
ADDRESSING CHALLENGES OF TWITTER FEATURE
ENGINEERING FOR MACHINE LEARNING IN DIFFERENT

DOMAINS

by

Ahmed Balfagih

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

July 2023

© Copyright by Ahmed Balfagih, 2023

Table of Contents

List of Tables . v

List of Figures . vii

Abstract . xi

List of Abbreviations and Symbols Used xii

Acknowledgements . xv

Chapter 1 Introduction . 1

1.1 Background . 1

1.2 Feature Generation . 2

1.3 Problem Statement . 4

1.4 Contributions . 6

1.5 Outline . 7

Chapter 2 Literature Review . 8

2.1 Social Media . 8
2.1.1 Twitter . 10

2.2 Natural Language Processing . 14
2.2.1 Sentiment Analysis . 15
2.2.2 Language Modeling-based Approaches to Features Generation 16

2.3 Machine Learning and Deep Learning 26
2.3.1 Supervised Learning Methods 27
2.3.2 Deep Learning Methods . 34

2.4 Machine Learning Tools and Libraries 41

2.5 Feature Engineering on Twitter Data 43

Chapter 3 Feature Engineering for Financial Forecasting of
Bitcoin Price . 46

3.1 Background . 46

ii

3.2 Related Work . 50

3.3 Methodology . 53
3.3.1 Social Media Data Selection 53
3.3.2 System Architecture . 53
3.3.3 Data Preparation . 53
3.3.4 Tweet Sentiment . 55
3.3.5 Language Modeling Approaches 57

3.4 Machine Learning Methods . 60
3.4.1 Supervised Classification Methods 60
3.4.2 Deep Learning Methods . 61

3.5 Price Fluctuation Prediction Methodology 63

3.6 Time-Series Analysis . 64

3.7 Proposed Methodology Framework 65

3.8 Experimental Results . 66
3.8.1 Sentiment Learning . 67
3.8.2 Time Series Analysis . 69

3.9 Conclusion . 73

Chapter 4 Feature Engineering for Spam Recognition of Arabic
Tweets . 79

4.1 Background . 79
4.1.1 Exceptional Role of Twitter in Saudi Arabia 80

4.2 Related Work . 83

4.3 Methodology and Data . 85

4.4 Machine Learning Methods . 88
4.4.1 Supervised Classification Methods 88
4.4.2 Deep Learning Methods . 90

4.5 Experimental Results . 91

4.6 Conclusion and Future Work . 94

Chapter 5 Feature Engineering for Arabic Dialect Recognition . . 97

5.1 Background . 97
5.1.1 Arabic Dialects . 98

iii

5.2 Related Work . 99

5.3 Data . 100

5.4 Proposed System . 103
5.4.1 Data Preprocessing Step . 103
5.4.2 Feature Engineering Step . 104
5.4.3 Learning Step . 109

5.5 Results . 110

5.6 Discussion . 112

5.7 Conclusion and Future Work . 113

Chapter 6 Conclusion . 115

6.1 Achieved Objectives . 116

6.2 Study Limitations . 116

6.3 Future Work . 117

Bibliography . 118

Appendix A Time-Series Intervals for Bitcoin price fluctuation . . . 132

Appendix B Additional Arabic Dialect Confusion Matrices 145

Appendix C List of publications . 154

iv

List of Tables

3.1 The total of tweets are more than 282K after removing irrelevant
tweets. 55

3.2 Some examples of how RATS classify tweets to positive, neutral
and negative sentiment. 57

3.3 All forms of the dataset after tweet embedding and n-gram. . . 59

3.4 Results of accuracies of the classical classifier on the trained data 67

3.5 Results of accuracies of each deep learning classifier on the trained
data . 68

3.6 Precision, recall an F1 score of the classical classifiers on the
trained data . 69

3.7 Precision, recall an F1 score of each deep learning classifier on
the trained data . 70

3.8 Overall events in all datasets with all shifts and intervals 74

3.9 Percentages of all algorithms that have 50% or more of the pre-
dicted events. 75

3.10 The associated p-values of the positive class sentiment with the
Bitcoin price for the machine learning classification methods,
with highlighted statistically significant values 76

3.11 The associated p values of the positive class sentiment with the
Bitcoin price for the deep learning classification methods, with
highlighted statistically significant values 77

4.1 The total of tweets are more than 40,026 after removing irrele-
vant tweets . 86

4.2 10-folds cross validation accuracy for n-gram and Word2Vec ap-
proaches . 92

4.3 Word2Vec accuracy improvement over the n-gram approach . . 92

4.4 The grouped datasets by the hashtag’s topic 93

4.5 Comparison between Word2Vec and n-gram 10-folds cross vali-
dation accuracy results on grouped datasets by topic 93

v

5.1 The details of the original dataset C21, and the re-modelled
datasets C21P, C19, and C19P 104

5.2 The mapping of the re-modelled datasets C19, C19P in compari-
son to the region based re-modelled datasets R4 and R4P 105

5.3 The results of accuracy and F-scores in the tf-idf classification
experiments . 111

5.4 The results of accuracy and f-scores in the AraVec experiments 112

vi

List of Figures

2.1 The anatomy of tweet . 12

2.2 The difference between CBOW and SG models in Word2Vec
embedding method . 20

2.3 The detailed structure of BERT 24

2.4 K-Nearest Neighbor methodology 29

2.5 K-Nearest Neighbor area partitioning 29

2.6 Maximum-margin hyperplane and margins for an Support Vec-
tor Machine (SVM) trained with samples from two classes. . . 33

2.7 An illustration of the neural networks and the structure of the
layers in neural network . 36

2.8 Radial Basis Function Network explanation 38

2.9 The architecture of the LSTM network 40

3.1 Chart that shows the rapid recent growth in popularity of cryp-
tocurrencies . 48

3.2 The proposed system architecture 54

3.3 The applied Multi-layers perception model. 63

3.4 Counting matching events to predict price fluctuation depend-
ing on the sentiment classes TP value fluctuations. 64

3.5 The proposed framework methodology for the main study phases 66

3.6 Time-series with 15 minutes interval chart of the second dataset
and one shift to the future 15 minutes and compare it with the
price fluctuations. 71

3.7 Time-series of 30 minutes interval chart of the fifth dataset one
shift to the future 30 minutes, in comparison to price fluctuations. 72

4.1 Leading countries based on number of Twitter users. 82

4.2 The proposed system architecture 85

vii

4.3 Illustrating the steps of generating tf-idf n-grams features for
spam tweets, starting from tokenizing words from the all tweets,
building a collection of unique tokens, selecting the top frequent
500 tokens, Then applying tf-idf technique to have weighted n-
gram features . 87

4.4 Illustrating the steps of generating word2Vec embedding fea-
tures for spam tweets, starting from tokenizing words from the
tweet, building a unique tweet vocabulary, building the skip-
gram data for the tweet, then one-hot encoded form, after that
the applying 200-dimension vectors of Wored2Vec model, and
finally taking the average word2Vec for each tweet 88

4.5 More understanding to Word2Vec model 89

4.6 F-Measures of the Spam class for n-gram Approach 94

4.7 F-Measures of the Spam class for Word2Vec Approach 95

4.8 F-Measures of the Spam class for combined features of n-gram
and Word2Vec Approaches . 96

5.1 Arabic dialect regions and sub-regions 99

5.2 The distribution of tweets over countries 102

5.3 Histogram of the number of words in the different tweets . . . 103

5.4 Train tweets counts before and after increasing the dataset . . 106

5.5 The proposed system architecture 107

5.6 The design of the generated BERT input features for an Arabic
tweet . 108

5.7 The results of accuracy and f-scores in fine-tuned BERT models 112

5.8 Confusion matrix for two subsets of Arab countries 113

A.1 Time-series with 30 minutes interval chart of the 5Aug17 dataset
and one shift to the future 30 minutes and compare it with the
price fluctuations. 132

A.2 Time-series with 60 minutes interval chart of the 5Aug17 dataset
and one shift to the future 60 minutes and compare it with the
price fluctuations. 133

viii

A.3 Time-series with 120 minutes interval chart of the 5Aug17 dataset
and one shift to the future 120 minutes and compare it with the
price fluctuations. 134

A.4 Time-series with 15 minutes interval chart of the 12Dec17 dataset
and one shift to the future 15 minutes with 1 shift, and compare
it with the price fluctuations. 135

A.5 Time-series with 15 minutes interval chart of the 12Dec17 dataset
and one shift to the future 15 minutes with 2 shifts, and com-
pare it with the price fluctuations. 136

A.6 Time-series with 5 minutes interval chart of the 23Mar18 dataset
and one shift to the future 5 minutes with 1 shift, and compare
it with the price fluctuations. 137

A.7 Time-series with 5 minutes interval chart of the 23Mar18 dataset
and one shift to the future 5 minutes with 2 shifts, and compare
it with the price fluctuations. 138

A.8 Time-series with 30 minutes interval chart of the 12Jul18 dataset
and one shift to the future 30 minutes and compare it with the
price fluctuations. 139

A.9 Time-series with 60 minutes interval chart of the 12Jul18 dataset
and one shift to the future 60 minutes and compare it with the
price fluctuations. 140

A.10 Time-series with 120 minutes interval chart of the 12Jul18
dataset and one shift to the future 120 minutes and compare it
with the price fluctuations. 141

A.11 Time-series with 30 minutes interval chart of the 15Mar19 dataset
and one shift to the future 30 minutes and compare it with the
price fluctuations. 142

A.12 Time-series with 60 minutes interval chart of the 15Mar19 dataset
and one shift to the future 60 minutes and compare it with the
price fluctuations. 143

A.13 Time-series with 120 minutes interval chart of the 15Mar19
dataset and one shift to the future 120 minutes and compare it
with the price fluctuations. 144

B.1 SVM tf-idf N-gram confusion matrix for dataset C19 145

B.2 SVM tf-idf N-gram confusion matrix for dataset C19P 146

ix

B.3 AraVec confusion matrix for dataset C19 146

B.4 AraVec confusion matrix for dataset C19P 147

B.5 The pre-trained model asafaya/bert-base-arabic (ASAFAYA)
confusion matrix for dataset C19 147

B.6 The pre-trained model asafaya/bert-base-arabic (ASAFAYA)
confusion matrix for dataset C19P 148

B.7 The pre-trained model aubmindlab/bert-base-arabert (ARABERT)
confusion matrix for dataset C19P 148

B.8 The pre-trained model aubmindlab/bert-base-arabert (ARABERT)
confusion matrix for dataset C19P 149

B.9 The pre-trained model aubmindlab/bert-base-arabertv02-twitter
(ARABERTV2T) confusion matrix for dataset C19 149

B.10 The pre-trained model aubmindlab/bert-base-arabertv02-twitter
(ARABERTV2T) confusion matrix for dataset C19P 150

B.11 The pre-trained model UBC-NLP/marbert (MARBERT) BERT
confusion matrix for dataset C19 150

B.12 The pre-trained model UBC-NLP/marbert (MARBERT) BERT
confusion matrix for dataset C19P 151

B.13 The pre-trained model UBC-NLP/arbert (ARBERT) confusion
matrix for dataset C19 . 151

B.14 The pre-trained model UBC-NLP/arbert (ARBERT) confusion
matrix for dataset C19P . 152

B.15 The pre-trained model bashar-talafha/multi-dialect-bert-base-
arabic (MULTIDB) confusion matrix for dataset C19 152

B.16 The pre-trained model bashar-talafha/multi-dialect-bert-base-
arabic (MULTIDB) confusion matrix for dataset C19P 153

x

Abstract

Feature engineering is one of the essential steps in machine learning. It helps to create

a better data model and provides reasonable learning results. In natural language

processing, feature engineering becomes even more critical if we can generate many

features and feed them to our model. Twitter data became an important source of

written natural language used to train and test machine learning models, and prepar-

ing features for these models is an important step. In this study, we examine different

feature engineering approaches to three tasks on Twitter. In all these three studies,

we compared the efficiency of generating word embedding features, with the gener-

ated n-grams of the Tweets, by applying machine learning algorithms and noticing the

experiment’s accuracy. First, we generate features of tweets for financial forecasting;

second, we generate features for spam recognition on tweets; and finally, we generate

features to learn different dialects of a language. In the financial forecasting task, we

explore the relationship between the Twitter feed on Bitcoin, its sentiment analysis,

and its price prediction. Two approaches are used to generate features from tweets:

tweet embedding and n-gram modeling. Using a time-series approach, we found a

partial correlation between Bitcoin price fluctuation and sentiment class accuracy

fluctuations using different machine learning algorithms. In the spam recognition

task, we apply machine learning techniques to identify spam on tweets in the Arabic

language. We use two feature generation techniques: n-grams and Word2Vec embed-

dings. The experimental results show improvement from using Word2Vec embeddings

over n-grams in more balanced datasets versus the more unbalanced ones. Finally,

in the dialects recognition task, we used tf-idf n-grams, AraVec feature embedding,

and BERT fine-tuned generated features, on Arabic tweets to locate where the tweet

came from in the Arabian region based on dialect learning. The results showed that

BERT-Base pretrained language models are more powerful for this study than other

methods, specifically ARABERT and MARBERT.

xi

List of Abbreviations and Symbols Used

AI Artificial Intelligence

ARABERT aubmindlab/bert-base-arabert

ARABERTV2T aubmindlab/bert-base-arabertv02-twitter

ARBERT UBC-NLP/arbert

ASAFAYA asafaya/bert-base-arabic

ASDL Arabic Spam Detecting Lexicon

BERT Bidirectional Encoder Representations from

Transformers

Bi-LSTM Bi-directional Long Short-Term Memory

BoW Bag of Words

BTC Bitcoin

CBOW Continuous Bag-of-words

CNN Convolutional Neural Networks

DA Dialectal Arabic

DL Deep Learning

DT Decision Tree

GPT Generative Pre-trained Transformer

idf inverse document frequency

KNN k-Neareast Neighbours

LASER Language-Agnostic SEntence Representations

LR Logistic Regression

xii

LSTM Long Short-Term Memory

MADAR Multi-Arabic Dialect Applications and Re-

sources

MARBERT UBC-NLP/marbert

MCXENT multi-class cross-entropy

ML Machine Learning

MLM Masked Language Modeling

MLP Multilayer Perceptron

MSA Modern Standard Arabic

MULTIDB bashar-talafha/multi-dialect-bert-base-arabic

MultinominalNB Multinominal Naive Bayes

NADI Nuanced Arabic Dialect Identification

NB Näıve Bayes

NLP Natural Language Processing

RATS R-Auto Tweet Sentiment

RBF Radial Basis Function

RBFN Radial Basis Function Network

ReLU Rectified Linear Unit

RF Random Forest

RNN Recurrent Neural Network

RoBERTa Robustly Optimized BERT Approach

SG skip-grams

SSWE Sentiment-Specific Word Embeddings

SVM Support Vector Machine

T5 Text-to-Teaxt Transfer Transformer

tf-idf term frequency-inverse document frequency

xiii

TP True Positive

Weka Waikato Environment for Knowledge Analysis

WiSARD Weightless Neural Network

Word2Vec Word-to-Vector Embedding

WTFM Weighted Text Feature Model

xiv

Acknowledgements

I would like to express my gratitude to my supervisor Dr. Vlado Keselj of the Com-

puter Science Department at Dalhousie University. The door to Dr. Keselj’s office

was always open whenever I had a question about my research or writing, and for his

understanding, elegant treatment, useful comments, remarks, engagement through

the learning process, and support of this Ph.D. thesis.

I would also like to acknowledge my thesis defense committee Starting from Dr.

Srinivas Sampalli, Dr. Qigang Gao, and Dr. Malcolm Heywood for being my internal

readers of this thesis, and Dr. Malek Mouhoub for being the external reader of this

thesis, and I am gratefully indebted to them for their very valuable comments on this

thesis.

I must express my very profound gratitude to my parents, Mustafa and Maha

Balfagih, for providing me with unfailing support, and continuous encouragement

throughout my years of study, and through the process of researching and writing

this thesis, with their patience. This accomplishment would not have been possible

without them. I dedicate my success to them and I hope they are always proud of

me.

Finally, I would not forget to thank my university, King Abdulaziz University,

which gave me the opportunity of conducting my graduate studies in Canada, with

their unlimited material and moral support.

Author

Ahmed Mustafa Balfagih

xv

Chapter 1

Introduction

1.1 Background

In big data analytics, feature engineering is essential. Data is required for machine

learning and data mining algorithms to enhance performance. When there are few

features to represent the underlying data objects, little can be accomplished, and

the quality of the available features primarily determines the quality of the results of

those algorithms. In Natural Language Processing (NLP), feature engineering tech-

niques are essential for text data learning. In machine learning, feature engineering

is the process of transforming raw data into a more understandable format, and ex-

tracting, generating, or re-forming features from existing features [75]. The area of

feature engineering encompasses a wide range of challenges and tasks. The most

common challenges and activities are feature transformation, feature creation and

extraction, feature selection, automatic feature engineering, and feature analysis and

evaluation [56].

• Feature transformation is concerned with creating new features from existing

ones; this is frequently accomplished via the use of mathematical mappings. The

BMI index, for example, is a feature created by transforming features using a

mathematical formula.

• Feature generation is concerned with the creation of new features that are not

always the result of feature transformation. The feature generation category also

includes several domain-specific approaches to defining features. Feature gen-

eration methods can be generic automatic ones, in addition to domain-specific

ones. Patterns mined from data may also be used to generate new features.

• Feature selection is about picking a small number of features from a significant

number of options of them. Because of the reduced feature set, some machine

1

2

learning and data analysis techniques are computationally possible. Feature

selection might potentially increase the quality of the algorithms’ results.

• Automatic feature engineering is about generic techniques for automati-

cally creating a large number of features and then choosing an effective subset

of those features.

• Feature analysis and evaluation is concerned with the analysis and evalua-

tion of the usefulness of features and feature sets. This is usually a part of the

feature selection process.

By looking at what has been done with text data, we may better understand

feature engineering. For text data, the previous research has been mostly organized

around a specific set of topics. Beyond single words, structural representation of

text, semantic structure features, latent semantic representation, explicit semantic

representation, word embeddings for text representation, and context-sensitive text

representation are all examples of topics of feature generation for text as strings.

Automatic feature creation is a common method, with Word2vec and DeepLearning-

based approaches as examples [56]. Feature Engineering has always been a part of

Machine Learning. It is one of the most important tasks for those working in data

science and natural language processing. Because text data differs from structured

tabular data, machine learning requires developing feature techniques.

1.2 Feature Generation

Feature generation is part of the data preprocessing phase and is the act of developing

new features from one or more existing features, or text data, for use in statistical

analysis or as predictors based on domain knowledge. Feature construction, feature

extraction, and feature engineering are all terms used to describe feature genera-

tion [54]. This process adds new information that can be accessed during model

development, resulting in a more accurate model [51]. Unless otherwise noted, fea-

ture generation and any synonyms such as feature construction from raw data [86],

creating a mapping to convert original features to new features [96], and building new

features from one or more features [101], shall be considered in the context of this

thesis to create new features.

3

Feature generation of text data has recently become a significant challenge in many

studies, particularly where articles or paragraphs must be classified based on their

size, writing style, author, sentiment analysis, or other text corpus characteristics.

These “fundamental features” do not always return the best classification accuracy

or the desired results of the machine learning task. To address this, a variety of

feature generation approaches have been created.

The Word2vec feature generation algorithm, for example, is a collection of al-

gorithms for generating numerical feature vectors from words. They reconstitute

linguistic contexts using shallow, two-layer neural networks. Word2vec takes a mas-

sive corpus of text as input and generates a vector representation for each unique

word in the corpus, generally with several hundred dimensions. When words are

used in comparable situations, their word vectors are similar. The Continuous Bag-

of-words (CBOW) architecture trains a model to predict the current word based on

the Bag of Words’ context, whereas the Skip-gram architecture trains a model to

predict surrounding words given the current word. Deep Learning approaches turn

high-dimensional data into a low-dimensional representation by training a multilayer

neural network to rebuild high-dimensional input vectors with a tiny center layer [56].

Feature generation can enhance machine learning algorithms for text categoriza-

tion based on domain-specific and common-sense knowledge. This knowledge is rep-

resented using publicly available ontologies that contain hundreds of thousands of

concepts, such as the Open Directory. These ontologies are further enriched by sev-

eral orders of magnitude through controlled Web crawling. Evgeniy Gabrilovich and

Shaul Markovitch in their study, prior to text categorization, used a feature gener-

ator to analyze the documents and map them onto appropriate ontology concepts.

This created a set of generated features that augment the standard bag-of-words [62].

Feature generation is then done through contextual analysis of document text, im-

plicitly performing word sense disambiguation. Coupled with the ability to generalize

concepts using an ontology, this approach addresses two important challenges of natu-

ral language processing—synonymy and polysemy. Categorizing documents with the

aid of knowledge-based features leverages information that cannot be deduced from

the documents alone. Experimental results confirm improved performance, breaking

through the plateau previously reached in the field [62].

4

Most classification algorithms receive as input a set of attributes of the classi-

fied objects. In many cases, however, the supplied set of attributes is not sufficient

for creating an accurate, succinct, and comprehensible representation of the target

concept. To overcome this problem, researchers have proposed algorithms for the

automatic construction of features. The majority of these algorithms use a limited

predefined set of operators for building new features. In a study made by Markovitch

and Rosenstein, they proposed a generalized and flexible framework that is capable of

generating features from any given set of constructor functions. These can be domain-

independent functions such as arithmetic and logic operators, or domain-dependent

operators that rely on partial knowledge on the part of the user [101]. Markovitch and

Rosenstein described an algorithm that receives as input a set of classified objects, a

set of attributes, and a specification for a set of constructor functions that contains

their domains, ranges, and properties. The algorithm returns a set of generated fea-

tures that can be used by standard concept learners to create improved classifiers.

The algorithm maintains a set of its best-generated features and improves this set

iteratively. During each iteration, the algorithm performs a beam search over its

defined feature space and constructs new features by applying constructor functions

to the members of its current feature set. The search is guided by general heuristic

measures that are not confined to a specific feature representation. The algorithm

was applied to a variety of classification problems and was able to generate features

that were strongly related to the underlying target concepts. These features also sig-

nificantly improved the accuracy achieved by standard concept learners, for a variety

of classification problems [101].

1.3 Problem Statement

One of the most important problems in machine learning for Twitter data is how to

generate features: the number of features related to the tweet is limited due to text

size and the fact that Twitter only has the “like” feature. In comparison, Facebook’s

text is not limited in length and it has more sentiment-related features that may help

analyze the text such as like, love, laugh, anger, care, sad, and wow — all of which

evoke specific sentiments.

Therefore, generating features on Twitter data is non-trivial; Many experiments

5

are needed to get a better understanding of how to generate quality features for

different machine-learning tasks.

In our study, we propose applying three different tasks of feature generation for

three areas. The first study examines feature generation for financial forecasting

using English tweets. The second task is about generating features of tweets for spam

recognition, and this study is on tweets in Arabic. The third task explores generating

features for language and dialect recognition using Arabic tweets.

The three case studies share a central theme of tackling the challenges of feature

engineering in various domains using Twitter data. While each study focuses on a

specific domain, they all examine the effectiveness of feature engineering techniques

when comparing n-gram features quality with word embedding vector features derived

from tweets.

In the first study on feature engineering for financial forecasting, the researchers

utilize Twitter data related to Bitcoin markets and aim to predict market trends or

stock prices. They explore how different feature engineering approaches, including

n-grams and tweet embeddings, can be used to capture relevant financial information

and improve forecasting accuracy using time-series.

Similarly, the second study on feature engineering for spam recognition focuses on

detecting and filtering spam messages on Twitter in Saudi Arabian trend, in Arabic

language. By comparing the performance of different feature engineering methods,

including n-grams and word embeddings, to identify the most effective approach for

accurately classifying spam tweets.

The third study addresses the challenge of feature engineering for Arabic dialect

recognition on Twitter. It involves distinguishing between different dialects of the

Arabic language in tweets. Here, the researchers evaluate the performance of n-

gram features, AraVec word embeddings, and pretrained language models (BERT)

features, to determine which approach yields superior results in accurately identifying

the Arabic dialect used in each tweet.

Although the studies cover different domains, they share a common focus on effi-

ciently extracting meaningful features from Twitter data. By comparing the quality

and performance of n-grams and word embeddings as features, the studies aim to con-

tribute to the understanding of which approach is more effective in their respective

6

domains. This central theme of feature engineering and the comparison of n-gram

features with word embedding vectors across different domains unifies the studies and

lends to a broader understanding of the importance of feature selection and represen-

tation in Twitter-based machine learning applications.

1.4 Contributions

Twitter data is considered a key data source due to its short text and public avail-

ability. Hundreds of millions of tweets are sent on the platform each day. The main

contribution of this thesis is comparing the results of feature engineering approaches

by applying different methods to each study. Another contribution is highlighting

the differences in applying feature engineering to diverse tasks ranging from finan-

cial forecasting to spam recognition to language dialect identification. As well, this

research uses the diversity of natural language of English and Arabic. Research on

these topics were published with the following conferences and journals:

• Evaluating Sentiment Classifiers for Bitcoin Tweets in Price Predic-

tion Task paper that is published in 2019 IEEE International Conference on

Big Data (Big Data) [33].

• N-gram and Word2Vec Feature Engineering Approaches for Spam

Recognition on Some Influential Twitter Topics in Saudi Arabia paper

is published at the ICISDM 2022: the 6th International Conference on Infor-

mation System and Data Mining and published by Association for Computing

Machinery (ACM) [31].

• Journal article N-gram and Word2Vec Feature Engineering Approaches

for Spam Recognition on Some Influential Twitter Topics in Saudi

Arabia paper is published in JAIT: Journal of Advances in Information Tech-

nology [32].

• Twitter Arabic Dialect Identification using AraBERT is a short paper

and presentation that is published at the 39th IBIMA conference as an in-

proceeding short paper, and the presentation is also published as a YouTube

video on IBIMA’s official channel as presented at their virtual conference [29].

7

• Twitter Arabic Dialect Identification using Different Feature Engi-

neering Models is published at the 40th IBIMA conference as a full paper,

with an invitation for journal submission of the paper, and published YouTube

video on IBIMA’s official channel as presented at their virtual conference [30].

• Journal article Twitter Arabic Dialect Identification using Different

Feature Engineering Models was accepted to be published at “The Com-

munications of the IBIMA”, by IBIMA Publishing.

1.5 Outline

The rest of the thesis is organized as follows:

• Chapter 2 presents the general background and literature review on related

and common readings among the three thesis studies.

• Chapter 3 presents the first study about “Feature Engineering for Financial

Forecasting of Bitcoin Price”, including its specific literature review and re-

lated work, methodology, machine learning methods, price fluctuation predic-

tion methodology, time-series, proposed framework, experiment results with a

discussion, and conclusion.

• Chapter 4 presents the second study about “Feature Engineering for Spam

Recognition of Arabic Tweets”, including its specific background and related

work, methodology and data modeling, discussing the experimental results, and

conclusion.

• Chapter 5 presents the third study about “Feature Engineering for Arabic

Dialect Recognition”, including its specific background and related work, data

description and modeling, proposed system, discussion of the experimental re-

sults, and conclusion.

• Chapter 6 presents the conclusions and future work directions.

Chapter 2

Literature Review

2.1 Social Media

Social media technology is a phenomenal development on the Internet accompanied

by the emergence of many Web 2.0 technologies. Generally, social media represent a

big leap from the past when it was limited to communicating very small amounts of

information and with greater control of data managers to the present of connecting

through the web interactively. Social media is becoming more important in data anal-

ysis. Social media also provides many opportunities, including information sharing

among all subscribers of the network with the possibility of free and direct interaction

on social networking sites. Furthermore, it allows participants to determine what they

like or dislike, or what information they are sharing on their personal profiles, which

gives an effective measurement of the popularity of products, activities, opinions, and

trends and gives useful data to make statistical studies related to this data.

The term social media can be described as the use of the Internet and mobile

technologies to turn communication into more interactive dialogue. Andreas Kaplan

and Michael Haenlein defined social media as “a group of Internet applications that

build on the foundations of ideology and technology from Web 2.0, which allows

the creation and exchange of data” [87]. Trisha Baruah listed many different forms

of social media technology including Internet forums, social blogs, microblogging,

wikis, social networks, podcasts, photographs or pictures, videos, rating, and social

bookmarking. Technologies include activities such as blogging, wall-posting, picture-

sharing, vlogs, music-sharing, crowdsourcing and voice-over IP, rating, liking, and

voting. Social networks also can integrate many platforms [34].

Facebook is a useful and effective social media tool. This social network can be

accessed free of charge and allows users to join networks organized by geographical

place or point of work, educational background, or region, in order to communi-

cate with others and interact with them. Users can add friends to their friends’ list

8

9

and send them messages, also update their profiles and define their own friends into

different categories, each category can have different privacy preferences. This so-

cial network became an essential application that users use either on their PCs or

their smartphones for its features of making friends, finding friends, and figuring out

friends’ preferences. These features made Facebook one of the indispensable stations

for e-commerce advocates and affiliated companies due to the huge number of partic-

ipants on the website (over one billion users around the world) [60]. Alexa’s website

indicates that Facebook is the second most popular website in the world [16].

Twitter, which is considered a microblogging social media website is another com-

mon social networking website. Twitter is a good tool to express short ideas, give

short feedback, and share important activities such as retweets and hashtags, which

are two of the most interesting tools to measure trends and the popularity of opinions.

That’s why companies and organizations are eager to have an account on Twitter, to

know the number of followers, and retweets for each tweet, and to spread the news

on the high trend hashtags [157].

Instagram, another important free photo-sharing social network, allows users to

capture an image and add a digital filter to appear like professional captures. A user

can share in a variety of social networking services, as well as the Instagram network

itself. In the beginning, Instagram was only supported on iOS devices: iPhone, iPad,

and iPod Touch. Now, Instagram supports Android smartphones. The application

provides the features of comments and likes and now has developed shooting 15-second

intermittent videos [82].

YouTube is a well-known website for videos, allowing users to upload, watch, share,

and rate video clips for free. YouTube has now become the third-ranked website in

the world by Alexa website rating. Because of the high demand on the website and

the high number of users, YouTube has become a good target for companies to make

their own channels and spread their advertisements before users can stream a video,

and has encouraged people to subscribe to their channels to inform subscribers about

new videos uploaded [167].

Analyzing social media content can be a valuable tool for businesses, organizations,

and individuals. It has many benefits, such as understanding audience sentiment, by

analyzing conversations and posts, businesses and organizations can gain insights into

10

how their audience feels about their products, services, and brands. Another benefit

is the ability to identify trends, it can help businesses identify emerging trends among

their audience, which can inform their marketing and business strategies. Also, they

can measure their social media engagement, such as the number of likes, shares,

and comments on their posts. Social media analytics can provide businesses with

insight into what their competitors are doing, such as their engagement rate, the

types of content they share, and their messaging. Furthermore, by monitoring social

media conversations and responding promptly to customer inquiries and complaints,

organizations can improve their customer services and build stronger relationships

with their customers.

In summary, social media is the information systems treasure of this century. The

richness of data is growing rapidly, in many fields and topics. Social media data can

be related to finance, business, health, politics, or even entertainment that can be

used in data analysis to discover knowledge. Choosing the right social media to be

analyzed relies on the goals of the study, and applying machine learning techniques

to the analyzed social media text data can help to predict future events, such as

financial forecasting, or help in detecting language features to be used in classifying

the text type, such as identifying the dialects or recognizing the spams.

2.1.1 Twitter

Twitter is an American social networking site that provides a micro-blogging service

that allows its users to send “tweets” that will get retweets and/or likes from other

Twitter users, with a maximum length of 280 characters per message. This is done

directly through Twitter, or by sending a short text message, instant chat programs,

or applications provided by developers such as Facebook and others. These updates

appear on the user’s page, and the user’s followers can read them directly from their

timeline or visit the user’s profile [100].

Twitter was founded in March 2006 by Jack Dorsey, Noah Glass, Biz Stone, and

Evan Williams and was actually launched in July of the same year [147]. The site was

very popular all over the world. By 2012, the site had more than 100 million users,

posting more than 340 million tweets per day, while the search queries reached 1.6

billion per day [124]. In 2013, Twitter was one of the top ten most visited websites

11

in the world [2], and as of 2016, Twitter has more than 319 million monthly active

users [4]. Its popularity skyrocketed during the 2016 US Presidential Election as

the site truly proved to be the source for breaking news with more than 40 million

election-related tweets posted as of 10pm ET [109].

The site was distinguished thanks to the 140 characters that it allows during

the publication of the tweet, which is a service almost similar to the SMS service,

and it also helps to use the method of shortening the message. At the same time,

other sites appeared that help in shortening links, such as Bitly and many others, in

addition to hosting and accommodating multimedia, especially those whose address

exceeds 140 characters [125]. Since June 2011, Twitter users have been relying on

URL shortening services when posting tweets to avoid going beyond the 140-character

limit [98]. In 2016, Twitter announced that media such as photos and videos can now

be shared without affecting the 140-character limit. Furthermore, attachments and

links became also no longer part of the minimum character limit [125]. By 2017,

Twitter has increased the Tweets to 280 characters [5].

Twitter trends or “Trending Topics” refer to those topics that are trending more

than others, or rather, the word that appears frequently in users’ tweets [11]. Some

topics become popular for two reasons. The first is related to the event, which prompts

people to talk about that topic and give their opinion on it, while the second is related

to the concerted efforts of dozens of users to bring the topic to the list of popular topics

in the world. These trending topics help site users understand what is happening in

the world and what people think about it. Figure 2.1 shows the anatomy of Twitter

tweet.

Twitter has a Developer Platform that enables developers to harness the power

of Twitter’s open, global, real-time, and historical platform within their own appli-

cations. The platform provides tools, resources, data, and API products for you

to integrate, and expand Twitter’s impact through research, solutions, and more.

The Twitter API makes it possible for programs to access Twitter in unique and ad-

vanced ways. Use Twitter’s fundamental features, including Tweets, Direct Messages,

Spaces, Lists, users, and more. Using API, Twitter data can be collected to be used

for Natural Language Processing, and text analytic applications and studies [3].

At the end of 2022, Twitter is acquired by the American businessman Elon Musk,

12

Figure 2.1: The anatomy of tweet

who is leading a process of changing the properties of Twitter that it’s known for.

Musk recently announced that Twitter would once more raise the character limit to

4,000, which sparked speculations regarding the nature of Twitter and whether it

will remain a micro-blogging platform. While Twitter now also supports longer-form

content through its threads feature, by subscribing to Twitter Blue paid membership,

the platform’s main focus is still on micro-blogging [50].

Feature Generation in Twitter

With the rise of Big Data, there has been a surge in demand for organizations and

data scientists to extract information from non-traditional data sources. According

to research, roughly 80% of data is unstructured text data; therefore, text analytics is

critical for analyzing the quantity of information accessible on chat transcripts, social

media postings, reviews, news feeds, etc. [146].

Twitter is one of these non-traditional data sources, and it is a social networking

service based on micro-blogging. We can read a brief of 280 characters (or fewer)

based on communications known as tweets. Unlike other social networking services,

Twitter has a large and diversified user base. Nowadays, Twitter is regarded as a

person’s voice or speech. Tweets are considered as statements and are parts of the

news bulletin, etc. [48].

Text analytics as a field that apply natural language processing techniques is the

practice of combining unstructured data in order to find patterns and make decisions,

13

and “tweets” are a rich source of information on a large set of topics that can be ana-

lyzed as text. This information may be used to identify patterns connected to a given

phrase, assess brand sentiment, or collect feedback on new goods and services [49].

Tweets text analytics starts with collecting the tweets, passing through the prepro-

cessing phase, which includes data modeling and feature engineering, then applying

a proper sentiment analysis, and finally, classifying the tweets to make them ready

for machine learning techniques.

Since the “tweet” itself is up to 280 characters, many researchers applied feature

generation techniques to help in the machine learning process. In a broad study, Lin

and Kolcz from Twitter, Inc. applied common machine learning tasks such as data

sampling, feature generation, training, and testing to be accomplished directly in

an existing Hadoop-based, Pig-centric analytics platform [94]. They mentioned that

data, features generated from the data, and the model are the three key components

of a machine-learning solution.

As an example of a related study, Kolchyna et al. compare several lexicon combi-

nations and show that adding emoticons, abbreviations, and social-media slang terms

to sentiment lexicons improves the accuracy of lexicon-based classification for Twitter.

For machine learning sentiment classification, they highlight the necessity of feature

generation and feature selection methods [90]. They applied the presence and fre-

quency of n-grams extracted during the pre-processing step. They added additional

features to the n-grams to improve the overall quality of text classification, such as the

number of words with positive/negative sentiment, number of negations, length of a

message, number of exclamation marks, number of different parts-of-speech in a text,

such as, for example, number of nouns, adjectives, verbs, and number of comparative

and superlative adjectives.

Word embedding is one of the recognizable feature generation approaches. Li et

al., in their study, offer a novel method that combines Sentiment-Specific Word Em-

beddings (SSWE) with a Weighted Text Feature Model (WTFM) [93]. Text negation,

a tf-idf weighting scheme and a Rocchio text classification approach are used to cre-

ate WTFM features. They found that WTFM is easy to build, simple, and effective

compared to other Twitter sentiment feature-generating algorithms. In another study,

14

Punyajoy et al. experimented with the pre-trained sentence embedding models to de-

tect hate speech over Twitter [136]. They propose HateMonitor, a machine-learning

model designed for identifying hate speech and offensive content in Indo-European

languages. To build the system language agnostic, they applied the Gradient Boosting

model, as well as Bidirectional Encoder Representations from Transformers (BERT)

and Language-Agnostic SEntence Representations (LASER) embeddings.

Having a large scale of tweets makes the applied feature generation approach

more helpful. As Nagarajan and Gandhi mentioned in their study, they collected

600 million public tweets using URL-based security tools, and feature generation is

applied for sentiment analysis [90].

Much research is done using automatic feature-generation tools. These tools can

automate the feature engineering process and generate many features for relational

and non-relational data. Some of these recognized tools are: FeatureTools, AutoFeat,

TsFresh, Cognito, OneBM, ExploreKit, and PyFeat [83].

2.2 Natural Language Processing

Natural Language Processing (NLP) is the field of computer science and linguistics

for interactions between computer science and linguistics. NLP started as a branch

of artificial intelligence. It enables computers to understand human language [81].

NLP is usually divided into sevel levels of language processing:

• Phonetics: which is the computer processing of physical sounds.

• Phonology: which is the linguistic processing of the sounds of a spoken lan-

guage.

• Morphology: which is the level of the word structure processing in a spoken

language.

• Syntax: which processes the inter-word structure up to sentence structure.

• Semantic: which processes the meaning up to sentence level

• Pragmatics: which is the process of interpreting the speaker’s meaning.

• Discourse: which processes the inter-sentence meaning up to larger units [127].

15

For text analysis, NLP also has many tasks related to the level of the application

that it is used for, such as sentiment analysis, question answering, machine translation,

and information extraction.

Also, NLP is using different computational language modeling that helps in the

feature generation of the analyzed text to support the task of the processed natural

language [127].

2.2.1 Sentiment Analysis

Sentiment analysis is the use of NLP, computational linguistics, and textual analy-

sis, in order to identify affective states and subjective information, whether positive,

negative, or neutral toward the topic of the text [68]. Fields of marketing, finance,

customer service, and other areas, are considered the most common fields that are

using sentiment analysis. Sentiment analysis aims in general to determine the feelings

of the speaker or writer towards a subject or identify the dominant feeling on a doc-

ument. These feelings can express the author’s opinion (i.e., appraisal) or emotional

state (i.e., the case of conscience of the author during the writing) or a deliberate

feeling to be delivered (i.e. the influenced conscience that the author wants to deliver

to the reader) [19].

The polarity of opinion classification is considered a fundamental process in the

analysis of sentiments in texts at the level of the entire document or sentence. The

polarity classification refers to the determination of whether the opinion expressed

in the document or sentence is positive, negative, or neutral. Other systems have

evolved to look at specific emotional states such as anger, sadness, happiness, fear, etc.

Sentiment analysis is widely used to evaluate the customer materials such as reviews,

survey responses, social media, and materials for applications in many fields [105].

Social-Sentiment Analysis, which is also called “Opinion Mining” is a type of data

extraction that measures the tendency or direction of individual opinions, which are

used to extract and analyze personal information from websites. The analyzed data

is used to determine the public’s feelings or reactions to certain products, people, or

ideas. The term refers to the process by which consumers’ feelings and opinions are

analyzed on social media such as Facebook, Instagram, Twitter, and others, where

individuals use these platforms to communicate with their friends, colleagues, and

16

family and share their opinions, experiences, and feelings on a particular topic.

The rise of social media such as blogs and social networks has increased interest

in sentiment analysis. Social media users share their views on a range of products,

services, or news about an event or a brand. These views may enhance the event or

brand’s reputation or diminish it, and they may help consumers to take a position or

make a decision that relies on the brand’s reputation. Most sentiment analysis algo-

rithms use simple terms to capture sentiment about a product or service. However,

cultural factors, linguistic affairs, and a variety of contexts make it extremely difficult

to turn a string of written text into a simple polarity sentiment. The shorter the

string of text, the harder it becomes. However, sentiment analysis within microblog-

ging such as Twitter has shown that it can be a valid online indicator of political and

economic sentiment [19].

2.2.2 Language Modeling-based Approaches to Features Generation

Language modeling approaches can be defined as probabilistic distribution modeling

over a sequence of words to provide context that helps in the natural language pro-

cessing tasks. It has many modeling types, such as Unigram and n-gram modeling,

exponential modeling, neural modeling, and word embedding modeling [106]. In this

section, we discuss language modeling-based approaches to feature generation, which

are used further in our methodology.

N-grams

In the fields of computational linguistics and probability, an n-gram is a contiguous

sequence of n items from a given sample of text or speech. The items can be phonemes,

syllables, letters, words, or base pairs according to the application. The concept of

n-grams in natural language processing can be traced back to the work of Claude

Shannon in the 1940s [144]. He was a pioneer in the field of information theory

and he used n-grams as a tool to analyze the frequency and distribution of letters

and words in written language. In the 1950s, n-grams gained popularity in computer

science and linguistics, particularly in the context of machine translation. Researchers

found that by analyzing the frequency and distribution of n-grams in parallel text,

they could improve the accuracy of the machine translation system. In 1960s and

17

1970s, n-grams continued to evolve exploring their efficiency in speech recognition,

text classification, and information retrieval. It was also during this time that the term

“n-gram” was first coined by J. A. Firth, who used it to describe sequences of words

of any length [53]. In the 1980s and 1990s, n-grams became widely used in the field of

computational linguistics, particularly in the development of probabilistic language

modeling. Researchers found that by modeling the probability of the n-grams in

a given text or corpus, they could improve the accuracy of language modeling and

enable more effective language processing. When the items are words, n-grams may

also be called shingles [43]. N-grams are basically set of occurring words within a

given window so when

• n = 1 they are called unigrams,

• n = 2 they are called bigrams,

• n = 3 they are called trigrams, and so on.

The generated n-grams can be vectorized by token count technique [158] or term

frequency and inverse document frequency techniques, which is known as tf-idf [63].

Count Vectorizer is a way to convert a given set of strings into a frequency represen-

tation, and frequencies are calculated as 0 while other words are present once hence

their frequencies are equal to 1. Count Vectors can be helpful in understanding the

type of text by the frequency of token n-gram in it. But it cannot identify more

important and less important words for analysis. It just consider tokens that are

abundant in a corpus as the most statistically significant word It also doesn’t identify

the relationships between words such as linguistic similarity between words. On the

other hand, tf-idf is a static that based on the frequency of a token in the corpus

but it also provides a numerical representation of how important a word is for sta-

tistical analysis. Using tf-idf we can then remove the tokens that are less important

for analysis, hence making the model building less complex by reducing the input

dimensions.

For the term i in document j:

tfidfi,j = tfi, j × log(
N

dfi
)

where:

18

• tfi,j is the number of occurrences of i in j

• dfi is the number of documents containing i,

• N is the total number of documents

• tf is the count of a token in a sentence.

• df is the number of documents that the token is present within corpus.

• And log(N
dfi
) represent the inverse document frequency (idf).

tf-idf is based on the logic that token that are too abundant in a corpus and

token that are too rare are both not statistically important for finding a pattern. The

Logarithmic factor in tf-idf mathematically penalizes the words that are too abundant

or too rare in the corpus by giving them low tf-idf scores [138].

Word Embedding

Word embedding is one of the most common text vocabulary classifications that is

used in natural language processing to represent words as vectors of numeric values.

It can capture the context of a word in a document, semantic and syntactic similarity,

and relation with other words in a way that can be used by machine learning algo-

rithms to process natural language. The idea of this technique can be traced back

to the 1960s, when researchers such as J. R. Firth and Zellig Harris introduced the

concept of distributional semantics [107]. However, it was not until the middle of

2000s that word embedding as we know it today began to emerge. The first major

breakthrough came in 2003 when Yoshua Bengio and his colleagues introduced the

idea of neural language modeling [99]. This approach used a neural network to pre-

dict the next word in the sentence based on the vector representation of the preceding

words. this led to the development of neural language models such as the Continu-

ous Bag-of-words (CBOW) and skip-grams (SG) models. The most commonly used

word embedding model is Word2Vec [106], which is introduced in 2013, by Tomas

Mikolov from Google, and generates vector representations of words based on their

co-occurrence with other words in a large corpus of text. Other embedding models

include GloVe [119] and FastText [108]. Word embedding is commonly used in tasks

such as sentiment analysis, document clustering, and machine translation.

19

Word-to-Vector Embedding (Word2Vec): Word2Vec is a neural network-based

model for Natural Language Processing (NLP). Specifically, it is a shallow neural

network that is used to generate word embeddings - continuous vector representations

of words in a high-dimensional vector space [28].

Word2Vec is not a singular algorithm, rather, it is a family of model architectures

and optimizations that can be used to learn word embeddings from large datasets.

Embeddings learned through word2vec have proven to be successful on a variety of

downstream natural language processing tasks. Word2Vec uses two methods: Con-

tinuous Bag-of-words (CBOW) model that predicts the middle word, or the target

word, based on surrounding context words; and continuous skip-grams (SG) model

that predicts the surrounding words within a certain range before and after the cur-

rent word, or the given target word, in the same sentence [128]. Figure 2.2 shows the

difference between Word2Vec embedding models, CBOW and skip-grams.

Word2Vec model consists of an input layer, a hidden layer, and an output layer.

The input layer is one-hot encoded vector representing a specific word in the vocab-

ulary, which is fed into the model. in the SG model it will be one input neuron that

represent the target word, while in CBOW it will be the number of context word

neurons. The hidden layer is used to calculate the continuous vector representation

of the word, based on its context in the input text. It consists of a set of neurons that

perform a linear operation on the input vector, followed by a non-linear activation

function (usually the sigmoid [133] or ReLU function [12]). In SG model, the output

layer produces the probability distribution of the nearby words, given the input word,

and based on the vector representation generated by the hidden layer. It also consists

of a set of neurons, each representing a particular context word. The output of each

neuron is a probability distribution over the entire vocabulary, indicating the likeli-

hood of the corresponding context word appearing near the target word. The softmax

function [45] is usually applied to convert the output neuron values into probabilities.

On the other hand, the output layer consists of a single neuron, which predicts the

probability distribution of the target word given the context words.

In Word2Vec model, there are some important parameters that need to be consid-

ered, such as window size and negative sampling. Window size refers to the number

of context words used to predict the target word in a given input sequence. The

20

Figure 2.2: The difference between CBOW and SG models in Word2Vec embedding
method

window size determines the range of words around a given target word that the

Word2Vec model considers when training. The choice of window size is important

hyper-parameter that effect the quality of learned word embeddings. A smaller win-

dow size will capture more local context and result in word embeddings that reflect

specific usage scenarios, while a larger window size will capture more global context

and result in more general-purpose word embedding [47].

Negative sampling is a technique used in Word2Vec model to speed up the training

process and improve the quality of the learned word embedding [95]. The basic idea of

negative sampling is to replace the original softmax layer [45] of the Word2Vec model

with a binary Logistic Regression classifier. Rather than attempting to predict the

propabilities of all possible words in the vocabulary, negative sampling only updates

a small subset of the weights in the model during training. The binary Logistic

Regression classifier then predicts weather each of sampled words is a positive or

negative example for the given target word. Negative sampling can help the Word2Vec

model to better capture the meaningful relationships between words and produce

haigher-quality word embedding.

During training, the model adjusts the weights of the connections between the

input, hidden, and output layers, using an optimization algorithm like stochastic

gradient descent, to minimize the error between predicted and actual context words.

Once trained, the hidden layer of the Word2Vec model can be extracted to obtain the

vector representation (embedding) of each word in the vocabulary. These embeddings

21

can then be used for various NLP tasks, such as sentiment analysis, text classification,

and machine translation [104].

Word2Vec models can be pre-trained on large text corpora using unsupervised

learning techniques before being fine-tuned 1 for specific downstream NLP tasks.

There are several pre-trained Word2Vec models available that can be used for various

NLP applications, such as; Google News Word2Vec Model [1], which was trained by

Google on a huge corpus of Google News articles and consists of 300-dimensional word

embeddings for over three million words and phrases. It is available for download

and can be used for a wide range of NLP tasks. Another example of pre-trained

Word2Vec models is ConceptNet Numberbatch [151]. This is a state-of-the-art open-

source semantic embeddings model that combines several existing models, including

GloVe and Word2Vec, into a single unified model. It contains high-quality word

embeddings in 17 languages and has been trained on several large text corpora and

knowledge graphs. A final example of pre-trained Word2Vec models is AraVec [148],

which is a is a pre-trained word embedding model for Arabic language. It is trained

on a large corpus of Arabic text data with over 10 billion tokens, using the continuous

skip-gram algorithm.

Pre-trained language Models

Is a machine learning model that has already been trained on a large corpus of text

data that can be used to generate feature vectors for text data. Feature vectors are

numerical are numerical representations of features that can be used as input for

machine learning models. A pre-trained model can assign high-dimensional vector to

each word in the text, which can be averaged or concatenated to create vector for the

entire text. The evolution of word embeddings and neural language models, paved

the way for more advanced pre-trained language models like BERT (Bidirectional

Encoder Representations from Transformers) in 2018 [55]. BERT was developed by

researchers at Google and is considered a major breakthrough in NLP. Since the re-

lease of BERT many other pretrained language models have been developed, such as

1Fine-tuning in Natural Language Processing (NLP) refers to the process of taking a pre-trained
language model and adjusting its parameters on a specific task or domain.

22

GPT (Generative Pre-trained Transformer) [123] in 2018, RoBERTa (Robustly Op-

timized BERT Approach) [97] in 2019, and T5 (Text-to-Teaxt Transfer Transformer)

[129] in 2020.

Bidirectional Encoder Representations from Transformers (BERT): BERT

is a pretrained language model that can be used to generate features for natural lan-

guage processing tasks [55]. BERT is trained on a large corpus of text, and as a

result, it learned a lot about structure of human language. To generate features us-

ing BERT , fine-tuning the model on a specific task is required. Fine-tuning is the

process updating the parameters of the pre-trained model on new task, such as senti-

ment analysis or named entity recognition. After fine-tuning, the model can be used

to generate features for new text data related to that task [155]. The structure of

BERT is based on the Transformer architecture, which is a type of neural network

used for sequence-to-sequence modeling. The Transformer architecture consists of an

encoder and decoder, both of which are made up of multiple layers of attention and

multi-head self-attention mechanism [52].

The BERT model has only encoders, which is why it is referred to as an encoder-

only architecture.

The encoder layer of BERT is made up of Transformer blocks, each which con-

tain multiple layers of self-attention mechanism and feed-forward neural network.

Each transformer encoder layer in BERT has several sub-layers that perform specific

functions:

• Multi-Head Self-Attention layer: This sub-layer computes a series of atten-

tion weights for each token in the input text sequence based on its relationship

to the other tokens in the sequence. In this stage, BERT takes as input the

embeddings of all tokens in the input sequence along with some additional infor-

mation such as position and segment embeddings. BERT then computes a set

of attention weights that capture the relationship between each input token and

all other tokens in the sequence. These attention weights are calculated using a

dot product between the embeddings of each pair of tokens, and a softmax func-

tion is applied to normalize the weights. Once the attention weights have been

calculated, BERT computes a weighted sum of all token embeddings, using the

23

attention weights as coefficients. This weighted sum produces a context vector

for each token in the sequence, which captures its context and relationships

with other tokens in the sequence [159].

• Layer Normalization: This sub-layer normalizes the output from the multi-

head self-attention layer [159].

• Feed-Forward Neural Network layer: This sub-layer applies a non-linear

transformation to each token embedding based on its contextualized represen-

tation produced by the self-attention layer. Specifically, the feed-forward layer

consists of two linear transformations (a fully connected layer) with a ReLU

activation function in between them. The goal of this layer is to help BERT

model to enhance the learned features and capture more complex interactions

between the input tokens [64].

• Another Layer Normalization: The output of the feed-forward neural net-

work layer is also normalized.

BERT is based on stacked layers of encoders. The difference between BERT

base and BERT large is on the number of encoder layers. BERT base model has

12 encoder layers stacked on top of each other whereas BERT large has 24 layers of

encoders stacked on top of each other.

In BERT base, there are 12 hidden layers that are used for encoding text input

into contextualized token representation. Each of these layers has specific role in

the coding process and contributes to the overall quality of the model prediction, in

addition to two layers for input and output. Here is an overview of the role of each

layer in the BERT model:

• Input embedding layer: This layer takes raw text inputs (such as a sentence

or document) and converts them into a series of token embeddings. Each token

embedding is an initial vector representation of the token that is used as input

to the subsequent layers.

• 12-Transformer encoder layers: In this section, there are 12 similar trans-

former encoder blocks that take the token embeddings produced by the input

24

embedding layer and refine them through a series of attention-based operations.

More specifically, the first few layers in BERT primarily focus on identifying ba-

sic word-level features such as individual words, punctuation marks, and basic

syntax. As the layers progress, the model starts to extract more complex fea-

tures such as named entities, idiomatic expressions, and other subtle linguistic

nuances. The final few layers in BERT are typically the most important, as

they are responsible for producing the final contextualized word embeddings

that are used to make predictions for downstream NLP tasks such as sentiment

analysis, text classification, and named entity recognition.

• Final output layer: After the token embeddings have been processed by the

12 transformer layers, the final output layer produces a set of contextualized

token embeddings that are capable of capturing rich contextual information

about each token in the input text [64] [159].

Figure 2.3: The detailed structure of BERT

In BERT, the softmax function is used in the final layer of the model for classifi-

cation tasks. It is applied to the output of the classification layer, which consists of a

single dense layer followed by a softmax activation [64]. The dense layer computes a

weighted sum of the contextualized word representations and produces a fixed-length

25

vector representation of the input sequence. After the dense layer, the softmax func-

tion is applied to normalize the output vector into a probability distribution over all

possible class labels. Each element in the output vector represents the probability

of the input sequence belonging to a specific class. Instead of softmax, the argmax

function [44] can be used to find the index of the maximum value in a tensor or

a vector. In the context of BERT, argmax is commonly used to find the index or

indices with the highest scores in the output of the model.

The key innovation in BERT is that it is a bidirectional model, meaning it can into

account both the left and the right context of word in a sentence. This is achieved by

using a technique called Masked Language Modeling (MLM), where some of the word

in sentence are randomly masked and the model is trained to be predict the original

word from its context [42]. Additionally, BERT is pretrained on a large corpus of raw

text, such as Wikipedia, BookCorpus, and the Common Crawl. Figure 2.3 shows the

structure of BERT pre-trained language model.

In MLM, a percentage of the input tokens in a sentence are masked or replaced

with a special [MASK] token, and the goal of the model is to predict the original words

from the masked ones. Specifically, during pre-training, BERT randomly masks 15%

of the tokens in each input sentence, where 80% of them are replaced with the special

[MASK] token, 10% are replaced by a random token, and the remaining 10% are

left unchanged. The model is then trained to predict the original tokens that were

replaced with [MASK]. By performing MLM as a pre-training task, BERT is able

to learn rich, context-sensitive word representations that capture both the left and

right context of each token, making it truly bidirectional. This is in contrast to

traditional left-to-right or right-to-left language models that only use a fixed context

to predict the next token. Once trained on the MLM task, the learned parameters of

the BERT model, including the word embeddings and the transformer layers, can be

fine-tuned on downstream NLP tasks such as text classification, question answering,

and named entity recognition. This fine-tuning further enhances the contextualized

word representations learned by the model during pre-training, resulting in improved

performance on the task at hand [42].

26

2.3 Machine Learning and Deep Learning

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that develops algo-

rithms and technologies that allow computers to have features of “learning”, which

give computers the ability to learn without being explicitly programmed [36]. The ba-

sic task of machine learning is to extract valuable information from data, which is very

close to tasks of data mining, statistics, and information theory. Machine learning is

closely related to (or often overlaps with) computational statistics, which also focuses

on making predictions using computers. The data analytics field, which is a method

used to develop complex models and algorithms suitable for the prediction process, is

using machine learning commercially which is known as Predictive Analytics. These

analytical models allow data scientists to produce reliable and reproducible decisions

and results, and uncover hidden patterns by learning from historical relationships and

trends within this data [36].

Machine learning includes a wide range of application fields, such as natural lan-

guage processing, syntactic pattern recognition, search engines, medical diagnostics,

bioinformatics, chemical informatics, DNA sequencing classification, speech recogni-

tion, handwriting recognition, and even object recognition, computer vision, strategic

games, and robot locomotion.

Machine learning algorithms are classified into several types, the most important

being:

• Supervised Learning, which is one of the most popular types of machine

learning and is based on the presence of data and correct evidence at the time

of learning.

• Unsupervised Learning, which is a learning that results from the presence

of data without proper evidence.

• Reinforcement learning, which is a type of unsupervised learning in which

the machine interacts with the environment and builds its expertise based on

this interaction [36].

Another branch of machine learning that deals with artificial intelligence is Deep

Learning (DL), which is considered a new area of research dealing with theories

27

and algorithms that allow a machine to learn by simulating neurons in the human

brain [142]. Most of the deep learning research focuses on finding methods to develop

a high degree of abstraction by analyzing a huge data set using linear and nonlinear

transformers. The discoveries in this field have proved significant, rapid, and effective

towards progress in many areas including facial recognition, speech recognition, com-

puter vision, natural language processing, audio recognition, social media filtering,

machine translation, bioinformatics, and board game programs. The machine learns

from big data using various designs of deep learning networks, including Recurrent

Neural Network (RNN) frequently used with continuous texts and data, and Convo-

lutional Neural Networks (CNN) that draw their inspiration from biological processes

in the brain and other designs. Simply, most machine learning algorithms rely on two

basic steps: observation and simulation (prediction). This is in the group of algo-

rithms that rely on supervised learning or learning by observing previous events of the

known results. It first monitors the input data and tries to devise distinct patterns

and characteristics of the data and then simulates the behavior of functions based on

the connections and relationships formed by monitoring the process of converting the

input data to specific outputs [142].

2.3.1 Supervised Learning Methods

We present in this section an overview of some supervised learning methods in ML,

which we will also refer to in presenting our methodology in further chapters.

Logistic Regression (LR)

Logistic Regression (LR) is a statistical model used for binary classification problems,

where the output variable can take two possible values (Such as 0 and 1 or yes and no).

It predicts the probability of an event occurring by fitting a logistic function to a set

of input variables. The logistic function, also called the sigmoid function, transforms

the output of a linear equation into a value between 0 and 1, which represents the

probability of the dependent variable belonging to the positive class. The equation

for logistic regression is given by:

p =
1

1 + e−z

28

where:

• p is the predicted probability of the positive class

• e is the base of the natural logarithm

• z is the linear combination of input variables.

The value z can be calculated as:

z = β0 + β1x1 + β2x2 + . . .+ βnxn

where:

• βj is the coefficient or weight assigned to each input variable.

• xn is the value of the nth input variable

The coefficients in logistic regression are typically estimated using maximum likeli-

hood estimation, a method that finds the values of the coefficients that makes the

predictions most likely to be correct based on the available data. Logistic Regression

can be used for both binary classification and multinomial classification problems,

where the output variable can take more than two possible values.

K-Nearest Neighbors (KNN)

In pattern recognition, the k-Neareast Neighbours (KNN) algorithm is a non-parametric

technique used for classification and regression [22]. As a part of both cases, the input

comprises of the k nearest training samples in the attribute space. The result relies

on whether KNN is used for classification or regression. The concept of KNN classifi-

cation algorithm is that the object is classified by the majority votes of its neighbors.

Given n training vectors, KNN algorithm identifies the k nearest neighbors of ’c’ to

estimate its class, regardless of the labels of the class. For example, if we have k = 3,

and we have two classes ’a’ and ’b’, let us consider the case where the algorithm

should find the class of an unclassified object ’c’. Because k = 3, we have to find

the nearest three neighbors of object ’c’. If more ’b’s are the nearest neighbors to ’c’

than those in class ’a’, then ’c’ is classified as ’b’. Figure 2.4 explains the algorithm

of KNN.

29

Figure 2.4: K-Nearest Neighbor methodology

For another example, if k = 1, each training vector defines a region in space,

defining a Voronoi partition of space. Figure 2.5 explains the partitioning method in

the KNN algorithm. To perform this algorithm in the best way, the k value should

be an odd value for two classes’ problems, and it should not be a multiple of the

numbers of classes. The main disadvantage of KNN is the complexity in searching

the nearest neighbors for each sample [22].

Figure 2.5: K-Nearest Neighbor area partitioning

Another negative side is that KNN is a lazy learner. It learns nothing from the

training dataset and just uses the training dataset itself for classification. For new

instances label prediction, the KNN algorithm will find the k closest neighbors to the

new instance from the training data. The predicted class label will then be set as the

30

most common label among the k closest neighboring points. Furthermore, it is a slow

method for large data size [22].

Näıve Bayes and Bayesian Network

In machine learning, Näıve Bayes classifiers are a group of basic probabilistic classifiers

used to apply Bayes’ hypothesis with powerful independence assumptions between the

attributes. A Näıve Bayesian model is easy to build with no complicated iterative

parameter estimation, which makes it particularly useful for large datasets. Further-

more, Naive Bayesian classifier often works well and is commonly used because it

often performs better than other complicated methods. Naive Bayes has been em-

ployed widely since the 1950s. It was brought in as alternate name into the text

retrieval challenges in the mid-1960s [130], and remains a popular method for text

categorization, judging documents as fitting in with one classification or the other,

(for example, spam or legitimate, sports or political issues, etc.), and with word fre-

quencies as the components. With proper preprocessing, it is used in this space with

added strategies including support vector machines.

Bayes theorem provides a method for calculating the posterior probability, P (c|x),
from P (c), P (x), and P (x|c). Näıve Bayes classifier which assumes that the result

of the value of the predictor (x) on a given class (c) is independent of the values of

other predictors. This assumption is called class conditional independence [70]. One

of the notable limitations of Näıve Bayes is that it has strong feature independence

assumptions, while, on the other hand, it is fast to train and classify, and it is not

sensitive to irrelevant features. Another important feature of the Näıve Bayes algo-

rithm is that it handles both real and discrete data, as well as handling streaming

data [70].

The Näıve Bayes algorithm is based on the Bayes’ theorem, which can be expressed

using the following formula:

P (c|x) = P (x|c)P (c)

P (x)

where:

• P (c|x) is the posterior probability of the class (target) c, given predictor (at-

tributes) x,

31

• P (c) is the prior probability of the class c,

• P (x|c) is the likelihood which is the probability of the predictor x given class

c, and

• P (x) is the prior probability of the predictor x.

The strong assumption of the Näıve Bayes method is that the attributes x =

(x1, x2, . . . , xn) are independent given the class c, or in other words:

P (x|c) = P (x1, x2, . . . , xn|c) = P (x1|c) · P (x2|c) · . . . · P (xn|c)

so the Bayes’ theorem formula becomes:

P (c|x) = P (x1|c) · P (x2|c) · . . . · P (xn|c) · P (c)

P (x)

Decision Tree Methods (DT)

A Decision Tree (DT) is a decision support instrument that uses a tree-like chart or

model of choices and their possible results, including chance occasion results, asset

expenses, and utility. It is one approach to show an algorithm. Decision trees are

generally used as a part of research, or examination, that is particularly in decision

analysis, to recognize a technique used to achieve an objective, and they are a common

tool in machine learning. This method has many algorithms, and in this research, two

common algorithms were chosen to apply to the dataset and to evaluate its accuracy.

C4.5 algorithm (J48): C4.5 is an algorithm used to build a decision tree created

by Ross Quinlan [140]. C4.5 is an extension of ID3 decision tree algorithm. The

decision tree produced by C4.5 can be used for classification, and hence, C4.5 is

frequently referred to as a statistical classifier. C4.5 assembles decision trees from

an arrangement of training data similar to ID3, utilizing the idea of data entropy.

The training dataset, S = {s1, s2, . . .}, is a set of effectively grouped examples. Every

specimen si comprises a p-dimensional vector (xi
1, x

i
2, . . . , x

i
p) , where the xj represents

feature values or feature of the sample, as well as the class in which si falls. At every

node of the tree, C4.5 picks the quality of the information that most successfully parts

its arrangement of tests into subsets improved in one class or the other. The part

32

basis is the standardized data pick up (distinction in entropy). The characteristic

with the most noteworthy standardized data addition is settled on the choice. The

C4.5 calculation then repeats the process on the sub-lists [140].

This algorithm has a couple of base cases. The base case is all the samples in the

list that fit in with the same class. At the point when this happens, it essentially

makes a leaf node for the decision tree saying to pick that class. None of the features

give any information gain. For this situation, C4.5 makes a decision node up the tree

using the normal estimation of the class. Occasionally beforehand a concealed class

is experienced. At this point, C4.5 makes a decision node higher up the tree using

the normal process. C4.5 can build models that can be interpreted easily. Another

feature of C4.5 is that it can use categorical and continuous values, in addition to

dealing with noise properly. This method cannot work properly with small training

datasets, as small data can generate different decision trees [70].

Random Forest (RF): Random Forest (RF) reflects the general method of arbi-

trary decision forests [70] that are a group learning approach for classification, re-

gression, and other different roles. This method works on building many choice trees

at training time and resulting in the class that is the chosen method of the classes

(classification) or mean prediction (regression) of the individual trees. Random deci-

sion forests are an answer for a decision trees’ propensity for the overfitting issue to a

training set. The method merges Breiman’s “bagging” idea and the random selection

of features.

Random forest runs efficiently on large databases and handles thousands of input

variables without variable deletion. It has an efficient method for estimating missing

data and maintains accuracy when a large proportion of the data are missing. At

same time it has some limitations. Overfitting could occur in some datasets with

noise, and it could be biased for some dataset features [70].

Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a type of machine learning algorithm used in

classification and regression analysis. It works by filtering the hyperplane (line that

separates the data) that maximizes the distance between the closest data points

33

of different classes (called the margin). For linear SVM, the goal is to find the

”maximum-margin hyperplane” that divides the group of points xi for which yi = 1

from the group of points for which yi = −1, which is defined so that the distance

between the hyperplane and the nearest point xi from either group is maximized.

Figure 2.6: Maximum-margin hyperplane and margins for an Support Vector Ma-
chine (SVM) trained with samples from two classes.

For linear SVM, hyperplane can be written as the set of x satisfying:

wT ∗ x− b = 0

where w is the normal vector to the hyperplane. Figure 2.6 explains the linear SVM

hyperplane.

Non-linear boundaries can be obtained using non-linear kernels that project the

input features into higher-dimensional feature space. Some commonly used kernel

functions in SVM include:

• Polynomial Kernel: This kernel can handle non-linearity by projecting the

features into a higher-dimensional space using a polynomial function.

• Radial Basis Function (RBF): is the most commonly used kernel and it can

34

handle non-linearity by projecting the features into infinite-dimensional space.

The RBF kernel is also known as the Gaussian kernel

• Sigmoid kernel: This kernel can handle both linear and non-linear data and

canbe used for non-linear relationship between data features.

The choice of kernel function depends on the specific problem, selecting the right

kernel can drastically improve the accuracy of SVM in classification and regression

tasks.

SVM is a powerful algorithm that can handle both linear and non-linear data and is

widely used in a variety of applications such as image classification, text classification,

and bioinformatics.

2.3.2 Deep Learning Methods

In this section, we will describe some Deep Learning (DL) methods that used in our

studies.

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) is a deep, artificial neural network that produces a series

of outputs from a set of inputs. An MLP is constructed of at least three node layers:

an input layer, a hidden layer, and an output layer. Except for input nodes, each

node is a neuron that uses a nonlinear activation function. MLP uses a supervised

learning technique called backpropagation for training [74]. If a multilayer perceptron

includes a linear activation function in all neurons, that is, a linear function that

maps the weighted inputs to the output of every neuron, then algebra shows that

any number of layers will be reduced to a two-layer input-output model [73]. In

MLPs some neurons use a nonlinear activation function that was developed to model

the frequency of action potentials, or firing, of biological neurons. The two common

activation functions are are both sigmoids, and described by:

y(vi) = tanh(vi)

and

y(vi) = (1 + e−vi)−1

35

The first function is a hyperbolic tangent that ranges from -1 to 1, while the

second function is the logistic function, which is similar in shape but ranges from 0

to 1, where yi is the output of the ith node (neuron) and vi is the weighted sum of

the input connections.

In recent developments of deep learning, the Rectified Linear Unit (ReLU) is

more frequently used as one of the possible ways to overcome the numerical problems

related to the sigmoids, defined as the positive part of its argument:

RELU(x) =

{
x ifx > 0,

0 otherwise.

where x is the input to a neuron.

Each neuron in the MLP can be represented by the following formula:

f

(
b+

n∑
i=1

xiwi

)
= a

where:

• f is an applied activation function to the neuron,

• x1 . . . xn are the neuron inputs,

• w1 . . . wn are their corresponding weights,

• b is a bias value, and

• a is the neuron output.

The MLP consists of three or more layers (an input and an output layer with one

or more hidden layers) of nonlinear-activating nodes. Since MLPs are fully connected,

each node in one layer connects with a certain weight wij to every node in the following

layer. Dense layer, also called fully-connected layer, refers to the layer whose inside

neurons connect to every neuron in the preceding layer. Training is generated in the

perceptron by adjusting the link weights after processing each piece of data, based on

the amount of error in the output in comparison to the expected result. The output

layer outputs the classes using the MCXENT loss function, and softmax activation

36

Figure 2.7: An illustration of the neural networks and the structure of the layers in
neural network

function if it is a multi-class classification technique, which transforms the neurons’

output exponential to class probabilities distribution, as described in the following

formula:

softmax(a) =
eai∑i
j=1 e

aj

where:

• a are the outputs of the neurons, and

• e is exponential of each a.

For binary classification, sigmoid activation function is used to outputs the classes,

as described in the following formula:

σ(a) =
1

1 + e−a

Figure 2.7 illustrates the structure of the neural networks, starting from simple

neural network, 1-layer neural network and the multi-layer neural network or Multi-

layer Perceptron (MLP).

37

Weightless Neural Network (WiSARD)

Weightless Neural Network (WiSARD) is a supervised RAM-based neural network

method. The RAM-based neural networks essentially use look up tables to store the

function computed by each neuron, and hence are easily implemented in digital hard-

ware and have efficient training algorithms. WiSARD was originally conceived as

a pattern recognition device mainly focusing on an image processing domain. With

ad-hoc data transformation, WiSARD can also be used successfully as multiclass clas-

sifier in machine learning domain. A WiSARD is formed by as many discriminators

as the number of classes it must discriminate between. Each discriminator consists

of a set of n RAMs that, during the training phase, learn the occurrences of n-tuples

extracted from the input binary vector. The WiSARD4WEKA package implements a

multi-class classification method based on the WiSARD weightless neural model for

the Weka machine learning toolkit. This implementation adds a data-preprocessing

filter method to exploit WiSARD neural model training and classification capabil-

ities. The resulting software is a classification method based on WiSARD neural

network model. Usually used for image deep learning, a few studies also used it for

text classification [65].

Radial Basis Function Network (RFBN)

RBFN is an artificial neural network that uses radial basis functions as activation

functions. The output of the network is a linear combination of radial basis func-

tions of the inputs and neuron parameters. RBFN has many uses, including function

approximation, time series prediction, classification, and system control. It uses the

K-Means clustering algorithm to provide the basic functions and learns either a logis-

tic regression (discrete class problems) or linear regression (numeric class problems)

on top of that. Symmetric multivariate Gaussians are fit to the data from each cluster.

If the class is nominal, it uses the given number of clusters per class. It standardizes

all numeric attributes to zero mean and unit variance [58]. Figure 2.8 presents the

Radial Basis Function Network method.

38

Figure 2.8: Radial Basis Function Network explanation

Long Short-Term Memory (LSTM)

LSTM is an artificial neural network architecture used in deep learning. It was de-

signed to solve the problem of vanishing gradients in traditional Recurrent Neural

Network (RNN)s [126]. LSTM networks are powerful in processing sequential data

and are used in applications such as speech recognition, language modeling, and ma-

chine translation. The architecture includes memory cells, input gates, output gates,

and forget gates that allow it to retain long-term memory and selectively forget or

remember information.

the LSTM structure consists of a sequence of memory cells, or units, that are

connected through gates. The main components of each LSTM cell are:

• Memory cell: which is the main storage unit of the LSTM network, which

remembers information over time.

• Input gate: that decides which information should be stored in the memory

cell, blocking irrelevant information while allowing important information to

pass through.

39

• Forget gate: that decides which information to discard memory cell, removing

any irrelevant or outdated information.

• Output gate: that decides which information from the memory cell should

be used as output, allowing the LSTM to selectively output the most relevant

information.

Gates in LSTM are the sigmoid activation functions i.e they output a value between

0 or 1 and in most of the cases it is either 0 or 1. The equations for the gates in

LSTM are:

it = σ(wi[ht−1, xt] + bi)

ft = σ(wf [ht−1, xt] + bf)

ot = σ(wo[ht−1, xt] + bo)

where:

it → represents input gate.

ft → represents forget gate.

ot → represents output gate.

σ → represents sigmoid function.

wx → weight for the respective gate(x) neurons.

ht−1 → output of the previous LSTM block (at timestamp t− 1).

xt → input at current timestamp.

bx → biases for the respective gates(x).

The equations for the cell state, candidate cell state and the final output:

c̃t = tanh(wc[ht−1, xt] + bc)

ct = ft ∗ ct−1 + it ∗ c̃t

ht = ot ∗ tanh(ct)

where:

ct → cell state (memory) at timestamp(t).

c̃t → represents candidate for cell state at timestamp(t).

40

We can pass this ht the output from current LSTM block through the softmax layer

to get the predicted output yt from the current block.

The operation of each gate is controlled by a set of weights and biases that are

learned during training, allowing the LSTM network to adapt to a different tasks

and datasets. The combination of these components allows the LSTM to effectively

handle long-term dependencies in sequential data. Figure 2.9 shows the explanation

of the architecture of the LSTM network.

Figure 2.9: The architecture of the LSTM network

Bi-directional Long Short-Term Memory (Bi-LSTM) : is a Recurrent Neural

Network (RNN) architectures used in Natural Language Processing (NLP) tasks such

as named entity recognition, language modeling, and machine translation. Bi-LSTM

processes the input sequence in both directions, i.e., left to right and right to left,

before concatenating the outputs. In other words, bi-LSTMs have two layers of hidden

units: one for the forward sequence and another for the backward sequence. Bi-LSTM

captures the contextual information of both past and future states of a given sequence

and thus generally produces better results than unidirectional LSTMs.

The main difference between LSTM and Bi-LSTM lies in the direction of context

41

processing. While LSTM processes input sequences in one direction (usually left

to right), Bi-LSTM processes input sequences in both directions (left to right and

right to left) and concatenates the outputs. Bi-LSTM generally performs better than

unidirectional LSTM due to its ability to capture contextual information from both

past and future states of the given sequence.

2.4 Machine Learning Tools and Libraries

Data mining and predictive modeling are related to machine learning tools, which

are algorithmic applications of artificial intelligence that enable systems to learn and

advance without a lot of human input. They enable software to predict outcomes

more accurately without having to be explicitly programmed. The concept is to use

a model or algorithm to gather data from the outside world and then feed that data

back into the model so that it can get better over time. Machine learning is used

because the model “learns” as it is fed increasing amounts of data.

They can be used, for example, to create news feeds, recommender systems, search

pattern predictions, spam filters, recommendation engines, and much more. Super-

vised, unsupervised, semi-supervised, and reinforced machine learning algorithms are

the four different categories.

Weka: Waikato Environment for Knowledge Analysis (Weka) is a collection of ma-

chine learning algorithms developed by Waikato University in New Zealand, which

is particularly well-organized in the framework of data mining tasks. It has tools

for mining association rules, clustering, regression, classification, and visualization of

data. Weka is free software distributed under the terms of the GNU General Public

License, and the companion software to the book “Data Mining: Practical Machine

Learning Tools and Techniques”. With the help of graphical user interfaces, Weka

provides a variety of visualization tools and algorithms for data analysis and predic-

tive modeling [77].

Weka offers support for a number of common data mining operations, including

feature selection, data preprocessing, clustering, classification, and regression. Weka

expects input that is formatted using the Attribute-Relational File Format and has

a filename ending in .arff extension. Each of Weka’s methods are based on the

42

premise that the data is available as a single flat file or relation, with each data point

being described by a fixed number of attributes. The package manager in Weka was

added to allow the easier installation of extension packages.

R: R is a programming language for statistical computing and graphics [122], de-

veloped by Ross Ihaka and Robert Gentleman, two statisticians, who made it an

important tool used today by data miners, bioinformaticians, and statisticians for

data analysis and creating statistical software. In order to extend the capabilities of

the R language, users have created a large number of packages. R has become of the

major programming languages used today in data mining [122].

The GNU package contains the official R software environment, which is open-

source free software that is distributed under the terms of the GNU General Public

License. It is primarily written in C, Fortran, and R (partially self-implemented).

There are precompiled executables available for different operating systems. There is

a command-line interface for R.

TensorFlow: TensorFlow is a free and open-source software library for machine

learning and artificial intelligence. It can be used across a range of tasks but has

a particular focus on training and inference of deep neural networks. TensorFlow

was developed by the Google Brain team for internal Google use in research and

production. The initial version was released under Apache License 2.0 in 2015. Google

released the updated version of TensorFlow, named TensorFlow 2.0, in September

2019. TensorFlow serves as the core platform and library for machine learning. It can

be used in a wide variety of programming languages, including Python, JavaScript,

C++, and Java. This flexibility lends itself to a range of applications in many different

sectors [6].

scikit-learn: Is a free software machine learning library for the Python program-

ming language. It features various classification, regression and clustering algorithms

including support-vector machines, random forests, gradient boosting, k-means, and

DBSCAN, and is designed to interoperate with the Python numerical and scien-

tific libraries NumPy and SciPy. Scikit-learn is a NumFOCUS fiscally sponsored

project [117].

43

PyTorch: PyTorch is a machine learning framework based on the Torch library,

used for applications such as computer vision and natural language processing, origi-

nally developed by Meta AI and is now part of the Linux Foundation umbrella. It is

free and open-source software released under the modified BSD license. Although the

Python interface is more polished and the primary focus of development, PyTorch

also has a C++ interface [115].

A number of pieces of deep learning software are built on top of PyTorch, including

Tesla Autopilot, Uber’s Pyro, Hugging Face’s Transformers, PyTorch Lightning, and

Catalyst.

PyTorch provides two high-level features:

• Tensor computing (like NumPy [71]) with strong acceleration via graphics pro-

cessing units (GPU), and

• Deep neural networks built on a tape-based automatic differentiation system.

2.5 Feature Engineering on Twitter Data

Online social networks have emerged as a brand-new platform that offers a forum

for people to discuss their opinions and points of view on various topics and issues

with their friends, family, and other associates. Through text, photos, audio, and

video messages and posts, we can express our ideas, feelings, moments, and positions

on particular social, national, and international issues. In fact, text remains one of

the most popular ways to communicate in a social network despite the availability

of other forms of communication. Reda and Kashifa [137] described the goal of their

study to identify and examine the sentiment and emotion people express through

text in their tweets, then use that information to generate recommendations. They

gathered tweets and replies on a select few topics, creating a dataset that included

text, user, emotion, sentiment, and other data. They assessed user influence scores

based on various user- and tweet-based parameters and used the dataset to extract

sentiment and emotion from tweets and their replies. They made use of the latter data

to produce both general and specific user recommendations based on their Twitter

activity. The methodology they used includes some intriguing novelties, including:

44

• Tweet replies in the dataset and measurements,

• Incorporating agreement score, sentiment score, and emotion score of replies in

influence score calculation, and

• Generating general and personalized recommendations containing a list of users

who agreed on the same topic and expressed similar emotions and sentiments

towards that specific topic.

In another study, Md. Rakibul Hasan et al. examine Twitter data to analyze

public views toward a product. First, in order to filter tweets, they created a pre-

processed data framework based on NLP. Then, in order to analyze sentiment, they

use a Bag of Words (BoW) approach with the term frequency-inverse document fre-

quency (tf-idf) weighting. Their project aims to precisely categorize positive and

negative tweets using BoW and tf-idf. The accuracy of sentiment analysis can be

significantly increased by using the tf-idf vectorizer, and simulation results demon-

strate the effectiveness of our suggested system. Using NLP over Twitter data, they

conclude that they were able to analyze sentiment with an accuracy of 85.25% [72].

Twitter sentiment analysis gives businesses the ability to track public sentiment

toward their products and events in real-time. The text pre-processing of Twitter

data is the first step in the sentiment analysis process. The majority of current stud-

ies on Twitter sentiment analysis concentrate on the extraction of fresh sentiment

features. Zhao and Gui disregarded a pre-processing technique in their study, to

examine the importance of Twitter data pre-processing. The classification perfor-

mances of six pre-processing methods using two feature models and four classifiers on

five Twitter datasets were summarised in this paper, which also discussed the effects

of text pre-processing methods on sentiment classification performance in two types

of classification tasks. The experiments show that when using the pre-processing

methods of expanding acronyms and replacing negation, as well as when removing

URLs, removing numbers, and removing stop words, the accuracy and F1-measure

of the Twitter sentiment classification classifier are improved. When different pre-

processing techniques were used, the Naive Bayes and Random Forest classifiers were

more sensitive than Logistic Regression and support vector machine classifiers [84].

45

Recent studies discusses the use of GPT-3, a powerful language model, for senti-

ment analysis on Twitter. Sentiment analysis involves determining the sentiment or

emotion expressed in a text, such as whether a tweet is positive, negative, or neutral.

GPT-3 is trained on a massive amount of text data, which allows it to understand the

nuances of language. The model is able to analyze and classify tweets based on senti-

ment accurately, helping to gain insights into public opinion, track brand sentiment,

or monitor customer feedback. Matt Payne in his article explains the process of using

GPT-3 for sentiment analysis, which involves providing the model with prompts and

receiving responses that classify the sentiment of a given tweet. It also discusses the

benefits of using GPT-3, such as its scalability, flexibility, and ability to adapt to dif-

ferent contexts and topics. The article highlights how GPT-3 can be a valuable tool

in sentiment analysis on Twitter, enabling organizations to make informed decisions

based on public sentiment and feedback [116].

In the next chapter, we present the first study in Twitter feature engineering in

financial forecasting of the Bitcoin price.

Chapter 3

Feature Engineering for Financial Forecasting of Bitcoin

Price

We discuss in this chapter feature engineering which involves selecting or generat-

ing features that are relevant to predicting the future price of Bitcoin. Social media

platforms like Twitter, Reddit, and other discussion forums provide a wealth of qual-

itative data that could be used to gauge market sentiment. Sentiments could be

analyzed across various social platforms and incorporated into a forecasting model.

In this study, related tweets to Bitcoin are collected from Twitter, in different his-

torical periods, to analyze their sentiments, and to predict Bitcoin price fluctuations

using different feature generation techniques, machine learning techniques, and time

series.

3.1 Background

Cryptocurrency is a representation of digital property. More precisely, it is a system

using universal encryption techniques that make it impossible to penetrate and ma-

nipulate. Cryptocurrency is using encryption for security purposes to protect virtual

transactions and control the establishment of new units. Therefore, it is difficult

to duplicate that currency, which is an intangible exchange medium (electronically),

and a branch of the alternative currency. Moreover, this exchange medium is used to

denote all these applications using Blockchain, whether these applications represent

a digital currency or represent other things such as smart contracts [76]. Bitcoin,

alongside other cryptocurrencies, became one of the most prominent trends recently

due to its redefinition of the concept of money and its price fluctuation. Especially on

social media, people keep discussing Bitcoin topics, consulting, and advising about

cryptocurrency trading [33]. Bitcoin was the first cryptocurrency created in 2009

and since then other currencies have been created as competitive currencies such as

46

47

Litecoin, Nemcoin, and others. Cryptocurrencies have many advantages over stan-

dard currencies and previous electronic means of payment. Firstly, they do not have

a central authority, unlike other electronic currency systems, such as PayPal. Sec-

ondly, they are recorded in a public record account, which is obtained by a consensus

of a large distributed and decentralized system, where the virtual transactions are

recorded in an integrated manner.

Cryptocurrencies are easily used to transfer the balance between the parties in

transactions. These transfers are based on the use of public and private encryption

keys for security purposes. The transfer of balances ends with lower processing fees,

allowing users to avoid sharp shipping fees from most banks and financial institutions.

In central banks, economic systems such as the Federal Reserve, the public sector, and

governments control the currency vaults by printing fiat money. However, companies

and governments cannot produce encrypted currency units, or in other words, there

are no bonds provided to other companies, banks, and corporations entities where

the value of assets measured in a decoded currency is decentralized and the currency

is created by a complete technical and fundamental system where it is created by a

known or unknown group or character such as the Bitcoin inventor.

The main disadvantage of cryptocurrencies is that they are virtual. They do

not have a central store. A user’s budget for an encrypted digital currency can

be completely erased due to a computer failure if there are no backups of their hold-

ings. Anonymous financial transactions in encrypted currency are, of course, perfectly

suited to egregious activities such as tax evasion and money laundering. Therefore,

encrypted currencies are not centralized giving security, in theory, from manipulation

or government intervention. While there are hundreds of cryptocurrency features,

most of them are derived from a couple of protocols, such as proof of work and

verification of the test. All these encrypted currencies are reserved by the mining

of encrypted coins and are equipped specifically with the specific computers or cur-

rency mining devices (ASIC Miner) to participate in the interaction and procedures

of transactions.

Cryptocurrencies became a popular trend these days and have gained a lot of

interest, especially from those interested in investing their money or looking for an

alternative solution for speculation to increase their income. Figure 3.1 shows this

48

rapid increase in the popularity of cryptocurrencies. Bitcoin has proven that this

field is fertile for investing, given that its price has doubled at least 50,000 times in

seven years. Mainly, coin value relies on demand and supply, and maybe other factors

related to economic news or politics.

Figure 3.1: Chart that shows the rapid recent growth in popularity of cryptocurrencies

Convictions of people about cryptocurrencies have been changing, and cryptocur-

rencies are continuing to prove their existence as alternative money. Investing and

speculation are two of the most attractive topics for people interested in increasing

their income. Similarly, the cryptocurrency market has some features in common

with the stock market, foreign currency market (forex), and other asset markets like

crude oil, gold, and different valuable metals. Many factors may affect the change of

price of different coins, related to the volume of demand and supply, and some other

economic and political news and events. Investors and speculators need to have such

tools that predict the increase and decrease in cryptocurrency prices and suggest to

them what currency is better to invest in. It is helpful to take advantage of social

media and trends about cryptocurrency and investigate if there is a strong corre-

lation between people’s posts and price changes of cryptocurrencies. Therefore, we

investigate in this research these aspects:

• Is there a correlation between Twitter sentiment and Bitcoin fluctuation?

• Can a machine learning model based on polarity sentiment accuracy be used

49

for Bitcoin price prediction?

• Is automated sentiment classification better than manual labeling in Bitcoin

price prediction?

This study has a positive perspective impact on the market of cryptocurrency

that affects both the investor and the currency itself. If the investor could get rid of

the fear of losing their money by having a tool that helps them predict prices and

advise them as a consultant, they would be encouraged to invest more. Therefore,

they will have higher profit potential. This may also be reflected in the currency, that

people would be recommended to increase their demand for it—the more purchases

of such a coin, the more its price and market capital increase.

Twitter as a social media platform, is rich in data that is growing rapidly, and

calling e-commerce advocates to take advantage of these media services to build suc-

cessful applications or extract hidden information. Among other applications, Bitcoin

investors and traders require some applications that rely on social media data to help

them in Bitcoin price forecasting.

Previous studies proposed a method for predicting the fluctuation of Bitcoin price

considering the number of positive or negative tweets per single time period and

tracing its fluctuation among the whole intervals. According to my research, there

are no tools for Bitcoin price prediction that are considering machine learning for

sentiment accuracy fluctuation over intervals. Traders who want to take advantage

of social media search manually on social network platforms and look at the most

current tweets. The main challenge is the huge number of tweets about Bitcoin per

short period from one to five minutes range. This issue can be handled by focusing

primarily on different selected times not exceeding 24 hours and removing irrelevant

tweets. Another challenge is to have a cleaned dataset that is manually labeled to

compare it with the automated sentiment approach.

The primary goal of this research is to design and build a machine-learning senti-

ment analysis that predicts the Bitcoin price fluctuation for future intervals. Twitter

is the most suitable social medium to apply the study because of its popularity and

the abundance of tweets about Bitcoin which may help in fluctuation prediction.

Furthermore, Twitter may in the future develop an app or an extension in the same

social network media through Twitter Developer, which helps in advising investors

50

who invest in the cryptocurrency market. The system also could be expanded to

include posts from Facebook and data from Google trends to find more accurate fluc-

tuation. My primary research contributions are: (a) to compare different machine

learning and deep learning methods on Bitcoin tweet sentiment and evaluate their

performance; (b) to compare different language modeling approaches and sentiment

analysis approaches; and (c) to predict the Bitcoin fluctuation using sentiment class

accuracy using different machine learning approaches.

3.2 Related Work

The stock market is like the cryptocurrency market. A stock market is a platform

to buy and sell stocks, and it has been driven by supply and demand, and so is

the cryptocurrency market stock. The leading players in the stock market are the

exchanges. Exchanges are where the sellers are matched with buyers to facilitate

trading and help set the price of the shares. The stock exchange is an efficient way to

create a favorable climate for active and growing new issues. Statistical algorithms

and time series analysis have been used to predict the stock market. Abirami, R. and

Vijaya, M.S, employed machine learning technology in computational finance since

machine learning deals with techniques that allow computers to automatically learn

to make accurate predictions based on past observations [121]. They used the WEKA

environment [77] for training the dataset using linear regression and the LIBSVM tool

for support vector regression.

In another study, Pagolu et al. used microblogging social media to predict stocks

price because it is representing very well the public sentiment and opinion about

current events [114]. Stock market prediction based on public sentiments expressed

on Twitter has been a fascinating field of research. This study thesis observes how

well the changes in stock prices of a company, the rises, and falls, are correlated with

the public opinions being expressed in tweets about that company. Understanding

the author’s opinion from a text is the objective of sentiment analysis. The present

paper has employed two different textual representations, Word2vec and n-gram, to

analyze public sentiments in tweets. They applied sentiment analysis and supervised

machine learning principles to the tweets extracted from Twitter and analyzed the

correlation between the stock market movements of a company and sentiments in

51

tweets. Elaborately, positive news and tweets on social media about a company would

encourage people to invest in the stocks of that company. As a result, the stock price

of that company would increase. The researchers concluded that the paper is shown

that a strong correlation exists between the rise and fall in stock prices with the public

sentiments in tweets.

Matta et al. explored if the rise of Bitcoin’s cost is related to the volume of tweets

or Web Search media outcomes. They compared patterns of cost with Google Trend

Data, the volume of tweets, and especially with positive tweets [103]. Tweets are

accessible and are effectively imported from Twitter Application Programming In-

terface (API). Composing the hashtag #Bitcoin or mention @Bitcoin, they assemble

all tweets that specify the analyzed subject. Besides that, they imported data from

Google trend and used DataStore (back-end database engine, utilizing MySQL as

RDBMS), SentiStrenght tool, and Java Module. They collected more than 1,900,000

tweets, then analyzed them and identified positive and negative tweets. Using cross-

correlation computation, they found similarities between Bitcoin Price with the num-

ber of tweets simultaneously, between Bitcoin price with the positive tweets, and

Bitcoin price with Google trend.

Considering time series, Shah and Zhang used Bayesian Regression for predicting

real-valued price of Bitcoin [143]. They used data related to Bitcoin cost obtained

from the Okcoin.com cryptocurrency exchange company web site [113]. The total raw

data was over 200 million. They used different t threshold—when the threshold is

increased, the number of trades decreases, and the average holding time increases. At

the same time, the average profit per trade increases. The strategy performs better

in the middle section when the market volatility is high. In addition, the strategy is

still profitable even when the price is decreasing in the last part of the testing period.

In another related research, Guo and Nino studied the capacity to make a short-

term expectation of the Bitcoin trade cost fluctuation towards dollar [67]. They

utilize the data of buy and sell orders collected also from Okcoin.com [113], which is

one of the biggest Bitcoin exchanges. They developed a generative temporal mixture

model of the instability and exchange arrange book data, which was collected through

the exchange API, and it can beat the current state-of-the-art machine learning and

time series statistical models. It consists of 13,730 hourly volatility observations and

52

701,892 order book snapshots. With the entryway weighting work of our generative

temporal mixture model, they can identify administrations when the highlights of

purchase and offer orders essentially influence the future tall instability periods. Be-

sides, they also give bits of knowledge into the dynamical significance of highlights

from arranged books such as showcase spread, profundity, volume, and ask/bid incline

to clarify future short-term cost changes.

Krafft et al. conducted an online test to think about how vulnerable dealers in

these markets are to peer impact from exchanging behavior [91]. They made bots

that executed over one hundred thousand exchanges costing less than a penny each

in 217 cryptocurrencies over the course of six months. They extracted data from the

cryptocurrency exchange platform using API and conducted 310,222 randomly spaced

trials. They discover of that people “buy” action-driven to short-term increments in

ensuing buy-side activity hundreds of times the measure of our intercessions. From a

planning point of view, we note that the plan choices of the trade we consider may

have advanced this and other peer impacts, which highlights the potential social and

financial effect of HCI in the plan of advanced teaching.

Stenqvist and Lonno in 2017 studied if sentiment analysis on Twitter data can

help to indicate Bitcoin price fluctuation. They applied a näıve prediction model

based on the number of sentiment fluctuations over time-series, using intervals from

five minutes up to four hours and from one to four shifts [152]. By analyzing over two

million tweets related to bitcoin within one month (day-to-day analyzing), they found

that the most accurate aggregated time was a one-hour interval indicating a change

after four hours. They mentioned that applying machine learning to the study may

correlate further than the number of tweets.

Inspired by the previous studies, our study is learning the sentiment analysis of

Bitcoin tweets, that collected from different periods of time, by generating tweets

features, n-grams and Word2Vec embedding features, and compare the efficiency of

those approaches by applying machine learning algorithms. After that, applying

time-series to investigate the similarities between the Bitcoin price fluctuation and

the tweet sentiment fluctuation using different time intervals.

53

3.3 Methodology

3.3.1 Social Media Data Selection

In this study, the dataset has been chosen from the social network Twitter based on

the following reasons:

1. The availability of a huge number of training tweets, considering that Twitter

users had already passed 300 million users, tweeting every second, on average, around

6,000 tweets, which corresponds to over 350,000 tweets sent per minute, 500 million

per day, and around 200 billion per year. Therefore, Bitcoin’s traders can find live

feeds regarding Bitcoin.

2. The accessibility to collect Bitcoin tweets using a Twitter API tool.

3. Twitter is a microblogging social media platform; therefore, analyzing short blogs

or ‘tweets’ is more manageable than analyzing articles with a big corpus.

3.3.2 System Architecture

The general form of the proposed system consists of three major parts: (1) data

preprocessing part, which includes data importing from Twitter, data cleaning, data

modeling process, and tweet’s sentiment process; (2) data mining modeling, which

includes multiple classification experiments and tests; and (3) finding events and

correlations using time series. Figure 3.2 explains the phases of the proposed system

architecture.

The data mining tools that have been chosen are Weka and R due to the abun-

dance of research studies that are like this study and use the same tool. Weka is used

to analyze the dataset information and to design the appropriate data mining model.

R tool is used in the data preprocessing phase.

3.3.3 Data Preparation

Five lists of historical tweets related to Bitcoin have been collected to be applied in

this study. Two of them are considered short datasets (less than 12 hours); 12Dec17

(Bitcoin tweets that collected on the 12th of December, 2017) and 23Mar18 (Bit-

coin tweets that collected on the 23rd of March, 2018), and the other three are

24-hour tweets’ datasets; 5Aug17 (Bitcoin tweets that collected on the 5th of August,

54

Figure 3.2: The proposed system architecture

2017), 12Jul18 (Bitcoin tweets that collected on the 12th of July, 2018), and 15Mar19

(Bitcoin tweets that collected on the 15th of March, 2019). The first short dataset

(12Dec17) and are tweets were collected from a period that the price of Bitcoin was

skyrocketing (December the 12th, 2017 — five hours period), and the second short

dataset (23Mar18) are tweets were collected from a period that the price of Bitcoin

had a significant drop (March the 23rd, 2018 — two hours and half period). The

variety of datasets relying on the date and period and the number of tweets has been

considered. All datasets were found in Kaggle.com and gripped using API tool from

Twitter [85].

Table 3.1 shows the details of historical tweets and the number of tweets after

removing irrelevant tweets. Some features such as tweet URL or Twitter user were

removed because they are not relevant to the tweet sentiment analysis. Thus, we

concluded that it is better to focus on the tweet text, which includes hashtags as well.

55

Table 3.1: The total of tweets are more than 282K after removing irrelevant tweets.

The data cleaning process is applied using a code implemented in the R language.

All punctuations were removed, and all letters were transformed to uppercase. All

unrelated tweets have been removed to become a total of 282K tweets.

3.3.4 Tweet Sentiment

Sentiment analysis is the use of NLP, computational linguistics, and textual analysis,

in order to identify affective states and subjective information, whether positive,

negative or neutral toward the topic of the text [160]. Fields of marketing, finance,

customer service, and other areas, are considered the most common fields that are

using the sentiment analysis. Sentiment analysis aims in general to determine the

feelings of the speaker or writer towards a subject or identifying the dominant feeling

on a document. These feelings can express the author’s opinion (i.e., appraisal) or

emotional state (i.e., the case of conscience of the author during the writing) or

a deliberate feeling to be delivered (i.e., the influenced conscience that the author

wants to deliver to the reader) [19].

The polarity of opinion classification is considered a fundamental process in the

analysis of sentiments in texts at the level of the entire document or sentence. The

polarity classification refers to the determination of whether the opinion expressed

in the document or sentence is positive, negative, or neutral. Other systems have

evolved to look at specific emotional states such as anger, sadness, happiness, fear, etc.

Sentiment analysis is widely used to evaluate the customer materials such as reviews,

survey responses, social media, and materials for applications in many fields [105].

56

Social-Sentiment Analysis, which is also called “Opinion Mining” is a type of data

extraction that measures the tendency or direction of individual opinions, which are

used to extract and analyze personal information from websites. The analyzed data

determine the public’s feelings or reactions to certain products, people, or ideas. The

term refers to the process by which consumers’ feelings and opinions are analyzed on

social media such as Facebook, Instagram, Twitter, and others, where individuals use

these platforms to communicate with their friends, colleagues, and family and share

their opinions, experiences, and feelings on a particular topic.

The rise of social media such as blogs and social networks has increased interest

in sentiment analysis. Social media users share their views on a range of products,

services, or news about an event or a brand. These views may enhance the event or

brand’s reputation or diminish it, and they may help consumers to take a position or

make a decision that relies on the brand’s reputation. Most sentiment analysis algo-

rithms use simple terms to capture sentiment about a product or service. However,

cultural factors, linguistic affairs, and a variety of contexts make it extremely difficult

to turn a string of written text into a simple polarity sentiment. The shorter the

string of text, the harder it becomes. However, sentiment analysis within microblog-

ging such as Twitter has shown that it can be a valid online indicator of political and

economic sentiment [19].

Two approaches to tweet sentiment analysis were applied: manual sentiment

analysis and auto-tweet sentiment using the R language, also named as the acronym

R-Auto Tweet Sentiment (RATS) [135]. In the manual sentiment approach, each

tweet has been read, and it was decided to classify it into three different classes:

positive, negative, and neutral. This is a time-consuming process in comparison to the

RATS that can be used by the TwitteR package and get nrc sentiment(dataframe)

function 1. The RATS generate values ranging between 3 and −3, and the values

between 1 and −1 were considered neutral. This will form two different versions

of each dataset to be tested and to discover which one sentiment approach is more

reliable and efficient in tweets sentiments.

1In the ‘get nrc sentiment‘ function in R, NRC stands for ”National Research Council”. The
function utilizes the NRC Word-Emotion Association Lexicon, which is a lexicon developed by the
Computational Social Science Lab at the National Research Council in Canada. This lexicon maps
words to a set of emotions and sentiments to provide sentiment analysis in text mining tasks.

57

Table 3.2: Some examples of how RATS classify tweets to positive, neutral and
negative sentiment.

Table 3.2 shows an example of how RATS classify tweets into positive, neutral,

and negative sentiment.

3.3.5 Language Modeling Approaches

Language modeling approaches can be defined as probabilistic distribution modeling

over sequence of words to provide context that helps in the natural language pro-

cessing tasks. It has many modeling types, such as: Unigram and n-gram modeling,

exponential modeling, neural modeling, and word embedding modeling [106].

In this study, we used three different language modeling approaches: Tweet em-

bedding, n-gram, and a proposed method combining both generated features from

embedding and n-gram.

1. Tweet Embedding: word embedding is one of the recognized approaches of

modeling words into numbers to be used in text mining and deep learning. The Weka

system has a tweet embedding function in a package named “Affective Tweet”. In

this study, tweet embedding is applied using the “Affective Tweet” package which is

mapping the tweets into vectors of real numbers. The package implements WEKA

filters for calculating state-of-the-art affective analysis features 2 from tweets that

2The term ”state-of-the-art” in this context refers to the latest and most advanced techniques
or methods available in the field of affective analysis for tweets. The Affective Tweet package in
WEKA claims to implement filters (features) that are considered the cutting-edge or state-of-the-art

58

can be fed into machine learning algorithms [40]. Many of these features were drawn

from the NRC-Canada System 3. It also implements methods for building affective

lexicons and distant supervision methods for training affective models from unlabelled

tweets. [40]. The function TweetToEmbeddingsFeatureVector calculates a tweet-

level feature representation using pre-trained word embeddings. A dummy word-

embedding formed by zeroes is used for a word with no corresponding embedding.

Finally, the average word-embedding is calculated and then a vector of 100 embedding

values is generated for each tweet.

2. N-gram is another data modeling approach commonly used in natural language

processing studies. In this process, a unique unigram/bigram vocabulary is built to

use its tokens as features for each tweet [43]. Using Weka, StringToWordVector

function is applied to generate a unigram/bigram keywords as features [161]. This

function converts string attributes into numeric attributes representing word occur-

rence information from the text contained in the strings. The n-gram tokenizer is

applied, eliminating terms that do not appear at least five times in a dataset. More-

over, the idf and tf transforms are applied in this process [141].

3. Tweet Embedding and n-gram proposed method combine the generated fea-

tures in one data model. This is to observe if using both approaches together positively

impacts classification accuracy.

Therefore, 30 different datasets are formed to be tested in the data mining process,

15 with manual sentiment and the rest with R-sentiment. These different feature

datasets will be applied to machine learning algorithms to evaluate the best form of

modeled features. Table 3.3 shows all forms of the dataset after tweet embedding and

n-gram with the number of tweets for positive, negative, and neutral tweets.

in affective analysis, indicating that they have been developed or validated based on the most recent
research advancements. And the ”affective analysis feature” refers to a characteristic or attribute
extracted from the text of tweets that reflects or captures the emotional or affective content. These
features are designed to provide insights into the sentiment, emotion, or other affective aspects
conveyed by the language used in the tweet.

3The NRC-Canada System refers to the National Research Council-Canada (NRC) System, which
is a comprehensive suite of software tools and resources developed by the Computational Social
Science Lab at the National Research Council of Canada [46].

59

Table 3.3: All forms of the dataset after tweet embedding and n-gram.

60

3.4 Machine Learning Methods

After finishing the preprocessing phase and having different remodeled datasets, it is

evident that we need to apply supervised data mining techniques and Deep learning

algorithms to predict sentiments.

3.4.1 Supervised Classification Methods

Our plan was to test the most common classification algorithms and compare the

accuracy of predictions to each other, so that we could examine the effectiveness of

different feature engineering techniques. UsingWeka [162], the algorithms were chosen

that rely on various theoretical classification method concepts: lazy learner method,

Bayesian method, and decision tree method. Five different classification algorithms

have been chosen: K-Nearest Neighbor (KNN) [22], Bayesian Network (BN) [131],

Näıve Bayes (NB) [132], C4.5 Decision Tree Algorithm (J48) [140], Random Forest

Decision Tree (RF) [41].

The KNN function in the R data mining tool from the package {e1071} was

used to implement the experiments and to evaluate the algorithm for this study,

as well as examining the algorithm IBK (Instance Based Learner) from the pack-

age(weka.classifiers.lazy) in the Weka data mining tool, which is the same as

the KNN algorithm. We used k=3, with 100 batch size and LinearNNSearch as a

nearest Neighbour Search Algorithm.

The naiveBayes function in R language in the package e1071 was used to imple-

ment the experiments and tests to evaluate the algorithm for this study, as well as to

examine the algorithm in the Weka data mining tool (the method weka.classifi-

ers.bayes.NaiveBayes). We used 100 batch size for this experiment.

In addition, the Bayesian Network, which is a more general graphical probabilistic

model that represents a set of variables and their conditional dependencies, was ap-

plied. The Bayesian Network learning is using various search algorithms and quality

measures, provides data structures (network structure, conditional probability distri-

butions, etc.) and facilities a number of common Bayes Network learning algorithms

like K2 and B [165]. Using Weka, the function weka.classifiers.bayes.BayesNet

was used in the study to find the sentiment accuracy. The K2 search algorithm, which

61

was used, uses a hill-climbing algorithm restricted by an order on the variables. The

initial network is a network with an arrow from the classifier node to each other node.

A simple estimator is used for estimating the conditional probability tables of a Bayes

network once the structure has been learned.

The J48 decision tree function in Weka data mining tool was used to test and eval-

uate the algorithm for this study. J48 is an open-source decision tree classifier written

in Java. It represents the C4.5 algorithm inWeka using weka.classifiers.trees.J48

classifier class, which generates a pruned or unpruned C4.5 decision tree. For this

study, an unpruned decision tree is applied. The J48 was the most time-consuming

algorithm to find the sentiment accuracy for each dataset, especially with datasets

that have a large number of features and instances.

The randomForest function in the R language in the package {randomForest}
was used to implement the experiments and tests to evaluate the algorithm for this

study, as well as to examine the algorithm in the Weka data mining tool using

weka.classifiers.trees.RandomForest function. We used 100 batch size, 100%

bag size, and 100 iterations.

All the classification methods were previously explained in Chapter 2.

3.4.2 Deep Learning Methods

Another set of methods used is a set of neural network methods, which are applied

to compare their accuracy and efficiency. These methods are available in the Weka

workbench using the deep learning package WekaDeeplearning4j, which is a Java

library developed to incorporate the modern techniques of deep learning into Weka.

The deep learning algorithms that applied are: Multilayer Perceptron (MLP) using

Dl4jMlpClassifier function with two dense layers [165], from WekaDeeplearning4j

deep learning package in Weka, Radial Basis Function Network (RBFN) [58], and

Weightless Neural Network (WiSARD) [65].

WekaDeeplearning4j is a deep learning package for the Weka workbench. It is

developed to incorporate the modern techniques of deep learning into Weka [163].

The backend is provided by the Deeplearning4j Java library.

Using the Dl4jMlpClassifier function, the MLP network was designed with two

62

dense layers, as described in Figure 3.3. Since one epoch4 is too big to feed to the

computer at once, we used 32 epochs to perform. As the number of epochs increases,

a greater number of times the weight is changed in the neural network, so the learn-

ing curve goes from underfitting to an overfitting curve [145]. The applied MLP model

used a batch size5 of 100, an instance iterator using weka.dl4j.iterators.instance-

.DefaultInstanceIterator with a mini-batch size of one, and an iteration listener

which evaluates the model while training every five epochs. The model consists of an

input layer, two dense layers, and an output layer. The input layer variables are the

total number of dataset attributes in addition to the total number of classes. The

hidden layers are using the Rectified Linear Unit (ReLU) activation function6, and

output 100 values from the first hidden layer, and 30 values from the second hidden

layer. The output layer outputs the classes using the multi-class cross-entropy (MCX-

ENT) loss function, and softmax activation function, that support the multi-class

classification, and transforms the neurons’ output exponential to class probabilities

distribution.

For the WiSARD model, The WiSARD4WEKA package implements a multi-class

classification method based on the WiSARD weightless neural model for the Weka

machine learning toolkit. We used a batch size of 100, like the previously applied

neural network algorithms.

For the RBFN model, the RBFNetwork package is implements a multi-class classi-

fication method using Weka machine learning toolkit. Like MLP, the applied RBFN

model used a batch size of 100, the number of instances to process if the batch predic-

tion is being performed. More or fewer instances may be provided. For the K-means

generation, three clusters are generated to learn. The clustering seed value, which is

a random seed to pass on to K-means, was set to 1.

4“One Epoch” is when an entire dataset is passed forward and backward through the neural
network only once.

5The “Batch Size” is the total number of training examples present in a single epoch.
6The “ReLU function” zeros any input value below zero and keep the same value for values

greater than zero.

63

Figure 3.3: The applied Multi-layers perception model.

3.5 Price Fluctuation Prediction Methodology

Different time series frequencies are applied on the five primary datasets to find

the correlation between Bitcoin price fluctuation and Twitter sentiment. The short

datasets are divided into one set of intervals that is proper for the number of tweets

for each dataset (15 minutes for the second dataset and five minutes for the third

dataset). In contrast, the remaining datasets are divided into three sets of intervals

ranging from 30 minutes up to 120 minutes. Each interval measures the fluctuation of

positive sentiment accuracy and the negative sentiment accuracy (the actual positive

value for each learned sentiment) and find the correlation with the Bitcoin (BTC)

price change. The matching prediction events are counted depending on the learned

sentiment fluctuation of the True Positive (TP), depending on which of the following

four correlated criteria is matched:

• If the TP value of positive sentiment increases, and the BTC price increases in

the next shift.

• If the TP value of positive sentiment decreased, and the BTC price decreased

64

in the next shift.

• If the TP value of negative sentiment increased, and the BTC price decreased

in the next shift.

• If the TP value of positive sentiment decreased, and the BTC price increased

in the next shift.

Figure 3.4 explains how the matching events are counted to predict BTC fluctu-

ations.

Figure 3.4: Counting matching events to predict price fluctuation depending on the
sentiment classes TP value fluctuations.

3.6 Time-Series Analysis

The concept of Time-Series is a set of measurements recorded for one or more variables

arranged according to their occurrence in time, and given specific phenomenon values.

Time series is considered one of the most important methods of predicting the future

through the facts of the past and current times. The most important time series are

those of economic indicators, annual sales of companies in all aspects of their activities,

education, population size, and the like. The change that occurs in the values of the

65

time series variable is a function of time that can be represented graphically by taking

the horizontal axis of time and vertical values of the variable. Time series analysis

includes techniques for analyzing time series data to derive meaningful statistics and

other data characteristics, while time series forecasting is the use of a model to predict

future values based on values observed before [69].

To find the correlation between Bitcoin price fluctuation and Twitter sentiment,

different time series frequencies are applied to the five main datasets.

The two short datasets, 12Dec17 and 23Mar18, are divided into one set of intervals

for each. That set of intervals is proper for the number of tweets that it contains

(fifteen minutes for dataset #2 and five minutes for dataset #3), while the remaining

datasets, 5Aug17, 12Jul18 and 15Mar19 are divided into three sets of intervals ranging

from 30 minutes up to 120 minutes. Each interval will measure the fluctuation of

positive sentiment accuracy (the true positive value) and the negative class accuracy,

then try to find the correlation with the Bitcoin price change. Two interval shifts will

be applied to predict the matching event, single shift, and double shift.

The matching event for the positive class sentiment will be any rise or descent for

the true positive value of the positive class in one interval with the same fluctuation

of the Bitcoin price in the next shift. While matching event for the negative class

sentiment will be any rise or descent for the true positive value of the negative in one

interval with the “opposite” Bitcoin price fluctuation in the next shift. For example,

if the true positive value of the negative class is raised up and the Bitcoin price drops

in the next shift, this will be counted as an event for negative sentiment.

3.7 Proposed Methodology Framework

The framework diagram is divided into three phases which are the main study phases:

the pre-processing phase, which includes the language modeling process; the sentiment

learning phase, which includes supervised learning and deep learning; and the BTC

fluctuation prediction phase, as shown in Figure 3.5.

In the diagram, several modeled datasets were generated and considered. Then

after evaluating the sentiment learning, one language model with the most stable

tweet sentiment dataset in performance will be selected to continue the third phase.

In the third phase, the selected datasets will be segmented. Each segment will be

66

Figure 3.5: The proposed framework methodology for the main study phases

learned using the applied machine learning algorithms in this study to find the true

positive score for both positive and negative sentiments. Further studies and results

are conducted and discussed in the Experimental Results section to evaluate the three

phases of methodologies.

3.8 Experimental Results

The research investigates three aspects: whether automated sentiment classification

(RATS) is better than manual labeling in the sentiment learning process, whether a

machine learning model based on polarity sentiment accuracy can be used for Bitcoin

price prediction, and if there is a correlation between Twitter sentiment and BTC

fluctuation. Therefore, some evaluation plans, tests, and time-series frequencies are

applied to understand the interpretations of the results and to answer the previous

aspects.

67

Table 3.4: Results of accuracies of the classical classifier on the trained data

3.8.1 Sentiment Learning

Several single classifiers were trained and tested to evaluate their accuracies. Table 3.4

shows the results of the accuracies of each classifier on the trained data. The results

show convergence on classifiers results, except the Näıve Bayes algorithm, which had

the lowest results in all datasets. On the other hand, decision tree methods perform

better in most experiments, especially in the n-gram data models.

For the deep learning classifiers, MLP and WiSARD show a significant improve-

ment in n-gram, and tweet embedding with the n-gram data models, and it shows that

manual sentiment performs better than RATS in two datasets, 12Dec17 and 23Mar18.

However, RATS gives more stable performance overall datasets (see Table 3.5).

In general, all experiments are performed a 5-folds cross-validation test. The

experiments show a higher degree of accuracy of deep learning algorithms over the

classical machine learning classification methods except Random Forest (RF). Man-

ual sentiment gives better results in some datasets, while RATS is efficient in most

experiments except with Näıve Bayes and Bayesian Network algorithms. Best accu-

racies were achieved with the manual sentiment using MLP deep learning algorithm

and WiSARD, and Tweet-Embedding with n-gram data modeling. Therefore, the

68

Table 3.5: Results of accuracies of each deep learning classifier on the trained data

69

Table 3.6: Precision, recall an F1 score of the classical classifiers on the trained data

Tweet-embedding with n-gram modeling features will be applied in the time-series

experiments. To evaluate the results, several measures are considered besides the

algorithm accuracy: precision, recall, an F1 score. The results of these measures of

all applied machine learning algorithms over all datasets are shown in Table 3.6 for

classical machine learning algorithms, and Table 3.7 for deep learning algorithms,

focusing on positive and negative classes. The tables have a heat-map visualization

feature with the bold font for values that range from 80% to 100%.

3.8.2 Time Series Analysis

Relying on the true positive values of the positive sentiment class and the negative

sentiment class, a collection of visualization charts has been built to visualize and

note the events on the applied time-series. An event matches the rising and descent

of the algorithm’s true positive value in an interval, with the rise and descent of the

Bitcoin price on the next shift.

Figure 3.6 and Figure 3.7 present a sample of what the time series charts look like.

The figures show that fluctuations of the sentiment classes occur in more events than

70

Table 3.7: Precision, recall an F1 score of each deep learning classifier on the trained
data

71

Figure 3.6: Time-series with 15 minutes interval chart of the second dataset and one
shift to the future 15 minutes and compare it with the price fluctuations.

the percentage of positive and negative tweets fluctuations between the intervals and

compare its fluctuation with the Bitcoin price fluctuation. Bitcoin historical price

data were found on bitcoincharts.com, and it contains the BTC/USD rate for every

minute. Using smoothing, the BTC price in each interval was set up to the closing

price at the end of the interval. Moreover, single and double shifts are considered to

find events in each dataset.

We can realize from the charts that there are some matchings in both positive

and negative sentiment class accuracy and can be used to expect the price change.

For example, in Figure 3.6 (that present the fluctuation of true positive accuracy over

the 12Dec17 intervals) in intervals 4, 5, 6, and 7, positive sentiment accuracy had a

72

Figure 3.7: Time-series of 30 minutes interval chart of the fifth dataset one shift to
the future 30 minutes, in comparison to price fluctuations.

73

strong value of event rate because seven to eight of the used algorithms almost predict

the right fluctuation. In contrast, in the negative sentiment accuracy, intervals 4, 6,

and 7 do not have the same strong value. On the other hand, intervals 10 and 11 in

the negative sentiment accuracy had a very strong rate. However, it has a very weak

value in positive sentiment accuracy for the same intervals. Therefore, considering

both sentiments is helpful to predict the fluctuation.

We can look at the tables Table 3.8 and Table 3.9 to see overall events in all

datasets with all shifts and intervals and the percentages of all the algorithms that

have accuracy 50% or more of the predicted events. The results show a preponderance

of the events of the positive class sentiment over the negative class sentiment in

matched events. The results also showed that the Näıve Bayes algorithm had a higher

percentage of predicted events on both positive and negative sentiment together.

Two evaluation tests are applied to find the correlation between the class senti-

ment accuracy and the Bitcoin price: the student’s t-test and the Chi-square test.

Table 3.10 and Table 3.11 show the associated p-values of the positive class senti-

ment with the Bitcoin price for the machine learning classification methods and the

deep learning methods. To confirm a statistical significance, a p-value at the 0.05

probability level was determined. The results show a higher correlation in t-test us-

ing WiSARD deep learning algorithm than other algorithms. The tables also show

that 5Aug17 with 30-minutes interval time-series and 23Mar18 with 5-minutes interval

time-series had a signature p-value with all algorithms in both t-students test and

Chi-square test. The evaluation tests showed a partial correlation between the fluc-

tuation of the sentiment classes using different machine learning algorithms and the

fluctuation of the Bitcoin price. Short intervals charts have more correlated values

to the price fluctuation. The scores confirm that MLP, WiSARD, and decision tree

methods correlate better among all used algorithms in the study.

3.9 Conclusion

Tweet sentiment analysis is an active field for studies in price forecasting. Using

Twitter in sentiment analysis for Bitcoin is becoming an essential step for most re-

searchers due to the many news feeds per minute regarding Bitcoin. Therefore, text

74

Table 3.8: Overall events in all datasets with all shifts and intervals

75

Table 3.9: Percentages of all algorithms that have 50% or more of the predicted
events.

76

Table 3.10: The associated p-values of the positive class sentiment with the Bitcoin
price for the machine learning classification methods, with highlighted statistically
significant values

mining and classification techniques on Twitter data that can predict the best sen-

timent are needed. Classifying different dataset models using tweet-embeddings and

n-gram features is helpful to enhance prediction.

The main contribution of this chapter is finding a partial correlation between

the Bitcoin price fluctuation and the fluctuation of the sentiment classes using dif-

ferent machine learning algorithms and providing a framework of an efficient tweet

sentiment tool for Bitcoin tweets, whether they are positive or not. In addition, the

study compares different classification methods by providing a detailed experimental

evaluation. The results showed better accuracy for manual sentiment in the data

preprocessing phase in some datasets. However, it also shows a more stable overall

performance experiment using R-Auto Tweet Sentiment (RATS). The results also

showed that tweet-embedding and n-gram data modeling features could improve sen-

timent prediction, especially in the MLP and WiSARD deep learning techniques and

decision tree algorithms. It is notable that this could be one of the challenges, es-

pecially with large datasets, because some algorithms such as MLP deep learning or

decision tree methods are time-consuming. As a future study, designing a particular

lexicon for Bitcoin sentiment may improve the correlation of the sentiment analysis

77

Table 3.11: The associated p values of the positive class sentiment with the Bitcoin
price for the deep learning classification methods, with highlighted statistically sig-
nificant values

78

with the Bitcoin price fluctuation, considering other features like hashtags, a Twitter

user, the number of tweets, and emoticons.

Chapter 4

Feature Engineering for Spam Recognition of Arabic Tweets

Feature engineering techniques can be used to identify and flag spam and bot activity

in Arabic tweets, or hashtags. Since Saudi Arabia is the highest Arabic-speaking

country in using Twitter and one of the top-ranked countries in using Twitter around

the world, it is important to analyze and recognize spam in their tweets, because it

influences public opinion and it could mislead it. By using different machine learning

algorithms on different feature generation approaches, it can accurately detect and

recognize spam in hashtags.

4.1 Background

Spam, also known as unsolicited commercial e-mail (UCE), is the Internet version

of “junk mail.” It attempts to deliver a message online to someone who would not

opt-in or want to receive it. Most of the spam is advertisements for commercial prod-

ucts. Potential target lists are created by scanning Usenet newsgroups and Internet

mailing lists or searching the Web for e-mail addresses. Automated searches are also

used to collect such information to get e-mail addresses for spamming. Since e-mail

services became popular, e-mail service providers aim to find solutions to filter and

minimize unwanted e-mails, recognize them, and categorize them as potentially spam

messages [27]. The same challenge of unwanted messages remained after the rise

of social media platforms. Twitter, which is one of the microblogging social media

websites, is challenged with many noisy tweets and messages from both fake and real

accounts. Twitter is an excellent tool to express short ideas, giving brief feedback,

and sharing essential activities such as retweets and hashtags, which are two of the

most exciting tools to measure trends and the popularity of opinions. That’s why

companies and organizations are eager to have an account on Twitter, to know the

number of followers and retweets for each tweet, and to spread the news on the high

trend hashtags [57].

79

80

4.1.1 Exceptional Role of Twitter in Saudi Arabia

In the Arabian Gulf region and Saudi Arabia, Twitter occupies an advanced position

on all social networking sites. It is the most used and popular site among the Saudis

and the Gulf countries in general. This made Saudi Arabia of very high importance

to the financially troubled company, which does not find itself — despite its large

spread — a profitable business model compared to its counterparts from other social

media sites. Saudi Arabia, with a population of 35 million people, is the largest

market for social media in the region, as two-thirds of the Saudi population is under

the age of thirty-five [66]. These age groups often tend to engage with digital media

platforms, particularly since Saudi Arabia is narrowing young people’s amusement

and entertainment spaces. It was found that it is difficult for individuals to express

their personal opinions through official channels, and therefore they resort to these

networks to express themselves freely. We can see that Saudi youth go to social

networking sites — on top of Twitter, Snapchat, and YouTube — to search for a

space for entertainment, follow the news, and express their opinions. Communication

sites are an arena for dialogue between Saudi many current topics, especially the

Islamic and liberal topics [92].

In the last few years, Twitter has become a destination for all parties in Saudi

society, starting with young people in the early days. Soon after, it was joined by

community leaders, including thinkers, politicians, officials, media professionals, and

advocates. The accounts of Saudi preachers on the Twitter platform occupy the

list of the most followed accounts on the platform in Saudi and Arab countries. This

gathering and widespread societal interest in the Twitter platform prompted the busi-

nessman and Saudi Prince Al-Waleed bin Talal to acquire 4.9% of its shares, making

him one of the major investors in it [102]. This interest was also clearly reflected in

government policies and procedures towards the platform and its celebrities, as Saudi

government institutions held many conferences and workshops on the best use of the

Twitter platform from the government’s point of view. On the other hand, the Saudi

government has given special attention to Twitter through the verified accounts of

senior Saudi officials and exceptional attention to the most famous Saudi figures. The

celebrity accounts on Twitter have been used in preparing for important decisions by

81

the Saudi authorities. Thus, the Saudi authorities have invested in the Twitter plat-

form as a media space to communicate with the Saudi public through their direct

accounts or celebrities who support the Saudi government trends.

Saudi Arabia is one of the leading countries on Twitter users worldwide. It is

ranked eighth globally in the number of users (around 12.45 million), and the second

in the world based on the population’s percentage with approximately 35% of the

population using Twitter. Figure 4.1 gives more details about leading countries based

on the number of Twitter users as of January 2021 [88]. The Saudi trend has become

a powerful influence on leading popular public opinion. It thus can influence the

decision-makers in the country to take some actions that will absorb the discontent.

For example, the Saudi blogger Hamza Kashgari was subjected to a broad hashtag

campaign under the hashtag #HamzaKashgari in 2012 asking the government to stop

him from writing and refer him to the investigation because of an article he wrote

that Twitter activists in Saudi Arabia considered insulting the Prophet of Islam [89].

Indeed the government has taken back the citizen who fled to Malaysia, in cooperation

with the Malaysian authorities, after increasing the popular demands that wanted him

to be punished and then investigated and imprisoned in charge of contempt of religion.

In another example, Twitter activists launched a campaign calling for dismissing

an official who was recently appointed as the director of the Jeddah Downtown project

in early 2020. The activists searched his account for old tweets he wrote in 2013 that

carried outright hostility to the country. After a few days, the government dismissed

Eng. Hisham Malaika from his position after endorsing his writing. On the other

hand, the government sometimes ignores some hashtags in the Saudi trend, such as

the “The salary is not enough” hashtag [23], for example, or some human rights

claims, because the government believes that the claims are not based on reasonable

justifications for increasing salaries, or making some legal amendments. It is claimed

that these hashtags are administered from abroad to fuel criticism of the citizens’

living conditions and incite their discontent [35]. Some hashtags have been proven

to rise in the trend due to the tweeting of many fake accounts with tweets that may

not have any relationship to the topic of the hashtag only to raise it in the trend to

gain more popular interaction, which was known under the term of “electronic flies

phenomena” [112].

82

These accounts are often anonymous, and some are managed from outside Saudi

Arabia, which was evident specifically after June 2017 and the decision of Arab coun-

tries, namely Saudi Arabia, Egypt, the United Arab Emirates, and Bahrain, to cut

diplomatic relations with the State of Qatar, claiming its interference in the affairs

of these countries and its support for radical Islamist groups for the sake of creating

chaos in these countries. This caused the creation of a lot of fake accounts from both

sides to develop trends and lead direct public opinion, creating electronic warfare-like

situations, with the participation of hundreds of anonymous accounts [164]. It has

also been observed that many hashtags were also rising due to the involvement of un-

wanted tweets from unknown accounts carrying commercial advertisements and the

promotion of fraud or sexual products, as well as some tweets concerning the promo-

tion of terrorism and violence, such as the tweets of electronic cells of the terrorist

organization of ISIS. These tweets generally have nothing to do with the name of

hashtags, which affects the credibility of the hashtag and its position in the trend.

Figure 4.1: Leading countries based on number of Twitter users.

83

Spam Detection on Arabic Language

Recognizing spam over tweets is an active research area in the field of Natural Lan-

guage Processing. There are many advanced studies on spam recognition on tweets

in the English language, but not as much in the case of the Arabic language for many

reasons. Some of the most important reasons are the lack of Arabic content on the

Internet compared to English content and the late application of artificial intelligence

techniques on Arabic texts. The activity in spam detection on Arabic content has

begun with the increase of Arabic-speaking researchers and those interested in it. In

this study, we apply machine learning experiments on tweets in the Arabic language,

gathered from the Saudi Arabian trends, to recognize the possibly unwanted messages

that are irrelevant to the hashtag topic by generating features of the tweet text, then

evaluate different approaches and the spam class quality. Some of the main research

questions that we aim to study are the effectiveness of n-gram and embedding-based

generating features, different machine learning algorithms, their relations to different

topic domains of tweets, and the balance of datasets in terms of spam vs. non-spam

classes.

4.2 Related Work

Spam and non-related tweets mostly go against the community standard of using

Twitter. It can be misleading and affect the credibility of the hashtag and the trend.

It can be bots that spread hate or promote terrorism. Therefore generating features

can help in the process of learning Spam tweets and recognizing them. Albadi and

Kurdi made a study on spreading religious hatred on Arabic Twitter, and they found

that bots were responsible for 11% of hateful tweets in the hate speech dataset [15].

They apply that to different hashtags topics from political events to the sport-related

discussion by developing a bot detection model trained on various features extracted

from 86,346 tweets disseminated by 450 manually-labeled accounts. They also extract

35 features categorized based on content, tweet, sentiment, and account features.

Another study made by Almerekhi and Elsayed, extract features of Arabic tweets

based on their formality, structure, temporal, and other specific features to detect

the Automatically-Generated tweets [20]. In a similar approach, Alharbi and Aljaedi

84

analyzed the 47 features generated and then selected the 16 most significant ones [17].

They achieved high performance by implementing one of the well-known classification

algorithms, random forest, with accuracy rates greater than 90%.

A further study made by Boreggah et al. extracted the top 10 features based

on tweet features, tweet content, account behavior, and account profile [37]. They

applied three classification algorithms: Random Forest (RF), Näıve Bayes (NB), and

Support Vector Machine (SVM). Random Forest accomplished the highest accuracy

result, which was 98.68%. On the other hand, Alorini and Rawat extracted only three

features to find automatic spam on tweets [21]. They rely on the number of hashtags

in tweets, the number of shortened URLs, and the existence of profanity words, but

they only focused on spam in Gulf Dialectical Arabic tweets. Results show that NB

produces more accurate outcomes by 86%. Similarly, AlTwairesh et al. extracted

these words and constructed an Arabic Spam Detecting Lexicon (ASDL) [156]. The

lexicon contains 108 words. After this empirical analysis, four features were identified

to be used in the classification model (URL, phone number, number of hashtags, spam

lexicon). They mentioned that the features used were identified through empirical

analysis and then applied in the classification approaches developed. Both approaches

showed comparable results in terms of performance measures reported reaching an

average F-measure of 85% for the rule-based approach and 91.6% for the supervised

learning approach.

In a recent study, AlZoubi et al. made a study on affect detection from Ara-

bic tweets using ensemble and deep learning techniques [24]. They used pre-trained

embedding AraVec [148], and our results showed that our proposed approach outper-

formed the baseline results as well as other related work models with an enhancement

of 0.7% over the best performing model effect. Finally, AlAzani and ElAlfy, used

Word2vec embedding the extract features based on two approaches: the Continuous

Bag-of-words (CBOW) and the skip-grams (SG) [13].

Our primary research contribution is to compare different supervised classification

methods and evaluate their performance on different hashtags based on two different

feature generation approaches, the Word2Vec embedding, and the n-gram approach.

A further goal is to investigate if grouping the tweets based on hashtag topics and

using the same methodology has a notable impact on the spam recognition results.

85

Figure 4.2: The proposed system architecture

4.3 Methodology and Data

The general form of the proposed system consists of three major parts: (1) the data

pre-processing part, which includes data collection from Twitter, data cleaning, data

modeling process, and tweet labeling; (2) the feature generation process that includes

n-gram approach and Word2Vec; and, (3) the machine learning part which includes

multiple classification experiments and tests. Figure 4.2 shows the system architecture

of this study.

Eight Saudi Arabian trend hashtags from Twitter have been collected using Twit-

ter API to be applied in this study. Tweets have been gathered during October 2020.

Two of them are about health topics related to Covid-19, SA COV and SA 2Wv. The

other two cover political topics about boycotting Turkish products in Saudi Ara-

bia (SA TUR) and a TV interview with the former Saudi ambassador in the United

States (SA BAN). Three more datasets are covering some internal national affairs in

Saudi Arabia, like breaking news regarding royal orders (SA ROY), the occasions of

the Saudi National Day (SA SND), and the news about increasing the percentage of

value-added tax (VAT) in Saudi Arabia (SA VAT), in addition to one small dataset

about the “Derby” football match between Al-Hilal and Al-Nasser (SA DER). After

removing only English tweets, the total number of collected tweets is over 40,000

86

Table 4.1: The total of tweets are more than 40,026 after removing irrelevant tweets

tweets. All tweets have been labeled manually into two classes; Relevant and Spam.

Spam tweets are unrelated tweets to the hashtag topic, like ads, prayers, and funny

jokes.

Table 4.1 shows the details of the collected tweets after labeling, sorted from the

dataset that has the most Spam percentage to the least.

Because the study is focusing on generating features from the text, some tweet

features such as tweet URL or Twitter user were removed, and the data cleaning

process was applied using a code implemented in Python [120] language. All punctu-

ations were removed, and Tweets’ words were counted and tokenized using a regular

expression. The n-gram code generates unigram, bigram, and trigram features us-

ing the StringToWordVector function in Weka [77], then limited to the 500 most

frequent n-grams [162]. Tf-idf technique were applied to vectoraized the tokened

n-grams. Figure 4.3 shows the process of generating n-gram features for this study.

The Word2Vec features approach generates the 200-dimension embedding from

the same hashtag tweets and applies the skip-gram model by one, using the gensim.-

models.Word2Vec() function from Gensim library [171] in Python [120]. The model

is trained on skip-grams (SG), which are n-grams that allow tokens to be skipped.

The context of a word can be represented through a set of skip-gram pairs of target

word and context word, where context word appears in the neighboring context of

target word. We used windows size of 5, which represents the maximum distance

between the current and predicted word within a tweet. The window size value is

87

Figure 4.3: Illustrating the steps of generating tf-idf n-grams features for spam tweets,
starting from tokenizing words from the all tweets, building a collection of unique
tokens, selecting the top frequent 500 tokens, Then applying tf-idf technique to have
weighted n-gram features

preferred to be small as it used in this study when we are focusing on capturing lo-

cal syntax and specific tasks, while larger window size are better suited to capturing

semantic relationships at a larger scale of data. The model calculates a tweet-level fea-

ture representation using pre-trained word embeddings. A dummy word-embedding

formed by zeroes is used for a word with no corresponding embedding. Then, the

average word-embedding is calculated and then a vector of 200 embedding values is

generated for each tweet. We set negative sampling value to 10, which means that

for each training example , the algorithm will randomly select 10 negative samples

(words that are not the actual context word or target word) to update their weights.

That is, for each training example, the algorithm updates the weights for 11 words

in total, one actual context word and 10 negative samples. Figure 4.4 shows the

process of generating Word2Vec embeddings for each tweet in the dataset. For more

understandig to Word2Vec model, see details on figure 4.4

Using 10-fold cross-validation in Weka, five machine learning algorithms are ap-

plied. The algorithms were chosen relying on various classification methods’ concepts:

lazy learner method, the Bayesian method, and the decision tree method. Therefore,

three of them are classical supervised learning algorithms: Näıve Bayes (NB), k-

Neareast Neighbours (KNN), and Random Forest (RF), and the other two are deep

88

Figure 4.4: Illustrating the steps of generating word2Vec embedding features for
spam tweets, starting from tokenizing words from the tweet, building a unique tweet
vocabulary, building the skip-gram data for the tweet, then one-hot encoded form,
after that the applying 200-dimension vectors of Wored2Vec model, and finally taking
the average word2Vec for each tweet

learning algorithms: Multilayer Perceptron (MLP) and Weightless Neural Network

(WiSARD). These were Weka-based implementations of the deep learning algorithms.

4.4 Machine Learning Methods

After finishing the preprocessing phase and having different remodeled datasets, it is

evident that we need to apply supervised data mining techniques and Deep learning

algorithms to predict spam. All experiments applied 10-folds cross validation testing

technique.

4.4.1 Supervised Classification Methods

Our plan was to test the most common classification algorithms and compare the

accuracy of predictions to each other, so that we could examine the effectiveness of

different feature engineering techniques. UsingWeka [162], the algorithms were chosen

that rely on various theoretical classification method concepts: lazy learner method,

89

Figure 4.5: More understanding to Word2Vec model

Bayesian method, and decision tree method. Three different classification algorithms

have been chosen: K-Nearest Neighbor (KNN) [22], Näıve Bayes (NB) [132], Random

Forest Decision Tree (RF) [41].

The IBK function in the Weka data mining tool from the package {lazy} was

used to implement the experiments and to evaluate the KNN algorithm. IBK is the

same as the KNN algorithm. We used k=3, with 100 batch size and LinearNNSearch

as a nearest Neighbour Search Algorithm.

The NaiveBayes function in Weka data mining tool in the package {bayes} was

used to implement the experiments and tests to evaluate the algorithm for this study.

We used 100 batch size for this experiment.

The RandomForest function in the Weka data mining tool in the package {trees}
was used to implement the experiments and tests to evaluate the algorithm for this

study. We used 100 batch size, 100% bag size, and 100 iterations.

All the classification methods were previously explained in Chapter 2.

90

4.4.2 Deep Learning Methods

Another set of methods used is a set of neural network methods, which are applied to

compare their accuracy and efficiency. These methods are available in the Weka work-

bench using the deep learning package WekaDeeplearning4j, which is a Java library

developed to incorporate the modern techniques of deep learning into Weka. The

two deep learning algorithms that applied are: Multilayer Perceptron (MLP) using

Dl4jMlpClassifier function with two dense layers [165], from WekaDeeplearning4j

deep learning package in Weka, and Weightless Neural Network (WiSARD) [65].

For the first algorithm, training of a perceptronn is performed by adjusting the

link weights after processing each piece of data, based on the amount of error in

the output in comparison to the expected result. Using the Dl4jMlpClassifier

function, the MLP network was designed with two dense layers. Since one epoch

is too big to feed to the computer at once, we used 32 epochs to perform. As

the number of epochs increases, a greater number of times the weight is changed

in the neural network, so the learning curve goes from underfitting to an overfitting

curve [145]. The applied MLP model used a batch size of 100, an instance iterator us-

ing weka.dl4j.iterators.instance.DefaultInstanceIterator with a mini-batch

size of one, and an iteration listener which evaluates the model while training every

five epochs. The model consists of an input layer, two dense layers, and an output

layer. The input layer variables are the total number of dataset attributes in addition

to the total number of classes. The hidden layers are using the Rectified Linear Unit

(ReLU) activation function, and output 100 values from the first hidden layer, and

30 values from the second hidden layer. The output layer outputs the classes using

the MCXENT loss function, and softmax activation function, which transforms the

neurons’ output exponentials to class probabilities distribution.

For the WiSARD model, The WiSARD4WEKA package implements a multi-class

classification method based on the WiSARD weightless neural model for the Weka

machine learning toolkit. We used a batch size of 100, like the previously applied

neural network algorithms.

All used Deep Learning Methods were briefly explained in Chapter 2.

91

4.5 Experimental Results

The results of the applied machine learning algorithms show high accuracy for spam

recognition for Arabic tweets in general. Random Forest algorithm is showing the

mostly better performance overall applied algorithms, especially with n-gram gen-

erated features. While K-nearest neighbor is showing the best accuracy on SA ROY

dataset that has features generated by Word2Vec embedding, and the MLP deep

learning algorithm showing the best result on

textttSA TUR dataset using Word2Vec. MLP is also showed the best accuracy on

SA SND and SA DER datasets using the n-gram approach. The NB algorithm is show-

ing an improvement on embedding over the n-gram in three datasets. See Table 4.2

for the accuracy details using n-gram and Word2Vec; the highest accuracy results

for each approach are shown in green color. The main observed outcome from these

experimental results is that n-gram performs better than Word2Vec on three out of

the eight used datasets. These three datasets have spam percentages ranging from

26% to 14% successively (least balanced). On the other hand, Word2Vec performs

better on the more balancing datasets with spam percentages ranging from almost

half to almost the third (most balanced), and one more dataset with only 7% of tweets

labeled as spam (unbalanced). Another interesting finding is that the Word2Vec em-

bedding method with 100 generated features has more accuracy than n-gram features

with 500 features for each tweet. This can show the superiority of Word2Vec over

the n-gram approach. This calls to try 300 embeddings of Word2Vec and see if there

is any advance of it over 100 embeddings. Table 4.3 shows the percentage difference

between n-gram generated features and Word2Vec on all applied machine learning

algorithms.

In further support for this finding, we applied the same experiments on the

grouped datasets by topic (see Table 4.4 and Table 4.5). We found that grouped

hashtags by topic with more balanced classes have better results using the Word2Vec

embedding approach. The three grouped datasets by topics are: national affairs hash-

tags, COVID-19-related hashtags, and political hashtags. The datasets SA National

and SA Health that have from 42% and 33% of spam tweets have more accurate re-

sults with 10-folds cross-validation than the n-gram approach. At the same time, the

SA Politics that has 21% of spam tweets has better results in most of the algorithms

92

Table 4.2: 10-folds cross validation accuracy for n-gram and Word2Vec approaches

Table 4.3: Word2Vec accuracy improvement over the n-gram approach

93

Table 4.4: The grouped datasets by the hashtag’s topic

Table 4.5: Comparison between Word2Vec and n-gram 10-folds cross validation ac-
curacy results on grouped datasets by topic

in the n-gram feature generation approach.

Moreover, the precision results of the spam class are showing higher scores us-

ing Word2Vec embedding approaches on most machine learning experiments in the

applied algorithms, especially for the more balanced dataset and last unbalanced

dataset SA DER. F-measure results also show better results of the n-gram approach

in all experiments of the least balanced dataset. Figures 4.6 and 4.7: the scores of

the precision, recall, and F-measures for spam class for all datasets in n-gram and

Word2Vec. It also shows higher scores for spam class precision and F-measure, in

general, using the Random Forest algorithm in comparison with other algorithms,

which gives an advantage of Random Forest as a better algorithm option to be ap-

plied for this study. Figure 4.8 shows what approach has better results in precision,

recall, and F-measures in all experiments. Random Forest performance was also in

processing time compared to the deep learning algorithms, while MLP was the most

94

Figure 4.6: F-Measures of the Spam class for n-gram Approach

time consumable approach for most experiments. The lower accuracy results and

other spam class evaluation measures were in Näıve Bayes algorithm in both applied

feature generation approaches.

In general, we can conclude that the Word2Vec embedding feature generation

approach excels the n-gram approach on the most balanced datasets in learning and

recognizing the spam tweets. Moreover, Random Forest performs better in 10-folds

cross-validation accuracy results, spam class precision, recall, F-measure scores, and

processing time for most applied datasets.

4.6 Conclusion and Future Work

Tweet feature generation is an active field for studies and research. Arabic tweets

are more challenging due to fewer resources than English tweets. It interests many

people following news and trends on Twitter, especially on Saudi Arabian trends that

may be affected by spam and unrelated tweets. In this study, we applied two different

95

Figure 4.7: F-Measures of the Spam class for Word2Vec Approach

96

Figure 4.8: F-Measures of the Spam class for combined features of n-gram and
Word2Vec Approaches

feature generations on Arabic tweets to see a better method for learning the spam

on Arabic tweets. The main contribution of this paper is finding the advantage of

Word2Vec approach over the n-gram feature generation approach, and the advantage

is on the more balanced datasets, while the datasets that are least balancing are

showing better results for n-gram. We also found the same conclusion in applying

the same methodology on the grouped hashtags by topic type. Another finding is

that Random Forest performs better than other algorithms in most experiments, in

cross-validation accuracy results, spam class evaluation scores, and processing time.

Considering that Word2Vec generated 100 embeddings in this study, in comparison

to 500 top n-gram features, it is encouraging to try generating 300 embeddings and

apply the same machine learning algorithms in the future to see if there is a correlation

between the generated feature number results. Another future work idea is doing the

same study on datasets in English to compare the results between different languages.

Chapter 5

Feature Engineering for Arabic Dialect Recognition

Arabic dialect recognition is the process of identifying the dialect of a given Arabic

text or speech. The Arabic language has many dialects that are different from Arabic-

speaking country to another and among the sub-areas of these countries. Generating

features of Arabic tweets can be used to train a machine-learning model for Arabic

dialect recognition. In this chapter, we used pre-trained models such as BERT fine-

tuned generated features and demonstrated that these features are helpful in the

process of recognizing the Arabic country or region with that the Arabic tweet is

associated.

5.1 Background

The Arabic language is the most spoken Semitic language and one of the most widely

spoken languages in the world. It is spoken by more than 467 million people [25], and

its speakers are distributed in the Arab world, as well as to many other neighbor-

ing regions such as the Ahvaz region in Iran, Turkey, Chad, Mali, Senegal, Eritrea,

Ethiopia, South Sudan. It can be ranked the fifth widely spoken language in terms

of the most widespread languages globally, And the fourth language in terms of the

number of users on the Internet. Moreover, the Arabic language is important to

Muslims because it is a sacred language as it is the language of the Quran. It is

the language of prayer and is essential in carrying out Islamic worship. Arabic is

an official language in all countries of the Arab world, which are the countries that

politically belong to the Arab League, in addition to being an official language in

Chad, Eritrea, and Israel.

97

98

5.1.1 Arabic Dialects

There are many factors that contributed to the formation of different Arabic dialects,

the most important is the Arab immigration after the spread of Islam and the expan-

sion of the Rashidun Empire outside the Arabian Peninsula, the mainland of Arabs,

and the influence of other nations’ languages. The multiplicity of dialects in Arabic

existed among the Arabs from the days of pre-Islamic times, as there was a dialect for

each of the tribes. When the Quran was revealed, it was in the dialect of “Quraish”

tribe, the tribe of the Prophet of Muslims. Therefore, classical Arabic, or the stan-

dard Arabic dialect, is originally the dialect of “Quraish” that became the standard

dialect of other Arab tribes [80].

After the coming of Islam, the modern vernacular dialects likely started at the

time of the Islamic conquests, as the new Muslims in the new lands (many of which are

now Arab countries) began to learn Arabic, but — naturally — they could not speak it

exactly as the Arabs in the Arabian Peninsula speak it; thus it was slightly changed.

At that time, the difference was not very clear. However, gradually Arabic was

transformed, and its phonemic features, sentences, etc., were changed until it turned

into modern colloquial dialects [14]. Arabic-speaking lands were invaded, ruled, and

colonized in the latest centuries by other non-Arabic kingdoms and empires, such

as Turkey, France, the United Kingdom, Italy, and Spain. This is another factor

that affects the current Arabic dialects. In Fig. 5.1 we tried to categorize the Arabic

dialects regarding the geographic location, the historical understanding, words, and

sound similarities, and the strong influence of other nations, whether they were the

native nation of the land or the foreign country that colonized these lands.

Language is the primary vessel that contains science, technology, culture, history,

civilization, identity, and feelings. Although the Arabic language is one of the most

widely spoken languages worldwide, it is also clear that there is a problem in teaching

and disseminating science in the current era in the Arabic language, and the adoption

of the English language often in education in Arab universities and sometimes also

in schools. This issue exists due to the weakness of the Arabic content in the new

sciences and the lack of the Arabic scientific side of the literature written in the

Arabic language. Lack of Arabic content on the web is another challenge besides the

variety of dialects in Arabic and having no unified standard of language, making the

99

Arabic language very difficult for Natural Language Processing and machine learning

tasks. Moreover, we should consider that the Arabic alphabet differs from the English

or Latin alphabet. Also, it is written from right to left, making it complicated and

not compatible with many applied rules to the processing of Latin-based alphabet

languages.

Figure 5.1: Arabic dialect regions and sub-regions

5.2 Related Work

Arabic dialect identification is a difficult task. The lack of corpora specifically devoted

to the subject, the absence of a common orthography between and among the various

dialects, and the nature of the language itself are a few causes for this (e.g., its

morphological richness among other peculiarities). The Arabic NLP community has

developed several solutions to address these issues. One of the solutions was the

creation of annotated corpora with a primary focus on dialectical information, such as

the Arabic On-line Commentary dataset [169], the Multi-Arabic Dialect Applications

and Resources (MADAR) Arabic dialect corpus and lexicon [38], the Arap-Tweet

corpus [168], as well as a city-level dataset of Arabic dialects that was curated by

Abdul-Mageed et al. [7]. Another solution is organizing NLP workshops and shared

tasks, which are only focused on creating methods and models that can identify and

100

categorize the use of Arabic dialects in written text, which is another well-liked form

of response. The MADAR shared task, which focuses on dialect detection at the level

of Arab countries and cities, is one example [39].

Another example was the Nuanced Arabic Dialect Identification (NADI) shared

task 2020 [9], and NADI shared task 2021 [10]. In NADI 2021, they received a total of

53 unique team registrations, and after the evaluation phase, they received a total of

68 submissions. Based on the official metric, the macro F1 score, the best performance

obtained was with 22.38% F1 score for the country level. For the province level, the

best test results were achieved with the best F1 score which is 32.26%. These results

were for Modern Standard Arabic (MSA) tweets. For the dialectal Arabic tweets,

the results were weaker, and the tasks were more challenging. For the country level,

the best test result for all teams who submitted the task was with 6.43% F1 score,

while the best results of all teams who submitted the province-level task for dialectal

Arabic achieved an F1 score of 8.60%.

With the varying emphasis on feature engineering, ensemble methods, and the

level of supervision required, the Arabic NLP community’s efforts have led to several

publications that examine the application of various Machine Learning (ML) tools to

the problem of dialect identification [139, 59, 78, 154]. A number of papers have also

been published recently that investigate the potential of Deep Learning (DL) models

for dialect detection. These papers range from the work by Abdul-Mageed et al. and

Ali [7, 18], which demonstrate the improved performance that can be attained using

Long Short-Term Memorys (LSTMs) and Convolutional Neural Networkss (CNNs),

to Zhang and Abdul-Mageed [170], which emphasizes the potential of pre-trained lan-

guage models to achieve state-of-the-art performance on the task of dialect detection.

In our study, we are focusing more on the role of feature engineering by comparing

different feature generation methodologies with considering the number of classes,

then applying an ensemble model to notice any improvement in the dialect prediction

accuracy.

5.3 Data

As the participants in NADI shared task 2020 [110] and NADI shared task 2021 [111],

we were provided a labeled dataset that consisted of 42,000 tweets in total, collected

101

from 21 Arab world countries and 100 provinces from them, to learn and identify

different Arabic dialects using Natural Language Processing techniques. We also

provided 10,000 tweets from the shared task, split in two parts: 5000 tweets are used

to validate models during the training phase, and 5000 tweets to test the models

at the end of training. NADI shared a task to focus on the sub-country level of

identification for dialects. Therefore, they announced two tasks: the first is a country-

level task to learn and classify tweets belonging to a specific country, and the second

is a province-level to learn and identify tweets belonging to a specific province. They

also provided an additional 10 million unlabeled tweets that can be used in developing

our proposed system for both tasks. The labeled dataset was unbalanced, and it has

more tweets from Egypt, Iraq, and Saudi Arabia than other countries such as Sudan

or Mauritania. For example, there were 21 provinces from Egypt, 12 from Iraq, and

10 from Saudi Arabia, while there was just one province from Sudan and Mauritania

each. We also found that some of the non-Arabic tweets in the dataset from certain

countries and provinces belong to non-Arabic languages that use the Arabic alphabet.

For instance, Kurdish in at least 4 Iraqi’s provinces, Urdu in some tweets from the

United Arab Emirates and Oman, and Farsi in Some tweets from Iraq and Yemen.

We also realized many considerable numbers of tweets in languages that use the Latin

alphabet, such as French from Tunisia, Algeria, and Morocco, and tweets in Somali

from Somalia, as well as tweets in English from the rest of the regions. Figure 5.2

shows the distribution of tweets over country. Both labeled and unlabeled datasets

were cleaned by removing the non-Arabic words, diacritics “tashkeel”, punctuation,

numbers. Figure 5.3 shows a histogram of the number of words in the different tweets.

We can observe that the longest tweet is less than 60 words.

We re-modelled the data to have different versions from the original version pro-

vided by NADI, the first re-modelled version is having 19 classes instead of 21 classes

of countries. The deleted countries were Somalia and Djibouti due to two reasons:

too few tweets in the dataset from these countries, and these are not basically Arabic

speaking countries as the rest of countries in the study. Even though Somalia and

Djibouti are members in the Arab League and they do declare the Arabic language

as official, it is not commonly and publicly used there at the same level as the in-

digenous languages, which are the Somalian langauge in Somalia, and the Somalian

102

Figure 5.2: The distribution of tweets over countries

and the Afar langauges in Djibouti. There are other countries that also have a small

number of tweets and they do not provide much traning data, but we did not elim-

inate them because they are still actual Arabic speaking countries, and we want to

use there tweets in the next re-modelled version. The second re-modelled version is

having region-based classes instead of countries. We grouped country classes consid-

ering the geographical location and neighbouring to form four new classes. Gulf class

that contains seven Arabian Peninsula countries which are: Saudi Arabia, Kuwait,

Bahrain, Qatar, United Arab Emirates, Oman, and Yemen. The next region class is

Orient class that contains five countries from Mesopotamia and Levant area countries

which are: Iraq, Syria, Lebanon, Jordan, and Palestine. Another region class is Nile

class that contains two countries from Nile River basin countries which are: Egypt

and Sudan. The last region class is Maghreb class, and Maghreb means the west in

Arabic language, that contains the five countries from the rest of north Africa and

far west of Arab world countries which are: Libya, Tunisia, Algeria, Morocco, and

Mauritania.

The last re-modelling approach version is called the plus version, which is moti-

vated by an idea to notice the impact of increasing the data of the countries that have

fewer tweets. We increased the main dataset (NADI 2020), with more tweets from

(NADI 2021) dataset from all countries, except Egypt, top country in the number of

tweets, because of its high percentage. We added those tweets to the new re-modelled

103

Figure 5.3: Histogram of the number of words in the different tweets

datasets as well. Therefore, we had six different versions of tweets. From Figure 5.4

we can see the train tweets count before and after increasing the dataset, and we can

see in the tables Table 5.1 and Table 5.2 the descriptions of the datasets.

5.4 Proposed System

Our proposed classification pipeline, after collecting the data, consists of three steps:

the pre-processing step, feature engineering step, and the learner. These steps and

overall system architecture is shown in Figure 5.5.

5.4.1 Data Preprocessing Step

The pre-processing step involves data cleaning, such as removal of punctuation, stop-

words, user mentions, onomatopoeias, repeated character contraction, and hashtag

word splitting. We re-modelled the datasets to have different versions to compare

the learning accuracies and notice the impact of changing the class percentages, as

discussed in the previous section.

104

Table 5.1: The details of the original dataset C21, and the re-modelled datasets C21P,
C19, and C19P

5.4.2 Feature Engineering Step

In the feature engineering step, we chose to generate features using 3 different tech-

niques: tf-idf n-grams, AraVec, and BERT pre-trained models.

TF-IDF N-grams

The first technique is generating n-grams (n ∈ {1, 2, 3}) features using the tf-idf

technique. We used TfidfVectorizer [118] from scikit-learn library [117] to gain

the maximum of 10,000 features to feed later into the traditional machine learning

algorithms to train the Support Vector Machine (SVM), Random Forest (RF), Näıve

Bayes (NB), and Logistic Regression (LR) models.

105

Table 5.2: The mapping of the re-modelled datasets C19, C19P in comparison to the
region based re-modelled datasets R4 and R4P

AraVec

The second technique is generating Arabic word2vec embeddings using AraVec [150],

which is a pre-trained distributed word representation (word embedding) open-source

project. Aravec created using deep learning algorithms, specifically CBOW and SG

models, and it uses a large corpus of Arabic text as training data. It is particularly

useful for various NLP tasks such as, text classification, text clustering, information

retrieval, and sentiment analysis for Arabic language. The pre-trained word em-

bedding can also be used as an input to downstream machine learning models to

further improve performance on various tasks. We used the Genism library to gen-

erate word vectors using Word2Vec by loading the full grams cbow 100 twitter

pre-trained Twitter-based word embedding model, which contains 66,900,000 docu-

ments, 1,476,715 vocabularies, and applied CBOW technique with 100 vectors [149].

An embedding matrix was built using these vectors and then used as weighted pa-

rameters in the embedding layer within an Bi-LSTM-based model which consists of

an embedding layer, an Bi-LSTM layer, and a fully connected layer [79].

106

Figure 5.4: Train tweets counts before and after increasing the dataset

BERT

The third technique is based in finding the fine-tuned generated features using the

Bidirectional Encoder Representations from Transformers (BERT) model, which is

a transformer-based machine learning technique for natural language processing pre-

training developed by Google.

In this study, we pretrained six different BERT-based pre-trained models, using

the HuggingFace [166] Pytorch library [115], in order to classify the tweets into the

wanted number of classes. The six pre-trained models are:

• asafaya/bert-base-arabic (ASAFAYA) [134], a retrained BERT base language

model for Arabic which was pretrained on 8.2 Billion words,

• aubmindlab/bert-base-arabert (ARABERT) [26], an Arabic pretrained lanaguage

model based on Google’s BERT architechture, which was pretrained on 2.7 Bil-

lion words,

• aubmindlab/bert-base-arabertv02-twitter (ARABERTV2T) [26], a new model

for Arabic dialects and tweets, trained by continuing the pre-training using the

MLM task on 60M Arabic tweets (filtered from a collection on 100M), and 8.6

Billion word,

107

Figure 5.5: The proposed system architecture

• UBC-NLP/marbert (MARBERT) [8], a large scale pre-training masked lan-

guage model focused on both DA and MSA. Arabic has multiple varieties. To

train MARBERT, randomly sample 1 Billion Arabic tweets from a large dataset

of about 6 Billion tweets,

• UBC-NLP/arbert (ARBERT) [8], a large scale pre-training masked language

model focused on MSA. To train ARBERT, the same architecture as BERT-

base is used: 12 attention layers, each has 12 attention heads and 768 hidden

dimensions, a vocabulary of 100K WordPieces, making 163M parameters. To

train ARBERT on a collection of Arabic datasets comprising 61 GB of text (6.2

Billion tokens),

• bashar-talafha/multi-dialect-bert-base-arabic (MULTIDB) [153], a model using

108

Arabic-BERT and trained it on 10M arabic tweets from the unlabled data of

The Nuanced Arabic Dialect Identification (NADI) shared task.

We extracted the maximum number of words in the applied tweets in the study,

which is 59 words. Bert models use the maximum number of words in the document

to generated a tensor feature named InputFeature object, which is a single set of

features of data, this tensor include the following important argument:

• input ids: sequence of token ids, the rest of the 59 words filled with zeros.

• attention mask: sequence of 1s (for “real” tokens) and 0s (for padding tokens),

• token type ids: aka segment ids. Indicators for which sentence (or sequence

each token belongs to). Classical BERT supports only 0s and 1s (for first and

second sentence, respectively),

• label: Represents training example classification labels,

Figure 5.6 shows an example of the design of the generated BERT input features for

an Arabic tweet. After finding the fine-tuned model we apply the argmax function [44]

for the learning step.

Figure 5.6: The design of the generated BERT input features for an Arabic tweet

109

5.4.3 Learning Step

The last step is the learning step, we applied each of the three machine learning

approaches, trained machine learning algorithms from tf-idf , the trained Bi-directi-

onal Long Short-Term Memory (Bi-LSTM) Vectors from AraVec, and the fine-tuned

BERT model, to the same testing dataset, to find the prediction and the accuracy

results. The performance of all the experiments was then compared regarding to the

accuracy of the learning and the F-score results. Given that we have used less than

half of the unlabelled data, there is still room for improvement.

To learn dialects from the generated n-grams features we used traditional machine

learning; SVM, RF, MultinominalNB, and LR models.

Support Vector Machine (SVM) is a machine learning algorithm used for clas-

sification and regression analysis. Using Python, from sklearn.svm we import SVC

function. We experimented SVM with RBF kernel.

For the Random Forest (RF), Using Python, from sklearn.ensemble we import

RandomForestClassifier function. we set n estimatorsint with 200, which is he

number of trees in the forest.

For Multinominal Naive Bayes (MultinominalNB), is a probabilistic algorithm

used for text classification. it is a variant of the Naive Bayes, which is based on

Bayes theorem and assumption of Independence between features. Using Python,

from sklearn.ensemble we import MultinomialNB function.

Logistic Regression (LR), is a statistical model used to predict the probability of

binary outcomes, the model fits a logistic function, also known as sigmoid function, to

the observed data, which transforms the output of the linear regression model into a

probability value between 0 and 1. It can be also extended to multiclass classification

by using softmax function. relationship between a dependent variable and one or

more independent variables. Using Python, from sklearn.linear model we import

LogisticRegression function.

For the AraVec experiment, Bi-LSTM model was applied to learn the Arabic

dialect. In word embedding it is a NLP technique that combine the Bi-directional

Long Short-Term Memory archetecture and word embedding. in this approach, a

Bi-LSTM is trained to model sequential relationships between words in a text cotpus,

110

while word embedding s are used to represent each word as a dense vector. Using Bi-

LSTM with Aravec embedding is a powerful approach for natural language processing

tasks in the Arabic language. After providing pretrained word embedding model

using Aravec, it can be used as input to a Bi-LSTM network to obtain context-aware

representations of Arabic word. Using Python, from lstm classifier we import

SequenceDataset function with lstm classifier, we set epoch by 30, learning rate

by 0.001, dropout by 0.4, and dimension of the embedding by 100 vectors.

For the BERT experiments, the last step is a simple linear classifier (the final layer

in the neural network) which was finally trained on the training subset provided by the

organizers. The library for the language model experiments used is huggingface [166]

in Python. In training the BERT classifiers, we applied batch size of 16, with three

epochs and learning rate of ϵ = 3.5 ·10−6. In training the BERT classifiers, we applied

30 epochs and a learning rate of 0.001.

It is important to mention that we started our experiments with the simpler

architectures using probabilistic classifiers with no embedding layers. However, none

of the models could converge, and rare classes such as Bahrain and Qatar were not

detected. We experimented with linear kernel SVM, RBF kernel SVM, Random

Forest, and Logistic Regression. We used generated lists of characteristic n-grams

per country described in the previous section in this experimental setup.

5.5 Results

As previously mentioned, several approaches were investigated in the experiments

we conducted, starting with the classical Machine Learning techniques, moving to

Deep Learning technique, and finally settling on our successful BERT-based model.

For our traditional Machine Learning experiments, we tried various models such as

Support Vector Machine (SVM), Radial Basis Function (RBF) kernel SVM, Logistic

Regression (LR), Multinominal Naive Bayes (MultinominalNB), and Random Forest

(RF) Random Forest (RF), along with tf-idf generated n-gram features. We apply

these techniques on all dataset models that we have. Table 5.3 shows the results of

the learning accuracy in terms of the F1-score.

The results show a superiority of the RBF algorithm over the other machine

learning algorithm in most of the experiments, with rivalry of MultinominalNB in the

111

Regions datasets, and rivalry of LR in C21P, C19, C19P datasets. MultinominalNB

and RBF methods score the highest accuracy and F1-score with 53% for each of

them. In the original data C21, we found the same result of F1-score with 17% when

compared to the work of Abdul-Mageed et al. ARBERT [8] , but we had a higher

accuracy with 32% using RBF in comparison to their work which gained 30%.

Table 5.3: The results of accuracy and F-scores in the tf-idf classification experiments

For word embedding deep learning technique, we used AraVec pre-trained dis-

tributed word embedding vectors, And use the embedding layer within an Bi-directi-

onal Long Short-Term Memory (Bi-LSTM) model to predict the dialect.

The results shows a slight improvement on accuracy results in all experiments in

comparison to RBF kernel SVM algorithm in the tf-idf method. This improvement

was missing in the F-scores. In C21, C19, and R4 experiments, we found over 56,000

tokenized unique words with embedding, but AraVec could not find vector for 19528

words (almost 25% of the words). In the “Plus” datasets, we found over 57,000

tokenized unique words with embedding, but AraVec could not find vector for 31,436

words (almost 29% of the words). That shows the importance of having vectors for all

the possible words, but AraVec vectors not covering all Arabic words in all dialects.

Table 5.4 shows the results of the AraVec experiments using the Bi-LSTM neural

network.

The architecture with AraBERT embeddings is the only one able to detect all the

112

Table 5.4: The results of accuracy and f-scores in the AraVec experiments

Figure 5.7: The results of accuracy and f-scores in fine-tuned BERT models

dialects to some level. The other models, such as SVM, Random Forest, and Random

Forest, could not deal with under-resourced dialects.

5.6 Discussion

We build a confusion matrix for all countries to visualize the percentage of correctly

predicted tweets and the similarities between countries. In Figure 5.8 we picked up

two examples of grouped neighboring countries. The first group has Saudi Arabia,

Kuwait, Iraq, Bahrain, and Syria. It shows that most tweets of small countries such

as Kuwait and Bahrain went to bigger countries, mostly Saudi Arabia, which confirms

the influence of the Saudi dialect on other countries in the Gulf area. The second

subset, which includes Egypt, Sudan, Libya, Tunisia, and Palestine, shows the big

influence of Egypt on the closer countries to it, first Sudan and Palestine, and then

113

Figure 5.8: Confusion matrix for two subsets of Arab countries

Libya. We also observed the confusion matrix of each region that was previously

shown in Figure 5.1. We found the big influence of Algerian dialect on Maghreb

region, Iraq dialect over orient region and Saudi Arabia on Arabia region, and there

is a bigger influence of Egyptian dialect over all countries. That may interpret the

effect of having an unbalanced dataset due to the higher number of tweets from these

four countries than from other countries. Among other interesting observations, we

found a strong percentage of predicted tweets of Yemen in Arabia region countries,

even with having a lesser number of tweets than Saudi Arabia. In future work, we

would like to try more balanced tweets from all countries to see if it impacts results.

Furthermore, we would like to consider the proposed categorization in Figure 5.1

as the main classification task, then get deeper with more classes by countries and

sub-regions. As another future direction, would could try other tweet embedding

techniques such as ArWordVec [61] and enhance the generated n-gram dictionaries

with more words for each region and country to discover its impact on the results.

5.7 Conclusion and Future Work

In this study, we presented an architecture for Arabic dialect detection. We exper-

imented feature engineering techniques, the n-gram feature using tf-idf, the word

embedding feature using AraVec, and the fine-tuned language model using BERT

114

models, on the Twitter dataset from the NADI shared task 2020 and 2021. On six dif-

ferent versions of re-modelled datasets, we used more traditional algorithms involving

probabilistic models such as SVM, Random Forest, Näıve Bayes, RBF, and Logistic

Regression, as well as a model with embedding representation which was trained on a

large external Arabic corpus, then using the Bi-LSTM learning on the trained model.

Moreover, we build six fine-tuned language models based on BERT to apply them in

the learning process. We also applied an ensemble model that combines the features of

tf-idf using RBF, AraVec, and BERT. The results showed that BERT is more power-

ful for this study than other methods, specifically bert-base-arabertv02-twitter

and MARBERT. Our main contribution is comparing different feature engineering

methods for Arabic tweets and stating that BERT is the best technique for language

modeling and Arabic dialect recognition. The training set is very unbalanced, and

that was reflected in the results. After increasing the data, we found that having

more balanced data will help to find better accuracy and F1-score results. Another

finding is having lesser classes by grouping the classes based on geographical location

contributes to increasing the accuracy. That call to apply the study in the future

on different region groupings or consider developing a hierarchical model consisting

of many specialized models for each sub-region. Another future consideration is to

expand the training sub-sets for under-resourced dialects and making the datasets

balanced.

Chapter 6

Conclusion

Feature engineering is one of the essential steps in machine learning. When it comes

to NLP, it helps to create better data which helps the model to understand it well, and

provide reasonable results. Therefore, generating and extracting features in Twitter

is one of the challenges that we need to apply on many experiments to assist the

machine learning field. In our study, we propose applying three different feature

generation tasks on three fields: financial forecasting, spams filtering, and linguistic

dialect identification. We applied n-grams and word embedding approaches to gener-

ate features of Bitcoin tweets for sentiment analysis. The main contributions of this

research are finding a partial correlation between the Bitcoin price fluctuation and the

fluctuation of the sentiment classes using different machine learning algorithms and

providing a framework of an efficient tweet sentiment tool for Bitcoin tweets, whether

they are positive or not. In the second study, we applied Word2Vec and n-grams on

Arabic tweets for spam filtering in the current work. The main contribution of this

research is finding the advantage of Word2Vec approach the over the n-gram feature

generation approach. The advantage is on the more balanced datasets, while the

least balancing datasets show better n-gram results. We also found the same conclu-

sion in applying the same methodology on the grouped hashtags by topic type. In

the third study, we applied six BERT pretrained fine-tuned model on Arabic tweets

to recognize the Arabic dialect, aside with the tf-idf n-gram feature generation, and

AraVec word embedding model. The results showed that BERT is more powerful

for this study than other methods, specifically bert-base-arabertv02-twitter and

MARBERT. A common finding that we discovered is that generating features for

Tweets is improving the learning process, weather the Tweet were in Arabic or in

English. Another expected finding is that having balanced class data help in en-

hancing learning accuracy, and our finding is that n-gram-based features better cope

with class imbalance. For the imbalanced data (C21, C19, R4) we noticed a better

115

116

F-score results for tf-idf n-grams in comparison with AraVec embeddings, but still the

bert-base-arabertv02-twitter and MARBERT has better F-scores results overall

experiments. These are some lessons that should be considered in future studies in

the effect of balanced and unbalanced datasets on the choice of feature engineering

techniques in Twitter datasets and similar short-text datasets.

6.1 Achieved Objectives

Based on the thesis problem statement, we applied several methods to increase the

number of limited features on Twitter text data. We generated features in the fi-

nancial forecasting study using n-grams and tweet embeddings using Weka. We gen-

erated features in the spam recognition study by applying n-grams and Word2Vec

approaches, and we generated features on Arabic dialects identification study, by ap-

plying tf-idf n-grams, Ara-Vec, and six different BERT based fine-tuned models on

the tweets. We also achieved other goals:

• Comparing the quality of multiple feature engineering techniques on Tweets.

• Applying those techniques to tweets from different fields of interest, in different

languages.

These results were published in six peer-referred publications, four In-proceeding

papers, and two journals, as well as two published video presentations.

6.2 Study Limitations

When conducting feature engineering on Twitter data, there are several limitations

that should be considered, and these affected research presentend here. These limi-

tations were:

• Limited access to the Twitter API to get more related tweets in a short time

window.

• Lack of research and resources on generating features for tweets in the Arabic

language.

117

• Time-consuming experiments to get the results due to the limitation in the

computer memory.

6.3 Future Work

As this thesis consists of three different studies, there are some future work directions

that can be generally considered in all studies, like applying advanced text processing

or making further analysis on tweet sentiment, but we can be more specific in ideas

based on the current findings:

• We can involve more than one language in each study, for example, applying

Arabic tweets in the financial forecasting study, and English tweets in the spam

recognition study, and noticing the difference between the two languages when

we apply the same methodology.

• Considering the balancing of classes in the dataset. We noticed an impact of

having more tweets from one class over the other class, especially in the spam

recognition study, and the dialect identification study. The results encourage

us to apply the fine-tuned model to equal classes in the number of tweets for

the Arabic dialect identification study.

• Applying the fine-tuned models in the financial forecasting study, and in the

spam recognition study, since we noticed its efficiency on the Arabic dialect

identification study.

Bibliography

[1] fse/word2vec-google-news-300. Hugging Face, https://huggingface.co/fse/
word2vec-google-news-300, last accessed 2023-03-31.

[2] Most visited website - 1996/2022 - statistics and data. Statistics and Data, Mar
2022, https://statisticsanddata.org/data/most-popular-website/, last
accessed 2023-03-31.

[3] Twitter API. Twitter Developer platform , https://developer.twitter.com/
en/docs/twitter-api, last accessed 2023-03-31.

[4] Twitter, inc. net promoter score 2023 benchmarks. Customer.guru , https:
//customer.guru/net-promoter-score/twitter-inc, last accessed 2023-03-
31.

[5] Twitter to expand 280-character tweets. BBC News, Nov 2017, https://www.
bbc.com/news/technology-41900880, last accessed 2023-03-31.

[6] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, ..., and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from ten-
sorflow.org.

[7] Muhammad Abdul-Mageed, Hassan Alhuzali, and Mohamed Elaraby. You
tweet what you speak: A city-level dataset of Arabic dialects. In Proceedings
of the Eleventh International Conference on Language Resources and Evalua-
tion (LREC 2018), Miyazaki, Japan, May 2018. European Language Resources
Association (ELRA).

[8] Muhammad Abdul-Mageed, AbdelRahim Elmadany, and El Moatez Billah
Nagoudi. ARBERT & MARBERT: Deep bidirectional transformers for Ara-
bic. In Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 7088–7105, Online, Aug
2021. Association for Computational Linguistics.

[9] Muhammad Abdul-Mageed, Chiyu Zhang, Houda Bouamor, and Nizar Habash.
NADI 2020: The first nuanced Arabic dialect identification shared task. In Pro-
ceedings of the Fifth Arabic Natural Language Processing Workshop, pages 97–
110, Barcelona, Spain (Online), December 2020. Association for Computational
Linguistics.

118

https://huggingface.co/fse/word2vec-google-news-300
https://huggingface.co/fse/word2vec-google-news-300
 https://statisticsanddata.org/data/most-popular-website/
https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/docs/twitter-api
 https://customer.guru/net-promoter-score/twitter-inc
 https://customer.guru/net-promoter-score/twitter-inc
https://www.bbc.com/news/technology-41900880
https://www.bbc.com/news/technology-41900880

119

[10] Muhammad Abdul-Mageed, Chiyu Zhang, AbdelRahim Elmadany, Houda
Bouamor, and Nizar Habash. NADI 2021: The second nuanced Arabic di-
alect identification shared task. In Proceedings of the Sixth Arabic Natural
Language Processing Workshop, pages 244–259, Kyiv, Ukraine (Virtual), April
2021. Association for Computational Linguistics.

[11] Sarah Aboulhosn. Twitter trending topics: How they work and how to use
them, Mar 2021.

[12] Abien Fred Agarap. Deep learning using rectified linear units (relu). CoRR,
abs/1803.08375, 2018.

[13] Sadam Al-Azani and El-Sayed M. El-Alfy. Detection of arabic spam tweets
using word embedding and machine learning. 2018 International Conference
on Innovation and Intelligence for Informatics, 2018.

[14] Ahmad Al-Jallad. The polygenesis of the Neo-Arabic dialects. Journal of
Semitic Studies, Volume 54:Pages 515–536, Oct 2009.

[15] Nuha Albadi. Hateful people or hateful bots? Proceedings of the ACM on
Human-Computer Interaction, 2019.

[16] Alexa. Alexa web site, 2023. https://www.alexa.com, last accessed 2023-03-
31.

[17] Adel R. Alharbi and Amer Aljaedi. Predicting rogue content and Arabic Spam-
mers on Twitter. Future Internet, 2019.

[18] Mohamed Ali. Character level convolutional neural network for Arabic dialect
identification. In Proceedings of the Fifth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial 2018), pages 122–127, Santa Fe, New
Mexico, USA, Aug 2018. Association for Computational Linguistics.

[19] Nada Allouch. Sentiment and emotional analysis: The absolute difference -
emojics blog. Emojics, 2019.

[20] Hind Almerekhi and Tamer Elsayed. Detecting automatically-generated arabic
tweets. Springer, 2015.

[21] Dema Alorini and Danda B. Rawat. Automatic spam detection on gulf dialec-
tical arabic tweets. IEEE, 2020.

[22] Naomi S. Altman. An introduction to kernel and nearest-neighbor nonpara-
metric regression. The American Statistician, 46(3):175–185, 1992.

[23] Nada Altuwaijri. “Salaries not enough”: Saudis shout on so-
cial media. https://english.alarabiya.net/variety/2013/08/13/

Millions-of-Saudis-complain-on-Twitter-about-salaries, last accessed
2023-03-31.

https://www.alexa.com
https://english.alarabiya.net/variety/2013/08/13/Millions-of-Saudis-complain-on-Twitter-about-salaries
https://english.alarabiya.net/variety/2013/08/13/Millions-of-Saudis-complain-on-Twitter-about-salaries

120

[24] Omar AlZoubi, Saja Khaled Tawalbeh, and Mohammad AL-Smadi. Affect de-
tection from Arabic tweets using ensemble and deep learning techniques. Jour-
nal of King Saud University – Computer and Information Sciences, 2020.

[25] Ulrich Ammon. World Languages: Trends and Futures, pages 101–122. 10 2010.

[26] Wissam Antoun, Fady Baly, and Hazem Hajj. AraBERT: Transformer-based
model for Arabic language understanding. In LREC 2020 Workshop Language
Resources and Evaluation Conference 11–16 May 2020, page 9.

[27] Rahul Awati and Taina Teravainen. What is email spam and how to fight it?
TechTarget. https://www.techtarget.com/searchsecurity/definition/

spam, last accessed 2023-03-31.

[28] V. Kishore Ayyadevara. Word2vec, pages 167–178. Apress, Berkeley, CA, 2018.

[29] Ahmed Balfagih and Vlado Keselj. Twitter arabic dialect identification using
arabert. In 39th IBIMA Computer Science Virtual Conference 30-31 May 2022.
IBIMA, 2022.

[30] Ahmed Balfagih and Vlado Keselj. Twitter arabic dialect identification using
arabert. In 40th IBIMA Conference: 23-24 November 2022, Seville, Spain.
IBIMA, 2022.

[31] Ahmed Balfagih, Vlado Keselj, and Stacey Taylor. N-gram and word2vec fea-
ture engineering approaches for spam recognition on some influential twitter
topics in saudi arabia. In Proceedings of the 6th International Conference on
Information System and Data Mining, ICISDM ’22, page 101–107, New York,
NY, USA, 2022. Association for Computing Machinery.

[32] Ahmed Balfagih, Vlado Keselj, and Stacey Taylor. N-gram and word2vec fea-
ture engineering approaches for spam recognition on some influential twitter
topics in saudi arabia. Journal of Advances in Information Technology (JAIT),
13 No. 6:562–568, 2022.

[33] Ahmed M. Balfagih and Vlado Keselj. Evaluating sentiment c1assifiers for
Bitcoin tweets in price prediction task. In 2019 IEEE International Conference
on Big Data (Big Data), page 5499–5506, Dec 2019.

[34] Trisha Dowerah Baruah, Krishna Kanta, and Handiqui State. Effectiveness
of social media as a tool of communication and its potential for technology
enabled connections: A micro-level study. International Journal of Scientific
and Research Publications, 2, 2012.

[35] BBC. Hisham Malaikah: Who is he? why did he have to delete his account
from Twitter?, 2021. Original from Arabic: https://www.bbc.com/arabic/

trending-50973909, last accessed 2023-03-31.

https://www.techtarget.com/searchsecurity/definition/spam
https://www.techtarget.com/searchsecurity/definition/spam
https://www.bbc.com/arabic/trending-50973909
https://www.bbc.com/arabic/trending-50973909

121

[36] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer
New York, New York, NY, 2016.

[37] Bayan Boreggah, Arwa Alrazooq, Muna Al-Razgan, and Hana AlShabib. Anal-
ysis of Arabic bot behaviors. IEEE, 2018.

[38] Houda Bouamor, Nizar Habash, Mohammad Salameh, Wajdi Zaghouani, Owen
Rambow, Dana Abdulrahim, Ossama Obeid, Salam Khalifa, Fadhl Eryani,
Alexander Erdmann, and Kemal Oflazer. The madar arabic dialect corpus and
lexicon. In International Conference on Language Resources and Evaluation,
2018.

[39] Houda Bouamor, Sabit Hassan, and Nizar Habash. The MADAR shared task
on Arabic fine-grained dialect identification. In Proceedings of the Fourth Arabic
Natural Language Processing Workshop, pages 199–207, Florence, Italy, August
2019. Association for Computational Linguistics.

[40] Felipe Bravo-Marquez, Bernhard Pfahringer, Saif Mohammad, and Eibe Frank.
AffectiveTweets: a Weka package for analyzing affect in tweets. Journal of
Machine Learning Research, 20:1–6, 06 2019.

[41] Leo Breiman. Random forests. In Machine Learning, page 5–32, 2001.

[42] James Briggs. Masked-language modelling with bert, Sep 2021.
https://towardsdatascience.com/masked-language-modelling-with-bert-
7d49793e5d2c.

[43] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.
Syntactic clustering of the web. Computer Networks and ISDN Systems,
29(8):1157–1166, 1997. Papers from the Sixth International World Wide Web
Conference.

[44] Jason Brownlee. What is argmax in machine learning?, March 2017. https:

//machinelearningmastery.com/argmax-in-machine-learning/, last ac-
cessed 2023-03-31.

[45] Bala Priya C. Softmax activation function: Everything you need to know.
https://www.pinecone.io/learn/softmax-activation/, last accessed 2023-
03-31.

[46] National Research Council Canada. Government of canada. https://nrc.

canada.ca/en, last accessed 2023-03-31.

[47] Hugo Caselles-Dupré, Florian Lesaint, and Jimena Royo-Letelier. Word2vec
applied to recommendation: Hyperparameters matter. CoRR, abs/1804.04212,
2018.

https://machinelearningmastery.com/argmax-in-machine-learning/
https://machinelearningmastery.com/argmax-in-machine-learning/
https://www.pinecone.io/learn/softmax-activation/
https://nrc.canada.ca/en
https://nrc.canada.ca/en

122

[48] Sudhanshu Chauhan and Nutan Kumar Panda. Chapter 2 - open source in-
telligence and advanced social media search. In Sudhanshu Chauhan and Nu-
tan Kumar Panda, editors, Hacking Web Intelligence, pages 15–32. Syngress,
Boston, 2015.

[49] Michelle Chen. A guide: Text analysis, text analytics amp; text mining.
Medium, Oct 2020.

[50] Mitchell Clark. Now twitter blue subscribers can write 4,000-character
tweets, Febraury 2023. https://www.theverge.com/2023/2/8/23591472/

twitter-blue-subscribers-longer-tweets-4000-characters.

[51] Idit Cohen. Optimizing feature generation. Medium, Towards
Data Science, Oct 2019. https://towardsdatascience.com/

optimizing-feature-generation-dab98a049f2e, last accessed 2022-11-
17.

[52] Stefania Cristina. The Transformer model. MachineLearningMastery.com, Jan
2023. https://machinelearningmastery.com/the-transformer-model/.

[53] Marc Damashek. Gauging similarity with n-grams: Language-independent cat-
egorization of text. Science, 267(5199):843–848, 1995.

[54] Suzanne Van den Bosch. Automatic feature generation and selection in predic-
tive analytics solutions. 2017.

[55] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
CoRR, abs/1810.04805, 2018.

[56] Guozhu Dong. A quick guide to feature engineering. KDnuggets. https://

www.kdnuggets.com/a-quick-guide-to-feature-engineering.html/, last
accessed 2021-11-17.

[57] Saige Driver. Twitter for Business: Everything You Need to Know.
Business News Daily. 2021. https://www.businessnewsdaily.com/

7488-twitter-for-business.html, last accessed 2023-03-31.

[58] Frank Eibe. Fully supervised training of gaussian radial basis function networks
in weka. In Department of Computer, Science University of Waikato, 2014.

[59] Heba Elfardy and Mona Diab. Sentence level dialect identification in Arabic. In
Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 456–461, Sofia, Bulgaria, August
2013. Association for Computational Linguistics.

[60] Facebook. Facebook web site, 2023. https://www.facebook.com, last accessed
2023-03-31.

https://www.theverge.com/2023/2/8/23591472/twitter-blue-subscribers-longer-tweets-4000-characters
https://www.theverge.com/2023/2/8/23591472/twitter-blue-subscribers-longer-tweets-4000-characters
https://towardsdatascience.com/optimizing-feature-generation-dab98a049f2e
https://towardsdatascience.com/optimizing-feature-generation-dab98a049f2e
https://www.kdnuggets.com/a-quick-guide-to-feature-engineering.html/
https://www.kdnuggets.com/a-quick-guide-to-feature-engineering.html/
https://www.businessnewsdaily.com/7488-twitter-for-business.html
https://www.businessnewsdaily.com/7488-twitter-for-business.html
https://www.facebook.com

123

[61] Mohammed Fouad, Ahmed Mahany, Naif Aljohani, Rabeeh Abbasi, and Saeed-
Ul Hassan. ArWordVec: Efficient word embedding models for Arabic tweets.
Soft Computing, 06 2019.

[62] Evgeniy Gabrilovich and Shaul Markovitch. Feature generation for text cate-
gorization using world knowledge. IJCAI’05, page 1048–1053, San Francisco,
CA, USA, 2005. Morgan Kaufmann Publishers Inc.

[63] Shreyal Gajare. Tf – idf for bigrams trigrams, September 2019. https://www.
geeksforgeeks.org/tf-idf-for-bigrams-trigrams/.

[64] Shreya Ghelani. Breaking bert down. Medium, Towards Data Science, Jul 2019.
https://towardsdatascience.com/breaking-bert-down-430461f60efb.

[65] Di Gregorio Giordano. The wisard classifier. In ESANN, 2016.

[66] Varun Godinho. Two-thirds of saudi arabia’s population is under
the age of 35. Gulf Business, 2020. https://gulfbusiness.com/

two-thirds-of-saudi-arabias-population-is-under-the-age-of-35/,
last accessed 2023-03-31.

[67] Tian Guo, Albert Bifet, and Nino Antulov-Fantulin. Bitcoin volatility fore-
casting with a glimpse into buy and sell orders. In 2018 IEEE International
Conference on Data Mining (ICDM). IEEE, nov 2018.

[68] Felix Hamborg and Karsten Donnay. NewsMTSC: A dataset for (multi-)target-
dependent sentiment classification in political news articles. In Proceedings
of the 16th Conference of the European Chapter of the Association for Com-
putational Linguistics: Main Volume, pages 1663–1675, Online, April 2021.
Association for Computational Linguistics.

[69] James Hamilton. Time Series Analysis. Princeton University Press, 1994.

[70] Jiawei Han, Micheline Kamber, and Jian Pei. 8 - classification: Basic concepts.
In Jiawei Han, Micheline Kamber, and Jian Pei, editors, Data Mining (Third
Edition), The Morgan Kaufmann Series in Data Management Systems, pages
327–391. Morgan Kaufmann, Boston, third edition edition, 2012.

[71] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Shep-
pard, ..., and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, September 2020.

https://www.geeksforgeeks.org/tf-idf-for-bigrams-trigrams/
https://www.geeksforgeeks.org/tf-idf-for-bigrams-trigrams/
https://gulfbusiness.com/two-thirds-of-saudi-arabias-population-is-under-the-age-of-35/
https://gulfbusiness.com/two-thirds-of-saudi-arabias-population-is-under-the-age-of-35/

124

[72] Md. Rakibul Hasan, Maisha Maliha, and M. Arifuzzaman. Sentiment analysis
with nlp on twitter data. In 2019 International Conference on Computer, Com-
munication, Chemical, Materials and Electronic Engineering (IC4ME2), pages
1–4, 2019.

[73] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer New York, New York, NY, 2009.

[74] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Neural Networks,
pages 389–416. Springer New York, New York, NY, 2009.

[75] heavy.ai. What is feature engineering? OmniSci. https://www.omnisci.

com/technical-glossary/feature-engineering last accessed last accessed
2022-11-12.

[76] Garrick Hileman and Michel Rauchs. 2017 global cryptocurrency benchmarking
study. SSRN Electronic Journal, 2017.

[77] Geoffrey Holmes, Andrew Donkin, and Ian Witten. Weka: A machine learning
workbench. In Proc Second Australia and New Zealand Conference on Intelli-
gent Information Systems, 1994.

[78] Fei Huang. Improved Arabic dialect classification with social media data. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 2118–2126, Lisbon, Portugal, September 2015. Association
for Computational Linguistics.

[79] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for
sequence tagging. CoRR, abs/1508.01991, 2015.

[80] Taha Hussain. On Pre-Islamic poetry. 1926.

[81] IBM. What is natural language processing? https://www.ibm.com/topics/

natural-language-processing.

[82] Instagram. Instagram web site, 2023. https://www.instagram.com, last ac-
cessed 2023-03-31.

[83] Rajneesh Jha. Automated feature engineering tools. Analytics Vidhya, Feb
2020.

[84] Zhao Jianqiang and Gui Xiaolin. Comparison research on text pre-processing
methods on twitter sentiment analysis. IEEE Access, 5:2870–2879, 2017.

[85] Kaggle. Kaggle datasets, 2019. https://www.kaggle.com/datasets, last ac-
cessed 2023-03-31.

https://www.omnisci.com/technical-glossary/feature-engineering
https://www.omnisci.com/technical-glossary/feature-engineering
https://www.ibm.com/topics/natural-language-processing
https://www.ibm.com/topics/natural-language-processing
https://www.instagram.com
https://www.kaggle.com/datasets

125

[86] James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: To-
wards automating data science endeavors. In 2015 IEEE International Confer-
ence on Data Science and Advanced Analytics (DSAA), pages 1–10, 2015.

[87] Andreas Kaplan and Michael Haenlein. Users of the world, unite! the challenges
and opportunities of social media. Business Horizons, 53(1):59–68, 2010.

[88] Simon Kemp. Digital 2020: Global Digital Overview. DataReportal
– Global Digital Insights, 2021. https://datareportal.com/reports/

digital-2020-global-digital-overview, last accessed 2023-03-31.

[89] David Keyes. Saudi writer Hamza Kashgari faces charge of blas-
phemy after tweets about Muhammad. Washington Post, 2012.
Original from Arabic: https://www.washingtonpost.com/opinions/

saudi-writer-detained-after-tweets-about-muhammad/2012/02/09/

gIQApsgW2Q_story.html, last accessed 2023-03-31.

[90] Olga Kolchyna, Tharsis T. P. Souza, Philip Treleaven, and Tomaso Aste. Twit-
ter sentiment analysis: Lexicon method, machine learning method and their
combination, 2015.

[91] Peter M. Krafft, Nicolas Della Penna, and Alex Sandy Pentland. An experi-
mental study of cryptocurrency market dynamics. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1–13,
New York, NY, USA, 2018. Association for Computing Machinery.

[92] Stéphane Lacroix. Between islamists and liberals: Saudi arabia’s new “islamo-
liberal” reformists. The Middle East Journal. 58(3), pp.345-365. 2004.

[93] Quanzhi Li, Sameena Shah, Rui Fang, Armineh Nourbakhsh, and Xiaomo Liu.
Tweet sentiment analysis by incorporating sentiment-specific word embedding
and weighted text features. In 2016 IEEE/WIC/ACM International Conference
on Web Intelligence (WI), pages 568–571, 2016.

[94] Jimmy Lin and Alek Kolcz. Large-scale machine learning at twitter. In Pro-
ceedings of the 2012 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’12, page 793–804, New York, NY, USA, 2012. Association
for Computing Machinery.

[95] Bin Liu and Bang Wang. Bayesian negative sampling for recommendation.
arXiv, 2022.

[96] Huan Liu and Hiroshi Motoda. A data mining perspective. In Feature Extrac-
tion, Construction and Selection, pages 67–72, 2002.

[97] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
robustly optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019.

https://datareportal.com/reports/digital-2020-global-digital-overview
https://datareportal.com/reports/digital-2020-global-digital-overview
https://www.washingtonpost.com/opinions/saudi-writer-detained-after-tweets-about-muhammad/2012/02/09/gIQApsgW2Q_story.html
https://www.washingtonpost.com/opinions/saudi-writer-detained-after-tweets-about-muhammad/2012/02/09/gIQApsgW2Q_story.html
https://www.washingtonpost.com/opinions/saudi-writer-detained-after-tweets-about-muhammad/2012/02/09/gIQApsgW2Q_story.html

126

[98] Christopher G. Lynch. Twitter tips: Url shorteners do more than
save space, Jun 2009. https://www.computerworld.com/article/2524807/

twitter-tips--url-shorteners-do-more-than-save-space.html, last ac-
cessed 2023-03-31.

[99] Edward Ma. 3 silver bullets of word embeddings in nlp. To-
wards Data Science, 2018. https://towardsdatascience.com/

3-silver-bullets-of-word-embedding-in-nlp-10fa8f50cc5a, last ac-
cessed 2023-03-31.

[100] Amanda MacArthur. The history of twitter you didn’t know. Lifewire, Nov
2020.

[101] Shaul Markovitch and Dan Rosenstein. Feature generation using general con-
structor functions. Machine Learning, 49(1):59–98, 2002.

[102] Matthew Martin, Archana Narayanan, and Sarah Algethami. Why apple, citi-
group and twitter will be tracking this arrest in saudi arabia. Bloomberg. The
Economic Times. 2017.

[103] Martina Matta, Maria Ilaria Lunesu, and Michele Marchesi. Bitcoin spread
prediction using social and web search media. 06 2015.

[104] Chris McCormick. Word2vec tutorial - The skip-gram model. Chris
McCormick Blog, Apr 2016. https://www.fer.unizg.hr/_download/

repository/TAR-2020-reading-05.pdf, last accessed 2023-03-31.

[105] Rada Mihalcea, Carmen Banea, and Janyce Wiebe. Learning multilingual sub-
jective language via cross-lingual projections. Association for Computational
Linguistics (ACL), page 976–983, 2007.

[106] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. Association for Computational
Linguistics (ACL), 2013.

[107] Piero Molino. Word embedding, past, present, and future. https://w4nderlu.
st/media/pages/teaching/word-embeddings/2739226721-1665242033/

word-embeddings.pdf, last accessed 2023-03-31.

[108] Lampros Mouselimis. fastText: Efficient Learning of Word Representations and
Sentence Classification using R, 2022. R package version 1.0.3.

[109] Karsten Müller, Carlo Schwarz, and Thomas Fujiwara. How twitter affected
the 2016 presidential election, Oct 2020. https://cepr.org/voxeu/columns/
how-twitter-affected-2016-presidential-election, last accessed 2023-
03-31.

[110] Nadi. Nadi shared task 2020, 2020. https://sites.google.com/view/

nadi-shared-task, last accessed 2023-03-31.

https://www.computerworld.com/article/2524807/twitter-tips--url-shorteners-do-more-than-save-space.html
https://www.computerworld.com/article/2524807/twitter-tips--url-shorteners-do-more-than-save-space.html
https://towardsdatascience.com/3-silver-bullets-of-word-embedding-in-nlp-10fa8f50cc5a
https://towardsdatascience.com/3-silver-bullets-of-word-embedding-in-nlp-10fa8f50cc5a
https://www.fer.unizg.hr/_download/repository/TAR-2020-reading-05.pdf
https://www.fer.unizg.hr/_download/repository/TAR-2020-reading-05.pdf
https://w4nderlu.st/media/pages/teaching/word-embeddings/2739226721-1665242033/word-embeddings.pdf
https://w4nderlu.st/media/pages/teaching/word-embeddings/2739226721-1665242033/word-embeddings.pdf
https://w4nderlu.st/media/pages/teaching/word-embeddings/2739226721-1665242033/word-embeddings.pdf
https://cepr.org/voxeu/columns/how-twitter-affected-2016-presidential-election
https://cepr.org/voxeu/columns/how-twitter-affected-2016-presidential-election
https://sites.google.com/view/nadi-shared-task
https://sites.google.com/view/nadi-shared-task

127

[111] Nadi. Nadi shared task 2021, 2021. https://sites.google.com/view/

nadi-shared-task, last accessed 2023-03-31.

[112] Bensoula Noureddine. Electronic flies and public opinion. Al-Naciriya: Journal
of Sociological and Historical Studies, June 2020. https://www.asjp.cerist.
dz/en/article/115793, last accessed 2023-03-31.

[113] OkCoin. Okcoin cryptocurrency exchange. https://www.okcoin.com/.

[114] Sasank Pagolu, Kamal Reddy, Ganapati Panda, and Babita Majhi. Sentiment
analysis of twitter data for predicting stock market movements. pages 1345–
1350, 10 2016.

[115] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

[116] Matt Payne. Building a gpt-3 twitter sentiment analysis product, Oct 2022.
https://www.width.ai/post/twitter-sentiment-analysis-using-gpt3.

[117] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[118] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Tfidfvectorizer,
scikit-learn, 2011. https://scikit-learn.org/stable/modules/generated/
sklearn.feature_extraction.text.TfidfVectorizer.html.

[119] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global
vectors for word representation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pages 1532–1543,
Doha, Qatar, Oct 2014. Association for Computational Linguistics.

[120] Python. Python programming language. https://www.python.org/, last ac-
cessed 2023-03-31.

[121] Abirami R. and Vijaya M.S. Stock Price Prediction Using Support Vector Re-
gression, volume 269, pages 588–597. 01 2012.

https://sites.google.com/view/nadi-shared-task
https://sites.google.com/view/nadi-shared-task
https://www.asjp.cerist.dz/en/article/115793
https://www.asjp.cerist.dz/en/article/115793
https://www.okcoin.com/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://www.python.org/

128

[122] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2022.

[123] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improv-
ing language understanding by generative pre-training. OpenAI, 2018.

[124] Leena Rao. Six-year-old twitter now has 140m active users sending
340m tweets per day, Mar 2012. https://techcrunch.com/2012/03/

21/six-year-old-twitter-now-has-140m-active-users-sending-340m-_

tweets-per-day/, last accessed 2023-03-31.

[125] Ash Read. Longer tweets are here: All you need to know about twit-
ter’s 140 character update, Jun 2020. https://buffer.com/resources/

longer-tweets-coming-twitter/, last accessed 2023-03-31.

[126] Antônio H. Ribeiro, Koen Tiels, Luis Antonio Aguirre, and Thomas B. Schön.
The trade-off between long-term memory and smoothness for recurrent net-
works. CoRR, abs/1906.08482, 2019.

[127] Jair Ribeiro. What is natural language processing (nlp), and why does it matter
to you? Towards Data Science, 2021.

[128] Martin Riva. Word embeddings: Cbow vs skip-gram. https://www.baeldung.
com/cs/word-embeddings-cbow-vs-skip-gram.

[129] Adam Roberts and Colin Raffel. Exploring transfer learning with t5: the text-
to-text transfer transformer, September 2019. https://www.geeksforgeeks.

org/tf-idf-for-bigrams-trigrams/.

[130] Fabrizio Ruggeri, Ron Kenett, and Frederick Faltin. Encyclopedia of Statistics
in Quality and Reliability, volume 2. 10 2007.

[131] Fabrizio Ruggeri, Ron Kenett, and Frederick Faltin. Bayesian networks. In
Encyclopedia of Statistics in Quality and Reliability, 2008.

[132] Stuart Russell and Peter Norvig. A modern, agent-oriented approach to intro-
ductory artificial intelligence. In ACM SIGART Bulletin, pages 24–26, 1995.

[133] Mehreen Saeed. A gentle introduction to sigmoid function. Ma-
chine Learning Mastery, 2021. https://machinelearningmastery.com/

a-gentle-introduction-to-sigmoid-function/.

[134] Ali Safaya, Moutasem Abdullatif, and Deniz Yuret. KUISAIL at SemEval-2020
task 12: BERT-CNN for offensive speech identification in social media. In
Proceedings of the Fourteenth Workshop on Semantic Evaluation, pages 2054–
2059, Barcelona (online), Dec 2020. International Committee for Computational
Linguistics.

https://techcrunch.com/2012/03/21/six-year-old-twitter-now-has-140m-active-users-sending-340m-_tweets-per-day/
https://techcrunch.com/2012/03/21/six-year-old-twitter-now-has-140m-active-users-sending-340m-_tweets-per-day/
https://techcrunch.com/2012/03/21/six-year-old-twitter-now-has-140m-active-users-sending-340m-_tweets-per-day/
https://buffer.com/resources/longer-tweets-coming-twitter/
https://buffer.com/resources/longer-tweets-coming-twitter/
https://www.baeldung.com/cs/word-embeddings-cbow-vs-skip-gram
https://www.baeldung.com/cs/word-embeddings-cbow-vs-skip-gram
https://www.geeksforgeeks.org/tf-idf-for-bigrams-trigrams/
https://www.geeksforgeeks.org/tf-idf-for-bigrams-trigrams/
https://machinelearningmastery.com/a-gentle-introduction-to-sigmoid-function/
https://machinelearningmastery.com/a-gentle-introduction-to-sigmoid-function/

129

[135] Chaitanya Sagar. Twitter sentiment analysis using R.
Dataaspirant, 2018. http://dataaspirant.com/2018/03/22/

twitter-sentiment-analysis-using-r/, last accessed 2023-03-31.

[136] Punyajoy Saha, Binny Mathew, Pawan Goyal, and Animesh Mukherjee.
Hatemonitors: Language agnostic abuse detection in social media. CoRR,
abs/1909.12642, 2019.

[137] Kashfia Sailunaz and Reda Alhajj. Emotion and sentiment analysis from twitter
text. J. Comput. Sci., 36, 2019.

[138] Sheel Saket. Count vectorizer vs tfidf vectorizer: Natural language processing.
LinkedIn, Jan 2020.

[139] Mohammad Salameh, Houda Bouamor, and Nizar Habash. Fine-grained Ara-
bic dialect identification. In Proceedings of the 27th International Conference
on Computational Linguistics, pages 1332–1344, Santa Fe, New Mexico, USA,
August 2018. Association for Computational Linguistics.

[140] Steven Salzberg. C4.5: Programs for machine learning by j. ross quinlan. In
Morgan Kaufmann Publishers, pages 235–240, 1993.

[141] Claude Sammut and Geoffrey I. Webb. Tf–idf. Springer US, pages 986–
987, 2010. https://doi.org/10.1007/978-0-387-30164-8_832, last accessed
March 2, 2023.

[142] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neu-
ral Networks, 61:85–117, jan 2015. https://doi.org/10.1016%2Fj.neunet.

2014.09.003.

[143] Devavrat Shah and Kang Zhang. Bayesian regression and bitcoin. arXiv, 2014.

[144] Claude Shannon. Prediction and entropy of printed english. 1950.

[145] Sagar Sharma. Epoch vs batch size vs iterations. Towards
Data Science, Mar 2017. https://towardsdatascience.com/

epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9, last accessed March
2, 2022.

[146] Prajwal Shreyas. Tweet analytics using nlp. Analytics Vidhya, Jun 2020.
https://www.sciencedirect.com/science/article/pii/B9780128018675000021.

[147] Jack Slater. A timeline of twitter as elon musk completes buy-
out. Metro, Oct 2022. https://metro.co.uk/2022/10/28/

who-owned-twitter-before-elon-musk-timeline-of-ownership-17655892/,
last accessed 2023-03-31.

[148] Abu Bakr Soliman and Ali Abdelaal. Aravec, 2018. https://github.com/

bakrianoo/aravec, last accessed 2023-03-31.

http://dataaspirant.com/2018/03/22/twitter-sentiment-analysis-using-r/
http://dataaspirant.com/2018/03/22/twitter-sentiment-analysis-using-r/
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1016%2Fj.neunet.2014.09.003
https://doi.org/10.1016%2Fj.neunet.2014.09.003
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://metro.co.uk/2022/10/28/who-owned-twitter-before-elon-musk-timeline-of-ownership-17655892/
https://metro.co.uk/2022/10/28/who-owned-twitter-before-elon-musk-timeline-of-ownership-17655892/
https://github.com/bakrianoo/aravec
https://github.com/bakrianoo/aravec

130

[149] Abu Bakr Soliman, Kareem Eisa, and Samhaa R. El-Beltagy. Aravec
2.0. https://github.com/bakrianoo/aravec/blob/master/AraVec%202.0/

README.md.

[150] Abu Bakr Soliman, Kareem Eissa, and Samhaa R. El-Beltagy. Aravec: A set of
arabic word embedding models for use in arabic nlp. Procedia Computer Science,
117:256–265, 2017. the 3rd International Conference on Arabic Computational
Linguistics (ACLing 2017).

[151] Robyn Speer. Conceptnet Numberbatch: A new name for the best word em-
beddings you ca, May 2016. http://blog.conceptnet.io/posts/2016/conceptnet-
numberbatch-a-new-name-for-the-best-word-embeddings-you-can-download/.

[152] Evita Stenqvist and Jacob Lönnö. Predicting bitcoin price fluctuation with
twitter sentiment analysis, 2017.

[153] Bashar Talafha, Mohammad Ali, Muhy Eddin Za’ter, Haitham Seelawi, Ibra-
heem Tuffaha, Mostafa Samir, Wael Farhan, and Hussein T. Al-Natsheh. Multi-
dialect arabic bert for country-level dialect identification, 2020.

[154] Bashar Talafha, Wael Farhan, Ahmed Altakrouri, and Hussein Al-Natsheh.
Mawdoo3 AI at MADAR shared task: Arabic tweet dialect identification. In
Proceedings of the Fourth Arabic Natural Language Processing Workshop, pages
239–243, Florence, Italy, Aug 2019. Association for Computational Linguistics.

[155] TensorFlow. Fine-tuning a bert model. https://www.tensorflow.org/

tfmodels/nlp/fine_tune_bert.

[156] Nora Al Twairesh, Mawaheb Al Tuwaijri, Afnan Al Moammar, and Sarah Al
Humoud. Arabic spam detection in twitter. The 2nd Workshop on Arabic
Corpora and Processing Tools 2016 Theme: Social Media, 2016.

[157] Twitter. Twitter web site, 2023. https://www.twitter.com, last accessed
2023-03-31.

[158] Khushali Verma. Using countvectorizer to extracting fea-
tures from text, July 2022. https://www.geeksforgeeks.org/

using-countvectorizer-to-extracting-features-from-text/.

[159] Jesse Vig. Deconstructing Bert, part 2: Visualizing the inner
workings of attention. Medium, Towards Data Science, Apr 2022.
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-
inner-workings-of-attention-60a16d86b5c1.

[160] Chuan-Ju Wang, Ming-Feng Tsai, Tse Liu, and Chin-Ting Chang. Financial
sentiment analysis for risk prediction. 10 2013.

https://github.com/bakrianoo/aravec/blob/master/AraVec%202.0/README.md
https://github.com/bakrianoo/aravec/blob/master/AraVec%202.0/README.md
https://www.tensorflow.org/tfmodels/nlp/fine_tune_bert
https://www.tensorflow.org/tfmodels/nlp/fine_tune_bert
https://www.twitter.com
https://www.geeksforgeeks.org/using-countvectorizer-to-extracting-features-from-text/
https://www.geeksforgeeks.org/using-countvectorizer-to-extracting-features-from-text/

131

[161] Weka. Class stringToWordVector. https://weka.sourceforge.io/doc.dev/

weka/filters/unsupervised/attribute/StringToWordVector.html, last
accessed 2023-03-31.

[162] Weka. Weka 3: Machine learning software in java. https://www.cs.waikato.
ac.nz/ml/weka/, last accessed 2023-03-31.

[163] Weka. WekaDeeplearning4j: Deep learning using weka. https://

deeplearning.cms.waikato.ac.nz/, last accessed 2023-03-31.

[164] Patrick Wintour. Qatar given 10 days to meet 13
sweeping demands by saudi arabian. The Guardian.
https://www.theguardian.com/world/2017/jun/23/

close-al-jazeera-saudi-arabia-issues-qatar-with-13-demands-to-end-blockad,
last accessed 2023-03-31.

[165] Ian Witten. More data mining with weka - simple neural networks. In New
Zealand: Department of Computer Science University of Waikato., 2019.

[166] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. Huggingface’s Transformers: State-of-the-art Natural
Language Processing. CoRR, 2019. http://arxiv.org/abs/1910.03771, last
accessed 2023-03-31.

[167] YouTube. Youtube web site, 2023. https://www.youtube.com, last accessed
2023-03-31.

[168] Wajdi Zaghouani and Anis Charfi. Arap-tweet: A large multi-dialect Twit-
ter corpus for gender, age and language variety identification. In Proceedings
of the Eleventh International Conference on Language Resources and Evalua-
tion (LREC 2018), Miyazaki, Japan, May 2018. European Language Resources
Association (ELRA).

[169] Omar F. Zaidan and Chris Callison-Burch. Arabic Dialect Identification. Com-
putational Linguistics, 40(1):171–202, 03 2014.

[170] Chiyu Zhang and Muhammad Abdul-Mageed. No army, no navy: BERT semi-
supervised learning of Arabic dialects. In Proceedings of the Fourth Arabic
Natural Language Processing Workshop, pages 279–284, Florence, Italy, Aug
2019. Association for Computational Linguistics.

[171] Radim Řeh̊uřek. Gensim: Topic modelling for humans in Python. https:

//radimrehurek.com/gensim/models/word2vec.html, last accessed 2023-03-
31.

https://weka.sourceforge.io/doc.dev/weka/filters/unsupervised/attribute/StringToWordVector.html
https://weka.sourceforge.io/doc.dev/weka/filters/unsupervised/attribute/StringToWordVector.html
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/
https://deeplearning.cms.waikato.ac.nz/
https://deeplearning.cms.waikato.ac.nz/
https://www.theguardian.com/world/2017/jun/23/close-al-jazeera-saudi-arabia-issues-qatar-with-13-demands-to-end-blockad
https://www.theguardian.com/world/2017/jun/23/close-al-jazeera-saudi-arabia-issues-qatar-with-13-demands-to-end-blockad
http://arxiv.org/abs/1910.03771
https://www.youtube.com
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html

Appendix A

Time-Series Intervals for Bitcoin price fluctuation

Figure A.1: Time-series with 30 minutes interval chart of the 5Aug17 dataset and one
shift to the future 30 minutes and compare it with the price fluctuations.

132

133

Figure A.2: Time-series with 60 minutes interval chart of the 5Aug17 dataset and one
shift to the future 60 minutes and compare it with the price fluctuations.

134

Figure A.3: Time-series with 120 minutes interval chart of the 5Aug17 dataset and
one shift to the future 120 minutes and compare it with the price fluctuations.

135

Figure A.4: Time-series with 15 minutes interval chart of the 12Dec17 dataset and one
shift to the future 15 minutes with 1 shift, and compare it with the price fluctuations.

136

Figure A.5: Time-series with 15 minutes interval chart of the 12Dec17 dataset and one
shift to the future 15 minutes with 2 shifts, and compare it with the price fluctuations.

137

Figure A.6: Time-series with 5 minutes interval chart of the 23Mar18 dataset and one
shift to the future 5 minutes with 1 shift, and compare it with the price fluctuations.

138

Figure A.7: Time-series with 5 minutes interval chart of the 23Mar18 dataset and one
shift to the future 5 minutes with 2 shifts, and compare it with the price fluctuations.

139

Figure A.8: Time-series with 30 minutes interval chart of the 12Jul18 dataset and
one shift to the future 30 minutes and compare it with the price fluctuations.

140

Figure A.9: Time-series with 60 minutes interval chart of the 12Jul18 dataset and
one shift to the future 60 minutes and compare it with the price fluctuations.

141

Figure A.10: Time-series with 120 minutes interval chart of the 12Jul18 dataset and
one shift to the future 120 minutes and compare it with the price fluctuations.

142

Figure A.11: Time-series with 30 minutes interval chart of the 15Mar19 dataset and
one shift to the future 30 minutes and compare it with the price fluctuations.

143

Figure A.12: Time-series with 60 minutes interval chart of the 15Mar19 dataset and
one shift to the future 60 minutes and compare it with the price fluctuations.

144

Figure A.13: Time-series with 120 minutes interval chart of the 15Mar19 dataset and
one shift to the future 120 minutes and compare it with the price fluctuations.

Appendix B

Additional Arabic Dialect Confusion Matrices

Figure B.1: SVM tf-idf N-gram confusion matrix for dataset C19

145

146

Figure B.2: SVM tf-idf N-gram confusion matrix for dataset C19P

Figure B.3: AraVec confusion matrix for dataset C19

147

Figure B.4: AraVec confusion matrix for dataset C19P

Figure B.5: The pre-trained model asafaya/bert-base-arabic (ASAFAYA) confusion
matrix for dataset C19

148

Figure B.6: The pre-trained model asafaya/bert-base-arabic (ASAFAYA) confusion
matrix for dataset C19P

Figure B.7: The pre-trained model aubmindlab/bert-base-arabert (ARABERT) con-
fusion matrix for dataset C19P

149

Figure B.8: The pre-trained model aubmindlab/bert-base-arabert (ARABERT) con-
fusion matrix for dataset C19P

Figure B.9: The pre-trained model aubmindlab/bert-base-arabertv02-twitter
(ARABERTV2T) confusion matrix for dataset C19

150

Figure B.10: The pre-trained model aubmindlab/bert-base-arabertv02-twitter
(ARABERTV2T) confusion matrix for dataset C19P

Figure B.11: The pre-trained model UBC-NLP/marbert (MARBERT) BERT confu-
sion matrix for dataset C19

151

Figure B.12: The pre-trained model UBC-NLP/marbert (MARBERT) BERT confu-
sion matrix for dataset C19P

Figure B.13: The pre-trained model UBC-NLP/arbert (ARBERT) confusion matrix
for dataset C19

152

Figure B.14: The pre-trained model UBC-NLP/arbert (ARBERT) confusion matrix
for dataset C19P

Figure B.15: The pre-trained model bashar-talafha/multi-dialect-bert-base-arabic
(MULTIDB) confusion matrix for dataset C19

153

Figure B.16: The pre-trained model bashar-talafha/multi-dialect-bert-base-arabic
(MULTIDB) confusion matrix for dataset C19P

Appendix C

List of publications

• Evaluating Sentiment Classifiers for Bitcoin Tweets in Price Predic-

tion Task paper that is published in 2019 IEEE International Conference on

Big Data (Big Data) [33].

• N-gram and Word2Vec Feature Engineering Approaches for Spam

Recognition on Some Influential Twitter Topics in Saudi Arabia paper

is published at the ICISDM 2022: the 6th International Conference on Infor-

mation System and Data Mining and published by Association for Computing

Machinery (ACM) [31].

• Journal article N-gram and Word2Vec Feature Engineering Approaches

for Spam Recognition on Some Influential Twitter Topics in Saudi

Arabia paper is published in JAIT: Journal of Advances in Information Tech-

nology [32].

• Twitter Arabic Dialect Identification using AraBERT is a short paper

and presentation that is published at the 39th IBIMA conference as an in-

proceeding short paper, and the presentation is also published as a YouTube

video on IBIMA’s official channel as presented at their virtual conference [29].

• Twitter Arabic Dialect Identification using Different Feature Engi-

neering Models is published at the 40th IBIMA conference as a full paper,

with an invitation for journal submission of the paper, and published YouTube

video on IBIMA’s official channel as presented at their virtual conference [30].

• Journal article Twitter Arabic Dialect Identification using Different

Feature Engineering Models was accepted to be published at “The Com-

munications of the IBIMA”, by IBIMA Publishing.

154

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Background
	Feature Generation
	Problem Statement
	Contributions
	Outline

	Literature Review
	Social Media
	Twitter

	Natural Language Processing
	Sentiment Analysis
	Language Modeling-based Approaches to Features Generation

	Machine Learning and Deep Learning
	Supervised Learning Methods
	Deep Learning Methods

	Machine Learning Tools and Libraries
	Feature Engineering on Twitter Data

	Feature Engineering for Financial Forecasting of Bitcoin Price
	Background
	Related Work
	Methodology
	Social Media Data Selection
	System Architecture
	Data Preparation
	Tweet Sentiment
	Language Modeling Approaches

	Machine Learning Methods
	Supervised Classification Methods
	Deep Learning Methods

	Price Fluctuation Prediction Methodology
	Time-Series Analysis
	Proposed Methodology Framework
	Experimental Results
	Sentiment Learning
	Time Series Analysis

	Conclusion

	Feature Engineering for Spam Recognition of Arabic Tweets
	Background
	Exceptional Role of Twitter in Saudi Arabia

	Related Work
	Methodology and Data
	Machine Learning Methods
	Supervised Classification Methods
	Deep Learning Methods

	Experimental Results
	Conclusion and Future Work

	Feature Engineering for Arabic Dialect Recognition
	Background
	Arabic Dialects

	Related Work
	Data
	Proposed System
	Data Preprocessing Step
	Feature Engineering Step
	Learning Step

	Results
	Discussion
	Conclusion and Future Work

	Conclusion
	Achieved Objectives
	Study Limitations
	Future Work

	Bibliography
	Time-Series Intervals for Bitcoin price fluctuation
	Additional Arabic Dialect Confusion Matrices
	List of publications

