 1) and C1421218 (transcription 

termination factor 1), as these genes share the same alias (i.e., TTF1). This is 

particularly problematic when analyzing cancer literature, as genes and proteins 

play crucial yet different roles in the development and treatment of cancers, thus 

failing to distinguish between genes/proteins with identical aliases leads to 

ambiguity and imprecision in the knowledge extraction process and downstream 

discovery tasks.  

Secondly, the reliance on comprehensive terminological resources for knowledge 

extraction creates highly granular representation of biomedical concepts. For 

example, generic and brand drugs are represented uniquely in UMLS and assigned 

distinct concept identifiers. From the LBD perspective, such granular 

representation of concepts can result in semantic triples that convey the same 

underlying knowledge but are represented differently. This in turn leads to a large 

discovery search space, as there are more unique triples to consider for knowledge 

discovery (Vlietstra et al., 2017). Ideally, a condensed representation of concepts 

merges fine-grained concepts into higher-level concepts, thereby requiring users to 

inspect fewer knowledge instances without compromising the knowledge domain 

coverage. Hence, a significant challenge in LBD is ensuring that terminological 

resources knowledge extraction provide sufficient coverage of biomedical sub-

domains (e.g., genetics, clinical medicine, molecular biology, etc.) while 

maintaining the right level of granularity, such that fine-grained concepts are 

merged and represented as atomic generalized concepts (Pyysalo et al., 2019).  

2. Incomplete extraction of semantic-based knowledge: Semantics-based LBD 

employ methods grounded in information retrieval and Natural Language 

Processing (NLP) to extract knowledge from literature (Henry & McInnes, 2017). 

These methods have limitations when dealing with complex corpora such as 

biomedical literature. Most LBD frameworks use domain-specific semantic 
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parsers, such as SemRep, to identify and extract knowledge from unstructured text 

in the form of subject-predicate-object semantic triples. Domain-specific semantic 

parsers are reported to identify and extract meaningful knowledge with high 

precision, however, they are also prone to low recall, thereby resulting in an 

incomplete knowledge extraction (Kilicoglu et al., 2020). Since LBD is premised 

on the principle of overlapping assertional knowledge, if explicit relations between 

concepts are not extracted, then the hidden implicit relations cannot be discovered. 

In other words, if the A-B association is missing, then the A-C implicit association 

(via the intermediate B) will never be found. As such, working with incomplete 

literature-based knowledge remains a significant challenge in LBD (Henry & 

McInnes, 2017).  

3. Ranking output discoveries: LBD methods are prone to generating many 

discovery outputs which makes the task of reviewing all of them complex and, at 

times, impractical (Henry & McInnes, 2019). Knowledge ranking is an essential 

component of the LBD process to facilitate pruning of output discoveries to achieve 

a manageable set of meaningful discoveries. Co-occurrence frequencies tend to 

favour knowledge discoveries consisting of frequently co-occurring concepts 

(Thilakaratne et al., 2019). Association measures, such as Chi-square and log-

likelihood ratio, are expectation-based (i.e., not null-invariant) statistical measures 

which are strongly influenced by the total number of null co-occurrences (Henry et 

al., 2019). Individually, these ranking metrics are capable of prioritising relevant 

knowledge to some extent, however, this does not necessarily imply novelty and/or 

interestingness, which are important characteristics in knowledge discovery. 

Hence, prior research has emphasised (Sebastian et al., 2017) on the need to develop 

LBD ranking techniques which rely on multiple properties of knowledge instances 

to prioritise interesting and novel knowledge discoveries.  

1.3 Research Objectives and Contributions: 
The overarching objective of this research work is to investigate and develop novel 

solutions to the aforementioned challenges faced by semantic based LBD systems. 

Accordingly, the following objectives are pursued in this thesis:  
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1. To examine the integration of multiple biomedical-specific knowledge extraction 

tools for the acquisition of representative and precise semantic-based knowledge 

from the literature; 

2. To investigate semantic consolidation techniques and condensed biomedical 

terminologies for the consolidation of granular concepts acquired from the 

literature; 

3. To explore and evaluate novel representation learning methods that address 

limitations of incomplete knowledge extraction from the literature; 

4. To assess and compare knowledge ranking measures that prioritize interesting and 

meaningful discoveries generated by the semantics-based LBD process; 

5. To validate and compare the performance of semantics-based LBD in real-world 

knowledge discovery tasks targeting molecular oncology and drug repurposing. 

Objective #1 is pursued by combining two well-established biomedical knowledge 

extraction tools, namely SemRep and PubTator, to acquire semantics-based knowledge in 

the form of subject-predicate-object triples. SemRep is utilized as the primary semantic 

parser for semantic triple extraction, and PubTator is employed to resolve ambiguous 

gene/protein concept representations. Objective #2 is pursued by leveraging condensed 

biomedical terminologies, in addition to semantic alignment and mapping techniques to 

create consolidated representations of biomedical concepts that encompass more granular 

concepts.  

Objective #3 is investigated by exploring the incorporation of state-of-the-art knowledge 

representation techniques—i.e. Knowledge Graphs (KG), to represent literature-based 

knowledge in the form of subject-relation-object triples, with subject and object concepts 

represented as nodes and the semantic relation between them as directed edges. We 

leverage biomedical knowledge bases and ontologies to integrate curated knowledge with 

the literature-based KG. Subsequently, we investigate the application of novel KG 

representation techniques – i.e., KG embeddings – to predict missing edges between 

existing nodes using Knowledge Graph Completion (KGC) methods. This multi-step 

knowledge integration and completion approach is intended to address the limitations of 

incomplete knowledge extraction from the literature.  
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Objective #4 and objective #5 are pursued by leveraging the ABC discovery paradigm. 

Explicitly, we premise our knowledge discovery and ranking approach on the following 

assumptions: (1) an implicit relationship between A and C may potentially exist if an 

explicit semantic relationship is lacking; and (2) the interestingness of ABC discoveries can 

be estimated using information theory-centric measures, such that the lower the probability 

of encountering novel knowledge instances, the more interesting the ABC discovery path. 

We posit that focusing on infrequent knowledge instances increases the likelihood that the 

implicit relation between them is novel and yet to be explored.  

In terms of research outcome, our research has led to the development of Augmented 

Knowledge Graphs for LBD (AKG-LBD) framework that extends traditional semantics-

based LBD approaches by (i) resolving the limitations of ambiguous knowledge extraction; 

(ii) introducing a concept consolidation component to consolidate fine-grained concepts 

into higher-level representations; (iii) augmenting literature-based knowledge via a multi-

step knowledge integration and completion methodology that leverages knowledge graph 

representation learning and curated biomedical knowledge; and (iv) presenting a novel 

ranking approach that prioritizes ABC knowledge discoveries based on notions of 

interestingness and rarity.  

This dissertation makes the following contributions to the field semantic LBD:  

1. Integration of two well-regarded biomedical knowledge extraction tools – i.e., 

SemRep and PubTator - to enhance the accuracy and representativeness of 

semantic-based knowledge extracted from the literature; 

2. Novel semantic consolidation methods that leverage biomedical terminologies to 

consolidate fine-grained concepts, thereby reducing the discovery search space 

without compromising coverage of the knowledge domain;   

3. Novel LBD methodology centred on Knowledge Graphs (KGs) and knowledge 

representation learning techniques to address challenges of incomplete knowledge 

extraction in semantic LBD via knowledge graph completion; 

4. Knowledge ranking metrics based on information theory to prioritize novel and 

interesting ABC-based knowledge discovery paths. 
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To summarize, Table 1.1 provides an overview of the fundamental challenges in semantic-

based LBD, the pursued research objectives to address the challenges, and the contributions 

made towards enhancing semantic-based LBD.  
Table 1.1: Summary of research challenges, objectives, and contributions 

Semantic-based LBD 
challenges 

Research objectives Research contributions  

Ambiguity and granularity 
of biomedical concept 
representations 

To examine the integration 
of multiple biomedical-
specific knowledge 
extraction tools for the 
acquisition of 
representative and precise 
semantic-based knowledge 
from the literature 

Integration of two well-
regarded biomedical 
knowledge extraction tools 
– i.e., SemRep and 
PubTator - to enhance the 
accuracy and 
representativeness of 
semantic-based knowledge 
extracted from the literature 

To investigate semantic 
consolidation techniques 
and specialized biomedical 
terminologies for the 
consolidation of 
semantically similar 
concepts acquired from the 
literature 

Novel semantic 
consolidation methods that 
leverage biomedical 
terminologies to 
consolidate fine-grained 
concepts, thereby reducing 
the discovery search space 
without compromising 
coverage of the knowledge 
domain 

Incomplete extraction of 
semantic-based knowledge 

To explore and evaluate 
novel representation 
learning methods that 
address limitations of 
incomplete knowledge 
extraction from the 
literature 

Novel LBD methodology 
centred on Knowledge 
Graphs (KGs) and 
knowledge representation 
learning techniques to 
address challenges of 
incomplete knowledge 
extraction in semantic LBD 
via knowledge graph 
completion 

Ranking output discoveries To assess and compare 
knowledge ranking 
measures that prioritize 
interesting and meaningful 
discoveries generated by 
the semantic-LBD process 

Knowledge ranking metrics 
based on information 
theory to prioritize novel 
and interesting ABC-based 
knowledge discovery paths 
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1.4 Thesis outline: 
This section outlines the chapters of this dissertation with a brief description of their 

content.  

Chapter 2: provides a review of existing LBD literature to describe the motivations, 

underlying principles, and main application areas of LBD. Next, LBD is described as a 

knowledge discovery framework consisting of a set of interconnected components for 

literature curation, knowledge extraction, knowledge representation, knowledge discovery, 

and ranking output discoveries. Using this framework, we provide a review of existing 

methods and approaches utilized in LBD. This chapter concludes with a detailed taxonomy 

of LBD approaches and a discussion on outstanding methodological challenges and 

limitations in current LBD frameworks.  

Chapter 3: introduces the research design and methodological approach to achieve the 

outlined objectives. Additionally, the chapter conceptualizes the development of the AKG-

LBD framework by describing its components and underlying theoretic principles for 

semantic-based LBD. Next, this chapter describes the primary literature-based sources, 

knowledge extraction tools, and domain-specific knowledge resources used throughout this 

research. Finally, we present the evaluation scheme to assess the performance of the AKG-

LBD framework in replicating real-world biomedical discoveries compared to traditional 

LBD frameworks.  

Chapter 4: describes the implementation of AKG-LBD for the discovery of novel 

knowledge in the field of cancer genomics and drug repurposing. This chapter outlines the 

methods and techniques employed to implement the framework components for: literature 

curation, semantic-based knowledge extraction, semantic consolidation, literature-based 

knowledge representation, knowledge integration and completion, and knowledge 

discovery and ranking.  

Chapter 5: presents the results of implementing the AKG-LBD framework using 

biomedical literature focused on cancers. Next, this chapter presents the evaluation results 

for the performance of the AKG-LBD framework on real-world knowledge discovery tasks 

and discusses the findings. Finally, we compare the discovery output of AKG-LBD with 

other well-established LBD systems.  
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Chapter 6: concludes this dissertation, discusses limitations and challenges, and provides 

recommendations for future work. 
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Chapter 2 Literature Review 
This chapter provides the necessary background information on Literature-Based 

Discovery (LBD), its motivation, main application areas, and reviews current approaches 

for LBD. Section 2.1 introduces the underlying principles of LBD and its relevance for 

knowledge synthesis and discovery in the biomedical domain. Section 2.2 defines the main 

components of LBD frameworks in terms of literature curation, knowledge extraction and 

representation, discovery models, and ranking. Section 2.3 presents a review of existing 

formalized LBD systems. Section 2.4 concludes this chapter by introducing a detailed 

taxonomy of LBD frameworks and summarizing the gaps in literature.  

2.1 Literature-Based Discovery: 
Literature-Based Discovery (LBD) is a data-driven methodology to discover and 

synthesize knowledge from published literature by connecting and reasoning over 

disconnected fragments of knowledge to uncover implicit associations between them. The 

principles of LBD are premised on Don Swanson’s “Undiscovered Public Knowledge” 

which describes an intuitive syllogism to identify potentially new knowledge via transitive 

reasoning (Swanson, 1986b). Swanson proposed the ABC theory for knowledge discovery; 

which states that given two concepts A and C found in disjointed literature fragments, if 

concept A is associated with a concept B in one fragment, and the same concept B is 

associated with concept C in another fragment, then there is an implicit association between 

concepts A and C which is yet to be explored (as depicted in Figure 2.1). 
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Figure 2.1: Schematic Overview of ABC Theory 

Swanson applied the ABC theory to investigate the unknown association between fish oil 

(concept A) and Raynaud’s syndrome (concept C) based on their shared connections with 

intermediary physiological processes (concept B) (Swanson, 1986a). This work revealed 

that one fragment of literature described that fish oil is associated with lowering blood 

viscosity, reduction of platelet aggregation, and inhibition of vasoconstriction. 

Concomitantly, the other fragment of the literature revealed that a reduction in blood 

viscosity and platelet aggregation, together with inhibition of vasoconstriction contribute 

to the prevention of Raynaud’s syndrome. Hence, by applying principles of transitive 

reasoning, Swanson proposed that “dietary fish oil might ameliorate or prevent Raynaud’s 

syndrome”. This LBD-driven hypothesis was later confirmed in an independent clinical in 

1989 (DiGiacomo et al., 1989). Crucially, Don Swanson’s ABC theory reveals distinctive 

features of published literature which can be leveraged to discover implicit scientific 

knowledge that otherwise would remain unknown. The first feature is that knowledge in 

published literature is complementary  – i.e., two literature fragments are complementary 

if new knowledge can be inferred when the fragments are contextualized together, but new 

knowledge would not be inferred if each fragment is explored in isolation (Swanson, 

1986b). The second feature is non-interaction; complementary literature are often mutually 

isolated as none or few articles in one fragment may cite articles in other fragments despite 
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existing logical scientific connections between them (Swanson, 1986b). Considering the 

fish oil-Raynaud’s syndrome discovery, it was observed that the knowledge within 

fragment A (i.e., articles on dietary fish oil) complimented findings in fragment C (i.e., 

articles on Raynaud’s syndrome), such that when contextualized simultaneously, new 

complementary knowledge was inferred. Further, Swanson reported that out of 3,000 

articles in fragment A and 1,000 articles in fragment C, only 4 articles had cross-fragment 

citations (Swanson, 1986a). Swanson suggests that considering complementary but non-

interactive fragments of literature can reveal ‘undiscovered public knowledge’ by 

identifying implicit connections between them which are not apparent when articles within 

each fragment are explored in isolation.  

2.1.1 Applications of LBD in Biomedicine: 
Since its inception in 1986, LBD has led to many discoveries and hypotheses in various 

scientific fields, including biomedical sciences (Zhang et al., 2014, 2021), environmental 

sciences (Marsi et al., 2017), industrial engineering (Vicente-Gomila, 2014), and crime 

sciences (Schroeder et al., 2007). However, most LBD applications remain within the 

clinical and biomedical domains due to its potential in describing basic biological 

interactions and yield a better understanding of underlying pathological mechanisms, thus, 

allowing researchers to deduce previously unknown knowledge (Deftereos et al., 2011). In 

recent years, LBD has been used to propose new treatments for neurological diseases and 

cancers via drug repurposing (Nian et al., 2022; H.-T. Yang et al., 2017), discovering 

underlying mechanisms of metabolic diseases (Cairelli et al., 2013), and identifying novel 

adverse drug events (Hristovski et al., 2016). The following sections provide a review of 

the most promising LBD applications in the biomedical domain.  
Drug Discovery: 

Traditional drug development is an expensive, time-consuming, and high-risk process. On 

average, a single drug can take 10-15 years to be approved for clinical use and costs over 

$1 billion (Sun et al., 2022). LBD can help in reducing the time and cost needed to develop 

new drugs by discovering hidden knowledge in large-scale literature to provide a better 

understanding of the underlying physiological interactions necessary for drug 

development. For example, Zhang et al. applied LBD to discover novel drugs treating 
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prostate cancer using drug-gene, gene-cancer, and gene-gene semantic triples extracted 

from the literature to uncover implicit drug -disease associations via a shared gene. Yang 

et al. leveraged disease-gene and gene-drug associations extracted from the literature to 

discover new therapeutic indications using drug-target similarity metrics (H.-T. Yang et 

al., 2017). In another study, knowledge extracted from biomedical literature was integrated 

with empirical evidence from DNA microarray data to support hypothesis generation for 

drug discovery (Hristovski et al., 2010). These studies leverage knowledge extracted from 

the literature to describe interactions between drugs, genes, proteins, and diseases to 

uncover indirect connections between a drug and a target disease. Understanding these 

underlying interactions can help with discovering new indications for existing drugs (i.e., 

drug repurposing), and additionally lead to the development of new drugs (H.-T. Yang et 

al., 2017).   
Discovering Disease Correlations: 

Comorbidity - defined as the presence of two or more chronic diseases in an individual - is 

a prevalent phenomenon which complicates healthcare and causes significant limitations 

in patients' quality of life. Understanding the underlying mechanisms by which one chronic 

disease may cause the onset of other diseases is necessary for the prevention and/or 

treatment of comorbidity (Vos et al., 2014). However, investigating all possible co-existing 

disease pairs is a difficult task given the large number of epidemiological and clinical data 

(Vos et al., 2014). Further, population-level epidemiological studies do not offer plausible 

explanations about the underlying physiological and/or pathological mechanisms of 

comorbid diseases. LBD presents an efficient approach to investigate and explain the 

relationships between comorbid diseases by extracting shared physiological, genomic, or 

proteomic biomarkers from the literature (Biswas et al., 2021). Chen et al. introduced a 

LBD framework to explore relationships between Chronic Obstructive Pulmonary Disease 

(COPD) and other comorbidities based on shared genomic profiles extracted from 

biomedical literature (G. Chen et al., 2019). The study discovered several novel 

comorbidities associated with COPD: acute lung injury, pulmonary sarcoidosis, Bird 

Fancier’s Lung, Eosinophilic Granuloma, and Pulmonary Veno-Occlusive Disease. In 

another study, the BITOLA LBD system was utilized to discover the underlying genetic 

interactions linking myocardial infarction and depression (Dai et al., 2019). Rindflesch et 
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al. leveraged LBD to explain the indirect relationship between inflammatory bowel disease 

and epilepsy via shared biomarkers (Rindflesch et al., 2018). The study was informed by 

statistical correlations extracted from Electronic Health Record (EHR) data describing 

statistically significant associations between epilepsy and inflammatory bowel disease. 

However, since epidemiological evidence alone cannot explain the relationship between 

the two diseases, the authors leveraged LBD to extract and navigate literature-based 

knowledge to explain the underlying mechanisms of this relationship. These studies 

indicate that LBD offers a novel approach to support epidemiological and clinical research 

by explaining the underlying mechanisms for disease correlations and interactions, which 

may result in the onset of comorbidity.   
Drug Interactions and Pharmacovigilance: 

The combined use of multiple drugs, referred to as polypharmacy, is a common therapeutic 

regimen for patient groups with chronic diseases and comorbidities. Polypharmacy may 

pose a serious risk for patient safety as drugs may interact and influence the pharmacologic 

effects of one another when administered in combination. Identifying such drug-to-drug 

interactions is a critical and complex task due to the lack of sufficient clinical data and 

knowledge (Bougiatiotis et al., 2020). LBD has emerged as a solution to automate the 

detection of drug interactions from heterogeneous data sources, including biomedical 

literature and structured databases. For example, Bougiatiotis et al. applied a graph-based 

LBD approach to automate the discovery of interacting drug pairs using semantic 

knowledge extracted from scientific literature combined with structured knowledge from 

Gene Ontology, DrugBank, and Disease Ontology (Bougiatiotis et al., 2020). Explicitly, 

this study leveraged semantic relations denoting drug interactions to encode path-based 

features as numeric vectors, which were subsequently utilized to predict novel interactions 

between drug pairs. Similarly, Kastrin et al. characterized the discovery of novel drug 

interactions as a link prediction problem on a large-scale network using information 

extracted from literature-based sources and curated biomedical knowledge bases (Kastrin 

et al., 2018). LBD has also been applied to outline the underlying mechanisms of known 

drug interactions based on shared biomarkers which are in turn associated with observed 

adverse effects. Hristovski et al. utilized the formalized SemBT LBD system to generate 

semantic knowledge paths consisting of a drug as the starting concept and an adverse effect 



 18 

as the end concept, with the aim of identifying genes or proteins as intermediates which 

may interpret the link between the drug and corresponding adverse effect (Hristovski et al., 

2016).  

Scientific literature contains a wealth of hidden knowledge on drug interactions and 

associations with adverse effects. LBD methods leverage such knowledge sources to 

automate the discovery of novel drug interactions to support pharmacovigilance studies. 

Additionally, LBD methods have the advantage of providing evidence-based 

interpretations of the discovered knowledge directly from the literature, which can help 

with manual reviews to validate discoveries (Wilkowski et al., 2011).  

2.2 LBD Framework Components: 
Knowledge discovery is considered a secondary process as it relies on the output of external 

methods and techniques grounded in information retrieval, natural language processing, 

semantic knowledge extraction, and knowledge representation (Thilakaratne et al., 2019). 

Regardless of the methods and techniques used, a typical LBD framework takes a set of 

literature as input, extracts and represents knowledge from unstructured literature text, 

applies a pre-defined knowledge discovery model, and ranks the output discoveries 

according to some metric which prioritizes interesting discoveries (Henry & McInnes, 

2017). Overtime, LBD shifted from a largely manual process to adopting computational 

techniques to automate knowledge discovery. Hence, there is a wide range of existing LBD 

methods and techniques which primarily differ in terms of how literature-based knowledge 

is acquired, represented, and subsequently utilized to infer implicit connections between 

disparate fragments of the literature. To provide a comprehensive understanding of LBD, 

we break LBD into a set of distinct components common to most existing frameworks, and 

discuss the methods and techniques constituting the following components: (i) literature-

curation, (ii) knowledge extraction, (iii) knowledge representation, (iv) knowledge 

discovery, and (vi) knowledge ranking.  

2.2.1 Literature Curation Component:   
The first component of any LBD framework is concerned with curating a baseline literature 

corpus as input for knowledge acquisition, representation, and subsequent discovery. This 
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component has significant influence on knowledge discovery as the extent to which any 

given LBD system can infer novel and plausible discoveries is dependent on the content 

and quality of the input literature (Thilakaratne et al., 2020). Literature curation in LBD 

consists of two main tasks: (i) defining a literature search strategy; and (ii) determining the 

sections of articles to be used for knowledge extraction.  
Literature search strategy in LBD: 

This task is primarily concerned with defining a comprehensive literature search strategy 

that can capture literature fragments of interest for downstream knowledge acquisition and 

representation. When examining existing LBD frameworks (Kim & Song, 2019; Zhang et 

al., 2014, 2021), we find that there are two types of literature search strategies used: 

generalized, and specific. The generalized literature search approach deals with complete 

literature databases, such as MEDLINE and IEEE Xplore Digital Library, to capture as 

many literature fragments as possible. In this approach, the literature search is not 

constrained to specific topics, rather the search strategy involves determining the most 

suitable literature databases to extract scientific articles published within a specified date 

range. Examples of a generalized literature search approach in LBD include works by 

Kastrin et al. who utilized the full MEDLINE database to extract biomedical articles 

published between 1945 and 2010 (Kastrin et al., 2016). In another study, Huang et al. 

utilized the Chinese periodical database of literature to extract all articles published 

between 1989 and 2009 (Huang et al., 2012). Formalized LBD systems, such as LION and 

MELODI-PRESTO, also use generalized literature search strategies to generate the 

baseline corpus of biomedical literature (Elsworth et al., 2018; Pyysalo et al., 2019).  

Conversely, specific literature search strategies in LBD target specific topics in a scientific 

domain, which are often determined based on the discovery task of interest. For example, 

Kim et al. applied LBD to discover interactions between neurodegenerative associated 

proteins using a subset of biomedical articles focused on neurodegenerative diseases as the 

input (Kim & Song, 2019). Likewise, Zhang et al. sought to develop LBD methods to 

repurpose existing drugs for COVID-19 using a literature search strategy focused on 

coronaviruses (Zhang et al., 2021). It is also worth noting that early LBD studies used the 

specific literature search strategy to define the baseline literature corpus (Weeber et al., 

2001).   
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Generalized and specific literature search approaches in LBD mostly differ with respect to 

several factors which may influence subsequent components of the LBD framework. A 

specific search approach tends to identify literature related to the context of discovery and, 

therefore, provides the benefit of potentially discovering knowledge from complementary 

articles within specified fragments of the literature. Conversely, the generalized approach 

may utilize all existing articles in a given database, which provides the advantage of 

potentially discovering knowledge from non-interacting fragments of the literature. 

Further, the generalized approach often results in retrieving a copious amount of articles 

which may increase the computational cost of the knowledge extraction process, whereas 

the specific search approach retrieves fewer articles for knowledge extraction and is 

associated with lower computational costs for knowledge extraction.  
Determining sections of articles for LBD: 

This task has important implications on LBD as it determines the size of the input literature 

corpus, in addition to the quality of knowledge that can be extracted. Low quality input 

will have a direct impact on the LBD output and ultimately the potential to make 

meaningful implicit discoveries (Thilakaratne et al., 2020). Further, the LBD literature 

curation component requires finding the right balance between representative coverage of 

the current state of knowledge and a manageable baseline corpus, as the subsequent 

knowledge extraction tasks can generate varying amounts of literature-based knowledge 

depending on which sections of scientific articles are being used as input.  

Scientific articles typically have a standard format and style consisting of the following 

main sections (Katz, 2009): 

● Title: encapsulates the main research topic and may describe the most essential 

findings of the study. 

● Abstract: provides a condensed and focused summary of the full study. It is often 

consistent with the main text and, therefore, can be considered a standalone 

document that sufficiently represents the full study.   

● Main body: provides a detailed description of the research topic, methodology, and 

results. The main text is often organized according to the IMRAD structure - i.e., 

Introduction, Materials and methods, Results, and Discussion).  
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Different sections of scientific articles have been used as input for knowledge extraction in 

LBD, including: titles only, titles and abstracts, full-text (i.e., title, abstract, and main 

body), and keywords (e.g., MeSH descriptors). Early LBD systems, such as Arrowsmith 

(Swanson & Smalheiser, 1997), relied on the use of title only as LBD input. This approach 

has the benefit of providing a narrow coverage of the literature which requires low 

computational resources to extract and represent literature-based knowledge. However, a 

title only LBD input results in missing a considerable amount of meaningful knowledge 

found in other sections of a given article, as titles are not necessarily descriptive nor 

representative of the scientific content (Tullu, 2019). With advances in text mining and 

natural language processing techniques, succeeding LBD studies leveraged titles and 

abstracts as input for knowledge extraction. The combination of titles and abstracts 

provides a constrained yet faithful representation of the literature, as the content of abstracts 

reflect the most important findings in a given scientific article (Moreau et al., 2021). 

However, this comes at the expense of increasing computational costs required to process 

the baseline corpus for knowledge extraction when compared to titles only as the input 

(Thilakaratne et al., 2020). Du et al. argue that inclusion of abstracts may introduce some 

noise during knowledge extraction compared to titles only and, therefore, proposed using 

subsections of abstracts by only considering conclusive abstract sentences as input (Du & 

Li, 2020). Nonetheless, titles and abstracts remain the most commonly used input in the 

majority of recent LBD studies (Thilakaratne et al., 2020).  

Few LBD studies have considered using full-text of scientific publications as LBD input 

(Lever et al., 2018). This is mainly due to the significant computational costs associated 

with processing large-scale corpora, in addition to the potential of introducing an 

overwhelming amount of noise for knowledge extraction (K. B. Cohen et al., 2010). 

Further, some literature databases restrict access to full text scientific articles, thereby 

limiting the number of articles which can be used as LBD input  (Thilakaratne et al., 2020).  

Finally, keywords as LBD input has gained some traction among recent LBD studies in 

biomedicine by using Medical Subject Heading (MeSH) descriptors as surrogates for 

abstracts and full-text articles (Kastrin et al., 2016). MeSH descriptors are standardized 

biomedical concepts and used to manually index biomedical publications in PubMed in a 

process known as MeSH indexing; whereby qualified human indexers read full articles, 
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identify the important topics and, accordingly, assign MeSH concepts to articles. Hence, 

this manually-driven indexing process provides a complete concept-based representation 

of a given article and is deemed a suitable alternative to other LBD input types. However, 

the use of MeSH descriptors as LBD input limits the applicability of novel text mining and 

NLP methods for knowledge acquisition, as the input simply consists of standardized 

keywords as opposed to a literature-based corpus.  

Thilakarante et al. investigated the use of common LBD input types (i.e., titles only, 

abstracts and titles, and keywords) from a cost-benefit perspective; whereby cost was 

defined in terms of the knowledge acquired from different input types and benefit was 

defined in terms of the number of novel knowledge discoveries via LBD (Thilakaratne et 

al., 2020). Further, the authors applied a time-slicing approach to replicate the well-known 

Swanson discoveries. The study revealed that title and abstract provided the best cost-

benefit compromise, followed by keywords and titles.  

2.2.2 Knowledge Extraction Component: 
Knowledge extraction is a critical component in the LBD framework which ultimately 

determines the extent to which implicit connections between disparate literature fragments 

can be uncovered. Knowledge in LBD can be defined as a set of concepts (entities) 

extracted from unstructured literature corpora and some notion of association or relation 

between those concepts. This suggests that knowledge extraction involves two distinct but 

interrelated tasks: (i) identifying and extracting biomedical entities in text; and (ii) 

establishing associations or relations between concepts. Commonly used computational 

methods to achieve these tasks can be grouped into the following categories: term-based, 

concept-based, and semantic-based methods. The following sections provide a detailed 

discussion on these high-level categories and outline their strengths and weaknesses in the 

context of LBD.  
 Term-Based Knowledge Extraction: 

Term-based knowledge extraction is one of the first methods used in pioneering biomedical 

LBD systems. This method operates on surface forms of raw words to identify and extract 

biomedical terms in unstructured text (Lindsay & Gordon, 1999). Given a literature-based 

corpus as input, a term-based knowledge extraction method aims to identify all n-gram 
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terms and phrases while excluding stop or noise words from a predefined list (Gordon & 

Lindsay, 1996). Hence, this knowledge extraction method is largely a manual process 

requiring continuous refining of extracted n-grams. Associations between extracted terms 

are established using n-gram co-occurrences, on the premise that frequently, or rarely, co-

occurring terms are likely to have logical biomedical associations (Henry & McInnes, 

2017).  

Term-based knowledge extraction for LBD has many limitations. Firstly, these methods 

do not rely on standardized biomedical terminologies and, as a result, fail to capture the 

variability and ambiguity of biomedical literature (Henry & McInnes, 2017). For example, 

these methods fail to identify  synonymous terms referring to a single concept – e.g., 

Vasopressin and Argipressin– without some form of manual intervention. Preiss et al. 

demonstrated that such lexical ambiguities have adverse effects on the performance of 

LBD, and that word sense disambiguation is a critical to address the lexical ambiguities in 

biomedical literature (Preiss & Stevenson, 2016). Secondly, the underlying assumption of 

associations based on n-gram co-occurrences is inherently flawed as co-occurrence 

frequency distributions do not capture the semantics in text, which is a crucial factor in the 

discovery process to elucidate causal or mechanistic relations between biomedical 

concepts. Even with high co-occurrence frequencies, the captured co-occurring concepts 

can only be interpreted as associations and not as relations, which further complicates the 

interpretation of generated knowledge. Hence, despite the success of term-based LBD in 

early implementations, it has been replaced by more advanced methods which identify and 

extract knowledge in the form of standardized biomedical concepts.  
 Concept-Based Knowledge Extraction: 

Concept-based knowledge extraction in LBD emerged to deal with the ambiguity and 

complexity of biomedical literature. These methods leverage novel text mining and natural 

language processing techniques to automate the extraction and normalization of biomedical 

terms and phrases in text by mapping them to concepts in controlled biomedical 

vocabularies, such as UMLS (Aronson & Lang, 2010). Hence, these methods streamline 

the automatic identification and normalization of terms and phrases in biomedical text, 

while dealing with synonymy by collapsing terms/phrases into atomic concept-based 

representations. This also provides the benefit of reducing the number of unique concepts 
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extracted from text (Gopalakrishnan et al., 2019). One of the first formalized LBD systems 

to use such methods is the DAD LBD system which utilized MetaMap to extract and map 

biomedical terms and phrases in the literature to standardized UMLS concepts (Weeber et 

al., 2000). Similarly, Gabetta et al. used text mining methods to identify and extract UMLS 

concepts from biomedical literature as the knowledge extraction component in a LBD 

framework designed to discover genes associated with heart disease (Gabetta et al., 2013).  

Virtually all associations in concept-based knowledge extraction methods are established 

in a similar manner to term-based methods - i.e., using n-gram co-occurrences. Co-

occurrence associations are typically established based on a predefined context window 

size. For example, given the following concept normalized sentence: “Metformin 

(UMLS:C0025598) use during docetaxel (UMLS:C0246415) chemotherapy 

(UMLS:C3665472) did not significantly improve (UMLS:C0184511) prostate cancer 

(UMLS:C0600139)”, a window size of 3 will result in the following co-occurrence 

associations for Metformin (UMLS:C0025598): {C0025598 - C0246415}, {C0025598 - 

C3665472}, {C0025598 - C0184511}, and {C0025598 - C0600139}, while a smaller 

window size of 2 will result in fewer co-occurrences: {C0025598 - C0246415}, and 

{C0025598 - C3665472}. Larger window sizes can result in numerous co-occurrences, 

some of which may be too noisy or uninteresting for LBD, while smaller window sizes can 

result in fewer co-occurrences and potentially miss many novel associations (Henry et al., 

2019).   

Concept-based knowledge extraction resolves some of the limitations in term-based 

methods, such as addressing lexical ambiguity, but there are several limitations with 

regards to how associations between concepts are established. The co-occurrence of 

concepts in a sentence does not necessarily indicate the existence of a biomedically relevant 

association, which may result in generating false positive literature-based knowledge and, 

therefore, inaccurate LBD output. Additionally, the co-occurrence approach is known to 

generate a huge volume of concept associations, due to the flexible notion of what 

constitutes an association, resulting in a large discovery space and LBD output. This makes 

the task of reviewing LBD output a laborious and impractical task. Another important 

limitation is that co-occurrence associations do not provide any insights into the semantics 

of a given association. For instance, an association between a co-occurring drug and protein 
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does not indicate whether the underlying mechanism of association is inhibition or 

activation of the protein, which is a significant source of ambiguity. Providing some insight 

into the underlying biomedical interactions is an important factor for knowledge discovery 

(Ahlers et al., 2007). Interestingly, Swanson’s renowned dietary fish oil - Raynaud’s 

disease hypothesis was entirely based on recognizing the underlying mechanistic 

associations between the target concepts - i.e., (i)  fish oil lowers blood viscosity and 

platelet activity, and (ii) lower blood viscosity and platelet activity prevent Raynaud’s 

disease (Swanson, 1986a). Hence, LBD output should provide additional insights into the 

nature of associations between concepts constituting knowledge discoveries. 
 Semantic-Based Knowledge Extraction: 

A semantic-based knowledge extraction in LBD constitutes leveraging domain-specific 

semantic parsers in an effort to extract relational knowledge from unstructured text by 

exploiting the contextual syntactic and semantic features of sentences. Given a sentence as 

input, semantic parsers extract knowledge in the form of subject-predicate-object semantic 

triples, whereby the subject and object are concepts normalized to controlled vocabularies, 

and the predicate is a semantic relation between them (Luo et al., 2017). Biomedical 

semantic parsers, such as SemRep (Kilicoglu et al., 2020) and PKDE4J (Song et al., 2015), 

consist of two interdependent modules for entity extraction and relation extraction. The 

entity extraction module deals with the task of extracting and normalizing terms in text to 

standardized biomedical concepts, such as UMLS. While the relation extraction module is 

responsible for extracting semantic relations by exploiting lexical, syntactic and semantic 

features of the input sentence (Kilicoglu et al., 2020). For example, given the following 

sentence from a PubMed abstract (PMID: 32151063): “Tamoxifen (TAM) is a hydrophobic 

anticancer agent and a selective estrogen modulator (SERM), approved by the FDA for 

hormone therapy of BC.”, SemRep will extract the following semantic triples: [Tamoxifen 

– ISA – Antineoplastic Agent], [Tamoxifen – ISA – Selective Estrogen Receptor 

Modulator], and [Tamoxifen – Treats – Breast cancer]. Unlike co-occurrence associations, 

semantic literature-based knowledge characterizes the underlying biomedical interactions 

between concepts as predicates  (Gopalakrishnan et al., 2019).  

Hristovski et al. implemented one of the earliest semantic-based LBD frameworks by 

utilizing SemRep and BioMedLee to capture different types of relational knowledge from 
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biomedical literature; SemRep was used to capture clinical knowledge related to treatment 

of diseases, while BioMedLee was used to capture genotypic and phenotypic knowledge 

(Hristovski et al., 2006). This semantic-based knowledge extraction facilitated leveraging 

patterns of semantic relations to uncover novel therapeutic mechanisms to treat 

Huntington’s disease. The authors note that such relational patterns cannot be inferred with 

co-occurrence associations alone, since the underlying relation between concepts is 

unknown. Similar knowledge extraction approaches can be found in other studies (Ahlers 

et al., 2007; Cairelli et al., 2015; Cameron et al., 2013; Du & Li, 2020; Zhang et al., 2014).   

Semantic literature-based knowledge provides many advantages to the LBD process. 

Biomedical semantic parsers, such as SemRep and PKDE4J, combine the entity extraction 

and relation extraction into a single pipeline, thereby bypassing the need to use external 

methods and techniques to establish relations between concepts. Additionally, these 

domain-specific semantic parsers are reported to extract semantic relations with high 

precision; one of the most commonly used semantic parsers in LBD, SemRep, is reported 

to achieve 73%-96% precision for the task of relation extraction (Kilicoglu et al., 2020). 

Further, a wide range of semantic relations can be extracted by biomedical semantic parsers 

relating to clinical medicine (e.g., TREATS, DIAGNOSES), molecular interactions (e.g., 

INTERACTS_WITH, INHIBITS, STIMULATES), disease etiology (e.g., CAUSES, 

ASSOCIATED_WITH, PREDISPOSES), and pharmacogenomics (e.g., AFFECTS, 

AUGMENTS, DISRUPTS), in addition to hierarchical, spatial and temporal relations (e.g., 

IS_A, PRECEDES, LOCATION_OF). Lastly, the extraction of meaningful semantic 

relations facilitates robust knowledge filtering techniques to eliminate non-informative 

knowledge instances, as opposed to statistical-based filtering techniques employed for co-

occurrence associations which are prone to eliminating potentially novel knowledge 

(Thilakaratne et al., 2019).  

Despite the success of semantic-based knowledge extraction in integrating semantics into 

LBD frameworks, there are few fundamental shortcomings which adversely impact the 

knowledge discovery process. Firstly, biomedical semantic parsers suffer from the problem 

of low recall which results in missing potentially meaningful knowledge (i.e., semantic 

triples). SemRep is known to achieve recall rates between 55% and 70% (Kilicoglu et al., 

2020). Incomplete knowledge extraction is attributed to the performance of the entity 
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extraction modules. Generally, biomedical semantic parsers rely on dictionary-based text 

mining pipelines, such as MetaMap, to identify and extract concepts in text. Limitations of 

dictionary-based text mining methods are well documented and discussed in (Demner-

Fushman et al., 2017). Of note is that dictionary-based text approaches fail to detect out-

of-dictionary and, therefore, are unable to detect new terminology (Demner-Fushman et 

al., 2017; Song et al., 2015).   

Another fundamental weakness is related to the complex task of relation extraction. 

Generally, relation extraction for biomedical corpora requires addressing challenges such 

as coreference resolution, detecting relations in long-distance arguments and identifying 

implicit relations beyond sentence boundaries (i.e., when there is no explicit textual 

evidence of a relation) (Drury et al., 2022). While efforts have been made to resolve some 

challenges such as coreference resolution (Kilicoglu et al., 2016, 2020; Miwa et al., 2012), 

detecting semantic relations between concepts across sentence boundaries remains 

unresolved. Studies on biomedical corpora have shown that a vast majority of biomedical 

relations go beyond boundaries of clausal sentences (Kilicoglu et al., 2020; Rastegar-

Mojarad, Elayavilli, Li, & Liu, 2015). As such, failure to address these challenges can 

aggravate the problem of incomplete knowledge extraction.  

Regardless of the limitations, a semantic-based knowledge extraction approach provides 

many benefits to LBD owing to the integration of semantics into the knowledge discovery 

process, while limiting the discovery search space to precise and meaningful literature-

based knowledge. Prior research has shown that utilizing approaches which extract 

knowledge from the literature in high volumes will result in a LBD process that outputs 

numerous potential discoveries. This makes the task of reviewing LBD outputs complex 

and impractical. Hence, an ideal knowledge extraction approach for LBD should provide a 

reasonable trade-off between acquiring a tractable amount of high quality knowledge (i.e., 

containing few false positives) and ensuring that the acquired knowledge is sufficiently 

complete for knowledge discovery.  

Preiss et al. compared the impact of employing concept- and semantic-based knowledge 

extraction methods on LBD, with a focus on the scale of output discoveries (Preiss et al., 

2015). The authors used titles and abstracts of MEDLINE articles as input for the 

knowledge extraction component. MetaMap was used to extract concept-based knowledge, 
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and several generic and biomedical-specific semantic parsers were used to extract 

semantic-based knowledge from the same input. Consequently, concept- and semantic-

based approaches were evaluated within a LBD framework to determine the most suitable 

ones for knowledge discovery. The study revealed that the concept-based approach 

extracted a large volume of knowledge from the literature, which also translated into 

generating numerous discovery outputs, ranging from approximately 700 million to 14 

billion potential discoveries. Conversely, semantic-based approaches extracted fewer 

knowledge instances and, as a result, the discovery outputs were several orders of 

magnitudes fewer than the former approach. Interestingly, LBD via the semantic-based 

approach replicated a larger proportion of the evaluation discoveries while maintaining a 

tractable amount of output discoveries. This indicated that the semantic-based approach 

improved performance of LBD without sacrificing coverage of knowledge within the 

source literature. It is also worth noting that knowledge extraction using the biomedical-

specific semantic parser SemRep resulted in a better LBD performance compared to the 

generic ReVerb and Stanford parsers. This suggests that domain-specific semantic parsers 

are better suited for domain-specific knowledge discovery.  

2.2.3  Knowledge Representation Component: 
Raw instances of literature-based knowledge comprise of many latent lexical, semantic, 

and topological features which can be leveraged to facilitate the discovery process. For 

example, lexical statistics can be used to represent term- and concept-based associations in 

terms of co-occurrence frequencies to emphasize features of importance (high co-

occurrence frequency) or rarity (low co-occurrence frequency), while distributional 

semantics methods can be used to represent features of semantic similarity and relatedness. 

Hence, transforming the raw instances of knowledge into representations that capture latent 

features is an important task in the LBD framework. This section reviews the common 

knowledge representation methods utilized in LBD to extract latent features of raw 

knowledge instances. 
 Statistical-Based Knowledge Representation: 

Statistical-based knowledge representation methods in LBD rely on lexical features to 

represent knowledge instances in terms of direct co-occurrence frequency distributions 
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across the source literature corpora. These methods are commonly used to represent co-

occurrence-based associations capturing features of importance or rarity for a given 

instance of literature-based knowledge. In the context of LBD, the importance of 

knowledge instances is often characterized based on the frequency distributions of co-

occurring terms or concepts in the literature. The implication is that high co-occurrence 

frequencies suggest a meaningful association between terms or concepts and, therefore, are 

good candidates for knowledge discovery. Conversely, co-occurring frequencies can also 

be used to represent rarity of knowledge instances, based on the premise that rarely co-

occurring terms or concepts are less researched and, therefore, more interesting for 

knowledge discovery. Commonly used statistical methods include concept frequency 

(Gordon & Lindsay, 1996), document frequency (Ittipanuvat et al., 2014), relative concept 

frequency (Lindsay & Gordon, 1999), term frequency-inverse document frequency (TF-

IDF) (Srinivasan & Libbus, 2004), and mutual information (Wren, 2004).  
 Distributional Semantics Knowledge Representation: 

Distributional semantics consist of novel computational techniques to generate vector-

based representations of knowledge instances based on patterns of co-occurrences found 

in the input literature. A range of distributional semantic techniques have been proposed to 

semantically represent knowledge instances in LBD, including latent semantic indexing 

(LSI) (Gordon & Dumais, 1998), singular value decomposition (SVD) (Henry et al., 2018), 

reflective random indexing (RRI) (T. Cohen et al., 2010), and word embeddings (Heo et 

al., 2019). These techniques are primarily premised on the distributional hypothesis; which 

states that terms or concepts that occur in similar contexts exhibit similar vector 

representations and, therefore, are semantically related.  

Exploiting lexical and semantic similarity features of literature-based knowledge facilitates 

knowledge discovery by identifying closely related pairs of non-interacting terms or 

concepts. Gordon et al. utilize LSI to represent term co-occurrences within the literature as 

dense vectors and then compute the cosine similarity of non-co-occurring terms following 

Swanson’s ABC framework for knowledge discovery (Gordon & Dumais, 1998). The 

benefits of this approach lies in reducing the number of discovery outputs to a focused 

subset of potential discoveries with strong semantic similarity between the source (A) and 

target (C) terms. More recently, word embedding methods have been utilized to generate 



 30 

rich semantic-based vector representations of terms and/or concepts by iterating over the 

input corpus of text to encode semantic and contextual information surrounding target 

words and/or concepts (Q. Chen et al., 2020; Henry et al., 2018; Heo et al., 2019). Such 

vector-based representations are amenable to various vector operations, including 

projection, addition, and subtraction (Tshitoyan et al., 2019).  

Distributional semantics provide several benefits for LBD frameworks. Representing 

knowledge instances as vectors makes them amenable to various machine learning methods 

for knowledge discovery and ranking, such as nearest neighbour and clustering analysis. 

Additionally, distributional semantic methods are capable of capturing global and local 

semantic features which are not readily captured with lexical statistics. Prediction-based 

methods, such as word embeddings, can efficiently represent domain knowledge from 

large-scale literature without the need to add knowledge from external sources (Tshitoyan 

et al., 2019). However, word embeddings are ‘black box’ methods which generate vector 

representations that are not readily interpretable (Mikolov et al., 2013). Additionally, 

applications of distributional semantics in LBD are mostly confined to concept- and term-

based knowledge due to the nature of these methods in encoding knowledge directly from 

the source literature. Relational knowledge (i.e., semantic triples) require graph-based 

embedding methods which can encode the topological and semantic features of 

subject/object concepts in addition to the relations (predicates) between them.   
Graph-Based Knowledge Representation: 

Literature-based knowledge can be inherently represented and visualized as co-occurrence 

networks or multi-relational Knowledge Graphs (KGs). Co-occurrence networks represent 

concepts as nodes and associations between concepts as undirected edges, indicating that 

concept pairs co-occur in a sentence or a document. KGs are utilized to represent subject-

predicate-object semantic triples, with the subject and object concepts represented as 

nodes, and predicates as multi-relational directed edges. In general, graph-based 

knowledge exhibits a range of topological and semantic features which can be leveraged 

in LBD to facilitate knowledge discovery. The use of graph-based analysis is commonly 

used to analyze complex biological networks and, accordingly, has been adapted for LBD 

to analyze co-occurrence networks and KGs. Examples of graph-based analysis in LBD 

include degree centrality (Goodwin et al., 2012), betweenness centrality, closeness 
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centrality, Eigenvector centrality (Özgür et al., 2010), and personalized PageRank (Petric 

et al., 2014). These metrics evaluate the topological features of nodes via associated edges 

to define their relative importance in a graph (Naderi Yeganeh et al., 2020; Özgür et al., 

2010). Additionally, proximity-based measures have been utilized to compute association 

scores for edges based on the graph’s topology. Common neighbours, preferential 

attachment, and Jaccard similarity have been applied on literature-based co-occurrence 

networks to predict links between a pair of nodes based on their shared connections 

(Kastrin et al., 2016).  

More recently, advances in graph representation learning methods led to novel embedding 

techniques (i.e., graph embeddings) capable of encoding latent semantic and topological 

features of nodes and multi-relational edges as low-dimensional vectors (Mohamed et al., 

2021). Traditional graph theoretic measures are only effective in extracting prominent 

topological and similarity features of a graph, however graph embeddings adapt through a 

learning process to encode optimal topological and semantic features of a given graph. 

Examples of these techniques include random walk embeddings (Node2Vec, DeepWalk, 

LINE), tensor decomposition embeddings (DistMult, ComplEx, SimplE), geometric 

embeddings (TransE, RotatE), and deep learning embeddings (ConvE, ConvKB, ConvR) 

(Mohamed et al., 2021). Random walk embeddings are typically applied for co-occurrence 

networks, since these techniques view relations between nodes as undirected edges and do 

not consider their semantic attributes. Geometric, decomposition, and deep learning 

embeddings are multi-relational embeddings which can encode vector-based 

representations for nodes and edges separately and, therefore, can be applied to large-scale 

KGs constructed from literature-based semantic triples. Graph embeddings in LBD are 

typically used in downstream knowledge discovery tasks, such as link prediction (Kastrin 

et al., 2016) and entity prediction (Zhang et al., 2021). Graph embeddings have also been 

used in vector-based operations to rank LBD outputs (Crichton et al., 2020).  

Overall, graphs provide many advantages for LBD owing to their versatility as knowledge 

representation and visualization techniques. Literature-based knowledge, whether 

extracted as co-occurrence associations or semantic triples, can be intuitively organized 

and visualized as graphs which can facilitate novel knowledge discovery methods, such as 

discovery browsing, discovery patterns, and path finding algorithms (Baek et al., 2017; 
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Wilkowski et al., 2011; Zhang et al., 2021). Further, application of graph theoretic methods 

on literature-based graphs can generate meaningful knowledge attributes, which are not 

readily apparent when considering raw instances of knowledge. Finally, graphs constructed 

from literature-based knowledge can be easily extended by integrating knowledge from 

external knowledge bases and ontologies (Mohamed et al., 2021), which are typically 

organized and represented as graphs or triple stores.   

2.2.4  Knowledge Discovery Component: 
In LBD frameworks, knowledge discovery is characterized by the component that takes 

literature-based knowledge as input and applies user-defined discovery models with the 

aim of identifying implicit or indirect connections between non-interacting knowledge 

instances. Current knowledge discovery models used in LBD range from the traditional 

ABC model to prediction-based models that can predict future links between non-

interacting knowledge entities. The choice of a discovery model is typically influenced by 

the type of knowledge extracted from the literature (i.e., term-, concept-, or semantic-

based) and how this knowledge is represented. For example, discovery models for link 

prediction are applicable to relational-based knowledge represented as a graph or co-

occurrence network. Hence, the knowledge discovery component can be considered as a 

secondary process that relies on the output of preceding LBD components. In this section, 

we provide a detailed review of current discovery models used in LBD frameworks.  
 ABC-Based Discovery Models: 

Traditional discovery models in LBD are based on Swanson’s ABC theory to identify 

associations between non-interacting concepts via transitive reasoning. Explicitly, the ABC 

theory states that given two non-interacting concepts A and C, if A has a direct association 

with concept B, and B has a direct association with C, then there is an implicit association 

between A and C. This theory was formalized as the open- and closed-based ABC model 

for knowledge discovery (Henry & McInnes, 2017).  The open-discovery variant starts 

with a single predefined source concept (A) and aims to find intermediate concepts (B) 

which are used to identify the target concept (C). Conversely, the closed-discovery variant 

starts with predefined A and C concepts and seeks to identify meaningful B concepts which 

are used as bridges to link the two predefined concepts (i.e., A and C). In essence, the ABC 
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model aims to discover and expound the indirect association between A and C via an 

intermediate concept B. This knowledge discovery model has contributed to many 

biomedical discoveries and used to expound the indirect association between dietary fish 

oil and Raynaud’s syndrome, somatomedin and arginine   (Swanson & Smalheiser, 1997), 

and magnesium and migraine (Swanson, 1988).  

The ABC paradigm remains one of the most prevalent knowledge discovery models used 

in LBD frameworks due to its intuitive syllogism in discovering hidden knowledge 

associations between a source and target concepts (i.e., A and C). Further, it is adaptable to 

nearly all forms and representations of literature-based knowledge, including term-, 

concept-, and relational-based knowledge (Baker & Hemminger, 2010). However, despite 

its prevalent use, the ABC paradigm tends to generate a large number of candidate 

discoveries, making it difficult to assess or interpret manually without effective filtering or 

ranking procedures (Smalheiser, 2012).  

Wilkowski et al. expanded on the underlying principles of the ABC theory to introduce the 

AnC discovery paradigm, where n is a chain of multiple intermediate concepts -- i.e., A-B1-

B2-B3…Bn-C (Wilkowski et al., 2011). The AnC model is typically applied to literature-

based knowledge represented as graphs since it leverages graph theoretic measures, such 

as degree centrality, to iteratively generate ‘discovery sub-graphs’. Specifically, the 

discovery process begins with a seed concept (A) to create the first sub-graph, then the most 

influential nodes (B1) are identified and selected, using degree centrality measures, as new 

seed concepts to expand the initial sub-graph. This iterative discovery approach tends to 

provide broader insights into the underlying associations between the source (A) and target 

(C) concepts due to the presence of multiple bridging intermediate concepts. However, the 

AnC paradigm requires active intervention/input from users to limit the sub-graph 

expansion task.  

Another graph-based discovery model is the discovery patterns approach by Hristovski et 

al. which leverages semantic triples represented as knowledge graphs (Hristovski et al., 

2006). Discovery patterns expand on the ABC theory to introduce graph traversal 

techniques that search a given KG based on a set of semantic constraints to identify indirect 

relations between a source concept (A) and a target concept (B). These semantic constraints 

refer to a sequence of semantic types of nodes and relations. To illustrate this notion, 
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Hristovski et al. proposed the maybe_treats discovery pattern for drug repurposing: if a 

disease (concept A) is related to a pathological function (concept B) via a causal relation, 

and a drug (concept C) is related to the same pathological function (concept B) via an 

inhibitory relation, then the drug (concept C) maybe_treats the disease (concept A) 

(Hristovski et al., 2006). In another recent study, similar discovery patterns were proposed 

to discover novel treatments for COVID-19 using the following constraints: (Drug A) - 

INHIBITS/INTERACTS_WITH - (Biological Function B) - 

AFFECTS/PREDISPOSES/CAUSES - (COVID-19) (Zhang et al., 2021). The benefits of 

this approach lie in providing fully interpretable discovery paths which may explain the 

underlying mechanistic relations between a source and a target concept. Further, since this 

approach relies on strict graph traversal constraints, the number of generated candidate 

discovery paths are limited and can be easily assessed and reviewed by domain experts. 

However, some degree of domain knowledge is necessary to define a logical pattern of 

nodes and edges. 

Overall, ABC-based models offer an intuitive approach to knowledge discovery and have 

contributed to real-world discoveries in the biomedical domain. Virtually all formalized 

biomedical LBD systems - including LION LBD (Pyysalo et al., 2019), MELODI-

PRESTO (Elsworth & Gaunt, 2021), and Arrowsmith (Smalheiser & Swanson, 1996) - 

utilize ABC-based models to uncover hidden associations in literature-based knowledge. 

Further, the underlying notion of overlapping assertional knowledge tends to generate fully 

interpretable discovery paths which can be easily assessed and reviewed by domain experts 

to validate their significance. However, the extent to which ABC-based models can 

generate significant discoveries depends on the completeness of knowledge extracted from 

the literature; if the A-B association is missing due to incomplete knowledge extraction, 

then the A-C implicit association (via the intermediate B) will not be discovered.  
 Prediction-Based Discovery Models: 

Prediction-based discovery models incorporate data-driven methods leveraging lexical, 

topological, and semantic features to predict links between disparate knowledge entities. 

Discovery models in this category are distinguishable from traditional approaches due to 

the utilization techniques and paradigms which go beyond the ABC theory of overlapping 

assertional knowledge, such as link prediction and entity prediction.  
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Several LBD studies have characterized knowledge discovery as a link prediction task, 

where the goal is to predict pairs of entities that can potentially be linked in the future based 

on the current state of knowledge (Crichton et al., 2018; Eronen & Toivonen, 2012; Kastrin 

et al., 2014, 2016; Zhang et al., 2021). These studies leverage graph-based representations 

to extract inherent topological and semantic features, which are in turn utilized for 

supervised and unsupervised link prediction. For example, Kastrin et al. represented 

literature-based knowledge as a large-scale co-occurrence network and utilized 

unsupervised and supervised link prediction methods on a set of unlinked nodes to predict 

the probability that a given pair of nodes may establish a link in the future (Kastrin et al., 

2016). For unsupervised link prediction, Adamic-Adar, Common Neighbours, and Jaccard 

Index proximity measures were utilized based on the assumption that nodes with similar 

neighbours are more likely to establish a direct link in the future. In the supervised link 

prediction (learning-based) setting, feature vectors were created by combining proximity 

measures and used as input for decision trees, k-nearest neighbours, logistic regression, 

naïve Bayes, and random forest to classify whether a link can potentially exist between 

unlinked nodes. This study revealed that supervised learning-based approaches 

outperformed unsupervised link prediction for knowledge discovery.  

Recently, neural network models have been utilized as link prediction methods for 

knowledge discovery. Crichton et al. utilized vector-based representations generated from 

network embedding algorithms (DeepWalk, LINE, and Node2Vec) as input for neural 

network models to predict future links between nodes as an approach for knowledge 

discovery (Crichton et al., 2018). The authors concluded that neural networks have great 

potential for knowledge discovery as they perform better than baseline approaches, such 

as Jaccard Index, in predicting links between nodes with no or few common neighbours.  

In addition to link prediction, knowledge discovery can also be characterized as a task of 

entity prediction by applying KG embedding algorithms on literature-based KGs. Zhang et 

al. represented subject-predicate-object semantic triples extracted from biomedical 

literature as a KG and applied various KG embedding algorithms to generate vector-based 

representations of nodes and semantic edges (Zhang et al., 2021). Consequently, entity 

prediction was performed as a ranking task, whereby embeddings for a given predicate and 

object are used as input in a prediction function which generates high scores for plausible 
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combinations of subject-predicate-object triples. This approach was used to discover novel 

treatments for COVID-19 by using embeddings for treats and COVID-19 as inputs for the 

prediction function.  

Prediction-based methods for knowledge discovery have the potential to uncover novel 

links between disparate knowledge entities and can help overcome limitations of ABC 

theory-based models (Kastrin & Hristovski, 2021). Recent advances in representation-

based learning methods can facilitate the development of novel knowledge discovery 

models that are capable of predicting previously unknown knowledge with high accuracy 

(Jiang et al., 2020; Mohamed et al., 2021). However, these approaches are derived from 

black-box algorithms which are not inherently interpretable (Rudin, 2019). Further, 

applications of prediction-based discovery models are limited to large-scale literature-

based knowledge and, therefore, require significant computational resources to develop 

and train highly accurate models.  

2.2.5 Filtering and Ranking Component: 
The number of discoveries generated by the aforementioned discovery models can be too 

many to review and assess manually by domain experts. Hence, limiting the number of 

output LBD to a small subset of meaningful and interesting knowledge is an important 

component in LBD frameworks. Limiting the output of the knowledge discovery 

component can be done through knowledge filtering and knowledge ranking. Commonly 

used techniques for knowledge filtering and ranking are discussed in the sections below.  
 Filtering Techniques: 

Filtering techniques in LBD are focused on identifying and eliminating uninformative, 

spurious, or uninteresting concepts or relations constituting output discovery paths. For 

example, concepts such as neoplasms, pharmacologic substance, or pathologic processes 

are recurring broad concepts in biomedical literature which may not provide any useful 

information for knowledge discovery. Similarly, relational-based knowledge may include 

generalized hierarchical or spatio-temporal semantic relations which do not relay any 

useful insights into the underlying mechanistic association between concepts.  

Knowledge filtering techniques typically leverage hierarchical and/or semantic type 

information from biomedical ontologies and standardized vocabularies, such as the UMLS 
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or MeSH. For example, Qian et al. utilized MeSH to identify and eliminate concepts in the 

first and second levels of the MeSH tree hierarchy as they were deemed too broad for 

knowledge discovery (Qian et al., 2012). Hristovski et al., leveraged the UMLS Semantic 

Network, which classifies biomedical concepts into several semantic types and high-level 

groups, to restrict the output of a ABC-based knowledge discovery model to concepts with 

semantic groups Physiology while eliminating all concepts with other semantic groups 

(Hristovski et al., 2006). Similar approaches are also used to filter uninformative or 

uninteresting semantic relations given a specified discovery task. For example, LBD 

focused on drug repurposing may focus on retaining semantic relations denoting 

therapeutic and substance interactions (e.g., TREATS, PREVENTS, INHIBITS, 

STIMULATES) (Zhang et al., 2021).   
 Ranking Techniques: 

Ranking refers to the task of sorting output discoveries to prioritize interesting and 

meaningful knowledge over uninteresting and uninformative ones. This task is necessary 

to limit the number of output of ABC-based discovery models exhibiting the small world 

phenomenon (Henry & McInnes, 2017). In this context, the small world phenomenon 

occurs when intermediate knowledge entities (B) are linked to many target entities (C), 

thereby generating many ABC discovery paths.  

Ranking measures in LBD utilize features of knowledge instances extracted during the 

knowledge representation phase to sort output of discovery models based on lexical, 

semantics, or graph-based topological features. For example, literature-based knowledge 

represented in terms of co-occurrence frequencies are utilized to rank ABC discovery paths 

based on the popularity of the A-B and B-C associations (Pyysalo et al., 2019). Vector-

based representations are utilized to compute scores for ABC discovery paths using 

distance metrics to estimate the relatedness between the A and C entities (Heo et al., 2019). 

Similarly, topological features of graph-based knowledge representations can be utilized 

to compute proximity-based measures for A and C nodes/entities (Kastrin et al., 2016). 

Hence, ranking measures are defined in parallel to knowledge representation methods - i.e., 

statistical-based, distributional semantics-based, and graph-based ranking techniques.  

Statistical-based ranking relies on lexical features to rank discovery paths based on 

popularity, rarity, strength of association, or linking term count (Henry & McInnes, 2019). 
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Measures of popularity are premised on the notion that high co-occurrence frequencies 

suggest meaningful associations between entities extracted from the literature and, 

therefore, are prioritized over rarely co-occurring entities which are assumed to be spurious 

or insignificant associations. Conversely, measures of rarity assume that low co-occurrence 

frequencies represent novel and interesting associations for knowledge discovery. 

Association measures utilize co-occurrence frequency distributions to quantify discovery 

paths based on the likelihood that the A-B and B-C associations co-occur together more 

often than expected. Examples of association measures include: odds ratio, mutual 

information, chi-square, log-likelihood ratio, and dice coefficient (Henry et al., 2019). 

Lastly, linking term count quantifies discovery paths based on the number of unique 

intermediate entities between the source and target entities. A study comparing the 

performance of multiple statistical-based metrics found that linking term count provides 

the best ranking approach for LBD (Yetisgen-Yildiz & Pratt, 2009). Overall, statistical-

based ranking is relatively easy to compute and rationalize for LBD given their reliance on 

basic lexical statistics. However, these metrics can only quantify direct co-occurring 

associations between knowledge entities - i.e., A-B and B-C. As such, ranking scores for 

ABC or AnC discovery paths are obtained by summing or averaging direct associations.  

Distributional semantics ranking measures utilize vector-based representations of 

knowledge entities to compute distance-based metrics quantifying the association between 

entities constituting a given discovery path (Henry & McInnes, 2017). Examples of 

commonly used distance metrics include cosine distance (Gopalakrishnan et al., 2018), 

euclidean distance (van der Eijk et al., 2004), and information flow (Bruza et al., 2006). 

These measures can be utilized to quantify the association between directly linked entities 

(e.g., A-B and B-C) and indirectly linked entities (e.g., A-C).  

Graph-based ranking measures leverage graph characteristics to compute ranking scores 

for output discovery paths. Centrality measures, such as degree centrality, betweenness 

centrality, and closeness centrality, are used as indicators to quantify the significance of a 

knowledge entity in a graph (Özgür et al., 2010; Wilkowski et al., 2011). More recently, 

proximity measures have been adapted to rank graph-based discovery paths based on the 

notion of common neighbouring nodes (Kastrin et al., 2016). Explicitly, this ranking 

measure is based on the number of shared links between the source (A) and target (C) 
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nodes, such that if the source and target have many links to other nodes in common, they 

are considered to have strong implicit association.  

Overall, there is no consensus on the best approach for ranking in LBD. Few studies have 

compared the performance of statistical-based ranking measures and reported varying 

results (Pyysalo et al., 2019; Yetisgen-Yildiz & Pratt, 2009). Recent LBD studies proposed 

to combine multiple metrics to rank output discoveries. For example, Gopalakrishnan et al. 

combined co-occurrence frequency and degree centrality metrics to rank the output of a 

graph-based LBD framework (Gopalakrishnan et al., 2018), while Sybrandt et al. proposed 

to combine distributional semantics and graph-based ranking metrics (Sybrandt & Safro, 

2018). A combined approach to knowledge ranking can provide more flexibility by 

leveraging several features/properties of literature-based knowledge to prioritize novel and 

meaningful discoveries (Thilakaratne et al., 2019).   

2.3 Review of LBD Systems: 
In this section, we review existing formalized LBD systems that are publicly available. 

While there exist several LBD frameworks that have not been formalized as web-based 

systems, this review primarily focuses on systems that are accessible, with the aim to 

perform a comparative analysis within the context of this thesis. Table 2.1 presents a 

concise classification of the methodologies employed by these systems.  
Table 2.1: Classification of formalized LBD systems 

LBD system Components 
Literature 
curation  

Knowledge 
extraction  

Knowledge 
discovery 

Filtering and 
ranking 

Arrowsmith Titles only Term-based co-
occurrence 
associations 

Closed-based ABC 
discovery 

Semantic type 
filtering and 
probabilistic 
ranking based on 
a regression 
model 

BITOLA Titles and 
abstracts 

Concept-based co-
occurrence 
associations 

Open- and closed-
based ABC 
discovery 

Association rule 
mining to filter 
and rank 
generated 
discoveries 

SemBT Titles and 
abstracts 

Semantic-based 
knowledge in the 
form of subject-
predicate-object 
triples 

Open- and closed-
based ABC 
discovery 

Semantic triple 
counts to rank 
discoveries 
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LBD system Components 
Literature 
curation  

Knowledge 
extraction  

Knowledge 
discovery 

Filtering and 
ranking 

MELODI Titles and 
abstracts 

Semantic-based 
knowledge in the 
form of subject-
predicate-object 
triples 

Open- and closed-
based ABC 
discovery 

Semantic triple 
counts, odds 
ratio, and 
including 
Fisher's exact 
test 

LION-LBD Titles and 
abstracts 

Concept-based co-
occurrence 
associations 

Open- and closed-
based ABC 
discovery 

Co-occurrence 
frequency and 
statistical 
association 
measures 

 
Arrowsmith: 

Arrowsmith is one of the first co-occurrence LBD systems that uses the ABC discovery to 

uncover links between disparate sets of biomedical literature (Smalheiser, 2005; Swanson 

& Smalheiser, 1997). The system requires users to identify source and target terms to 

initiate the LBD process. Subsequently, titles of biomedical publications which include the 

source or target term are retrieved from MEDLINE. A term-based approach is used to 

extract literature-based knowledge, whereby all n-gram co-occurrences of terms that are 

found in the titles are extracted. Generic and common terms are eliminated, based on a 

predefined stoplist, and the remaining terms are mapped to UMLS via MetaMap to assign 

each term a standardized semantic type. Additional filters allows users to retain terms 

which belong to one or more of desired semantic types. ABC discoveries are generated on 

the basis of a probabilistic regression model to estimate the probability of relevance for 

each intermediate B term (Torvik & Smalheiser, 2007). Finally, the system generates a 

ranked list of B terms based on a cohesion score.  

Arrowsmith is a pioneering LBD system that has influenced the development of many 

subsequent systems. It uses a rudimentary but effective approach to uncover co-occurrence 

based knowledge from the literature via a user-friendly interface. However, Arrowsmith 

has several limitations which can be attributed to the limited computational resources at 

the time of system development. The knowledge extraction approach achieves high recall 

but low precision since all n-gram co-occurrences are considered valid associations (Henry 

& McInnes, 2017). Additionally, this approach does not consider synonymous terms as 

concepts/entities which introduces further ambiguity and imprecision into LBD. Another 
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source of ambiguity is the co-occurrence associations which do not indicate the nature of 

the relationship between A-B and B-C terms. Lastly, Arrowsmith uses titles of biomedical 

articles as input for knowledge discovery, which means that it is potentially excluding huge 

amount of valuable knowledge found in abstracts.  

BITOLA: 

Developed by Hristovski et al., BITOLA is an interactive LBD system that specializes in 

the discovery of disease-gene associations (Hristovski et al., 2005). It extracts concept-

based knowledge from biomedical literature using the co-occurrence approach, whereby 

the co-occurrence of biomedical concepts in a scientific article is considered a meaningful 

association. Additionally, the system integrates biomedical knowledge from curated 

genomic databases (i.e., HUGO and LocusLink) related to the chromosomal locations for 

diseases and genes. To extract associations, BITOLA uses association rule-mining to 

identify relevant ABC discoveries as follows: given a predefined source concept (A), 

relevant intermediate (B) terms  are identified using association rule A → B, then target 

(C) concepts co-occurring with the intermediate (B) concepts are also identified using 

association rule B → C. Then using the background curated knowledge, it eliminates target 

concepts whose chromosomal location does not correspond to the location of the start 

concept (A). The final list of ABC discoveries are presented using a ranking metric that 

combines the confidence of A→B and B→C associations. BITOLA supports open and 

closed-based discovery, however, it restricts users to discovery tasks involving a gene as 

the source concept and a disease as the target concept.  

The limitations of BITOLA are attributed to its co-occurrence approach for knowledge 

extraction, which results in extracting spurious associations (Hristovski et al., 2006). 

Additionally, the lack of semantic relations between concepts means that users are required 

to manually review articles to gain an understanding of the nature of interaction.  

Hristovski et al, also developed the semantic-based version of BITOLA, called SemBT, by 

leveraging the SemRep knowledge extraction tool to extract subject-predicate-object 

triples from the literature (Hristovski et al., 2010). SemBT is also a specialized LBD system 

that focuses on tasks related to gene-disease associations. However, rather than using 

association rule mining to identify A-B and B-C associations, SemBT relies on meaningful 
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semantic knowledge. Further, it uses raw counts of semantic triples to rank generated 

discoveries.  

MELODI PRESTO: 

MELODI is a semantic-based LBD system that aims to discover hidden biomedical 

knowledge by identifying intersecting semantic triples extracted from biomedical literature 

(Elsworth et al., 2018). The system uses SemRep to extract subject-predicate-object triples 

from abstracts and titles published in PubMed. The extracted triples subsequently undergo 

an enrichment step which involves comparing the frequency of subject and object concepts 

within a subset of literature with global frequencies across all abstract/titles in PubMed to 

eliminate common and spurious semantic triples. The enrichment step also prioritizes 

triples which occur frequently in independent articles, thereby reducing the effect of triples 

which occur frequently in single articles. The strength of semantic triples is represented 

using statistical and raw co-occurrence measures including Fisher's exact test, Odds ratio, 

and triple frequency.  

A previous version of the system represented the generated ABC discoveries using property 

graphs, however, the most recent version, called MELODI PRESTO, represents the 

knowledge in a tabular format and provides users with an Application Programming 

Interface (API) to interact with the system (Elsworth & Gaunt, 2021).  

As a semantic-based LBD system, MELODI has the potential to uncover meaningful 

knowledge discoveries from the literature and to provide mechanistic insights on the 

relationship between non-interacting biomedical concepts. However, the system relies on 

SemRep to extract knowledge, which means that the extracted knowledge is possibly 

incomplete due to low recall of SemRep (Kilicoglu et al., 2020).  

LION-LBD: 

LION-LBD is a recently developed LBD system leveraging text mining tools to extract 

biomedical concepts from the literature and representing them as co-occurrence 

associations (Pyysalo et al., 2019). It integrates PubTator to extract and normalize 

biomedical concepts, in addition to a dedicated NLP classifier that classifies sentences in 

the literature into one of the 37 categories of the hallmarks of cancers taxonomy. Thus, in 

addition to detecting genes/proteins, chemicals, diseases, and mutations, the system detects 

references to the biological interactions which lead to cancers. It uses n-gram co-
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occurrence frequencies to represent associations between biomedical concepts, and 

implements open and closed ABC discovery models. Generated discoveries are ranked 

using raw frequency counts in addition to multiple statistical metrics such as Chi-square, 

t-test, log-likelihood ratio, and Jaccard coefficient. It provides an intuitive web-based 

application and uses a graph-based interface to represent ABC discovery paths.  

LION-LBD is a novel LBD system that leverages state-of-the-art text mining tools and 

NLP methods to extract knowledge focused on cancer biology from the literature. As a co-

occurrence based system, it achieves high recall in knowledge extraction but the co-

occurrence associations do not provide insights into the mechanistic interactions between 

concepts (Henry & McInnes, 2017). Nevertheless, LION-LBD has demonstrated that it is 

capable of uncovering novel cancer discoveries from the literature with high precision 

(Pyysalo et al., 2019).  

2.4 Conclusion: 
This chapter presented a comprehensive review of the underlying principles, motivations, 

and components of LBD as a knowledge discovery framework. LBD, as conceived by Don 

Swanson’s early works, is based on the notion that scientific knowledge is complementary 

but resides in segregated silos of non-interacting literature. Additionally, the accelerated 

rate of scientific publications, especially in biomedicine, suggests that the current state of 

knowledge is well-advanced but since it is dispersed across several publications, it remains 

untapped. Hence, logically connecting these silos of knowledge can uncover hidden links 

between pieces of disparate literature-based knowledge.  

Contemporary approaches to LBD rely on external computational methods and techniques 

to extract, represent, and analyze literature-based knowledge. In this regard, LBD can be 

described as a framework consisting of the following components: literature curation, 

knowledge extraction, knowledge representation, knowledge discovery, and ranking 

generated discoveries. Each component is characterized by several approaches, and the 

output from one component is used as input for the next component. Figure 2.2 depicts a 

taxonomy of the common approaches utilized by each component of the LBD framework.  
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Figure 2.2: Taxonomy of LBD Framework Components 

The literature curation component defines the input data sources used for extraction of 

literature-based knowledge. This component involves defining a literature search strategy 

and determining which article sections to utilize for knowledge extraction (e.g., abstracts 

and titles, full-text, MeSH descriptors). The output of this component consists of literature-

based corpora or a set of MeSH descriptors in addition to associated metadata, such as 

article publication dates.  

The knowledge extraction component relies on various text mining and relation extraction 

methods to extract knowledge from literature text. In this setting, literature-based 

knowledge is characterized by a set of concepts and some notion of association or 

relationship between them. Contemporary LBD frameworks utilize two forms of literature-

based knowledge: concept-based and relational-based knowledge. Concept-based 

knowledge is extracted by identifying and normalizing domain-specific terms in literature 

text, and associations between normalized concepts are established based on their co-

occurrence in a sentence. Relational-based knowledge consists of subject-predicate-object 

triples extracted by domain-specific semantic parsers, whereby the subject and object 
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entities are normalized biomedical concepts and predicate is a semantic relationship 

between them. The output of this component is a large set of co-occurrence associations or 

semantic triples extracted from literature text.  

Knowledge representation is the component that represents the extracted literature-based 

knowledge in a computable format, such as co-occurrence networks or large-scale 

knowledge graphs. Knowledge representation facilitates the extraction of latent features 

which can be utilized for knowledge discovery, filtering, and ranking.  

Knowledge discovery component applies a used-defined discovery model to literature-

based knowledge to uncover implicit links and associations between disparate knowledge 

entities. Several discovery models have been proposed, including the ABC-based and 

prediction-based models. The output of this component is a set of potential discovery paths 

denoting potential implicit associations.  

Lastly, the knowledge filtering and ranking component eliminates non-interesting 

discoveries and returns a ranked list of discovery paths. This component is often 

accompanied by various visualization techniques to assist domain experts in reviewing 

potential discovery paths.  

Overall, LBD is considered a relatively mature field with many novel approaches being 

introduced in recent years addressing major challenges, such as over-generation of 

discoveries (Henry, 2019), link prediction for open- and closed-based discovery (Crichton 

et al., 2020), entity prediction-based discovery (Zhang et al., 2021), and improving 

extraction of concept-based knowledge from literature text (Crichton et al., 2017). 

However, few methodological challenges remain unaddressed. First, commonly used 

biomedical semantic parsers for relational-based knowledge extraction suffer from the 

problem of low recall, which results in incomplete extraction of literature-based 

knowledge. Considering the ABC model of discovery, if relations between A and B  or B 

and C are missing, then the implicit relation between A and C will not be discovered. As 

such, limitations in relational-based knowledge extraction may prohibit the wide-scale 

adoption of LBD among the scientific community. Recent LBD studies emphasize the need 

for novel approaches to address such challenges by automatically inferring new knowledge 

from existing knowledge or by leveraging manually curated knowledge from biomedical 

knowledge bases. Secondly, normalization of biomedical terms in literature text results in 
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mapping closely related terms to multiple concept representations from standardized 

biomedical terminologies. This can lead to a highly granular concept-based normalization 

of biomedical terms, thereby significantly increasing the number of unique concepts and, 

in turn, literature-based knowledge instances. Vlietstra et al. called for investigating 

mechanisms to associate and collapse closely related concepts with one another, thereby 

condensing the number of literature-based knowledge instances without compromising the 

coverage of domain knowledge (Vlietstra et al., 2017). Such mechanisms can also reduce 

the discovery search space, thereby requiring LBD users to review fewer potential 

discoveries (Vlietstra et al., 2017). We posit that addressing these challenges can improve 

the adoption of LBD as an effective knowledge discovery methodology in biomedicine.  
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Chapter 3 Research Approach and Design  
In the previous chapter, we reviewed existing literature to understand LBD as a multi-

component framework that processes scientific literature to extract literature-based 

knowledge by implicitly connecting disparate knowledge instances to discover previously 

unknown knowledge. Our review revealed that conventional semantic-based LBD 

frameworks rely on domain-specific semantic parsers to extract knowledge in the form of 

semantic triples, however these framework do not address the challenges posed by 

incomplete knowledge extraction and the granular representation of biomedical concepts. 

Further, filtering and ranking methods applied to LBD outputs are primarily focused on 

prioritizing knowledge discoveries that are either statistically significant or consist of 

frequently co-occurring knowledge instances in the literature, thereby dismissing novel 

knowledge instances which usually occur rarely (i.e. with a lot frequency for it to be 

detected by co-occurrence methods) in the literature.  

Motivated by the findings of the literature review, the overarching objective of this 

dissertation is to explore novel knowledge graph-centric solutions to tackle the limitations 

of semantic-based LBD. Our focus is to (i) leverage state-of-the-art knowledge extraction 

tools and techniques to extract semantics-based knowledge that resolves the ambiguity of 

biomedical concepts and faithfully represents the current state of knowledge in the 

literature; (ii) consolidate the representation of granular biomedical concepts by leveraging 

condensed terminologies with semantic alignment and mapping techniques; (iii) address 

the incompleteness of literature-based knowledge using a multi-step knowledge integration 

and knowledge graph completion approach to predict missing semantic relations; and (iv) 

develop LBD filtering and ranking measures premised on information theory to prioritize 

meaningful discoveries that are not captured by traditional statistical association measures.  

This chapter presents our methodological approach to achieve the outlined objectives. 

While doing so, we conceptualize the development of the Augmented Knowledge Graphs 

for LBD (AKG-LBD) framework that leverages the strengths of knowledge graphs, 

semantic consolidation techniques, and knowledge integration and completion methods. 

This chapter is organized as follows. Section 3.1 outlines the solution approach to address 

challenges and limitations of traditional LBD frameworks. Section 3.2 introduces the 
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AKG-LBD framework which extends traditional LBD frameworks by encapsulating the 

proposed solution approaches outlined in the previous section. Section 3.3 describes the 

data and tools used throughout this research, including the literature sources and semantic 

tools used to extract and represent knowledge from the literature. Section 3.4 outlines the 

evaluation framework used to assess the performance of the AKG-LBD framework. 

Finally, Section 3.5 concludes this chapter by summarizing the main components of AKG-

LBD and setting the stage for the next chapter, which describes the implementation and 

evaluation of the framework.  

3.1 Addressing Challenges of Traditional LBD Frameworks 
This section presents our approach to address the limitations of traditional semantic-based 

LBD frameworks as noted in the LBD literature. In sections 3.1.1 and 3.1.2, we discuss the 

challenges pertaining to the extraction of semantics-based knowledge from the literature 

and its consequence on LBD. Then in section 3.1.3, we discuss the challenges in filtering 

and ranking ABC discovery paths generated by LBD.  

3.1.1 Ambiguity and Granularity of Biomedical Concept Representations: 
Semantic-based knowledge extraction (i.e., semantic parsing) is the process of extracting 

structured knowledge in the form of subject-predicate-object semantic triples from 

unstructured textual sources, such as the literature (Milošević & Thielemann, 2023). The 

subject and object are standardized biomedical concepts, and the predicate is a semantic 

relation between them. For example, given the following sentence in (Day et al., 2020): 

“Tamoxifen (TAM) is a hydrophobic anticancer agent and a selective estrogen modulator 

(SERM), approved by the FDA for hormone therapy of BC.”, the semantic parsing process 

extracts the following semantic triples:  

• C0039286: Tamoxifen – ISA – C0732611: Selective Oestrogen Receptor 

Modulator  

• C0039286: Tamoxifen – TREATS – C0006142: Breast Cancer (BC) 

Semantic parsing involves identifying biomedical terms in text and then disambiguating 

them to standardized concepts using comprehensive biomedical terminologies, such as the 

UMLS (Kilicoglu et al., 2020). In the biomedical domain, disambiguation of biomedical 
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terms present a significant challenge, because terms used in the literature can have multiple 

meanings depending on the surrounding context and, thus, may be represented as different 

concepts based on the context (Preiss & Stevenson, 2016). This is particularly problematic 

when dealing with gene or protein terms, as genes and proteins are often referenced in the 

literature by non-unique aliases (i.e., short name), such that the same alias may refer to 

different genes/proteins. For example, the following sentences taken from published 

articles use the “TTF1” alias non-uniquely to refer to two different genes: 

• Sentence 1: “mTOR Inhibition Promotes TTF1-Dependent Redifferentiation and 

Restores Iodine Uptake in Thyroid Carcinoma Cell Lines” 

• Sentence 2: “TTF1 mediates the transcription of ribosomal RNA” 

In the first sentence, “TTF1” refers to the Thyroid Transcription Factor 1 gene which 

regulates the expression of thyroid-specific genes, while in the second sentence “TTF1”  

refers to the Transcription Termination Factor 1 gene which encodes a termination factor 

that mediates RNA transcription. However, the use of the “TTF1” alias in the literature is 

ambiguous, as it is a shared alias of two distinct genes that have different functions. In 

semantics-based knowledge extraction, the challenge arises in determining the most 

plausible concept from a biomedical terminology given an ambiguous gene/protein alias in 

the literature. Without applying disambiguation, gene/protein aliases in the literature may 

be represented by multiple concepts, resulting in ambiguous concept-based representations. 

Current biomedical semantic parsers, such as SemRep, do not disambiguate gene/protein 

aliases in the literature (Preiss & Stevenson, 2016). Instead, rudimentary string matching 

techniques are used to match a gene/protein alias to corresponding concepts in UMLS or 

the NCBI Gene database. For instance in the case of “TTF1”, the gene term matches aliases 

of two distinct concepts and is represented the following UMLS concepts: C1421218 

(Transcription Termination Factor 1 gene) and C1384616 (Thyroid Transcription Factor 1 

gene). In the context of LBD, this creates a significant source of ambiguity and imprecision, 

as it can be difficult to determine the true concept without referring back to the source 

article. Preiss et al. highlighted the significance of concept disambiguation during 

knowledge extraction for LBD, emphasizing that the performance of LBD is sensitive to 

the precision of concept disambiguation (Preiss & Stevenson, 2016). The authors suggested 
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that precise concept disambiguation has the potential to enhance the quality of LBD output 

by minimizing the generation of noisy knowledge. 

Further, the reliance on comprehensive and highly granular terminological resources, such 

as the UMLS, for knowledge extraction presents additional challenges for LBD. The 

UMLS is a compendium of many biomedical terminologies, such as MeSH, SNOMED CT, 

ICD10, HGCN, and Gene Ontology among many others. Hence, UMLS is a highly 

granular terminological resource due its wide coverage of concepts and biomedical 

domains. As a result, semantically equivalent biomedical entities are often represented as 

distinct concepts. For example, the breast cancer targeting drug Fulvestrant is represented 

as three distinct concepts in UMLS: C0935916 (Fulvestrant) denoting the generic name, 

C0701491 (Faslodex) denoting the trade name, and C0123085 (ZM-182780) denoting the 

research code. In drug nomenclature, these entities are used interchangeably to refer to the 

same drug, indicating their semantic equivalence.  Less granular terminologies, such as 

MeSH or NCI, represent Fulvestrant as a single concept that encompasses all its naming 

variations. Similarly, UMLS represents the benign enlargement of the prostate as 

C1704272 (Benign Prostatic Hyperplasia) and C0005001 (Benign Prostatic Hypertrophy), 

whereas MeSH represents the disease as a single concept (D011470) that encompass both 

synonyms. In genomics, orthologous genes in different species are represented as distinct 

concepts despite being associated with similar biological phenomena and exhibiting similar 

functions across species (e.g., association of TP53 in mice and humans with tumor 

suppression) (Gabaldón & Koonin, 2013). The granularity of concepts is also reflected in 

the semantic-based knowledge extraction process. For example, the following semantic 

triples, describing the relationship between Fulvestrant and cancer cell growth, convey the 

same underlying semantics but are represented differently: 

• C0701491: Faslodex – INHIBITS – C0007595: Cell Growth 

• C0935916 Fulvestrant – INHIBITS – C0007595: Cell Growth 

In the context of LBD, the presence of such equivalent semantic triples result in 

considerable increase in the number of unique triples, which in turn increases the discovery 

search space (Vlietstra et al., 2017). Prior research has demonstrated that utilizing 

condensed terminologies is better suited for downstream predictive tasks, such as relation 
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prediction, as it leads to a reduction in the dimensionality of the represented data (Rasmy 

et al., 2020).  

We address the challenges of ambiguity and granularity of concept representations as 

follows. Our approach to resolving ambiguous concepts involves utilizing PubTator; a 

cutting-edge biomedical text mining tool. PubTator employs a stand-alone concept 

disambiguation module based on a convolutional neural network model that is capable of 

identifying and representing ambiguous gene/protein terms in the literature as standardized 

biomedical concepts, taking into account the surrounding semantic and syntactic contexts 

(Wei et al., 2019). PubTator’s disambiguation module achieves an accuracy of 85%, 

surpassing the 55% accuracy achieved by rule-based tools (Kilicoglu et al., 2020; Wei et 

al., 2019). Our aim is to incorporate PubTator as part of the semantic-based knowledge 

extraction process to resolve ambiguous gene/protein concepts found in the extracted 

semantic triples.  

Our approach to addressing the granularity of concept representations involves leveraging 

semantic alignment and mapping techniques to map granular concepts into higher-level, 

condensed representations without compromising the coverage of the domain being 

investigated (i.e., cancers). We utilize and integrate condensed biomedical terminologies 

to represent genes, proteins, drugs, chemicals, and diseases concepts found in semantic 

triples extracted from the literature. Our aim is to merge (i) semantically equivalent 

concepts, such as Faslodex and Fulvestrant, into unified concept representations; and (ii) 

fine-grained concepts, such as orthologous genes/proteins, into higher-level 

representations that encompass granular concepts.  

3.1.2 Incomplete Extraction of Semantic Knowledge From the Literature: 
Incomplete knowledge extraction is a significant challenge in semantic-based LBD due to 

the limitations of domain-specific semantic parsers, which suffer from the problem of low 

recall due to their inability to recognize key semantic relations between concepts in the 

literature corpus (Henry & McInnes, 2017; Kilicoglu et al., 2020). This limitation is 

attributed to the complexity of resolving co-references, detecting relations between distant 

arguments, and recognizing implicit relations that extend beyond sentence boundaries and 

lack of explicit textual evidence (Drury et al., 2022). For LBD, such limitations have a 

https://www.zotero.org/google-docs/?4QFykP
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significant negative impact on the accuracy and completeness of the discovery process 

(Henry & McInnes, 2017), because if the semantic relation between biomedical concepts 

A and B is missing, then the implicit and indirect association between concepts A and C 

will not be discovered thus limiting knowledge discovery.  

To address the incomplete knowledge extraction challenge, our approach uses Knowledge 

Graph (KG) to represent and reason over the semantic knowledge extracted from the 

literature. KGs are semantics preserving representations of real-world knowledge, and in 

our work KGs are employed to extend the knowledge coverage for knowledge discovery 

in two steps:  

Step 1—Knowledge integration: KG can facilitate the integration of heterogeneous 

knowledge resources to augment the knowledge represented within a KG (Ji et al., 2022). 

To extend the knowledge coverage of the baseline literature-derived KG (which typically 

suffers from incomplete knowledge), we integrate manually curated biomedical knowledge 

to generate an integrated KG with an extended knowledge coverage. This integration step 

relies on Knowledge Bases (KBs) which are populated with semantics-based knowledge, 

in the form of subject-predicate-object triples, curated directly from biomedical literature 

by expert biocurators. This ensures that the knowledge constituting the integrated KG come 

from the same source (i.e., biomedical literature). Further, we  only consider the subset of 

curated knowledge within biomedical KBs which are missing from the baseline KG. 

Hence, the integrated KG augments the baseline KG with knowledge that was previously 

missing. We do point out that this does not fully address the problem of knowledge 

incompleteness, as the manual curation process to populate biomedical KBs is time-

intensive and does not guarantee that the latest scientific findings are incorporated into 

knowledge bases. 

Step 2—Knowledge Graph Completion (KGC): To further extend the knowledge 

coverage of the integrated KG, we employ KGC methods that augment the KG by 

predicting previously missing knowledge instances (Z. Chen et al., 2020). KGC can be 

categorized as the task of predicting missing concepts (entity prediction) or predicting 

missing relations (relation prediction). In entity prediction, the goal is to predict missing 

head (subject) or tail (object) entities in a given incomplete triple - i.e., (head, relation, ?) 

or (?, relation, tail). While the goal in relation prediction is to predict the missing 

https://www.zotero.org/google-docs/?eAalcM
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relationship in a given incomplete triple - i.e., (head, ?, tail). In essence, given any two 

elements in an incomplete triple, KGC aims to predict the missing third element.  

In our prior research, we have demonstrated that KGC methods can address the limitations 

of incomplete knowledge extraction from the literature by predicting missing semantic 

relations to facilitate semantics-based LBD for discovery tasks, such as drug repurposing 

(Daowd et al., 2022). Informed by our previous research, we characterize KGC as a task 

of  relation prediction in a closed-world KG (i.e., the integrated KG), by inferring missing 

relations between pre-existing concepts – i.e. given an incomplete triple (subject, ?, object) 

that is missing the predicate, the goal of KGC is to predict the most plausible predicate 

using the KG semantics and topography in order to generate a complete (subject, predicate, 

object) triple to further augment the integrated KG. 

It may be noted that predicting relations between all possible combinations of subject and 

object concept is computationally expensive and will result in a dense KG which can be 

difficult to navigate for knowledge discovery. Hence, it is necessary to have an informed 

relation prediction approach that pre-defines a subset of concepts that have some form of 

implicit and logical association between them, according to literature-based sources, but 

are not linked by a semantic relation in the biomedical KG. As such, we propose an 

informed relation prediction approach that leverages Medical Subject Heading (MeSH) 

descriptors as a literature-based knowledge resource to identify logical and implicit 

biomedical associations which are missing from the integrated KG. MeSH is the controlled 

biomedical vocabulary used by the National Library of Medicine to manually index articles 

in MEDLINE and PubMed (Baumann, 2016). The indexing process involves qualified 

human indexers to read full-text articles (scientific publications) to identify the main topics 

and concepts, and accordingly to assign relevant MeSH descriptors to an article to provide 

a complete concept-based representation of the article’s main scientific content. We operate 

under the assumption that when two MeSH descriptors are assigned to the same article, it 

implies the presence of an implicit association between the two descriptors. This 

assumption serves as the basis for informed relation prediction by generating a subset of 

incomplete (subject, ?, object) triples, whereby the subject and object are MeSH descriptors 

which are assigned to the same article (i.e., co-occurring concepts). 
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3.1.3 Ranking and Filtering of Discovery Outputs: 
Filtering and ranking discovery outputs is an important to prioritize meaningful and novel 

discoveries from the literature (Thilakaratne et al., 2019). Existing methods to quantify the 

quality of generated discoveries are prone to biases and limitations, such as 

overemphasizing frequently co-occurring knowledge instances or relying on expectation-

based statistics that are affected by the number of null co-occurrences (Henry & McInnes, 

2017; Thilakaratne et al., 2019). Such approaches tend to miss discovery paths 

characterized by rarely co-occurring knowledge instances, although such less frequent/co-

occurring paths can lead to novel and interesting discoveries. According to the principles 

of information theory, more knowledge can be gained from learning about rare and 

unexpected occurrences than common ones (C. Chen & Song, 2017). This notion can be 

directly applied to LBD, as uncommon and infrequently co-occurring knowledge have the 

potential to reveal novel and interesting connections between disparate knowledge 

instances (Sebastian et al., 2017). Thus, we argue that it is important to consider discovery 

paths comprising rare knowledge instances (i.e., subject-predicate-object triples) in the 

ranking process.  

Building on well-established metrics in LBD and the principles of information theory, we 

propose a knowledge filtering and ranking approach to account for discovery paths 

composed of unique and rarely occurring knowledge instances. In line with ABC-based 

discovery models, we investigate information theory-centric measures with established 

LBD metrics, such as linking term counts and concept specificity, to quantify the 

information content in ABC discovery paths to prioritize novel and meaningful ABC 

discovery paths, which can be applied to open- and closed-based discovery paradigms. Our 

approach utilizes the following metrics in a multi-step filtering and ranking process: 

Concept specificity: refers to the degree to which a standardized concept precisely 

describes a biomedical entity based on its position within a hierarchical vocabulary, and is 

determined by its distance from the root concept (Gopalakrishnan et al., 2018). Intuitively, 

a concept is more specific if it is further away from the root, and less specific if it is closer 

to the root. We apply this metric to assign specificity scores to each concept constituting a 

given ABC discovery path. Subsequently, we define a specificity score threshold to 
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eliminate discovery paths consisting of generic concepts while retaining paths consisting 

of specific biomedical concepts.  

Linking Term Count (LTC): refers to the number of unique intermediate (B) concepts 

that link the source (A) and target (C) concepts in a ABC discovery path (Henry & McInnes, 

2017; Yetisgen-Yildiz & Pratt, 2009). LTC is a well-established co-occurrence frequency-

based metric in LBD to quantify indirect associations between the source (A) and target 

(C) concepts, such that the strength of an indirect association increases as the number of 

intermediate linking terms increases. Previous research has shown that LTC is a simple yet 

effective metric in filtering and ranking LBD output, and has outperformed metrics such 

as minimum weight association, linking set association, and cosine distance (Henry & 

McInnes, 2019). In our work, we utilize LTC as a filtering mechanism to eliminate weak 

indirect associations between the source and target concepts.  

Triple count: refers to the occurrence of a triple in the literature. Although commonly used 

in LBD as a ranking mechanism (Thilakaratne et al., 2019), in this framework, triple count 

serves as a filtering mechanism to eliminate noisy triples that occur less frequently than a 

predefined threshold. The underlying idea is that by removing spurious and noisy triples, 

the remaining ones are more likely to be representative of literature-based knowledge.  

Information Content (IC): in information theory, IC refers to the amount of information 

gained from learning about or observing an event (C. Chen & Song, 2017). As shown in 

Figure 3.1, IC is low as the probability of encountering an event increases (i.e., common 

event), and high as the probability decreases (i.e., novel or rare event). This is attributed to 

the fact that we are less likely to encounter a rare event, which may result in new knowledge 

that challenges our cognitive and belief structures. This notion is commonly applied to 

quantify interestingness or degree of surprisal associated with an event (C. Chen & Song, 

2017). Similarly, IC can be utilized in LBD to quantify how much knowledge can be gained 

from encountering a discovery path based on co-occurrence information derived from the 

literature. In this context, IC is defined as the negative log of the probability of observing 

a discovery path consisting of A-B and B-C knowledge instances: 

𝐼𝐶(𝐴𝐵𝐶)  = −𝑙𝑜𝑔2𝑝(𝐴𝐵𝐶) 
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Figure 3.1: Relationship between probability and information content 

In our work, we utilize IC as the primary metric to rank ABC discovery paths generated 

from open- and closed-based LBD paradigms. We posit that this ranking approach can help 

to prioritize discovery paths that may be missed by traditional filtering and ranking 

methods which are typically biased towards statistically significant or frequently occurring 

A-B and B-C associations.  

3.2 Augmented Knowledge Graphs for LBD (AKG-LBD) 
Framework: 

The previous section outlined the challenges and limitations of traditional semantic-based 

LBD frameworks and proposed novel solutions to address those challenges. In this section, 

we describe how the proposed solutions are employed to extend traditional LBD 

frameworks by incorporating components targeting semantic consolidation, knowledge 

completion and integration, and ranking the generated ABC discovery paths.  

Our research has led to the development of the Augmented Knowledge Graphs for LBD 

(AKG-LBD) framework as a knowledge graph (KG) centric approach that aims to 

progressively generate augmented and more complete KGs to provide semantics-driven 

LBD. AKG-LBD builds upon traditional LBD frameworks consisting of the input literature 

curation, knowledge extraction, knowledge representation, and discovery components, and 

additionally incorporates two novel components targeting (i) concept-based semantic 

consolidation; and (ii) knowledge integration and completion.  
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Figure 3.2: Schematic of the AKG-LBD Framework. Components 3 and 5 are extensions to traditional semantic-based 

LBD 

In addition to introducing new components, AKG-LBD integrates novel methods to filter 

and rank graph-based knowledge discovery paths by adapting information theory-centric 

metrics. A schematic representation of the AKG-LBD framework is illustrated in Figure 

3.2. The components comprising AKG-LBD are described in the following sub-section:  

1. Input (literature curation) component 

AKG-LBD’s input component is purposed to query biomedical literature databases to 

identify a corpus of articles relevant to the specific biomedical domain being queried for 

knowledge discovery. Structured search queries are defined by users using a combination 

of title and abstract keywords derived from biomedical terminologies (Thilakaratne et al., 

2020). Specifically, users are required to input domain-specific biomedical terms and/or 

phrases which are mapped to their corresponding concepts using biomedical terminologies, 

such as UMLS or MeSH. Additionally, users can define a date range to specifically search 

for articles published between specific dates. In response to the query, each identified 

article is represented by its title, abstract, publication date, and a unique article identifier. 

The output of the literature curation component is a structured corpus of articles that are 

used by the subsequent knowledge extraction component to extract semantics-based 

knowledge for LBD.  

2. Knowledge Extraction Component 



 58 

The knowledge extraction component leverages SemRep, as a biomedical semantic parser, 

and PubTator, as a biomedical text mining tool, to extract semantic-based knowledge in 

the form of subject-predicate-object triples from the literature-based corpus. For example, 

given the following sentence in (Day et al., 2020): “Tamoxifen (TAM) is a hydrophobic 

anticancer agent and a selective estrogen modulator (SERM), approved by the FDA for 

hormone therapy of BC.”, the knowledge extraction component would generate the 

semantic triples:  

• C0039286: Tamoxifen (Pharmacologic Substance) – ISA – C0732611: Selective 

Oestrogen Receptor Modulator (Pharmacologic Substance) 

• C0039286: Tamoxifen (Pharmacologic Substance) – TREATS – C0006142: 

Breast Cancer (Neoplastic Process) 

The subject and object entities are standardized UMLS concepts and are represented in 

the form of Concept Identifier: Concept Name (Semantic Type). The Concept Identifier is 

a unique UMLS identifier, the Concept Name is the concept’s preferred ontological 

name, and Semantic Type is a standardized classification of the concept’s type based on 

the UMLS Semantic Network. The predicate denotes a semantic relationship between the 

subject and object based on verbal constructs expressed in the sentence.   

The extracted semantic triples undergo a filtering process based on the concept semantic 

type and predicate (i.e., hierarchical, causal, therapeutic), whereby only relevant semantic 

triples are retained for the downstream knowledge discovery task. To maintain the 

provenance of the extracted knowledge, the semantic triples are mapped back to the 

sentences in the article from which they were identified—the triples are tagged with the 

unique identifier of their source article. The output of this component consists of semantic-

based knowledge (i.e., subject-predicate-object triples), which are subsequently used as 

input by the next component to consolidate semantically similar subject and object 

concepts into unified representations.  

3. Semantic Consolidation Component: 

The semantic consolidation component addresses the challenge of concept granularity and 

is responsible for consolidating semantically equivalent and fine-grained concepts (i.e., 

subjects and objects) into unified concept representations. Our rationale is that the presence 

of granular concepts in semantic triples results in distinct knowledge instances that convey 
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the same underlying knowledge, thus unnecessarily increasing the discovery search space 

for LBD. Hence, to resolve this issue, this component leverages semantic alignment and 

mapping techniques to map UMLS concepts (found in the semantic triples) to 

corresponding concepts in condensed biomedical terminologies that encompass fine-

grained and semantically equivalent concepts, whilst ensuring that the scope of the domain 

knowledge remains intact.    

4. Knowledge Representation Component 

Knowledge Graphs (KGs) provide semantically-rich representations of semantics- and 

literature-based knowledge. In our prior research we explored the use of KGs to represent 

semantics-based causal associations for chronic diseases and cancers from the literature to 

facilitate knowledge discovery (Daowd et al., 2021b, 2021a). In this work, we build on our 

previous research to construct large-scale literature-based KGs using the consolidated 

subject-predicate-object triples. The subject and object concepts are represented as nodes, 

and predicates are represented as labelled directed edges denoting the semantic relationship 

between the nodes. Nodes are associated with attributes denoting a concept’s name, unique 

terminological identifier, semantic type, and semantic group. Similarly, edges are 

associated with attributes denoting the predicate type and the unique article identifier from 

which the relationship was extracted. The output of this component is the baseline 

literature-based Knowledge Graph (KG), which represents the available (incomplete) 

biomedical knowledge. It is utilized by the next component to augment the knowledge 

contained within the KG.  

5. Knowledge Integration and Completion Component 

The knowledge integration and completion component is a novel component in the AKG-

LBD framework responsible for extending the biomedical knowledge coverage of the 

baseline literature-based KG. This component implements two complementary tasks: (i) 

the integration of biomedical knowledge from curated Knowledge Bases (KBs) to the 

baseline KG to supplement knowledge that was initially missing to yield an a more 

complete integrated literature-based KG. Knowledge integration is restricted to KBs 

curated directly from biomedical literature, thereby ensuring a unified source of knowledge 

to supplement the baseline KG; and (ii) KGC to predict semantic relations in incomplete 

triples (s, ?, o). KGC is implemented as novel graph-based representation learning methods 
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to encode KG nodes and edges into low-dimensional vectors, which in turn can be used for 

relation prediction. The outcome of this task yields an augmented literature-based KG 

addressing the limitations of semantic parsers with respect to incomplete knowledge 

extraction. The augmented KG is utilized for knowledge discovery, where graph traversal 

techniques and novel ranking metrics can be applied to uncover hidden and novel 

associations between disparate knowledge instances.  

6. Knowledge Discovery and Ranking Component: 

The knowledge discovery and ranking component applies graph traversal techniques and 

novel discovery path ranking metrics to discover hidden and novel associations between 

disparate knowledge instances within the augmented KG. For knowledge discovery, open 

and closed ABC-based discovery models are applied to the augmented KG—the underlying 

assumption is that the source (A) and target (C) concepts do not co-occur in the literature 

and, therefore, are not linked by a semantic relation (i.e., predicate) in the augmented KG. 

The graph traversal method implemented aims to infer indirect associations between the 

source and target concepts through an intermediate entity (B) which provides significant 

information gain by its association with the source and target entities. The knowledge 

discovery task tends to generate a large number of potential discoveries which are filtered 

based on interestingness and novelty using principles of information theory that prioritizing 

A-B and B-C associations that yield the greatest amount of information content. The top-

ranking ABC discovery paths are aggregated as a sub-graph and serve as the discovered 

knowledge by AKG-LBD. The discovered knowledge’s sub-graph can be interrogated, 

explored and visualized using an interactive (property) graph visualization interface. 

3.3 Data and Material: 
The purpose of this section is to describe the relevant datasets and material used to extract 

knowledge from the literature and to subsequently generate literature-based KG for LBD.  

3.3.1 Literature Dataset: 
The main source of literature used in this research is extracted from the MEDLINE 

repository of biomedical literature. The MEDLINE repository is maintained by the 

National Library of Medicine (NLM) compiling scientific articles from over 5,200 
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specialized journals and publications covering domains of clinical medicine, molecular 

biology, oncology, biochemistry, biomedical sciences, and environmental health (Lu et al., 

2015). The MEDLINE database provides the title, abstract, and publication dates for more 

than 25 million biomedical articles. Additionally, one of the distinctive characteristics of 

MEDLINE is that articles are indexed with NLM’s Medical Subject Heading (MeSH) 

descriptors which can facilitate the extraction of specific fragments of the literature related 

to a particular discovery task, such as drug repurposing or molecular oncology.  

In LBD research, the title and abstract sections of scientific articles are the most commonly 

used sections as input for knowledge extraction - these sections provide a faithful summary 

of an article’s content. Other common input types include MeSH descriptors, however, 

recent research has demonstrated that titles and abstracts provide the most optimal input 

for knowledge extraction in LBD compared to other input types as measured by their 

information richness (Thilakaratne et al., 2020). Full-text articles are rarely used as input 

due to the substantial computational resources required for extracting semantic-based 

knowledge from them (Thilakaratne et al., 2019). Moreover, metadata, such as article 

publication dates and unique identifiers, are incorporated to ensure the traceability and 

provenance of the retrieved articles.  

Based on the above findings, we consider the following data in the MEDLINE database 

for this research: title, abstract, article publication date, unique article identifier (PMID), 

and MeSH descriptors. We utilize article titles and abstracts to generate the baseline 

biomedical corpora as input for knowledge extraction. Publication dates and PMIDs are 

used to keep track of the retrieved articles and to generate time-sliced views of biomedical 

literature. Lastly, we utilize MeSH descriptors as an additional knowledge resource for 

Knowledge Graph Completion.  

3.3.2 Tools To Extract Literature-Based Knowledge:  
Literature-based knowledge is extracted using domain-specific semantic parsers and text 

mining tools. In the following sections, we provide an overview of the tools used to extract 

semantic knowledge from the literature in the form of (subject, predicate, object) triples.  

https://www.zotero.org/google-docs/?Ipyv5Y
https://www.zotero.org/google-docs/?Ipyv5Y
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3.3.2.1 SemRep:  
SemRep is a biomedical-specific semantic parser developed by the National Library of 

Medicine (NLM) to extract semantic-based knowledge from biomedical corpora (Kilicoglu 

et al., 2020). SemRep uses rule-based Natural Language Processing (NLP) methods and 

combines syntactic and semantic techniques which leverage structured biomedical 

knowledge in the Unified Modeling Language System (UMLS). Using sentences as input, 

SemRep identifies and extracts semantic relations in the form of (subject, predicate, object) 

triples. The subject and object entities extracted by SemRep are primarily UMLS concepts 

represented by a Concept Unique Identifier (CUI), concept name, and concept Semantic 

Type (ST). The predicate is a relation type derived from the UMLS Semantic Network. A 

wide range of semantic relation types are extracted by SemRep relating to clinical medicine 

(e.g., treats, diagnoses), substance interactions (e.g., interacts with, inhibits, stimulates), 

disease etiology (causes, predisposes), pharmacogenomics (e.g., affects, disrupts), in 

addition to hierarchical, spatial, and temporal relations (e.g., is a, precedes, location of).  

SemRep is reported to achieve high precision rates for the extraction of gene-disease 

relations (76%), pharmacogenomic relations (73%), gene-function relations (65%), and 

substance interactions (59%) (Kilicoglu et al., 2020). Overall, the performance of SemRep 

as a semantic parser for biomedical text yields 69% precision rates. However, SemRep 

suffers from low recall rates (42%) due to limitations in extracting implicit relations across 

sentence boundaries (Kilicoglu et al., 2020). Another limitation is the lack of entity 

disambiguation component for genes/proteins, as terms denoting genes/proteins are 

mapped to standardized concepts through exact string matching. This approach can be 

problematic for LBD, as genes/proteins in biomedical literature are commonly referenced 

by short-form abbreviated symbols which can be shared by many different genes. For 

example, TTF1 is the short-form symbol (i.e., alias) for thyroid transcription factor 1 gene 

and is also the symbol for transcription termination factor 1 gene. Given the following 

sentence “TTF1 may represent a therapeutic target for the treatment, prevention, and 

control of obesity” (Park et al., 2022), SemRep maps TTF1 to two distinct gene concepts 

in UMLS - i.e., TTF1 (C1421218 | C1384616), thus generating ambiguous semantic triples 

with several possible UMLS concepts for the subject or object. 

https://www.zotero.org/google-docs/?oEA1Vv
https://www.zotero.org/google-docs/?oEA1Vv
https://www.zotero.org/google-docs/?TZZsaC
https://www.zotero.org/google-docs/?oE3nZv
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Despite these limitations, SemRep remains widely used in LBD studies to extract semantic-

based knowledge from biomedical literature, and has also been applied to clinical notes 

and gray literature (Kilicoglu et al., 2020). In this study, we utilize SemRep as a semantic 

parser to extract (subject, predicate, object) triples from biomedical literature to generate 

the baseline KG. We aim to address limitations of ambiguous gene mappings by combining 

the output of SemRep with advanced text mining tools for entity disambiguation.   

3.3.2.2 PubTator Central:  
PubTator Central (PTC) is a biomedical text mining system leveraging advanced methods 

for named entity recognition and entity disambiguation to generate normalized annotations 

for gene/protein, disease, and chemical concepts in biomedical corpora (Wei et al., 2019). 

PTC incorporates an entity disambiguation module to accurately identify and disambiguate 

biomedical terms in text. Entity disambiguation is an important aspect of biomedical text 

mining responsible for assigning accurate normalized concepts to ambiguous terms. PTC 

addresses this challenge by leveraging convolutional neural network models capable of 

identifying and annotating ambiguous terms with correct biomedical concepts by 

considering the surrounding semantic and syntactic contexts. The accuracy of PTC’s entity 

disambiguation module is reported to out-perform traditional rule-based methods; PTC 

yields 85% accuracy compared to 55% in rule-based systems. The disambiguation module 

is available as a stand-alone, open-source download 

(https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/download/BioConceptDi

sambiguation.zip). We utilize PTC’s entity disambiguation module in this research to 

overcome limitations of SemRep in assigning gene subjects or objects multiple UMLS 

concepts.  

3.3.3 Curated Knowledge Bases:  
There is a wealth of information in biomedical knowledge bases (KBs) that can be 

harnessed to supplement knowledge extracted from the literature. Biomedical KBs, such 

as the Comparative Toxicogenomics Database (CTD) (Davis et al., 2019) and Gene 

Ontology (GO) (The Gene Ontology Consortium, 2019) capture biomedical knowledge 

describing associations between genes-diseases, chemicals-diseases, and genes-molecular 

functions. These associations are manually curated by professional curators who are tasked 

https://www.zotero.org/google-docs/?afO8ML
https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/download/BioConceptDisambiguation.zip
https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/download/BioConceptDisambiguation.zip
https://www.zotero.org/google-docs/?6hUvm9
https://www.zotero.org/google-docs/?4JHVNk
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with reading scientific literature to identify associations between biomedical concepts and 

represent them using controlled terminologies such as MeSH and NCBI Gene Entrez. 

Additionally, the manual curation process involves annotating relations between concepts 

to semantically describe the nature of associations. For example in CTD, associations 

between chemicals and diseases are annotated as “marker/mechanism (M)” to denote 

causal correlations (e.g., increased exposure to chemical X correlates with disease Y) or 

“therapeutic (T)” to denote potential therapeutic correlations (e.g., chemical X is used to 

treat disease Y). Similarly, GO associations between genes and molecular functions are 

annotated as “enables” to indicate a gene’s role in a particular molecular function. Hence, 

knowledge contained within such KBs can be readily represented as (subject, predicate, 

object) triples and integrated with biomedical KGs. In our work, we leverage structured 

knowledge in CTD and GO to extract curated biomedical associations involving chemicals-

diseases, genes-diseases, genes-genes, and genes-molecular functions.  

3.4 AKG-LBD Evaluation Framework: 
The success of LBD hinges on its capability to generate impactful and novel knowledge 

discoveries (Henry & McInnes, 2017). However, determining what constitutes a discovery 

in the biomedical domain is a challenging task since the ‘discovered’ knowledge has not 

yet been published in existing scientific literature. Therefore, the efficacy of LBD systems 

has to be evaluated in a formal (retrospective) setting, by replicating discoveries published 

in peer-reviewed journals or clinical trials using a technique known as time-slicing (Henry 

& McInnes, 2017; Thilakaratne et al., 2019). In this setting, a simulated discovery 

environment is created by masking literature published at a predefined cut-off-date 

corresponding to the date of the target discovery publication. Literature published prior to 

the cut-off-date is used as input for LBD, while literature published after the cut-off-date 

is used to validate whether the targeted discovery can be replicated by the LBD system.  

To assess the performance of AKG-LBD, we apply a discovery replication-based 

evaluation using time-slicing techniques to assess whether the discovered knowledge (i.e. 

output of the LBD system) correspond to prospective real-world biomedical knowledge 

published in peer-reviewed journals. Our evaluations will consider the following aspects: 

(i) the impact of knowledge integration and completion components on LBD output; and 

https://www.zotero.org/google-docs/?VWysI9
https://www.zotero.org/google-docs/?grFtfj
https://www.zotero.org/google-docs/?grFtfj
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(ii) the performance of ranking metrics on discovery replication tasks. Further, we plan to 

compare the output of AKG-LBD to the following formalized LBD systems: Arrowsmith 

(Swanson & Smalheiser, 1997), BITOLA (Hristovski et al., 2005), MELODI-PRESTO 

(Elsworth & Gaunt, 2021), and LION-LBD (Pyysalo et al., 2019). The following sections 

outline the discovery replication evaluation settings using cancer and drug test cases.  

3.4.1 Targeted Cancer Discovery Test Cases: 
Five real-world cancer discoveries are adapted as test cases to evaluate AKG-LBD in 

discovering novel biomedical knowledge. These test cases were curated from high quality 

peer-reviewed articles by cancer biologists as described in (Pyysalo et al., 2019). 

Specifically, biomedical articles covering cancer biology published between 2006 and 

2017 were surveyed to identify novel cancer-related discoveries that can be described as a 

causal chain of three concepts, in conformity with the ABC discovery model. Discovery 

candidates identified in the initial survey were further filtered according to the following 

conditions: A-B and B-C concepts must co-occur in at least 100 articles, while A-C 

concepts do not co-occur in any articles. These prerequisites ensure that a direct association 

between A and C concepts have not been discovered previously, thus, signifying the 

novelty of candidate discoveries. This process resulted in five cancer discovery paths 

consisting of a source concept (A), an intermediate concept (B), and a target concept (C) 

as outlined in Table 3.1. These curated discoveries have been previously used to evaluate 

co-occurrence-based LBD systems, however, to our knowledge they have not been 

evaluated using semantic-based LBD systems.  

Evaluation of the cancer test cases will require applying time-slice techniques using the 

date of publication outlined in Table 3.1 as the cut-off-date to create the input literature 

corpus for each test case. For comparison purposes, time-sliced literature sets are utilized 

for knowledge discovery by applying our AKG-LBD framework and a traditional 

semantic-based LBD framework (i.e., without knowledge integration and completion 

components). The rationale is to assess whether our knowledge integration and completion 

methods have any significant impact on LBD outputs in terms of replicating previously 

published discoveries. We report the number of replicated test case discoveries as 

https://www.zotero.org/google-docs/?ksuQXP
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evaluation metrics, in addition to their Relative Ranks (RR). RR measures the rank of the 

valid discovery path relative to the rank of the top scoring path.   

𝑅𝑅 =  
𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑆𝑐𝑜𝑟𝑒𝑣𝑎𝑙𝑖𝑑

𝑅𝑎𝑛𝑘 𝑆𝑐𝑜𝑟𝑒𝑀𝑎𝑥
 

Where, 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑆𝑐𝑜𝑟𝑒𝑣𝑎𝑙𝑖𝑑 is the ranking score of the valid discovery path, 

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑆𝑐𝑜𝑟𝑒𝑀𝑎𝑥 is the ranking score of the top ranked discovery path. 
Table 3.1: Cancer discovery test cases 

Concept A Concept B Concept C Date of Publication  

Nuclear factor erythroid 
2-related factor 2 
(NRF2) 

Reactive oxygen species Pancreatic cancer 2011  

Interleukin-17A (IL-17) Mitogen-activated 
protein kinase 14 (p38a) 

Dual specificity protein 
phosphatase 1 (MKP-1) 

2015  

Neurogenic locus notch 
homolog protein 1 
(NOTCH1)         

Cellular Senescence CCAAT/enhancer-
binding protein beta 
(C/EBPb) 

2016  

Nuclear factor NF-
kappa-B p105 subunit 
(NFKB) 

Apoptosis regulator Bcl-
2 (BCL2) 

Adenoma 2016  

Stromal cell-derived 
factor 1 (CXCL12) 

Cellular Senescence Thyroid cancer 2017 

3.4.2 Drug Repurposing Case Study: 
In this evaluation setting we assess the capability of AKG-LBD in repurposing existing 

drugs for new therapeutic indications targeting cancers. Time-slicing is used to divide 

literature covering cancers into two sets: a pre-cut-off set representing literature published 

before a specified cut-off-date and a post-cut-off set representing literature published after 

the cut-off-date. The pre-cut-off literature is used as input for LBD, while the post-cut-off 

literature is used to create a silver standard dataset to validate output discoveries. As such, 

this evaluation setting does not consider replicating targeted discoveries as is the case in 
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the cancer test cases, rather the objective is to uncover all of the literature-based knowledge 

reported in the post-cut-off silver standard dataset.  

The silver standard is created by identifying a subset of knowledge (i.e., semantic triples) 

present in the post-cut-off literature but absent from the pre-cut-off literature set. We 

selected 2015 as the cut off date to split the literature dataset into a pre-cutoff discovery set 

and a post-cutoff validation set (i.e., silver standard). Subsequently, we use the validation 

set to identify a subset of semantic triples consisting of a chemical substance as the subject 

entity, a neoplastic disease as the object entity, and TREATS as the predicate - i.e., Chemical 

Substance-TREATS-Cancer. Semantic triples which occur in less than 3 articles are 

eliminated to ensure that the silver standard consists of relevant and well-researched 

knowledge. Further, to avoid overlap, we make sure that no semantic triples in the 

validation set also exist in the discovery set. Further, we filter the subject and object entities 

using the concept specificity as a metric, which measures the distance from the root 

concept, to ensure that the knowledge is specific. The final silver standard dataset consisted 

of 377 Chemical-TREATS-Cancer triples and 187 candidate drugs for repurposing. 

The discovery task is initiated by pre-defining a source concept (i.e., Chemical) from the 

silver standard dataset, determine the semantic type of the intermediate (i.e., Genes) and 

target concepts (i.e., Cancer), and define the semantic relationships between the source, 

intermediate, and target concepts. Specifically, we consider two patterns of semantic 

relationships (i.e., predicates):  

● Pattern 1: Drug - [INHIBITS, AFFECTS, DISRUPTS] - Gene - [CAUSES, 

PREDISPOSES, ASSOCIATED_WITH] - Cancer 

● Pattern 2: Drug - [INTERACTS_WITH, STIMULATES] - Gene - [PREVENTS, 

DISRUPTS] - Cancer  

The first pattern considers a drug that has an inhibitory effect on a gene, and the gene is 

involved in causal relationship with the target cancer. The second pattern considers a drug 

that has a stimulatory effect on a gene, which in turn may prevent or disrupt the onset of a 

target cancer. Finally, a candidate discovery path is considered a valid path if these 

conditions are satisfied: 

1. Drug-TREATS-Cancer relationship is present in the silver standard (i.e., post-cut-

off literature) 
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2. The Drug and Gene have an established interaction in CTD 

3. The Gene and Cancer have an established association in CTD 

We report the following metrics to evaluate the performance of the AKG-LBD framework 

for the drug repurposing task: 

Average Precision at K (AP@K): measures the number of valid (i.e., true positive) ABC 

paths at the top K ranks relative to total number of paths at K, averaged over the number of 

discovery queries (i.e., source concepts). Given a ranked list of ABC discovery paths 

relevant to a pre-defined source (A) concept, we calculate the precision within the top K 

ranks and then compute the average for all source concepts. Formally, AP@K is defined 

as: 

𝐴𝑃@𝐾 =  
1

𝑄
∑

𝑉𝑎𝑙𝑖𝑑(𝐴𝐵𝐶) | 𝑟𝑎𝑛𝑘(𝐴𝐵𝐶) ≤ 𝐾

𝑁(𝐴𝐵𝐶)| 𝑟𝑎𝑛𝑘(𝐴𝐵𝐶) ≤ 𝐾
 

 

Where, 𝑉𝑎𝑙𝑖𝑑(𝐴𝐵𝐶) | 𝑟𝑎𝑛𝑘(𝐴𝐵𝐶) ≤ 𝐾 is the total number of valid ABC discovery paths 

with ranks less than or equal to K, 𝑁(𝐴𝐵𝐶)| 𝑟𝑎𝑛𝑘(𝐴𝐵𝐶) ≤ 𝐾is the total number of ABC 

discovery paths with ranks less than or equal to K, and Q is the total number of source 

concepts (i.e., queries).  

Average Recall (of valid paths) at K (AR@K): measures the number of valid ABC paths 

at the top K ranks relative to the total number of valid paths, averaged over the number of 

discovery queries (i.e., source concepts). Given a ranked list of ABC discovery paths 

relevant to a pre-defined source (A) concept, we calculate the recall within the top K ranks 

and then compute the average recall for all source concepts. Formally, AR@K is defined 

as: 

𝐴𝑅@𝐾 =  
1

𝑄
∑

𝑉𝑎𝑙𝑖𝑑(𝐴𝐵𝐶) | 𝑟𝑎𝑛𝑘(𝐴𝐵𝐶) ≤ 𝐾

𝑁𝑣𝑎𝑙𝑖𝑑
 

 

Where, 𝑉𝑎𝑙𝑖𝑑(𝐴𝐵𝐶) | 𝑟𝑎𝑛𝑘(𝐴𝐵𝐶) ≤ 𝐾 is the total number of valid ABC discovery paths 

with ranks less than or equal to K, 𝑁𝑣𝑎𝑙𝑖𝑑 is the total number of valid ABC discovery paths, 

and Q is the total number of source concepts (i.e., queries) 

Mean Average Precision (mAP): measures the average precision at each valid path for 

multiple discovery queries, thus provides a single measure of the framework’s performance 
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across all queries. Given a ranked list of ABC discovery paths relevant to a pre-defined 

source (A) concept, we calculate the precision at each valid path (i.e., true positive), and 

take the average of these values to calculate the average precision (AP). Then, mAP is the 

arithmetic mean of AP over the total number of discovery queries. Formally, mAP is 

defined as: 

𝑚𝐴𝑃 =  
1

𝑄
∑ 𝐴𝑃(𝑞) 

Where, 𝐴𝑃(𝑞) is the average precision of valid paths for discovery query q, Q is the total 

number of discovery queries.  

Average Relative Rank (ARR): measures the rank of a valid ABC discovery path relative 

to the top ranked path for the discovery query, averaged over the total number of queries. 

Formally, ARR is defined as: 

𝐴𝑅𝑅 =
1

𝑄
∑

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑆𝑐𝑜𝑟𝑒𝑣𝑎𝑙𝑖𝑑

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑆𝑐𝑜𝑟𝑒𝑀𝑎𝑥
 

Where, 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑆𝑐𝑜𝑟𝑒𝑣𝑎𝑙𝑖𝑑 is the ranking score of the valid discovery path, 

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑆𝑐𝑜𝑟𝑒𝑀𝑎𝑥 is the maximum ranking score (i.e., score of top ranking path) of a 

discovery path, and Q is the total number of discovery queries.  

3.5 Summary: 
In this chapter we presented the underlying research approach for developing a semantic-

based LBD framework—i.e. AKG-LBD—to address the challenges faced by traditional 

LBD frameworks. AKG-LBD extends traditional frameworks by incorporating 

components targeting concept-based semantic consolidation, knowledge completion and 

integration, and ranking graph-based discovery paths. The input (literature curation) 

component queries biomedical literature databases to identify a corpus of articles relevant 

to a specific biomedical domain. The knowledge extraction component extracts semantic-

based knowledge from the retrieved corpus of articles. The semantic consolidation 

component consolidates semantically similar or closely associated concepts into 

unified/atomic concept representations. The knowledge representation component 

represents the consolidated subject-predicate-object triples as a Knowledge Graph (KG), 

which is incomplete biomedical knowledge. The knowledge integration and completion 



 70 

component extends the baseline literature-based KG with meaningful and heterogenous 

biomedical knowledge.  

Our approach to LBD is evaluated in two discovery replication settings using time-slicing 

techniques: (i) replicating recent discoveries in cancer biology published in peer-reviewed 

journals; and (ii) repurposing existing drugs for new cancer indications. The former 

approach assesses the effectiveness of AKG-LBD in confirmed previously established 

discoveries, while the latter approach evaluates the potential of AKG-LBD to forecast 

future knowledge occurrences in the literature.  

In the next chapter, we present the implementation of AKG-LBD as a framework for 

discovering knowledge related to cancer and detail the techniques and methods utilized in 

each phase. While the implementation of AKG-LBD centers on two targeted discovery 

task (i.e., cancer discovery and drug repurposing), we posit that the components of the 

framework can be employed for knowledge discovery across a wide range of biomedical 

domains.  
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Chapter 4 Methods 
This chapter describes the implementation of the AKG-LBD framework for the discovery 

of new knowledge in the field of oncology. Explicitly, this chapter outlines the methods 

employed to implement all components constituting AKG-LBD described in the previous 

chapter, from the initial curation of the input literature corpus to the filtering and ranking 

of the LBD output (i.e., discoveries). Further, we detail the methods and techniques used 

to implement the novel components of semantic consolidation, knowledge integration, and 

Knowledge Graph Completion (KGC). While the methods presented here are specific to a 

specific biomedical domain (i.e., cancers), we posit that our proposed methods can be 

adapted to a wide range of discovery tasks across the biomedical domain.  

This chapter is structured into the following sections. Section 4.1 describes the input 

component, which involves the literature search strategy and the resulting corpus of 

literature used as the basis for knowledge discovery. Section 4.2 outlines the knowledge 

extraction component utilizing biomedical-specific semantic parsers and text mining tools 

to extract semantic-based knowledge from the literature corpus. Section 4.3 presents the 

methods employed for the semantic consolidation of literature-based knowledge. Section 

4.4 describes the component tasked with representing semantic-based knowledge as a 

large-scale Knowledge Graph (KG). Section 4.5 presents the implementation of the 

knowledge integration and completion component, describing the methods and techniques 

used to augment the baseline literature-based KG with meaningful and accurate biomedical 

knowledge. Section 4.6 describes the knowledge discovery and ranking component, which 

is tasked with generating and prioritizing interesting implicit connections between 

disparate knowledge instances. Finally, section 4.7 concludes this chapter by summarizing 

the novel contributions presented and discussing the potential applications in the broader 

biomedical domain.   
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4.1 Input Corpus Curation For Literature-Based Knowledge 
Discovery: 

The objective of this component is to query the MEDLINE repository via PubMed, as the 

primary biomedical literature database, to extract a literature corpus that covers the topics 

related to the intended discovery task.  

PubMed can be queried using specific words/phrases mentioned in articles (i.e., title, 

abstract, or full-text) or using the controlled MeSH terminology, which is used for indexing 

each article in the database via a set of standardized biomedical concepts that describe the 

article’s content. Our approach to query PubMed uses concepts in the MeSH terminology, 

which also eliminates the need to address different spelling variations or synonyms when 

specifying a biomedical concept in a query. For instance, the standardized MeSH concept 

“Breast Neoplasms” encompasses various spelling variations and synonyms, such as 

“breast tumor”, “cancer of the breast”, “breast carcinoma”, “mammary cancer”, and 

“malignant neoplasm of the breast”. Using such controlled representation of concepts to 

query PubMed improves the efficiency and precision of the literature search. In contrast, 

using non-standardized words/phrases requires specifying all spelling variations and 

synonyms to ensure the retrieval of all relevant articles.  

Using MeSH concepts also provides the advantage of retrieving articles focusing on the 

desired topic, rather than mentioning it in passing (Baumann, 2016). Further, the MeSH 

terminology is organized in a hierarchical structure, so including a generalized (high-level) 

concept in a query will also include its sub-types (i.e., child concepts), which are more 

specific. Such comprehensive querying is not possible using words/phrases.  

Accordingly, we developed a structured query formulation method that leverages the 

MeSH terminology and its hierarchical structure to map user-defined terms to standard 

biomedical concepts, which are used to perform a literature search on PubMed. Figure 4.1 

outlines the schema for our query formulation method.  
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Figure 4.1: PubMed query formulation method 

Using a Command-Line Interface (CLI), users input a set of terms and specify date ranges 

for article publications to initiate the search query formulation. String matching techniques 

are used to map the input (user-defined) terms to standard MeSH concepts via 

corresponding concept names (i.e., MeSH entry terms). We utilize a fuzzy string matching 

algorithm implemented in the open-source fuzzywuzzy Python package 

(https://github.com/seatgeek/fuzzywuzzy) for comparing two strings using the Levenshtein 

distance (also referred to as edit distance). The algorithm calculates the minimum number 

https://github.com/seatgeek/fuzzywuzzy
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of edits required to change the input (user-defined) term to a corresponding MeSH concept 

name and, accordingly, assigns a matching score ranging from 0-100, with 100 indicating 

a perfect match. In the case of a perfect match, the matched MeSH concept name and 

associated synonyms are retained for the query as MeSH terms, and in the case of no match 

user-defined terms are utilized instead as a title or abstract keywords. Consequently, MeSH 

concept names, user-defined terms, and specified date ranges are used to formulate the 

PubMed search query based on the following template: 

● ((“MeSH term 1”[MeSH Terms]) OR (“Keyword 1”[Title/Abstract]) OR ...) AND 

("year published (from)"[Date - Publication] : "year published (to)"[Date - 

Publication]) 

The template can include several MeSH terms and title/abstract keywords based on the 

input provided and the number of matched concept names. Moreover, the boolean “OR” 

operator is used to create a comprehensive query to retrieve as many relevant articles as 

possible. The resulting query is presented back to the user to make any essential 

modifications before performing the PubMed search task. The finalized query is then used 

to retrieve PubMed articles via Biopython’s Entrez module (Cock et al., 2009), which 

provides APIs to access and download PubMed articles in structured XML formats. For 

each article, we retain its title, abstract, and unique PubMed identifier (PMID). The 

retrieved articles undergo a filtering process to eliminate articles without titles or abstracts. 

The final set of articles—i.e. the literature corpus—are stored in plain text format for the 

subsequent knowledge extraction component.  

4.1.1 PubMed Query Formulation to Retrieve Cancer Literature: 
We employed the query formulation methods to retrieve from PubMed a corpus of 

literature covering cancer research. We restricted the PubMed search to articles published 

between 1975 and 2021. The query formulation was based on a set of 28 terms related to 

cancer and its associated hallmarks (i.e., hallmarks of cancer) (Knijnenburg et al., 2015). 

The full list of terms are as follows: 

● Cancer, neoplasm, tumor, carcinogenesis, tumorigenesis, cell proliferation, cell 

growth, cell cycle, cell division, apoptosis, autophagic cell death, autophagy, 

regulated cell death, cellular senescence, angiogenesis, cell differentiation, cell 
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adhesion, cell migration, taxis, DNA repair, inflammation, glycolysis, immunity, 

telomere, actin, cell movement, epithelial-mesenchymal transition, and 

endocytosis.  

The input list was converted to lowercase strings before passing it to the fuzzy string 

matching algorithm to identify corresponding MeSH terms and synonyms. All input terms 

were mapped to standard MeSH terms via the string matching task. However, in the query 

modification phase, we sought to include all input terms as title or abstract keywords, in 

addition to their corresponding matched MeSH terms and synonyms, to ensure a 

comprehensive and exhaustive search strategy. The query used to retrieve PubMed articles 

was finalized as follows: 

("Neoplasms"[MeSH] OR "cancer"[Title/Abstract] OR "neoplasm"[Title/Abstract] 

OR "carcinogenesis"[Title/Abstract] OR "Carcinogenesis"[MeSH] OR 

"tumorigenesis"[Title/Abstract] OR "tumor"[Title/Abstract] OR "cell 

proliferation"[Title/Abstract] OR "Cell Proliferation"[MeSH] OR "cell 

growth"[Title/Abstract] OR "Cell Cycle"[MeSH] OR "cell cycle"[Title/Abstract] 

OR "Cell Division"[MeSH] OR "cell division"[Title/Abstract] OR "signaling 

pathway"[Title/Abstract] OR "Apoptosis"[MeSH] OR "apoptosis"[Title/Abstract] 

OR "caspase"[Title/Abstract] OR "Autophagic Cell Death"[MeSH] OR "autophagic 

cell death"[Title/Abstract] OR "autophagy"[Title/Abstract] OR "Regulated Cell 

Death"[MeSH] OR "regulated cell death"[Title/Abstract] OR "programmed cell 

death"[Title/Abstract] OR "Cellular Senescence"[MeSH] OR "cellular 

senescence"[Title/Abstract] OR "telomere"[Title/Abstract] OR "Telomere"[MeSH] 

OR "angiogenesis"[Title/Abstract] OR "Cell Differentiation"[MeSH] OR "cell 

differentiation"[Title/Abstract] OR "Blood Circulation"[MeSH] OR "blood 

circulation"[Title/Abstract] OR "Cell Adhesion"[MeSH] OR "cell 

adhesion"[Title/Abstract] OR "Epithelial-Mesenchymal Transition"[MeSH] OR 

"Cell Movement"[MeSH] OR "cell migration"[Title/Abstract] OR "cell 

projection"[Title/Abstract] OR "actin"[Title/Abstract] OR "Taxis 

Response"[MeSH] OR "taxis"[Title/Abstract] OR "Cell Polarity"[MeSH] OR "cell 

polarity"[Title/Abstract] OR "DNA Repair"[MeSH] OR "DNA 

repair"[Title/Abstract] OR "Inflammation"[MeSH] OR 
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"inflammation"[Title/Abstract] OR "Glycolysis"[MeSH] OR 

"glycolysis"[Title/Abstract] OR "Immunity"[MeSH] OR "Endocytosis"[MeSH]) 

AND ("year published (from)"[1975] : "year published (to)"[2021]) 

The resulting modified query was used to retrieve cancer literature from PubMed via 

Biopython’s Entrez module (Cock et al., 2009). We retrieved 5,549,328 articles and after 

excluding articles without a full title or abstract, we were left with a literature corpus of 

5,531,702 articles that were stored as ASCII-formatted plain text containing the title, 

abstract, and PMID of each article.  

4.2 Knowledge Extraction from Biomedical Literature: 
The corpus of literature extracted by the previous component serves as the input to the 

semantic-based knowledge extraction component. The knowledge extraction component 

combines biomedical specific semantic parsing and text mining tools to extract knowledge 

in the form of subject-predicate-object triples from the literature. The knowledge 

extraction was executed in two phases: (i) semantic knowledge extraction (using 

biomedical-specific semantic parser); and (ii) disambiguation of biomedical concepts. The 

output of these phases was combined to generate the final semantic-based knowledge.  

4.2.1 Semantic-Based Knowledge Extraction: 
We investigated several biomedical-specific semantic parsers used for LBD, namely 

SemRep (Kilicoglu et al., 2020), PKDE4J (Song et al., 2015), BioMedLEE (L. Chen & 

Friedman, 2004), and BELMiner (Ravikumar et al., 2017). Among these tools, SemRep 

was the most suitable semantic parser for our purposes based on the following factors. 

Firstly, SemRep is widely adopted in LBD research which attests to its reliability and 

relevance within the field. Secondly, SemRep is a broad coverage semantic parsers due to 

its capability in identifying a wide range of biomedical concepts and semantic relations 

from the literature. Furthermore, SemRep is publicly accessible and maintained on a 

regular basis, which further enhances its practicality for LBD. In contrast, BELMiner is not 

publicly accessible and has limited adoption in LBD research. BioMedLEE is focused on 

biomolecular knowledge extraction which limits its applicability as a comprehensive tool 

for our purposes, as it fails to encompass a broader range of biomedical concepts and 
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relations, such as drug-disease associations. PKDE4J is a recently developed tool compared 

to SemRep and is capable of extracting a wide range of semantic relations, however, it was 

not accessible at the time of our investigation. Based on these factors, SemRep emerged as 

the most practical choice.  

Accordingly, we employed SemRep (batch mode) as a broad coverage biomedical 

semantic parser to extract semantic-based knowledge—i.e. subject-predicate-object 

semantic predications—from the literature corpus. The subject and object were noted as 

standardized ontological concepts with specific semantic types, while the predicate as a 

semantic relation type in an extended version of the UMLS Semantic Network. A detailed 

description of the full SemRep pipeline can be found in (Kilicoglu et al., 2020); however, 

for completeness, a summarized description of the pipeline is presented here.  

The first processing step in SemRep is the pre-linguistic analysis to split and tokenize 

sentences and detect biomedical acronyms/abbreviations using MetaMap. Next, lexical and 

syntactic analysis of tokens is performed to capture lemmas, part-of-speech tags, and multi-

word expressions. Subsequently, shallow parsing analysis is applied to identify simple 

noun phrases. The next step is referential analysis, which involves identifying and mapping 

biomedical terms in text to standardized UMLS concepts. To achieve this, MetaMap maps 

noun terms to UMLS concepts, including their unique concept identifiers (CUIs), preferred 

names, and semantic types. However, due to the limited coverage of gene/protein concepts 

in UMLS, ABGene is used to identify and map gene/protein terms in text to NCBI Gene 

identifiers. It should be noted that ABGene does not perform disambiguation on 

gene/protein terms, but instead uses exact string matching to map these terms to 

corresponding NCBI Gene concepts. The final step was relational analysis to generate three 

types of predicates: hypernymic (i.e., IS_A), comparative (e.g., HIGHER_THAN), and 

associative (e.g., CAUSES, ASSOCIATED_WITH) predications. Hypernymic and 

comparative predicates were generated through specialized techniques described in 

(Kilicoglu et al., 2020). Associative predicates were generated through uniform trigger 

detection and argument identification mechanisms. A set of indicator rules were applied 

to identify lexical elements (i.e., verbs, relational nouns, prepositions, and adjectives) that 

correspond to particular predicate types. SemRep relies on the SemRep relational ontology 

to specify associative predicate types that determine the underlying relation/association 
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between a pair of concepts and their respective semantic types. Overall, the ontology 

includes 25 associative predicates denoting therapeutic, substance interaction, etiological, 

and pharmacogenomic relations.  

The raw output of the SemRep knowledge extraction was the following elements: text, 

entity, and relation. The text element includes the sentence from which the triple was 

extracted from and the PubMed Identifier (PMID) of the article. The entity element 

describes attributes of the mapped subject or object concept, including the concept’s unique 

ontological identifier, ontological name, semantic type, and the corresponding term 

mention in text. We note that SemRep normalizes terms extracted by MetaMap to UMLS 

concepts, and gene/protein terms extracted by ABGene to NCBI Gene concepts. Moreover, 

SemRep assigns each concept a semantic type (e.g., disease, organic chemical, molecular 

function) based on the classification of biomedical concepts in the UMLS Semantic 

Network. Lastly, the relation element outlines the subject and object concepts (i.e., entities) 

constituting a semantic predication, in addition to the predicate which denotes the 

underlying association between concepts. An example of the unprocessed pipe-delimited 

output is provided in Appendix A.  

We utilized the relation element to create subject-predicate-object triples, and  retained the 

text and entity elements to maintain the semantic types of subjects and objects, preferred 

names, CUIs, originating sentences from which the triples were extracted, the subject and 

object terms in text, and the PMID of the source article. An example of the processed 

(tabular) output of SemRep is provided in Table 4.1.  

As a final processing step, semantic triples were filtered based on the predicate type and 

semantic types of subject and object concepts. Specifically, we retained 13 predicates 

which denote functional and associative relations and excluded comparative (e.g., 

LESS_THAN, HIGHER_THAN) and hypernymic (IS_A) relations, as these are deemed 

irrelevant for cancer related knowledge discovery. Table 4.2 presents the 13 retained 

predicates.  

We leveraged the UMLS Semantic Network to categorize the assigned semantic types into 

high-level semantic groups. For example, the semantic types of “Disease or Syndrome”, 

“Neoplastic Process”, and “Pathologic Function” were aggregated into a high-level 

semantic group called “Disorders”. In our work, we targeted the following semantic groups  
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which relate to cancer research: chemicals and drugs, genes and molecular sequences, 

disorders, and physiology. Table 4.3 presents the full list of semantic groups and 

corresponding semantic types utilized in this research.  
Table 4.1: UMLS Semantic Network predicates 

Predicate Description 

AFFECTS Produces a direct effect on. Implied here is the altering or influencing of an 
existing condition, state, situation, or entity 

ASSOCIATED_WITH Has a relationship with/to 

INTERACTS_WITH Substance interaction 

CAUSES Brings about a condition or an effect. Implied here is that an agent, such as 
for example, a pharmacologic substance or an organism, has brought about 
the effect 

STIMULATES Increases or facilitates the action or function of (substance interaction) 

INHIBITS Decreases, limits, or blocks the action or function of (substance interaction) 

TREATS Applies a remedy with the object of effecting a cure or managing a 
condition 

DISRUPTS Alters or influences an already existing condition, state, or situation. 
Produces a negative effect on 

AUGMENTS Expands or stimulates a process 

PREDISPOSES To be a risk to a disorder, pathology, or condition 

PRODUCES Brings forth, generates or creates 

PREVENTS Stops, hinders or eliminates an action or condition 

COMPLICATES Causes to become more severe or complex 

 

Table 4.2: Concept semantic groups and corresponding semantic types 

Semantic Group Semantic Type 

Chemicals & Drugs Antibiotic 

Biologically Active Substance 

Clinical Drug 

Element, Ion, or Isotope 

Enzyme 
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Hormone 

Hazardous or Poisonous Substance 

Immunologic Factor 

Inorganic Chemical 

Organic Chemical 

Pharmacologic Substance 

Receptor 

Vitamin 

Disorders Acquired Abnormality 

Anatomical Abnormality 

Cell or Molecular Dysfunction 

Congenital Abnormality 

Disease or Syndrome 

Finding 

Injury or Poisoning 

Neoplastic Process 

Pathologic Function 

Sign or Symptom 

Genes & Molecular Sequences Gene or Genome 

Molecular Sequence 

Nucleotide Sequence 

Physiology Cell Function 

Clinical Attribute 

Genetic Function 

Molecular Function 

Organism Attribute 

Organism Function 

Organ or Tissue Function 
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Physiologic Function 

4.2.2 Disambiguation of Gene and Protein Concepts: 
While SemRep is a well-regarded semantic parser with applications in LBD, clinical 

guideline development, question-answering systems, and clinical decision support, it has 

certain limitations in disambiguating gene and protein terms in literature text and mapping 

to NCBI Gene identifiers, thus resulting in a high rate of false-positive concept mappings 

(Kilicoglu et al., 2020). SemRep fails to resolve ambiguities in the short-form (abbreviated) 

name of genes/proteins found in the literature, as gene names are used non-uniquely and 

the same abbreviated name can refer to different genes. For instance, NAP1 is the 

abbreviated name of 5 genes: nucleosome assembly protein 1 like 1, NCK associated 

protein 1, napsin A aspartic peptidase, and acyl-CoA thioesterase 8.  

For semantic-based knowledge extraction, this limitation results in triples where the subject 

or object are ambiguous as they are represented by multiple gene/protein concepts (i.e., 

UMLS or NCBI Gene). Table 4.4 provides examples of semantic triples consisting of 

ambiguous subject or object entities which are mapped to multiple NCBI or UMLS concept 

identifiers. For instance, SemRep represents the gene term “NRF2” as two distinct gene 

concepts: 2551 (GABPA) and 4780 (NFE2L2), which have different biological functions. 

In such cases, determining the true concept becomes challenging without referring to the 

source article. The significance of this limitation becomes more apparent when extracting 

knowledge from cancer literature, as genes/proteins play crucial roles in the development 

of cancer. In high-stake discovery tasks, such as drug repurposing, it is imperative that the 

extracted semantic triples consist of unambiguous subject or object that are normalized to 

a single concept.  

To overcome this limitation, this phase of the knowledge extraction component 

investigates methods to autonomously disambiguate gene and protein concepts when 

analyzing literature texts. Our approach is to combine SemRep with a biomedical text 

mining tool—i.e. PubTator—to perform concept disambiguation, utilizing the syntax and 

semantics of the target gene/protein term and its neighbouring terms to achieve a context-

driven outcome. The intent is to resolve ambiguous gene and protein concepts found in 

semantic triples by disambiguating them to a single concept. To the best of our knowledge,  



83

Ta
bl

e 
4.

3:
 E

xa
m

pl
es

 o
f s

em
an

tic
 tr

ip
le

s c
on

si
st

in
g 

of
 a

m
bi

gu
ou

s g
en

e 
or

 p
ro

te
in

 c
on

ce
pt

s

PM
ID

Su
bj

ec
t I

D
Su

bj
ec

t N
am

e
Pr

ed
ic

at
e

O
bj

ec
t I

D
O

bj
ec

t N
am

e
Se

nt
en

ce

28
86

61
33

12
15

|6
56

6|
27

34
9|

28
98

5
CM

A
1|

SL
C1

6A
1|

M
C

A
T|

M
CT

S1
A

U
G

M
EN

TS
C1

15
99

78
os

te
oc

la
st 

di
ff

er
en

tia
tio

n
M

CT
1

ex
pr

es
sio

n 
is

 si
gn

ifi
ca

nt
ly

 
up

re
gu

la
te

d 
du

rin
g 

os
te

oc
la

st 
di

ff
er

en
tia

tio
n

29
48

39
50

37
37

|9
26

1
K

CN
A

2|
M

A
PK

A
PK

2
A

SS
O

CI
A

TE
D

_W
IT

H
C0

15
20

18
Es

op
ha

ge
al

 c
ar

ci
no

m
a

Ex
pr

es
sio

n 
of

 M
K2

an
d 

ET
V

1 
ar

e 
pr

og
no

sti
c 

fa
ct

or
s i

n 
pa

tie
nt

s, 
w

ith
 e

so
ph

ag
ea

l a
de

no
ca

rc
in

om
a

28
05

90
95

61
21

|7
40

5|
86

26
|1

09
70

RP
E6

5|
U

V
RA

G
|T

P6
3|

CK
A

P4
A

SS
O

CI
A

TE
D

_W
IT

H
C0

01
75

25
G

ia
nt

 C
el

l T
um

or
s

P6
3

ex
pr

es
sio

n 
in

 g
ia

nt
 c

el
l 

tu
m

or
s o

f t
he

 b
on

e 
se

em
s t

o 
be

 
as

so
ci

at
ed

 w
ith

 H
3F

3 
ge

ne
 

m
ut

at
io

ns
28

12
50

38
C0

00
38

18
A

rs
en

ic
ST

IM
U

LA
TE

S
25

51
|4

78
0

G
A

BP
A

|N
FE

2L
2

N
rf

2
is 

re
qu

ire
d 

fo
r b

as
al

 a
nd

 
ar

se
ni

c-
in

du
ce

d 
p6

2 
up

-
re

gu
la

tio
n

29
80

56
71

C0
29

76
74

|2
35

45
|2

7
23

9|
17

05
89

cy
cl

in
 

A
2|

A
TP

6V
0A

2|
G

PR
1

62
|G

PH
A

2

A
SS

O
CI

A
TE

D
_W

IT
H

C0
00

14
18

A
de

no
ca

rc
in

om
a

Si
gn

ifi
ca

nt
 c

or
re

la
tio

ns
 w

er
e 

de
te

ct
ed

 b
et

w
ee

n 
LI

N
C0

09
68

, 
m

iR
-9

-3
p 

an
d 

CC
N

A2
in

 lu
ng

 
ad

en
oc

ar
ci

no
m

a

29
76

15
22

C0
33

42
27

Tu
m

or
 c

el
ls,

 
m

al
ig

na
nt

IN
TE

RA
CT

S_
W

IT
H

C0
03

01
90

|5
05

4|
50

55
Pl

as
m

in
og

en
 A

ct
iv

at
or

 
In

hi
bi

to
r 

1|
SE

RP
IN

E1
|S

ER
PI

N
B2

Ex
tra

ce
llu

la
r v

es
ic

le
s (

EV
) s

he
d 

fr
om

 c
an

ce
r c

el
ls 

m
ay

 c
on

tri
bu

te
 

to
 th

e 
re

gu
la

tio
n 

of
 T

F 
an

d 
PA

I-
1

30
88

14
93

C0
25

92
75

|2
06

9|
20

9
9

BR
CA

1 
Pr

ot
ei

n|
ER

EG
|E

SR
1

A
SS

O
CI

A
TE

D
_W

IT
H

C0
00

61
42

M
al

ig
na

nt
 n

eo
pl

as
m

 
of

 b
re

as
t

Fa
nc

on
i a

ne
m

ia
 g

ro
up

 D
2 

pr
ot

ei
n 

(F
A

N
CD

2)
 a

nd
 b

re
as

t c
an

ce
r 

ty
pe

 1
 su

sc
ep

tib
ili

ty
 p

ro
te

in
 

(B
RC

A1
), 

w
ith

in
 th

e 
FA

/B
RC

A
 

pa
th

w
ay

, a
re

 in
vo

lv
ed

 in
 th

e 
re

gu
la

tio
n 

of
 D

N
A

 d
am

ag
e 

re
pa

ir,
 w

hi
ch

 is
 a

ss
oc

ia
te

d 
w

ith
 

br
ea

st 
ca

nc
er

 (B
C)

 p
ro

gr
es

sio
n



 84 

this is the first LBD framework that combines the output of these two established 

biomedical tools to ensure the accuracy and representativeness of the extracted knowledge. 

We investigated a number of concept recognition and annotation tools, and decided to use 

PubTator (Wei et al., 2019) to process the literature corpus to annotate disambiguate gene 

and protein concepts. PubTator employs a novel convolutional neural network based 

method to address the concept disambiguation task, which involves identifying the most 

plausible concept by analyzing the syntax and semantics of the target term and its 

neighboring terms.  

In this phase of knowledge extraction, a subset of the literature corpus—i.e. articles that 

include gene or protein terms in their titles or abstracts, and is identified based on the output 

of SemRep--was used as input to PubTator. Specifically, we searched for semantic triples 

where the subject or object is a gene/protein (based on the semantic group) and is 

represented by multiple concepts, which we consider as an ambiguous triple. These triples 

can be easily identified, as the subject/object concepts consist of multiple CUIs and/or 

NCBI Gene identifiers separated by the pipe character “|” - e.g., (C0030190|5054|5055). 

Next, we retrieve the titles and abstracts associated with ambiguous semantic triples and 

utilize them as input into PubTator for concept disambiguation. It should be noted that the 

output of this process does not consist of semantic triples. Instead, it provides 

disambiguated annotations of gene/protein terms in literature text and represents them as 

NCBI Gene concepts. Table 4.5 provides examples of the output of the concept 

disambiguation process, which presents precise representations of biomedical entities 

mentioned in sentences. For instance, mention of the NRF2 gene in the following sentence: 

“Nrf2 is required for basal and arsenic-induced p62 up-regulation” is disambiguated to 

NFE2L2 (NFE2 like bZIP transcription factor 2) and accordingly represented using the 

NCBI Gene identifier: 4780.  
Table 4.4: Output of concept disambiguation 

PMID Sentence Gene/Protein 
Term 

Gene/Protein 
Concept Name 

Gene/Protein 
Concept 
Identifier 

28866133 MCT1 expression is significantly 
upregulated during osteoclast 
differentiation 

MCT1 Solute carrier 
family 16 member 
1 (SLC16A1) 

6566 

29483950 Expression of MK2 and ETV1 
are prognostic factors in patients, 
with esophageal adenocarcinoma 

MK2 MAPK activated 
protein kinase 2 
(MAPKAPK2) 

9261 
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PMID Sentence Gene/Protein 
Term 

Gene/Protein 
Concept Name 

Gene/Protein 
Concept 
Identifier 

28059095 P63 expression in giant cell 
tumors of the bone seems to be 
associated with H3F3 gene 
mutations 

P63 Tumor protein p63 
(TP63) 

8626 

28125038 Nrf2 is required for basal and 
arsenic-induced p62 up-
regulation 

Nrf2 NFE2 like bZIP 
transcription factor 
2 (NFE2L2) 

4780 

29805671 Significant correlations were 
detected between LINC00968, 
miR-9-3p and CCNA2 in lung 
adenocarcinoma 

CCNA2 Cyclin A2 
(CCNA2) 

890 

29761522 Extracellular vesicles (EV) shed 
from cancer cells may contribute 
to the regulation of TF and PAI-1 

PAI-1 Serpin family E 
member 1 
(SERPINE1) 

5054 

30881493 Fanconi anemia group D2 protein 
(FANCD2) and breast cancer 
type 1 susceptibility protein 
(BRCA1), within the FA/BRCA 
pathway, are involved in the 
regulation of DNA damage 
repair, which is associated with 
breast cancer (BC) progression 

BRCA1 Breast cancer type 
1 susceptibility 
protein (BRCA1) 

672 

 
Table 4.6 provides a comparison of the ambiguous concepts extracted by SemRep with the 

disambiguated concepts extracted by PubTator. We note that PubTator utilizes 

convolutional neural network classifiers to disambiguate gene/protein terms to the most 

likely concept, achieving an accuracy of 85.2%. In contrast, SemRep uses simple string 

matching techniques to match gene/protein terms in text to one or more standardized 

concepts, which contributes to the ambiguous gene/protein concepts in the extracted 

semantic triples.  
Table 4. 2: Comparison of ambiguous and corresponding disambiguated concepts 

PMID Sentence Gene/Protein 
Term 

Ambiguous Concepts (SemRep) Disambiguated 
Concept 
(PubTator) 

28866133 MCT1 expression 
is significantly 
upregulated during 
osteoclast 
differentiation 

MCT1 CMA1|SLC16A1|MCAT|MCTS1 SLC16A1  

29483950 Expression of MK2 
and ETV1 are 
prognostic factors 
in patients, with 
esophageal 
adenocarcinoma 

MK2 KCNA2|MAPKAPK2 MAPKAPK2 
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PMID Sentence Gene/Protein 
Term 

Ambiguous Concepts (SemRep) Disambiguated 
Concept 
(PubTator) 

28059095 P63 expression in 
giant cell tumors of 
the bone seems to 
be associated with 
H3F3 gene 
mutations 

P63 RPE65|UVRAG|TP63|CKAP4 TP63 

28125038 Nrf2 is required for 
basal and arsenic-
induced p62 up-
regulation 

Nrf2 GABPA|NFE2L2 NFE2L2 

29805671 Significant 
correlations were 
detected between 
LINC00968, miR-
9-3p and CCNA2 in 
lung 
adenocarcinoma 

CCNA2 cyclin 
A2|ATP6V0A2|GPR162|GPHA2 

Cyclin A2 

29761522 Extracellular 
vesicles (EV) shed 
from cancer cells 
may contribute to 
the regulation of TF 
and PAI-1 

PAI-1 Plasminogen Activator Inhibitor 
1|SERPINE1|SERPINB2 

SERPINE1 

30881493 Fanconi anemia 
group D2 protein 
(FANCD2) and 
breast cancer type 1 
susceptibility 
protein (BRCA1), 
within the 
FA/BRCA 
pathway, are 
involved in the 
regulation of DNA 
damage repair, 
which is associated 
with breast cancer 
(BC) progression 

BRCA1 BRCA1 Protein|EREG|ESR1 BRCA1 

 
To resolve ambiguous gene/protein concepts in semantic triples, we replace the ambiguous 

subject/object with the corresponding disambiguated concept from the output of PubTator. 

This is accomplished by aligning the ambiguous gene/protein concepts with the 

disambiguated concepts on the basis of matching PMIDs and gene/concept terms within 

sentences. For example, consider the following semantic triple which has an ambiguous 

object mapped to multiple concepts: 
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• Ambiguous semantic triple: C0003818 (Arsenic) – STIMULATES - 2551|4780 

(GABPA|NFE2L2) 

To resolve the ambiguous object, we first determined the PMID associated with the triple 

and then identify the gene/protein term corresponding to the ambiguous object (i.e., short-

form name of gene/protein in sentence): 

• PMID: 28125038 

• Object term: Nrf2 

• Ambiguous object concept: 2551|4780 (GABPA|NFE2L2) 

Next, using the output of PubTator, we identify the matching PMID, gene/protein term, 

and the corresponding disambiguated concept: 

• PMID: 28125038 

• Gene/protein term: Nrf2 

• Disambiguated concept: 4780 (NFE2L2) 

Accordingly, we replace the ambiguous object with its corresponding disambiguated 

concept extracted by PubTator, resulting in the following semantic triple: 

• Disambiguated semantic triple: C0003818 (Arsenic) – STIMULATES - 4780 

(NFE2L2) 

We note that in some cases PubTator failed to annotate gene/protein terms in sentences 

with disambiguated concept representations. In such cases, we cannot resolve ambiguous 

subject/object concepts in semantic triples, as there is no corresponding disambiguated 

concept. We argue that unresolved ambiguous semantic triples are detrimental to the 

knowledge discovery process due to the presence of imprecise subject and object concepts 

(Preiss & Stevenson, 2016). Hence, unresolved ambiguous subjects or objects were 

eliminated, and by extension the corresponding semantic triple is also eliminated. This 

elimination did not result in a significant loss of knowledge, as the eliminated triples 

represented less than 0.5% of all extracted triples.  

The outcome of this component consists of a set of semantic triples where the subject or 

object is a disambiguated gene/protein represented by a precise concept. These triples are 

merged with the remaining triples extracted in section 4.2.1. 
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4.3 Consolidation of Granular Concepts in Semantic Triples: 
The granularity of UMLS concepts in semantic triples presents a challenge for LBD due 

the presence of semantically equivalent triples that convey the same underlying knowledge 

but are represented with distinct concepts (Vlietstra et al., 2017). This leads to an increase 

in the number of unique knowledge instances, thereby expanding the search space for 

discovery. To resolve this challenge, the semantic consolidation component aims to merge 

fine-grained concepts into higher-level/generalized concepts without compromising the 

semantics (i.e. intended meaning) of the acquired literature-based knowledge. The intent is 

to reduce the number of unique fine-grained concepts that constitute the semantic triples, 

to achieve a smaller set of (generalized) concepts and, as a result, a reduced search space 

for LBD. We utilize widely recognized terminological resources for semantic 

consolidation, such as MeSH, GO, and PRO, to ensure that the semantic triples are 

compatible with external biomedical knowledge bases. The idea is to facilitate the 

integration of knowledge from external sources for downstream knowledge completion 

tasks.  

The semantic concept consolidation component leverages semantic alignment techniques 

to align hierarchical structures of targeted terminologies with UMLS, then map concepts 

to corresponding concept representations in target terminologies. Our aim is to create 

consolidated and standardized representations of concepts, where multiple fine-grained 

concepts are merged into broader and more encompassing concepts in target terminologies. 

To initiate semantic consolidation, we identified target terminologies for each semantic 

group which served as the basis for semantic consolidation. Several biomedical 

terminologies were explored based on the following criteria: (a) concepts in the target 

terminology merge two or more concepts into a single concept; and (b) the target 

terminology is a used as a standard for representing biomedical knowledge in external 

knowledge bases. Based on this criteria, we selected the following resources for semantic 

consolidation: 

I. Medical Subject Heading (MeSH) (National Library of Medicine, 2023): MeSH 

is a widely used resource for representing biomedical knowledge, encompassing 

approximately 30,000 concepts organized in 16 hierarchical categories. On 

average, MeSH concepts subsume two corresponding UMLS concepts. MeSH is 
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used as the target terminological resource to merge concepts in the “chemicals and 

drugs” and “disorders” semantic groups into higher-level representations.  

II. Gene Ontology (GO) (The Gene Ontology Consortium, 2019): GO is a well-

known biomedical ontology consisting of 50,000 concepts covering physiological, 

biological, and molecular entities organized in a hierarchical structre. On average, 

GO concepts subsume two corresponding UMLS concepts. GO is used to merge 

concepts in the “physiology” semantic group into higher-level representations.    

III. Protein Ontology (PRO) (Natale et al., 2011): PRO is a specialized ontology 

covering gene and protein concepts organized in a hierarchical structure. PRO 

includes high-level concepts which abstract over orthologous genes and proteins 

and, thus, subsume more than two corresponding NCBI Gene/UMLS concepts. We 

utilize PRO as a terminology to map concepts in the “genes and molecular 

sequences” semantic group into higher-level representations. 

As a first step towards consolidation of concepts, we aggregated the subject and object 

concepts in semantic triples into high-level semantic groups: chemicals and drugs, genes 

and molecular sequences, disorders, and physiology. Then for concepts in the chemicals 

and drugs, disorders, and physiology semantic groups, we constructed hierarchical 

networks that provide hierarchical paths between a given UMLS concept and the highest-

level concept within the semantic group. These hierarchical networks are created using the 

UMLS Metathesaurus resources, which provide hierarchical relationships between 

concepts via the Computable Hierarchies (MRHIER.RRF) and Related Concepts 

(MRREL.RRF) files. Hierarchical networks were constructed using the outgoing CHD (has 

a child relationship) and RN (has a narrower relationship) relations. Figure 4.2 presents a 

section of the hierarchical network for the disorders semantic group, showing the 

hierarchical path between “Invasive Ductal Breast Carcinoma” and “Neoplasms”.   
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Figure 4.2: Excerpt of the constructed UMLS hierarchy 

Concepts in the genes and molecular sequences semantic group, which are represented 

using NCBI Gene, cannot be organized hierarchically as the NCBI Gene database does not 

provide a hierarchy of concepts. Instead, we organized these concepts into different 

orthologous sub-groups, which denote genes in different species that retain the same 

genetic function (e.g., association of the TP53 gene in mice and humans with tumor 

suppression). Specifically, we used the gene orthologs file 

(https://ftp.ncbi.nih.gov/gene/DATA/gene_orthologs.gz) which is provided by NCBI Gene 

to describe associations between orthologous genes in different species. This grouping of 

gene concepts is necessary, as our aim is to standardize and merge concepts in each sub-

group to higher-level concepts that abstract over associated orthologs. 

The semantic consolidation of concepts in the chemicals and drugs, disorders, and 

physiology semantic groups commenced by extracting a subset of concepts from MeSH 

and GO hierarchies that correspond to these semantic groups. From MeSH, we extracted 

all child concepts within the Diseases and Chemicals and Drugs root categories. From GO, 

we extracted all child concepts of Biological Process (GO:0008150) and Molecular 

Function (GO:0003674). Subsequently, we constructed hierarchical networks of MeSH 

and GO concepts, then aligned them with the UMLS hierarchies. The alignment is 
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accomplished using the MRCONSO resource, which is part of the UMLS Metathesaurus 

that provides one-to-many links between a given UMLS concept and concepts from other 

terminologies, such as MeSH and GO. This ensures that one or more UMLS concepts are 

mapped to a corresponding concept from MeSH or GO.  

Figure 4.3 illustrates an example of the concepts alignment and mapping to consolidate one 

or more UMLS concepts to corresponding MeSH targets. In this example, the UMLS 

hierarchy consists of 10 unique concepts, with "Neoplasm" as the root concept and 

"Invasive Ductal Breast Carcinoma" as a leaf concept. The MeSH hierarchy consists of 9 

unique concepts, with "Neoplasm" as the root concept and "Carcinoma, Ductal, Breast" as 

a leaf concept. Through the mapping process, multiple granular UMLS concepts were 

consolidated to a single MeSH concept. We note that UMLS concepts “Invasive Ductal 

Carcinoma” and “Ductal Breast Carcinoma” were consolidated into a single MeSH concept 

which subsumed both UMLS concepts. Similarly, “Mammary Neoplasms”, “Malignant 

neoplasm of breast”, and “Breast Carcinoma” were consolidated into a single MeSH 

concept (“Breast Neoplasms”).  

 
Figure 4.3: Consolidation of concepts via alignment and mapping to MeSH 
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For the consolidation of concepts in the genes and molecular sequences semantic group, 

we opted to directly map these concepts to PRO using UniProt as an intermediary resource. 

Explicitly, UniProt is a large biomedical knowledge base which includes information about 

protein sequences, functions, structures, interactions, and encoding genes. UniProt 

provides cross-references to many external databases, including NCBI Gene, via the 

idmapping file (https://proconsortium.org/download/current/). We utilized the idmapping 

file to directly map NCBI Gene identifiers to corresponding UniProtKB identifiers, which 

are used as the intermediary link to PRO. Next, we use PRO hierarchical structure to 

leverage hierarchical IS_A relations between genes/proteins across different species (i.e., 

orthologs) to consolidate and represent them by a single gene-level concept (Natale et al., 

2011). These concepts are high-level abstractions that generalize over related orthologs 

across different species. As an example, Figure 4.4 shows a subset of the PRO hierarchy 

whereby the human and mouse orthologs of the CD80 gene/protein are represented by their 

respective organism-level concepts - i.e., hCD80 (PR:P33681) and mCD80 (PR:Q00609). 

These concepts are subsumed by the CD80 gene-level concept (PR:000001438) which 

abstracts over the human and mouse orthologs. This task entails leveraging the PRO 

hierarchy to map organism-level concepts to gene-level concepts to ensure that all 

orthologs of the same gene/protein are consolidated and represented by a single concept.  

 
Figure 4.4: Subset of the Protein Ontology hierarchy 

Lastly, we ensured that the provenance of consolidated concepts is maintained by creating 

a concept mapping file that holds the source UMLS or NCBI Gene concepts and their 

https://proconsortium.org/download/current/
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corresponding equivalents from target  terminologies (i.e., MeSH, GO, and PRO). The 

concept mapping file was used to replace UMLS and NCBI Gene concepts in semantic 

triples with corresponding concepts from MeSH, GO, and PRO.  

4.4 Graph Based Representation of Literature-Based Knowledge:  
To facilitate downstream knowledge completion and discovery, the semantic triples—i.e. 

subject-predicate-object triples—are represented as a baseline literature-based KG, where 

the subjects/objects are represented as nodes and predicates as directed semantic edges. 

The nodes are assigned attributes denoting the concept’s unique identifier, preferred name, 

semantic type, and semantic group, likewise the directed semantic edges are also assigned 

attributes denoting the predicate type. 

The baseline KG is created using Neo4j  as it supports storing and visualization of semantic 

triples. We use the Cypher query language to import and represent the semantic triples as 

described in (Hristovski et al., 2015). Code 4.1 presents the Cypher query used to generate 

the baseline KG. The import query iterates through a Comma-Separated Values (CSV) file 

containing the semantic triples and associated metadata to create a graph in Neo4j. The 

query starts by using the LOAD CSV clause to read each line from the CSV file and store 

it in the line variable. The WITH clause is then used to pass the line variable to the next 

part of the query. The first MERGE clause creates a node for the subject in the graph with 

label 'Concept' and a unique identifier 'concept_id' based on the first element in the 

line variable. If the node already exists, the query does nothing. If the node does not 

exist, the ON CREATE SET clause sets the name, sem_type (i.e., semantic type), and 

sem_grp (i.e., semantic group) attributes based on the second, third, and fourth elements 

of the line variable. The second MERGE clause creates a node for the object in the same 

way as the subject node. Finally, the query creates a directed edge labeled 'Relation' 

between the subject and object nodes using the specified predicate (i.e., semantic relation). 

The outcome is a baseline literature-based KG constructed from consolidated semantic 

triples derived from the literature. We regard the KG as baseline since given the limitations 

of the knowledge extraction task, the KG is incomplete due to missing nodes and relations. 

Moving forward, we use the baseline KG to progressively augment it by adding the 

‘missing’ nodes and relations.  
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LOAD CSV FROM ’baseline_triples.csv’ 

  AS line 

WITH line 

MERGE (c1:Concept {concept_id: line[0]}) 

ON CREATE SET c1.name=line[1], 

  c1.sem_type=line[2], c1.sem_grp=line[3] 

MERGE (c2:Concept {concept_id: line[5]}) 

ON CREATE SET c2.name=line[6], 

  c2.sem_type=line[7], c2.sem_grp=line[8] 

MERGE (c1)-[r:Relation {type: 

  line[4]}]->(c2) 

Code 4. 1: Cypher query to construct literature-based KG 

4.5 Knowledge Integration and Completion:  
The knowledge integration and completion component presents novel methods to address 

the limitations of incomplete literature-based knowledge extraction by progressively 

augmenting the baseline KG across two phases to generate a more complete literature-

based KG. The first phase leverages external knowledge bases to extend the baseline KG 

by integrating curated biomedical knowledge, resulting in an enhanced integrated KG. The 

second phase leverages state-of-the-art graph-based representation learning methods (i.e., 

knowledge graph embeddings) for Knowledge Graph Completion (KGC), whereby we 

predict the missing relations between biomedical concepts in the integrated KG to generate 

augmented literature-based KG which serves as the foundation for literature-based 

knowledge discovery.  

The following sub-sections present our methods for the knowledge integration and 

knowledge completion phases.  

4.5.1 Integration of External Knowledge Bases (KBs): 
Biomedical KBs, such as the Comparative Toxicogenomics Database and Gene Ontology, 

capture biomedical knowledge via manual curation of scientific literature. These KBs 

contain rich assertional knowledge describing associations and interactions between genes-

diseases, chemicals-diseases, and genes-biological processes. To extend the knowledge 

coverage for LBD, we used external KBs to (a) collect knowledge that is missing in the 

literature and (b) build a knowledge-rich biomedical KG to create high quality Knowledge 

Graph Embeddings (KGEs). KGEs are vector-based representations of nodes and relations 
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constituting a KG that can be used for downstream relation prediction tasks. KG-based 

representation learning techniques are typically used to map nodes and relations in a 

continuous vector space, such that the geometric relations between vectors capture the 

underlying semantics of the KG. By integrating knowledge from external KBs, our aim is 

to improve the vector-based representations of nodes and relations in the KG.  

 The biomedical KBs and extracted assertional knowledge used in this work are: 

1. Comparative Toxicogenomics Database (CTD) (Davis et al., 2019) for chemical-

disease, and gene-disease interactions. Files containing curated CTD knowledge 

were downloaded from https://ctdbase.org/downloads/ on March 15, 2022. 

2. Gene Ontology (GO) annotations (The Gene Ontology Consortium, 2019)  for 

gene-biological process and gene-molecular function associations. Files containing 

GO annotations were downloaded from 

https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz on March 15, 2022. 

We extracted curated assertional knowledge about cancers to supplement the literature-

based semantic triples as follows: (i) searching for MeSH identifiers of all neoplastic 

diseases – i.e., child concepts of Neoplasms (MESH:D009369); and (ii) extracting all 

associated genes, chemicals and drugs from CTD. For GO annotations, we use the set of 

gene extracted from CTD to identify their associations with biological processes and 

molecular functions.  

To extend the knowledge coverage of the baseline KG, we integrated biomedical 

associations – represented as (subject, predicate, object) triples – extracted from structured 

KBs. The integration commenced by replacing KB asserted predicates with semantically 

equivalent predicates from the UMLS semantic network. For example, curated associations 

in CTD are labeled as ‘marker/mechanism (M)’ or ‘therapeutic (T)’, whereby the label ‘M’ 

indicates that a chemical or gene product has a causal association with a disease, and the 

label ‘T’ indicates that a chemical or gene product has a therapeutic role in a disease. CTD 

associations with the ‘M’ label are replaced with predisposes, while associations with the 

‘T’ label are replaced with treats. For GO annotations, the ‘qualifier’ label is used to 

interpret the associations between genes, molecular functions, and biological processes. 

We particularly focus on two types of GO qualifiers: (i) involved_in indicating that a gene 

or its product have a role in a biological process; and (ii) enables indicating that a gene or 
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its product are engaged in executing a molecular function. The GO qualifier involved_in is 

replaced with affects and enables is replaced with stimulates. The resultant of this step is 

an integrated KG that extends the baseline literature-based knowledge (i.e. the baseline 

KG) with manually curated knowledge sourced from external sources.  

We do understand that the integrated KG is likely still missing relations due to (a) lack of 

available explicit knowledge in the literature, and (b) absence of meaningful semantic 

relations between biomedical entities, as manually curated KBs do not guarantee that the 

latest scientific knowledge is incorporated due to the time-intensive process of manual 

curation.  

4.5.2 Knowledge Graph Completion (KGC): 
To augment the integrated KG with additional knowledge (i.e. missing relations), we 

applied KGC methods to predict semantic relations between logically associated nodes 

(i.e., biomedical entities). KGC is pursued by leveraging Knowledge Graph Embedding 

(KGE) methods to embed nodes and semantic relations in the integrated KG as low-

dimensional vectors which encode latent semantic and structural features of the KG 

(Mohamed et al., 2021). The following sections present our methods for KGC. First we 

describe the methods to embed the integrated KG nodes and relations as low-dimensional 

embeddings. Next, we describe our approach to identify implicitly associated nodes, and 

present the relation prediction method using the generated KG embeddings.  

Missing relations are inferred by utilizing a secondary literature-based knowledge resource, 

characterized by Medical Subject Heading (MeSH) descriptors assigned to cancer 

literature, which provides a comprehensive concept-based representation of an article’s 

scientific content. We represent MeSH descriptors by considering their co-occurrences to 

create partial/incomplete semantic triples, whereby the subject and object are existing 

nodes in the integrated KG but the relation between them is missing or unknown - i.e., 

subject - ? - object. Consequently, these partial/incomplete triples are used as input for 

KGC, with the objective of predicting the missing relation to generate complete subject-

predicate-object triples to augment the integrated KG. The output of this task results in an 

augmented literature-based KG which serves as the foundation for literature-based 

knowledge discovery. 
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4.5.2.1 Embedding the Integrated KG: 
To predict missing relations between concepts represented in the integrated KG, we 

leveraged KGE methods that encode the integrated KG concepts and relations as vectors 

while preserving the KG’s structure and semantic information. Figure 4.5 presents the 

pipeline for generating node and relation vectors via KGE methods (Bonner et al., 2022; 

Mohamed et al., 2021).  

 
Figure 4.5: Schematic of the training pipeline of a KGE model 

Given a set of triples as input, KGE methods first generate negative samples from positive 

triples using uniform random corruptions of the subject, object, or predicate (i.e., semantic 

relation). Next, the embedding lookup layer assigns positive and negative triples random 

embeddings from uniform or Gaussian distributions (Mohamed et al., 2021). These 

embeddings are then used as input for method-dependent scoring functions to generate 

scores for all positive and negative (corrupted) triples. Subsequently, the training loss is 

calculated using different variations of loss functions with the objective of maximizing 

scores of positive triples while minimizing scores for corrupted triples. KGE optimize the 

training loss with stochastic gradient descent algorithms, such as Adam and AdaGrad. 

Lastly, the embeddings for nodes and relations are normalized as a regularization strategy 

to improve their generalization. This multi-step training process is executed iteratively to 

update the embeddings until optimal representations of the KG’s latent and semantic 

features are learned, such as node semantic types, local and global neighborhoods, and 

relation types (i.e., symmetrical, asymmetrical, one-to-one, etc.). The outcome of this 

process are vector-based representations of KG nodes and relations, which can be utilized 

for relation prediction.  

This dissertation explored three KGE methods: TransE, ComplEx, and DistMult as each 

differs in terms of how they embed and represent KG nodes and relations. We investigated 
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these KGE methods because: (i) they provide competitive results for entity prediction in 

biomedical KGs (Nicholson & Greene, 2020); (ii) given the size of the integrated KG, the 

selected methods require less training time compared to deep learning-based models such 

as ConvE and ConvKB; and (iii) able to model a wide-range of relations including 

symmetric, antisymmetric, and many-to-many relations, which are abundant in literature-

based KGs. TransE, ComplEx, and DistMult were implemented using the open source 

AmpliGraph 1.4.0 package (https://github.com/Accenture/AmpliGraph) for learning large-

scale KG embeddings. KGE methods were initialized by inputting subject-predicate-object 

triples constituting the integrated KG, followed by tuning of shared hyperparameters for 

training. We explored a range of hyperparameter values (Table 4.6) based on previously 

published works (Bonner et al., 2022; Chang et al., 2020), and tuned method using a grid 

search on a validation set. Specifically, we split the integrated KG into a training KG and 

a validation KG (90% and 10% respectively). The embeddings generated from the training 

KG were used to predict the relations in the validation KG. For KGE, the combination of 

parameters that yielded the highest Mean Reciprocal Rank (MRR) was considered the 

optimal set of parameters. MRR is calculated by averaging the inverse ranks of true 

relations across all predictions, with values closer to 1 indicating good predictive 

performance. Formally, MRR is defined as:  

𝑀𝑅𝑅 =  
1

|𝑃|
∑

1

𝑝
𝑝∈𝑃

 

where 𝑝 represents the highest rank of the true predicted relation, 𝑃 represents all 

predictions. The final set of parameters for each model are presented in Table 4.7.  
Table 4.5: Hyperparameter values explored for KGE training 

Hyperparameter Values 

Embedding dimension (k) 100, 200, 300 

Hyperparameter Values 

Number of epochs 100, 300, 500, 700 

Learning rate 0.01, 0.001, 0.0001 

Negative samples 10, 25 

Loss function Pairwise, Multiclass Negative Log-Likelihood 
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Table 4.6: Selected hyperparameter values 

KGE Model Hyperparameters 
Embedding 
dimension 

Epochs Learning 
rate 

Negative 
samples 

Loss function 

TransE 300 300 0.001 10 Multiclass negative 
log-likelihood 

DistMult 300 500 0. 0001 25 Multiclass negative 
log-likelihood 

ComplEx 200 200 0.001 10 Multiclass negative 
log-likelihood 

  

4.5.2.2 Knowledge Graph Completion Using KG Embeddings: 

We define KGC as the task of relation prediction – i.e., given an incomplete triple (s, ?, 

o), the aim is to fill the missing element within a KG with the most plausible predicate (p) 

using the information encoded in the KG embeddings. A major challenge in KGC is 

determining which relations between KG concepts are missing, as applying the relation 

prediction task on every pair of unlinked concepts/nodes requires intensive computational 

resources (i.e., time complexity). For any given KGE model, the time complexity of 

relation prediction depends on the number of dimensions, number of unique unlinked 

entities (i.e., concepts), and the number of relations in the KG – i.e., 𝑂(𝑒𝑘 + 𝑟𝑘), where 𝑒 

and 𝑟 represent number of entities and relations respectively, and 𝑘 is the number of 

dimensions of relation and entity embeddings. Further, when relation prediction is 

unconstrained, a significant number of new relations may be added, resulting in a dense 

KG and increased cost of knowledge discovery. Specifically, applying open- or closed-

based discovery on a dense KG would result in generating a large number of  ABC 

discovery paths, which would be difficult to assess and review. Thus, constraining the 

number of entities to a focused subset can result in a reduction of the time complexity for 

the relation prediction task. As such, it is necessary to pre-define a subset of subject and 

object concepts that have some form of implicit association between them in the literature 

but are not linked by a semantic relation in the KG.  

Our approach to KGC is to leverage Medical Subject Heading (MeSH) concepts (National 

Library of Medicine, 2023) as they are used to index PubMed articles (National Library of 

Medicine, 2022) with complete concept-based representation of articles. When considering 
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the set of MeSH concepts assigned to an article, it can be argued that their co-occurrences 

suggest some implicit biomedical association between them. To illustrate this notion, 

consider the article in (Kim & Park, 2019) which describes the role of chemokine CXCL12 

in promoting cellular proliferation in senescent tumor cells. Despite the absence of explicit 

mentions of the CXCL12 chemokine in the article’s title and abstract, it can be inferred 

that an implicit association between CXCL12, cell proliferation, and cellular senescence 

exists by considering the co-occurrence of MeSH descriptors assigned to the article. We 

created the set of MeSH associations from PubMed articles retrieved by the literature 

search. Next, we classified MeSH descriptors into the following high-level semantic 

groups: Chemicals, Diseases, Biological and Physiological Phenomena, and Proteins. For 

knowledge alignment, we map entities in the Biological and Physiological Phenomena 

semantic groups to corresponding concepts in GO, and entities in the Protein semantic 

group to corresponding concepts in PRO. Subsequently, MeSH associations are aligned 

with semantic triples from the integrated KG to identify a subset of implicit biomedical 

associations for KGC. Identified associations are represented as incomplete (subject, ?, 

object) triples, whereby the subject and object are pre-existing entities in the KG and the 

goal is to predict the missing relation between them – i.e., predicate – to create complete 

(subject, predicate, object) triples to augment the baseline and integrated KG.  

We pursued KGC via relation prediction by leveraging the KG embeddings and a scoring 

function 𝑓 {𝑡 = (𝑠, 𝑝, 𝑜)}: ℰ, ℛ, ℰ → ℝ, such that when given an input incomplete triple (s, 

?, o), all possible combinations of (s, p, o) triples are assigned a score proportional to the 

likelihood that the completed triple is true. The missing relation in the input triple is 

replaced with all existing predicates in the KG, and a score is assigned to each combination 

of (s, p, o), with high scores indicating more plausible predictions. For each incomplete 

input triple, we retain top k predicted relations and add them to the integrated KG for 

knowledge discovery tasks.  

To quantify the plausibility of relation predictions, we use the following KGE-specific 

scoring functions. 

TransE (Bordes et al., 2013) employs a distance-based scoring function as:  

𝑓(𝑠, 𝑝, 𝑜) = −||𝑠 + 𝑝 − 𝑜||𝐿1/𝐿2 
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where 𝑠, 𝑝, 𝑜 are vectors representing the subject, predicate, and object respectively, and 

𝐿1/𝐿2 represent L1 and L2 norms respectively. Explicitly, TransE uses an additive scoring 

function that considers the sum of subject and predicate vectors to be approximately equal 

to the object vector for true positive triples – i.e., 𝑠 + 𝑝 ≈ 𝑜.  

DistMult (B. Yang et al., 2015) restricts relations as diagonal matrices to reduce the number 

of relation parameters. The scoring function is defined as the bi-linear dot product of the 

subject, predicate, and object vectors:  

𝑓(𝑠, 𝑝, 𝑜) = 〈𝑠, 𝑤𝑝, 𝑜 〉 

where 𝑠 and 𝑜 are vectors representing the subject and object entities respectively, and 𝑤𝑝 

represents the predicate diagonal matrix.   

Similarly, ComplEx (Trouillon et al., 2016) restricts relation embeddings to be diagonal 

matrices, but uses complex valued vectors for entities and relations. The scoring function 

is defined as the Hermitian dot product of the subject, predicate, and object complex 

vectors: 

𝑓(𝑠, 𝑝, 𝑜) = 𝑅𝑒(〈𝑠, 𝑤𝑝, 𝑜〉) 

where 𝑠, 𝑤𝑝, 𝑜 ∈ ℂ𝑘 and 𝑅𝑒(𝑥) represents the real part of vector 𝑥. 

4.6 Knowledge Discovery, Filtering, and Ranking:  
In this section, we describe our methods for uncovering novel and meaningful discovery 

paths from the supplemented KG and, subsequently, filter and rank discoveries to create 

condensed sub-graphs which can be explored and visualized by domain experts. Our 

methods are not restricted to any particular discovery model or paradigm, and can be 

adapted for use with ABC, AnC, discovery patterns, and open or closed-based discovery. 

Nevertheless, we employ the ABC model as an example to demonstrate our methods. 

Our methods can be described as a multi-step process that integrates the ABC discovery 

model, filtering of non-meaningful discovery paths, and the final ranking of novel 

discoveries.  

In the first step, a single or multiple user-defined source concepts (i.e., A) are identified to 

initialize an exhaustive 2-hop KG traversal to retrieve ABC discovery paths. This step 

involves utilizing Neo4j’s Cypher query language to define a matching pattern that defines 
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the KG traversal logic (Francis et al., 2018). Specifically, we use the Cypher query 

presented in Code 4.2 to initialize the KG traversal.   

MATCH PATH = (A {name:concept name})-[R1]->(B)-[R2]->(C) 
WHERE A <> C AND NOT (A)-[]-(C) 
RETURN A.identifier, B.identifier, C.identifier, type(R1) AS 
SemRel1, type(R2) AS SemRel2 

Code 4. 2: Cypher query to initiate ABC discovery 

In the above query, the KG traversal begins with a node A which has a specified name 

(represented by concept name) and finds all its directly related nodes (i.e., intermediate B 

nodes) through semantic relations denoted as R1. Alternatively, the concept name attribute 

can be replaced by concept semantic group or concept semantic type to retrieve candidate 

discovery paths. Then the query traverses the KG to identify all target nodes (i.e., C) 

directly related to the intermediate B nodes through the relation R2. The query then filters 

out any paths where the source node is the same as the target node (i.e., self-directed loops). 

Additionally, the query ensures that nodes A and C are not linked by a semantic relation, 

since one of the core assumptions of the ABC discovery model is that the source and target 

concepts are not directly related nor co-occur in the literature. Finally, the query returns 

paths characterized by the following variables: identifiers of the source (A), intermediate 

(B), and target (C) nodes, as well as the types of semantic relationships that connect them.  

In the next step, the preliminary discovery paths are processed by a filtering algorithm to 

generate the discovery subgraph. The filtering algorithm applies multiple criteria at 

different levels to filter ABC discovery paths, including concept specificity at the concept 

level, A-B and B-C counts at the semantic triple level, and the well-established Linking 

Term Counts (LTC) at the path level: 

● Concept level filtering leverages hierarchical structures of biomedical 

vocabularies to define specificity of A, B, and C concepts (i.e., nodes) by calculating 

the distance from root within the vocabulary where the concept is represented. We 

leverage MeSH, Gene Ontology (GO), and Protein Ontology (PRO) vocabularies 

which organize concepts in tree-like hierarchical structures, linked by IS_A 

relations, whereby generic concepts are located near the top-level concept (root) 

and more specific concepts are located further down the hierarchy. As such, given 

a biomedical concept, the distance from root is calculated by measuring the number 
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of  IS_A hierarchical relations until the top-level concept in the hierarchy (i.e., root) 

is reached. Intuitively, the greater the distance from root, the more specific the 

concept and the higher the specificity score. Concept specificity is a commonly 

used metric to filter and rank knowledge extracted from curated ontologies and 

biomedical text (Gopalakrishnan et al., 2018). In this framework, a concept is 

considered specific if its score is greater than a certain threshold s. We explore 

several concept specificity thresholds (s = 3, 4, 5, and 6). 

● Semantic triple level filtering uses corpus-based semantic triple counts as a 

filtering criteria to eliminate triples which occur less than a prespecified threshold. 

The rationale is that triples that occur infrequently in the literature can be 

considered noisy and do not accurately represent literature-based knowledge. 

Hence, by eliminating such triples, the remaining triples that also occur infrequently 

but more often than the eliminated ones represent meaningful and relevant triples 

for LBD. We explore several thresholds for semantic triple count 3, 5, 10, and 15.  

● Path level filtering leverages LTC which is a well-established metric in LBD that 

quantifies the strength of indirect associations based on the number of linking B 

concepts, with higher linking concepts indicating stronger indirect associations 

between the source (A) and the target (C) (Yetisgen-Yildiz & Pratt, 2006). LTC 

provides the benefit of eliminating spurious paths which have few overlapping 

intermediate B concepts. A discovery path is considered to have a strong association 

if the LTC score is greater than a certain threshold t. In this framework, we explore 

several thresholds of t = 3, 5, 10, and 15.  

After the filtering is applied, the next step is concerned with ranking the retained set of 

discovery paths using Information Content (IC) as a metric to prioritize novel and 

interesting discoveries. IC is calculated as the negative log of the probability of 

encountering an event x:  

𝐼𝐶(𝑥)  =  −𝑙𝑜𝑔2 𝑝(𝑥) 

In this context, an event x can be defined as an ABC discovery path, and the probability of 

encountering a path can be calculated based on frequencies derived from the literature (i.e., 

corpus-based information content) (McInnes & Pedersen, 2015). However, IC-based 

metrics are designed to be biased towards low probability events. Therefore, to account for 
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such biases, we propose two variants of IC-based ranking metrics for LBD that also 

leverage LTC as a correction factor. Explicitly, we propose the 𝐼𝐶𝑠𝑢𝑚 and 𝐼𝐶𝑝𝑎𝑡ℎ  ranking 

metrics.  

𝐼𝐶𝑠𝑢𝑚 calculates the IC of A-B and B-C triples individually, and assigns the final score to 

the ABC path by summing 𝐼𝐶(𝐴𝐵) and 𝐼𝐶(𝐵𝐶) and multiplying the IC scores by LTC of 

the target discovery path. Formally, 𝐼𝐶𝑠𝑢𝑚 is defined as follows:     

𝐼𝐶𝑠𝑢𝑚(𝐴𝐵𝐶)  =  (−𝑙𝑜𝑔2 (
𝑋𝐴𝐵

𝑁
)) + (−𝑙𝑜𝑔2 (

𝑋𝐵𝐶

𝑁
)) ×  𝐿𝑇𝐶 

Where 𝑋𝐴𝐵 and 𝑋𝐵𝐶 are the frequencies of AB and BC triples respectively, N is the sum of 

all triple frequencies in the discovery subgraph, and 𝐿𝑇𝐶 is the correction factor.  

𝐼𝐶𝑝𝑎𝑡ℎ  calculates the IC of ABC discovery paths by determining the probability of 

encountering the path in the discovery subgraph. Formally, 𝐼𝐶𝑝𝑎𝑡ℎ  is defined as follows: 

𝐼𝐶𝑝𝑎𝑡ℎ(𝐴𝐵𝐶)  =  −𝑙𝑜𝑔2 (
𝑋𝐴𝐵𝐶

𝑁
)  ×  𝐿𝑇𝐶 

Where 𝑋𝐴𝐵𝐶 is the frequency of the ABC path, N is the sum of all path frequencies in the 

discovery subgraph, and 𝐿𝑇𝐶 is the correction factor. 

We posit that the proposed IC-based metrics can distinguish interesting and novel 

discovery paths from generic ones, while also accounting for indirect A-C associations via 

the 𝐿𝑇𝐶 correction factor. To evaluate the effectiveness of these metrics, we compare IC-

based rankings with co-occurrence frequency-based ranking and traditional association-

based metrics: Log-likelihood ratio (LLR), Pearson’s Chi-square (𝑋2), and Odds Ratio 

(OR), which are commonly used in LBD for ranking purposes (Henry & McInnes, 2019; 

Zhang et al., 2021). We briefly describe the baseline metrics here: 

● LLR is an expectation-based statistical measure that calculates the degree to which 

the observed frequency values deviate from the expected values. A high LLR score 

indicates a concept pair is less likely to have occurred together by chance and, 

therefore, have strong association. We calculate LLR for A-B and B-C individually, 

and path scores are derived by summing the LLR scores. We utilize the Text::NSP 

package to calculate LLR scores (Pedersen et al., 2011).  

●  𝑋2 is another commonly used expectation-based measure that reflects the deviation 

of observed frequencies from expected frequencies. We calculate the path score by 
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summing the 𝑋2 score for A-B and B-C. A higher score indicates that the A-B or B-

C associations are more likely to be dependent, and there is less evidence in favor 

of the hypothesis that they are independent. The Text::NSP package is used to 

compute 𝑋2scores (Pedersen et al., 2011).  

● OR is a statistical measure of association that computes the ratio of how often 

concepts co-occur together divided by the total number of null co-occurrences. We 

calculate the path score by summing the OR score for A-B and B-C. A higher score 

indicates that the path consists of strongly associated concepts. The Text::NSP 

package is used to compute 𝑋2scores (Pedersen et al., 2011).  

● Co-occurrence frequency is a rudimentary ranking metric that ranks ABC discovery 

paths by summing the total number of A-B and B-C co-occurrences.  

4.7 Summary: 
This chapter introduced the methods applied in the AKG-LBD framework to enhance and 

improve the process of semantic-based LBD by proposing novel solutions addressing the 

challenges described previously (Chapter 3). This chapter is structured into 6 sections, with 

each section corresponding to a component in the AKG-LBD framework.  

In the first section (4.1), we described our methods for acquiring biomedical literature from 

PubMed using a comprehensive pre-defined search query aimed at cancer literature. 

Specifically, we leveraged Medical Subject Heading (MeSH) descriptors, which serve as 

indexes to PubMed articles, and specified keywords in titles and abstracts. We introduced 

a query formulation algorithm using fuzzy string matching and Biopython’s Entrez 

package to automatically formulate PubMed queries. Overall, we curated 23 terms related 

to cancers and their molecular and cellular hallmarks (i.e., hallmarks of cancer) and used 

them as input for query formulation. The output of the literature curation component 

consisted of titles, abstracts, and corresponding PMIDs, which were formatted as plain text 

to be used as input for the next component.  

In section 4.2, we described the semantic-based knowledge extraction component which 

leverages SemRep as a semantic parser that extracts knowledge in the form of subject-

predicate-object triples. Further, this component integrates PubTator to address limitations 

of SemRep in disambiguation of Gene and Protein concepts. This is a novel approach in 
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our framework, as it combines the output of two established biomedical knowledge 

extraction tools to ensure the accuracy and representativeness of literature-based 

knowledge.  

Section 4.3 introduced the semantic consolidation component, which aims to unify the 

representation of fine-grained concepts into atomic concept representations. We posit that 

this step is necessary to (i) reduce the discovery search space without compromising the 

semantics of concepts; and (ii) ensure semantic compatibility with external knowledge 

resources and ontologies to facilitate the integration of curated biomedical knowledge.  

The following section (4.4) described the representation of semantic-based knowledge (i.e., 

subject-predicate-object triples) as a large-scale graph, thereby generating the first iteration 

of the literature-based KG (i.e., baseline KG). We utilized Neo4j due to its scalability in 

storing large-scale graphs and its interactive visual tools which can facilitate exploration 

of literature-based knowledge.  

Section 4.5 introduced our novel methods for progressively augmenting the baseline 

literature-based KG to address the problem of incomplete extraction of knowledge from 

the literature corpus. This component entails a two-step process: (i) leveraging curated 

knowledge extracted from the Gene Ontology and the Comparative Toxicogenomics 

Database; and (ii) using Knowledge Graph Completion (KGC) methods to predict missing 

semantic relations between implicitly associated subject and object concepts. The first step 

(i.e., knowledge integration) results in generating the integrated KG, which augments 

literature-based knowledge with high quality knowledge curated by expert biocurators. We 

posit that this step alone is insufficient in augmenting the baseline KG, as manual curation 

is a time-consuming process and, therefore, lags behind the current state of knowledge. 

Consequently, the KGC approach aims to fill this gap by predicting missing semantic 

relations using information-rich Knowledge Graph Embeddings (KGEs). We explore three 

KGE models to encode the integrated KG nodes and relations as vectors: TransE, DistMult, 

and ComplEx. As literature-based KGs contain a diverse range of relations, we selected 

these models for their ability to represent various relation types, including one-to-one, one-

to-many, symmetrical, and asymmetrical relations. The best performing model is selected 

based on an evaluation methodology focusing on relation prediction. Explicitly, we adapt 

time-slicing and random-slicing techniques to split the integrated KG into training and 
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evaluation sets. KGE models are trained on the training set and evaluated by predicting 

relations in the evaluation set. The best performing model will be used for the final task of 

informed relation prediction to further augment the integrated KG with missing semantic 

relations. This task generates the augmented KG, which serves as input for knowledge 

discovery.   

Lastly, section 4.6 describes the knowledge discovery, filtering, and ranking methods. We 

propose an integrated methodology that adapts to various discovery models, including 

ABC, AnC, discovery patterns, and closed- and open-based discovery. However, this 

framework utilizes the ABC model, as it is the most widely employed model in LBD 

research. The knowledge filtering algorithm is applied to different levels of ABC discovery 

paths, including concept specificity at the concept level, frequency counts at the triple level, 

and LTC at the path level. For ranking, we adapt IC-based metrics to propose two LBD 

ranking variants which also account for inherent biases by leveraging LTC as a correction 

factor.  
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Chapter 5 Experimental Results 
This chapter presents our results for the methods implemented within AKG-LBD 

framework. We present evaluation of AKG-LBD  to replicate real-world cancer discoveries 

and for repurposing drugs. The main aim of the evaluation experiments is to measure the 

performance of AKG-LBD for knowledge discovery tasks using literature at PubMed 

pertaining to cancers.  

The chapter is structured as follows. Section 5.1 reports on the results of the baseline 

knowledge extraction from the literature and semantic consolidation of concepts. Section 

5.2 describes the characteristics and topology of the baseline KG. Section 5.3 describes the 

results of integrating curated knowledge from external sources to create the integrated KG. 

Section 5.4 presents the results of KGE evaluations and determining the best performing 

model for KGC. Section 5.5 reports on the outcomes of KGC via relation prediction and 

the subsequent construction of the augmented KG. Section 5.6 presents the results of 

knowledge discovery, filtering, and ranking for replicating real-world cancer discoveries 

and repurposing drugs for new cancer indications. Section 5.7 presents a comparison of 

the performance of formalized LBD systems against the AKG-LBD framework. Finally, 

section 5.8 summarizes the key findings of this chapter. 

5.1 Literature-Based Knowledge Extraction and Semantic 
Consolidation: 

Biomedical articles retrieved from PubMed constitute the literature corpus used for 

semantic-based knowledge extraction and subsequent construction of the baseline 

literature-based KG. We retrieved 5,531,702 articles covering cancers using the PubMed 

query formulation methodology described in Chapter 4 (section 4.1). The following 

sections describe the results of semantic knowledge extraction, semantic consolidation, and 

construction of the baseline KG, which serves as the baseline for LBD.   

5.1.1 Extraction of Semantic-Based Knowledge: 
Using the literature-based corpus as input to SemRep, we retrieved 38,941,970 semantic 

triples. The output of SemRep consisted of semantic triples (subject-predicate-object) 
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along with the semantic types of the subject and object concepts, the PMID of the article 

where the triple was extracted, and the corresponding sentence that the triple was derived 

from. Recall that subject and object concepts are represented as UMLS or NCBI Gene 

concepts through unique identifiers (i.e., CUIs or NCBI Gene identifiers), while predicates 

are ontological relations derived from the UMLS Semantic Network. The semantic triples 

were subsequently filtered based on the concept semantic types and type of predicate (i.e., 

semantic relation) to eliminate concepts and relations that are deemed uninformative for 

the downstream discovery task. As a result 34,262,163 triples were eliminated and 

4,679,807 triples were retained, consisting of 88,909 unique subjects, 67,904 unique 

objects, and 13 unique predicates (i.e., semantic relations).  

We identified a total of 20,301 ambiguous gene/protein mappings, for which we retrieved 

the corresponding PMIDs that were used as input into PubTator to disambiguate the 

ambiguous gene/protein concepts. The output of this process resulted in disambiguating 

72.7% (14,759 concepts) of the ambiguous gene/protein concepts, whereas we eliminated 

the remaining ambiguous concepts as they were not useful for knowledge discovery tasks. 

After merging all the disambiguated concepts with SemRep’s semantic triples, the final set 

of semantic triples comprised of 102,750 unique concepts, represented by UMLS CUIs or 

NCBI Gene identifiers, classified as 34 semantic types. We aggregated concepts into four 

high-level semantic groups (Chemicals and Drugs, Disorders, Genes, and Physiology) 

based on the semantic type classifications, for example, concepts classified as Disease or 

syndrome, Neoplastic process, and Finding are aggregated into the Disorders semantic 

group. Figure 5.1 shows the distribution of concepts extracted from the literature classified 

by semantic type and semantic groups. 
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Figure 5.1: Distribution of concepts by semantic type and high-level semantic groups 

5.1.2 Semantic Consolidation of Concepts: 
Semantic consolidation merged granular concepts into high-level, generalized 

representations by leveraging biomedical terminologies, such as MeSH, Gene Ontology 

(GO), and Protein Ontology (PRO).  

Table 5.1 shows the number of unique concepts per semantic group before and after 

semantic consolidation. Overall, semantic consolidation resulted in reducing the number 

of unique concepts by 51.78% (i.e., from 102,750 to 49,506 concepts). Concepts in the 

Genes group were impacted the most from semantic consolidation, whereby the average 

number of concepts subsumed by a PRO concept was 3.3. Concepts in the Disorders group 

also had a significant decrease in the number of concepts, with an average of 2.9 concepts 

subsumed by a MeSH concept. However, we did not observe notable consolidation of 

concepts in the Chemicals and Drugs and Physiology semantic groups, whereby the 

average number of UMLS concepts subsumed by MeSH and GO concepts was 1.3 and 1.1, 

respectively. These results highlight the highly granular nature of the UMLS as a 

knowledge resource for representing biomedical concepts in literature. The semantic 

consolidation task led to the merging of multiple, granular UMLS concepts into higher-

level concepts in MeSH, GO, and PRO vocabularies.  
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Table 5.1: Number of unique concepts before and after semantic consolidation 

Semantic Group Number of unique concepts 
before consolidation 

Number of unique concepts 
after consolidation 

Chemicals and Drugs 34,423 25,286 

Disorders 25,261 5,717 

Genes 37,781 14,496 

Physiology 5,285 4,011 

 

To assess the impact of the semantic consolidation on its coverage of the domain being 

investigated (i.e. cancers), we examined the representation of cancer-related concepts 

within different semantic groups (i.e., chemicals and drugs, disorders, physiology, and 

genes) before and after consolidation. We used the Comparative Toxicogenomics Database 

(CTD) as a reference to evaluate the domain coverage, as it encompasses curated concepts 

covering  cancers. Using CTD, we extracted concepts that represent cancer sub-types (e.g., 

breast cancer, colon cancer, etc.) and concepts that have known associations with the 

development or treatment of cancers (i.e., chemicals, genes, and physiological 

phenotypes). The concepts extracted from CTD – referred to as domain concepts – were 

aggregated into four semantic groups: disorders, chemicals and drugs, physiology, and 

genes. Subsequently, we evaluated the domain coverage in each semantic group by 

calculating the overlap between the literature-based concepts before/after consolidation 

and domain concepts extracted from CTD.  

Table 5.2 presents the extent of the domain coverage before and after semantic 

consolidation across four semantic groups. We note an increase in domain coverage across 

all semantic groups after semantic consolidation, with the most increase in the Genes group 

(33.9% increase), followed by Chemicals and Drugs (4.4% increase), Physiology (4% 

increase) and Disorders (2% increase). These results partially validate that the semantic 

consolidation task did not compromise the coverage of biomedical domains across the four 

semantic groups, rather it improved the overall proportion of represented concepts from all 

the target vocabularies. This task will facilitate the integration of curated knowledge from 
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knowledge bases that use the same vocabularies for representing biomedical concepts and 

will also assist in reducing the discovery search space in LBD.  
Table 5.2: Domain coverage before and after semantic consolidation 

Semantic Group Domain coverage before 
semantic consolidation (%) 

Domain coverage after 
semantic consolidation (%) 

Chemicals and Drugs 74.7% 79.1% 

Disorders 95.8% 97.8% 

Genes 52.4% 86.3% 

Physiology 19.1% 23.1% 

5.2 Baseline Literature-Based KG Construction: 
Semantic triples (subject-predicate-object) were used to generate the baseline KG using 

Neo4j—a node was created for each unique subject or object concept, and directed relations 

between nodes were created based on the predicates extracted from the literature. We 

assigned properties to nodes signifying the concept’s preferred vocabulary name, semantic 

type, and semantic group. Likewise, the relations in the KG were assigned properties 

indicating their predicate type (i.e., relation type) and relation weight, which was 

determined by the frequency of occurrence of the relation type between a given subject and 

object concept.  

Table 5.3 shows that the baseline KG comprises over 49,000 nodes and over 1 million 

relations. However, the average degree centrality confirms that connections between nodes 

are sparse, as each node is connected to a small fraction of other nodes in the KG. This 

behaviour is further supported by the low graph density of 0.0006. Despite its large size, 

these results indicate that the baseline KG is incomplete due to missing relations, which 

further emphasizes the need to augment the KG.   
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Table 5.3: Characteristics of the baseline KG 

Parameter 

Nodes 49,506 

Relations 1,541,035 

Average Degree Centrality 0.001 

Graph Density 0.0006 

5.3 Integrated KG Construction: 
We augmented the baseline KG with missing knowledge manually curated biomedical 

knowledge from the Gene Ontology (GO), and Comparative Toxicogenomics Database 

(CTD), where we acquired 442,295 instances of curated knowledge in the form of subject-

predicate-object triples relating to chemical-disease, gene-disease, gene-biological 

process, and gene-molecular function associations. To avoid duplicate triples, we 

eliminated approximately 5% of curated triples that overlapped with the baseline KG. This 

modest overlap in knowledge is another indication that biomedical knowledge extracted 

from a single source is inherently incomplete, which further underlines the need to integrate 

knowledge from multiple heterogeneous sources. Table 5.4 shows the breakdown of the 

remaining 422,233 instances of curated knowledge.  
Table 5.4: Curated knowledge extracted from biomedical KBs 

Curated Associations Number of Acquired Triples Source 

Chemical-Disease 6,089 CTD 

Gene-Disease 4,451 CTD 

Gene-Biological Process 91,835 GO 

Gene-Molecular Function  144,675 GO 

 

The largest source of curated knowledge was acquired from GO, which provided a total of 

236,510. CTD provided a total of 10,540 triples. This distribution is not surprising, as the 
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baseline KG had limited coverage of the Physiology domain, which largely comprises 

molecular function and biological process concepts. 

Curated triples acquired from biomedical knowledge bases were merged with the baseline 

KG to generate the integrated KG, which now consisted of 1,788,085 unique triples, 

resulting in a 16% increase in the number of triples compared to the baseline KG. Figure 

5.2 shows the distribution of the nodes and relations in the integrated KG. We note that 

knowledge integration contributed to a significant number of new nodes (i.e., concepts), 

particularly within the Physiology semantic group. With respect to relations, the integration 

of curated knowledge contributed to 13% of new relations in the integrated KG, most of 

which were STIMULATES and AFFECTS relation types. 

Figure 5.2: Distribution of nodes and relation in integrated KG

The integrated KG serves as input for the subsequent augmentation task which entails 

predicting relations between pre-existing nodes via KGC methods. 

5.4 Evaluation of KG Embeddings for KGC:
This section presents evaluation of KG Embedding (KGE) models applied to achieve an 

optimal KGC performance. Using the integrated KG as input, we  investigated three KGE 

models: TransE, DistMult, and ComplEx. Two forms of evaluations were conducted: a 

visual analysis of KGEs to assess the quality of the embeddings in distinguishing between 

various node types (i.e., semantic groups) and relation types, and an assessment of KGE 

models for KGC tasks through relation prediction. 
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5.4.1 Visual Analysis of KGEs: 
We applied the Uniform Manifold Approximation and Projection (UMAP) dimensionality 

reduction method to visually assess the quality of KGEs. UMAP maps node and relation 

embeddings into 2-dimensional spaces such that similar embeddings are placed into nearby 

spaces, and as such it can be used to visualize clusters within the data to uncover features 

captured by the KGE models. For example, we can assess how well nodes within a 

semantic group are clustered (local feature) and how similar semantic group clusters 

collocate with one another (global feature). We applied UMAP to node relation 

embeddings generated by all three KGE models. It may be noted that all reported results 

are based on tuned models, which have been trained on a training set and tuned accordingly 

on a validation set.  

Figure 5.3 shows the 2D UMAP visualizations of node embeddings based on the different 

KGE models. Compared to visualizations of TransE and ComplEx, DistMult embeddings 

show distinct clusters of nodes based on high-level semantic groups (i.e., disease, 

genes/proteins, chemicals, and physiology) with relatively clear group separation, thus 

indicating that DistMult is capable of distinguishing between multiple types of KG nodes. 

This can be attributed to DistMult being a semantic matching model which exploits 

similarity-based functions to embed entities and relations in a KG. Furthermore, DistMult 

uses a multiplicative interaction function to measure the plausibility of KG triples by 

matching the latent semantics of entities and relations. Hence, DistMult ensures that entities 

and relations with similar semantics tend to have similar embeddings. 

Visualization of ComplEx node embeddings shows well-defined clusters for 

Genes/Proteins and Physiology groups, however chemical and disease node clusters are 

less distinguishable compared to DistMult due to overlaps with other semantic groups.  

Visualization of TransE node embeddings shows the formation of two large groups of 

overlapping clusters, indicating that TransE does not adequately capture the KG’s local 

features since nodes within the same semantic groups tend to appear in separate clusters.  

Overall, our visualization results confirm that the embeddings by DistMult and ComplEx 

capture the KG’s local and global features—i.e. nodes within the same semantic groups 

form well-demarcated clusters, and similar semantic groups tend to collocate (e.g., 

chemicals and genes/proteins).  
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Figure 5.3: Illustration of 2-dimensional UMAP plots for KG nodes based on different embeddings. Green represents 
Genes/Proteins, yellow represents Diseases, blue represent Chemicals, and red represent Physiology (i.e., GO) (From 

left to right: DistMult, ComplEx,

Figure 5.4 presents 2D UMAP visualizations of relation embeddings based on the three 

KGE models. Visualizations of DistMult and ComplEx relation embeddings indicate that 

semantically similar relations are projected into nearby spaces. For example, relations 

denoting therapeutic (i.e., PREVENTS, TREATS), substance interactions (i.e., 

INTERACTS_WITH, INHIBITS, STIMULATES), disease etiology (i.e., PREDISPOSES, 

ASSOCIATED_WITH), and pharmacogenomics (i.e., AFFECTS, DISRUPTS, 

AUGMENTS) are projected into adjacent spaces in the DistMult and ComplEx scatterplots.  

This demonstrates that DistMult and ComplEx are capable of classifying semantically 

related relations based on their biomedical functions – i.e., pharmacogenomics, substance 

interaction, etc.

The visualization of TransE relation embeddings show less meaningful clusters of 

relations, and relations denoting therapeutic associations are further apart compared to their 

counterparts in DistMult and ComplEx relation embeddings. Our visualization results 

confirm that DistMult and ComplEx can capture relational semantics of the KG. 
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Figure 5.4: UMAP visualization of relation embeddings 

5.4.2 Relation Prediction Evaluation: 
We evaluated the performance of KGE models for relation prediction in terms of KGC 

using random- and time-slicing evaluation settings.  

In the random-slicing setting, 20% of triples were randomly selected and the relations 

between the subject and object concepts were eliminated to form the evaluation set, while 

the remaining 80% of triples were retained as the training set. Since, a random split can 

result in train-to-test leakage, which can inflate the relation prediction results, we avoided 

data leakage on random split by ensuring that the subject and object concepts constituting 

the evaluation set are not linked by a predicate (i.e., relation) in the training set. This 

strategy ensured that the evaluation data is not seen by models at training time. The triples 

in the training set were used to train KGE models, and the output embeddings were used 

to predict the a priori eliminated relations in the evaluation set. Training set consisted of 

1,615,467 triples and the evaluation set consisted of 403,869 incomplete triples (i.e., 

subject, ?, object). Figure 5.5 compares the distribution of relations in the evaluation and 

training sets, indicating that the evaluation set is a representative sample of the integrated 

KG relations.     
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Figure 5.5: Distribution of relations in training and evaluation triples

For time-slicing based evaluation, we set the cutoff-date to 2015 to form the training set 

(pre-cutoff-date) and evaluation set (post-cutoff-date). The target was to predict relations 

in the evaluation set – i.e., relations that have formed after the 2015 cutoff date. The relation 

prediction results for TransE, DistMult and ComplEx, for both experimental settings, are 

presented in Table 5.5.
Table 5.5: Relation prediction results

Model Random-slicing Time-slicing

Hits@1 Hits@3 Hits@5 Hits@10 MRR Hits@1 Hits@3 Hits@5 Hits@10 MRR

TransE 0 0.344 0.509 0.703 0.234 0 0.354 0.519 0.663 0.232

ComplEx 0.303 0.701 0.870 0.981 0.530 0.302 0.669 0.818 0.958 0.515

DistMult 0.511 0.863 0.957 0.998 0.692 0.308 0.689 0.848 0.968 0.528

The evaluation results show that DistMult outperforms ComplEx and TransE across both 

experimental settings for relation prediction, achieving higher Hits@k and MRR scores in 

the random-slicing setting, thus suggesting that DistMult can effectively handle KGC tasks. 

In the time-slicing experiment, the difference between DistMult and ComplEx is negligible 
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as both models achieve similar Hits@k and MRR. The results show that TransE does not 

adequately capture the knowledge within the integrated KG as it fails to predict missing 

relations when Hits@k = 1. It is worth noting that literature-based KGs contain numerous 

one-to-many and many-to-many relations, as scientific findings tend to progress with time, 

hence subject and object concepts can be linked by various semantic relations depending 

on the biological context.  This may explain the low performance of TransE, as it is not 

capable of embedding one-to-many and many-to-many relations, unlike DistMult and 

ComplEx.  

To determine whether the differences in predictive performance are statistically significant, 

we used the Wilcoxon signed rank test (two-tailed) to compare the MRR scores of the KGE 

models. The Wilcoxon signed rank test is a non-parametric test used to compare model 

prediction performance which does not require the assumption of data normality. As per 

this test, if the p-value is lower than or equal to 0.05, the difference in predictive 

performance, based on MRR scores, is considered statistically significant. Table 5.6 shows 

the results of the Wilcoxon signed rank test based on the MRR scores of the following 

combinations of models: TransE-ComplEx, TransE-DistMult, and ComplEx-DistMult. 

The test suggests that there is a statistically significant difference in the performance of 

DistMult and ComplEx compared to TransE (p-values < 0.05) based on the MRR scores 

obtained from the random-slicing and time-slicing evaluations. Additionally, we observe 

statistically significant difference in the predictive performance between ComplEx and 

DistMult for random-slicing evaluations.  
Table 5.6: Results of the Wilcoxon signed-ranked test 

Dataset P-value (MRR) 

TransE-ComplEx TransE-DistMult ComplEx-DistMult 

Random-slicing < 0.001 < 0.001 < 0.001 

Time-slicing < 0.001 < 0.001 0.163 
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Our results confirm that DistMult significantly outperforms ComplEx in predicting missing 

relations from an incomplete KG. In the time-slicing evaluation, there was no significant 

difference between ComplEx and DistMult, since the p-value is greater than the 

significance level of 0.05, thus suggesting that the performance of ComplEx and DisMult 

are comparable in predicting future relations in a KG.  

5.5 Augmented KG Construction via KGC: 
As DistMult was noted to be the best performing model for KGC based on the evaluation 

results reported in section 5.4. it was used to train on the integrated KG to generate the 

embeddings required for KGC. The dataset of incomplete triples (i.e., subject, ?, object) 

was created using MeSH descriptors in the literature corpus—we ensured that every subject 

and object concept has a corresponding embedding. Table 5.7 shows the representation and 

number of incomplete triples used as input for relation prediction based on the semantic 

group of subject and object concepts  
Table 5.7: Representation and number of incomplete input triples for relation prediction 

Type of incomplete input triples Number of triples 

Chemical, ?, Gene/Protein 146,706 

Chemical, ?, Disease 111,775 

Physiology, ?, Disease 11,461 

Gene/Protein, ?, Gene/Protein 831,297 

Gene/Protein, ?, Physiology 134,821 

Total 1,236,060 

 

The KGC input dataset consisted of 1,236,060 incomplete (subject, ?, object) triples, with 

the goal of predicting the missing relational element (i.e., predicate). For every incomplete 

triple, we retained the top scoring 3 relation prediction—i.e. DistMult at Hits@3. This 
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resulted in a set of complete (subject, predicate, object) triples, whereby the subject and 

object represent pre-existing KG nodes and the predicate was a previously missing 

semantic relation. Completed triples were added to the integrated KG to generate the 

augmented KG which serves as the final resource for LBD.  

The augmented KG consists of 3,024,145 unique semantic triples. Figure 5.6 shows the 

distribution of semantic relations in the augmented KG (which also includes relations from 

the baseline and integrated KG). We observe a notable increase in relations across all 

relation types as a result of the KGC task. The most commonly predicted relations were 

INTERACTS_WITH, INHIBITS, STIMULATES and PRODUCES given the high number of 

gene-gene, chemical-gene associations. 

 
Figure 5.6: Distribution of relations in augmented KG 

To demonstrate how the KG topology evolves throughout the multi-step knowledge 

completion process, we present a comparison between the baseline, integrated, and 

augmented KGs in Table 5.8. The comparison shows a significant increase in the number 

of nodes and relations in the augmented KG compared to the baseline KG. However, it is 

important to note that KG augmentation via KGC did not result in adding new nodes to the 

KG, as the task was focused on predicting relations. The density parameter indicates that 

the augmented KG is denser than both the baseline KG and the integrated KG, with a 16.7% 
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increase in density from the baseline KG to the augmented KG. This may indicate that the 

augmented KG is still relatively incomplete, as is the case for almost all biomedical KGs. 

However, we posit that a dense KG is not always beneficial, as traversing a very dense KG 

is significantly more costly than sparse KGs.  
Table 5.8: Comparison of the baseline, integrated, and augmented KGs 

Parameter Baseline KG Integrated KG Augmented KG 

Nodes 49,506 63,844 63,844 

Relations 1,541,035 1,788,085 3,024,145 

Density 0.0006 0.0004 0.0007 

5.6 Literature-Based Discovery (LBD) Tasks: 
In this section, we report the results of LBD task using framework for: (i) replicating cancer 

discoveries reported in the literature; and (ii) repurposing existing drugs for new cancer 

indications. We will compare the results of the different variations of our framework, each 

incorporating a specific KG, thus demonstrating the efficacy of our implemented methods.   

5.6.1 Cancer Discoveries: 
Cancer discoveries reported in peer-reviewed literature were replicated using the open-

based ABC discovery model, which was applied to a time-sliced version of the baseline, 

integrated, and augmented KGs. Cancer discoveries were replicated using time-sliced KGs 

and open-based discovery to generate candidate ABC discovery paths. We define a 

replicated discovery path as any path where the source (A), intermediate (B), and target 

(C) concepts match the targeted discovery shown Table 5.9.  

To perform LBD based discovery paths, the KGs were split at a specific point in time, 

corresponding to when the discovery was reported in the literature, to generate pre-cutoff 

KGs that serves as the literature-based KG for LBD tasks. Next, the pre-cutoff KGs were 

traversed to identify ABC discovery paths that describe an indirect relationship between a 

predefined source node (A) and a target node (C) through an intermediate node (B).  
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Table 5.9: Cancer test case discoveries 

Date of 
Discovery  

Concept A Concept B Concept C 

2011 Name: NRF2 
ID: PR_000011170 
Semantic Group: 
Gene 

Name: Reactive Oxygen Species 
(ROS) 
ID: D017382 
Semantic Group: Chemical 

Name: Pancreatic 
Cancer 
ID: D010190 
Semantic Group: 
Disorders 

2015 Name: IL-17 
ID: PR_000001138 
Semantic Group: 
Gene 

Name: p38ɑ 
ID: PR_000003107 
Semantic Group: Gene 

Name: MKP-1 
ID: PR_000006736 
Semantic Group: Gene 

2016 Name: NOTCH1 
ID: PR_000011331 
Semantic Group: 
Gene 

Name: Cellular Senescence 
ID: GO_0090398 
Semantic Group: Physiology 

Name: CEBPB 
ID: PR_000005308 
Semantic Group: Gene 

Name: NFKB1 
ID: PR_000001754 
Semantic Group: 
Gene 

Name: BCL2 
ID: PR_000002307 
Semantic Group: Gene 

Name: Adenoma 
ID: D000236 
Semantic Group: 
Disorders 

2017 Name: CXCL12 
ID: PR_000006066 
Semantic Group: 
Gene 

Name: Cellular Senescence 
ID: GO_0090398 
Semantic Group: Physiology 

Name: Thyroid Cancer 
ID: D013964 
Semantic Group: 
Disorders 

5.6.1.1 Replication of Cancer Discoveries: 

Table 5.10 presents the aggregated results of replicating the cancer discovery test cases 

using time-sliced versions of the baseline, integrated, and augmented KGs. The results 

indicate that the baseline KGs enabled the replication of only one discovery path (20% 

recall), the integrated KGs enabled the replication of two discovery paths (40% recall), and 

the integrated KGs replicated all 5 cancer discovery paths (100% recall).   

The lack of replicated discoveries by the baseline and integrated KGs is due to the absence 

of numerous relations between the source, intermediate, and target concepts as a result of 
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incomplete knowledge extraction and/or the lack of explicit knowledge in curated 

knowledge bases. The improved performance of the augmented KG confirms the efficacy 

of our KG completion methods in predicting meaningful semantic relations between 

implicitly associated concepts. It is worth noting that the integrated KG, which was 

supplemented with curated biomedical knowledge, did not yield significant benefits to the 

discovery process. This further emphasizes the need for novel methods, such as KGC, to 

automatically infer missing knowledge in biomedical KGs.  
Table 5.10: Cancer discovery test case replication 

Time-sliced 
KG 

Average number of 
semantic triples 

Average number of 
ABC discovery 
paths 

Recall of cancer test 
case discoveries (%) 

Baseline 930,986 16,280 20% 

Integrated 1,133,906 16,441 40% 

Augmented  1,210,652 66,564 100% 

 

Table 5.11 presents the detailed statistics of all time-sliced KGs and the number of 

replicated discoveries per KG. Considering the KG sizes, we observe a significant 

expansion in the number of semantic triples within the augmented KGs compared to the 

integrated and baseline KGs. On average, the augmented KGs contain approximately 

280,000 more semantic triples compared to the baseline KGs, and 76,746 more semantic 

triples compared to the integrated KGs. The increase in semantic triples is also reflected in 

the number of ABC discovery paths generated from the augmented KGs, which far 

surpasses the baseline and integrated KGs. This further underlines the significant number 

of knowledge instances However, we observe minimal increase in ABC discovery paths 

from the baseline to the integrated KGs, indicating that the curated knowledge extracted 

from biomedical KBs did not contribute to many knowledge instances related to the source 

(A) or intermediate (B) concepts. This further underlines the significant amount of relevant 

knowledge instances generated by KGC methods to augment the baseline and integrated 

KGs.  
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Table 5.11: Replication of cancer discovery paths 

Time-slice 
date 

KG Number of unique 
triples (KG size) 

Number of 
Candidate ABC 
Paths 

Number of Replicated 
Discovery Path(s) 

2011 Baseline 707,970 12,525 1 

Integrated 836,166 12,569 1 

Augmented 975,328 50,854 1 

2015 Baseline 938,032 1,704 0 

Integrated 1,159,040 1,743 0 

Augmented 1,211,458 21,185 1 

2016 Baseline 1,004,131 33,633 0 

Integrated 1,232,402 34,070 1 

Augmented 1,302,252 101,475 2 

2017 Baseline 1,073,810 17,258 0 

Integrated 1,308,014 17,380 0 

Augmented 1,353,568 113,928 1 

Table 5. 1: Replication of cancer discovery paths 

The full set of replicated discovery paths along with their semantic relations are depicted 

in Figure 5.7. Semantic relations acquired by SemRep from the literature are denoted as 

(SemRep Relations), relations acquired from biomedical KBs are denoted as 

(Knowledgebase Relations), and relations predicted using KGC are denoted as (Predicted 

Relations). We note that, as multi-relational KGs, the discovery paths included multiple 

relations between the pair of A-B or B-C concepts, this is typical of literature-based KGs 

as scientific findings tend to progress with time or change based on the research context.  
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Figure 5.7: Replicated cancer discovery paths 

We evaluated the quality of LBD outputs by cross-validating them against the original 

articles from which the discoveries were established. We manually screened full-text 

articles to identify the mechanistic relations between the biomedical concepts constituting 

the discoveries and cross-validated them with the retrieved discovery paths. The following 

subsections detail the validation of our LBD outputs by the augmented KG based on the 

reported studies in the literature.  

NRF2, ROS and pancreatic Cancer: 

According to DeNicola et al., reactive oxygen species (ROS) are highly reactive 

carcinogenic chemicals. Physiological stress can result in increasing ROS levels which 

ultimately may result in cellular and DNA damage (DeNicola et al., 2011). Under normal 

physiological conditions, levels of ROS are tightly controlled by the NRF2-induced 
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detoxification program to maintain a balanced intracellular environment. However, the 

authors note that in neoplastic environments NRF2 is activated suggesting that enhanced 

activation of NRF2 may lead to pro-carcinogenic effects. Hence, DiNicola et al. 

investigated the metabolic environment in pancreatic cancer cells and discovered that 

NRF2-induced ROS detoxification can indeed result in promoting carcinogenesis 

(DeNicola et al., 2011). This phenomenon is attributed to enhanced NRF2 activity which 

results in maintaining a balanced intracellular environment, thereby allowing the cancerous 

cells to grow while preventing cellular death.  

Our LBD output in Figure 5.7 shows multiple distinct paths involving NRF2, ROS and 

pancreatic cancer. Interestingly, the semantic relations between NRF2 and ROS include 

inhibits, stimulates, and interacts_with. We examined the source sentences from which 

these triples were extracted, and found that high expression of NRF2 inhibits ROS (Li et 

al., 2009), while low expression of NRF2 stimulates ROS production (Singh et al., 2010). 

The Semantic relation between ROS and pancreatic cancer suggests a known association 

between them, however, this association was not in the context of an already existing 

cancer – rather, the association describes how high levels of ROS can promote 

carcinogenesis. When considering the full discovery path, it can be inferred that high levels 

of NRF2 can lower ROS production which is known to be associated with pancreatic 

cancer.  

IL17, p38a, and MKP-1: 

Gaffen et al. investigate the effect of IL-17 mediated signaling on p38a and MKP-1 in 

nonimmune cells (Gaffen & McGeachy, 2015). The authors suggest that the binding of IL-

17 to its receptor causes the activation of p38a, which in turn activates MKP-1. The LBD 

output path corresponding to this discovery shows that IL-17 in linked to p38a via three 

predicted semantic relations, and that p38a is linked to MKP-1 also via three predicted 

semantic relations. The top scoring relation prediction between IL-17 and p38a was 

interacts_with, followed by produces, and inhibits. Similarly, the top scoring relation 

prediction between p38a and MKP-1 was interacts_with, followed by stimulates, and 

inhibits. Hence, if we consider the top scoring predictions, the LBD discovery path (IL-17 

– INTERACTS_WITH – p38a – INTERACTS_WITH – MKP-1) suggests a generalized 

interaction between the gene products. 
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NOTCH1, cellular senescence, and C/EBPb: 

A study by Hoare et al. revealed that fluctuations in NOTCH1 activity affects cellular 

senescence by activating TGF-B while repressing C/EBPb activity (Hoare et al., 2016). 

The authors suggest that at high NOTCH1 levels, cells undergo a phase of growth, while 

at low levels cellular senescence replaces the growth phase which is accompanied by 

inhibition of C/EBPb activity. Our LBD output corresponding to this discovery implies a 

similar hypothesis, whereby one of the paths states that (NOTCH1 – CAUSES – 

Senescence – DISRUPTS – C/EBPb). We note that relations between senescence and 

C/EBPb were predicted, as no relations were found in the literature-based semantic triples 

nor in the curated knowledge from biomedical KBs. 

NFKB2, BCL2, and Adenoma: 

Van der Heijden et al. investigated the role of NFKB2 and its target BCL2 in intestinal 

adenomas (van der Heijden et al., 2016). The authors discovered that NFKB signaling 

promoted the expression of anti-apoptotic factor BCL2, which in turn is associated with 

the outgrowth of adenomas, since high expression of BCL2 mediates the resistance of 

cancerous cells by preventing cellular death (i.e., apoptosis). Our LBD output 

corresponding to this discovery shows several discovery paths involving NFKB2, BCL2 

and adenomas. Interestingly, one of the paths indeed confirms this hypothesis, which states 

that (NFKB2 – STIMULATES – BCL2 – ASSOCIATED_WITH – Adenomas). The other 

paths also illustrate some notion of substance interaction between NFKB2 and BCL2 (e.g., 

affects, interacts_with), however, these SemRep-based semantic relations do not 

contextualize the type of interaction. We found one semantic relation between BCL2 and 

adenomas (i.e., associated_with), which was acquired from biomedical KBs. While the 

association between BCL2 and various cancers, including adenomas, are well-reported in 

the literature, the fact that this relation was not identified by SemRep further underlines its 

limitations in knowledge extraction. 

CXCL12, cellular senescence, and thyroid cancer: 

CXCL12 chemokines have an important role in cell migration and cancer metastasis (Wang 

et al., 2006). According to Kim et al., CXCL12 chemokines are also implicated in 

increasing the survival of senescent cells in thyroid cancer, and ultimately promoting 

carcinogenesis (Kim et al., 2017). Our LBD output corresponding to this discovery 
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partially confirms the hypothesis that CXCL12 promotes cellular senescence, which is also 

known to be associated with thyroid cancer; (CXCL12 – AUGMENTS/CAUSES – 

Senescence – ASSOCIATED_WITH/AFFECTS – Thyroid cancer). Objectively, the 

source sentences from which the semantic relations between cellular senescence and 

thyroid cancer were extracted did not explicitly mention that senescent cells promote 

carcinogenesis, rather, nearly all the literature-based sources contextualize the relation 

between senescence and thyroid cancer as a cellular mechanism to prevent carcinogenesis. 

5.6.1.2 Filtering and Ranking ABC Discovery Paths to Prioritize Valid Cancer 
Discoveries: 

LBD tends to generate numerous discovery paths which makes the task of manually 

reviewing and validating the output impractical. Hence, it is necessary for LBD 

frameworks to provide a ranked list of candidate knowledge discoveries to (a) eliminate 

noisy and knowledge; and (b) prioritize interesting  and meaningful knowledge. This 

section presents our results for filtering and ranking the cancer discovery paths.  

Table 5.13 presents the results of the filtering and ranking of the ABC discovery paths 

using the open-based discovery paradigm. The following parameters and values were 

explored to control the filtering process: concept specificity score (2, 3, 4, 5), Linking Term 

Count (LTC) (3, 5, 10, 15), and corpus-based co-occurrence frequency (3, 5, 10, 15). The 

values shown in Table 5.12 represent the optimal parameter values for filtering and ranking 

the discovery paths using two variants of the IC-based ranking metric.  

The results suggest that a concept specificity score of 4 to 5 and an LTC of 10 to 15 are the 

most effective filtering parameters for targeted discoveries. However, determining the 

optimal value for the frequency parameter is inconclusive as values ranged from 5 to 15.  

With respect to ranking metrics, our results indicate that 𝐼𝐶𝑝𝑎𝑡ℎ  performed slightly better 

in ranking targeted discoveries, with an average RR of 0.82 compared to 0.79 for the  

𝐼𝐶𝑠𝑢𝑚 metric. However, the difference in rankings between 𝐼𝐶𝑝𝑎𝑡ℎ  and  𝐼𝐶𝑠𝑢𝑚 across all 5 

discovery tasks were not statistically significant, with a p-value greater than the 

significance level based on the Wilcoxon signed-rank test. This suggests that the 

performance of 𝐼𝐶𝑝𝑎𝑡ℎ  and  𝐼𝐶𝑠𝑢𝑚 are comparable in targeted LBD tasks.  
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Table 5.12: Filtering and ranking of cancer discovery paths 

Discovery Path Filtering Parameter 
values 

Ranking 
Metric 

Relative Rank 
(RR) 

NRF2 - ROS - Pancreatic cancer  Specificity > 5 
LTC > 15 
Triple Count > 15 

𝐼𝐶𝑝𝑎𝑡ℎ 0.91 

𝐼𝐶𝑠𝑢𝑚 0.83 

IL17 - p38a  - MKP-1 Specificity > 5 
LTC > 10 
Triple Count > 5 

𝐼𝐶𝑝𝑎𝑡ℎ 0.61 

𝐼𝐶𝑠𝑢𝑚 0.56 

NOTCH1 - Senescence - C/EBPb  Specificity > 4 
LTC > 15 
Triple Count > 5 

𝐼𝐶𝑝𝑎𝑡ℎ 0.66 

𝐼𝐶𝑠𝑢𝑚 0.65 

NFKB2 - BCL2 - Adenoma  Specificity > 5 
LTC > 15 
Triple Count > 5 

𝐼𝐶𝑝𝑎𝑡ℎ 0.95 

𝐼𝐶𝑠𝑢𝑚 0.95 

CXCL12  – Senescence  – Thyroid 
cancer  

Specificity > 4 
LTC > 15 
Triple Count > 10 

𝐼𝐶𝑝𝑎𝑡ℎ 0.98 

𝐼𝐶𝑠𝑢𝑚 0.98 

 

Table 5.13 presents the ranking results compared to baseline metrics. The performance of 

ranking metrics vary across the five targeted discovery tasks, which is expected since each 

task is applied to a unique literature-based KG using time-slicing techniques. Overall, the 

𝐼𝐶𝑝𝑎𝑡ℎ  resulted in an average Relative Rank (RR) of 0.82 compared to 0.65 for Odds Ratio 

(OR), 0.59 for Pearson’s Chi-square (𝑋2), 0.48 for Log-Likelihood Ratio (LLR), and 0.17 

for the Co-Occurrence Frequency (COF) metric. We observe that the 𝐼𝐶𝑝𝑎𝑡ℎ  metric 

achieves the highest RR for 3 out of the 5 valid discovery paths, while the OR metric 

outperforms 𝐼𝐶𝑝𝑎𝑡ℎ  in ranking 2 valid discovery paths. However, we note that 𝐼𝐶𝑝𝑎𝑡ℎ  

consistently achieves an RR greater than 0.6, ranging from 0.61 to 0.98. In contrast, the 

OR metric exhibits a wider range of RR between 0.11 and 0.98, indicating inconsistent 

prioritization of valid discovery paths. This can be attributed to the inherent nature of OR 
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as an association-based metric, which is typically influenced by the total number of null 

co-occurrences between the discovery path entities. 
Table 5.13: Comparison of IC-based metrics with baseline for cancer discovery path ranking 

Discovery Path Ranking Metric Relative Rank 
(RR) 

NRF2 - ROS - Pancreatic cancer  𝐼𝐶𝑝𝑎𝑡ℎ 0.91 

LLR 0.68 

𝑋2 0.64 

OR 0.57 

COF 0.45 

IL17 - p38a  - MKP-1 𝐼𝐶𝑝𝑎𝑡ℎ 0.61 

LLR  0.56 

𝑋2 0.89 

OR 0.96 

COF 0.02 

NOTCH1 - Senescence - C/EBPb  𝐼𝐶𝑝𝑎𝑡ℎ 0.66 

LLR 0.25 

𝑋2 0.39 

OR 0.64 

COF 0.09 

NFKB2 - BCL2 - Adenoma  𝐼𝐶𝑝𝑎𝑡ℎ 0.95 

LLR 0.78 
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Discovery Path Ranking Metric Relative Rank 
(RR) 

NFKB2 - BCL2 - Adenoma 𝑋2 0.91 

OR 0.98 

COF 0.28 

CXCL12  – Senescence  – Thyroid 
cancer  

𝐼𝐶𝑝𝑎𝑡ℎ 0.98 

LLR 0.14 

𝑋2 0.1 

OR 0.11 

COF 0.02 

5.6.2 Drug Repurposing: 
In this section, we present the outcomes of repurposing pre-existing drugs for new cancer 

indications using LBD on a time-sliced KG with a 2015 cutoff date. The evaluation of the 

association between repurposed drugs and cancer indications is based on knowledge 

extracted from literature published after the 2015 cutoff date. We discuss the outcomes of 

drug repurposing discovery in section 5.6.2.1, followed by the results of ranking discovery 

paths in section 5.6.2.2. 

5.6.2.1 Drug Repurposing Discovery: 
Table 5.14 compares the performance of the discovery task on the baseline, integrated, and 

augmented KGs in terms of the number of valid discovery paths, number of repurposed 

drugs, and the recall of repurposed drugs relative to the silver standard. The results 

demonstrate that the augmented KG outperforms both the baseline and integrated KGs in 

the drug repurposing task, with a recall of 71.1% of all Drug-Cancer associations from the 

silver standard compared to a recall of 48.5% in the baseline KG and 48.9% integrated KG. 

These results support our hypothesis that relying solely on the integration of curated 

knowledge does not solve the problem of incompleteness in literature-based KGs as the 
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integrated and baseline KGs recall a similar number of Drug-Cancer associations. Further, 

the results indicate that the augmented KG generates a greater number of valid discovery 

paths, indicating that there were more valid intermediate genes linking a source drug and a 

target disease. This is a positive outcome as it implies that the augmented KG can generate 

more reliable hypotheses that can be further investigated in clinical studies.  
Table 5.14: Results of the drug repurposing discovery task without knowledge filtration 

KG Total Number of 
Discovery Paths 

Number of Valid 
Discovery Paths 

Recall of Repurposed 
Drugs 

Baseline 34,134 1,233 48.5% 

Integrated 34,587 1,247 48.9% 

Augmented  104,527 2,712 71.1% 

 

Despite the positive results, nearly 29% of drugs in the silver standard were not repurposed 

for new cancer indications using the augmented KG, which can be attributed to the strict 

path validity conditions. These conditions required established associations in curated 

knowledge bases between the source, intermediate, and target. However, if we 

hypothetically consider that external knowledge bases are incomplete and lag behind the 

current state of knowledge, relaxing the conditions for path validity to include discovery 

paths where only one of the source-intermediate or intermediate-target association is valid 

could lead to more drug repurposing. Table 5.15 presents the results of drug repurposing 

using relaxed path validity conditions. The number of valid paths and repurposed drugs 

increased across all KGs, with the augmented KG recalling 93.6% of all Drug-Cancer 

associations in the silver standard, while the baseline and integrated KG recalling 68.7% 

of associations in the silver standard. Further, we note a significant increase in the number 

of valid discovery paths, which means more hypotheses are generated by the relaxed 

validation. The relaxed conditions for path validity, where either the A-B or B-C 

association should be valid, are likely more practical for LBD for two reasons. Firstly, LBD 

is often used as a method for hypothesis generation, which means that not all source-

intermediate and intermediate-target associations need to be established in curated KBs 

beforehand. Secondly, our validation approach was based on a single source of curated 
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knowledge (i.e., CTD), and it is possible that a drug-gene or gene-cancer association is 

established in other sources but not captured in CTD. 
Table 5.15: Results of drug repurposing discovery task using relaxed validation conditions and without knowledge 

filtering 

KG Total Number of Discovery 
Paths 

Number of Valid Discovery 
Paths 

Recall Repurposed 
Drugs 

Baseline 34,134 2,468 68.7% 

Integrated 34,587 2,496 68.7% 

Augmented  104,527 6,615 93.6% 

5.6.2.2 Filtering and Ranking Drug Repurposing Discovery Paths: 

Table 5.16 presents the results (i.e., valid discovery paths and recall) obtained from non-

filtered discovery paths. To establish the most effective filtering thresholds for the 

discovery task, we examined the effects of various thresholds of concept specificity (3, 5), 

LTC (3, 5, 10), and co-occurrence frequency (3, 5, 10) on recall of valid discovery paths 

and repurposed drugs from the augmented KG using the relaxed validation conditions, as 

shown in Table 5.16. Expectedly, using lower filtering thresholds increases the recall of 

repurposed drugs and the number of valid paths. The combination of filtering thresholds 

with the lowest values yields 5,790 valid discovery paths (i.e., 87.5% of all possible valid 

paths) and 83.8% recall of all Drug-Disease associations in the silver standard. In contrast, 

the highest filtering thresholds resulted in the elimination of over 90,000 discovery paths, 

although it only generated a small fraction (16.3%) of all possible valid paths and merely 

15.9% of all Drug-Cancer associations in the silver standard.  

Using Pearson’s correlation coefficient (r), we observe a very strong negative correlation 

between the Triple Count parameter and Valid Discovery Paths (r = -0.91, p-value < 0.05), 

a weak negative correlation between Specificity and Valid Discovery Paths (r =-0.37, p-

value < 0.05), and a very weak negative correlation between LTC and Valid Discovery 

Paths (r =-0.08, p-value < 0.05). Analysis of correlation between filtering parameters and 

recall of repurposed drugs indicates a strong negative correlation for LTC (r = -0.65, p-

value < 0.05) and Triple Count (r = -0.61, p-value < 0.05), and a moderate negative 

correlation for Specificity (r = -0.41, p-value < 0.05). Lastly, correlation of Total Discovery 

Paths (i.e., size of discovery subgraph) with filtering parameters indicates a very strong 
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correlation with Triple Count (r = -0.94, p-value < 0.05), and a weak correlation with 

Specificity (r = -0.27, p-value < 0.05) and LTC (r = -0.17, p-value < 0.05). These results 

suggest that adjusting filtering parameters can impact the LBD process in terms of the 

discovery subgraph size, number of valid/meaningful discovery paths, and recall of 

discoveries. Additionally, the correlation of Triple Count with the subgraph characteristics, 

in terms of its size (i.e., Total Discovery Paths) and meaningful knowledge (i.e., Valid 

Discovery Paths), is more significant than the other parameters.  
Table 5.16: Results of drug repurposing discovery using different filtering thresholds and relaxed validation conditions 

Filtering Parameters Total Discovery 
Paths 

Valid Discovery 
Paths 

Recall of Repurposed 
Drugs Specificity LTC Triple 

Count 
3 3 3 92,572 5,790 83.8% 
3 3 5 76,340 4,908 79.6% 
3 3 10 26,876 2,081 58.4% 
3 5 3 89,254 5,800 75.6% 
3 5 5 72,491 4,937 66.8% 
3 5 10 23,859 1,900 41.1% 
3 10 3 79,950 5,568 54.1% 
3 10 5 63,112 4,741 48.0% 
3 10 10 17,979 1,474 22.0% 
5 3 3 71,329 4,252 63.1% 
5 3 5 58,548 3,451 59.7% 
5 3 10 20,920 1,534 44.6% 
5 5 3 68,568 4,277 56.5% 
5 5 5 55,674 3,500 49.6% 
5 5 10 18,638 1,381 30.2% 
5 10 3 61,301 4,018 39.3% 
5 10 5 48,274 3,351 34.2% 
5 10 10 14,010 1,061 15.9% 

 

Generally, the objective of an effective filtering approach for LBD is to yield a discovery 

subgraph which is small enough to facilitate exploration and review of generated 

discoveries, while retaining meaningful knowledge which constitute novel discoveries. 

Based on this notion and the analysis of the results in Table 5.16, we posit that filtering 

parameters Specificity = 3, LTC = 3, and Triple Count = 10 generate a condensed discovery 

subgraph consisting of 26,876 discovery paths in total while retaining most of the drug 
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repurposing discoveries (recall = 58.4%). Furthermore, if we consider querying the 

discovery subgraph on individual source nodes/concepts in the silver standard, the average 

number of discovery paths per query is reduced to 450 paths, which can be easily explored 

particularly when presented in a ranked order.  

Table 5.17 presents the results of ranking discovery paths generated by the augmented KG 

based on the following filtering parameters Specificity = 3, LTC = 3, and Triple Count = 

10. We compare the performance of IC-based ranking metrics 𝐼𝐶𝑝𝑎𝑡ℎ  and 𝐼𝐶𝑠𝑢𝑚 against 

baselines: log-likelihood ratio (LLR), Chi-square (X2), Odds Ratio (OR), and co-occurrence 

frequency (COF). With respect to precision, the results show that IC-based metrics 

outperform the baseline metrics at K = 10, 30, 50, and 100. We observe a substantial 

difference in the average precision between IC-based metrics and baselines. Further, the 

mean average precision (mAP), which measures the average precision at each valid 

discovery path across all source concepts/nodes, shows that IC-based metrics are 

effectively the better performing metrics compared to all baselines, including the 

traditional co-occurrence frequency.  
Table 5.17: Performance of IC-based ranking metrics compared to baseline ranking metrics using on the following 

filtering thresholds: specificity = 3, LTC = 3, triple count = 10 

Metric Average Precision @ K (AP@K) Average Recall @ K (AR@K) mAP RR 

K=10 K=30 K=50 K=100 K=10 K=30 K=50 K=100 

𝐼𝐶𝑝𝑎𝑡ℎ 0.312 0.319 0.308 0.284 0.049 0.146 0.224 0.377 0.627 0.585 

𝐼𝐶𝑠𝑢𝑚 0.319 0.332 0.317 0.291 0.047 0.141 0.212 0.358 0.630 0.587 

LLR 0.232 0.214 0.218 0.214 0.045 0.114 0.178 0.306 0.465 0.507 

X2 0.199 0.178 0.187 0.197 0.041 0.098 0.157 0.353 0.443 0.498 

OR 0.196 0.173 0.165 0.167 0.038 0.093 0.153 0.276 0.423 0.478 

COF 0.265 0.258 0.266 0.233 0.047 0.142 0.216 0.363 0.519 0.541 

 

When comparing the IC-based metrics to one another, the results suggest that both metrics 

have similar precision when ranking drug repurposing discovery paths. This observation 

was also reflected in the targeted cancer discoveries, which further underlines that both IC-

based metrics are well-suited for ranking LBD output.  

In terms of recall, the results demonstrate that IC-based metrics consistently outperform 
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association-based metrics. On average, the IC-based rankings contained a higher 

proportion of valid discovery paths in the top 10, 20, 50, and 100 ranks compared to 

association-based rankings. Specifically, the top 100 ranks (i.e., K = 100), the average 

recall is 0.36 for  

𝐼𝐶𝑠𝑢𝑚 and 0.38 for 𝐼𝐶𝑝𝑎𝑡ℎ , whereas the average recall for association-based metrics ranges 

from 0.28 to 0.31.  

We also analysed the performance of ranking metrics using low filtering parameter 

thresholds, as shown in table 5.18, to demonstrate that IC-based rankings are also capable 

of prioritizing valid discoveries in situations where the discovery sub-graph is large. 

Specifically, we chose the following thresholds for filtering: Specificity = 3, LTC = 3, and 

Triple Count = 3, which result in a discovery sub-graph consisting of 92,572 ABC 

discovery paths. The results indicate that IC-based metrics are still the better performing 

ranking metrics compared to baselines in terms of precision, recall, and the average 

relative rank of valid discovery paths. This analysis demonstrates that ICpath and ICsum are 

scalable to large discovery sub-graph sizes and, therefore, can adapt to a wide range of 

LBD tasks.  
Table 5.18: Performance of IC-based ranking metrics compared to baseline ranking metrics using the following 

filtering thresholds: specificity = 3, LTC = 3, triple count = 3 

Metric  Average Precision @ K (AP@K) Average Recall @ K (AR@K) mAP  RR 

K=10 K=30 K=50 K=100 K=10 K=30 K=50 K=100 

𝐼𝐶𝑝𝑎𝑡ℎ 0.292 0.293 0.295 0.274 0.026 0.097 0.154 0.265 0.478 0.601 

𝐼𝐶𝑠𝑢𝑚 0.304 0.294 0.292 0.251 0.024 0.083 0.136 0.232 0.479 0.603 

LLR 0.212 0.177 0.176 0.181 0.026 0.054 0.078 0.144 0.358 0.503 

X2 0.198 0.179 0.149 0.139 0.019 0.046 0.068 0.129 0.339 0.494 

OR 0.117 0.112 0.131 0.129 0.013 0.035 0.059 0.119 0.322 0.476 

COF 0.216 0.223 0.218 0.197 0.028 0.077 0.119 0.210 0.407 0.536 

5.7 Comparison of AKG-LBD Output with Existing LBD 
Systems: 

We compared the performance of AKG-LBD with other existing LBD systems, namely 

Arrowsmith (co-occurrence based), BITOLA (co-occurrence based), SemBT (semantic-
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based), MELODI-PRESTO (semantic-based), and LION-LBD (co-occurrence based). We 

used the cancer discovery test cases for comparison purposes, targeting the replication of 

valid discovery paths (the ranking of paths by the selected LBD systems is not considered 

in this analysis, as not all LBD systems provide a full ranked list of discovery outputs.).  A 

discovery path is considered replicated if the intermediate (B) concept matches the valid 

discovery paths in Table 5.10. We applied closed-based discovery by specifying the source 

and target concepts or terms. It is worth noting that the cancer discovery cases used in this 

analysis are adapted from the LION-LBD study, which were replicated entirely by the 

system (Pyysalo et al., 2019). However, we include the output of the LION-LBD system 

in this section for completeness.  

We will to point out that the drug repurposing test cases were not used in this analysis due 

to (a) the size of the silver standard dataset, which consists of over 300 Drug-Cancer 

associations, (b) the selected LBD systems do not support the execution of discovery tasks 

on multiple source and target concepts simultaneously, and (c) validating the intermediate 

concept will be difficult, as there are multiple valid intermediates for each pair of source 

and target concepts.  

Table 5.19 presents the results of replicating the cancer discovery test cases using the 

selected LBD systems when compared to AKG-LBD. A performance comparison 

illustrates that AKG-LBD and LION-LBD are the only systems capable of successfully 

replicating all the discovery test cases. Arrowsmith also showed good performance by 

replicating 4 out of 5 discoveries, which is expected considering the high recall of co-

occurrence-based systems. However, it should be noted that Arrowsmith relies solely on 

information extracted from article titles. BITOLA and SemBT are specialized systems 

focused on gene-disease associations, and as a result these systems do have not the broader 

capacity to handle other discovery tasks. Despite their focus on gene-disease associations, 

both BITOLA and SemBT failed to replicate discovery paths involving gene-disease 

associations. The semantic-based MELODI-PRESTO system did not replicate any of the 5 

discovery paths—this outcome could likely be affected by the limitations of the provided 

API, which only considers the most recent 1 million articles in the MEDLINE database. 

Despite the seemingly similar performances between AKG-LBD and LION-LBD in 

knowledge discovery, we note that there are many differences in the respective LBD 
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methodology of each system. AKG-LBD is a semantic-based LBD framework which has 

the advantage of providing the underlying functional relationships between biomedical 

entities, as described in the literature. In contrast, LION-LBD provides associations 

between entities based on the co-occurrence of biomedical entities in a sentence or an 

abstract. Co-occurrence of two entities in the literature does not necessarily indicate the 

existence of a functional relationships between them, thus may lead to the generation of 

noisy knowledge discoveries. AKG-LBD employs cutting-edge semantic-based methods 

to extract meaningful and non-ambiguous knowledge from the literature in the form of 

subject-predicate-object triples. 

Furthermore, AKG-LBD maximizes the utilization of semantic-based knowledge by 

employing advanced KG representation learning techniques to predict new semantic 

relations among biomedical entities. In contrast, LION-LBD does not utilize such 

predictive techniques, as the literature-based knowledge is represented as a co-occurrence 

network, which is not compatible with advanced KG representation learning methods. 

We posit that AKG-LBD contemporizes and enhances LBD by employing novel methods 

that unleash the potential of semantics-based knowledge.  
Table 5.19: Results of replicating the cancer discovery test cases using various LBD systems 

Discovery 
Path 

Arrowsmith BITOLA SemBT MELODI-
PRESTO 

LION-LBD AKG-LBD 

NRF2 - 
ROS - 
Pancreatic 
cancer 

Replicated Not 
replicated 

Not 
replicated 

Not 
replicated 

Replicated Replicated 

IL17 - p38a  
- MKP-1 

Replicated N/A N/A Not 
replicated 

Replicated Replicated 

NOTCH1 - 
Senescence 
- C/EBPb 

Replicated N/A N/A Not 
replicated 

Replicated Replicated 

NFKB2 - 
BCL2 - 
Adenoma 

Not 
replicated 

Not 
replicated 

Not 
replicated 

Not 
replicated 

Replicated Replicated 

CXCL12  – 
Senescence  
– Thyroid 
cancer 

Replicated Not 
replicated 

Not 
replicated 

Not 
replicated 

Replicated Replicated 

5.8 Summary: 
This chapter presented the results of the components of the AKG-LBD framework, with a 

focus on an eventual evaluation of replicating cancer discoveries and repurposing drugs for 
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new cancer indications. We demonstrated the step-wise enhancement of the baseline KG 

resulting in a more complete augmented KG.  

The baseline KG was constructed using semantic-based knowledge extracted from the 

literature by combining the outputs of SemRep and PubTator. Subsequently, semantically 

related and/or synonymous biomedical concepts were consolidated into 

atomic/standardized concept representation using condensed and specialized biomedical 

vocabularies, such as PRO and MeSH, rather than the comprehensive UMLS vocabulary, 

which often represents semantically similar/related concepts under different concept 

identifiers. This resulted in broader coverage of the knowledge domain.  

The baseline KG was extended by using high quality curated knowledge from biomedical 

KBs, resulting in an  integrated KG. Despite supplementing the baseline KG with new 

relations and nodes, this process did not significantly enhance the density of the baseline 

KG. This was an indication that supplementing literature-based KGs with curated 

knowledge alone does not result in a complete biomedical KG.  

The integrated KG was extended to yield the augmented KG by predicting missing 

relations between pre-existing nodes in the integrated KG. The relation prediction task 

relied on KGE models that encode KG nodes and relations as low-dimensional vectors, 

thereby making them amenable to relation prediction tasks. We presented the results of 

evaluating three KGE models (TransE, DistMult, and ComplEx) on relation prediction 

tasks. Our results indicated that the semantic matching model, DistMult, was the best 

performing model, due to its capability in distinguishing between different node and 

relation types. On the relation prediction task, DistMult achieved the highest Hits@K and 

MRR results compared to TransE and ComplEx. Hence, DistMult was selected to augment 

the integrated KG by predicting missing relations. The informed relation prediction task 

resulted in adding over 1 million new relations to the integrated KG, which generated the 

augmented KG with enhanced graph density compared to the baseline. Despite these 

efforts, we posit that the augmented KG is likely incomplete due to the limitations of 

closed-world KGC.  

We evaluated the utility of the baseline, integrated, and augmented KGs in two LBD tasks 

related to replicating targeted cancer discoveries, and repurposing existing drugs for new 

cancer indications. In the targeted discovery task, the baseline KG replicated one out of 
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five discoveries, the integrated KG replicated two out of five discoveries, and the 

augmented KG replicated five out of five discoveries. Similarly, the augmented KG 

resulted in a greater number of repurposed drugs compared to the baseline and integrated 

KGs via the strict and relaxed validations. Importantly, these results indicated that the 

improvement in LBD performance from baseline to integrated is marginal, whereby in both 

evaluations one additional discovery path was replicated by the integrated compared to the 

baseline KG. This is a strong indication that integration of curated knowledge alone is not 

sufficient to enhance the LBD process. However, the additional step of KGC is significant 

towards LBD performance. 

With regards to filtering and ranking discovery paths, our results indicated that there is no 

significant difference between the IC-based metrics, whereby both metrics perform 

comparably in ranking relevant and meaningful discovery paths. However, compared to 

the baselines, IC-based metrics showed a significant improvement in the ranking 

performance, given that our proposed metrics are focused, by design, on rarely occurring 

knowledge instances in the literature.  
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Chapter 6 Conclusion and Future Work 
This dissertation investigated semantics-based methods and KG representation learning 

techniques to develop novel solutions addressing persistent/fundamental challenges in 

semantic-based LBD. Our investigation resulted in the AKG-LBD framework to facilitate 

semantics-based knowledge discovery in the biomedical domain. We applied the AKG-

LBD framework in real-world discovery tasks, resulting in the replication of biomedical 

discoveries published in peer-reviewed publications.  

In the following sections, we provide a summary of our research motivations, discuss the 

enhancements the AKG-LBD framework brings to existing LBD frameworks, examine the 

practical implications for applying AKG-LBD on real-world discovery tasks, and conclude 

with a discussion on the limitations of this research and potential future work to address 

these limitations.  

6.1 Research Motivations: 
LBD is a promising paradigm that enables knowledge discovery from the vast and rapidly 

expanding biomedical literature. As the volume of publications continues to grow 

exponentially, keeping up with the pace of biomedical research has become increasingly 

challenging. In this regard, LBD offers a solution leveraging computational methods to 

extract and uncover hidden knowledge from the ever-growing volume of biomedical 

literature.  

Overtime, LBD has evolved from a largely manual approach to adopting advanced 

knowledge extraction and representation techniques. At a high-level, contemporary LBD 

can be categorized as co-occurrence-based semantics-based LBD. The co-occurrence-

based approach employs text mining methods to extract biomedical terms or concepts 

from the literature. Subsequently, associations between terms or concepts are established 

based on the assumption that their co-occurrence in articles implies a logical association 

between them. However, this assumption is inherently weak, as co-occurrence 

associations do not imply the existence of a mechanistic relationship between 

terms/concepts. Conversely, the semantic-based approach utilizes semantic parsing 

techniques to extract literature-based knowledge in the form of subject-predicate-object 
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triples. As such, this approach has the advantage of extracting meaningful knowledge that 

characterizes the underlying mechanistic relations between concepts, as described in the 

literature.  

Despite the promise of semantic-based LBD, there are several fundamental challenges 

that impact its performance for knowledge discovery. We provide a summary of these 

challenges below: 

Challenge #1 - Granularity and ambiguity of biomedical concept representations: The 

granularity of terminological resources, such as the UMLS, used for the normalization of 

biomedical entities in text poses a significant challenge in LBD due to the resulting 

semantic redundancy, where closely related entities are often represented as separate 

concepts. As a consequence, the knowledge discovery task will entail considering many 

distinct ‘source’ concepts which may be semantically related. , leading to an exponential 

expansion of the discovery search space. Additionally, the entity normalization process in 

semantic parsers fails to disambiguate mentions of genes or protein aliases. These 

challenges lead to (a) exponential expansion of the discovery search space due to the 

presence of granular but semantically related concepts; and (b) highly ambiguous and 

imprecise concept-based representations of genes and proteins.  

Challenge #2 - Incomplete extraction of semantic-based knowledge: Biomedical 

semantic parsers, such as SemRep, achieve high precision in the extraction of semantic-

based knowledge but also suffer from low recall (i.e., missing knowledge), which results 

in incomplete knowledge extraction. This is especially challenging in semantic-based LBD 

due to limitations in NLP methods to correctly identify implicit relations that extend 

beyond sentence boundaries in text. In the context of semantic-based LBD, incomplete 

knowledge extraction has a significant impact on knowledge discovery. Explicitly, if 

relations between the source-intermediate or intermediate-target are absent, then the 

indirect relationship between the source and target will not be discovered.  

Challenge #3 - Filtering and ranking interesting ABC-based discoveries: LBD 

frameworks tend to generate a large number of candidate discoveries which makes the task 

of reviewing and validating discoveries a time consuming process. Most LBD frameworks 

use raw co-occurrence frequencies, which favour commonly occurring knowledge 

instances, or statistical association measures, which are affected by null co-occurrences. 
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Prior research has suggested that meaningful discoveries typically consist of rare and 

specific knowledge instances which are not captured by traditional filtering and ranking 

techniques.  

Motivated by these challenges, this dissertation explored novel semantics-based and 

Knowledge Graph Completion (KGC) methods to present novel solutions addressing the 

fundamental challenges in semantics-based LBD.  

We addressed the first challenge by extending traditional semantic LBD framework to 

include: (i) a semantic consolidation component to that resolves the challenge of ambiguity 

by leveraging condensed and specialized terminologies to represent entities denoting 

chemicals, diseases, genes/proteins, and biological functions; and (ii) a knowledge 

extraction component that integrates semantic parsers and cutting-edge text mining tools 

to resolve the ambiguity of gene/protein representations. 

The challenge of incomplete knowledge extraction is addressed via a novel knowledge 

completion methodology that leverages curated biomedical knowledge, in addition to KG-

based representation learning techniques to embed nodes and relations as low dimensional 

vectors. Subsequently, we leverage Knowledge Graph Completion (KGC) methods to 

predict missing semantic relations between existing nodes. Further, our approach to 

predicting missing relations is informed by implicit associations of MeSH descriptors 

found in the literature. With this approach, the literature-based knowledge is augmented 

progressively by supplementing it with curated knowledge first to increase coverage of the 

knowledge domain, then supplementing with predicted semantic relations via KGC 

methods.  

The third challenge is resolved by introducing a knowledge filtering and ranking approach 

that builds upon established techniques (i.e., linking term count, concept specificity, and 

triple counts) and integrates information theoretic metrics that prioritize interesting and 

rare discoveries over common and spurious ones.  

Our investigations have led to the development of AKG-LBD; an end-to-end semantic-

based LBD framework that utilizes KG-based representation techniques to facilitate the 

discovery of biomedical knowledge from the literature.  
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6.2 AKG-LBD Compared to Established LBD Frameworks: 
AKG-LBD contributes novel methodological advances to LBD in the biomedical domain. 

To our knowledge, this is the first semantics-based LBD framework that introduces a 

scalable KGC based approach focused on augmenting incomplete literature-based KGs 

with missing semantic relations between biomedical concepts. Prior LBD frameworks have 

incorporated network-based link prediction methods, such as Jaccard similarity, Adamic-

Adar index, and common neighbours, to predict future links between non-co-occurring 

concepts (Kastrin et al., 2016). However, these methods do not address the fundamental 

problem of missing knowledge instances in LBD, as these methods can only quantify the 

likelihood of indirect associations rather than predicting new semantic relations. For 

example, the formalized LION-LBD system incorporates Jaccard similarity measures to 

quantify the strength of associations between source and target biomedical concepts. 

Recently, Zhang et al. employed KGC methods in semantic-based LBD to facilitate the 

discovery of novel treatments for COVID-19 via entity prediction – i.e., given a subject 

and a predicate, the goal is to predict a plausible object entity (Zhang et al., 2021). These 

approaches do not aim to address the fundamental problem of incompleteness in literature-

based KGs. Instead, the objective is to enhance knowledge discovery by predicting 

connections between non-interacting source (A) and target (C) concepts. Additionally, this 

approach to knowledge discovery overlooks the existence of intermediate (B) concepts, 

which could provide further biomedical insights into the source-target interactions. Hence, 

compared to existing frameworks, AKG-LBD is novel as we utilize KGC to address a 

fundamental challenge in semantic-based LBD (i.e., incomplete knowledge extraction) by 

predicting missing relations between pre-existing nodes (i.e., concepts) with high 

precision. Further, our approach scales up to predict a wide range of semantic relations 

(i.e., predicates) as long as these relations are represented within the KG. Lastly, we 

introduced a relation prediction approach informed by co-occurrence found in the literature 

(i.e., MeSH descriptors) to focus on predicting relations between implicitly associated 

biomedical concepts.  

In addition to these novel advances, AKG-LBD offers several enhancements to current 

semantic-based LBD frameworks: 
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• Improving the extraction of literature-based knowledge by combining the outputs 

of well-established biomedical knowledge extraction tools (SemRep and Pubtator) 

that are commonly used in LBD research 

• Integrating multiple biomedical terminologies to consolidate and condense the 

representation of concepts extracted from the literature  

• Leveraging curated knowledge from biomedical Knowledge Bases (KBs) to 

supplement the semantic triples extracted from the literature 

• Proposing new knowledge filtering and ranking techniques focused on quantifying 

the information conveyed in ABC discovery paths  

These advances exemplified by AKG-LBD demonstrated their significant impact on 

uncovering meaningful biomedical knowledge from the literature. The results 

presented in Chapter 5 showcased that AKG-LBD outperformed multiple established 

LBD systems in replicating discoveries published in peer-reviewed publications. 

Moreover, AKG-LBD was significantly better than the baseline LBD approach (i.e., 

without KGC) in repurposing existing drugs for cancers. We posit that the performance 

of AKG-LBD can be attributed to the following factors: 

The knowledge extraction component, which incorporated concept disambiguation, 

addressed a common problem in semantic-based LBD – i.e., ambiguous concepts in 

semantic triples. While evaluating the established semantic-based LBD system 

MELODI-PRESTO, we encountered many instances ambiguous semantic triples. This 

made the task of reviewing output discoveries very challenging, as the subject and 

object were represented by multiple concepts.  

The knowledge completion component provided clear benefits to semantics-based 

LBD by augmenting the incomplete literature-based KG with missing knowledge. 

Compared to the baseline approach (i.e., without knowledge completion), our approach 

resulted in a significantly better performance in the cancer discovery (20% vs. 100% 

recall) and drug repurposing tasks (46% vs. 71% recall). Likewise, compared to 

established semantics-based LBD systems (MELODI-PRESTO), our framework 

achieved significantly better results (0% vs. 100% recall).  

We compared the performance of AKG-LBD with established co-occurrence-based 

systems, which are known to achieve better recall than semantics-based systems. The 
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results indicated that AKG-LBD achieves comparable results to co-occurrence-based 

systems due to its knowledge completion component. We consider this as an 

achievement, as AKG-LBD was capable of achieving high recall while still being a 

semantics-based framework.  

Finally, we conducted a comparison of our knowledge filtering and ranking approaches 

with commonly used metrics, such as Odds Ratio, Log-Likelihood Ratio, and co-

occurrence frequency. While we acknowledge that our methods outperformed the 

baselines, we also propose that Information Content (IC)-based metrics present a viable 

alternative to the commonly used metrics in the field. Our results suggest that IC-based 

metrics can be effective in addressing the limitations of traditionally used metrics, 

which are typically biased towards commonly occurring knowledge instances.  

6.3 Practical Implications of AKG-LBD for Real-World 
Knowledge Discovery: 

There are several implications for applying the AKG-LBD framework to real-world 

knowledge discovery tasks. Firstly, the literature curation component requires users to 

carefully determine keywords or phrases to retrieve relevant titles/abstracts from literature 

databases. In our approach, we utilized the MEDLINE database to acquire biomedical 

knowledge which provides an API to query the database using a combination of keywords 

and MeSH descriptors assigned to individual articles. Our implementation of AKG-LBD 

was focused on specific discovery tasks – i.e., molecular oncology and cancer drug 

repurposing – hence, we used a combination of keywords and MeSH descriptors related to 

the hallmarks of cancers. However, in situations where the discovery task is non-specific, 

determining relevant keywords and MeSH descriptors could be difficult and time-

consuming. Additionally, selecting common keywords or MeSH descriptors will result in 

retrieving numerous titles/abstracts, thereby increasing the time and space complexity of 

the downstream knowledge completion task. Hence, we posit that the framework should 

be utilized in prespecified discovery tasks, and that domain experts should be consulted to 

determine a list of relevant keywords or MeSH descriptors to optimize literature retrieval.  

Secondly, the integration of curated knowledge entails careful consideration of the 

knowledge domain represented in biomedical Knowledge Bases (KBs) and an 
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understanding of the terminologies used to represent the knowledge. In our implementation 

of AKG-LBD, we utilized CTD and GO as the primary KBs which (a) cover a wide range 

of biomedical knowledge; and (b) represent knowledge using common terminological 

resources, such as MeSH. However, in situations where the discovery task requires 

specialized curated knowledge to augment the literature-based KG, alternative KBs should 

be considered since CTD and GO may not provide the relevant curated knowledge. Hence, 

we recommend conferring with domain experts to determine the most suitable KBs and 

facilitate mapping of concepts to the terminologies used by the baseline literature-based 

KG.  

Thirdly, the relation prediction task requires careful planning of the types of MeSH 

descriptors to extract from MEDLINE to generate the subset of MeSH-MeSH associations 

for relation prediction. To reduce the time and space complexity of relation prediction, we 

recommend users to utilize co-occurrence statistics to reduce the effect of noisy 

associations and eliminate concepts that co-occur in few articles. In our experiments, we 

set the minimum number of co-occurrences to 5 – i.e., MeSH-MeSH associations are 

considered if they co-occur in at least 5 articles. This resulted in a significant decrease in 

the number of extracted associations from MEDLINE. Alternative approaches to filter such 

associations may include association metrics (e.g., chi-square, odds ratio, log-likelihood 

ratio), information content, or semantic type filtering.  

Lastly, we proposed a novel knowledge ranking measure based on information theory, 

which performs well in prioritizing valid and interesting ABC discovery paths. However, 

in line with findings from prior LBD research, we recommend that users should not entirely 

rely on a single metric to rank the LBD output, as it offers the flexibility to rank discoveries 

based on different characteristics or attributes of knowledge instances (Thilakaratne et al., 

2019).  

6.4 Limitations and Future Work: 
We identify several limitations in our work which can be mostly attributed to the use of 

external knowledge resource to represent and augment the literature-based KG.  

Firstly, AKG-LBD relies on multiple terminologies to represent biomedical concepts. It is 

important to note that these terminologies undergo periodic updates which may involve the 
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addition, removal, or consolidation of biomedical concepts. Hence, ensuring the currency 

of the terminologies employed in AKG-LBD presents a substantial challenge, necessitating 

the need for frequent assessments to identify any updates that have been incorporated into 

the source terminologies. Additionally, the KBs utilized in this framework undergo similar 

periodic updates that need to be incorporated in the augmented KG. Hence, future work 

will address these limitations by investigating potential strategies and mechanisms to 

streamline the integration of updates, allowing for more efficient and timely 

synchronization between AKG-LBD and the evolving terminologies and KBs.  

Secondly, the KGC methods presented in this research are classified as closed-world 

approaches which tend to utilize pre-existing knowledge within the KG to predict the 

missing instances (Z. Chen et al., 2020). Closed-world KGC implies that knowledge within 

the KG is fixed and that previously unseen concepts or relations cannot be predicted. In 

this setting, KGC aims to predict the most plausible missing relation from pre-existing 

relations in the KG. As such, this limitation makes closed-world KGC reliant on existing 

KG semantics and topography. As future work, we plan to address this limitation by 

exploring dynamic KGC methods that operate under the open-world assumption to predict 

external entities (i.e., relations and nodes).  

Thirdly, the relation prediction task involves assigning a score to each relation used for the 

incomplete (subject, ?, object) triples based on inherent scoring functions employed by the 

Knowledge Graph Embeddings (KGEs). Typically, the scores are ranked from highest to 

lowest, with higher scores indicating plausible predictions. However, analyzing these 

scores without ranking them does not provide any insights into the credibility of predictions 

(Tabacof & Costabello, 2020; Zhu et al., 2022). Accordingly, probability calibration 

methods can be employed to transform prediction scores into interpretable probabilities 

that provide valuable insights into the trustworthiness of the predictions. As future work, 

we plan to investigate methods such as Platt scaling or isotonic regression, combined with 

curated ground truth negative samples, to calibrate the relation prediction scores and 

transform them into interpretable probabilities (Tabacof & Costabello, 2020).  

Lastly, the AKG-LBD framework is not implemented currently as a formalized system 

and, therefore, it is not available for public use. In the future, we plan to develop a web-

based application that provides access to all components of the AKG-LBD framework. Our 
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aim is to enable users to control the inputs and outputs of each component to provide a 

knowledge discovery process tailored to their needs and preferences. Additionally, we aim 

to leverage interactive graph-based visualizations to facilitate the review and exploration 

of generated discovery paths. 
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APPENDIX A: Example of unprocessed SemRep output 
 
SE|29871641||ab|5|text|Parthenolide attenuated bleomycin-induced pulmonary fibrosis via 
the NF-κB/Snail signaling pathway. 
 
SE|29871641||ab|5|entity|C0005740|bleomycin|aapp|||bleomycin|||0|1000|24|32 
 
SE|29871641||ab|5|entity|C0034069|Pulmonary Fibrosis|dsyn|||pulmonary 
fibrosis|||0|1000|42|60 
 
SE|29871641||ab|5|relation|||C0005740|bleomycin|aapp,antb|aapp|||bleomycin||||1000|24|3
2|VERB|CAUSES||||||C0034069|Pulmonary Fibrosis|dsyn|dsyn|||pulmonary 
fibrosis||||1000|42|60 
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