
IMPROVING EFFICACY AND EFFICIENCY OF HYPOTHESIS
ADAPTATION AND FEDERATED LEARNING

by

Farshid Varno

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

July 2023

© Copyright by Farshid Varno, 2023

Dedicated to my mother, who has always put my happiness before her

own and sacrificed so much for my well-being.

ii

Table of Contents

List of Tables . vii

List of Figures . viii

Abstract . xii

List of Abbreviations . xiii

Glossary . xviii

Acknowledgements . xxvi

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Background . 4

1.3 Research Objectives . 6
1.3.1 Task Adaptation . 7
1.3.2 Federated Learning . 8

1.4 Contributions . 9

1.5 Outline . 9

Chapter 2 Background to Deep Learning 12

2.1 Supervised Deep Learning . 12

2.2 Gradient Descent . 15

2.3 Stochastic Gradient Descent . 16

2.4 Mini-batch Stochastic Gradient Descent 20

2.5 Resilient Gradient-based Methods . 20

Chapter 3 Background to Transfer Learning 22

3.1 Content-based Categorization of Transfer Learning 23
3.1.1 Data Transfer Learning . 23
3.1.2 Hypothesis Transfer Learning 24
3.1.3 Information Transfer Learning 27

iii

3.2 Federated Learning . 28

Chapter 4 Related Work . 31

4.1 Deep Learning and Convolutional Neural Networks 31

4.2 Hypothesis Transfer Learning . 32
4.2.1 The First HTL Attempts . 32
4.2.2 Linking ANNs and Symbolic Representation 33
4.2.3 Task Decomposition . 34

4.3 Task Adaptation . 34
4.3.1 Unsupervised Pretraining . 34
4.3.2 Pretraining CNNs . 35
4.3.3 Supervised Pretraining for CNNs 35

4.4 Continual Learning . 35

4.5 Distributed Machine Learning . 36
4.5.1 Federated Learning . 37
4.5.2 Client Drift . 38

Chapter 5 Incremental Tuning with Normalized Features 40

5.1 Background . 41

5.2 Problem Statement . 42

5.3 Noise Reduction in Feature-tuning . 44

5.4 ENTAME . 45
5.4.1 Feature Normalization . 46
5.4.2 Maximum Entropy Initialization 46

5.5 Discussion . 47
5.5.1 Maximum Entropy Predicted Labels 47
5.5.2 Feature Normalization . 48
5.5.3 Generalized Maximum Entropy Initialization 48

5.6 Experimental Results . 49
5.6.1 Feature-tuning with ENTAME 49
5.6.2 Gradual Increase of the Norm of Head’s Weights 55
5.6.3 Domain Similarity . 55
5.6.4 Continuous Hypothesis Transfers 61

5.7 Conclusion . 65

iv

Chapter 6 Incremental Tuning with Decoupled Step Sizes 69

6.1 Problem statement . 69

6.2 FAST . 70

6.3 Discussion . 71
6.3.1 Geometric Interpretation . 71
6.3.2 Velocity Analysis . 75
6.3.3 Optimization Algorithm . 76

6.4 Experiments . 78
6.4.1 Catastrophic Forgetting . 78
6.4.2 Quick Head Learning . 81
6.4.3 Head Warmup . 83
6.4.4 Decoupled Learning Rates . 84
6.4.5 Optimization . 86
6.4.6 Convergence Performance . 91
6.4.7 FAST Compared to ENTAME 93

6.5 Conclusion . 94

Chapter 7 Adaptive Bias Estimation for Federated Learning . . . 98

7.1 Introduction . 98

7.2 Problem Statement . 100

7.3 Existing Solutions . 100

7.4 Adaptive Bias Estimation . 103
7.4.1 Setup . 103
7.4.2 Method . 103
7.4.3 Relation to FL Baselines . 105

7.5 Experiments . 109
7.5.1 Setup . 109
7.5.2 Model Architecture . 111
7.5.3 Baselines . 111
7.5.4 Evaluation . 111

7.6 Conclusions . 112

Chapter 8 Conclusion and Future Research 115

8.1 Limitations and future research . 117

v

Appendix A Supplementary material for Chapter 2 119

A.1 Proofs . 119

Appendix B Supplementary material for Chapter 5 123

B.1 Proofs . 123

B.2 Complementary Experiments . 129
B.2.1 task adaptation Performance 129
B.2.2 domain adaptation Performance 131

Appendix C Supplementary material for Chapter 6 145

C.1 Proofs . 145

Appendix D Supplementary material for Chapter 7 146

D.1 Proofs . 146

D.2 Algorithm Details . 149
D.2.1 Notation . 149
D.2.2 Algorithmic Costs . 149
D.2.3 Experiments Details . 153
D.2.4 Stability and norm of parameters 154
D.2.5 Overfitting Analysis . 155
D.2.6 Local regularization sensitivity 156
D.2.7 Discount factor sensitivity . 157

Bibliography . 159

vi

List of Tables

2.1 Summary of variables, sets, and functions 13

2.2 Summary of operators’ notation used in this thesis. 14

5.1 Initial performance improvement using ENTAME 54

5.2 Converged perf. of ENTAME and baselines on CIFAR-10 . . . 54

5.3 Converged perf. of ENTAME and baselines on CIFAR-100 . . . 55

5.4 Converged perf. of ENTAME and baselines on Caltech-101 . . 55

6.1 Convergence performance of FAST and baselines 92

7.1 Notation for FL. 103

7.2 Performance of AdaBest and baselines on various settings . . . 113

D.1 Summary of notion used to formulate the algorithm costs . . . 150

D.2 Comparing FL algorithms in compute cost of local ops. 150

D.3 Comparing FL algorithms in compute cost of global ops. 150

vii

List of Figures

1.1 The concept of task adaptation 3

1.2 The concept of domain adaptation 3

1.3 The concept of parallel task adaptation 5

1.4 Basic components of a DNN 6

3.1 DTL and HTL. 24

3.2 Feature-extraction vs. feature-tuning 25

3.3 Feature-tuning after feature-extraction 27

3.4 Flowchart of iterative optimization for training a DNN 29

3.5 A round of communication hypotheses in LocalSGD 30

4.1 Transferring knowledge between Symbolic models and ANNs . 33

4.2 Task decomposition . 33

5.1 Norm of backpropagated gradient towards pretrained params . 43

5.2 Conventional feature-tuning vs. ENTAME 45

5.3 ENTAME & baselines, ResNet-50 on CIFAR-10 52

5.4 ENTAME & baselines, ResNet-50 on CIFAR-100 52

5.5 ENTAME & baselines, ResNet-50 on Caltech-101 53

5.6 Frobenius norm of W , Adam with η = 10(−3) 56

5.7 Frobenius norm of W . 56

5.8 Frobenius norm of W , Adam with η = 10(−5) 57

5.9 Class-partition distribution with 2 partitions 58

5.10 The effect of task similarity on methods under the study . . . 59

5.11 Class-partition distribution with 10 partitions 60

5.12 Test acc. on all data domains per episode using Xav 64

viii

5.13 Test acc. on all data domains per episode using Xav + FN . . 65

5.14 Test acc. on all data domains per episode using SW + FN . . 66

5.15 Test acc. on all data domains per episode using SR + FN . . . 67

5.16 Mean test acc. of episodes of hypothesis transfer 68

6.1 Frobenius norm of W with Gaussian distribution initialization 71

6.2 Conceptual comparison between conventional task adaptation
methods . 73

6.3 Conceptual comparison between feature-tuning with head warmup
and FAST . 73

6.4 Re-initializing head’s params and forgetting the same task . . 80

6.5 The development of log(||W ||F) during feature-tuning 80

6.6 Initializing head’s params and forgetting a different task . . . 81

6.7 The effect of preventing the loss landscape to deform in S(ϕ) 82

6.8 Head warmup and minimum overshooting 84

6.9 Symmetric vs. asymmetrical scaling lr, ResNet-18 86

6.10 Symmetric vs. asymmetrical scaling lr, VGG-19 87

6.11 FAST vs. baseline optimized using mini-batch SGD 88

6.12 FAST vs. baseline optimized using Adam 89

6.13 FAST vs. baseline optimized using Rectified Adam (RAdam) . 95

6.14 Comparing FAST optimized different optimization algorithms 96

6.15 FAST vs. baselines convergence performance on CIFAR-100 . 97

6.16 FAST vs. baselines convergence performance on Caltech-256 . 97

6.17 FAST vs. ENTAME vs. baseline 97

7.1 Interest trend for “machine learning” and “statistical analysis” 99

7.2 Interest trend for “federated learning” and “distributed learning” 99

7.3 Asymptotic instability of FedDyn and the norm of parameters 102

7.4 Geometric interpretation of AdaBest’s correction on the server 104

ix

7.5 AdaBest vs. baselines under balance and scale tests 112

B.1 Comparing ENTAME for ResNet-152, CIFAR-10 129

B.2 Comparing ENTAME for ResNet-152, CIFAR-100 130

B.3 Comparing ENTAME for ResNet-152, Caltech-101 130

B.4 Comparing ENTAME for DenseNet-121, CIFAR-10 131

B.5 Comparing ENTAME for DenseNet-121, CIFAR-100 131

B.6 Comparing ENTAME for DenseNet-121, Caltech-101 132

B.7 Comparing ENTAME for DenseNet-201, CIFAR-10 132

B.8 Comparing ENTAME for DenseNet-201, CIFAR-100 133

B.9 Comparing ENTAME for DenseNet-201, Caltech-101 133

B.10 Comparing ENTAME for VGG-16, CIFAR-10 134

B.11 Comparing ENTAME for VGG-16, CIFAR-100 134

B.12 Comparing ENTAME for VGG-16, Caltech-101 135

B.13 Comparing ENTAME for VGG-19, CIFAR-10 135

B.14 Comparing ENTAME for VGG-19, CIFAR-100 136

B.15 Comparing ENTAME for VGG-19, Caltech-101 136

B.16 Comparing ENTAME for Inception-V3, CIFAR-10 137

B.17 Comparing ENTAME for Inception-V3, CIFAR-100 137

B.18 Comparing ENTAME for Inception-V3, Caltech-101 138

B.19 Test acc. on all data domains per episode using Kin + FN . . 139

B.20 Test acc. on all data domains per episode using Kout + FN . 140

B.21 Test acc. on all data domains per episode using SW 141

B.22 Test acc. on all data domains per episode using SR 142

B.23 Test acc. on all data domains per episode using Kin 143

B.24 Test acc. on all data domains per episode using Kout 144

D.1 Instability of FedDyn and norm of cloud parameters. 155

x

D.2 Test accuracy score of AdaBest and its baselines 156

D.3 Sensitivity to local regularization factor 157

D.4 Sensitivity to client rate and global regularization factor . . . 158

xi

Abstract

Small computing devices, such as smartphones, constantly collect and store data that

can potentially help machines learn complex tasks. However, the data contained

on a single device is relatively small and biased, making Machine Learning difficult.

Although it is possible to transfer data from other devices, doing so poses storage,

communication, and privacy concerns. Hypothesis Transfer Learning (HTL) provides

a solution to this dilemma by transferring and importing knowledge learned from data

on other devices in form of pretrained Machine Learning models (hypotheses). In its

simplest form, a hypothesis can be transferred from one task or domain to another.

Training a model on the target task can benefit from the knowledge embedded in the

transferred hypothesis with no direct access to the source data. This often leads to

significantly lower storage and communication costs as well as fewer privacy concerns.

HTL can be extended to a chain of transfers and adaptations in the context of Con-

tinual Learning. Federated Learning (FL) further extends this idea by coordinating

concurrent transfers from multiple sources at each transfer iteration. It enables a large

number of remote devices to train a model collaboratively without sharing their data.

In this thesis, we study some challenges associated with transferring and adapting

pretrained models in the context of task adaptation and FL. We discuss an often-

overlooked source of inefficiency in feature-tuning, the most popular method of task

adaptation. Accordingly, we propose two novel methods for improving the efficiency

of feature-tuning which work by gradually increasing the magnitude of updates to

pretrained feature-extractors. In addition, we present a new algorithm that addresses

the issue of client drift which is known to make existing FL algorithms sub-optimal

in heterogeneous settings. The thesis includes several experiments with image classi-

fication benchmarks for each of the learning settings under the study. Our findings

show that the methods we propose can significantly improve their baselines in terms

of accuracy and efficiency. Although our methods provide practical improvements

over existing baselines, there is still room for further improvement as well as better

understanding of the underlying mechanisms, which we leave to future research.

xii

List of Abbreviations

AdaBest ADAptive Bias ESTimation for Federated Learning (AdaBest) is an FL

algorithm (introduced by us in this thesis). vii, ix, x, xi, 9, 11, 39, 102, 104,

105, 106, 107, 108, 109, 110, 111, 112, 113, 116, 117, 118, 147, 148, 149, 150,

151, 152, 154, 155, 156, 157

Adagrad Adaptive Subgradient (Adagrad) is a gradient-based optimization algo-

rithm that adaptively adjusts the step size at each dimension by dividing the

corresponding gradient on a its running magnitude since the beginning of the

optimization. 21

AI Artificial Intelligence (AI) is the field of study that aims to imitate the behaviour

of human or other living things. 31

ANN An Artificial Neural Network (ANN) is a Machine Learning model built of

interconnected nodes that collectively aim to approximate a function. viii, xiii,

xiv, xvi, xviii, xix, xxi, xxiv

CL Continual Learning (CL) is an ML concept where a model is continually trained

on new tasks or domains and aims to perform well on all the tasks or domains

exposed to the model. xii, 2, 3, 4, 6, 35, 36, 62

CNN A Convolutional Neural Network (CNN) is a DNN that uses parameteric layers

applying (simplified) convoltion oprtation. xviii, xx, xxi, xxii, xxiii, xxiv, 10,

31, 32, 35, 59, 94

CPU Central Processing Unit (CPU) is a a computer’s component responsible for

executing the instructions. . 37

DBN A Deep Belief Network (DBN) is a class of generative DNNs traditionally

trained a layer at a time. xx, 31, 32

DNN A Deep Neural Network (DNN) is an ANN with multiple layers. The interest

in the depth stems from the learning ability of a model that applies several

xiii

transformations on the input. viii, xiii, xvi, xx, xxiv, 5, 6, 7, 12, 13, 20, 25, 29,

30, 31, 34, 36, 43, 71, 115, 117

DTL Data Transfer Learning (DTL) is a TL in which data is directly transferred

in learning the target task(s). The transferred data is usually not a direct

observation for the target task(s). viii, xxi, xxiii, 23, 24

ENTAME Efficient Neural Task Adaptation via Maximum Entropy Initialization

(ENTAME) is a task adaptation algorithm (introduced by us in this thesis).

vii, viii, ix, x, 9, 10, 40, 41, 45, 46, 47, 48, 49, 51, 53, 54, 55, 61, 63, 66, 67, 69,

70, 93, 97, 115, 116, 117, 125, 126, 127, 129

FAST Fast And Stable Task-adaptation (FAST) is a task adaptation algorithm (in-

troduced by us in this thesis). vii, ix, 9, 10, 11, 69, 70, 73, 75, 77, 78, 82, 86,

88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 115, 116, 117

FC Fully Connected (FC) or Linear layer or Dense Layer is a parameterized layer

used in ANNs that operats on its input by applying a dot product with its

parameters 2D matrix. The term “Fully” is an emphasize that all outputs are

connected to all inputs. 6, 25, 26

FedAvg Federated Averaging (FedAvg) or LocalSGD is an FL algorithm. xv, 29, 38,

39, 100, 101, 109, 111, 112, 113, 116, 148, 149, 150, 153

FedDyn Federated Learning with Dynamic Regularization (FedDyn) is an FL algo-

rithm. ix, x, 39, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 116, 146,

148, 149, 150, 151, 152, 153, 154, 155, 156, 157

FL Federated Learning (FL) is an ML concept where a group of devices collaborate

to train a model by communicating parameters through a central hub which

also coordinates the training. vii, xii, xiii, xiv, xv, xvii, xviii, xix, xxi, xxii,

xxiv, 4, 6, 8, 9, 10, 11, 19, 27, 28, 34, 37, 38, 39, 59, 98, 99, 100, 101, 102, 103,

105, 109, 115, 116, 117, 153, 154, 155

xiv

GD Gradient Descend (GD) is an optimization algorithm that calculates the gradient

of the loss function for the entire training set to iteratively adjust the model

parameters towards the optimal values. xxi, 10, 13, 15, 16, 17, 18, 20, 21, 75,

76, 119, 120, 121, 145

GPU Graphical Processing Unit (GPU) is a type of processor with many simple

processing cores. 50

HTL Hypothesis Transfer Learning (HTL) is a TL that involves transferring knowl-

edge through trained models or hypotheses for the source task(s). viii, xii, xxi,

xxiii, 2, 6, 10, 22, 23, 24, 28, 33, 34, 35, 44, 62, 115

IID A collection of random variables is Independent and Identically Distributed (IID)

if they share a common probability distribution. xix, 100, 110, 113, 117

ILSVRC ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an image

classification and localization challenge. 32

ITL Information Transfer Learning (ITL) is a TL in which some information about

some data or some information about hypotheses learned for a task defined on

that data is transferred to help learning taget task(s).. 24, 27

KL divergence Kullback–Leibler (KL) divergence is an assymetric distance metric

to determine dissimilarity between two probability distributions. 14, 45

LocalSGD Local Stochastic Gradient Descent (LocalSGD) or FedAvg is an FL algo-

rithm. viii, xiv, xvi, xix, 10, 29, 30, 37, 38, 100, 101

mini-batch SGD Mini-batch Stochastic Gradient Descend (GD) is a modified SGD

in which the cost is still computed stochastically computed but for a randomly

selected subset training instances. ix, 10, 20, 21, 42, 46, 49, 70, 76, 77, 81, 83,

85, 86, 88, 90, 92, 94, 103, 127, 128

xv

ML Machine Learning (ML) is the process in which the machines learn to perform

tasks from the data without explicit assertive rules. xii, xiii, xiv, xvii, xviii, xx,

xxii, xxiii, xxiv, 4, 6, 10, 22, 23, 26, 31, 35, 37, 98, 99

RAdam Rectified Adam (RAdam) is a gradient-based optimization algorithm that

improves the high variance initial steps of Adam.. ix, 21, 90, 91, 95

RBM A Restricted Boltzmann Machine (RBM) is a class of generative ANNs that

is able to learn a probability distribution over its inputs. 26, 31

ReLU Rectified Linear Unit (ReLU) is an activation function typically used in DNNs.

As a function, its a unary operator that outputs zero if the input is negative,

otherwise, outputs the input identically. 32

RMSProp Root Mean Square Propagation (RMSProp) is a gradient-based optimiza-

tion algorithm that adaptively adjusts the step size at each dimension by divid-

ing the corresponding gradient on its running average.. xviii, 21

RProp Resilience backpropagation (RPorp) is a gradient-based optimization algo-

rithm that adaptively adjusts the step size at each dimension based on consec-

utive changes in the sign of the gradient for that dimension. It only works well

with full-gradients algorithm. 20, 21

RV-LSGD Reduced Variance LocalSGD (RV-LSGD) is adaptation of RV-SGD to

Local Stochastic Gradient Descent (LocalSGD). 102, 107, 116

RV-SGD Reduced Variance Stochastic Gradient Descent (RV-SGD) is a group of

algorithms that aims to reduce the variance of gradients introduced by the

stochasticity of SGD. xvi, xvii, 17, 20, 39, 100, 101

SAG Stochastic Average Gradient (SAG) is an RV-SGD algorithm. 17, 18

SARAH StochAstic Recursive grAdient algoritHm (SARAH) is an RV-SGD algo-

rithm. 19

xvi

SCAFFOLD Stochastic Controlled Averaging for Federated Learning (SCAFFOLD)

is an FL algorithm. 39, 101, 102, 105, 106, 108, 109, 111, 112, 113, 116, 148,

149, 150, 151, 152, 154, 155, 156

SGD Stochastic gradient descent (SGD) is an optimization technique used in ma-

chine learning that calculates the gradient of the loss function for a randomly

selected instance from the training set to adjust the model parameters itera-

tively. xv, xvi, 10, 17, 18, 19, 20, 21, 37, 38, 44, 61, 63, 71, 75, 76, 78, 80, 81,

84, 88, 96, 97, 100, 120, 121, 128, 145, 153

SVRG Stochastic Variance Reduction Gradients (SVRG) is an RV-SGD algorithm.

18, 19, 20, 38, 39, 121

TL Transfer Learning (TL) is a class of ML that involves transferring data, informa-

tion or knowledge from some sources tasks towards learning some target ones

layers applying (simplified) convoltion oprtation. xiv, xv, 2, 7, 10, 22, 27, 28,

32, 46, 72

xvii

Glossary

L-smooth A function is L-smooth if the slope of the straight line that connects any

two points on the function curve is equal or smaller than L. 18

activation function A function that applies non-linearity to its inputs. 32

Adam An optimization algorithm that combine the momentum method with RM-

SProp. viii, ix, xvi, 21, 51, 55, 56, 57, 76, 77, 86, 89, 90, 91, 94, 96

admissible In optimization literature, an admissible set refers to a sub-set of possible

solutions that includes acceptable solutions.. 119

AIDE An FL algorithm. 39

AlexNet A CNN architecture. 32

backpropagation A method that uses chain rule for gradients to find the gradient

of a calculated loss (found in forward pass) with respect to all of its parameters

(or if desired even the input) for a ANN. xx, 16, 26, 35

Caltech-256 A labeled image dataset. ix, 92, 97

Caltech-101 A labeled image dataset. vii, viii, x, 50, 51, 53, 54, 55, 91, 130, 132,

133, 135, 136, 138

catastrophic forgetting Abrupt forgetting of the knowledge that an ANN has

gained often triggered by acquiring new but knowledge. 36, 42, 69, 80, 84,

93, 94

centralized learning Centralized learning is a ML sub-category in which a learning

machine has a direct local access to the training data because it is stored on the

same device. In contrast, in decentralized learning is stored on remote devices.

xix, 8, 28

xviii

CIFAR-100 A labeled image dataset. vii, viii, ix, x, 43, 50, 52, 54, 55, 58, 60, 63,

70, 79, 80, 81, 82, 85, 87, 91, 92, 93, 97, 109, 110, 111, 112, 113, 130, 131, 133,

134, 136, 137, 154, 158

CIFAR-10 A labeled image dataset. vii, viii, x, 50, 52, 54, 109, 110, 111, 113, 129,

131, 132, 134, 135, 137, 154

classification The supervised learning task of categorizing data into classes. 6, 9,

13

client drift The discrepancy in optimization trajectory between a model updated

on the whole or an IID selection of data and a model trained with biased draws

of data (e.g., in case of LocalSGD). 10

client-server model A distributed application structure where nodes are assigned

to be client or servers based on whether they request a service or provide it. 1,

98

connectionism A school of thought that looks for answering certain unresolved

questions in the field of cognitive science through connecting the concepts with

ANNs. 31

cross-device FL FL setup with massive number of clients (100s to billions). 38, 39

cross-silo FL FL setup in which the number of clients are small (typically between

2 to 100s). 37, 38

DANE An FL algorithm.. 39

data centralization Stacking data from different devices on one device and inte-

grate in addition to prepare the stacked data (possibly for learning from). 1, 2,

23

decentralized learning See centralized learning. xviii, 28, 36

xix

Deep Learning Methods that enable learning “representations of data with multi-

ple levels of abstraction” for computational models with the help of backprop-

agation. 9, 10, 35

DenseNet A CNN architecture. x, 50, 54, 55, 87, 88, 89, 95, 96, 131, 132, 133

device In this study, a device is a physical computer with storage and network

connection. xx, 28

discrete uniform distribution A distribution in which possible outcomes have

equal probability. 17

domain An input space and a marginal distribution defined over it. 10, 12, 41

domain adaptation Adapting a model trained on one domain to learn another

domain, given (usually) the same task defined over both domain. viii, 2, 3, 4,

5, 35

edge computing Distributed computing paradigm that emphasizes on moving com-

putation from servers to edge devices or the leaf nodes in a network. 1, 98

edge device A device at the edge of the Internet; very close to the end user nodes.

xx, 1, 2

EMNIST A labeled image dataset. 108, 109, 110, 111, 113, 154, 156

energy-based models Generative ML models in which a computed level of energy

determines the probability of each model state. See DBNs as an exsmple. 31

entropy A probabilistic measure of certainty in information theory. 47, 124, 125

feature-extractor Part of a Deep Neural Network (DNN) that extracts features.

see Figure 1.4. 45

feature-tuning A task adaptation method in which pretrained and randomly ini-

tialized parameters are all trained and tuned together. viii, ix, xii, 25, 26, 27,

35, 36, 40, 41, 42, 43, 44, 45, 49, 52, 53, 54, 55, 57, 59, 61, 65, 66, 67, 69, 70,

xx

72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 86, 87, 90, 91, 92, 94, 115, 116, 129,

130, 131, 132, 133, 134, 135, 136, 137, 138

feature-extraction A task adaptation method in which pretrained parameters are

frozen and only randomly initialized parameters are trained. viii, 25, 26, 27, 35,

41, 43, 73, 74, 79, 115

FedDANE An FL algorithm.. 39

FedPD An FL algorithm.. 39

FedProx An FL algorithm.. 38, 111

FedSplit An FL algorithm.. 39

feedforward A feedforward ANN is an ANN in which the connection do not form a

loop. 35

FSVRG An FL algorithm.. 39

full gradient Gradient calculated based on full batch of data (all data). GD works

with full gradient . 15

hash table A data structure that implements mapping from keys to values. 25

head See Figure 1.4 for a visual explanation. ix, 6, 7, 8, 10, 13, 25, 26, 27, 35, 40,

41, 42, 43, 45, 46, 47, 51, 55, 57, 61, 62, 65, 69, 70, 71, 72, 73, 75, 76, 77, 78,

79, 83, 84, 85, 92, 94, 115, 123, 126

ImageNet A large-scale hierarchical image dataset. 43, 50, 52, 53, 78, 82, 85, 87,

91, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138

Inception A CNN architecture. x, 50, 51, 54, 55, 137, 138

instance weighting A DTL approach. 23

knowledge distillation An HTL approach in which a pretrained model supervises

another model that is under training. 38

xxi

LeNet A CNN architecture. 31

loss A value that is aimed to be minimized in an optimization problem. Also known

as cost or risk . xxii, 14, 15, 18, 42

loss function A scalar-valued function that outputs a loss value. 14

machine A program running on a device. 28

MNIST A labeled image dataset. 50, 51, 54, 79, 81

momentum It is a discount factor that is used to smooth out the values of a sequence

based on the weighted average of the earlier values in that sequence. xviii, 19,

21, 38, 76, 77, 78, 88, 90, 94, 96

noise A random quantity is considered noise with regard to one or multiple signals

if it is not objectively related to them. See Definition 6. 44, 45

off-the-shelf model Pretrained ML models that are shared for task adaptation.

The core idea is to pretrain a model only once but tune it numerous times for

different applications. 2, 9, 50, 82

one-hot A sparse vector encoding in which only one elements of the vector is one

and the rest are zero. The one-hot vector space for a vector spans over a number

of points equal to the length of that vector. 13, 14, 123

oracle dataset A dataset that includes all training examples. In context of FL, it

is a hypothetical set created by stacking up data of all the clients. 28

paired t-test A statistics hypothesis test to determine if a statistics significantly

follow a hypothesis or not. In the paired version of the t-test, the hypothesis is

usually about determining if a pair of statistics are from the same distribution

or not. 53

prediction error The difference between true and predicted labels. See Definition

7. 44, 45, 76, 123

xxii

pretrained model A model trained on an upstream machine and transferred to a

downstream machine. 2, 7, 24, 41, 72

probability simplex A vector of non-negative values that sums to one. xxiv, 13,

47

pseudo-gradient See Definition 3. 17, 76

query-less HTL A sub-category of HTL in which the downstream does not make a

specific request for the way upstream machine trains and prepares its hypotheses

to transfer. 28, 29

query-based HTL A sub-category of HTL in which the downstream machine re-

quests for certain characteristics of the hypotheses to be learned on the upstream

machine. 28, 29

reinforcement learning A sub-category of ML in which machines learn from the

outcomes of their interactions with the environment. 4, 5

ResNet A CNN architecture. viii, ix, x, 43, 50, 52, 53, 54, 55, 70, 78, 85, 86, 93,

129, 130

ResNeXt A CNN architecture. 91

RGB A color model in which each color is made up of a mixture of three main colors:

red, green, and blue. In digital imaging, RGB format consists of three channels

each of which representing the intensity of the pixels in one of the main colors..

50, 92

scalar-valued function A function with one dimensional output scalar. xxii, 14

self-taught learning A form of DTL in that there is unlabeled supplementary data

available but if labeled, the labels would be different from the ones for the

objective task. 23, 24

xxiii

semi-supervised learning A sub-category of ML in which machines learn from a

dataset in which only a portion of instances are labeled. 23, 24

sigmoid A mathematical function sometimes used as activation function in DNNs.

32, 34

signal A quantity that withholds useful information. See Definition 5. xxii, 44

softmax A function that normalizes its inputs to output a probability simplex. See

Definition 4. 13, 41, 42, 45, 75, 127

supervised learning A sub-category of ML in which machines learn from labeled

data. xix, 4, 5, 6, 10, 12, 32, 34

Symbolic Machine Learning A type of ML based on human readable representa-

tions. 33

Tanh A mathematical function sometimes used as an activation function in DNNs.

32, 34

task An output space and a desired mapping from an input space to the output

space. 10, 12, 41

task decomposition An ANN learning technique in which a task is decomposed

into sub-tasks for which finding solution is easier. viii, 33, 34

task adaptation Adapting a model trained on one task to learn another task. viii,

xii, xiv, xx, xxi, xxii, 2, 3, 6, 7, 8, 9, 10, 11, 24, 25, 26, 35, 41, 45, 62, 65, 66,

71, 73, 74, 78, 94, 115, 117

unsupervised learning A sub-category of ML in which machines learn from unla-

beled data. 4

VGG A CNN architecture. ix, x, 50, 54, 55, 85, 87, 88, 89, 95, 96, 134, 135, 136

VRL-SGD An FL algorithm.. 39

xxiv

z-normalization A type of normalization applied on each member of a set of num-

bers that makes the set of results have mean zero and standard deviation one.

45, 46

xxv

Acknowledgements

I wish to express my deepest gratitude to my PhD supervisor , Stan Matwin, for his

unwavering support, guidance and encouragement throughout my research journey.

His expertise and insights have been invaluable to me, and I am grateful for the time

and effort he invested in my research. I would also like to extend my appreciation to

Thomas Trappenberg for providing valuable advice in the latter stages of my thesis.

His insights and support truly helped me refine my work. I’m also grateful to my com-

mittee members for their guidance, feedback, and support throughout my research,

and to the external examiner for accepting the role. I especially want to thank Lisa

Di Jorio for supporting my thesis as supervisor during my internships at Imagia, and

Marzie Saghayi, Mohammad Havaei, Laya Rafiee Sevyeri, Sharut Gupta, Lucas May

Petry, Xiang Jinag and William Taylor-Melanson for their help and support during

my research. I acknowledge and appreciate the assistance provided by Adam Auch

in reviewing and making linguistic corrections to this thesis. This research has been

made possible thanks to the funding and support provided by Imagia, Mitacs, and

Research Nova Scotia. Finally, I would like to express my appreciation to my family,

friends, and colleagues for their encouragement, support, and understanding through-

out this journey. Their unwavering love and support has been essential in helping me

achieve my research goals.

xxvi

Chapter 1

Introduction

1.1 Motivation

In 1997, Deep Blue, a supercomputer taking up two cubic meters of space, defeated

Grand Master Garry Kasparov, the world chess champion at the time [Kasparov,

2021]. Today, we can install chess engines that are far more powerful than Deep Blue

on our palm-sized smartphones [Sedice, 2020]. These small devices have not only

transformed the world of entertainment but also a plethora of other industries. These

devices have made human life more convenient and efficient, enabling us to be more

productive and informed than ever before. As a result, there has been a natural shift

in data collection and analysis from a small number of large devices to a large number

of small ones.

Consequently, the number of data collection devices has increased to the point

where network bandwidth has become a bottleneck for numerous remote applications

[Hecht et al., 2016]. These applications are typically built using the client-server

model, where clients request services from servers, which in turn process and reply

the requests. This has inspired a new paradigm in which the data collection devices

that interact with clients, perform as much required computation as possible locally

(in contrast with doing it mostly on the server) in order to reduce the amount of

communication. This paradigm is sometimes referred to as edge computing because

the majority of computation is performed by network nodes at the Internet’s edge1.

The data on edge devices can give machines the opportunity to learn and perform

complex tasks. However, using this data effectively can be challenging. A major issue

is that the data stored on individual edge devices is often limited in quantity and may

be biased. This can make it difficult for machines to learn from this data alone. In

order to learn complex tasks, machines typically need a large amount of unbiased

data [Roh et al., 2019]. One solution is data centralization which is to simply share

1These devices are much closer to end users than they are to service providers.

1

2

the data stored on edge devices (also known as supplementary data) with the target

learning machine. This can supplement the machine’s own data and provide it with

a more diverse and comprehensive dataset to learn from.

Data centralization can be difficult or even impossible due to privacy, storage and

communication concerns. Moreover, even if transferred, the supplementary data may

provide a different input-output mapping (task) than the one the target machine aims

to learn. One way to deal with these difficulties is through Transfer Learning (TL).

TL alleviates the aforementioned difficulties by encoding the knowledge of the

supplementary data into a more portable form. This knowledge can then be trans-

ferred and eventually be incorporated into the target learning process. Perhaps the

most intuitive form of encoded knowledge is a trained model itself. A model can be

trained on the supplementary data and then be transferred to the target machine.

This sub-category of TL is referred to as Hypothesis Transfer Learning (HTL) because

the transferred models are hypotheses learned for solving learning tasks on the source

machines. The shared hypotheses are sometimes referred to as pretrained models.

Hypothesis sharing can better protect the privacy of the data compared to data

centralization, especially when the supplementary data is stored on personal remote

devices. Moreover, the re-usability of the pretrained models is computationally much

more appealing. The same encoded knowledge can be transferred to many devices

to help them to learn new tasks. Widely shared and used pretrained models are

sometimes called off-the-shelf models.

On the target machine, a pretrained model can be directly adapted to perform a

different task than the one it is pretrained on, or it can be tuned for a different data

domain—data domain is simply characterized by the input space and its distribution

(see domain definition in Section 2.1). The former is referred to as task adaptation

while the latter is known as domain adaptation. These concepts are respectively

shown in Figures 1.1 and 1.2. In these figures, the gray, yellow and orange trapezoids

represent randomly initialized, pretrained and adapted (tuned) models, respectively.

The solid arrows show training while the dotted elbowed ones express hypothesis

transfer.

A generalization of these hypothesis adaptation concepts, sometimes known as

Continual Learning (CL) is to train a model to perform multiple tasks or perform

3

task 1
data 1

data 1

task 2
data 2

data 2

Figure 1.1: The concept of task adaptation. Task 1 (on the left) is to classify between
triangles and circles while task 2 (on the right) is to classify between diamonds and
semi-circles. Solid and dotted arrows represent training and hypothesis transfer,
respectively.

task 1
data 1

data 1

task 1
data 2

data 2

Figure 1.2: The concept of domain adaptation. The task (task 1) is to classify between
triangles and circles. Data 1 (on the left) has a different distribution than that of data
2 (on the right). Solid and dotted arrows represent training and hypothesis transfer,
respectively.

a single task but on multiple data domains using a chain of hypothesis transfers.

Accordingly, such generalized task adaptation and domain adaptation are referred to

as task incremental and domain incremental CL, respectively2. From the learning

2According to [van de Ven and Tolias, 2019], there is a third category for CL referred to as
class-incremental which we consider as a sub-category as task-incremental.

4

perspective, the domain incremental CL can be seen as a task virtually defined on

centralized data, except that the data is partitioned into subsets that can only be

accessed one partition at a time.

A new paradigm has emerged that further generalizes the domain incremental CL

by permitting simultaneous access to more than one remote partition of the data; this

is motivated by the proliferation of data collection/storage devices, their increasing

compute capabilities, and the need for parallelization. In this paradigm known as

Federated Learning (FL), at each iteration of hypothesis transfer, a server sends a

model to a random selection of the remote devices. After training the local copies of

the model, selected devices send them back to the server where they are aggregated

into a model that can be sent to the next set of selected devices.

Figure 1.3 reflects the idea of paralleled domain adaptation. It also depicts one

iteration of hypothesis transfer in FL known as “a round of communication”3. In this

iteration, two devices are selected, one hosting a data partition tagged with “data 1”

and the other one hosting a data partition tagged with “data 2”.

In contrast to the sequential domain incremental CL—for which an iteration is

shown in Figure 1.2, FL requires device selection, hypothesis communication and

hypothesis aggregation. These operations are orchestrated by a separate device called

the server. Accordingly, the devices where the models are sent for local training are

sometimes called clients.

1.2 Background

An ML task is often modeled by approximating the mapping from the inputs to

the expected outputs or measures given some observation of such association (think

of these observations as experience). In the field of Machine Learning (ML), the

observations for such approximations are called training data4.

Generally, there are three different types of tasks in ML. They are supervised

learning, unsupervised learning, and reinforcement learning. In supervised learning,

examples of input-output mapping are given to the learning machine. In contrast,

unsupervised learning is to learn from unlabeled data, meaning that examples of

3Sometimes, we simply refer to it as a round.
4”Observation” is a more common term in Estimation Theory; in this thesis, we use observations

and training data interchangeably

5

task 1 task 1

data 1

data 1

data 2

data 2

Figure 1.3: The concept of parallel domain adaptation. The task (task 1) is to classify
between triangles and circles. Data 1 (on the left) has a different distribution than
that of data 2 (on the right). Solid and dotted arrows represent training and hypoth-
esis transfer, respectively. The hypothesis transfer is done in parallel orchestrated by
a server.

expected outputs are not provided. Reinforcement learning takes a different approach

from these two in that the machines learn through interacting with an environment

and receiving rewards and penalties for the actions that they take. Although some of

our research questions and answers in this thesis can be applied to all of these kinds

of tasks, we restrain our focus to supervised learning.

The objective mapping or function from inputs to outputs can be modeled in

various ways. In particular, Deep Neural Networks (DNNs) provide function approx-

imators that have demonstrated a high capacity for learning complex tasks and have

6

emerged as the ML community’s first contender for solving a wide range of problems.

DNNs apply a series of non-linear operations on the input data so it is transformed

into a space where performing the task is much simpler. We refer to such a space

as the feature space and the inputs transformed into it as the extracted features.

These features can then be linearly mapped to the output space where the model’s

approximations (predictions) are represented. The former non-linear transformation

is often referred to as feature-extractor while the latter is called the head. A Fully

Connceted (FC) layer—which applies a matrix multiplication on its input—is often

chosen as the head. Components of a typical DNN are shown in Figure 1.4 for a

model with six outputs.

input feature-extractor

head

o6

o5

o4

o3

o2

o1

output

Figure 1.4: Basic components of a DNN consisting of a feature-extractor (the white
colored box) and a head (the blue colored box). The head is considered to be an FC
layer.

The operations that a DNN applies on the inputs to predict the outputs are

parameterized. Training a DNN for a supervised learning task is equivalent to finding

a set of such parameters that minimizes the prediction error. It is often done by

iteratively modifying the parameters using gradient based optimization algorithms.

Chapter 2 gives an introduction to these algorithms.

1.3 Research Objectives

This thesis is about the efficacy and efficiency of HTL. We aim to resolve a number

of existing problems in task adaptation, domain incremental CL, and FL. Some of

the questions asked and solutions provided are applicable to various types of tasks.

However, we focus on classification tasks in which the goal is to categorize each input

7

instance into one of a pre-defined set of categories (classes).

Throughout this thesis, we prioritize the practical applications of our results rather

than limiting ourselves to abstract concepts. We strive to maintain an experimental-

oriented mindset rather than a merely theoretical one. Everywhere the application of

the newly introduced methods is illustrated, we consistently concentrate on straight-

forward image classification task, so that the results can be easily interpreted.

1.3.1 Task Adaptation

The most common way of adapting a pretrained DNN to a new task and/or domain

is by simply using the pretrained model as the initial state in training process of the

target learning machine. However, the target learning task dictates the dimensions

of the model’s output. Therefore, a pretrained model needs to be modified for task

adaptation. The most common practice is to simply replace the pretrained model’s

head with one that matches the target task’s output.

The model’s head, if replaced, is often initialized at random5 with no apparent

recipe [He et al., 2016, Huang et al., 2017, Ma et al., 2018, Sandler et al., 2018, Xie

et al., 2017, Tan and Le, 2019]. This randomness can lead to large and noisy initial

updates to the feature-extractor. These updates easily distort the pretrained features

[Varno et al., 2020, Kumar et al., 2021], thus, losing useful transferred knowledge. In

turn, this can lead to slow convergence and so to undermine the merits of TL.

Existing solutions include slowing down the learning process and including an

extra warmup training phase in which only the head is updated [Li and Hoiem, 2017,

Kumar et al., 2021]. The former is in contrast to a major goal of TL which is to

accelerate the learning process. The latter requires an extra validation set which is

not always an option given that TL is usually motivated by the small size of datasets

on the target machines (from which sometimes is hard to separate a statistically

meaningful subset as a validation dataset).

In this thesis, we propose to start the training on the target task (tuning) with a

gradual increase in the magnitude of updates to the feature-extractor starting from

zero. Such a scheme avoids large noisy updates at the beginning of the training, yet

lets the feature-extractor to eventually be adapted to the target task. As it leads to

5In this context, by head we virtually refer to the “parameters” of the model’s head.

8

preserving the transferred knowledge from random perturbation at the beginning, we

hypothesize that the efficiency of task adaptation can be improved.

To achieve gradual increase in the feature-extractor updates, we propose to ini-

tialize the replaced head with zero weights and biases. Regardless of the input, such

initialization leads to same prediction for all classes at the beginning; therefore, we

refer to it as the maximum entropy initialization.

Initializing parameters of the replaced head with zeros poses a new challenge

which is to make sure that feature-extractor parameters are eventually adapted with

an adequate rate. That is to make sure the gradual increase in the magnitude of the

updates happens as desired. We overcome this challenge via two novel approaches.

First, by normalizing extracted features and second, by adjusting head’s parameters

with a different rate than those of the feature-extractor. These approaches are detailed

in Chapters 5 and 6, respectively.

1.3.2 Federated Learning

FL is a promising alternative to centralized learning. It consumes reasonable amount

of communication bandwidth and to some extent can preserve the privacy of the

data/device owners. However, FL optimization is challenging especially when there

is a large distribution mismatch among clients’ data.

Heterogeneity among data of different clients can cause the local optimization on

clients to “drift” away from the global objective—which is to learn from data of all

clients as if they were combined. In order to estimate and therefore remove this drift,

variance reduction techniques have been recently incorporated into FL optimization

as in Karimireddy et al. [2020] and Acar et al. [2020]. However, these approaches

inaccurately estimate the clients’ drift and ultimately fail to remove it properly.

In Chapter 7, we propose an adaptive algorithm that accurately estimates drift

across clients. In comparison to previous work, our approach necessitates less or

equal storage and communication bandwidth, as well as lower computation costs.

Additionally, our proposed methodology induces stability by constraining the norm

of estimates for client drift, making it more practical for large scale FL. Experimental

findings demonstrate that the proposed algorithm converges significantly faster and

achieves higher accuracy than the baselines across various FL benchmarks.

9

1.4 Contributions

The outcome of this research is a collection of methods to improve the efficiency and

efficacy of hypotheses adaptation and Federated Learning (FL). The contributions of

this thesis are6:

• We empirically investigate the speed of convergence of applying task adaptation

using different existing initialization methods. This is done across an extensive

set of off-the-shelf models tuned on a number of well-known image classification

tasks.

• We introduce two novel methods for task adaptation which cause a gradual

increase in the magnitude of the updates on the feature extractor. These meth-

ods which we refer to as Efficient Neural Task Adaptation via Maximum En-

tropy Initialization (ENTAME) and Fast And Stable Task-adaptation (FAST),

help to avoid the initially large and noisy updates on pretrained parameters,

so compared to the conventional practice they better maintain the transferred

knowledge.

• We empirically show that ENTAME and FAST not only significantly accelerate

the convergence on almost all the benchmarks but also eventually lead to a

better performance on many of them.

• We propose ADAptive Bias ESTimation for Federated Learning (AdaBest), the

state-of-the-art in FL optimization.

• We empirically compare AdaBest and the existing baselines on several FL set-

tings with different levels of data heterogeneity, and sample balance for clients.

1.5 Outline

Chapter 2 In this chapter, the notation used in this thesis is established. Some of

the most prominent optimization algorithm for Deep Learning are overviewed. The

6Parts of this thesis is published in our research articles Varno et al. [2020] and Varno et al.
[2022a], world-wide patent Varno et al. [2022b]

10

concepts such as domain, task, supervised learning, convergence, and Gradient De-

scend (GD) algorithm are defined. We detail Stochastic Gradient Descend (SGD)

and mini-batch Stochastic Gradient Descend (mini-batch SGD) algorithms, and enu-

merate several existing attempts to reducing their variance. Appendix A contains

several proofs for theorems and lemmas included in Chapter 2.

Chapter 3 This chapter gives background information on TL. It elaborates on

different categories of TL based on the transferred content. It also pin-points the

conventional task adaptation approaches and head initialization issues. Furthermore,

FL is described as a query-based HTL so it is better contrasted with the typical

hypothesis adaptation approaches. Finally, in this chapter, LocalSGD, as a seminal

FL algorithm, is introduced.

Chapter 4 In this chapter we go over the related work. We highlight the research

work leading to what is known as Deep Learning with an emphasize on Convolutional

Neural Networks (CNNs). Additionally, we investigate the first attempts to HTL and

then more precisely to task adaptation. This includes unsupervised and supervised

pretraining approaches especially for CNNs. An overview of primitive research work

in Distributed ML is also covered in this chapter. It is followed by an overview

of FL algorithms, when they started to appear in Deep Learning literature, their

categorizations and attempts to solve the well-known client drift issue.

Chapter 5 In this chapter, we propose Efficient Neural Task Adaptation via Maxi-

mum Entropy Initialization (ENTAME) to improve the efficiency of knowledge trans-

fer in task adaptation. We show how it makes updates on the pretrained parameters

initially small and eventually larger. The chapter also includes several experiments

to compare performance of ENTAME with the baselines. Proofs and additional ex-

periments for this chapter are extended in Appendix B.

Chapter 6 In this chapter, we propose FAST which shows similar learning acceler-

ation as of ENTAME but without its feature normalization operation. Additionally,

we examine FAST in preserving the source task’s knowledge and show that it forgets

11

much slower than the conventional task adaptation. An extensive set of experiments

is conducted to compare FAST with the baselines from various perspectives.

Chapter 7 In this chapter, we present a novel FL algorithm, ADAptive Bias ESTi-

mation for Federated Learning (AdaBest). We further illustrate how it addresses the

stability issue of the existing solutions. Finally, we empirically show that AdaBest

outperforms the baselines by a high margin across several benchmarks.

Chapter 8 This chapter summarizes our findings and offers concluding remarks.

We also outline our plans for future research, which are inspired by the work presented

in this thesis.

Chapter 2

Background to Deep Learning

If learning is what you would hold most dear,

With wisdom you will stride the turning sphere.

- Ferdowsi, Shahname

In supervised learning, training a DNN involves finding the set of parameters that

result in low prediction error on the training data. This search can be challenging

because DNNs often have a large number of parameters, far more than the number

of training examples. Due to the overparameterized nature of DNNs, a random

search or even Bayesian optimization with random samples may be computationally

infeasible. Gradient-based algorithms, on the other hand, can effectively navigate a

large parameter space by marching in the direction that most reduces the error at

each step. As a result, they can often find a better solution in a much shorter amount

of time. In this chapter, we will first introduce some key concepts and notations that

will be used to express the problems and ideas in the rest of this thesis; then, we

will look at the most popular gradient-based algorithms, how they are used to train

DNNs, and the mathematics behind them.

2.1 Supervised Deep Learning

Let characterize each dataset by a domain which consists of the raw data space X
and the marginal probability distribution P (X) where X ∈ X . Furthermore, let

define a task T = {Y , f(.)} in relation with a domain D = {X , P (X)} where Y is the

output space and f : X → Y is the true function which we aim to approximate using

a DNN. In this thesis, we focus on supervised learning in which expected outputs

for each training data instance are given. In other words, training data includes

pairs of (x ∈ X ,y ∈ Y) such that y = f(x). An iterative optimization algorithm

12

13

Table 2.1: Summary of variables, sets, and functions used in this thesis.
†: S(v) gives the Euclidean space that has |v| dimensions.

X , A, Y { input, feature, label } space

f, f̂ { true, approximate } objective function
Ω,H { feature-extractor, head } function
S Euclidean space function†

D, T domain, task
ℓ, L { instance, average } loss

x, o, y sample { input, output, predicted label }
a, A sample { extracted, normalized } features
G, g, ĝ { full-batch, mini-batch, pseudo} gradient

h gradient estimate
θ, ϕ, W { model, feature-extractor } parameters
W , b head’s { weights, biases }
U , N , P { uniform, normal, probability } distribution

η learning rate (step size)
ϵ small scalar

M, C, Q number of {samples, classes, extracted features}
β discount factor
S, P set of {all, mini-batch} indices

(such as Gradient Descend) uses the labels to update the parameters of a DNN as an

approximator for f(.).

We represent DNN parameterized by θ with f̂(.;θ). In particular, for classification

tasks, one can use one-hot encoding to represent the true labels. For example, suppose

we have a categorical variable with three categories: “cat”, “dog”, and “rabbit”. We

can use one-hot encoding to represent these variable as follows:

• “cat” would be represented as [1, 0, 0],

• “dog” would be represented as [0, 1, 0],

• “rabbit” would be represented as [0, 0, 1].

This is the labeling convention we use in this thesis. Furthermore, we assume that

f̂ outputs a probability simplex of the predicted class probabilities. This is often

done by applying a softmax layer on top of the model’s head shown in Figure 1.4.

Note that a probability simplex is a vector of non-negative values that sums to one.

14

Table 2.2: Summary of operators’ notation used in this thesis.

ut, vt M t a { scalar, vector, matrix } at iteration t

u(n), (v)Tr power, Transpose
| v |, ∥v∥, ∥M∥F cardinality, 2-norm, Frobenius norm
⟨ v , ṽ ⟩, ∠(v, ṽ) inner product, angle

≫ much larger
∂v
∂ṽ
, ∇u partial derivative, gradient
0, 1 { all-zero, all-one } vector

u1, v1 { all-u, sum of } vector
∈, ∪ set { membership, union }

→, =⇒ , ↦−→ space mapping , implication, transfer∑︁
summation

≜ equality by definition
v

∇ gradient with respect to v

E expected value

E
batch

arithmetic mean across batch

∼ sampled from distribution
ln natural logarithm function

softmax softmax probability estimator function
exp exponential function

In such a case, for an input-label pair (x,y) the cost or loss of the approximation

can be found using the negative log-likelihood of the predicted labels ŷ = f̂(x;θ)

and the true labels y. This negative log-likelihood is mathematically equal to the

Kullback–Leibler divergence (KL divergence), i.e.,

ℓ(x,y;θ) = −⟨y, ln ŷ⟩; (2.1)

and, as previously stated, y is one-hot encoded. A scalar-valued function that out-

puts a loss, such as ℓ(x,y;θ) is called a loss function. ln and ⟨., .⟩ represent the

natural logarithm—operating elements-wise on its input vector in this case—and in-

ner product, respectively. Note that a transpose operation is hidden in ⟨., .⟩. For

instance, ⟨y, ln ŷ⟩ is equivalent to y (ln ŷ)Tr; where y is a row vector and (ln ŷ)Tr is

the transpose of ln ŷ. A list of symbols used in this thesis is presented in Tables 2.2

and 2.1.

For a training dataset with m data instances {(xi,yi)}mi=1, the average loss for the

15

whole training dataset is obtained as

L(θ) ≜
1

m

m∑︂
i=1

ℓ(xi,yi;θ). (2.2)

For the sake of simplicity, we sometimes omit the input arguments of the loss functions

in our formulations. In this thesis, we assume that the datasets are static in the sense

that over the time, the data distribution does not evolved or shifted. In other words,

all pairs of data in Equation (2.2) are observations of the same input-output joint

distribution, even though they may have been collected at different times.

2.2 Gradient Descent

Gradient Descend (GD)—dating back to Cauchy et al. [1847]—is a gradient-based

first-order optimization algorithm that iteratively updates parameters in the direction

of reducing the loss. To explain how GD uses gradient to update the parameters, we

first introduce some related concepts and rationals as follows.

Let G be the full gradient of the average loss with respect to the parameters. That

is

G ≜
θ

∇(
1

m

m∑︂
i=1

ℓ(xi,yi;θ)); (2.3)

where
θ

∇ is the gradient operator with respect to parameters θ. For the sake of the

simplicity, wherever we deal with only one average loss and only one set of parameters,

we refer to “the gradient of average loss with respect to the parameters” simply as

the “gradient”.

GD updates the parameters towards the steepest direction (in the parameter

space) of decreasing the loss or the steepest descent direction in the loss landscape

(see Definition 1). Based on Theorem 1, at each parameters state, this direction is

the negative of the gradient of loss with respect to the parameters, at that state. Let

θt−1 and Gt−1 be the state of θ and G at iteration t−1 of the optimization algorithm.

GD finds the state of the parameters at iteration t as

θt = θt−1 − ηGt−1; (2.4)

where η is the step size which is also called the learning rate.

16

Definition 1 (Loss landscape) The loss landscape is a space with one more dimen-

sion than the parameter space to representing the loss, corresponding to a determined

set of parameters and data instances. For each point in the parameter space, the data

instances result in a loss that is reflected in the loss dimension.

Theorem 1 (Steepest descent direction, proof in Appendix A) For the dif-

ferentiable loss function L(θ) the negative of the gradient is the steepest direction of

descend in the loss landscape.

There are various criteria for stopping the iterations of gradient-based algorithms

(end of training). In this work, we use convergence as defined in Definition 2 as the

stopping criteria, unless otherwise stated. Accordingly, the optimization steps are

stopped whenever the gradient becomes very small (see Corollary 1).

Definition 2 (Convergence) A gradient based optimization algorithm with param-

eters θ is said to be converged when ∥θt − θt−1∥ < ϵ; where ϵ is a tolerance.

Corollary 1 (Condition for GD convergence, proof in Appendix A) In GD,

the convergence is achieved when ∥Gt−1∥ < ϵ
η
.

2.3 Stochastic Gradient Descent

Applying GD on large datasets can be computationally challenging. One can accu-

mulate gradient for each training datum instead of taking gradient of their sum—

meaning 1
m

∑︁m
i=1

θ

∇ℓ(xi,yi;θ) instead of
θ

∇L(θ) (see Equation (2.3))1. Applying a

single step after visiting all the data instances one by one can help with using less

storage in backpropagation. That is to accumulate gradient corresponding to each

data instance without taking any steps. When all instances are visited, a single step is

taken in the direction of the accumulated gradient. As a result, less memory is needed

to cache signals of the forward pass. However, because parameters are updated after

visiting all data points it can still take a long time especially for large datasets (even

never happening for a never-ending stream of data).

1The outcome may not be exactly the same if additional operations relies on the statistics calcu-
lated across the batch of the data in forward pass; e.g., batch normalization layers are used.

17

Stochastic Gradient Descend (SGD) [Robbins and Monro, 1951] updates the pa-

rameters immediately after visiting individual data instances. The “stochasticity”

comes from the fact that these instances are drawn at random. Stochastic Gradient

Descend (SGD) updates the parameters as follows:

θt = θt−1 − η
θ

∇ℓ(xi,yi;θ
t−1); i ∼ U(1,m); (2.5)

where U(1,m) is the discrete uniform distribution from 1 to m.

In Theorem 2, we show that SGD is an unbiased estimate for GD. Note that in

the proof of this Theorem, we use the concept of pseudo-gradient which we define as

follows:

Definition 3 (Pseudo-gradient) For t′ > t, the difference θt − θt′ is called a

pseudo-gradient vector at θt.

As is implied by the term “pseudo”, there can be different ways of defining a pseudo-

gradient based on how the definition may help introducing other concepts. In our

definition, a pseudo-gradient vector is described using two points in the parameter

space. Unlike the true gradient, a pseudo-gradient is not necessarily tied to a loss

function. Pseudo-gradient helps us to estimate true gradients (given the same origin

in the parameter space) mainly in this chapter and Chapter 7.

Theorem 2 (SGD unbiased, proof in Appendix A) SGD is an unbiased esti-

mator for GD.

Although SGD estimates GD with no bias, it can have a high variance. The

convergence can be significantly slowed down by a very noisy gradient estimate (of

the full-gradient). As a result, a much smaller learning rate has to be chosen for SGD

compared to that for GD [Schmidt et al., 2017, Johnson and Zhang, 2013].

A line of research work tries to reduce the gradient variance in SGD; thereby, a

larger learning rates can be chosen and convergence be accelerated. We refer to these

algorithms generally as Reduced Variance Stochastic Gradient Descent (RV-SGD).

Among these, Stochastic Average Gradient (SAG)[Schmidt et al., 2017] reduces the

variance of each step by adding the average of the gradients from recent optimization

steps to the gradient found for the drawn instance. It finds the average of gradients

18

by storing the gradients in memory. Stochastic Average Gradient (SAG) is not a

scalable algorithm because training a large model would require too much memory.

Stochastic Variance Reduction Gradients (SVRG) [Johnson and Zhang, 2013] and

its variants [Nguyen et al., 2017, Bi and Gunn, 2021, Konečnỳ et al., 2015, Ba-

banezhad Harikandeh et al., 2015, Xiao and Zhang, 2014] are among the most recent

and popular memory-less alternatives. SVRG modifies SGD’s update (see Equa-

tion (2.5)) as

θt = θt−1 − η

(︃
θ

∇ℓ(xi,yi;θ
t−1) + ht − ht

i

)︃
; i ∼ U(1,m); (2.6)

SVRG ht =
θ

∇L(θ̃), (2.7)

SVRG ht
i =

θ

∇ℓ(xi,yi; θ̃); (2.8)

where θ̃ is a snapshot of the parameters state θ taken from previous updates. h and

hi can be considered estimates of the full-batch and instance gradients at the current

step, respectively (here, they are the true full-batch and instance gradients at θ̃).

The intuition is to regularize the parameter update with an estimate of the gradients

accumulated for all other data instances. Johnson and Zhang [2013] suggested θ̃ ≜

θ⌊ t−1
ν

⌋ as a practical option in which ν is the frequency of taking snapshots.

The analytical result of this unbiased modification (see Theorem 3) is that if

the empirical loss is strongly convex and the loss function over individual samples is

both convex and L-smooth—meaning that the slope of the straight line that connects

any two points on the function curve is equal or smaller than L—then the error in

estimating gradient of L(θ) is not only bounded but it also linearly converges to

zero (refer to Johnson and Zhang [2013] for proof). Bi and Gunn [2021] investigated

applying SVRG to non-convex problems.

Theorem 3 (SVRG unbiased, proof in Appendix A) SVRG is an unbiased

estimator for GD.

Calculating full-batch gradients at the snapshots is computationally expensive.

Towards more efficiency and under certain conditions, Babanezhad Harikandeh et al.

19

[2015] showed that this convergence rate is not largely impacted if a noisier esti-

mate than the original L(θ̃)—proposed by SVRG—is chosen for full-batch gradients.

Nguyen et al. [2017] proposed StochAstic Recursive grAdient algoritHm (SARAH), a

biased version of SVRG that progressively updates the estimate for full-gradients for

optimization steps applied in between taking two snapshots. Compared to SVRG, it

uses different h and hi as follows:

SARAH ht =
1

η
(θt−3 − θt−2), (2.9)

SARAH ht
i =

θ

∇ℓ(xi,yi;θ
t−2). (2.10)

In Chapter 7, we propose an algorithm for FL which is partly inspired by SARAH.

Another traditional way to decrease variance of gradients in SGD is to use mo-

mentum (see Tseng [1998]). We can write SGD with momentum update as in Equa-

tion (2.6) such that ht and ht
i are defined as follows:

SGD with momentum ht =
β

η
(θt−2 − θt−1), (2.11)

SGD with momentum ht
i = 0. (2.12)

SGD with momentum is sometimes formulated with an accumulative recursive vari-

able. Theorem 4 presents this more common representation and shows its equality

with the format we just defined.

Theorem 4 (velocity form of SGD with momentum, proof in Appendix

A) SGD with momentum updates described by Equation (2.6), Equation (2.11), and

Equation (2.12) is equivalent to applying

θt = θt−1 − ηvt; (2.13)

where

vt = βvt−1 +
θ

∇ℓ(xi,yi;θ
t−1); i ∼ U(1,m). (2.14)

The scalar β in Equation (2.14) and Equation (2.11) is sometimes called momentum

and it determines the weight of the previous gradient estimate in calculating the new

one. β can also be thought as a discount factor in these formulas.

20

2.4 Mini-batch Stochastic Gradient Descent

Given m as the number of training examples, the computing cost of a GD step is

O(m). The same cost is O(1) for a SGD step. However, as discussed in section 2.3,

high variance of the full-gradient estimates causes SGD to converge relatively slowly

per step. A more popular approach especially used for training DNNs is mini-batch

SGD which is a trade-off between GD and SGD. Mini-batch SGD randomly draws

a determined number of samples from the data (compared to only one sample from

the data in SGD) and use them to apply an optimization step. This number is often

referred to as mini-batch size. Let the set of mini-batch indices drawn at step t be P t.

We often consider the mini-batch size |P t| to be a fixed scalar for all t2. The update

rule for mini-batch SGD on parameters at step t can be written as

θt = θt−1 − η
θ

∇

(︄
1

|P t|
∑︂
i∈Pt

ℓ(xi,yi;θ
t−1)

)︄
, (2.15)

where the operator |.| represents cardinality.

The mini-batch version of SGD can be combined with other RV-SGD methods.

For example, Konečnỳ et al. [2015] uses it with SVRG-like algorithms. Furthermore,

applying momentum on top of mini-batch SGD is a common practice for training

DNNs.

2.5 Resilient Gradient-based Methods

The gradient based optimization algorithms that we have discussed up to here directly

use point gradients in taking their steps. A major problem in optimizing highly non-

convex functions using these methods is stepping through a saddle point of plateau

region in the loss landscape. In this situation, the magnitude of the updates may differ

extremely from one another across different dimensions (corresponding to different

parameters).

In order to address this issue, Resilience backpropagation (RProp) [Riedmiller and

Braun, 1993] escapes plateaus and saddle points by disentangling the magnitude of

the gradient across different dimensions. For each dimension, it exponentially boosts

2See Qian and Klabjan [2020] as an example discussion on the relation between mini-batch size
and the stability of SGD.

21

its step size (learning rate) as long as the sign of the gradient remains unchanged.

Whenever the sign of gradient flips in a dimension, the step size of that dimension

is scaled down. As a result, RProp moves slower across sharp descending dimensions

and faster across flattened ones. Eventually, the update for each dimension uses only

the sign of the gradient in that dimension and its adaptive step size. RProp is a

full-batch algorithm so it does not work well with high variance stochastic gradients

as in SGD and mini-batch SGD. Applying it on SGD results in an estimator of GD

that not only has high variance but also is largely biased.

A more popular approach is to ignore the magnitude of gradient simply by dividing

the gradient on its magnitude in each dimension. Adaptive Subgradient (Adagrad)

[Duchi et al., 2011] takes this approach; however, in order to decrease the bias and

variance and to become applicable to work with stochastic gradients, it divides the

gradient on a discounted running sum of its magnitude instead of the instant one.

Root Mean Square Propagation (RMSProp) [Tieleman et al., 2012] is similar to Ada-

grad but uses momentum method to find a running average instead of a discounted

running sum. Adam [Kingma and Ba, 2015] combines RMSProp with the momentum

method for mini-batch SGD. There exist several practical reports that Adam requires

a few warm-up steps (with no parameter updates, only calculating the first and sec-

ond moments) before the actual updates on parameters begin. Liu et al. [2019] found

that this issue stems from Adam having large variance updates at the beginning of

the optimization. They addressed it with a method that they named Rectified Adam

(RAdam).

Chapter 3

Background to Transfer Learning

To learn is to acquire knowledge or skills through experience or by acquiring knowl-

edge from elsewhere. Learning by experience can be difficult and costly at times

[Kang et al., 2010, Mískiewicz, 2018]. Perhaps this is why “reinventing the wheel”

is not always a good idea. As a result, effective transfer of information (others’ ex-

perience) and knowledge (what others’ learned from their experience) is essential to

an efficient learning process [Khamseh and Jolly, 2008]. In human cognition sciences,

transferring information1 (data) and knowledge from one person or entity to another

[Subedi, 2004] or even within an entity (e.g., from a concept to another in a person’s

mind) [Perkins et al., 1992] is often referred to as Transfer of Learning.

In the field of ML, the learning entities are machines and Transfer of Learning is

simply called Transfer Learning (TL). The term Transfer Learning can be misleading

because it can refer to either the transfer of learning methodology or a learning process

that involves the transfer of knowledge or information. The latter target-oriented

concept is referred to as TL in this work. Accordingly, the goal of TL is to improve ML

outcomes by incorporating data, information or knowledge from the source machines

into the target machines’ learning processes. The machines from which the transfer is

performed are sometimes referred to as upstream. The target machines that receive

content from upstream machines are sometimes called downstream machines. It is

worth noting that we distinguish between machines and devices. The former are

computer programs, whereas the latter are physical computers. A device, according

to this definition, can host one or more machines.

In the remainder of this chapter, we will first iterate over different types of TL

from one machine to another in terms of the transferred content. We then enumerate

other aspects of TL, as well as topics related to TL and finally we will get into

more details on HTL. To establish some common language in order to describe each

1knowledge is said to be processed information.

22

23

concept, let the downstream (target) domain and task be Dt = {Xt , Pt(X)} and

Tt = {Yt , ft(.)}, respectively. Furthermore, assume there exists an upstream (source)

machine that has data and correspondingly provides domain Ds = {Xs , Ps(X)} and

task Ts = {Ys , fs(.)}.

3.1 Content-based Categorization of Transfer Learning

3.1.1 Data Transfer Learning

Assume Tt = Ts and Xs = Xt (or feasible with a transformation such as scaling for

image data) and the cost of transferring the supplementary data itself to the target

machine is insignificant. Then, if the goal is to train a model that can generalize to

both domains, the data can be directly combined. We already defined this type of

transfer learning as data centralization which is not usually even considered a part of

ML process2 but rather a matter of data collection/integration [Roh et al., 2019].

Under the same conditions, direct data centralization is not a viable option if

Tt ̸= Ts . However, transferred supplementary data may still help learning the target

task if there are similarities between the source and target domains. Fernandes and

Cardoso [2019] and Lao et al. [2021] refer to this concept as data-driven Transfer

Learning. However, we find the term Data Transfer Learning (DTL) more appealing

because it explicitly resembles the transfer of data. Similarly, Hypothesis Transfer

Learning (HTL) is ML that involves transferring hypotheses. Figure 3.1a, depicts

DTL conceptually and compares it to HTL. An example of DTL is instance weight-

ing [Shimodaira, 2000, Lienen and Hüllermeier, 2021] in which the influence of each

training datum is determined by matching it against the supplementary data—or a

distribution derived from it.

When the supplementary data is unlabeled, DTL can be performed in a semi-

supervised learning setting. The literature on semi-supervised learning has a long

tail with many sub-branches [Van Engelen and Hoos, 2020]. Self-taught learning

[Raina et al., 2007] can be another form of DTL. It is different from semi-supervised

learning in that if the unlabeled data is labeled, its label set can be different from that

2It may be arguable that data centralization is part of the ML or not in active learning. We only
consider passive learning scenarios in this thesis. That is when learning and collecting further data
are not performed simultaneously on a device.

24

data
upstream

downstream

data
training

model

(a) DTL

data
training

model
upstream

downstream

data
training

model

(b) HTL

Figure 3.1: DTL versus HTL. Blue horizontal arrows represent training while orange
vertical arrows indicate transferring. Transferring anything else about the data which
is not a hypothesis for a task defined on the source or target machines is referred to
as ITL.

of the labeled data3. For example, if the objective is to classify images of apples and

oranges, in semi-supervised learning the supplementary unlabeled data also includes

only images of apples and oranges while in self-taught learning, they can be images

of other things such as fruit baskets and knives.

3.1.2 Hypothesis Transfer Learning

A model that is trained to perform a task on an upstream machine is referred to

as a hypothesis for that task. Upon being transferred to downstream machine it

is also called a pretrained model. Transferring knowledge through hypotheses is

known as Hypothesis Transfer Learning (HTL). The corresponding concept is shown

in Figure 3.1b. There are various sub-categories of HTL based on the mechanism

for incorporating knowledge embedded in pretrained models into downstream task

learning [Sermanet et al., 2013, Hinton et al., 2015, Li and Hoiem, 2017]. HTL is

called task adaptation when Tt and Ts are unequal or when on the target machine

we do not have the knowledge about their equality (e.g., not knowing which class

corresponds to the model’s output at index 0).

Task Adaptation

A popular task adaptation practice is to infer the features for the downstream task

directly by using the feature-extractor part of a pretrained model. In this context,

3This definition is according to Raina et al. [2007].

25

inferring features means that the parameters of the feature-extractor are not trained

during the downstream training or they are “frozen”. The extracted features can be

mapped to the output space required by the target task using a Fully Connceted (FC)

layer (also called linear layer) which we refer to as the model’s head. Because only

the head is trained in this arrangement, this type of task adaptation is often referred

to as feature-extraction [Li and Hoiem, 2017]. Figure 3.2a color codes the frozen and

trainable components in a feature-extraction.

feature-extractor
transfer

feature-extractor head

(a) feature-extraction

feature-extractor
transfer

feature-extractor head

(b) feature-tuning

Figure 3.2: (a) feature-extraction versus (b) feature-tuning. green boxes represent
components that are trained to learn the downstream task where as the gray box,
only works in inference mode. The hatch patterns on the head boxes indicate random
initialization.

Some research work refer to this approach as Linear Probing [Kumar et al., 2021,

Chen et al., 2021]. This term can be confused with a method for resolving collisions

in hash tables. This terminology may be borrowed from research studies that use FC

layers to understand intermediate representation of DNNs4 [Alain and Bengio, 2016,

Liang et al., 2022, Laina et al., 2021]. Since there is no actual probing involved in

4In these studies, linear probes are referred to the FC layers that are trained while the rest of
the layers are kept unchanged.

26

feature-extraction, we avoid using the alternative term Linear Probing throughout

the rest of this thesis.

Only training an FC layer, while a pretrained feature-extractor works in infer-

ence mode, as in feature-extraction, provides a quick and easy to optimize solution.

However, features that are tailored specifically for the downstream task can provide

much better results [Kornblith et al., 2019, He et al., 2020]. Another popular task

adaptation method motivated by this argument is to train the pretrained feature-

extractor along with the appended model’s head. This method is conceptually shown

in Figure 3.2b and is usually called fine-tuning. To refer to this method, we use the

term feature-tuning in this thesis5.

Head Initialization

Initializing the head’s parameters with large values leads to larger distortion in the

pretrained parameters which eventually results in unnecessarily slow convergence in

cases where the upstream and downstream data are similar. Additionally, we show in

Chapter 5 that doing so can accelerate forgetting the already learned upstream task.

It means that in case careful head initialization is undermined, the upstream features

can be forgotten even before anything is learned about the downstream domain and

task, making the knowledge transfer pointless.

One solution to this problem is to first apply feature-extraction and then feature-

tuning [Li and Hoiem, 2017, Kanavati and Tsuneki, 2021]. This method is depicted

in Figure 3.3 where each phase of the training is shown in one row and the transi-

tion between feature-extraction and feature-tuning is marked with black arrows. In

Chapter 5 and 6, we introduce more elegant solutions which do not require manual

switching between the two phases of the training (also see [Varno et al., 2019, 2020]).

5In ML literature, fine-tuning dates back to the late 1980s [Waibel et al., 1989]. However, more
related to “only training the head” is the seminal work of Hinton and Salakhutdinov [2006] in which
the first relatively deep model (in terms of number of layers) is constructed by stacking Restricted
Boltzmann Machines (RBMs) trained on unlabeled data. In that approach, a head appended on
the top of the model is “fine-tuned” using backpropagation on the same data but in the supervised
fashion. Fine-tuning also refers to a concept in theoretical physics which indicates very careful and
precise adjustment of parameters of a theoretical model that describes a phenomenon in the universe
(e.g., as fine-tuning is used in Wetterich [1984]). In contrast, we show in Chapter 5 that the updates
on the feature-extractor parameters can have large magnitude and impact. Unlike the term “fine-
tuning”, feature-tuning reflects a better contrast with feature-extraction and causes less confusion
with the aforementioned unrelated concepts to the task adaptation method of our interest.

27

In our methods, we initialize the model’s head to small numbers. Doing so makes

the updates on the pretrained feature-extractor small at the beginning of the train-

ing which leads to much better preservation of the transferred knowledge. The way

each of our methods controls the increase in the magnitude of updates to the feature-

extractor parameters is different. One uses an extra normalization layer between the

feature-extractor and the model’s head, while the other adjusts a learning rate for

the head that is independent from the learning rate of the feature-extractor.

feature-extractor
transfer

feature-extractor head

feature-extractor head

Figure 3.3: Feature-tuning after feature-extraction. Boxes that are filled with green
color are trained whereas those filled with gray color only work in inference mode.
The patterns on the head boxes indicate random initialization.

3.1.3 Information Transfer Learning

Perhaps the least frequently used form of getting help from supplementary data in

learning a task is Information Transfer Learning (ITL). This involves transferring

only some statistics about the data on upstream machine or some information about

a model trained on it. An example of this category of TL is the method Raghu

et al. [2019] named “Mean Var init”. In this technique, the model’s parameters are

initialized with mean and variance transferred from a hypothesis for the upstream

task. As we will see in Chapter 7, it is common in FL that a mixture of information

28

and hypothesis is transferred from upstream machines to downstream machines.

3.2 Federated Learning

Federated Learning (FL) is a promising alternative to centralized learning that po-

tentially can scale to countless continuous transfers and preserve the privacy of

data/device owners. In FL, several devices with data known as clients iteratively col-

laborate to train a model by communicating knowledge through a central hub called

server. At each round, the server broadcasts the cloud’s knowledge to a random se-

lection of clients. Given this transferred knowledge, recipient devices locally extract

knowledge from their data and transfer their results back to the server where the

cloud’s model is updated by aggregating the transferred knowledge from the clients.

This cycle is called a round of communication and goes on until the training converges

to a stationary point.

FL is different from ordinary HTL in two important ways:

1. Typically, the downstream machine has no direct local access to any data by

itself. In most cases, it only seeks learning through aggregating the knowledge

of the upstream machines.

2. The downstream machine iteratively queries the upstream machines to align the

returned hypotheses with the overall learning goal. Such TL is characterized

with the concept we described as query-based HTL. See Figure 3.4 for comparing

this concept with a an ordinary HTL (query-less HTL).

Additionally, in the context of FL we mostly refer to learning parties as devices rather

than machines mainly to emphasize the fact that the involved parties are physically

distinct entities (i.e., not machines running on the same computer).

FL is a broad research area and it has various categories to address different

decentralized learning scenarios. However, the core research on this realm is focused

on the settings in which there is a single task to learn and local datasets are possibly

distributed heterogeneously with respect to each other. If the data can be centralized

(hypothetically stacked up), the resulting dataset is referred to as the oracle dataset.

Often the goal of FL is to train a model that performs on the same level as one that

is well trained on the oracle dataset.

29

start

init

update
model

criteria
met?

finish

yes

no

(a) local learning

start

init

transfer from
remote devices

update
model

criteria
met?

finish

yes

no

(b) query-less HTL

start

init

query a subset of
remote devices

transfer from
queried devices

update
model

criteria
met?

need
transfer?

finish

yes

no

no

yes

(c) query-based HTL

Figure 3.4: Flowchart of iterative optimization for training a DNN. Comparing (a).
local training, (b). query-less HTL , and (c). query-based HTL.

The simplest known FL algorithm is referred to as Federated Averaging (FedAvg)

[McMahan et al., 2017] or Local Stochastic Gradient Descent (LocalSGD) [Stich,

2018]. In LocalSGD, the server, initiates a round of communication by sending its

cloud model (hypothesis for the oracle dataset) to a random selection of the clients.

The selected clients train these copies (same initial state) on their local data and

send the trained models (hypotheses) back to the server where they are averaged

to update the next round’s cloud model. Transferring hypotheses to/from clients in

Local Stochastic Gradient Descent is shown in Figure 3.5a/3.5b.

30

client 1...

client 2...

client 3...

(a) server transfers cloud hypothesis and clients train locally.

aggregate

(b) clients transfer local hypothesis and server aggregate.

Figure 3.5: A round of communicating hypotheses in LocalSGD. The symbol
represents a DNN. Changes in model parameters is shown with color changes.

Chapter 4

Related Work

The advancements in deep learning and Convolutional Neural Networks (CNNs) have

completely transformed the landscape of ML. With their exceptional abilities in per-

forming machine vision tasks, these concepts have opened new horizons in the field of

AI. However, as the field has matured, novel challenges have emerged, and researchers

are grappling with issues such as how to transfer knowledge between different models,

how to continually learn and adapt to new data, and how to train models with data

that cannot be centralized. This related work chapter delves into these developments

from where they began to their current state.

4.1 Deep Learning and Convolutional Neural Networks

Connectionism research work of Fukushima and Miyake [1982] and Mozer [1987] on

hierarchical representations and valuing the approximate positioning of patterns over

their absolute positioning inspired the introduction of CNNs by LeCun et al. [1989].

As stated by LeCun et al. [1989], the idea is also based on the “weight sharing”

concept, already indicated in original back-propagation paper [Rumelhart et al., 1986].

They used this approach to train LeNet, a seven layer CNN that recognized hand-

written digits as well as ASCII characters [LeCun et al., 1998].

Seven years later, Hinton et al. [2006] introduced a novel way to progressively

train DNNs. In the same year, they used this approach to train a model [Hinton

and Salakhutdinov, 2006], a Deep Belief Network (DBN) constructed from Restricted

Boltzmann Machines (RBMs). The idea was to first learn a good representation of the

inputs in an unsupervised fashion, making optimization for the subsequent supervised

learning stage easier. This was a beginning of a line of research in representation

learning using energy-based models [Ranzato et al., 2006, Bengio et al., 2006, Lee

et al., 2009, Salakhutdinov and Hinton, 2009, Vincent et al., 2010, Bengio, 2012].

In 2012, University of Toronto marked another important milestone in the history

31

32

of Computer Vision. Their CNN, AlexNet [Krizhevsky et al., 2017], won the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) by a large margin compared

to the other competitors. AlexNet is not a DBN by definition as it does not use

components that are pretrained in an unsupervised fashion. Moreover, despite the

popularity of sigmoid and Tanh by the time, AlexNet followed Jarrett et al. [2009] and

Nair and Hinton [2010]1 in employing Rectified Linear Units (ReLUs) as activation

function.

Since then, various strategies have been proposed to ease the burden of training

very deep CNNs which along with advancement in parallel processing made these

models capable of undertaking the most complex vision tasks. These strategies in-

clude initialization methods [Glorot and Bengio, 2010, He et al., 2015], optimization

methods [Nesterov, 1983, Tieleman et al., 2012, Kingma and Ba, 2015, Liu et al.,

2019, Foret et al., 2020], and normalization methods [Ioffe and Szegedy, 2015, Ulyanov

et al., 2016, Ba et al., 2016, Wu and He, 2018] as well as architectural modifications

[Simonyan and Zisserman, 2014, Szegedy et al., 2015, He et al., 2016, Szegedy et al.,

2016, Zagoruyko and Komodakis, 2016, Huang et al., 2017, Xie et al., 2017, Tan and

Le, 2019, Tan et al., 2019, Radosavovic et al., 2020] and many other techniques and

tricks [He et al., 2019b].

4.2 Hypothesis Transfer Learning

4.2.1 The First HTL Attempts

Recently, Stevo Bozinovski published an overview paper about his own research work

on TL during 1970s and early 1980s [Bozinovski, 2020]. This body of work which

is stated to be mostly written in Croatian language, investigates the effect of pre-

training a neural network for a supervised learning task, on what he refers to as

the “learning trajectory” of another supervised learning task. This is probably the

earliest appearance of TL in Neural Networks literature.

1Jarrett et al. [2009] refers to rectified units as the “positive part” function.

33

Figure 4.1: Symbolic reasoning refinement through exporting to and then importing
from neural networks. Figure taken from Towell and Shavlik [1993].

Figure 4.2: HTL methods introdued by Pratt et al. [1991]. Problem decomposition
refers to the concept we named task decomposition. Figure directly taken from Pratt
et al. [1991].

4.2.2 Linking ANNs and Symbolic Representation

Fast-forwarding to late 1980s, the appealing idea of transferring domain knowledge

in Symbolic Machine Learning [Callan and Utgoff, 1991, Fawcett and Utgoff, 1991,

Utgoff, 1984] inspired a group of research studies to import knowledge into neural

networks from symbolic representations or vice versa [Towell et al., 1990, Sayegh,

1992, Towell and Shavlik, 1993] (see Figure 4.1). Pratt et al. [1991], proposed directly

transferring a single upstream hypothesis to a downstream task (see Figure 4.2). The

authors further added to this line of work in their follow-up research studies that

appeared in Pratt and Kamm [1991] and Pratt [1993].

34

4.2.3 Task Decomposition

Waibel et al. [1989] proposed task decomposition2 for neural networks. It was to

break a classification task into multiple smaller tasks, pretrain a hypothesis for each,

and then “glue” them together to construct a larger model for the original task. In

this setting, the knowledge is transferred through hypothesis from multiple source

tasks Ts1 , Ts2 , . . . Tsn to the target task Tt =
i=n⋃︁
i=1

Tsi . The motivation was to speed up

the training by better initialization. Task decomposition is sometimes also referred to

as problem decomposition (see Figure 4.2). Waibel [1988] was followed by a number

of other studies (e.g., Waibel et al. [1989], De Bollivier et al. [1991] and Hong et al.

[1996]).

4.3 Task Adaptation

4.3.1 Unsupervised Pretraining

Primitive DNNs were difficult to train. In those models, sigmoid or Tanh activation

functions were typically used, which can result in gradient vanishing. Additionally,

large labeled datasets for complex tasks (such as face recognition) were rare. To

overcome these shortcomings, a common training strategy for a DNN was to progres-

sively pretrain one layer after another on unlabeled data in an unsupervised fashion

[Hinton et al., 2006, Hinton and Salakhutdinov, 2006, Bengio et al., 2006, Le et al.,

2011]. Note that such layer-wise training was already introduced for speeding up

training shallow neural networks, however, earlier research work applied pretraining

in a supervised fashion [Fahlman and Lebiere, 1989, Lengellé and Denoeux, 1996].

In almost all these works, pretraining was often performed on the same data as the

target supervised learning. We still recognize this strategy as HTL because the target

supervised learning is boosted by a hypothesis. Le et al. [2011] practically kept the

supplementary unsupervised data on several remote machines and pretrained a model

in a distributed fashion. Their work in aggregating the gradients is reminiscent of

FL.

2We borrow the terminology from research work like Sharkey [1997] and [Sharkey, 1999].

35

4.3.2 Pretraining CNNs

LeCun et al. [2015] summarize Deep Learning as methods that enable learning “repre-

sentations of data with multiple levels of abstraction” for computational models with

the help of backpropagation [Rumelhart et al., 1986]. Visually demonstrating the fea-

tures at different layers of CNNs, Zeiler and Fergus [2014] further supported the idea

of “multiple levels of representations” [Bengio, 2012]. According to this concept, in a

feedforward CNN3, deeper representations of data correspond to higher-level features

[Bengio et al., 2006, 2011, LeCun et al., 2015]. In other words, the outputs of layers

that are closer to the input provide more abstract representations which consequently

are more transferable. In particular, the model’s head has strong ties to the learning

task [Neyshabur et al., 2020] and can be viewed as a transformation from high-level

extracted features to the output space defined by the task.

4.3.3 Supervised Pretraining for CNNs

Donahue et al. [2014] employed HTL on image classification in a fully supervised

fashion. That is supervised pretraining on upstream and supervised training on

down-stream which we refer to as task adaptation if the source and target tasks

are different (otherwise, we refer to it as domain adaptation). They applied feature-

extraction, meaning that their pretrained feature-extractor remained frozen during

training the head on the target task (see Figure 3.2). Girshick et al. [2014] took

the same supervised pretraining approach except that they applied feature-tuning,

meaning that feature-extractor and head are optimized towards learning the target

task together.

4.4 Continual Learning

Continual Learning (CL) [van de Ven and Tolias, 2019, Hsu et al., 2018], also known

as “lifelong learning” or “incremental learning”, refers to an ML system’s ability to

continuously learn and adapt from new data. It consists of several learning sub-

scenarios with real life applications that take into account incrementally learning new

3In a feedforward model, the output of a layer cannot be input to itself or another layer that is
closer to the input.

36

tasks (e.g., Li and Hoiem [2017]) or domains (e.g., Churamani et al. [2022]) or classes

(e.g., Rebuffi et al. [2017] and Liu et al. [2020]). CL involves knowledge transfer from

previously learned tasks or domains (forward knowledge transfer) to new ones or vice

versa (backward knowledge transfer). For instance, feature-tuning a pretrained DNN

on a target task, can largely degrade the performance of the model on the source task.

This phenomenon is widely known as catastrophic forgetting [McCloskey and Cohen,

1989]. There have been several studies to alleviate forgetting in DNNs. To name a

few, Goodfellow et al. [2013] empirically found that employing dropout [Srivastava

et al., 2014] results in less catastrophic forgetting though it may come at the cost of

performing sub-optimally on the new task. Kirkpatrick et al. [2017] introduced a way

to find parameters that are more important for the source task and to assign a smaller

learning rate to them. Due to its practicality, CL has recently become more popular

and has even been studied in combination with several other learning scenarios (e.g.,

Lao et al. [2020]).

4.5 Distributed Machine Learning

Primitive Distributed ML

In 1983, Davis and Smith [1983] introduced “distributed problems solving” framework

as follow

In our view, three defining characteristics of distributed problem solving

are that it is a cooperative activity of a group of decentralized and loosely

coupled knowledge-sources (KSs), each of which may reside in a distinct

processor node. The KSs cooperate in the sense that no one of them has

sufficient information to solve the entire problem, so a mutual sharing

of information is necessary to allow the group as a whole to produce an

answer. By decentralized we mean that both control and data are logically

and often geographically distributed; there is neither global control nor

global data storage. Loosely coupled means that individual KSs spend most

of their time in computation rather than communication.

To a large extent, this pictures a contemporary fully-decentralized learning setting

except that it rather describes a collaborative system for solving any kind of problem,

37

not just ML. Soon after, some adaptations of primitive distributed systems were

introduced for ML [Brazdil et al., 1991, Dowell and Bonnell, 1991]. The processing

time and amount of memory required for learning from large datasets even motivated

to partition already centralized datasets into smaller sets and distribute them to

separate processing units [Provost and Hennessy, 1994].

4.5.1 Federated Learning

In 2011, Le et al. [2011] employed unsupervised pretraining to improve the image

classification performance of a model with one billion parameters. For the pretraining

stage, they divided the training data into multiple partitions and stored each of them

on a separate device. Each device trained their own copy of the model on its local

data partition. The models and gradients were periodically synchronized through

“parameter servers”. By definition, Le et al. [2011] applied LocalSGD. However, they

had a different motivation than FL which was to accelerate the training process of

their “large model” 4 on Central Processing Unit (CPU) cores via parallelism.

As the number of devices connected to the Internet increased and the volume of

data grew, the privacy and communication costs of sharing data for ML became a

more compelling reason for implementing a distributed version of SGD. Therefore,

the focus, and so the terminology, gradually shifted from so called “parallel” SGD

[Zinkevich et al., 2010, Recht et al., 2011, Zhang et al., 2016] to “distributed” or

“privacy-preserving” SGD [Noel and Osindero, 2014, Shokri and Shmatikov, 2015].

McMahan et al. [2017] used the term Federated Learning for the first time and enu-

merated a number of characteristics such as large number of devices, their unreliable

access to a network connection, and data heterogeneity, to distinguish it from other

optimization problems.

Some follow up research work, explored FL in settings describable with different

characteristics than those determined by McMahan et al. [2017]. However, they still

refer to their work as FL. Consequently, several FL categorizations have emerged.

Kairouz et al. [2021, Section 2] provides a taxonomy of these categories. For example,

there are research work focusing on learning across a few number of clients which are

referred to as cross-silo FL. In contrast, the original FL which expects “the number

4by the time, their model was considered very large in terms of the number of parameters.

38

of clients participating in an optimization to be much larger than the average number

of examples per client” [McMahan et al., 2017] is considered as cross-device FL.

This type of categorization allows some practical assumptions to be made about

the learning setting. If you deal with cross-silo FL setting, the clients are probably

some large entities like organizations. Therefore, improving privacy and decreasing

computing costs matter much more than communication consumption or bias caused

by stochastic client participation at different rounds of communication. In this thesis,

we do not deviate from the original FL definition provided by McMahan et al. [2017].

4.5.2 Client Drift

A major challenge in FL is to deal with data heterogeneity among clients’ data which

results in discrepancy between local and global objective It can cause a drift in the

local parameter updates with respect to the server aggregated parameters. Recent

research has shown that in such heterogeneous settings, LocalSGD or FedAvg is highly

pruned to client drift [Zhao et al., 2018] which can result in sub-optimal solutions.

To improve the performance of FL with heterogeneous data, some previous work

use knowledge distillation to learn the cloud model from an ensemble of client models.

This approach has been shown to be more effective than simple parameter averaging

in reducing bias of the local gradients [Lin et al., 2020, Li and Wang, 2019, Zhu et al.,

2021].

Another group of methods can be categorized as gradient based in which the

gradients are explicitly constrained on the clients or server for bias removal. FedProx

Li et al. [2020] penalizes the distance between the local and cloud parameters whereas

Wang et al. [2020] normalizes the client gradients prior to aggregation. Inspired by

SGD with momentum, Yu et al. [2019] use a local buffer to accumulate gradients from

previous rounds at each client and communicate the momentum buffer with the server

as well as the local parameters which doubles the consumption of communication

bandwidth. Instead of applying momentum method on the client level, Hsu et al.

[2019] and Wang et al. [2019] implement a server momentum approach which avoids

increasing communication costs.

Inspired by SVRG [Johnson and Zhang, 2013], some work incorporate variance

reduction into LocalSGD [Acar et al., 2020, Li et al., 2019, Karimireddy et al., 2020,

39

Liang et al., 2019, Zhang et al., 2020, Konečnỳ et al., 2016, Murata and Suzuki, 2021,

Nguyen et al., 2017]. DANE [Shamir et al., 2014], AIDE [Reddi et al., 2016], and

VRL-SGD [Liang et al., 2019] incorporated RV-SGD in distributed learning for full

client participation. FedDANE [Li et al., 2019] is an attempt to adapt DANE to the

FL setting5, but because it communicates full batch gradients, it still undermines the

privacy concerns such as attacks to retrieve data from true gradients [Zhu and Han,

2020]. Most methods in this category such as VRL-SGD [Liang et al., 2019], FSVRG

[Konečnỳ et al., 2016], FedSplit [Pathak and Wainwright, 2020] and FedPD [Zhang

et al., 2020] require full participation of clients which makes them less suitable for

cross-device FL where only a fraction of clients participate in training at each round.

While FedDANE [Li et al., 2019] works in partial participation, empirical results

show it performs worse than FedAvg [Acar et al., 2020]. In this thesis, we focus on

methods that are capable of learning in partial participation settings. In particular,

SCAFFOLD Karimireddy et al. [2020] uses control variates on both the server and

clients to reduce the variance in local updates. In addition to the model parameters,

the control variates are also learned and are communicated between the server and the

clients which take up additional bandwidth. Murata and Suzuki [2021] also reduces

local variance by estimating the local bias at each client and using an SVRG-like

approach to reduce the drift but it requires to communicate models corresponding to

all intermediate local steps. While SCAFFOLD applied variance reduction on clients,

FedDyn [Acar et al., 2020] applies it partly on the server and partly on the clients.

The method we propose in Chapter 7, is probably closer to FedDyn than to others;

however, they differ in the way gradients are estimated. See section 7.4.3 for detailed

comparison of AdaBest with FedDyn and SCAFFOLD.

5Recall that FL is a sub-branch of distributed learning with specific characteristics geared towards
practicality [McMahan et al., 2017].

Chapter 5

Incremental Tuning with Normalized Features

“... and there is the neural knowledge mobilization phase which is

about how do I use this large neural net that has implicit knowledge to

extract the right thing that I need to solve, a particular task as one user;

and there might be many downstream users so many downstream tasks to

be solved.”

- Hugo Larochelle, TwiML Podcast (May 2023)

Conventional feature-tuning methods lead to an initial perturbation of the pretrained

parameters with large and noisy gradients. This problem is addressed in this chapter

by making the initial updates to the pretrained parameters smaller and less noisy.

Throughout the chapter, we focus on a setting where a single “well-trained” hypoth-

esis is transferred from an upstream machine to help with learning a task on the

downstream machine. In this context, “well-trained” means that the optimization

algorithm is converged up to a small tolerance (see Definition 2). Furthermore, we

assume that the size of the upstream training data is large enough to avoid the hy-

pothesis to severely over-fit. Even though the preceding assumptions are weak, we

will only use them in this chapter to argue about intuitions and motivations rather

than proofs.

The feature-tuning algorithm we propose in this chapter, Efficient Neural Task

Adaptation via Maximum Entropy Initialization (ENTAME) is designed to prevent

back-propagating large and noisy gradients towards the pretrained feature-extractor

at the beginning of the training. ENTAME differs from conventional feature-tuning

simply in that it normalizes the extracted features and initializes the parameters of

the model’s head to zeros.

We show empirically that, unlike baselines, ENTAME causes a gradual increase in

the magnitude of gradients to the feature-extractor at the start of tuning. Therefore,

40

41

large noisy initial feature perturbations are avoided. Across several benchmarks, we

show that our task adaptation method converges faster and performs better when

converged than the conventional feature-tuning methods.

The rest of this chapter is organized as follows. Section 5.1 gives some background

on our setup and introduces some notation. The research motivations are expressed

in Section 5.2. Section 5.4 introduces our method, ENTAME, which is followed by

a discussion on the details of our method’s components in Section 5.5. Finally, the

experimental results are provided in Section 5.6.

5.1 Background

Let Ds and Ts be the upstream’s domain and the upstream’s task, respectively1.

Likewise, consider Dt and Tt be downstream’s domain and task 2. A hypothesis

trained on upstream is transferred to downstream, where it is called the pretrained

model. In feature-extraction and feature-tuning, the feature-extractor part of the the

pretrained model is directly used to initialize the model that is trained on downstream.

For task adaptation, we consider Ts ̸= Tt . Therefore, the extracted features need

to be mapped into the output space Y such that Tt = {Y , f(.)}. The most common

practice for applying such a mapping is to use a new head for the model. To put this

arrangement into mathematical context, let us represent the feature-extractor with

the function Ω : X → A, parameterized by ϕ. Further, let the extracted features

be transformed to the output space by the head function H : A → Y which is

parameterized by w. Therefore, for an input x, the features are inferred as

a = Ω(x;ϕ). (5.1)

Then, they are mapped into the output space through the head as

ŷ = H (a;W ; b). (5.2)

For classification, this function is often characterized by a softmax probability esti-

mator (see Definition 4) in the following form

H (a;W ; b) ≜ softmax(o), (5.3)

1Their sub-index stands for “source”.
2Their sub-index, t stands for “target” but this t is different from superscript t used to show the

number of steps.

42

where

o = a(W)T + b, (5.4)

W ∈ R(C×Q) and (W)T is the transpose of W . Recall from Table 2.2 that C and

Q denote the number of classes and extracted features, respectively; that is C = |y|
and Q = |a|.

Definition 4 (Softmax) Softmax is defined as

softmax(u) ≜
exp(u)

⟨exp(u),1⟩
, (5.5)

where exp(.) is a function that applies element-wise exponential operation on its input

vector and 1 is a vector of all ones.

The forward flow of data through the entire model can be expressed as

f̂(x;θ) = H (Ω(x;ϕ);W ; b) ; (5.6)

where f̂(.;θ) is an approximator for f(.) and {θ} = {ϕ ∪W ∪ b}. As mentioned in

Chapter 1, we focus on classification and assume that the popular cross-entropy loss

function is employed (see equation (2.1)).

5.2 Problem Statement

Assume that the optimization algorithm converges at the end of pretraining. Based

on Definition 2, the gradient of the upstream loss with respect to feature-extractor’s

parameters should have a small norm (assume ϵ is very small) for the last optimization

steps. For example, for mini-batch SGD that is

lim
t→∞
∥
ϕ

∇L
s
(ϕt)∥ =

ϵ

η
(5.7)

where L
s
(ϕt) is the upstream loss at optimization step t.

Switching the task and introducing a randomly initialized layer as the head, results

in a large ∥
θ

∇L
t
(ϕ0)∥, in which L

t
(ϕ0) is the downstream loss at the first step of feature-

tuning. Carelessly applying back-propagation can perturb the transferred features

before anything is learned, resulting in catastrophic forgetting which in turn can

also slow down the convergence on the target task. Additionally, if a learning rate

43

decay is employed during pretraining, there would be a large difference between the

magnitude of the updates applied at the end of pretraining and those at the beginning

of feature-tuning.

Xavier [Glorot and Bengio, 2010] and Kaiming [He et al., 2015]3 are by far the

most commonly used methods for initializing parameters of DNNs. The model’s head

is often treated the same way as other layers in terms of parameter initialization.

Figure 5.1 quantitatively shows how large the norm of backpropagated gradients are

when Xavier and Kaiming initialization methods are used (in log scale) in an example

feature-tuning. In this experiment, a ResNet-50 model pretrained on ImageNet is

tuned on the classification task defined by CIFAR-100 dataset.

0 25 50 75 100 125 150 175

steps

10 7

10 6

10 5

10 4

10 3

10 2

lo
g
E

b
a
tc
h
[∥

a ∇
ℓ∥

]

Xavier
Kaiming in
Kaiming out
SW
FN+SW

Figure 5.1: Norm of backpropagated gradient towards pretrained parameters for dif-
ferent initialization methods in log scale. See details of this experiment in Section
5.6.1.

One solution is to include an initial warmup phase in which only the head’s param-

eters are updated for a number of steps, before the feature extractor parameters are

unfrozen. In other words, feature-tuning is applied after a phase of feature-extraction.

The model can perform poorly during the warmup phase as the features are inferred

from the upstream task.

3These methods are known by the names of the first authors of their corresponding papers.

44

Li and Hoiem [2017] use a validation set to determine when is a good time to

switch between the warmup phase and the main one. However, a statistically large

enough validation set can not be always used for the downstream task, given that

a major motivation for employing HTL is the small number of training instances.

Moreover, the effective number of required training steps in the warmup phase can be

large, depending on the learning rate, initial values of augmented parameters and the

size of the dataset. Our goal is to find a more elegant way to perform feature-tuning

in a single stage without interfering with the learning process.

5.3 Noise Reduction in Feature-tuning

As mentioned in Section 5.2, the initial backpropagated gradient with respect to the

feature-extractor parameters is not only large but is also mixed with irrelevant values,

or noise (see Definition 6) which can perturb the pretrained features. To decrease

feature perturbation, we aim to reduce both the level of noise and the magnitude

of the mentioned gradients in the beginning of feature-tuning. Note that the noise

that we are targeting is one that is rooted from inefficient model reconstruction. It is

inherently different from the noise that may exist in data instances and their labels;

therefore, sometimes for clarification we refer to it as the training noise4.

Definition 5 (Signal) Signal is a quantity that contains useful information.

Definition 6 (Noise) A random quantity is considered noise with regard to one

(multiple) signal(s) if it is not objectively related to that (those) signal(s).

According to the chain-rule for gradients, the gradient of the loss with respect to

extracted features can be expressed as

∂ℓ

∂a
=

∂ℓ

∂o

∂o

∂a
. (5.8)

where ∂ℓ
∂a

=
a

∇ℓ and ∂o
∂a

is a Jacobian. Decreasing the training noise in ∂ℓ
∂a

is equal

to decreasing noise in ∂ℓ
∂o

and each column of ∂o
∂a

. In Theorem 5 we show that ∂ℓ
∂o

is

equal to the prediction error δ = ŷ − y (see Definition 7). On the other hand, from

Equation (5.4) we can conclude that

∂o

∂a
= W . (5.9)

4This noise is also different from the noise related to the stochasticity of SGD.

45

Therefore
∂ℓ

∂a
= δW . (5.10)

In this equation, δ and W can include training noise, impacted by careless initializa-

tion. as well as carelessly using W and b through the forwards and then backward

passes.

Definition 7 (Prediction error) For predicted labels ŷ and true labels y, the pre-

diction error δ is defined as

δ ≜ ŷ − y. (5.11)

Note that it may make more sense to call δ “negative prediction error”; however, we

drop the negative word from the term just for the sake of simplicity.

Theorem 5 (Gradient w.r.t. head’s output, proof in Appendix B) The

gradient of cross-entropy loss with respect to head’s output is equal to the prediction

error.

fe
at

u
re

-e
x
tr

ac
to

r

h
ea

d

so
ft

m
ax

K
L

d
iv

er
ge

n
ce

x a o ŷ ℓ

(a) Conventional feature-tuning

fe
at

u
re

-e
x
tr

ac
to

r

z-
n

or
m

al
iz

at
io

n

h
ea

d

so
ft

m
ax

K
L

d
iv

er
ge

n
ce

x A a o ŷ ℓ

(b) ENTAME

Figure 5.2: Conventional feature-tuning versus ENTAME. The magnitude of the
initial values of head’s parameters is symbolically shown with density of dot patterns.

5.4 ENTAME

In this section, we describe how our solution is applied to task adaptation. Then in

Section 5.5, we discuss how it helps preserve transferred knowledge from an abrupt

perturbation. Compared to the conventional feature-tuning, ENTAME has two spe-

cial characteristics: 1- extracted features are normalized, 2- head parameters are

initialized to zeros. These characteristics are depicted in Figure 5.2.

46

5.4.1 Feature Normalization

ENTAME is defined for working with mini-batch SGD. Before the extracted features

are fed to the model’s head, z-normalization is applied on them across the batch

dimension. This normalization operation can be expressed as

A =
a− ā√
s(2) + ϵ1

; (5.12)

where ā and s(2) are the mean and variance of features across the batch dimension,

respectively. The subtraction, addition and division are element-wise between vectors

in this equation. The scalar ϵ is a small number to avoid numerical problems. For

clarity, let E
batch

be the averaging across the batch dimension (sample mean). Then

we can represent the statistics in this z-normalization operation as

ā = E
batch

[a] (5.13)

and

s(2) = E
batch

[⟨a− ā,a− ā⟩]. (5.14)

We assume that the probability of the special case of a = 0 is near zero as such a

condition is a strong indication of domain dissimilarity, hence TL would be unlikely

to outperform training from scratch.

In general, this normalization is similar to batch-normalization [Ioffe and Szegedy,

2015], except that it does not need any learnable parameters. To avoid transduction,

the statistics used in inference mode of our simple z-normalization are detached (from

the computational graph) version of the ones obtained in the latest training step. We

discuss the role of this normalization in Section 5.5.

5.4.2 Maximum Entropy Initialization

Let Wi,j denote the element on the i-th row and j-th column of W . ENTAME ini-

tializes elements of b and W to zero. To account for precision of the hosting machine

and numeric errors, as well to qualitatively measure the importance of the head’s

initialization, let us instead assume weights are drawn from a normal distribution as

follows:

∀i ∈ {1, 2, . . . , C}, j ∈ {1, 2, . . . , Q} : W 0
i,j ∼ N (0, σ(2)); (5.15)

47

where σ(2) is the variance of each initial value in W and is chosen to be very small.

Assume the same initialization for the elements of b. A small σ(2) results in a near

all-zero o at the beginning of the training (see Equation (5.4)). The exponential

function is linear around zero and hence, the softmax outputs approximately 1
C

for

each class regardless of the input. This is further discussed in Section 5.5 where it is

also shown that as a result, the initial entropy of the predicted labels is maximized.

5.5 Discussion

5.5.1 Maximum Entropy Predicted Labels

Near zero initialization of model’s head is achieved when σ(2) in Equation (5.15) is cho-

sen to be small. Theorem 7 states that such an initialization, despite being stochastic,

approximately maximizes the entropy of predicted labels. This is concluded from the

condition for the maximum entropy of the predicted labels determined in Theorem

6. The variance of elements of resulting ŷ, depends on the number of classes. For a

large C variance of ŷ0 and so that variance of δ0 converges to 1 (see Corollary 3).

Definition 8 (Entropy of probability simplex) Entropy of vector v subjected to∑︁i=C
i=1 vi = 1 and ∀i ∈ {1, 2, . . . , C} : vi ≥ 0, is defined as

H(v) := −
i=C∑︂
i=1

vi ln vi (5.16)

Theorem 6 (Maximum entropy of predicted labels, proof in Appendix B)

Maximum entropy of predicted class labels is achieved when all classes are predicted

equally.

Theorem 7 (proof in Appendix B) ENTAME makes the expected entropy of

predicted labels initially maximized.

Corollary 2 (proof in Appendix B) If ∀i, j ∈ {1, 2, . . . , C} : ŷi = ŷj then ⟨δ, δ⟩ =

C−1
C

.

Corollary 3 (proof in Appendix B) If ∀i, j ∈ {1, 2, . . . , C} : ŷi = ŷj, a large C

implies ⟨δ, δ⟩ ≈ 1.

48

5.5.2 Feature Normalization

Since σ(2) is very small, E
batch

[∥
a

∇ℓ∥] becomes very small too (see Equation (5.10)). This

is practically depicted in Figure 5.1 which reflects the magnitude of the difference in

log E
batch

[∥
a

∇ℓ∥] between ENTAME and the baselines. In this Figure, SW stands for

“small weights” and FN for “feature normalization”.

As we eventually aim to update the feature-extractor’s parameters, ∥W ∥F is de-

sired to gradually increase. When the magnitude of the features is small, increase of

∥W ∥F is also hindered. This condition does not result in a quick transitioning from

maximum entropy prediction nor the feature-extractor gets updated. As a result, the

training converges slowly. On the other hand, large magnitude features can cause

rapid increase in ∥W ∥F after just a few optimization steps, which in turn results in

undesired larger updates to the feature-extractor.

To alleviate this dilemma, we use a feature normalizer (as described in Section

5.4) so ∥W ∥F is appropriately increased right after the first steps. In Theorem 8 and

Corollary 4, we analytically show that except in the case where first mini-batch only

contains instances of a single class, ∥W ∥1F > ∥W ∥0F . This implies that after the first

step, typically larger updates are applied to the feature-extractor parameters. Figure

6.1, demonstrates how fast ∥W ∥F is increased for different choices of σ2. Besides

the initialization, the learning rate plays a role in the amount and speed of ∥W ∥F
increase at the beginning of tuning. We briefly overview this effect in Section 5.6.2

of this chapter. Chapter 6 expands further on the relation between learning rate and

∥W ∥F .

Theorem 8 (proof in Appendix B) ENTAME guarantees

∥W 1∥F ≥ ∥W
0∥F (5.17)

Corollary 4 (proof in Appendix B) When all instances from the first mini-batch

are from the same class, ENTAME gives

∥W 1∥F = ∥W 0∥F (5.18)

5.5.3 Generalized Maximum Entropy Initialization

As shown earlier in this section, initializing b and W to all zeros results in maximum

entropy predictions as well as no updates to the feature-extractor’s parameters at the

49

beginning of feature-tuning. In this section, we generalize this initialization scheme

and show that the mentioned properties are maintained as long as the rows of W 0

stay the same and b0 has the same elements. In other words, one can choose an

ordered sequence of Q random values of any magnitude, set it as initial values of each

row of W (see Algorithm 1) and not only get maximum entropy predictions but also

zero gradient to the feature-extractor.

Algorithm 1 Generalized maximum entropy initialization

Input: W

draw v from any arbitrary distribution such that |v| = Q

for c = 1 to C do

Wc ← v

end for

We express these properties in Theorems 9 and 11, and analytically prove them

in Appendix B. Furthermore, in Section 5.6, we experimentally compare this scheme

to the one presented in Section 5.4 as well as to the baselines.

Theorem 9 (generalized maximum entropy initialization, proof in Ap-

pendix B)Maximum entropy prediction labels is achieved when ∀c, c′ ∈ {1, 2, . . . , C} :

Wc = Wc′ and bc = bc′.

Theorem 10 (rows stays equal, proof in Appendix B) Let C ′ be the set of

classes that were never observed by the model during training. If mini-batch SGD is

used as the optimization algorithm, then ∀c, c′ ∈ C ′ : Wc = Wc′ and bc = bc′ stays

true as far as no training instance from classes c and c′ is observed.

Theorem 11 (proof in Appendix B) Given condition expressed in Theorem 9 we

have E
batch

[
a

∇ℓ] = 0 for the first optimization step using mini-batch Stochastic Gradient

Descend (mini-batch SGD).

5.6 Experimental Results

5.6.1 Feature-tuning with ENTAME

The section aims to experimentally analyze the impact of ENTAME’s components,

maximum entropy initialization and feature-normalization. For maximum entropy

50

initialization, we use the method described in Section 6.3.

Data In this Chapter, we conduct experiments on the classification tasks defined

by the following datasets:

• MNIST [LeCun, 1998]: It includes 60,000 training and 10,000 test examples of

hand-written digits. These images are 24×24 and in gray-scale. MNIST defines

a comparably easy to classify task. The classification tasks is roughly balanced

with about 6,000 and 1,000 training and test images per class, respectively.

• CIFAR-10 [Krizhevsky et al., 2009]: It provides 5,000 training and 1,000 test

images of each of the following 10 classes: “airplane”, “automobile”, “bird”,

“cat”, “deer”, “dog”, “frog”, “horse”, “ship”, and “truck”. Images are sized 32

by 32 and are in RGB format.

• CIFAR-100 [Krizhevsky et al., 2009]: It is similar to CIFAR-10 in size and

dimension except that its 50,000 training and 10,000 test images are equally

categorized into 100 classes.

• Caltech-101 [Li et al., 2022]: Consists of 9, 146 images labeled as exclusive

instances of 101 objects. Each image is roughly 300 by 300 pixels. The classifi-

cation task is imbalanced.

Caltech-101 is not originally separated into train and test splits nor is balanced in

contrast to the other datasets listed above. Therefore, we randomly split each of its

categories into train and test subsets with 15 percent chance of drawing each image

for the test subset.

Model Architectures Off-the-shelf models pretrained on ImageNet are used. The

model architectures used in this experiment include ResNet-50, ResNet-152 He et al.

[2016], DenseNet-121, DenseNet-201 Huang et al. [2017], VGG-16, VGG-19 Simonyan

and Zisserman [2014] and Inception-V3 Szegedy et al. [2016].

Batch Size Among these models, Inception-V3 requires all images to be scaled up

to 229 × 229. Due to limitations in our GPUs’ memory, a batch size of 64 is chosen

for experiments corresponding to Inception-V3. In addition, the other models that

51

are trained on the Caltech-101 dataset are also fed 64 images per batch owning to

large image sizes in this dataset. All other models and dataset use the training batch

size of 256.

Data Augmentation For images in the target tasks, each input channel is normal-

ized with its mean and standard deviation obtained from all pixels in that channel

throughout the corresponding training subset before being fed into the models. Ran-

dom horizontal flipping is also applied to training images. As already indicated, in

experiments where Inception-V3 is used as the model architecture, images are scaled

to 229 × 229. For all other architectures, only MNIST, and Caltech-101 images are

scaled to 32× 32 and 200× 200, respectively. No scaling is applied to images in the

rest of the settings.

Baselines The fan-in mode of the method recommended by He et al. [2015] is used

for initializing parameters of the appended head in the base models. In contrast to

fan-out mode, the fan-in mode of this method tries to preserve the variance of the

data in the forward pass. In this section, we tried to unify the problem by applying

similar conditions for training different models as much as possible. This by itself

would show the impact of the proposed method and how universally it could help the

task adaptation, even without considering micro tuning for each method.

Optimization It is important to note that the reported performance for the exper-

iments of this chapter is not intended to be compared with the best performance one

has ever come up with for the tasks under this study but rather it should be viewed

as a measures to compare the methods with each other5. We used Adam as the op-

timization algorithm in the experiments of this section. For each model architecture

and dataset, the best learning rate is selected between {10(−5), 10(−4), 10(−3)}. In most

cases, 10(−4) showed the best overall performance in terms of the area under the test

accuracy’s curve. For ENTAME, the value of σ(2) is chosen to be 10(−12) everywhere.

5For example, as it can be implied by comparing to experiments in Chapter 6, scaling the training
images up can lead to much better performance in most of the cases; however, the performance gap
between ENTAME and the baselines is retained.

52

1 201 401 601 801 1001 1201 1401 1601 1801

steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
te
st

a
cc
u
ra
cy

base WU SW FN+SW

2 4 6 8 10 12

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Figure 5.3: Feature-tuning ResNet-50, ImageNet ↦−→ CIFAR-10.

1 301 601 901 1201 1501 1801 2101 2401 2701

steps

0.1

0.2

0.3

0.4

0.5

0.6

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 5.4: Feature-tuning ResNet-50, ImageNet ↦−→ CIFAR-100.

Overall Performance Comparison Figures 5.3, 5.4 and 5.5 show the progress

of test accuracy of pretrained ResNet-50 tuned on different datasets. We provide

similar plots for other model architectures in Appendix B. The smaller plot inside

53

1 101 201 301 401 501 601 701 801 901 1001 1101 1201

steps

0.2

0.4

0.6

0.8

1.0

te
st

a
cc
u
ra
cy

base WU SW FN+SW

2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5.5: Feature-tuning ResNet-50, ImageNet ↦−→ Caltech-101.

each larger one shows the same curves zoomed-in to better present the first steps

of training. The shade around each curve shows the standard deviation across 24

different random seeds. Each plot includes 4 curves color mapped as follows: blue

is for the base (fan-in mode of the recommended initialization in [He et al., 2015]),

orange is for the base with a single Warm Up (WU) step, green is for Small Weight

(SW) initialization for the head, red is for the full ENTAME or SW + Feature

Normalization (FN). We also conducted experiments only applying FN, but they

mostly performed worse than all other cases, so they are not included for the sake

of saving space and increasing the readability of the plots. In almost all the cases,

feature normalization (FN) used along with small weight (SW) initialization results in

the best performance. For many of the cases, the zero initialization is the main factor

for the improvement and the features do not need to be normalized. However, for

some cases applying the feature normalization has a significant impact (for example,

see Figures 5.5).

Initial Speedup To measure how the convergence is sped up initially, we compare

average test accuracy over first ten training steps. Paired t-test suggests that EN-

TAME significantly enhances the test accuracy compared to the base method for all

54

Table 5.1: Average initial test accuracy (in percent) improvement by using ENTAME
instead of the base method. The entries show increase in the mean of test accuracy
over first 10 steps of training with 95% confidence interval calculated over 24 random
seeds.

MNIST CIFAR-10 CIFAR-100 Caltech-101
ResNet-50 10.86± 2.97 21.81± 1.10 10.19± 0.32 31.29± 1.21
ResNet-152 4.52± 1.90 18.94± 1.22 9.74± 0.41 30.75± 1.09
DenseNet-121 12.61± 1.55 28.38± 0.98 13.21± 0.26 43.95± 1.25
DenseNet-201 17.90± 1.85 26.10± 1.08 11.99± 0.26 39.09± 1.95
VGG-16 35.29± 2.40 29.14± 0.78 13.95± 0.38 25.86± 0.90
VGG-19 33.04± 1.69 28.37± 1.30 13.38± 0.40 25.58± 1.31
Inception-V3 9.17± 1.38 33.21± 2.02 8.90± 0.38 31.94± 1.48

Table 5.2: Convergence test accuracy of models trained on CIFAR-10 dataset with
95% confidence.

Base Base+WU SW SW+FN
ResNet-50 79.73± 0.43 79.74± 0.76 85.80± 0.35 85.54± 0.20
ResNet-152 79.18± 1.07 78.70± 1.16 86.02± 0.32 86.01± 0.14
DenseNet-121 80.21± 0.23 80.39± 0.31 86.20± 0.23 86.32± 0.27
DenseNet-201 81.11± 0.35 80.92± 0.46 86.27± 0.20 86.38± 0.29
VGG-16 87.50± 0.37 87.70± 0.47 88.79± 0.61 89.19± 0.25
VGG-19 87.94± 0.60 88.12± 0.25 88.77± 0.22 89.12± 0.19
Inception-V3 95.58± 0.47 95.50± 0.60 95.93± 0.27 95.91± 0.21

architectures and datasets mentioned in this document. Table 5.1 reports the aver-

age increase in the test accuracy of the first 10 training steps with a 95% confidence

interval. As implied from almost all of the cases, careful initialization makes the

feature-tuning process converge much faster. The case of Inception-V3 is an excep-

tion but there is no surprise in this difference as it converges much faster compared to

other models in all the cases6. We have observed further improvements by adjusting

σ(2), mini-batch size, and learning rate; however, to show the robustness of our model

we tried to keep a unified setup as much as possible.

Converged Performance Finally, the converged accuracy of employed models is

listed in Tables 5.2, 5.3 and 5.4. The convergence test accuracy is recorded after

training models for 10 epochs if target dataset is CIFAR-10 or Caltech-101 and 15

epochs if target dataset is CIFAR-100.

6Recall that the inputs images are scaled to 229× 229 in experiments on Inception-V3.

55

Table 5.3: Converged test accuracy of models trained on CIFAR-100 dataset with
95% confidence interval.

Base Base+WU SW SW+FN
ResNet-50 59.38± 0.39 59.44± 0.41 61.50± 0.46 61.54± 0.35
ResNet-152 58.71± 1.37 58.50± 0.89 61.91± 0.63 61.85± 0.77
DenseNet-121 56.52± 0.46 56.70± 0.26 62.52± 0.41 62.90± 0.27
DenseNet-201 58.27± 0.62 57.98± 0.58 63.36± 0.15 63.64± 0.59
VGG-11 60.67± 0.29 60.64± 0.51 63.49± 0.34 62.88± 0.56
VGG-16 63.94± 0.24 63.77± 0.22 65.19± 0.58 64.99± 0.40
VGG-19 64.30± 0.42 64.47± 0.54 65.11± 0.28 65.02± 0.21
Inception-V3 82.25± 0.37 82.19± 0.21 82.17± 0.32 81.75± 0.64

Table 5.4: Converged test accuracy of models trained on Caltech-101 dataset with
95% confidence.

Base Base+WU SW SW+FN
ResNet-50 89.69± 3.30 90.69± 1.12 93.87± 0.61 92.15± 1.61
ResNet-152 93.12± 1.01 92.98± 1.04 93.19± 0.84 93.71± 1.34
DenseNet-121 92.36± 0.67 92.41± 0.91 95.13± 1.03 95.96± 0.19
DenseNet-201 93.95± 0.53 94.01± 0.50 94.87± 1.90 96.50± 0.71
VGG-16 89.35± 1.75 91.02± 0.95 90.07± 0.68 94.69± 1.19
VGG-19 90.50± 1.42 89.96± 0.90 89.70± 1.28 90.53± 4.15
Inception-V3 94.98± 0.54 95.07± 0.67 95.70± 0.41 95.50± 0.89

5.6.2 Gradual Increase of the Norm of Head’s Weights

Learning rate is an important factor to make sure ∥W ∥F properly increases and in

turn feature-extractor parameters get adapted to the target task. Figures 5.7 show

how ENTAME results in gradual increase in ∥W ∥F for when Adam with learning rates

of respectively, 10(−4) is used. This corresponds to the same setup as the one used for

Figure 5.4. Figures 5.6 and 5.8 provide further insight on the increase of ∥W ∥F for

when respectively smaller and larger learning rates are employed. Comparing these

figures suggests that a larger learning rate leads to saturating ∥W ∥F to a larger value.

5.6.3 Domain Similarity

In this section, we investigate how the level of similarity between the source and target

domains impacts feature-tuning for different head initialization schemes. To control

the domain similarity, we further partition the training split of a dataset into two

56

0 25 50 75 100 125 150 175

steps

100

101

lo
g
∥W
∥ F

Xavier
Kaiming in
Kaiming out
SW
FN+SW

Figure 5.6: Frobenius norm of W for different initialization methods in log scale.
Adam with η = 10(−3) is used. See details of this experiment in Section 5.6.2.

0 25 50 75 100 125 150 175

steps

10 1

100

101

lo
g
∥W
∥ F

Xavier
Kaiming in
Kaiming out
SW
FN+SW

Figure 5.7: Frobenius norm of W for different conventional initialization methods in
log scale. Adam with η = 10(−4) is used. See details of this experiment in Section
5.6.2.

57

0 25 50 75 100 125 150 175

steps

10 2

10 1

100

101

102

lo
g
∥W
∥ F

Xavier
Kaiming in
Kaiming out
SW
FN+SW

Figure 5.8: Frobenius norm of W for different initialization methods in log scale.
Adam with η = 10(−5) is used. See details of this experiment in Section 5.6.2.

disjoint sets. We use one of these new partitions as the training data for pretraining

and the other for feature-tuning. In this way we can impose the level of domain

similarity through our method of partitioning. Although the source and target tasks

have the same number of classes in this setting, we still replace the transferred head

before training on the target task. This is because our goal is to see the impact of

head initialization and feature normalization on the target performance. Notice that

source and target tasks can still be distinct if the order of classes in the target task

is perturbed, yet the training is not effected mathematically.

Data In order to make sure that the data distribution varies from source domain

to the target domain, we partition a dataset into two disjoint sets with an equal

number of instances but different label distributions. One of these sets is used for

pretraining and the other one for feature-tuning. The label distribution for each

partition is determined by sampling from a Dirichlet distribution with C dimensions

and concentration factor α. A smaller α results in more heterogeneous samples,

meaning that it is less probable for the sampled vectors to have equal elements. Each

partition is filled with half of the original training data samples drawn based on its

58

1 2
0

20

40

60

80

100
cl
as
s

α = 0.01

1 2

α = 0.1

1 2

α = 1.0

1 2

α = 10.0

partition

Figure 5.9: The partition distribution of each class of the training examples after
partitioning CIFAR-100 dataset. From left to right the concentration factor α is in-
creased. The horizontal and vertical axes show partition numbers and class numbers,
respectively. The size of the circles represents the relative number of data instances.

59

10 2 10 1 100 101

log(α)

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

te
st

ac
cu

ra
cy

Xav
Xav + FN

Kin
Kin + FN

Kout
Kout + FN

SW
SW + FN

SR
SR + FN

Figure 5.10: The effect of task similarity on methods under the study for feature-
tuning.

determined label distribution, one after another without replacement. Figure 5.11

compares the result of this partitioning scheme for different values of α. In this

experiment, the size of the training batch is set at 256. The images are scaled down

to 24× 24, and no data augmentation is applied.

Model architecture We use a comparably shallow CNN for this experiment. Our

choice is motivated by maintaining consistency with the experiments of Chapter 7

and FL baselines. The model architecture consists of two convolutional layers with

5× 5 kernel size and 64 kernels each, followed by two fully-connected layers with 394

and 192 hidden units, respectively.

60

1 2 3 4 5 6 7 8 9 10

partition

0

20

40

60

80

100
cl
as
s

α = 0.03

1 2 3 4 5 6 7 8 9 10

partition

α = 10.0

Figure 5.11: The partition distribution of each class of the training examples after
partitioning CIFAR-100 dataset. On the left subplot α = 0.03 is used while on the
right subplot, α = 10.0. The horizontal and vertical axes show partition number and
class number, respectively. The size of the circles represents the relative number of
data instances.

61

Other settings For training, we use SGD with 0.9 as momentum both in pretrain-

ing and feature-tuning stages. The pretraining uses 0.001 as the learning rate. In

tuning stage, we try all the learning rates in {0.0001, 0.001, 0.01, 0.1, 0.2, 0.5, 1.0} for

each method and select the setting that yields the best result. We made sure that the

optimizer is re-initialized at the beginning of feature-tuning to prevent propagating

extra information through momentum statistics. The pretraining is performed for 10

epochs while each training sample is visited only once during feature-tuning (single

epoch). We use Xavier to initial the head for the pretraining stage.

Methods We consider the following methods for re-initializing W before feature-

tuning: Xavier initialization (Xav) [Glorot and Bengio, 2010], the fan-in mode of

Kaiming initialization (Kin) [He et al., 2015], as well as its output mode (Kout),

small weights (SW) initialization as described in Section 5.4, and the generalized

maximum entropy initialization introduced in Algorithm 1 or in short “Same Row”

(SR) initialization. To be fair, for each case, we measure the performance with and

without feature normalization (FN) layer we used in ENTAME. For SR, the vector

used to initialize rows of W is drawn from a normal distribution N (0, 1).

Performance Figure 5.10 compares the test accuracy of different methods on the

target domain. The dashed lines correspond to the same methods represented by

solid lines with the same color and marker except that feature-normalization (FN) is

applied on top of them. As seen in this figure, for all the levels of domain similarity,

the best results are acquired when maximum entropy initialization (SW or SR) is

used along with feature normalization. The feature normalization significantly

helps with the performance on the target task/domain. Furthermore, the

performance gap with average of the baselines gets larger when the source and target

domains are almost identical (case of α = 10).

5.6.4 Continuous Hypothesis Transfers

So far, we have discussed the efficiency of forwarding knowledge from one task or

domain to another through employing pretrained models. We introduced a method

that helps training a target task by adapting the forwarded knowledge more efficiently.

62

Given the large impact of this method on the performance and speed of convergence

on the target task, some interesting questions may naturally emerge. These include:

• what is the impact of the introduced method when applied on the source learning

procedure?

• how does the method work for a chain of hypothesis transfers?

This section looks for some possible answers to these questions.

To make quantitative measures possible, we consider a different setup than the one

studied so far (i.e., task adaptation). In particular, we consider an episodic HTL set-

ting where each episode involves both hypothesis transfer and training. Additionally,

from one episode to another, the data distribution may significantly change. This can

be considered a form of CL where the goal is to maximize the efficiency in adapting

to each new distribution. Note that another popular desire in CL is to also maintain

the previously learned knowledge which is not subject of this study. The task learned

at each episode is the same by definition (see task definition at 2.1). Therefore, the

transferred head is maintained and tuned along with the feature-extractor.

Algorithm 2 An episodic training and evaluation procedure.

Input: model and pairs of training and test splits with domains {D1,D2, . . . ,DT }
/* loop of T episodes */

for t = 1 to T do

train the model on training split with domain Dt

for t′ = 1 to T do

evaluate the model on test split with domain Dt′

end for

end for

Algorithm 2, shows our episodic train and evaluation procedure used in this sec-

tion. At each episode t, we train the model on a training split with domain Dt, then,

evaluate it on all of the test partitions. In this setting, among the evaluation acquired

at the end of episode t, we care the most about the one performed on test split with

domain Dt which is related to the adaptability of the model. Moreover, the evalua-

tions on the test splits with domains in {∀s < t : Ds} can reflect the ability of the

model to maintain its previous learned knowledge.

63

Data In order to make sure that the data distribution varies from one learning

episode to another, we partition a dataset into disjoint sets with an equal number

of instances but different label distributions. We then use each of these sets in a

separate episode. Similar to Section 5.6.3, the label distribution for each partition is

determined by sampling from a Dirichlet distribution with C dimensions and concen-

tration factor α. A smaller α results in more heterogeneous samples, meaning that it

is less probable for the sampled vectors to have equal elements. With m total sample

and n partitions, each partition is filled with m
n

data samples drawn based on the la-

bel distribution determined for that partition, one after another without replacement

from the original dataset. The same sampled label distribution is employed to par-

tition the training split of the dataset as well as its test split. Figure 5.11 compares

the result of this partitioning scheme for α = 0.03 (on the left) and α = 10.0 (on the

right). We use CIFAR-100 that is partitioned on 10 sets with Dirichlet concentration

factor, α = 0.03 for the experiments of this section. The size of the training batch

is set at 256. The images are scaled down to 24 × 24, and no data augmentation is

applied.

Other settings We use the same model architecture as in Section 5.6.3. For train-

ing, we use SGD with 0.9 as momentum for each episode keeping the learning rate

identical across episodes. We made sure that the optimizer is initialized at the be-

ginning of each episode to prevent the momentum statistics from propagating extra

information. Each training sample is visited only once. In other words, each training

episode is performed for a single epoch.

Methods We consider the same set of methods as of Section 5.6.3. To be fair, for

each case, we measure the performance with and without feature normalization (FN)

layer we used in ENTAME. Additionally, we scale features to get the best we can

out of each method. Whenever FN is employed too, the scalar is applied after it.

For each method, we try all the feature scalar values in {0.025, 0.5, 1, 2, 4}, and all

the learning rates in {0.0001, 0.001, 0.01, 0.1, 0.2, 0.5, 1.0}. For SR, the vector used to

initialize rows of W is drawn from a normal distribution N (0, 1).

64

1 2 3 4 5 6 7 8 9 10

domain

1
2

3
4

5
6

7
8

9
10

ep
is
o
d
e

4.6 0 0 0 0 3.0 0 0 2.4 0

0 9.9 0 0 0 0 0 0 0 0.1

0 0 9.3 0 0 0.7 0 0 0 0

0 0 0 10.0 0 0 0 0 0 0

0 0 0 0 9.8 0 0.2 0 0 0

1.8 0 0 0 0 8.2 0 0 0 0

0 0 0 0 0 0 9.8 0 0.2 0

0 0 0 0.5 0 0 0 9.3 0 0.2

0.4 0 0 0 0 0 0 0 9.6 0

0 0 0 0 0 0 0 0 0 10.0

0

5

10

15

20

25

30

35

Figure 5.12: Test accuracy measured for all domain per training episode using best
configuration for Xav (η = 0.1, features scaled by 1.0).

Learning and adaptability performance Figures 5.12 to 5.15 show the best

evaluation outcome for Xav + FN, SW + FN, and SR + FN respectively. In these

figures, rows from top to bottom reflect the sequence of training the model while the

columns show evaluation result on test split of corresponding partitions. Therefore,

numbers on and below diagonal are directly related to the ability of the model to learn

new domains and preserve knowledge of previous domains, respectively. All other

baselines (with and without feature normalization) show much poorer performance

in terms of the average test accuracy on the diagonal; however, we include similar

figures for them in Appendix B. An interesting observation is that in Figures 5.13 to

5.15 there is significant drop in performance in episodes 5 and 6. This can be justified

by looking at the extent of label distribution shifts for these episodes correspondingly

visualized on the left subplot of Figure 5.11. Figure 5.16 shows the average test

accuracy on diagonal (as on diagonal of matrices in Figures 5.12 to 5.15) for all of the

methods used in this experiment. Overall, from the results quantitatively presented in

65

1 2 3 4 5 6 7 8 9 10

domain

1
2

3
4

5
6

7
8

9
10

ep
is
o
d
e

24.5 1.9 1.3 1.8 1.8 7.2 0.4 3.4 5.8 2.6

1.7 23.1 1.1 1.1 3.6 3.2 1.9 1.1 2.3 1.8

3.9 2.0 27.2 0.5 0.9 3.2 3.0 1.1 1.4 0.6

1.1 0.7 1.1 24.1 0.6 1.9 0.7 0.8 1.3 0.6

2.0 6.4 3.3 4.5 12.1 2.1 0.8 1.1 3.4 2.6

8.9 4.9 3.6 5.5 4.5 16.2 1.3 1.0 4.6 0.3

0.9 1.3 6.9 1.3 0.8 2.2 24.4 2.9 1.7 0.3

4.6 3.2 2.4 2.3 2.3 2.2 9.2 15.2 2.2 3.1

9.8 3.5 3.1 2.1 1.2 7.7 4.9 5.8 23.1 5.6

5.2 1.5 2.4 0.9 1.1 1.7 3.2 7.5 6.6 26.6

0

5

10

15

20

25

30

35

Figure 5.13: Test accuracy measured for all domain per training episode using best
configuration for Xav + FN (η = 0.001, features scaled by 2).

this section and related ones in Appendix B, the following conclusions can be inferred:

• Feature normalization (FN) can have a surprisingly large impact on the conver-

gence speed.

• Maximum entropy initialization can further help the convergence speed.

• The generalized maximum entropy initialization has the same learning capabil-

ities as near zero initialization, even with large magnitude of drawn values (We

used N (0, 1)).

5.7 Conclusion

In this chapter, we showed the significance of a careless initialization of model’s head

for feature-tuning in task adaptation. We illustrated how an incremental increase

66

1 2 3 4 5 6 7 8 9 10

domain

1
2

3
4

5
6

7
8

9
10

ep
is
o
d
e

27.3 0.7 1.1 0.5 1.0 9.0 0 2.3 7.1 3.2

1.5 29.5 2.0 0.7 3.7 2.1 3.9 2.9 2.2 1.9

1.2 3.3 31.0 0.8 1.8 1.4 2.8 0.4 0.5 0.7

0.8 0.3 1.4 33.0 0.5 1.6 0.9 0.3 1.2 0.2

1.8 7.2 3.0 0.6 19.9 2.0 1.2 1.9 1.9 2.5

6.3 2.7 3.8 1.1 2.9 18.4 0.7 0.3 3.2 0.4

0 2.9 2.7 0.3 0.9 0.6 30.1 4.0 1.9 0.1

3.4 2.4 0.9 0.7 0.7 0.3 2.4 19.8 0.9 3.8

4.6 1.9 1.1 1.6 0.6 4.3 2.7 2.0 23.0 4.4

4.1 1.4 3.0 1.2 0.2 1.4 1.0 6.2 6.2 28.3

0

5

10

15

20

25

30

35

Figure 5.14: Test accuracy measured for all domain per training episode using best
configuration for SW + FN (η = 0.01, features scaled by 2).

in the norm of gradients to a pretrained feature-extractor can improve the outcome

of the training on the target task. We proposed ENTAME, a task adaptation tech-

nique to improve the speed of convergence and generalization performance through

preserving the transferred features from large and noisy updates at the starting steps

of feature-tuning. We compared our proposed method with the most conventional

practices for feature-tuning through an extensive set of experiments. Our experi-

ments suggest that compared to the baselines, ENTAME can significantly improve

the speed of convergence and even the converged performance across various task

and architectures. Additionally, from our theoretical and experimental results, we

can conclude that

• the maximum prediction entropy can be achieved either by initializing the head’s

weight matrix to (close to) zero values or the same row values.

• given maximum entropy initialization, the initial norm of the perdition error

67

1 2 3 4 5 6 7 8 9 10

domain

1
2

3
4

5
6

7
8

9
10

ep
is
o
d
e

25.5 3.7 1.6 1.1 2.2 7.6 0.3 4.1 7.6 3.3

2.2 28.2 1.5 0.9 4.7 2.9 4.2 2.4 3.9 2.6

1.3 4.8 30.8 0.2 1.2 2.0 3.6 0.5 0.2 0.3

0.4 0.4 0.2 34.3 0.1 1.0 0.8 0.3 1.1 0.1

2.1 6.3 2.4 0.5 16.3 1.2 0.8 0.8 1.5 1.5

7.0 3.7 5.2 1.2 2.8 19.9 0.3 0 2.9 0.1

0.2 1.2 6.4 1.7 0.2 1.4 28.9 3.0 2.4 2.9

3.9 2.3 2.6 2.0 0.9 0.9 5.4 20.2 2.4 4.8

8.5 2.4 2.2 2.4 0.6 6.7 3.0 2.0 25.7 5.0

5.4 1.7 3.0 1.4 0.5 1.5 1.0 7.3 4.5 32.6

0

5

10

15

20

25

30

35

Figure 5.15: Test accuracy measured for all domain per training episode using best
configuration for SR + FN (η = 0.01, features scaled by 4).

converges to 1 for a classification task with large number of classes;

• ENTAME guarantees increasing the Frobenius norm of heads weights, except

when all samples are from the same class.

• maximum entropy initialization prevents the transferred features from being ini-

tially perturbed (because the gradient to feature extractor become zero math-

ematically).

• our proposed method works better when the source and target domains are

more similar to each other.

• feature normalization can give a surprisingly large boost to feature-tuning.

Nevertheless, our method, ENTAME comes with a few caveats for certain training

settings. These shortcomings stem from requiring the normalization across the batch

68

X
av K
in

K
ou

t

S
W S
R

X
av

+
F
N

K
in

+
F
N

K
ou

t
+

F
N

S
W

+
F
N

S
R

+
F
N

method

0

5

10

15

20

25

m
ea
n
te
st

a
cc
u
ra
cy

Figure 5.16: Mean test accuracy of episodes of hypothesis transfer for baselines and
proposed methods. The model is trained for one epoch in each episode and learning
rate is carefully tuned for each method.

dimension. We further discuss these shortcomings and try to address them in the

next chapter.

Chapter 6

Incremental Tuning with Decoupled Step Sizes

”The rapidity with which we forget is astonishing.”

- Dale Carnegie, How to Win Friends and Influence People

In Chapter 5, we showed that initializing the parameters of the model’s head with

zero or even near-zero values causes the feature-extractor to stay away from changes

at the beginning of the training. We also discussed why it is desired to gradually

increase the magnitude of the gradients backpropagated towards feature-extractor’s

parameters throughout the first steps of feature-tuning. Additionally, it was shown

that, these can be achieved by increasing the Frobenius norm of the weights of the

head, starting from almost zero. For ensuring such increase in the norm, our proposed

method, ENTAME incorporated a feature normalizer.

In this chapter, we introduce another approach to gradually increase the norm

of head’s parameters. We propose Fast And Stable Task-adaptation (FAST) which

instead of the feature-normalizer in ENTAME, considers tuning a separate learning

rates for the parameters of the model’s head. Moreover, we take a closer look into

the impact of the gradual tuning strategy used by FAST on catastrophic forgetting.

6.1 Problem statement

It was shown in Chapter 5 that ENTAME significantly boosts convergence with

feature-tuning across various benchmarks. However, it has a few drawbacks including

• mini-batch size dependency : the feature-normalization in ENTAME is per-

formed across the batch dimension. What if only a single instance could be

drawn in each batch for training?

• output size dependency : ENTAME ensures effective updates on feature-extractor

through the increase of ∥W ∥F . This norm depends on the output size (C).

69

70

Given the same pretrained feature-extractor, a classification task with a larger

number of classes may result in larger update to the feature-extractor param-

eters. This undermines the feature-normalization attempt to unify the rate of

increase in update magnitudes. Thus, ENTAME’s impact on performance is

not completely model agnostic.

• memory efficiency : ENTAME uses an extra normalization layer which in turn

requires memory to store the mean and variance of the extracted features. The

amount of required memory depends on the dimensions of the feature space

(Q). This overhead can be important for edge model training where usually

there are resources constraints.

All of these ENTAME’s limitations stem from normalizing the features. Can we find

an alternative approach to gradually increase ∥W ∥F but avoid the extra memory and

dimensional dependencies of ENTAME?

6.2 FAST

According to Theorem 8 and Corollary 4, if the first training mini-batch contains

instances of more than one class, ENTAME guarantees ∥W 1∥F > ∥W 0∥F . Interest-

ingly, none of these are concluded from the feature-normalization in ENTAME (see

Proof of Theorem 8 and Corollary 4 in Appendix B). However, normalizing a, helps

controlling how fast the norm of W grows initially. Motivated by the shortcomings

stated in Section 6.1 and the results of Section 5.6.2, we propose to independently

control this growth by using separate learning rates for the head and the feature-

extractor. We refer to this method as FAST.

Formally, FAST is different from the conventional feature-tuning in two ways:

(i). it applies maximum entropy initialization (similar to ENTAME), (ii). it tunes

head with a separate learning rate than that of the feature-extractor. Figure 6.1 shows

the impact of initializing the head’s weights to small values in gradually increasing

∥W ∥F . In the corresponding experiment, using mini-batch SGD with momentum a

pretrained ResNet-18 is tuned on CIFAR-100.

71

0 6 12 18 24 30 36 42 48 54

SGD steps in Td

lo
g
(||
W
|| F

) W 0
i,j ∼ N (0, 10−8)

W 0
i,j ∼ N (0, 10−3)

W 0
i,j ∼ N (0, 10−2)

W 0
i,j ∼ N (0, 10−1)

W 0
i,j ∼ N (0, 1)

Figure 6.1: Frobenius norm of W for drawing initial head’s weights from Gaussian
distributions with different variances. The setup is different from the plots in 5.6.2.
See details of this experiment in Section 6.4. Note that the vertical axis is in log
scale.

6.3 Discussion

6.3.1 Geometric Interpretation

To justify the impact of adopting a pretrained model, most research works rely on the

concept of learning multiple levels of representations [Bengio, 2012, Zeiler and Fergus,

2014, Goodfellow et al., 2016]. According to this concept, higher-level representations

contain more abstract features [Bengio, 2012]. These representations correspond to

the layers that are closer to the input of the model [Zhong et al., 2016].

Another popular geometric view of DNNs, depicts the loss landscape (see Defi-

nition 1) in the space formed by all the model’s parameters, regardless of the layers

they belong to [Li et al., 2018]. This perspective has provided researchers with the

intuitions behind many optimization algorithms [Tseng, 1998, Duchi et al., 2011,

Tieleman et al., 2012, Kingma and Ba, 2015].

SGD walks the parameters through the parameters’ space under the light of the

gradients corresponding to the training data. It settle parameters in a minimum

point of the loss landscape, and hopefully this point also is a minimum for the loss

landscape corresponding to the true distribution of the data.

In order to employ the latter geometric view for understanding the concept of task

72

adaptation, answering a fundamental question seems to be necessary: in the space

formed by the model’s parameters, how much and in what direction should SGD drive

the parameters to quickly adapt a pretrained model to a target task? In other words,

in the aforementioned space, how much does the minimum of the target task’s loss

deviate from that of the source task and what is a good trajectory to quickly approach

it?

On our way to search for an answer to this question, let the Euclidean space

formed by the parameter set v be S(v). Notice that, each point on the landscape of

the loss that is depicted in parameter space S(v) is in fact, a point in S({v,L}) with

the loss (L) being the only non-parametric dimension in this space. As mentioned in

Section 5.1, to adapt a pretrained model for a target classification task, the space of

all model’s parameters are manually changed to S({ϕ,W b}) = S(θ). So, during

the model reconstruction, not only the number of dimensions in the parameter space

may change, but also the appended parameters are generally not relevant to either of

the tasks (the source task and the target task) before feature-tuning starts. In fact,

right after appending new head’s parameters, spotting the minimum of the source

task’s loss—where the pretraining has landed in—becomes difficult.

To make it possible to exploit the geometric view of the loss landscape for TL,

we only consider loss landscape corresponding to the feature-extractor’s parameters,

S(ϕ). This relaxed view of the loss landscape enables our analysis to link the loss

landscapes of the two tasks at the expense of having more complicated view of the loss

landscape of the target task. In this scheme, the modifications made in the appended

head’s parameters are reflected as deformation of the loss landscape in the space of

the pretrained parameters. More formally, moving in S(W , b) is reflected as changes

along the dimension L of S(ϕ,L). This perspective is flexible enough to symbolically

describe the effect of different TL strategies as it is shown in Figure 6.2 and Figure

6.3. The intuition provided in these figures is novel in the sense that it can reflect

updates on θ in S(ϕ). It relaxes the complexity in depicting a heterogeneous space

formed by both the pretrained feature-extractor’s and appended head’s parameters,

and opens up the opportunity to geometrically link the source task’s and target task’s

loss landscapes.

In each one of the subplots in Figure 6.2 and Figure 6.3, a model pretrained

73

ϕ∗
Ts

ϕ∗
Tt

(a) Feature-extraction

ϕ∗
Ts

ϕ∗
Tt

(b) Feature-tuning

Figure 6.2: Conceptual comparison between conventional task adaptation methods in
the loss landscape of feature-extractor parameters. Updating appended head param-
eters is depicted as moving the landscape of the target loss. The blue lines represent
modifying ϕ.

ϕ∗
Ts

ϕ∗
Tt

1

2

(a) Feature-tuning with head warmup (as
employed by Li and Hoiem [2017])

ϕ∗
Ts

ϕ∗
Tt

(b) FAST (ours)

Figure 6.3: Conceptual comparison between feature-tuning with head warmup and
FAST in the loss landscape of feature-extractor parameters. Updating appended
head parameters is depicted as moving the landscape of the target loss. The blue
lines represent modifying ϕ.

74

on task Ts is adopted to accelerate learning the target task Tt . The center of the

gray contours at the bottom, marked with ϕ∗
Ts , represents the minimum in the loss

landscape of Ts where ϕ settles in, at the end of the pretraining. Similarly, the aiming

minimum in the loss landscape of Tt is shown with ϕ∗
Tt , though its location in the

space is subjected to change because the appended parameters are modified by the

optimization algorithm. Thus, to make a clearer view, changes in the location of ϕ∗
Tt

is shown by multiple sets of contours with a gray-level set at the top to indicate the

initial location and is following by several color-tempered sets which represent the

deformations made in the loss landscape.

We simplified the landscape deformations with simple affine transformations (shift,

scale and rotation) applied on the minimum; however, many other kinds of transfor-

mations are also possible. The levels of the loss landscapes are shown with differently

tempered colors. The black is the coldest color used to show the minima whereas

ivory is used to describe the high altitude surface (with large loss values). Notice

that, the chosen shapes are symbolic to simply show the effect of each method; oth-

erwise, the minima valleys can be of any arbitrary shape [Skorokhodov and Burtsev,

2019, Czarnecki et al., 2019].

Starting from ϕ = ϕ∗
Ts , the goal of the task adaptation is to make ϕ get as

close as possible to ϕ∗
Tt . Figure 6.2a describes feature-extraction (e.g., employed by

Donahue et al. [2014]) in which only the appended parameters are trained and thus

ϕ = ϕ∗
Ts stays hold during the task adaptation. On the other hand in feature-tuning

(e.g., employed by Girshick et al. [2014]) shown in Figure 6.2b, both transferred and

appended parameters are jointly trained. The blue curve represents the updates on

ϕ in S(ϕ) corresponding to the steps taken by the optimization algorithm.

As shown in Figure 6.2, compared to feature-extraction, feature-tuning can poten-

tially guide ϕ closer to ϕ∗
Tt . However, as depicted in Figure 6.2b, carelessly initializing

W and b can mislead the optimization algorithm to guide ϕ in a wrong direction at

the beginning of feature-tuning. If the initial steps be large, they take ϕ far away

from ϕ∗
Tt and so postpone the convergence. One possible solution employed by Li

and Hoiem [2017] is to start with a warmup phase within which only W and b are

modified and ϕ is kept unchanged before they jointly are trained as in the typical

feature-tuning. This approach is depicted in Figure 6.3a where the arrows and circled

75

numbers determine the sequence of the applied changes.

The inclusion of a head warmup phase prevents W from randomly distorting

the back-propagating gradients and, therefore, the initial modifications on ϕ become

more likely to be in a path that leads to ϕ∗
Tt . However, since the distance from

ϕ∗
Tt is not predetermined by the first-order GD algorithms, it is also likely that the

initial steps for ϕ overshoot the minimum. Clearly, it is not easy to find an optimal

step size for these updates considering the commonly large number of dimensions

in S(ϕ,L). FAST, our proposed method for feature-tuning builds ϕ∗
Tt close to ϕ∗

Ts

without notably misdirecting ϕ at anytime from beginning until the convergence.

The geometrically interpretation of FAST method is shown in Figure 6.3b.

The softmax function normalizes its inputs such that they sum up to one. The

magnitude of its inputs is exponentially reflected in the discrepancy among its out-

puts. The negative log-likelihood loss that is applied on top of softmax, is notably

affected by this characteristic. By initializing the head’s weights to values that are

closer to zero, the loss becomes further independent from the extracted features.

Equivalently, as much as the entries of W 0 and b0 are selected closer to zero, the

landscape of the loss in ϕ becomes flatter, until a point where it becomes level and

loss becomes equal to ln (C) everywhere (recall that C is the number of classes). In

this situation the loss becomes almost independent of the extracted features. That

is, for all possible values of ϕ in S(ϕ,L) we have L = ln (C). For this reason, the

initial state of the minima in the target task’s loss landscape is not shown with gray

colors in Figure 6.3b unlike other plots in Figures 6.2 and 6.3.

A flat loss landscape in the space of ϕ is much easier to deform. If done carefully,

it can be immediately deformed such that a minimum is placed close to the current

state of ϕ (this can be implied from the arguments in Section 6.3.2). In fact, instead

of finding a solution to increase the relative speed between ϕ and ϕ∗
Tt , this strategy

makes it possible to initially find a minima close to where ϕ is located in S(ϕ).

6.3.2 Velocity Analysis

Ideally, SGD drives the feature-extractor parameters (ϕ) toward a good minimum

in the target task’s loss landscape located at ϕ∗
Tt , and at the same time, through

76

modifying W it guides ϕ∗
Tt toward ϕ in the opposite direction.

V (ϕt) = −ηϕ E
batch

[
ϕ

∇ℓ]. (6.1)

This leads to Theorem 12 based on which we can express the following statements.

1. Both the learning rate of the feature-extractor and the learning rate of the head

linearly scale the velocity of changing the feature-extractor’s parameters during

the optimization. Therefore, in conventional feature-tuning where these learning

rates are set to the same values, feature-extractor parameters are updated with

a quadratic order of the learning rate.

2. The noise in W 0 remains in all of the updates to the feature-extractor param-

eters until its effect is canceled out by the head’s updates.

By choosing small values for elements of W 0 and choosing a proper ηw, (i). the

noise in feature-extractor updates is smaller, (ii). the prediction error (δ) is more

informative, (iii). and, the head’s updates can faster cancel out the noise in W 0 (by

learning).

Definition 9 (Optimization Velocity) For a set of parameters, at a given op-

timization step, the optimization velocity is defined as the negative of the pseudo-

gradient for those parameters at that step (see Definition 3).

Theorem 12 (proof in Appendix C) If GD or SGD is used to optimize the head

parameters, the optimization velocity of the feature-extractor parameters is

V (ϕt+1) = ηϕηw

τ=t−1∑︂
τ=1

E
batch

[δt⟨aτ , δτ ⟩∂a
t

∂ϕt
]− ηϕ E

batch
[δtW 0 ∂a

t

∂ϕt
]; (6.2)

where ηϕ and ηw are learning rates of the feature-extractor and the head, respectively.

6.3.3 Optimization Algorithm

Despite its merits, Adam has been sometimes criticized for asymptotically being

outperformed by mini-batch SGD with momentum [Keskar and Socher, 2017, Reddi

et al., 2018]. Dampening the gradients along the dimensions with a high frequency

Zeiler [2012], Tieleman et al. [2012], Kingma and Ba [2015] has been sometimes found

77

to gain over mini-batch SGD only at the beginning of the training Keskar and Socher

[2017] which corresponds to moving across regions of the loss landscape with high

altitudes. These regions are often more chaotic compared to regions closer to the

minima Li et al. [2018]. Motivated by these facts, we will empirically show that in

the case of feature-tuning on a similar task, the gap between the performance of

Adam and mini-batch SGD with momentum can be significantly reduced when using

FAST. This mainly comes from the fact that, unlike the traditional feature-tuning,

optimizing the classification objective with FAST does not make parameters to step

out of the proximity of ϕ∗
Ts (the minimum in the loss landscape of the target task)

far onto the high altitudes of the loss landscape

Vaswani et al. [2017] and Popel and Bojar [2018] showed that a warmup phase

for the adaptive learning rate can significantly accelerate the training convergence1.

This phase is applied at the beginning of the training during which a very small

learning rate is applied. Liu et al. [2019] found the source of this phenomenon in

the large initial variance of the gradients. They demonstrate this by showing that

the distribution of the gradients has momentous changes in the first few optimization

steps and they addressed the issue by an optimization algorithm that dampens the

variance accordingly. Similarly, Luo et al. [2018] and Zhang et al. [2019] proposed to

set dynamic boundaries on the magnitude of the updates. Keskar and Socher [2017]

proposed starting training with Adam to take advantage of the convergence speed

and then switching to mini-batch SGD with momentum to better generalize when

converged. Our proposed optimization algorithm for feature-tuning also decreases the

initial variance of the gradients and similarly accelerates the training convergence.

Using FAST, neither the speed of convergence nor the generalizable performance

when converged are scarified. FAST finds its merits in controlling the velocity of

applying updates only via the first gate that gradients back-propagate through, the

head. Although our work focuses only on classification, the analysis we provide sug-

gests that in an already stable model (e.g., pretrained on a similar task, so at com-

parably low altitude regions of the loss landscape), mini-batch SGD with momentum

is able to show a competent convergence speed as long as the pretrained parameters

are not disrupted by sudden and large-variance updates. Such updates can cause

1This is different from the head’s warmup phase in which only the head is updated.

78

overshooting the minimum of the loss landscape that they aim to converge. It is

worth mentioning that label smoothing [Szegedy et al., 2016] is also relevant in the

sense that it reduces the initial variance of the gradients by decreasing the 2-norm of

the true labels. However, our method focuses on the norm of the predicted labels for

which the magnitude could be automatically adapted during the course of training

(unlike the norm of the true labels).

6.4 Experiments

6.4.1 Catastrophic Forgetting

In this chapter we restrain our focus to classic task adaptation; therefore, we only

concern about forgetting in a single pass hypothesis transfer (and not a chain of

transfers). Although by proposing FAST, we mainly aim to accelerate the feature-

tuning process on the target task without compromising its convergence performance,

as a by-product the source task is also forgotten slower than in atypical feature-tuning

procedure. Interestingly, in contrast to the previous studies, FAST does not make an

explicit effort to retain the performance of the source task and does not compromise

the performance on the target task. The aim of this section is to quantitatively

measure forgetting that is caused by a careless initialization of the head’s parameters

and its connection to the speed of converging to the target task.

To cover engagement of features in different representation levels, we consider two

scenarios: first, choosing identical domain and task for the source and destination,

and second, choosing them to be unrelated and distinct. A ResNet-18 [He et al.,

2016] that is already pretrained on ImageNet [Deng et al., 2009] is used for this

experiment. Five percent of the training split of each task is separated for validation

in a stratified order. Training, validation, and test images are resized to 128 × 128.

Random horizontal flip is applied on images of the training mini-batches. The size

of each training mini-batch is 100 with an equal number of images per label. SGD is

used with a learning rate of 0.01 and a gradient momentum equal to 0.9. The number

of gradient updates (steps) between two consecutive validations is increased gradually

starting from 1 and saturating at 10 steps. Test checkpoints are set to the update

numbers corresponding to the Fibonacci sequence, except for the third number which

79

is skipped because it is equal to the second number in the sequence. The validation

is used to store the best performing model up to the step that test performance is

measured. We refer to the test performance measured in this fashion as progressive

test accuracy.

The source task is chosen to be classification defined over the CIFAR-100 dataset

Krizhevsky et al. [2009] (see details of CIFAR-100 in Section 5.6). W is initialized

according to the fan-in mode of Kaiming’s method He et al. [2015] and trained for 120

epochs. In the first scenario, we choose Ts = Tt and Ds = Dt ; however, the model’s

head is randomly initialized for the target task. The second scenario, chooses Tt to

be the classification defined over the MNIST dataset LeCun [1998] (refer to Section

5.6 for detail of MNIST). Multiple sets of models are tuned, initializing elements

of W by drawing from zero-centered normal distributions with different standard

deviations ranging from 1 down to 10−8 for each set of models. Each experiment is

repeated using a set of 15 different random seeds. In our setup, applying different

random seeds not only initializes W differently but also exposes dissimilar sequences

and combinations of training mini-batches to the model2.

During feature-tuning, the model is tested on both the source and target tasks

at determined checkpoints (the mentioned pseudo-Fibonacci sequence). To test the

model on the source task in this experiment, the test split of the source task is first fed

to the feature-extractor in its inference mode, then it is passed through the original

head of the model that was trained on the source task.

Scaling down the magnitude of the initial values of W not only increases the speed

of convergence to the target task, but also retains more knowledge from the source

task. This is concluded from the progressive performance measurement on these tasks

shown in Figure 6.4. Although the rising ||W ||F in some curves shown in Figure 6.5

indicates that ϕ is considerably modified (unlike feature-extraction where ηϕ = 0)

after just a few steps, the corresponding performance of the source task plotted in

the second row of Figure 6.4 suggests that almost no forgetting happens when source

and target domains and tasks are identical, and W 0
i,j −→ 0. Even though catastrophic

forgetting occurs for when the source and target domain are significantly dissimilar

(see Figure 6.6), it is less severe if W is initialized with small numbers.

2To study further about the influence of initialization and the order of mini-batches see McCoy
et al. [2020].

80

0 6 12 18 24 30 36 42 48 54
0

10
20
30
40
50
60
70

te
st

ac
c
on
T t

(%
)

W 0
i,j ∼ N (0, 10−8)

W 0
i,j ∼ N (0, 10−3)

W 0
i,j ∼ N (0, 10−2)

W 0
i,j ∼ N (0, 10−1)

W 0
i,j ∼ N (0, 1)

SGD steps in Tt

30

40

50

60

70

80

te
st

ac
c
on
T s

(%
)

Figure 6.4: Understanding the effect of initializing W through catastrophic forgetting.
Progressive test accuracy accuracy on Tt at the top and Ts at the bottom. Both tasks
are identical and defined by classification on CIFAR-100 dataset. The horizontal axis
shows the optimization steps on the target task which is shared among the two plots.

0 6 12 18 24 30 36 42 48 54

SGD steps in Tt

lo
g
(||
WW W
|| F

) W 0
i,j ∼ N (0, 10−8)

W 0
i,j ∼ N (0, 10−3)

W 0
i,j ∼ N (0, 10−2)

W 0
i,j ∼ N (0, 10−1)

W 0
i,j ∼ N (0, 1)

Figure 6.5: The development of log(||W ||F) corresponding to feature-tuning on Tt
shown in Figure 6.4.

81

0 6 12 18 24 30 36 42 48 54

20

40

60

80

100
te
st

ac
c
on
T t

(%
)

W 0
i,j ∼ N (0, 10−8)

W 0
i,j ∼ N (0, 10−3)

W 0
i,j ∼ N (0, 10−2)

W 0
i,j ∼ N (0, 10−1)

W 0
i,j ∼ N (0, 1)

SGD steps in Tt

0
10
20
30
40
50
60
70
80

te
st

ac
c
on
T s

(%
)

Figure 6.6: Understanding the effect of initializing W through catastrophic forgetting.
progressive test accuracy on Tt : MNIST at the top and Ts : CIFAR-100 at the bottom.
The horizontal axis shows the optimization steps on the target task which is shared.

6.4.2 Quick Head Learning

Geometrically, until any step t that

∀i ∈ {1, 2, . . . , C} : ∥W 0
i ∥ ≫ ηϕ

⃦⃦⃦⃦
⃦

τ=t∑︂
τ=1

E
batch

[δτi a
τ]

⃦⃦⃦⃦
⃦ (6.3)

holds, the landscape of the target task’s loss does not deform much in S(ϕ) (the

target minimum in Figure 6.2 stays almost held for that period). This is because

using mini-batch SGD, we have

∀i ∈ {1, 2, . . . , C} : W 1
i = W 0

i − η
τ=t∑︂
τ=1

ηϕ E
batch

[δτi a
τ]. (6.4)

In this situation, if elements of W 0 are carelessly drawn, it is very likely that the

trajectory through which SGD guides ϕ, becomes long and hard to settle. In this

experiment, we extremely slow down V (W) by choosing a near zero ηw. This makes

82

us able to abstractly perceive the effect of the fast geometric deformation which FAST

provides.

We compare the progressive test accuracy when randomly-initialized W is kept

unchanged (i.e., ηw = 0) during tuning compared to when it is updated with the

same rate as ϕ (i.e., ηw = ηϕ). For both cases we choose W 0
i,j ∼ N (0, 10−2). The rest

of the setup is identical to the first scenario of the previous experiment except that

feature-tuning is done on CIFAR-100 as the target task by adapting an off-the-shelf

model pretrained on ImageNet’s [Deng et al., 2009].

Figure 6.7 suggests that when the loss landscape deforms as discussed in Section

6.3.1, the convergence is significantly accelerated. The shadows representing 95%

confidence intervals are barely visible indicating that the results shown in this figure

are highly consistent. The results in this experiment strongly support our hypothesis

that the deformation of the loss landscape in the space of the transferred parameters

largely influences the convergence speed.

0 150 300 450 600 750 900 1050 1200
0

10

20

30

40

50

60

70

te
st

ac
c
on
T t

(%
)

ηw = 1e− 2

ηw = 0

SGD steps in Tt

1

2

3

4

tr
ai
n
lo
ss

Figure 6.7: The effect of preventing the loss landscape to deform in S(ϕ) during
feature-tuning.

83

6.4.3 Head Warmup

As shown by Li and Hoiem [2017] and [Kumar et al., 2021], feature-tuning can be

done after a warmup phase during which only the head is modified. Li and Hoiem

[2017] suggests that the transition between the two training phases (head warmup and

feature-tuning) is committed whenever the validation performance does not improve

for a number of training steps. In this experiment we show how using head warmup

effects the generalizable performance while training.

In this experiment, the warmup phase is stopped whenever the validation accuracy

has not improved at least one percent for 10 consecutive mini-batch SGD steps. The

rest of the setup is akin to that of Section 6.4.2.

Large leaps of validation accuracy pointed out with arrows in the first row of

Figure 6.8 show the step at which the transition from head warmup phase to jointly

training ϕ and W is committed. At these points, the back-propagate gradients have

comparably large magnitude which makes the optimization algorithm take a large

(but unnecessary) step in S(ϕ). The effective size of this step depends on ||W ||F
which in turn depends on W 0 and ηw. In this experiment, we use ηw = 10−2 across

all cases but initialize the head in different ways. The orange and green curves

correspond to the fan-out and fan-in modes of Kaiming initialization He et al. [2015],

respectively. The blue curves shows the effect of letting the running statistics—used

in batch normalization layers of feature extractor—to be updated during the training

of the head. Similarly, the running statistics are updated for the case shown with red

curves but the head is initialized with small-variance values in this case. The reason

for including cases with updating running statistics is to opt-out its influence factor

and make more certain conclusions.

Unlike most of experiments in this chapter, the visualization made for this exper-

iment only reflects a single random seed (no shadow is plotted to indicate confidence

interval) and the outcomes of runs with other random seeds are not shown so as to

let the minimum overshooting leaps be visually clear. The optimization steps where

sudden leaps in the performance of different curves takes place in Figure 6.8, supports

our geometric hypothesis visualized in Figure 6.3a. In summary, the results presented

in this experiment suggest that although including a head warmup phase can help the

optimization algorithm to take its initial steps in a correct direction, it still is prone to

84

0

10

20

30

40

50

60

70
va
li
d
a
cc

on
T t

(%
)

minimum
overshooting

0 150 300 450 600 750 900 1050 1200

SGD steps in Tt

0

10

20

30

40

50

60

70

te
st

ac
c
on
T t

(%
)

W 0
i,j ∼ N (0, 10−8)+BNStats

Kaiming fan-in+BNStats

Kaiming fan-in

Kaiming fan-out

Figure 6.8: Head warmup is still prone to overshooting the minimum. The plots show
the validation performance and progressive test performance from top to bottom.

minimum overshooting. In the severe case of minimum overshooting, ϕ may step into

high-altitude regions of the loss landscape which makes the convergence non-efficient

and can cause catastrophic forgetting.

6.4.4 Decoupled Learning Rates

As suggested by Theorem 12, the effect of ηw on the relative velocity of ϕ and ϕ∗
Tt

is much larger than that of ηϕ (because it affects the both ends). This implies that

for an efficient convergence, the learning rates of the feature extractor and the head

should be adjusted independently or at least should not necessarily be set equally as

is traditionally done. In this experiment we compare the outcome of scaling these

learning rates equally, as transitionally is set and decoupled from each other, according

to our proposed method. To do so, starting from a baseline, we scale up and scale

down ηw and ηϕ both equally and unequally, and inspect the outcomes.

85

In this experiment, we use ResNet-18 [He et al., 2016] and VGG-19 [Simonyan and

Zisserman, 2014] which are pretrained on ImageNet [Deng et al., 2009] to tune on the

classification task defined over the CIFAR-100 dataset [Krizhevsky et al., 2009]. For

all the cases, elements of W are initialized randomly from a zero-centered normal

distribution with a close to zero standard deviation (10−8). The rest of the setup is

akin to that of Section 6.4.2 except that the learning rates for mini-batch SGD are

explicitly expressed in plots on each curve.

Figure 6.9 compares the top-1 progressive accuracy (top row) and the Frebenius

norm of W (bottom row) when the learning rates are scaled equally (Figure 6.9a)

versus they are scaled in a decoupled fashion (Figure 6.9b) for the ResNet-18 [He

et al., 2016]. The blue curves are identical in this Figure and are just repeated so

can easily be compared to the other curves. Symmetrically scaling down the learning

rates shown by the red curve on Figure 6.9a improves the test accuracy eventually,

though it degrades the performance in the first 100 optimization steps. On the other

hand, as shown by the red curve in Figure 6.9b, if only ηϕ is scaled down, the best

performance is similarly improved but is not compromised on the earlier steps at all.

For VGG-19 [Simonyan and Zisserman, 2014] which compared to ResNet-18 [He

et al., 2016] is a more challenging model to train [Li et al., 2018], the difference

between the aforementioned learning-rate scaling strategies seems to be bolder. This

is depicted in Figure 6.10 where the asymmetric scaling more significantly speeds-up

the progressive test performance.

The results in this experiment indicate that in order to have an efficient progressive

performance, the learning rates of the pretrained feature extractor and appended head

are better to be tuned separately. This statement does not intend to convey that

these learning rates do not influence the optimal value of each other, but rather it

emphasizes that the prevailing practice of setting them equal could compromise the

performance either at the beginning of the training or for a long time afterward.

Furthermore, the compromise seems to be more significant as the loss landscape is

more chaotic (e.g., VGG-19 compared to ResNet-18 as explained by Li et al. [2018]).

86

0 25 50 75 100 125 150 175 200 225

SGD steps in Tt
0

10

20

30

40

50

60

70
te
st

a
cc

on
T t

(%
)

0

1

2

3

4

5

6

7

||W
|| F

ηw = ηϕ = 1
2u

ηw = ηϕ = u

ηw = ηϕ = 2u

(a) symmetric scaling

0 25 50 75 100 125 150 175 200 225

SGD steps in Tt
0

10

20

30

40

50

60

70

0

1

2

3

4

5

6

7

ηw = 1
4u, ηϕ = u

ηw = ηϕ = u

ηw = 4u, ηϕ = u

(b) asymmetric scaling

Figure 6.9: Comparing the effect of scaling the learning rate in (a) symmetrically
versus (b) asymmetrically for feature-tuning on ResNet-18 [He et al., 2016]. In all
cases u = 10−2.

6.4.5 Optimization

Putting the outcomes of Sections 6.4.1 and 6.4.4 together, we desire to compare the

complete FAST method with a feature-tuning baseline. However, we first need to

answer two fundamental questions.

• First, are the outcomes of employing FAST essentially different from those of

the baseline or could similar convergence behavior be obtained by tuning the

learning in the baseline?

• Second, does FAST reduce the performance gap between mini-batch SGD with

momentum and Adam (In the following we explain why this is expected)?

87

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

10

20

30

40

50

60

70

80
te
st

ac
c
on
T t

(%
)

ηw = 20u, ηϕ = 1
20u

ηw = ηϕ = u

ηw = ηϕ = 1
20u

ηw = ηϕ = 20u

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

20

40

60

80

∥W
∥ F

SGD steps in Tt (×103)

0

1

2

3

4

5

tr
ai
n
lo
ss

Figure 6.10: Comparing the effect of scaling the learning rate in (a) symmetrically
versus (b) asymmetrically for feature-tuning on VGG-19 Simonyan and Zisserman
[2014]. In all cases u = 0.05 and W 0

i,j ∼ N (0, 10−8).

We look for answers to these question from an empirical point of view.

In this experiment, we use VGG-19 [Simonyan and Zisserman, 2014] as our chal-

lenging optimization case, in addition to DenseNet-201 [Huang et al., 2017] which

according to what Li et al. [2018] states about the skip connections, is characterized

with a relatively smooth loss landscape despite having a lot of layers. Both mod-

els are pretrained on ImageNet [Deng et al., 2009] and the goal is to tune them on

the classification task defined over the CIFAR-100 dataset [Krizhevsky et al., 2009].

88

0 200 400 600 800 1000 1200 1400 1600 1800

0
10
20
30
40
50
60
70
80

to
p
-1

te
st

ac
cu

ra
cy

on
T t

(%
)

FAST (W 0
i,j ∼ 10−8, ηw = 4u, ηϕ = u)

baseline (f/i, ηw = ηϕ = u)

baseline (f/i, ηw = ηϕ = 1
4u)

SGD steps in Tt

0

1

2

3

4

5

tr
ai
n
lo
ss

(a) DenseNet-201, u = 1× 10−2

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

to
p
-1

te
st

ac
cu

ra
cy

on
T t

(%
)

FAST (W 0
i,j ∼ 10−8, ηw = 20u, ηϕ = 1

20u)

baseline (f/i, ηw = ηϕ = u)

baseline (f/i, ηw = ηϕ = 1
20u)

SGD steps in Tt

0

1

2

3

4

tr
ai
n
lo
ss

(b) VGG-19, u = 5× 10−2

Figure 6.11: Comparison between FAST and the baselines in their learning progress
when mini-batch SGD with momentum is used as the optimization algorithm.

89

0 200 400 600 800 1000 1200 1400 1600 1800
0
10
20
30
40
50
60
70
80

to
p
-1

te
st

ac
cu

ra
cy

on
T t

(%
)

FAST (W 0
i,j ∼ 10−8, ηw = 2u, ηϕ = 1

10u)

baseline (f/i, ηw = ηϕ = u)

baseline (f/i, ηw = ηϕ = 1
5u)

Adam steps in Tt

0

1

2

3

4

5

tr
ai
n
lo
ss

(a) DenseNet-201, u = 5× 10−4

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

to
p
-1

te
st

ac
cu

ra
cy

on
T t

(%
)

FAST (W 0
i,j ∼ 10−8, ηw = 20u, ηϕ = 1

10u)

baseline (f/i, ηw = ηϕ = u)

baseline (f/i, ηw = ηϕ = 1
5u)

Adam steps in Tt

0

1

2

3

4

tr
ai
n
lo
ss

(b) VGG-19, u = 5× 10−4

Figure 6.12: Comparison between FAST and the baselines in their learning progress
Adam is used as the optimization algorithm.

90

The learning rates and initialization setup for FAST and the baselines are explic-

itly marked on this section’s the plots. Wherever the Adam optimization algorithm

[Kingma and Ba, 2015] is used, its exponential decay rates for estimating the first and

the second moments are set to 0.9 and 0.999, respectively (the defaults recommended

by the original paper). The results are also verified for the RAdam algorithm which

is introduced more recently by Liu et al. [2019]. The definition of RAdam is directly

borrowed from the implementation that Liu et al. [2019] provided and the default

hyper-parameters are preserved.

Similar to Section 6.4.4, when the unified learning rate is scaled down or scaled

up for the baselines, in this experiment, the progressive performance is either com-

promised at the beginning of feature-tuning or for a large number of steps afterward.

In other words, optimizing the baselines with larger learning rates improves the per-

formance at the beginning of feature-tuning but holds it back from reaching its po-

tential performance thereafter. However, as it is shown in Figures 6.11b and 6.11a,

employing FAST provides for achieving a non-compromised progressive performance.

Figures 6.12b and 6.12a, have the same message as that of Figures 6.11b and 6.11a

except that all the models corresponding to the curves in these Figures use the Adam

optimization algorithm. The baseline curves are marked with f/i which refers to the

fan-in mode of the Kaiming He et al. [2015] method used for initializing the appended

parameters3.

A comparison between Figures 6.11b and 6.12b, clearly reveals that Adam sub-

stantially speeds-up the convergence of the baselines compared to mini-batch SGD

with momentum. However, applying Adam on top of FAST does not make a huge

difference. To make it easier to compare the cases that use FAST in Figures 6.11b

and 6.12b, we plotted the same corresponding curves again in Figure 6.14b. We also

compared the aforementioned optimization algorithms that use FAST with a case in

which Nesterov momentum Nesterov [1983] is used in mini-batch SGD, instead of

the simple momentum. Also notice that as expected, Adam fails to get on par with

mini-batch SGD with momentum after a long period of training but generally the

performance gap comparably looks minor during the whole training period.

3In these cases, since ∥a∥ > C, choosing the fan-out mode of the Kaiming method to initialize
W results in worse performance than that of the fan-in mode

91

Finally, Figure 6.13a compares FAST with the baselines when the RAdam opti-

mization algorithm [Liu et al., 2019] is employed. Unlike in the original setup used in

Liu et al. [2019], in our feature-tuning setting the convergence rate of RAdam seems

not to be less sensitive to the choice of the learning rate than Adam. Moreover,

comparing Figure 6.12 with Figure 6.13 suggests that Adam converges faster than

RAdam for the settings used in this experiment.

In summary, tuning the learning rate results in a compromise of the baselines’

performance either at the beginning of the training or after a large number of opti-

mization steps. FAST solves this issue by decoupling the learning rates for the feature

extractor and the head. Moreover, FAST could be used along with advance optimiza-

tion algorithms to improve the progressive performance. However, when FAST is used

for feature-tuning a model pretrained on a source task on a similar target task, the

gap between performance obtained from different optimization algorithms is notably

decreased. This supports our hypothesis that FAST prevents the feature-extractor’s

parameters from suddenly stepping out of the proximity of ϕ∗
Ts and ϕ∗

Tt—Supposing

ϕ∗
Ts and ϕ∗

Tt lay close to each other in a smooth region on S(ϕ, ℓ) due to similarity

of Ts and Tt .

6.4.6 Convergence Performance

In this experiment we compare FAST and the baselines with a focus on convergence

accuracy. The main goal is to confirm that using FAST would not have an adverse

effect on convergence performance; therefore, the models in this experiment are fine-

tuned for a longer period than those in the previous experiments. Another goal of

this experiment is to quantitatively confirm that feature-tuning with FAST keeps

ϕ closer to ϕ∗
Ts compared to when the baselines are employed. This is similar to

the experiment conducted in Section 6.4.1 in that they both indicate how much our

method and the baselines are resistant to forgetting. However, the one in Section 6.4.1

focuses on generalizable accuracy while in this experiment the geometric perspective

is highlighted.

For this experiment, we employ ResNeXt-101-32x8d introduced by Xie et al.

[2017], which is already pretrained on ImageNet [Deng et al., 2009]. The feature-

tuning is done on CIFAR-100 [Krizhevsky et al., 2009], Caltech-101 [Li et al., 2022]

92

Table 6.1: Comparing FAST with baselines in their convergence performance and
traveled distance in S(ϕ) from ϕ∗

Ts . In all baselines, the head is initialized using the
fan-in mode of Kaiming method [He et al., 2015] and ηw = ηϕ.

dataset method top-1 error top-5 error ∥ϕ∗
Tt − ϕ∗

Ts∥

CIFAR-100
baseline (ηϕ = 5 ∗ 10−2) 22.64 ± 0.26 5.91 ± 0.14 119.51 ± 1.38
baseline (ηϕ = 10−2) 16.80 ± 0.12 3.46 ± 0.06 34.58 ± 0.43
baseline (ηϕ = 5 ∗ 10−3) 13.90 ± 0.13 2.22 ± 0.08 14.32 ± 0.12
FAST 12.63 ± 0.09 1.62 ± 0.04 7.19 ± 0.04

Caltech-256
baseline (ηϕ = 5 ∗ 10−2) 18.45 ± 0.14 7.14 ± 0.01 37.2 ± 0.23
baseline (ηϕ = 10−2) 13.55 ± 0.19 4.38 ± 0.09 7.70 ± 0.07
baseline (ηϕ = 5 ∗ 10−3) 14.39 ± 0.14 4.73 ± 0.10 5.93 ± 0.17
FAST 12.81 ± 0.10 3.96 ± 0.08 5.28 ± 0.06

and Caltech-256 Griffin et al. [2007] classification tasks. Caltech-256 contains 74×74

labeled natural RGB images from 256 classes. It is originally published with no train-

test split; therefore, we made a random but stratified split with 20% of the images

as test. In the training split, 5 images are randomly selected from each class to form

the validation set. This quantity is aligned with the size of validation set we chose for

the other datasets (5% of the whole training) employed in this study. The images in

Caltech-256 dataset are resized to twice their original size in both width and height.

Feature-tuning on CIFAR-100 and Caltech-256 continued for 250 and 330 epochs re-

spectively. In all the cases, the batch size is set equal to the number of classes, and

the training batches are sampled in a stratified order.

Figures 6.15 and 6.16 compare the progressive test accuracy obtained from FAST

and the baselines. The wide plots on the left of each Figure show the progressive test

accuracy of the first mini-batch SGD steps while the narrow one on the right side

magnify the same quantity but for a larger number of steps taken afterward. Neither

the magnitudes nor the ratios of the axes are preserved among the plots in each

Figure. The confidence interval is shown with transparent shadows but are barely

visible since there is a high consistency among the results from different random seeds.

The convergence results are also restated in numbers in Table 6.1. The performance on

test dataset suggest not only that FAST learns faster than the baselines but it also helps

reaching a higher convergence performance. The latter is not a very strong argument

in the sense that the training time is subjective and the point of convergence has

93

no formal meaning in this context—i.e., one may claim that after an infinite number

of training steps the difference between progressive results may become insignificant

(see He et al. [2019a]).

Assume that after the chosen number of training epochs, the convergence is

achieved (in its broad definition: no improvement for a fairly large number of epochs).

In the last column of Table 6.1 we present the Euclidean distance traveled by the fea-

ture extractor’s parameters from aiming minimum of the source task’s loss to that

of the target task’s loss. The results confirm that compared to the baselines, FAST

preserves ϕ∗
Tt in a closer proximity to ϕ∗

Ts . This implies that FAST reaches the objec-

tive of the target task from a direction that is more aligned with the objective of the

source task compared to the baselines. This characteristic makes FAST more resistant

to catastrophic forgetting.

6.4.7 FAST Compared to ENTAME

In this section we compare FAST and ENTAME in terms of the empirical speed of

convergence. For this experiment we tune a pretrained ResNet-18 on CIFAR-100.

The fan-in mode of Kaiming’s method He et al. [2015] is chosen as the baseline. The

learning rates are tuned for the largest area under test accuracy curve for the first

2000 training steps using a validation set of 25 examples per class. The learning rate

values are selected from 0.01 ∗ {1
4
, 1
2
, 1, 2}. The best learning rate for the baseline

and ENTAME was 0.005. For FAST, the best learning rates were ηw = 0.01 and

ηϕ = 0.1 ∗ 1
4
.

Figure 6.17 shows the outcome of this experiment. The mean and 95% confidence

are shown with solid line and color shades, respectively. Unlike other experiments

in this chapter, each run in this experiment is repeated for 5 different seeds. As

seen in this Figure, ENTAME and FAST show roughly the same convergence rate

and final performance while the baseline falls behind both. Note that compared to

the experiments presented in Chapter 5, we report higher performance for both the

baselines and ENTAME in this Chapter. The major reason for this performance gap

is efficiently scaling up the size of the input images (e.g., 128× 128 for CIFAR-100).

To learn more about the impact of scaling the input images, see Touvron et al. [2019].

94

6.5 Conclusion

In this study we pinpointed a major problem of traditional feature-tuning that not

only leads to catastrophic forgetting, but also slows down the convergence to the

target task. To clarify this problem, we provided a novel perspective of the loss

landscape which makes it possible to connect the loss landscapes of the source and

target tasks. Using this perspective, we compared different task adaptation techniques

and proposed FAST for feature-tuning pretrained neural networks on classification

tasks. With a focus on machine vision and Convolutional Neural Network (CNN)

models, we provided an empirical analysis with the following outcomes:

• Initializing the head for the target task in task adaptation with close-to-zero

values, not only better preserves the transferred knowledge but also accelerates

the training procedure on the target task (Section 6.4.1).

• The convergence speed is largely influenced by the randomness of the parameters

of the head and how quickly they are adapted (Section 6.4.2).

• Although including a head warmup phase (as suggested by Li and Hoiem [2017]

and Kumar et al. [2021]) can help the optimization algorithm to take its initial

steps in a correct direction, it still is prone to minimum overshooting (Section

6.4.3).

• For an efficient convergence, the learning rates chosen for the pretrained feature-

extractor and the appended head are better to be tuned separately. Otherwise,

if they are chosen equally as in the traditional feature-tuning the progressive test

performance can be compromised either in the beginning of the feature-tuning

or during a large number of optimization steps afterward (Section 6.4.4).

• Compared to the traditional feature-tuning, using FAST remarkably decreases

the gap between the performance obtained from mini-batch SGD with momen-

tum and Adam optimization algorithms.

Generally, our proposed method learns the target task faster than traditional feature-

tuning, besides preserving more knowledge about the source task. We showed the

superiority of our method from different analytical and empirical viewpoints, though

yet more aspects remain to be explored.

95

0 200 400 600 800 1000 1200 1400 1600 1800

0
10
20
30
40
50
60
70
80

to
p
-1

te
st

ac
cu

ra
cy

on
T t

(%
)

FAST (W 0
i,j ∼ 10−8, ηw = 20u, ηϕ = 1

10u)

baseline (f/i, ηw = ηϕ = u)

baseline (f/i, ηw = ηϕ = 1
5u)

RAdam steps in Tt (×103)

0

1

2

3

4

5

tr
ai
n
lo
ss

(a) DenseNet-201, u = 5× 10−4

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

to
p
-1

te
st

ac
cu

ra
cy

on
T t

(%
)

FAST (W 0
i,j ∼ 10−8, ηw = 20u, ηϕ = 1

10u)

baseline (f/i, ηw = ηϕ = u)

baseline (f/i, ηw = ηϕ = 1
5u)

RAdam steps in Tt (×103)

0

1

2

3

4

tr
a
in

lo
ss

(b) VGG-19, u = 5× 10−4

Figure 6.13: Comparison between FAST and the baselines in their learning progress
when RAdam is used as the optimization algorithm.

96

0 200 400 600 800 1000 1200 1400 1600 1800
50

55

60

65

70

75

80

85
to
p
-1

te
st

a
cc
u
ra
cy

on
T t

(%
)

FAST + Adam

FAST + SGD (Nesterov momentum)

FAST + SGD (momentum)

optimization steps in Tt

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

tr
ai
n
lo
ss

(a) DenseNet-201

0 200 400 600 800 1000 1200 1400 1600 1800
50

55

60

65

70

75

to
p
-1

te
st

ac
cu

ra
cy

on
T t

(%
)

FAST + Adam

FAST + SGD (Nesterov momentum)

FAST + SGD (momentum)

optimization steps in Tt

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

tr
ai
n
lo
ss

(b) VGG-19

Figure 6.14: Comparison between the learning progresses corresponding to different
optimization algorithms used with FAST.

97

0 80 160 240 320 400 480 560 640

SGD steps in Tt

0

20

40

60

80

te
st

ac
cu

ra
cy

on
T t

(%
)

FAST

baseline (ηw = 5 ∗ 10−3)

baseline (ηw = 10−2)

baseline (ηw = 5 ∗ 10−2)

11000 115000

75.0

77.5

80.0

82.5

85.0

87.5

Figure 6.15: Comparing the convergence progressive test accuracy of FAST and the
baselines on CIFAR-100 dataset.

0 25 50 75 100 125 150 175 200 225

SGD steps in Tt

0

20

40

60

80

te
st

ac
cu

ra
cy

on
T t

(%
)

FAST

baseline (ηw = 5 ∗ 10−3)

baseline (ηw = 10−2)

baseline (ηw = 5 ∗ 10−2)

500 28400

75.0

77.5

80.0

82.5

85.0

87.5

Figure 6.16: Comparing the convergence progressive test accuracy of FAST and the
baselines on Caltech-256 dataset.

0 250 500 750 1000 1250 1500 1750 2000 2250

SGD steps in Tt

0

20

40

60

80

te
st

a
cc
u
ra
cy

on
T t

(%
)

baseline

ENTAME

FAST

8000 24500 41000
74

76

78

80

82

Figure 6.17: Comparing baseline, ENTAME, and FAST in their speed of convergence
and convergence accuracy on CIFAR-100 dataset.

Chapter 7

Adaptive Bias Estimation for Federated Learning

7.1 Introduction

About half a century ago, a few giant computers constituted the first general-purpose

computer network [Kaminow and Li, 2002]. Soon after, military incentives and eco-

nomic opportunities led to the expansion of computer networks, and as a result, “the

Internet” was established. As technology advanced, the number of devices connected

to the Internet continued to grow at an unprecedented rate. With this growth came

an explosion of remote applications, from simple websites to complex data-driven

systems. These applications were typically built using the client-server model, where

clients requested services from servers, which in turn processed and replied to these

requests.

With the increasing demand for data-driven applications, the amount of data

being generated and transmitted over the Internet grew exponentially. This put

a tremendous strain on the network [Hecht et al., 2016], as well as on the servers

that were responsible for processing and storing all of this data. Edge computing

has emerged to address this issue. It involves processing data as close to where it

is generated as possible, in order to reduce the amount of data that needs to be

transmitted over the network and the amount of processing required on the servers.

ML has been the most popular and impactful data-driven approach in recent years.

Figure 7.1 shows the significance of ML’s popularity, comparing the interest trends in

“machine learning” and “statistical analysis” terms queried from the Google search

engine between January 2004 to January 2023. For many industries and applications,

however, ML has not even come close to reaching its true potential. A major reason is

that ML models are primarily designed to digest centralized datasets which is by and

large in conflict with the new edge computing paradigm and also with the increasing

demand for data privacy. Federated Learning (FL) is the most promising paradigm

that has emerged to make ML compatible with these new desires (see Figure 7.2 for

98

99

a measure of the popularity).

2004-01 2008-03 2012-05 2016-07 2020-09
date

0

20

40

60

80

100
ra
la
ti
ve

in
te
re
st

machine learning
statistics analysis

Figure 7.1: Relative interest trend for terms “machine learning” and “statistical anal-
ysis” in Google searches from January 2004 to January 2023.

2004-01 2008-03 2012-05 2016-07 2020-09
date

0

20

40

60

80

100

ra
la
ti
ve

in
te
re
st

federated learning
distributed learning

Figure 7.2: Relative interest trend for terms “federated learning” and “distributed
learning” in Google searches from January 2004 to January 2023.

FL is a distributed ML technique that allows for the training of models on multiple

devices or edge nodes without compromising the privacy of the data. With FL, devices

such as smartphones and IoT devices can contribute their data to the training process

without the need to transmit sensitive data to a central location. By training models

locally on each device and only transmitting model updates to a central server, FL

100

not only improves data privacy but also provides a more robust and accurate model,

as it is trained on a diverse set of data.

7.2 Problem Statement

In FL, multiple sites with data often known as clients collaborate to train a model by

communicating parameters through a central hub called server. At each round, the

server broadcasts a set of model parameters to a number of clients. Selected clients

separately optimize towards their local objective. The locally trained parameters are

sent back to the server, where they are aggregated to form a new set of parameters

for the next round. A well-known aggregation is to simply average the parameters

received from the participating clients in each round. This method is known as

Federated Averaging (FedAvg) [McMahan et al., 2017] or LocalSGD [Stich, 2018].

In order to reduce the communication costs as well as privacy concerns (for ex-

ample possible leakage of data from gradients [Zhu and Han, 2020]), multiple local

optimization steps are often preferable and sometimes inevitable [McMahan et al.,

2017]. Unfortunately, multiple local updates subject the parameters to client drift

[Karimireddy et al., 2020]. While SGD is an unbiased gradient descent estimator, Lo-

calSGD is biased due to the existence of client drift. As a result, LocalSGD converges

to a neighborhood around the optimal solution with a distance proportionate to the

magnitude of the bias [Ajalloeian and Stich, 2020]. The amount of this bias itself de-

pends on the heterogeneity among the clients’ data distribution, causing LocalSGD

to perform poorly on non-Independent and Identically Distributed (IID) benchmarks

[Zhao et al., 2018].

7.3 Existing Solutions

One effective way of reducing client drift is by adapting Reduced Variance Stochastic

Gradient Descent (RV-SGD) methods (introduced in Chapter 2) to LocalSGD. The

general strategy is to regularize the local updates with an estimate of gradients of

inaccessible training samples (i.e., data of other clients). In other words, the opti-

mization direction of a client is modified using the estimated optimization direction

of other clients. These complementary gradients could be found for each client i by

101

subtracting an estimate of the local gradients from an estimate of the oracle’s 1 full

gradients. In this chapter, we refer to these two estimates with hi and h, respectively.

Therefore, a reduced variance local gradient for mini-batches on client i would be in

general form of E
batch

[
θ

∇ℓi] + (h − hi) where
θ

∇ℓi corresponds to the true gradient of

the local objective for client i.

The majority of existing research work on adapting RV-SGD to distributed learn-

ing, do not meet the requirement to be applied to FL. Some proposed algorithms

require full participation of clients [Shamir et al., 2014, Reddi et al., 2016, Liang

et al., 2019]; thus, they are not scalable to cross-device FL2. Another group of algo-

rithms require communicating the true gradients [Li et al., 2019, Murata and Suzuki,

2021] and, as a result, completely undermine the FL privacy concerns such as attacks

to retrieve data from true gradients [Zhu and Han, 2020].

Stochastic Controlled Averaging for Federated Learning (SCAFFOLD) [Karim-

ireddy et al., 2020] is an algorithm that supports partial participation of clients and

does not require the true gradients at the server. While SCAFFOLD shows superior-

ity in performance and convergence rate compared to its baselines, it consumes twice

as much bandwidth. To construct the complementary gradients, it computes and

communicates h as an extra set of parameters to each client along with the model

parameters. Federated Learning with Dynamic Regularization (FedDyn) [Acar et al.,

2020] proposed to apply h in a single step prior to applying any local update, and prac-

tically found better performance and convergence speed compared to SCAFFOLD.

Since applying h uses the same operation in all participating clients, Acar et al. [2020]

moved it to the server instead of applying on each client. This led to large savings of

local computation, and more importantly to use the same amount of communication

bandwidth as vanilla LocalSGD (i.e., FedAvg), which is half of what SCAFFOLD

uses.

FedDyn makes several assumptions that are often not satisfied in large-scale FL.

These assumptions include having prior knowledge about the total number of clients,

a high rate of re-sampling clients, and drawing clients uniformly from a stationary set.

1Oracle dataset refers to the hypothetical dataset formed by stacking all clients’ data. Oracle
gradients are the full-batch gradients of the Oracle dataset.

2In contrast to cross-silo FL, cross-device FL is referred to a large-scale (in terms of number of
clients) setting in which clients are devices such as smart-phones.

102

Even with these assumptions, we show that h in FedDyn is pruned to explosion, es-

pecially in large-scale setting. This hurts the performance and holds the optimization

back from converging to a stationary point.

101

102

te
st

lo
g

lo
ss

AdaBest

FedDyn

SCAFFOLD

100

200

∥θ
t ∥

0 1K 2K 3K 4K 5K 6K 7K 8K
rounds

0

20

40

te
st

ac
cu

ra
cy

Figure 7.3: Asymptotic instability of FedDyn as a results of unbounded increase of
∥ht∥. From top to bottom test loss (log scale), norm of cloud parameters, and test
accuracy are shown in subplots. The shared horizontal axis shows the number of com-
munication rounds. Each experiment is repeated 5 times with different random seed
of data partitioning. Solid lines and shades represent mean and standard deviation
respectively

This Chapter proposes AdaBest, a Reduced Variance LocalSGD (RV-LSGD) so-

lution to minimize the client drift in FL. Compared to the baselines, we define a sim-

pler yet more elegant method of incorporating previous observations into estimates

of complementary gradients. Our solution alleviates the instability of the norm of h

in FedDyn (see Figure 7.3 for empirical evaluation) while consuming the same order

of storage and communication bandwidth, and even reducing the compute cost (see

Appendix D for quantitative comparison). Unlike previous works, our algorithm pro-

vides a mechanism for adapting to changes in the distribution of client sampling and

103

does not require prior knowledge of the entire set of clients.

7.4 Adaptive Bias Estimation

7.4.1 Setup

We assume a standard FL setup in which a central server communicates parameters to

a number of clients. The goal is to find an optimal point in the parameter space that

solves a particular task while clients keep their data privately on their devices during

the whole learning process. Let St be the set of all registered clients at round t and P t

be a subset of it drawn from a distribution P (Sτ ; τ = t). The server broadcasts the

cloud model θt−1 to all the selected clients. Each client i ∈ P t, uses mini-batch SGD

to optimize the cloud model based on its local objective and transmits the optimized

client model, θt
i back to the server. The server aggregates the received parameters

and prepares a new cloud model for the next round.

We take a slight leap from the already introduced notation in Table 2.2 in that

each client can be considered like a data instance from server’s perspective. In this

view, server’s optimization can be processed as it did in centralized case except that

gradients corresponding to sampled data instances are replaced with pseudo-gradients

corresponding to sampled clients. Table 7.1 lists the most frequently used symbols

in this chapter along with their meanings. Note that the aggregate model (client

gradients) is an average of client model (client gradients) over values of i ∈ P t.

ut, ut
i, ut,τ

i variable u at {round t, and client i, and local step τ}
St, P t set of {all, round} clients

θt, θ̄
t
, θt

i , θt,τ
i {cloud, aggregate, client, local} model

Gt, ḡt, ĝt
i, gt,τ

i {oracle, aggregate, client, local} gradients
ht, ht

i {full, client} gradients estimates

Table 7.1: Notation for FL.

7.4.2 Method

Upon receiving the client models of round t ({∀i ∈ P t : θt
i}) on the server, the

aggregate model, θ̄
t

is computed by averaging them out. Next, the server finds the

104

θ̄
t−1
−ht−1

θt−1

−ḡt

− 1
β
ht

θ̄
t

−ht

θt

Figure 7.4: Geometric interpretation of AdaBest’s correction applied to the server
updates. Server moves the aggregate parameters in the direction of θ̄

t−1 − θ̄
t

before
sending the models to the next round’s clients.

cloud model θt by applying the estimate of the oracle gradients ht; that is

θt ← θ̄
t − ht, (7.1)

where ht is found as follows

ht = β(θ̄
t−1 − θ̄

t
). (7.2)

In section 7.4.3, we further discuss the criteria for chosen β which leads to a fast

convergence. The described cycle continues by sending the cloud model to the clients

sampled for the next round (t + 1) while the aggregate model (θ̄
t
) is retained on the

server to be used in calculation of ht+1 or deployment. A schematic of the geometric

interpretation of the additional drift removal step taken at the server is shown in

Figure 7.4.

Remark 1 Aggregating client models by averaging is equivalent to applying a gradient

step of size 1 from the previous round’s cloud model using average of client pseudo-

gradients or mathematically it is θ̄
t ← 1

|St|
∑︁

i∈St θt
i = θt−1 − ḡt.

After receiving the cloud model, each client i ∈ P t, optimizes its own copy of the

model towards its local objective, during which the drift in the local optimization

steps is reduced using the client’s pseudo-gradients stored from the previous rounds

(see Algorithm 3).

The modified client objective is arg min
θ

Ri(θ
t) such that

Ri(θ
t) = Li(θ

t)− µ⟨θt,h
t′i
i ⟩, (7.3)

where Li is the local empirical risk defined by the task and data accessible by client

i, and t′i is the last round that client i participated in the training. Accordingly, the

105

local updates with step size η becomes

θt,τ
i ← θt,τ−1

i − η(E
batch

[
θ

∇ℓi(θt,τ−1
i)]− µh

t′i
i), (7.4)

where gt,τ−1
i = ℓi(θ

t,τ−1
i) and µ is the regularization factor (FedDyn has a similar

factor; see Appendix D for further discussion on the choice of optimal value for µ).

After the last local optimization step, each sampled client updates the estimate for

its own local gradients and stores it locally to be used in the future rounds that

the client participate in the training. This update is equivalent to ht
i = 1

t−t′i
ht′i + gt

i

where gt
i = θt−1 − θt

i . Finally, the participating clients send the optimized model θt
i

back to the server. Our method along with SCAFFOLD and FedDyn is presented in

Algorithm 3.

7.4.3 Relation to FL Baselines

Algorithm 3 demonstrates where our method differs from the baselines by color codes.

Compared to the original SCAFFOLD, we made a slight modification in the way com-

munication to the server occurs, preserving a quarter of the communication bandwidth

usage. We refer to this modified version as SCAFFOLD/m. In the rest of this section,

we will discuss the key similarities and differences between our algorithm, FedDyn

and SCAFFOLD in terms of cost, robustness and functionality.

Cost

SCAFFOLD consumes twice as much communication bandwidth as FedDyn and Ad-

aBest. This should be taken into account when comparing the experimental perfor-

mance and convergence rate of these algorithms. All of these three algorithms require

the same amount of storage on the server and on each client. Finally, AdaBest has a

lower compute cost compared to FedDyn, SCAFFOLD both locally (on clients) and

on the server. We provide quantitative comparison of these costs in Appendix D.

Robustness

According to the definition of cross-device FL, the number of devices could even ex-

ceed the number of examples per each device [McMahan et al., 2017]. In such a

massive pool of devices, if the participating devices are drawn randomly at uniform

106

Algorithm 3 SCAFFOLD/m , FedDyn , and AdaBest

Input: T,θ0, µ, β

for t = 1 to T do

Sample clients Pt ⊆ St.

Transmit θt−1 to each client in Pt

Transmit ht−1 to each client in Pt (SCAFFOLD/m)

for each client i ∈ Pt in parallel do

/* receive cloud model */

θt,0
i ← θt−1

/* locally optimize for K local steps */

for k = 1 to K do

Compute mini-batch gradients gt,k−1
i = E

batch
[
θ
∇ℓi(θt,τ−1

i)]

Q ← gt,k−1
i − h

t′i
i + ht (SCAFFOLD/m)

Q ← gt,k−1
i − h

t′i
i − µ(θt−1 − θt,k−1

i) (FedDyn) Q ← gt,k−1
i − h

t′i
i (AdaBest)

θt,k
i ← θt,k−1

i − ηQ
end for

/* update local gradient estimates */

gt
i ← θt−1 − θt,K

i

ht
i ← ht′

i − ht−1 + 1
Kηg

t
i (SCAFFOLD/m)

ht
i ← h

t′i
i + µgt

i (FedDyn) ht
i ← 1

t−t′i
h
t′i
i + µgt

i (AdaBest)

t′i ← t

Transmit client model θt
i := θt,K

i .

end for

/* aggregate received models */

θt̄ ← 1
|Pt|

∑︁
i∈Pt θt

i

/* update oracle gradient estimates */

ht ← |St|−|Pt|
|St| ht−1 + |Pt|

Kη|St|(θ
t−1 − θ̄

t
) (SCAFFOLD/m)

ht ← ht−1 + |Pt|
|St| (θ

t−1 − θ̄
t
) (FedDyn) ht ← β(θ̄

t−1 − θ̄
t
) (AdaBest)

/* update cloud model */

θt ← θ̄
t
(SCAFFOLD/m)

θt ← θ̄
t − ht (FedDyn) θt ← θ̄

t − ht (AdaBest)

end for

107

(which our baselines premised upon), there is a small chance for a client to be sampled

multiple times in a short period of time. In FedDyn, however, ht =
∑︁t

τ=1
|Pt|
|St| ḡ

t, mak-

ing it difficult for the norm of h to decrease if pseudo-gradients in different rounds are

not negatively correlated with each other (see Theorem 13 and its proof in Appendix

D). In case clients are not re-sampled with a high rate then this negative correlation

is unlikely to occur due to changes made to the state of the parameters and so the

followup pseudo-gradients (see Section 7.4.3 for detailed discussion). A large norm

of ht leads to a large norm of θt and in turn a large ∥θ̄t+1∥
(2)

. This process is ex-

acerbated during training and eventually leads to exploding norm of the parameters

(see Figure 7.3). In Section 7.4.3, we intuitively justify the robustness of AdaBest for

various scale and distribution of client sampling.

Theorem 13 (proof in Appendix D) In FedDyn, ∥ht∥2 ≤ ∥ht−1∥2 requires

cos(∠(ht−1, ḡt)) ≤ − |P
t|

2|St|
∥ḡt∥
∥ht−1∥

. (7.5)

Functionality

AdaBest allows to control how far to look back through the previous rounds for ef-

fective estimation of full and local gradients compared to existing Reduced Variance

LocalSGD (RV-LSGD) baselines. To update the local gradient estimates, we dynami-

cally scale the previous values down because the period between computing and using

h
t′i
i on client i (the period between two participation, i.e., t − t′i) can be long during

which the error of estimation may notable increase. See Algorithm 3 for comparing

our updates on local gradients estimation compared to that of the baselines. Fur-

thermore, at the server, ht is calculated as the weighted difference of two consecutive

aggregate models. Note that, if expanded as a power series, this difference by itself

is equivalent to accumulating pseudo-gradients across previous rounds with an expo-

nentially weighted factor. This series is presented in Remark 14 for which the proof

is provided in Appendix D. Unlike previous works, proposed pseudo-gradients’ accu-

mulation does not necessitate any additional effort to explicitly maintain information

about the previous rounds. Additionally, it reduces the compute cost as quantita-

tively shown in Appendix D. It is a general arithmetic; therefore, could be adapted

to work with our baselines as well.

108

Theorem 14 (Proof in Appendix D) Cloud pseudo-gradients of AdaBest form

a power series of ht =
∑︁t

τ=1 β
(t−τ)ḡt, given that superscript in parenthesis means

power.

Adaptability

As indicated earlier, the error in estimation of oracle full gradients in FedDyn is only

supposed to be eliminated by using pseudo-gradients. A difficult learning task, both

in terms of optimization and heterogeneity results in a higher variance of pseudo-

gradients when accompanies with a low rate of client participation. The outcome

of constructing a naive estimator by accumulating these pseudo-gradients is sever.

This is shown in Figure 7.3, where on average, there is a long wait time between

client re-samples due to the large number of participating clients. The results of this

experiment empirically validates that ∥θt∥(2) in FedDyn grows more rapidly and to a

much higher value than AdaBest. SCAFFOLD is prune to the same type of failure;

however, because it scales down previous values of h in its accumulation, the outcomes

are less severe than that of FedDyn. In Appendix D, we present, similar analysis,

for a much simpler task (classification on EMNIST). It is important not to confuse

the source of FedDyn’s instability with overfitting (see supplementary material for

overfitting analysis). However, our observations imply that the stability of FedDyn

decreases with the difficulty of the task.

Our parameter β solves the previously mentioned problem with norm of h. It is

a scalar values between 0 and 1 that acts as a slider knob to determine the trade-

off between the amount of information maintained from the previous estimate of

full gradient and the estimation that a new round provides. On an intuitive level, a

smaller β is better to be chosen for a more difficult task (both in terms of optimization

and heterogeneity) and lower level participation–and correspondingly higher round to

round variance among pseudo-gradients and vice versa. We provide an experimental

analysis of β in Appendix D; however, in a practical engineering level, β could be

dynamically adjusted based on the variance of the pseudo-gradients. The goal of this

chapter is rather showing the impact of using β. Therefore, we tune it like other

hyper-parameters in our experiments. We leave further automation for finding an

optimal β to be an open question for the future works.

109

Theorem 15 FedAvg is a special case of AdaBest where β = µ = 0.

Theorem 16 Server update of FedDyn is a special case of AdaBest where β = 1

except that an extra |P|
|S| scalar is applied which also adversely makes FedDyn require

prior knowledge about the number of clients.

Theorem 17 If S be a fixed set of clients, θ̄ does not converge to a stationary point

unless h→ 0.

As mentioned in Section 7.4.3 and more particular with Theorem 13, FedDyn is

only able to decrease norm of h if pseudo-gradients are negatively correlated with

oracle gradient estimates which could be likely only if the rate of client re-sampling

is high. Therefore, with these conditions often being not true in large-scale FL and

partial-participation, it struggles to converge to an optimal point. SCAFFOLD has

a weighting factor that eventually could decrease ∥h∥ but it is not controllable. Our

algorithm enables a direct decay of h through decaying β. We apply this decay in

our experiments when norm of h plateaus (see Section 7.5.4). This is consistent with

Theorem 17 which states that converging to a stationary point require h→ 0.

7.5 Experiments

7.5.1 Setup

We evaluate performance and speed of convergence of our algorithm against state-of-

the-art baselines. We concentrate on FL classification tasks defined using three well-

known datasets. These datasets are, the letters classification task of EMNIST [LeCun

et al., 1998] for an easy task, CIFAR-10 [Krizhevsky et al., 2009] for a moderate task

and CIFAR-100 [Krizhevsky et al., 2009] for a challenging task. The training split

of the dataset is partitioned randomly into a predetermined number of clients, for

each task. 10% of these clients are set aside as validation clients and only used

for evaluating the performance of the models during hyper-parameter tuning. The

remaining 90% is dedicated to training. The entire test split of each dataset is used

to evaluate and compare the performance of each model. Our assumption throughout

the experiments is that, test dataset, oracle dataset, and collective data of validations

clients have the same underlying distribution.

110

To ensure consistency with previous works, we follow Acar et al. [2020] to control

heterogeneity and sample balance among client data splits. For heterogeneity, we

evaluate algorithms in three modes: IID, α = 0.3 and α = 0.03. The first mode

corresponds to data partitions (clients’ data) with equal class probabilities. For the

second and third modes, we draw the skew in each client’s labels from a Dirichlet

distribution with a concentration parameter α (see Section 5.6.3 for more details on

how this draw is made). For testing against balance of sample number, we have two

modes: balanced and unbalanced such that in the latter, the number of samples for

each client is sampled from a log-normal distribution with concentration parameter

equal to 0.3.

Throughout the experiments, we consistently keep the local learning rate, number

of local epochs, and batch size as 0.1, 5 and 45 respectively. The local learning rate is

decayed with a factor of 0.998 at each round. As tuned by Acar et al. [2020], the local

optimizer uses a weight decay of 10−4 for the experiments on EMNIST and 10−3 for

the experiment on CIFAR-10 and CIFAR-100. Further details about the optimization

is provided in supplementary material.

To tune the hyper-parameters we first launch each experiment for 500 rounds. µ of

FedDyn is chosen from [0.002, 0.02, 0.2], with 0.02 performing best in all cases except

EMNIST, where 0.2 also worked well. For the sake of consistency, we kept µ = 0.02 for

AdaBest as well. We found the rate of client participation to be an important factor

for choosing a good value for β. Therefore, for 1% client participation experiments

we search β in [0.2, 0.4, 0.6]. For higher rates of client participation, we use the search

range of [0.94, 0.96, 0.98, 1.0]. For all these cases, 0.96 and 0.98 are selected for 10%

and 100% client participation rates, respectively (both balanced and unbalanced).

We follow Acar et al. [2020] for choosing the inference model by averaging client

models though the rounds. Experiments are repeated 5 times, each with a different

random seed of data partitioning. The reported mean and standard deviation of the

performance are calculated based on the the last round of these 5 instance for each

setting.

111

7.5.2 Model Architecture

We use the same model architectures as McMahan et al. [2017] and Acar et al. [2020].

For EMNIST, the architecture comprises of two fully-connected layers, each with 100

hidden units. For CIFAR-10 and CIFAR-100, there are two convolutional layers with

5× 5 kernel size and 64 kernels each, followed by two fully-connected layers with 394

and 192 hidden units, respectively.

7.5.3 Baselines

We compare the performance of AdaBest against FedAvg [McMahan et al., 2017],

SCAFFOLD [Karimireddy et al., 2020] and FedDyn [Acar et al., 2020]. These base-

lines are consistent with the ones that the closest work to us [Acar et al., 2020], has

experimented with3. However, we avoided their choice of tuning the number of lo-

cal epochs since we believe it does not comply with a fair comparison in terms of

computation complexity and privacy loss.

7.5.4 Evaluation

Table 7.2 compare the performance of our model to all the baselines in various settings

with 100 clients. The results show that our algorithm is effective in all settings. The

1000-device experiments confirm our arguments about the large-scale cross-device

setting and practicality of AdaBest in comparison to the baselines. Our algorithm

has notable gain both in the speed of convergence and the generalization performance.

This gain is only overtaken for some benchmarks in full client participation settings

(CP=100%) where the best β is chosen close to one. According to Remark 16, and the

fact that in full participation |Pt|
|St| = 1 and ti = t′i + 1 for all feasible i and t, FedDyn

and AdaBest become nearly identical in these settings. In Figure 7.5, we show the

impact of scaling the number of clients in both balanced and imbalanced settings

for the same dataset and the same number of clients sampled per round (10 clients).

During the hyper-parameter tuning we noticed that the sensitivity of FedDyn and

AdaBest to their µ is small specially for the cases with larger number of clients.

3FedDyn additionally compares with FedProx [Li et al., 2020]; however, as shown in their bench-
marks it performs closer to FedAvg than the other baselines.

112

0

10

20

30

40

50
b

al
an

ce
d

|S| = 1000 |S| = 100

0 500 1000 1500 2000
rounds

0

10

20

30

40

50

u
n
b

al
an

ce
d

0 300 600 900 1200
rounds

AdaBest
FedDyn
SCAFFOLD
FedAvg

Figure 7.5: Test accuracy on balanced (top) and unbalanced (bottom) settings for
training on 1000 (left) and 100 (right) clients. The training dataset is CIFAR-100
and |P|=10.

7.6 Conclusions

In this chapter, we introduce AdaBest, an adaptive approach for tackling client drift

in Federated Learning. Some of our most important contributions and findings in

this chapter are as follows

• Unlike the existing solutions, our approach is robust to low rates of clients re-

sampling, which makes it practical for large-scale cross-device Federated Learn-

ing.

• The performance and empirical convergence rates of our method demonstrate

the efficacy of our technique compared to all the baselines across various bench-

marks. In benchmarks with a large number of clients, our method outperforms

the baselines by a wide margin. The results show nearly a two-fold improvement

in test accuracy over the second-best candidate in some cases.

• Our algorithm consumes no more communication bandwidth or storage than

113

Table 7.2: Mean and standard deviation of test accuracy for various settings. The
results are based on 5 random data partitioning seeds. Models are trained for 1k,
1.2k, and 2k rounds, for 1%, 10% and 100% client participation settings, respectively.
A smaller α indicates higher heterogeneity. ∗CP stands for rate of client participation
(|P|
|S|)

top-1 test accuracy

CP∗ Dataset Setting FedAvg FedDyn SCAFFOLD AdaBest

1%

EMNIST
α=0.03 94.28±0.07 92.42±0.14 93.99±0.16 94.49±0.07
α=0.3 94.47±0.10 92.64±0.31 94.34±0.23 94.72±0.22
IID 94.04±1.37 92.89±0.14 94.48±0.11 94.81±0.08

CIFAR-10
α=0.03 78.18±0.80 77.91±0.79 75.83±2.36 78.44±1.12
α=0.3 82.21±0.36 82.06±0.17 82.96±0.42 83.09±0.76
IID 83.84±0.17 83.36±0.39 84.18±0.26 85.05±0.31

CIFAR-100
α=0.03 47.56±0.59 46.27±0.65 47.29±0.95 47.91±0.83
α=0.3 49.63±0.47 50.53±0.36 52.87±0.61 53.62±0.23
IID 49.93±0.36 50.85±0.38 53.43±0.44 55.33±0.44

10%

EMNIST
α=0.03 93.58±0.25 93.57±0.20 94.29±0.11 94.62±0.17
α=0.3 94.04±0.04 93.54±0.22 94.54±0.11 94.64±0.11
IID 94.32±0.10 93.60±0.35 94.62±0.16 94.70±0.24

CIFAR-10
α=0.03 74.04±0.88 76.85±0.91 77.19±1.10 79.64±0.58
α=0.3 79.74±0.07 81.91±0.19 82.26±0.38 84.15±0.36
IID 81.35±0.23 83.56±0.31 83.50±0.15 85.78±0.14

CIFAR-100
α=0.03 39.18±0.56 44.24±0.66 45.80±0.36 48.56±0.45
α=0.3 38.78±0.35 48.92±0.37 46.34±0.43 54.51±0.35
IID 37.45±0.57 49.60±0.24 44.30±0.22 55.58±0.14

100%

EMNIST
α=0.03 93.36±0.15 94.18±0.21 94.38±0.20 94.06±0.11
α=0.3 93.99±0.19 94.23±0.14 94.53±0.16 94.40±0.21
IID 94.06±0.33 94.37±0.15 94.63±0.10 94.69±0.14

CIFAR-10
α=0.03 72.97±1.09 78.24±0.77 77.64±0.25 78.07±0.71
α=0.3 79.12±0.15 83.19±0.18 82.26±0.23 83.20±0.25
IID 80.72±0.33 84.39±0.20 83.55±0.25 84.75±0.17

CIFAR-100
α=0.03 38.24±0.63 46.00±0.42 46.51±0.50 46.16±0.79
α=0.3 37.03±0.35 50.42±0.29 45.48±0.38 50.90±0.42
IID 35.92±0.48 50.61±0.25 43.73±0.23 51.33±0.41

the baselines, and it even has a lower compute cost.

• AdaBest addresses the instability of norm of gradient estimates used in FedDyn

by adapting to the most relevant information about the direction of the client

drift.

114

• we formulated the general estimate of oracle gradients in a much elegant arith-

metic that eliminates the need for the explicit, recursive form used in the pre-

vious algorithms.

Chapter 8

Conclusion and Future Research

In this thesis, we studied the efficiency and efficacy of HTL in the contexts of task

adaptation and FL. We firs, reviewed popular gradient based algorithms for training

DNNs and how they are used in the context of HTL. We then went over the funda-

mental concepts that define HTL and FL, as well as how these two fields are related.

We continued by iterating over the existing methods for HTL and FL and discussed

their limitations.

We further studied feature-tuning as the most popular task adaptation method

and pronounced a major issue with the way it is conventionally applied. We hypoth-

esized that this issue can be alleviated if starting from about zero, the magnitude of

the updates to a pretrained feature-extractor gradually increases during the tuning.

We proposed two methods, ENTAME and FAST, to achieve such a gradual increase.

Both of these methods initialize the weights of the head to small numbers so that the

initial update to the pretrained feature-extractor becomes near zero. To make sure

that parameters of the feature extractor are updated with a proper magnitude in the

follow-up optimization steps, ENTAME uses a feature normalizer while FAST tunes a

separate learning rate for the model’s head. Based on various experiments conducted

in this thesis about the speed of convergence, performance at the converged state

and the amount of knowledge preserved from the source task, we make the following

conclusions

• feature-tuning can converge to a significantly better solution compared to feature-

extraction;

• careful initialization of the head is crucial to an efficient feature-tuning;

• initial updates to pretrained feature-extractors are noisy and can perturb the

learned features resulting in loss of transferred knowledge;

115

116

• gradual increase in the magnitude of the updates to a pretrained feature-

extractor not only better preserves the transferred knowledge but also improves

the tuned model’s performance;

• ENTAME and FAST both achieve a gradual increase in the magnitude of the

updates to a pretrained feature-extractor and as a result they both can accel-

erate feature-tuning and even sometimes converge to a better solution. FAST

requires slightly less computation and storage overhead but has an extra hyper-

parameter to be tuned compared to ENTAME. Therefore, depending on an

application’s constraints, one of these methods can be preferred over the other.

On the subject of FL, we targeted the issue of client drift and showed how existing

RV-LSGD algorithms tackle it. We pronounced the bandwidth overhead and stability

problem with the previous state-of-the-art algorithms, SCAFFOLD and FedDyn. We

provided a novel algorithm that not only elegantly solves these shortcoming but also

significantly outperforms the existing methods in several cross-device settings. In

summary, our contributions in the realm of heterogeneous FL are as follows.

• We showed that the existing RV-LSGD approaches for cross-device FL fail to

efficiently converge to a stationary point. In particular, the norm of the param-

eters in FedDyn is pruned to explosion.

• We formulated a novel arithmetic approach for implicit accumulation of previous

observations into estimates of the oracle full gradients (h).

• We presented AdaBest, a novel algorithm that can be thought as a generaliza-

tion of both FedAvg and FedDyn. We introduced a new factor β that stabilizes

our algorithm through controlling the norm of h. As a result, the optimization

algorithm converges to a stationary point (see Sections 7.4.3 for detailed dis-

cussion). Unlike baselines, AdaBest does not assume that the set of training

clients are stationary nor it requires a prior knowledge about its cardinality.

• We conducted various experiments under different settings of number of clients,

balance among partitions, and data heterogeneity. Our results indicated supe-

rior performance of AdaBest in nearly all benchmarks (up to 94% improvement

117

in test accuracy compared to the second best candidate; almost twice better),

in addition to significant improvements in stability and convergence rate.

8.1 Limitations and future research

The efficiency and efficacy of our proposed task adaptation methods ENTAME and

FAST, as well as our FL algorithm AdaBest has been shown in many cases in this

thesis. However, there are several limitations to our proposed methods that should

be acknowledged before they can be used in production.

ENTAME has a small storage and computation overhead; especially if the number

of features is very large, a slightly larger memory is expected to be consumed, both

in training and inference modes. Additionally, it uses the training batch statistics,

which can be unreliable if batches are not drawn IID or if training with moderately

large training batches is impossible.

Furthermore, while FAST does not share the same limitation as ENTAME, its

reliance on an additional learning rate can lead to a more time-consuming process of

tuning hyperparameters. Addressing this requirement may necessitate further explo-

ration to optimize the tuning process and minimize computation costs.

Finally, despite its effectiveness, AdaBest has certain limitations that require fur-

ther exploration. Firstly, similar to its precedents, our method addresses the issue of

client drift abstractly without taking into account privacy concerns which presents

an open research question. Secondly, AdaBest ignores the heterogeneity that results

from the presence of stragglers, an issue typically addressed in asynchronous FL. Fi-

nally, our method relies on an additional hyperparameter β which is not present in

previous methods, and it can add some burden to the training process in some specific

settings.

In terms of theoretical analysis, some previous FL work investigated their bounds

for convergence rate given convex and strongly convex loss landscapes. Although such

analysis can help comparing different algorithms, it does not provide a certain lead

to practical outcomes. Perhaps, this is mainly because, when dealing with DNNs, we

often anticipate a highly non-convex loss landscape. Even for convex and strongly

convex settings, we found it challenging to adapt the existing analysis to AdaBest.

As much as the existence of β makes our algorithm practically appealing, it makes

118

many proofs provided by Acar et al. [2020] inapplicable to AdaBest. For instance,

Acar et al. [2020] simplify several telescope series in proving their theorems, whereas

adapting the same theorems to AdaBest fails because given our discounting factor,

those series do not appear in many formula. We leave further theoretical analysis to

the future work.

In summary, our proposed methods have shown outstanding results, but there are

several limitations that need to be addressed in future research. These limitations

are important and may affect the applicability of our methods.

Appendix A

Supplementary material for Chapter 2

“To define is to limit.”

- Oscar Wilde, The Picture of Dorian Gray

A.1 Proofs

Lemma 1 For an unconstrained optimization problem (i.e., all directions be admis-

sible in parameter space), if θ is not a minimizer then d is an ascend direction of the

differentiable loss function L(θ) if ⟨G,d⟩ > 0.

Proof Let r be a small positive scalar. By gradient definition G = limr→0
L(θ+rd)−L(θ)

rd
.

If ⟨G,d⟩ > 0, then limr→0(L(θ + rd) − L(θ) > 0). As a result, L(θ + rd) > L(θ)

which means that d is a ascend direction.

Lemma 2 For the differentiable loss function L(θ) the gradient is the steepest ascend

direction.

Proof Let ∥d∥2 = 1. Using the assumptions in Lemma 1 and by Cauchy-Swcharz

inequality, we have ⟨G,d⟩ ≤ ∥G∥∥d∥ which means ⟨G,d⟩ ≤ ∥G∥. Therefore, ⟨G,d⟩
gets to its maximum at the direction of d = G

∥G∥ .

Theorem 1 (Steepest descent direction) For the differentiable loss function L(θ)

the negative of the gradient is the steepest direction of descending.

Proof Given Lemma 2, we have
θ

∇(−L(θ)) = −
θ

∇L(θ).

Corollary 1 In GD, the convergence is achieved when ∥Gt−1∥ < ϵ
η
.

119

120

Proof The proposition can be directly found given Definition 2 and GD’s update rule

in Equation (2.4).

Theorem 2 (SGD unbiased) Stochastic Gradient Descend (SGD) is an unbiased

estimator for Gradient Descend (GD).

Proof based on Equation (2.5) we can consider the pseudo-gradient at θ0 to θm as

ĝ ≜ θ0 − θm = η
∑︁m

t=1

θ

∇ℓ(x,y;θt−1). To prove the theorem, we show that starting

from the same state of the parameters θ0, expectation of average of m consecutive steps

of SGD equals average of m consecutive steps of GD. This is equivalent to showing

E[ĝ]−η
∑︁m

j=1 Gj = 0 where the expectation is over all possible orders (random shuffles)

of data instances and Gj is full-batch gradient of the j-th GD step. We have

E[ĝ] = E
i
[η

m∑︂
t=1

θ

∇ℓ(xi,yi;θ
t−1)]

= η
m∑︂
t=1

E
i
[
θ

∇ℓ(xi,yi;θ
t−1)].

(A.1)

Because i is sampled at uniform, probability of each instance drawn is equally 1
m

so

at t = j,

E
i
[
θ

∇ℓ(xi,yi;θ
t−1)|t = j] =

1

m

m∑︂
i=1

θ

∇ℓ(xj,yj;θ
j−1) = Gj. (A.2)

On the other hand, the marginal expectation gives

E
i
[
θ

∇ℓ(xi,yi;θ
t−1)] =

1

m

m∑︂
j=1

E
i
[
θ

∇ℓ(xi,yi;θ
t−1)|t = j] (A.3)

From Equation (A.2) and Equation (A.3) we have

E
i
[
θ

∇ℓ(xi,yi;θ
t−1)]. =

1

m

m∑︂
j=1

Gj. (A.4)

Plugging this into Equation (A.1) gives

E[ĝ] = η

m∑︂
t=1

1

m

m∑︂
j=1

Gj = η

m∑︂
j=1

Gj. (A.5)

121

Theorem 3 SVRG is an unbiased estimate of GD.

Proof Let ν = m and similar to theorem 2 but starting from m-th update, ĝ ≜

θm − θ2m or

ĝ ≜ η

2m∑︂
t=m

(︃
θ

∇ℓ(xi,yi;θ
t−1) +

θ

∇L(θ̃)−
θ

∇ℓ(xi,yi; θ̃)

)︃
. (A.6)

We need to show that E[ĝ] = η
∑︁m

j=1 Gj; starting from the left side we have

E[ĝ] = E
i
[η

2m∑︂
t=m

(︃
θ

∇ℓ(xi,yi;θ
t−1) +

θ

∇L(θ̃)−
θ

∇ℓ(xi,yi; θ̃)

)︃
]

= η
2m∑︂
t=m

E
i
[
θ

∇ℓ(xi,yi;θ
t−1)] + η

2m∑︂
t=m

E
i
[
θ

∇L(θ̃)]− η
2m∑︂
t=m

E
i
[
θ

∇ℓ(xi,yi; θ̃)].

(A.7)

Getting help from theorem 2, we can simplify this equation to

E[ĝ] = η
2m∑︂
t=m

E
i
[
θ

∇ℓ(xi,yi;θ
t−1)] +

θ

∇L(θ̃)−
θ

∇L(θ̃). (A.8)

This takes us to the expectation of ĝ in theorem 2 which follows the same result.

Theorem 4 (velocity form of SGD with momentum) SGD with momentum up-

dates described by Equation (2.6), Equation (2.11), and Equation (2.12) is equivalent

to applying

θt = θt−1 − ηvt; (A.9)

where

vt = βvt−1 +
θ

∇ℓ(xi,yi;θ
t−1); i ∼ U(1,m). (A.10)

Proof From Equation (2.13),

vt−1 =
1

η
(θt−2 − θt−1). (A.11)

Replacing it in Equation (2.14) gives

vt =
β

η
(θt−2 − θt−1) +

θ

∇ℓ(xi,yi;θ
t−1). (A.12)

Plugging this into Equation (2.13) yields

θt = θt−1 − η

(︃
β

η
(θt−2 − θt−1) +

θ

∇ℓ(xi,yi;θ
t−1)

)︃
, (A.13)

122

in which setting ht = β
η
(θt−2 − θt−1) and adding a zero vector ht

i gives what we are

looking for.

Appendix B

Supplementary material for Chapter 5

B.1 Proofs

Theorem 5 (Gradient w.r.t. head’s output) The gradient of cross-entropy loss

with respect to head’s output is equal to the prediction error.

Proof Equation (2.1) can equally be written as

ℓ(y, ŷ) = −
i=C∑︂
i=1

yi ln yî. (B.1)

Replacing ŷi from Equation (5.5) gives

ℓ(o,y) = −
i=|y|∑︂
i=1

yi ln
exp (oi)∑︁j=|y|

j=1 exp (oj)

= −
i=C∑︂
i=1

yi ln (exp (oi)) +
i=C∑︂
i=1

yi ln(

j=|y|∑︂
j=1

exp (oj))

= −
i=C∑︂
i=1

yioi +
i=C∑︂
i=1

yi ln(

j=C∑︂
j=1

exp (oj))

(B.2)

The gradient of loss with respect to k-th head’s output is

∂ℓ

∂ok

= −yk +

i=|y|∑︂
i=1

yi
exp (ok)∑︁j=C
j=1 exp (oj)

. (B.3)

The last fraction redefines k-th outputs of softmax(o); therefore,

∂ℓ

∂ok

= −yk +
i=C∑︂
i=1

yiŷk. (B.4)

However, since y is one-hot encoded

∂ℓ

∂ok
= ŷk − yk. (B.5)

123

124

Thus, according to Definition 7 we have

∂ℓ

∂o
= δ. (B.6)

Theorem 6 (Maximum entropy of Predicted Labels) Maximum entropy of

predicted class labels is achieved when all classes are predicted equally.

Proof Based on Definition 8, we have

H(y) :=
i=C∑︂
i=1

ŷi ln
1

ŷi
. (B.7)

ln is a concave function; therefore, based on Jensen’s inequality

H(y) ≤ ln
i=C∑︂
i=1

ŷi

1

ŷi
= lnC. (B.8)

This maximum is achieved only if ∀i, j ∈ {1, 2, . . . , C} : ŷi = ŷj.

Axiom 1 ∀u, v ∈ R, if u ≥ 0 and v ≥ 0 then uv ≥ 0.

Lemma 3 ∀u ∈ R, if 0 ≤ u ≤ 1 then u(2) ≤ u.

Proof We have

1− u ≥ 0. (B.9)

Axiom 1 gives

u(1− u) ≥ 0; (B.10)

which means

u(2) ≥ u; (B.11)

Axiom 2 ∀u,v ∈ R(c), ⟨u,v⟩ ≤ ⟨u,u⟩⟨v,v⟩ (Cauchy-Schwarz)

125

Axiom 3 Taylor series approximation of exponential function around zero is

exp(u) ≈ 1 + u. (B.12)

Theorem 7 (Maximum initial expected entropy in ENTAME) ENTAME

makes the expected entropy of predicted labels initially maximized.

Proof Using Axiom 3 and Definition 4, we have

ŷi =
1 + oi

C +
∑︁j=C

j=1 oj
. (B.13)

Replacing the normalized features in Equation (5.4) give

oi = ⟨A,Wi⟩+ bi (B.14)

for the i-th output. Additionally, given the mean and variance of elements in W 0

and the normalized features we can conclude E[oi] = 0 so

E[ŷi] =
1

C
, (B.15)

which according to Theorem 6 is expectantly maximum prediction entropy.

Lemma 4 (Initial output mean and variance in ENTAME) ENTAME gives

∀i ∈ {1, 2, . . . , C} : E[o0i] = 0,Var(o0i) = Qσ(2).

Proof W 0
i contains all zero-centered elements, so oi = ⟨A0,W 0

i ⟩ is sum of all zero-

centered elements which is zero-centered. Therefore, E[o0i] = 0. As for the Variance,

because W 0
i and A0 are independent

Var(o0
i) = Var(⟨A0,W 0

i ⟩)

= QVar(A0)Var(W 0
i)

= Qσ(2).

(B.16)

Corollary 2 If ∀i, j ∈ {1, 2, . . . , C} : ŷi = ŷj then ⟨δ, δ⟩ = C−1
C

.

126

Proof Because predicted labels have to sum to one, then based on their equality

proposition, we have ∀i ∈ {1, 2, . . . , C} : ŷi = 1
C
. Let k be the index of the true class;

then, based on the Definition 7 we have

δi =

⎧⎨⎩
1
C
− 1 if i=k;

1
C

otherwise.
(B.17)

Accordingly, we have

⟨δ, δ⟩ =
i=C∑︂
i=1

δ
(2)
i

= (C − 1)
1

C(2)
+ (

1

C
− 1)(2)

=
1

C
− 1

C(2)
+

1

C(2)
− 2

1

C
+ 1

=
C − 1

C
.

(B.18)

Corollary 3 If ∀i, j ∈ {1, 2, . . . , C} : ŷi = ŷj, a large C implies ⟨δ, δ⟩ ≈ 1.

Proof If C ≫ 1 then C ≈ C − 1. Given the result of Corollary 3, this means

⟨δ, δ⟩ ≈ 1.

Lemma 5 The first update to head’s weights in ENTAME is such that

W 1
i ≈W 0

i + η E
batch

[y0iA
0]. (B.19)

Proof Given the aforementioned feature normalizer, the first forwarded mini-batch

of training data, for the i-th row of W the gradient is

∂L0

∂W 0
i

= E
batch

[
∂ℓ0

∂W 0
i

] = E
batch

[δ0iA
0], (B.20)

or given Theorem 7
∂L0

∂W 0
i

≈ 1

C
E

batch
[A0]− E

batch
[y0iA

0]. (B.21)

127

Accordingly, using mini-batch SGD and E
batch

[A0] = 0 we have

W 1
i ≈W 0

i + η E
batch

[y0iA
0]. (B.22)

Theorem 8 ENTAME guarantees

∥W 1∥F ≥ ∥W
0∥F (B.23)

Proof The minimum of ∥W 1∥(2)F is found when all instances of the batch are from

the same class. If that is the k-th class then according to Lemma 5, we have

W 1
k = W 0

k + η E
batch

[A0] = W 0
k (B.24)

which is resulted from E
batch

[A0] = 0. Therefore, ∥W 1∥(2)F remains at ∥W 1∥(2)F = QCσ2.

Based on triangle inequality, any other condition results in larger norm square across

mini-batch dimension and so larger Frobenius norm of W 1.

Corollary 4 When all instances from the first mini-batch are from the same class,

ENTAME gives

∥W 1∥F = ∥W 0∥F (B.25)

Proof This can be directly concluded from the proof of Theorem 8 and in particular

Equation (B.24).

Theorem 9 Maximum entropy prediction labels is achieved when ∀c, c′ ∈ {1, 2, . . . , C} :

Wc = Wc′ and bc = bc′.

Proof Given an extracted feature vector a, each outputs oi is found as

oc = ⟨a,Wc⟩+ bc. (B.26)

Therefore, from the proposition we can conclude that ∀c, c′ ∈ {1, 2, . . . , C} : oc = oc′.

Replacing this into softmax (Definition 4) gives

∀c ∈ {1, 2, . . . , C} : ŷc =
exp (oc)

C exp (oc)
=

1

C
, (B.27)

128

which is the maximum entropy prediction labels according to Theorem 6.

Theorem 10 (rows stays equal) Let C ′ be the set of classes that were never observed
by the model during training. If mini-batch SGD is used as the optimization algorithm,

then ∀c, c′ ∈ C ′ : Wc = Wc′ and bc = bc′ stays true as far as no training instance

from classes c and c′ is observed.

Proof According to Theorem 9, stated conditions for W and b at time t gives

ŷtc = ŷtc′; therefore, δ
t
c = δtc′ (see Theorem 5). We have

∂ℓt

∂W t
c

=
∂ℓt

∂W t
c′
. (B.28)

The Stochastic Gradient Descend (SGD) update results in W t+1
c = W t+1

c′ and bt+1
c =

bt+1
c′ . Therefore, by induction the condition stays true as far as training instances of

c and c′ are not observed.

Theorem 11 Given condition expressed in Theorem 9 we have E
batch

[
a

∇ℓ] = 0 for the

first optimization step using mini-batch SGD.

Proof From Equation 5.10 and the proposition, we have

ai
∇ℓ =

c=C∑︂
c=1

δcWc,i. (B.29)

At the beginning of training we have

ai
∇ℓ = ui

c=C∑︂
c=1

δc. (B.30)

given that {1, 2, . . . , C} ∈: u = Wc. This in turn gives

ai
∇ℓ = ui(

c=C∑︂
c=1

ŷc −
c=C∑︂
c=1

yc) = 0. (B.31)

129

B.2 Complementary Experiments

B.2.1 task adaptation Performance

In Section 5.6.1, we compared the ENTAME with the baselines for ResNet-50 as

the model. In this section we provide results for many more model architectures in

Figures B.2 to B.18.

1 201 401 601 801 1001 1201 1401 1601 1801

steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Figure B.1: Feature-tuning ResNet-152, ImageNet ↦−→ CIFAR-10.

130

1 301 601 901 1201 1501 1801 2101 2401 2701

steps

0.1

0.2

0.3

0.4

0.5

0.6
te

st
ac

cu
ra

cy

base WU SW FN+SW

2 4 6 8 10 12
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Figure B.2: Feature-tuning ResNet-152, ImageNet ↦−→ CIFAR-100.

1 101 201 301 401 501 601 701 801 901 1001 1101 1201

steps

0.2

0.4

0.6

0.8

1.0

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure B.3: Feature-tuning ResNet-152, ImageNet ↦−→ Caltech-101.

131

1 201 401 601 801 1001 1201 1401 1601 1801

steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
te

st
ac

cu
ra

cy

base WU SW FN+SW

2 4 6 8 10 12

0.1

0.2

0.3

0.4

0.5

Figure B.4: Feature-tuning DenseNet-121, ImageNet ↦−→ CIFAR-10.

1 301 601 901 1201 1501 1801 2101 2401 2701

steps

0.1

0.2

0.3

0.4

0.5

0.6

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

0.25

Figure B.5: Feature-tuning DenseNet-121, ImageNet ↦−→ CIFAR-100.

B.2.2 domain adaptation Performance

In Section 5.6.4, we compared best performing baseline model without feature nor-

malization (Figure 5.12) to our proposed methods with feature normalization (Figures

132

1 101 201 301 401 501 601 701 801 901 1001 1101 1201

steps

0.2

0.4

0.6

0.8

1.0
te

st
ac

cu
ra

cy

base WU SW FN+SW

2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure B.6: Feature-tuning DenseNet-121, ImageNet ↦−→ Caltech-101.

1 201 401 601 801 1001 1201 1401 1601 1801

steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12

0.1

0.2

0.3

0.4

0.5

Figure B.7: Feature-tuning DenseNet-201, ImageNet ↦−→ CIFAR-10.

5.14 and 5.15). In this section, we provide more results, including baselines and our

methods with and without feature normalization for the same settings discussed in

133

1 301 601 901 1201 1501 1801 2101 2401 2701

steps

0.1

0.2

0.3

0.4

0.5

0.6

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

Figure B.8: Feature-tuning DenseNet-201, ImageNet ↦−→ CIFAR-100.

1 101 201 301 401 501 601 701 801 901 1001 1101 1201

steps

0.2

0.4

0.6

0.8

1.0

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure B.9: Feature-tuning DenseNet-201, ImageNet ↦−→ Caltech-101.

Section 5.6.4. These are presented in Figures B.19 to B.24.

134

1 201 401 601 801 1001 1201 1401 1601 1801

steps

0.2

0.4

0.6

0.8

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12

0.2

0.3

0.4

0.5

0.6

Figure B.10: Feature-tuning VGG-16, ImageNet ↦−→ CIFAR-10.

1 301 601 901 1201 1501 1801 2101 2401 2701

steps

0.1

0.2

0.3

0.4

0.5

0.6

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12

0.05

0.10

0.15

0.20

Figure B.11: Feature-tuning VGG-16, ImageNet ↦−→ CIFAR-100.

135

1 101 201 301 401 501 601 701 801 901 1001 1101 1201

steps

0.2

0.4

0.6

0.8

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

Figure B.12: Feature-tuning VGG-16, ImageNet ↦−→ Caltech-101.

1 201 401 601 801 1001 1201 1401 1601 1801

steps

0.2

0.4

0.6

0.8

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

Figure B.13: Feature-tuning VGG-19, ImageNet ↦−→ CIFAR-10.

136

1 301 601 901 1201 1501 1801 2101 2401 2701

steps

0.1

0.2

0.3

0.4

0.5

0.6

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12

0.05

0.10

0.15

0.20

Figure B.14: Feature-tuning VGG-19, ImageNet ↦−→ CIFAR-100.

1 101 201 301 401 501 601 701 801 901 1001 1101 1201

steps

0.2

0.4

0.6

0.8

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

Figure B.15: Feature-tuning VGG-19, ImageNet ↦−→ Caltech-101.

137

1 801 1601 2401 3201 4001 4801 5601 6401 7201

steps

0.2

0.4

0.6

0.8

1.0
te

st
ac

cu
ra

cy

base WU SW FN+SW

2 4 6 8 10 12

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure B.16: Feature-tuning Inception-V3, ImageNet ↦−→ CIFAR-10.

1 1201 2401 3601 4801 6001 7201 8401 9601 10801

steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure B.17: Feature-tuning Inception-V3, ImageNet ↦−→ CIFAR-100.

138

1 101 201 301 401 501 601 701 801 901 1001 1101 1201

steps

0.2

0.4

0.6

0.8

1.0

te
st

ac
cu

ra
cy

base WU SW FN+SW

2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure B.18: Feature-tuning Inception-V3, ImageNet ↦−→ Caltech-101.

139

1 2 3 4 5 6 7 8 9 10

domain

1
2

3
4

5
6

7
8

9
1
0

ep
is
o
d
e

24.4 2.3 1.5 0.5 1.7 6.8 0.8 3.7 6.1 1.8

2.9 23.6 2.1 0.5 2.1 2.9 2.0 2.1 2.2 1.5

1.2 4.8 27.7 0.1 1.4 1.3 3.6 0.8 0.8 1.2

0.9 1.0 2.1 21.6 0.4 2.0 1.4 0.7 1.2 0.1

2.5 6.8 3.9 7.2 11.4 3.4 1.6 1.4 2.9 2.7

8.9 5.5 3.4 2.9 4.3 18.0 1.2 0.6 5.6 1.2

1.7 2.2 6.2 1.0 1.4 3.4 25.8 2.6 2.3 0.8

5.4 2.6 6.3 2.5 3.2 3.3 8.3 14.9 2.9 3.7

9.2 2.7 2.3 1.7 1.1 6.8 4.3 4.8 24.2 6.0

3.4 1.3 3.0 1.4 1.7 1.9 5.6 7.4 7.5 25.5

0

5

10

15

20

25

30

35

Figure B.19: Test accuracy measured for all domain per training episode using best
configuration for Kin + FN (η = 0.001, features not scaled).

140

1 2 3 4 5 6 7 8 9 10

domain

1
2

3
4

5
6

7
8

9
1
0

ep
is
o
d
e

24.3 1.2 1.1 1.1 1.1 7.9 0.2 3.4 6.2 2.0

2.3 22.8 0.9 0.7 4.4 3.1 3.2 1.9 2.6 1.6

1.8 3.7 25.8 0.4 1.1 2.6 5.6 1.6 0.9 0.7

1.6 0.9 3.1 20.5 0.5 1.0 2.4 1.0 1.2 1.0

2.9 6.3 4.6 3.7 13.0 2.4 1.8 2.4 3.2 3.1

7.8 3.8 6.5 1.7 4.4 15.5 1.6 1.9 3.8 0.8

1.4 1.7 6.8 0.5 0.9 2.4 23.6 2.5 2.1 0.6

4.9 2.5 2.4 4.1 2.7 2.7 7.0 14.5 2.9 2.6

5.7 3.9 3.4 2.9 2.1 4.7 8.9 4.0 21.4 4.6

3.9 1.4 3.3 2.1 1.0 1.7 1.6 4.6 7.1 25.7

0

5

10

15

20

25

30

35

Figure B.20: Test accuracy measured for all domain per training episode using best
configuration for Kout + FN (η = 0.001, features not scaled).

141

1 2 3 4 5 6 7 8 9 10

domain

1
2

3
4

5
6

7
8

9
1
0

ep
is
o
d
e

4.6 0 0 0 0 3.0 0 0 2.4 0

0 9.9 0 0 0 0 0 0 0 0.1

0 0 7.4 0 0.3 0 2.3 0 0 0

0 0 0 10.0 0 0 0 0 0 0

0 0 0 0 9.8 0 0.2 0 0 0

0 0 0 0 4.3 5.7 0 0 0 0

0 0 0 0 0 0 10.0 0 0 0

0 0 0 0.5 0 0 0 9.3 0 0.2

0.1 0 0 0 0 0 0 0 9.9 0

0 0 0 0 0 0 0 0 0 10.0

0

5

10

15

20

25

30

35

Figure B.21: Test accuracy measured for all domain per training episode using best
configuration for SW (η = 0.1, features scaled by 1.0).

142

1 2 3 4 5 6 7 8 9 10

domain

1
2

3
4

5
6

7
8

9
1
0

ep
is
o
d
e

9.3 0 0 0.1 0 0 0 0.6 0 0

0 5.4 0 2.2 0 0 0 2.3 0.1 0

0 0 10.0 0 0 0 0 0 0 0

0.1 0.1 0 9.8 0 0 0 0 0 0

0 1.7 0 0 8.2 0 0 0 0.1 0

0 0 0 0 0 10.0 0 0 0 0

0 0 0 0 0 0 6.9 3.1 0 0

0.9 0.9 0.7 1.8 1.6 0.7 0.8 0.7 1.0 0.9

0.9 0.9 0.7 1.8 1.6 0.7 0.8 0.7 1.0 0.9

0.9 0.9 0.7 1.8 1.6 0.7 0.8 0.7 1.0 0.9

0

5

10

15

20

25

30

35

Figure B.22: Test accuracy measured for all domain per training episode using best
configuration for SR (η = 0.2, features not scaled).

143

1 2 3 4 5 6 7 8 9 10

domain

1
2

3
4

5
6

7
8

9
1
0

ep
is
o
d
e

9.3 0 0 0.1 0 0 0 0.6 0 0

0.3 7.7 0 0 0.8 0 0.2 0.4 0.2 0.4

0 0 9.3 0 0 0.7 0 0 0 0

0.2 0 0 9.8 0 0 0 0 0 0

0 0 0 0 9.8 0 0.2 0 0 0

0 0 0 0 0 10.0 0 0 0 0

0 0 0 0 0 0 10.0 0 0 0

0 0 0 0.5 0 0 0 9.3 0 0.2

0.4 0 0 0 0 0 0 0 9.6 0

0 0 0 0 0 0 0 0 0 10.0

0

5

10

15

20

25

30

35

Figure B.23: Test accuracy measured for all domain per training episode using best
configuration for Kin (η = 0.2, features scaled by 0.5).

144

1 2 3 4 5 6 7 8 9 10

domain

1
2

3
4

5
6

7
8

9
1
0

ep
is
o
d
e

8.9 0.1 0 0.3 0 0 0 0.7 0 0

0 7.6 0 0 0 2.4 0 0 0 0

0 0 9.3 0 0 0.7 0 0 0 0

0 0 0 10.0 0 0 0 0 0 0

0 0 0 0 8.7 0 0 1.3 0 0

0 0 0 0 0 10.0 0 0 0 0

0 0 0 0 0 0 9.8 0 0.2 0

0 0 0 0.5 0 0 0 9.3 0 0.2

0.1 0 0 0 0 0 0 0 9.9 0

0.1 0 0 0 0 0 0 0 9.9 0

0

5

10

15

20

25

30

35

Figure B.24: Test accuracy measured for all domain per training episode using best
configuration for Kout (η = 0.2, features scaled by 0.5).

Appendix C

Supplementary material for Chapter 6

C.1 Proofs

Theorem 12 If GD or SGD is used to optimize the head parameters, the optimiza-

tion velocity of the feature-extractor parameters is

V (ϕt+1) = ηϕηw

τ=t−1∑︂
τ=1

E
batch

[δt⟨aτ , δτ ⟩∂a
t

∂ϕt
]− ηϕ E

batch
[δtW 0 ∂a

t

∂ϕt
] (C.1)

Proof Given Equation (6.1), we have

V (ϕt+1) = −ηϕ E
batch

[
∂ℓt

∂at

∂at

∂ϕt
] = −ηϕ E

batch
[δtW t ∂a

t

∂ϕt
] (C.2)

Because GD or SGD is used

W t = W 0 − ηw

τ=t−1∑︂
τ=1

E
batch

[⟨aτ , δτ ⟩]; (C.3)

which gives

V (ϕt+1) = −ηϕ E
batch

[δt

(︄
W 0 − ηw

τ=t−1∑︂
τ=1

E
batch

[⟨aτ , δτ ⟩]

)︄
∂at

∂ϕt
]. (C.4)

That is

V (ϕt+1) = ηϕηw E
batch

[δt

(︄
τ=t−1∑︂
τ=1

E
batch

[⟨aτ , δτ ⟩]

)︄
∂at

∂ϕt
]− ηϕ E

batch
[δtW 0 ∂a

t

∂ϕt
]. (C.5)

Finally,

V (ϕt+1) = ηϕηw

τ=t−1∑︂
τ=1

E
batch

[δt
E

batch
[⟨aτ , δτ ⟩]∂a

t

∂ϕt
]− ηϕ E

batch
[δtW 0 ∂a

t

∂ϕt
]. (C.6)

145

Appendix D

Supplementary material for Chapter 7

D.1 Proofs

Remark 2 Aggregating client models by averaging is equivalent to applying a gradient

step of size 1 from the previous round’s cloud model using average of client pseudo-

gradients or mathematically it is θ̄
t ← 1

|St|
∑︁

i∈St θt
i = θt−1 − ḡt.

Proof

θ̄
t ← 1

|St|
∑︂
i∈St

θt
i = θt−1 − 1

|St|
∑︂
i∈St

θt−1 − θt
i

= θt−1 − 1

|St|
∑︂
i∈St

gt
i

= θt−1 − ḡt .

Theorem 13 In FedDyn, ∥ht∥2 ≤ ∥ht−1∥2 requires

cos(∠(ht−1, ḡt)) ≤ − |P
t|

2|St|
∥ḡt∥
∥ht−1∥

Proof According to algorithm 3,

ht ← ht−1 +
|P t|
|St|

ḡt.

Applying 2-norm squared on both sides gives

∥ht∥2 = ∥ht−1∥2 +

(︃
|P t|
|St|

)︃(2)

∥ḡt∥2 + 2
|P t|
|St|
⟨ht−1, ḡt⟩.

Considering the proposition, we have

∴ ∥ht∥2 ≤ ∥ht−1∥2 =⇒ 2⟨ht−1, ḡt⟩ ≤ −|P
t|
|St|
∥ḡt∥2.

146

147

with dividing both sides on some positive values, we get

⟨ht−1, ḡt⟩
∥ḡt∥∥ht−1∥

≤ − |P
t|

2|St|
∥ḡt∥
∥ht−1∥

,

which is equivalent to the

cos(∠(ht−1, ḡt)) ≤ − |P
t|

2|St|
∥ḡt∥
∥ht−1∥

.

Remark 3 θ̄
t−1 − θ̄

t
is equivalent to ht−1 + ḡt in AdaBest.

We first add and remove θt−1 from the first side of the equation,

θ̄
t−1 − θ̄

t
= θ̄

t−1 − θ̄
t
+ θt−1 − θt−1

= (θ̄
t−1 − θt−1) + (θt−1 − θ̄

t
).

Then, we replace some terms using equation (7.1) and Remark 1 to get

θ̄
t−1 − θ̄

t
= ht−1 + ḡt.

Remark 4 Cloud pseudo-gradients of AdaBest form a power series of ht =
∑︁t

τ=0 β
(t−τ+1)ḡτ ,

given that superscript in parenthesis means power.

Proof We make the induction hypothesis ht−1 =
∑︁t−1

τ=0 β
(t−τ)ḡτ . We need to prove

that ht =
∑︁t

τ=0 β
(t−τ+1)ḡτ . From algorithm 3 we have

ht = β(θ̄
t−1 − θ̄

t
).

Additionally, using Remark 3 it could be rewritten as

ht = β(ht−1 + βḡt).

Replacing the induction hypothesis changes it to

ht = β(
t−1∑︂
τ=0

β(t−τ)ḡτ + βḡt)

=
t−1∑︂
τ=0

β(t−τ)ḡτ+1 + β(2)ḡt

=
t∑︂

τ=0

β(t−τ+1)ḡτ .

148

Remark 5 FedAvg is a special case of AdaBest where β = µ = 0.

Proof In AdaBest, µ = 0 makes ht
i zero for all feasible i and t. The resulting lo-

cal update is identical to that of FedAvg. Similarly, ht becomes zero at all rounds if

β = 0. So AdaBest would also have the same server updates as of FedAvg.

Remark 6 Server update of FedDyn is a special case of AdaBest where β = 1 except

that an extra |P|
|S| scalar is applied which also adversely makes FedDyn

require prior knowledge about the number of clients.

Proof According to algorithm 3, on the server side AdaBest and FedDyn are different

in their update of ht. Based on Remark 3, for β = 1 AdaBest update is ht ← ht−1+ḡt.

Comparably the same update in FedDyn is ht ← ht−1 + |Pt|
|St| ḡ

t. Involving ∥St∥ in the

update means assuming that prior knowledge on number of total clients is available

from the beginning of the training. On the other hand, β = 0 leads to ht = 0 and

consequently the update on the cloud model become θt ← θ̄
t
which is identical to the

server update of FedAvg.

Theorem 14 If S be a fixed set of clients, θ̄ does not converge to a stationary point

unless h→ 0.

Proof With a minor abuse in our notation for the case of SCAFFOLD/m (the

difference only is applying h on the clients after θ is sent to them), we can generally

state that

θ̄
t ← θt−1 − ḡt = θ̄

t−1 − (ht−1 + ḡt).

With S being fixed, upon t→∞, and convergence of θ̄, we expect that gt → 0, so the

optimization does not step out of the minima. In that case, we also expect θ̄
t ≈ θ̄

t−1
.

On the other hand, above formula results in θ̄
t ≈ θ̄

t−1−ht−1 which holds if h→ 0.

149

D.2 Algorithm Details

D.2.1 Notation

Following Karimireddy et al. [2020] and Acar et al. [2020], for the sake of simplicity

and readability, we only presented algorithm 3 for the balanced case (in terms of

number of data samples per client). According to Acar [2021], SCAFFOLD and

FedDyn also need the prior knowledge about the number of clients in order to properly

weight their ht accumulation in the case of unbalance data samples. These weights

are used in the form of average samples per client in Acar [2021]. We eliminate such

dependency in our algorithm by progressively calculating this average throughout

the training. We also confirm that applying the same modification on SCAFFOLD

and FedDyn does not impede their performance nor their stability (experiments on

FedDyn and SCAFFOLD still are done with their original form). For the experiments,

we implemented SCAFFOLD as introduced in the original paper Karimireddy et al.

[2020]; However, for more clarity a modification of it (SCAFFOLD/m) is contrasted

to other methods in algorithm 3 in which only the model parameters are sent back to

the server (compare it to Algorithm 1 in Karimireddy et al. [2020]). Note that this

difference in presentation is irrelevant to our arguments in this paper since the more

important factor for scalability in the recursion is |St|−|Pt|
|St| .

D.2.2 Algorithmic Costs

In this section, we compare compute, storage and bandwidth costs of AdaBest to that

of FedAvg, SCAFFOLD/m and FedDyn.

Compute Cost

Table D.1 shows the notation we use for formulating the costs of these algorithms.

Algorithm 4 is an exact repetition of Algorithm 3 except that the compute cost of

operations of interest are included as comments. These costs are summed in tables

Table D.2 and Table D.3 for the client and server sides, respectively. According

to these tables, AdaBest has lower client-side and server-side compute costs than

SCAFFOLD/m and FedDyn.

150

Table D.1: Summary of notion used to formulate the algorithm costs

Notation Meaning

n Number of parameters of the model := |θ|
g Cost of computing local mini-batch gradients
s Cost of summing two floating point numbers
m Cost of multiplying two floating point numbers

Table D.2: Comparing AdaBest to FedAvg, SCAFFOLD/m, FedDyn in their compute
cost of local (client side) operations. See Algorithm 4 for more detailed comparison

Algorithm Client side compute cost

FedAvg K(g + ns + nm)
SCAFFOLD/m K(g + ns + nm) + 2Kns + 2n(s + m)
FedDyn K(g + ns + nm) + 3Kns + Knm + n(s + m) + ns
AdaBest K(g + ns + nm) + Kns + n(s + m) + ns

Table D.3: Comparing AdaBest to FedAvg, SCAFFOLD/m, FedDyn in their compute
cost of global (server side) operations. See Algorithm 4 for more detailed comparison

Algorithm Server side compute cost

FedAvg |P t|ns
SCAFFOLD/m |P t|ns + 2ns + 2nm
FedDyn |P t|ns + 3ns + nm
AdaBest |P t|ns + 2ns + nm

151

Storage Cost

All the three algorithms require the same amount of storage, on the clients and the

server. Each client is supposed to store a set of local gradient estimates with size n

(see Table D.1), noted as ht
i. Likewise, each algorithm stores the same number of

variables on the server so that estimates are forwarded to the next rounds. These

variables are introduced with ht in SCAFFOLD/m and FedDyn but with θ̄
t−1

in

AdaBest.

Communication Cost

AdaBest and FedDyn are not different in the way information is communicated be-

tween the server and clients; thus, they do not differ in terms of costs of communica-

tion bandwidth. That is sending n parameters from server to each selected client at

each round and receiving the same amount in the other direction (from each client

to the server). The original SCAFFOLD needs doubling the amount of information

communicated in each direction (2n). However, SCAFFOLD/m reduces this over-

head to 1.5 times (of that of AdaBest) by avoiding to send the extra variables from

clients’ to the server (1.5 n).

More accurate costs requires exact specifications of the system design. For ex-

ample, the aggregation operation on the server if done in a batch (from a buffer of

client delivered parameters) requires more storage but can decrease the compute cost

using multi-operand adders on floating-point mantissas such as Wallace or Dadda

tree adders. However, these design choices do not appear to make a difference in the

ranking of the costs for algorithms compared in this paper.

For cost estimates to be more precise, system design specifications must be con-

sidered. For instance, using multi-operand adders on floating-point mantissas, such

as Wallace or Dadda tree adders, can reduce the compute cost of the aggregation

operation on the server if it is performed in a batch (from a buffer of client-delivered

parameters) but requires more storage. However, it does not appear that these design

decisions affect the ranking of the costs for the algorithms compared in this paper.

152

Algorithm 4 Compute cost of SCAFFOLD/m , FedDyn , AdaBest . Operations

that are common among all three algorithms are grayed out. The compute cost of

other operations are shown with a comment in front of each line. The variables used

to represent the cost of each micro-operation are introduced in Table D.1

Input: T,θ0, µ, β

for t = 1 to T do

Sample clients Pt ⊆ St.

Transmit θt−1 to each client in Pt

Transmit ht−1 to each client in Pt (SCAFFOLD/m)

for each client i ∈ Pt in parallel do

θt,0
i ← θt−1

for k = 1 to K do

Compute mini-batch gradients gt,k−1
i = E

batch
[
θ
∇ℓi(θt,τ−1

i)] /* g */

Q ← gt,k−1
i − h

t′i
i + ht (SCAFFOLD/m) /* 2ns */

Q ← gt,k−1
i − h

t′i
i − µ(θt−1 − θt,k−1

i) (FedDyn) /* 3ns+ nm */

Q ← gt,k−1
i − h

t′i
i (AdaBest) /* ns */

θt,k
i ← θt,k−1

i − ηQ /* ns+ nm */

end for

gt
i ← θt−1 − θt,K

i /* ns */

ht
i ← ht′

i − ht−1 + 1
Kηg

t
i (SCAFFOLD/m) /* 2ns+ 2nm */

ht
i ← h

t′i
i + µgt

i (FedDyn) ht
i ← 1

t−t′i
h
t′i
i + µgt

i (AdaBest) /* ns+ nm */

t′i ← t

Transmit client model θt
i := θt,K

i .

end for

θt̄ ← 1
|Pt|

∑︁
i∈Pt θt

i /* |Pt|ns */

ht ← |St|−|Pt|
|St| ht−1 + |Pt|

Kη|St|(θ
t−1 − θ̄

t
) (SCAFFOLD/m) /* 2ns+ 2nm */

ht ← ht−1 + |Pt|
|St| (θ

t−1 − θ̄
t
) (FedDyn) /* 2ns+ nm */

ht ← β(θ̄
t−1 − θ̄

t
) (AdaBest) /* ns+ nm */

θt ← θ̄
t
(SCAFFOLD/m)

θt ← θ̄
t − ht (FedDyn) θt ← θ̄

t − ht (AdaBest) /* ns */

end for

153

D.2.3 Experiments Details

Evaluation

There are two major differences between our evaluation and those of prior works.

1. We do not consider number of epochs to be a hyper-parameter. Com-

paring two FL algorithms with different number of local epochs, is unfair in

terms of the amount of local compute costs. Additionally, it makes it difficult

to justify the impact of each algorithm on preserving the privacy of clients’

data. This is because the privacy cost is found to be associated with the level

of random noise in the pseudo-gradients. This randomness in turn is impacted

by the number of epochs (see page 8 of Fowl et al. [2021]). For an example of

comparing algorithms after tuning the number of epochs, refer to Appendix 1

of Acar et al. [2020] where 20 and 50 local epochs are chosen respectively for

FedAvg and FedDyn in order to compare their performance on MNIST dataset.

2. We consider a hold-out set of clients for hyper-parameter tuning.

Although, an on the fly hyper-parameter tuning is much more appealing in

FL setting, for the purpose of studying and comparing FL algorithms, it is

reasonable to consider hyper-parameters are tuned prior to the main training

phase. However, using the performance of the test dataset in order to search

for hyper-parameters makes the generalization capability of the algorithms that

use more hyper-parameters questionable. Therefore, we set aside a separate set

of training clients to tune the hyper-parameters for each algorithm individually.

This may make our reported results on the baselines not exactly matching that

of their original papers (different size of total training samples).

In addition, we use five distinct random seeds for data partitioning to better justify

our reported performance. Throughout all the experiments, SGD with a learning rate

of 0.1 is used1 with a round to round decay of 0.998. Batch size of 45 is selected for

all datasets and experiments. Whenever the last batch of each epoch is less than this

number, it is capped with bootstrapping from all local training examples (which can

further enhances the privacy especially for imbalance settings). We follow Acar et al.

1We followed Acar et al. [2020] in choosing this optimization algorithm and learning rate.

154

[2020] in data augmentation and transformation. Local optimization on CIFAR-10

and CIFAR-100 involves random horizontal flip and cropping on the training samples

both with probability of 0.5. No data augmentation is applied for experiments on

EMNIST.

Implementation

We used PyTorch to implement our FL simulator. For data partitioning and im-

plementation of the baseline algorithms, our simulator is inspired from Acar [2021]

which is publicly shared by the authors of Acar et al. [2020]. To further validate the

correctness of SCAFFOLD implementation, we consulted the first author of Karim-

ireddy et al. [2020]. Additionally, we cross-checked most of the results our simulator

yielded to the ones made by Acar [2021]. We have not publicly shared our simulator

due to intellectual property considerations; however, we have provided an implemen-

tation of AdaBest in our other simulator which is open-sourced. This simulator is

accessible at https://fedsim.varnio.com.

D.2.4 Stability and norm of parameters

In figure 7.3, we showed an experimental case of low client participation to demon-

strate how ∥θt∥ is associated with instability of FedDyn. In this experiment, the

training split of CIFAR-100 is partitioned over 1100 clients from which 1000 is used

for training. The partitioning is balanced in terms of number of examples per client

and the labels are skewed according to our α = 0.3 heterogeneity setup (see Section

7.5.4 for detailed explanation). In each round, 5 clients are drawn uniformly at ran-

dom. This low client participation rate is more likely to occur in a large-scale (in

terms of number of clients) cross-device FL compared to the setting used for report-

ing the performances in Table 7.2 and most of those of our prior works. In figure D.1

we repeat the same experiment; except that a much simpler FL task is defined. In

this experiment the training split of EMNIST dataset is partitioned into 110 clients,

100 of which are used for training. Partitions are IID (labels are not skewed). Even

though this task is much simpler than the previous one, still FedDyn fails to converge

when the training continues for a large number of rounds.

https://fedsim.varnio.com

155

10

30

50

70

90
te

st
ac

cu
ra

cy

AdaBest

FedDyn

SCAFFOLD

0 5K 10K 15K 20K 25K

rounds

0

100

200

300

400

500

∥θ
t ∥

Figure D.1: Highlighting the instability of FedDyn and its association with the norm
of cloud parameters. The training is performed on a comparably easy FL task but
for a large number of communication rounds. Top and bottom subplots show test
accuracy (in percentage) and norm of cloud parameters respectively. The horizontal
axis which shows number of communication rounds is shared among subplot

Overfitting Analysis

D.2.5 Overfitting Analysis

It is important not to confuse FedDyn’s source of instability with overfitting. To

confirm this, we can compare the average train and test accuracy of the same rounds

while the model is being trained. figure D.2 compares SCAFFOLD, FedDyn, and

AdaBest in this manner. The configuration used in this experiment is identical to the

configuration of the experiment in figure 7.3, with the exception that it corresponds

to a single data partitioning random seed for clarity. The train accuracy is calculated

by averaging the train accuracy of participating clients. The results suggest that train

accuracy of the baselines is severely declined as the training continues while AdaBest

is much more stable in this regard.

156

0 1K 2K 3K 4K 5K 6K 7K 8K

rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

train test

AdaBest FedDyn SCAFFOLD

Figure D.2: Top-1 train and test accuracy score of AdaBest and the baselines. The
solid and dash-dotted lines represent train and test, respectively

D.2.6 Local regularization sensitivity

During the hyper-parameter tuning phase, we only tune β of AdaBest and set its µ

constantly to 0.02. This is done throughout all the experiments except the experiment

presented in this section which especially investigates the sensitivity of AdaBest to

varying µ. Therefore, in practice we have not treated µ as a hyper-parameter but

rather chose the value that works best for FedDyn. For this experiment, we use the

same setup as the one presented in Section D.2.4 on EMNIST dataset. The only

difference is that we vary µ in the range of {0.02 × 2(k)}k=3
k=1. figure D.3 depicts the

outcome of this experiment along with the result of the same analysis on FedDyn

so it would be easy to compare the sensitivity of each of these algorithms to their

local factor µ. As suggested by the top left subplot in this Figure, AdaBest can

even achieve higher numbers in terms of the test accuracy than what is reported in

Table 7.2. The scales on the vertical axis of the subplots related to AdaBest (on the

157

left column) are zoomed-in to better show the stability of our algorithm throughout

the training. On the other hand, the performance and stability of FedDyn shows to

be heavily relied on the choice of µ when the training continues for a large number of

rounds.

93

94

95

te
st

ac
cu

ra
cy

AdaBest

0

50

FedDyn

0 5K 10K 15K 20K 25K
rounds

18

19

20

21

∥θ
t ∥

0 5K 10K 15K 20K 25K
rounds

0

200

400

µ = 0.02 µ = 0.04 µ = 0.08 µ = 0.16

Figure D.3: µ sensitivity of AdaBest (on the left) and FedDyn (on the right). The
horizontal axis which shows the number of communication rounds is shared for each
column of subplots. Top and bottom row show the test accuracy (in percentage) and
norm of cloud parameters respectively. Note that the vertical axis is not shared as
for clarity. This means that the scale of difference between converging point of ∥θt∥
in AdaBest is largely different from the divergence scale of the same quantity for
FedDyn

D.2.7 Discount factor sensitivity

To investigate how the choice of β impacts the generalization performance, we conduct

an experiment with varying β and the rate of client participation. The relation comes

from the fact that in lower rates of client participation, the variance of the pseudo-

gradients is higher and so a lower β is required both in order to avoid explosion of

∥θt∥ and also to propagate estimation error from the previous rounds as explained

in Section 7.4.3. For this experiment we use the same setup as the one used in

158

0.005 0.01 0.02 0.04 0.06
client participation

0

10

20

30

40

50
te

st
ac

cu
ra

cy

β = 1.0

β = 0.2
β = 0.4
β = 0.6

β = 0.8

β = 0.95

Figure D.4: The sensitivity of the test accuracy (in percentage) to different rates of
client participation and values of β. The training is done on a partitioning of CIFAR-
100 with 1000 training clients. The numbers on the horizontal axis show the fractions
of the total clients sampled at each round

figure 7.3 (see Section D.2.4 for details). figure D.4 implies that when the rate of client

participation is 0.005 (5 clients participating in each round out of 1000 training clients)

the optimal β is between 0.8 and 0.95. With a larger rate of client participation, the

optimal value moves away from 0.8 towards between 0.95 and 1.0;

This observation is aligned with our hypothesis on the impact of variance of

pseudo-gradients on the estimation error and norm of the cloud parameters. An-

other interesting point is that for a wide range of β values, the performance remains

almost stable regardless of the rate of client participation. Additionally, β values

closer to 1 seem to be suitable for higher rates of client participation, which is sug-

gested by the curve corresponding to β = 1.0 rising as the rate of client participation

increases. This case (β = 1.0) is the most similar to formulation of our baselines

where the estimations of oracle gradients are not scaled properly from one round to

another.

Bibliography

D. A. E. Acar. Feddyn. https://github.com/alpemreacar/FedDyn, 2021. [Accessed
12-Mar-2022].

D. A. E. Acar, Y. Zhao, R. Matas, M. Mattina, P. Whatmough, and V. Saligrama.
Federated learning based on dynamic regularization. In International Conference
on Learning Representations, 2020.

A. Ajalloeian and S. U. Stich. On the convergence of sgd with biased gradients. arXiv
preprint arXiv:2008.00051, 2020.

G. Alain and Y. Bengio. Understanding intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644, 2016.

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

R. Babanezhad Harikandeh, M. O. Ahmed, A. Virani, M. Schmidt, J. Konečnỳ,
and S. Sallinen. Stopwasting my gradients: Practical svrg. Advances in Neural
Information Processing Systems, 28, 2015.

Y. Bengio. Deep learning of representations for unsupervised and transfer learning. In
Proceedings of ICML workshop on unsupervised and transfer learning, pages 17–36.
JMLR Workshop and Conference Proceedings, 2012.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of
deep networks. Advances in neural information processing systems, 19, 2006.

Y. Bengio, F. Bastien, A. Bergeron, N. Boulanger-Lewandowski, T. Breuel, Y. Chher-
awala, M. Cisse, M. Côté, D. Erhan, J. Eustache, et al. Deep learners benefit more
from out-of-distribution examples. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, pages 164–172. JMLR Work-
shop and Conference Proceedings, 2011.

J. Bi and S. R. Gunn. A variance controlled stochastic method with biased estimation
for faster non-convex optimization. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 135–150. Springer, 2021.

S. Bozinovski. Reminder of the first paper on transfer learning in neural networks,
1976. Informatica, 44(3), 2020.

P. Brazdil, M. Gams, S. Sian, L. Torgo, and W. Velde. Learning in distributed systems
and multi-agent environments. In European Working Session on Learning, pages
412–423. Springer, 1991.

159

https://github.com/alpemreacar/FedDyn

160

J. P. Callan and P. E. Utgoff. Constructive induction on domain information. In
Proceedings of the ninth National conference on Artificial intelligence-Volume 2,
pages 614–619, 1991.

A. Cauchy et al. Méthode générale pour la résolution des systemes d’équations si-
multanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

X. Chen, S. Xie, and K. He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 9640–9649, 2021.

N. Churamani, O. Kara, and H. Gunes. Domain-incremental continual learning for
mitigating bias in facial expression and action unit recognition. IEEE Transactions
on Affective Computing, 2022.

W. M. Czarnecki, S. Osindero, R. Pascanu, and M. Jaderberg. A deep neural
network’s loss surface contains every low-dimensional pattern. arXiv preprint
arXiv:1912.07559, 2019.

R. Davis and R. G. Smith. Negotiation as a metaphor for distributed problem solving.
Artificial intelligence, 20(1):63–109, 1983.

M. De Bollivier, P. Gallinari, and S. Thiria. Cooperation of neural nets and task de-
composition. In IJCNN-91-Seattle International Joint Conference on Neural Net-
works, volume 2, pages 573–576. IEEE, 1991.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell.
Decaf: A deep convolutional activation feature for generic visual recognition. In
International conference on machine learning, pages 647–655. PMLR, 2014.

M. L. Dowell and R. D. Bonnell. Learning for distributed artificial intelligence sys-
tems. In Proceedings of the Twenty-Third Southeastern Symposium on System
Theory, Robert Werner (Ed.), pages 218–221, 1991.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

S. Fahlman and C. Lebiere. The cascade-correlation learning architecture. Advances
in neural information processing systems, 2, 1989.

T. E. Fawcett and P. E. Utgoff. A hybrid method for feature generation. In Machine
Learning Proceedings 1991, pages 137–141. Elsevier, 1991.

K. Fernandes and J. S. Cardoso. Hypothesis transfer learning based on structural
model similarity. Neural Computing and Applications, 31(8):3417–3430, 2019.

161

P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning
Representations, 2020.

L. H. Fowl, J. Geiping, W. Czaja, M. Goldblum, and T. Goldstein. Robbing the
fed: Directly obtaining private data in federated learning with modified models. In
International Conference on Learning Representations, 2021.

K. Fukushima and S. Miyake. Neocognitron: A self-organizing neural network model
for a mechanism of visual pattern recognition. In Competition and cooperation in
neural nets, pages 267–285. Springer, 1982.

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 580–587, 2014.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on arti-
ficial intelligence and statistics, pages 249–256. JMLR Workshop and Conference
Proceedings, 2010.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks, 2013.

G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset, 2007.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 1026–1034, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

K. He, R. Girshick, and P. Dollár. Rethinking imagenet pre-training. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4918–4927,
2019a.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9729–9738, 2020.

T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li. Bag of tricks for image
classification with convolutional neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 558–567, 2019b.

J. Hecht et al. The bandwidth bottleneck. Nature, 536(7615):139–142, 2016.

162

G. Hinton, O. Vinyals, J. Dean, et al. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2(7), 2015.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504–507, 2006.

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554, 2006.

T. Hong, M. Fang, and D. Hilder. Pd classification by a modular neural network based
on task decomposition. IEEE transactions on dielectrics and electrical insulation,
3(2):207–212, 1996.

T.-M. H. Hsu, H. Qi, and M. Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335,
2019.

Y.-C. Hsu, Y.-C. Liu, A. Ramasamy, and Z. Kira. Re-evaluating continual learn-
ing scenarios: A categorization and case for strong baselines. arXiv preprint
arXiv:1810.12488, 2018.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4700–4708, 2017.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning,
pages 448–456. PMLR, 2015.

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage
architecture for object recognition? In 2009 IEEE 12th international conference
on computer vision, pages 2146–2153. IEEE, 2009.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. Advances in neural information processing systems, 26:315–323,
2013.

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

I. P. Kaminow and T. Li. Optical fiber telecommunications IV-B: systems and im-
pairments, volume 2. Elsevier, 2002.

F. Kanavati and M. Tsuneki. Partial transfusion: on the expressive influence of
trainable batch norm parameters for transfer learning. In Medical Imaging with
Deep Learning, pages 338–353. PMLR, 2021.

163

J. Kang, M. Rhee, and K. H. Kang. Revisiting knowledge transfer: Effects of knowl-
edge characteristics on organizational effort for knowledge transfer. Expert Systems
with Applications, 37(12):8155–8160, 2010.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold:
Stochastic controlled averaging for federated learning. In International Conference
on Machine Learning, pages 5132–5143. PMLR, 2020.

G. Kasparov. Worry about human (not machine) intel-
ligence, 2021. URL https://www.britannica.com/topic/
Worry-About-Human-Not-Machine-Intelligence-2119055.

N. S. Keskar and R. Socher. Improving generalization performance by switching from
adam to sgd. arXiv preprint arXiv:1712.07628, 2017.

H. M. Khamseh and D. R. Jolly. Knowledge transfer in alliances: determinant factors.
Journal of Knowledge Management, 2008.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR
(Poster), 2015.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catas-
trophic forgetting in neural networks. Proceedings of the national academy of sci-
ences, 114(13):3521–3526, 2017.

J. Konečnỳ, J. Liu, P. Richtárik, and M. Takáč. Mini-batch semi-stochastic gradi-
ent descent in the proximal setting. IEEE Journal of Selected Topics in Signal
Processing, 10(2):242–255, 2015.

J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik. Federated optimiza-
tion: Distributed machine learning for on-device intelligence. arXiv preprint
arXiv:1610.02527, 2016.

S. Kornblith, J. Shlens, and Q. V. Le. Do better imagenet models transfer better?
In Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pages 2661–2671, 2019.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

A. Kumar, A. Raghunathan, R. M. Jones, T. Ma, and P. Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. In International
Conference on Learning Representations, 2021.

https://www.britannica.com/topic/Worry-About-Human-Not-Machine-Intelligence-2119055
https://www.britannica.com/topic/Worry-About-Human-Not-Machine-Intelligence-2119055

164

I. Laina, Y. M. Asano, and A. Vedaldi. Measuring the interpretability of unsupervised
representations via quantized reversed probing. In International Conference on
Learning Representations, 2021.

Q. Lao, X. Jiang, M. Havaei, and Y. Bengio. Continuous domain adaptation with
variational domain-agnostic feature replay. arXiv preprint arXiv:2003.04382, 2020.

Q. Lao, X. Jiang, and M. Havaei. Hypothesis disparity regularized mutual information
maximization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 8243–8251, 2021.

Q. V. Le, R. Monga, M. Devin, G. Corrado, K. Chen, M. Ranzato, J. Dean, and A. Y.
Ng. Building high-level features using large scale unsupervised learning. CoRR,
abs/1112.6209, 2011. URL http://arxiv.org/abs/1112.6209.

Y. LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444,
2015.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations. In Proceedings
of the 26th annual international conference on machine learning, pages 609–616,
2009.

R. Lengellé and T. Denoeux. Training mlps layer by layer using an objective function
for internal representations. Neural Networks, 9(1):83–97, 1996.

D. Li and J. Wang. Fedmd: Heterogenous federated learning via model distillation.
arXiv preprint arXiv:1910.03581, 2019.

F.-F. Li, M. Andreeto, M. Ranzato, and P. Perona. Caltech 101, Apr 2022.

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape
of neural nets. In Advances in Neural Information Processing Systems, pages 6389–
6399, 2018.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smithy. Feddane:
A federated newton-type method. In 2019 53rd Asilomar Conference on Signals,
Systems, and Computers, pages 1227–1231. IEEE, 2019.

http://arxiv.org/abs/1112.6209

165

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine Learning and
Systems, 2:429–450, 2020.

Z. Li and D. Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

X. Liang, S. Shen, J. Liu, Z. Pan, E. Chen, and Y. Cheng. Variance reduced local
sgd with lower communication complexity. arXiv preprint arXiv:1912.12844, 2019.

Y. Liang, L. Zhu, X. Wang, and Y. Yang. A simple episodic linear probe improves
visual recognition in the wild. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9559–9569, 2022.

J. Lienen and E. Hüllermeier. Instance weighting through data imprecisiation. Inter-
national Journal of Approximate Reasoning, 134:1–14, 2021.

T. Lin, L. Kong, S. U. Stich, and M. Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems,
33:2351–2363, 2020.

L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han. On the variance of
the adaptive learning rate and beyond. In International Conference on Learning
Representations, 2019.

X. Liu, C. Wu, M. Menta, L. Herranz, B. Raducanu, A. D. Bagdanov, S. Jui, and
J. v. de Weijer. Generative feature replay for class-incremental learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 226–227, 2020.

L. Luo, Y. Xiong, Y. Liu, and X. Sun. Adaptive gradient methods with dynamic
bound of learning rate. In International Conference on Learning Representations,
2018.

N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In European Conference on Computer Vision,
pages 122–138. Springer, 2018.

M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, vol-
ume 24, pages 109–165. Elsevier, 1989.

R. T. McCoy, R. Frank, and T. Linzen. Does syntax need to grow on trees? sources
of hierarchical inductive bias in sequence-to-sequence networks. Transactions of
the Association for Computational Linguistics, 8:125–140, 2020.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence
and statistics, pages 1273–1282. PMLR, 2017.

166

R. Mískiewicz. The importance of knowledge transfer on the energy market. Polityka
Energetyczna-Energy Policy Journal, pages 49–62, 2018.

M. C. Mozer. Early parallel processing in reading: A connectionist approach. Lawrence
Erlbaum Associates, Inc, 1987.

T. Murata and T. Suzuki. Bias-variance reduced local sgd for less heterogeneous
federated learning. In International Conference on Machine Learning, pages 7872–
7881. PMLR, 2021.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann ma-
chines. In Icml, 2010.

Y. E. Nesterov. A method for solving the convex programming problem with con-
vergence rate o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547,
1983.

B. Neyshabur, H. Sedghi, and C. Zhang. What is being transferred in transfer learn-
ing? Advances in neural information processing systems, 33:512–523, 2020.

L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. Sarah: A novel method for
machine learning problems using stochastic recursive gradient. In International
Conference on Machine Learning, pages 2613–2621. PMLR, 2017.

C. Noel and S. Osindero. Dogwild!-distributed hogwild for cpu & gpu. In NIPS
Workshop on Distributed Machine Learning and Matrix Computations, pages 693–
701, 2014.

R. Pathak and M. J. Wainwright. Fedsplit: An algorithmic framework for fast feder-
ated optimization. Advances in Neural Information Processing Systems, 33:7057–
7066, 2020.

D. N. Perkins, G. Salomon, et al. Transfer of learning. International encyclopedia of
education, 2:6452–6457, 1992.

M. Popel and O. Bojar. Training tips for the transformer model. The Prague Bulletin
of Mathematical Linguistics, 110(1):43–70, 2018.

L. Y. Pratt. Transferring previously learned backpropagation neural networks to new
learning tasks. Rutgers The State University of New Jersey-New Brunswick, 1993.

L. Y. Pratt and C. A. Kamm. Improving a phoneme classification neural network
through problem decomposition. In IJCNN-91-Seattle international joint confer-
ence on neural networks, volume 2, pages 821–826. IEEE, 1991.

L. Y. Pratt, J. Mostow, C. A. Kamm, A. A. Kamm, et al. Direct transfer of learned
information among neural networks. In Aaai, volume 91, pages 584–589, 1991.

167

F. J. Provost and D. N. Hennessy. Distributed machine learning: Scaling up with
coarse-grained parallelism. In ISMB, pages 340–347, 1994.

X. Qian and D. Klabjan. The impact of the mini-batch size on the variance of
gradients in stochastic gradient descent. arXiv preprint arXiv:2004.13146, 2020.

I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár. Designing network
design spaces. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10428–10436, 2020.

M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio. Transfusion: Understanding
transfer learning for medical imaging. Advances in neural information processing
systems, 32, 2019.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer
learning from unlabeled data. In Proceedings of the 24th international conference
on Machine learning, pages 759–766, 2007.

M. Ranzato, C. Poultney, S. Chopra, and Y. Cun. Efficient learning of sparse repre-
sentations with an energy-based model. Advances in neural information processing
systems, 19, 2006.

S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier
and representation learning. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010, 2017.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent. Advances in neural information processing systems, 24,
2011.

S. J. Reddi, J. Konečnỳ, P. Richtárik, B. Póczós, and A. Smola. Aide: Fast and
communication efficient distributed optimization. arXiv preprint arXiv:1608.06879,
2016.

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond.
In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=ryQu7f-RZ.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation
learning: The rprop algorithm. In IEEE international conference on neural net-
works, pages 586–591. IEEE, 1993.

H. Robbins and S. Monro. A stochastic approximation method. The annals of math-
ematical statistics, pages 400–407, 1951.

Y. Roh, G. Heo, and S. E. Whang. A survey on data collection for machine learning:
a big data-ai integration perspective. IEEE Transactions on Knowledge and Data
Engineering, 33(4):1328–1347, 2019.

https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ

168

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

R. Salakhutdinov and G. Hinton. Deep boltzmann machines. In D. van Dyk and
M. Welling, editors, Proceedings of the Twelth International Conference on Artifi-
cial Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Re-
search, pages 448–455, Hilton Clearwater Beach Resort, Clearwater Beach, Florida
USA, 16–18 Apr 2009. PMLR.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4510–4520. IEEE, 2018.

S. Sayegh. Inheriting knowledge in neural networks. In [Proceedings 1992] IJCNN In-
ternational Joint Conference on Neural Networks, volume 1, pages 841–846. IEEE,
1992.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1):83–112, 2017.

S. Sedice. 5 strong chess engines and the best ways to train
with them, 2020. URL https://www.houseofstaunton.com/blog/
5-strong-chess-engines-and-the-best-ways-to-train-with-them.html.

P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with
unsupervised multi-stage feature learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3626–3633, 2013.

O. Shamir, N. Srebro, and T. Zhang. Communication-efficient distributed optimiza-
tion using an approximate newton-type method. In International conference on
machine learning, pages 1000–1008. PMLR, 2014.

A. J. Sharkey. Multi-net systems. In Combining artificial neural nets, pages 1–30.
Springer, 1999.

A. J. C. Sharkey. Modularity, combining and artificial neural nets. Connection Sci-
ence, 9(1):3–10, 1997.

H. Shimodaira. Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of statistical planning and inference, 90(2):
227–244, 2000.

R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In Proceedings of the
22nd ACM SIGSAC conference on computer and communications security, pages
1310–1321, 2015.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

https://www.houseofstaunton.com/blog/5-strong-chess-engines-and-the-best-ways-to-train-with-them.html
https://www.houseofstaunton.com/blog/5-strong-chess-engines-and-the-best-ways-to-train-with-them.html

169

I. Skorokhodov and M. Burtsev. Loss surface sightseeing by multi-point optimization.
arXiv preprint arXiv:1910.03867, 2019.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15:1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

S. U. Stich. Local sgd converges fast and communicates little. In International
Conference on Learning Representations, 2018.

B. S. Subedi. Emerging trends of research on transfer of learning. International
education journal, 5(4):591–599, 2004.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the incep-
tion architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2818–2826, 2016.

M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In ICML, 2019.

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le.
Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2820–2828, 2019.

T. Tieleman, G. Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31, 2012.

H. Touvron, A. Vedaldi, M. Douze, and H. Jégou. Fixing the train-test resolution
discrepancy. Advances in neural information processing systems, 32, 2019.

G. G. Towell and J. W. Shavlik. Extracting refined rules from knowledge-based neural
networks. Machine learning, 13(1):71–101, 1993.

G. G. Towell, J. W. Shavlik, M. O. Noordewier, et al. Refinement of approximate
domain theories by knowledge-based neural networks. In Proceedings of the eighth
National conference on Artificial intelligence, volume 2, pages 861–866. Boston,
MA, 1990.

P. Tseng. An incremental gradient (-projection) method with momentum term and
adaptive stepsize rule. SIAM Journal on Optimization, 8(2):506–531, 1998.

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

170

D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

P. E. Utgoff. Shift of bias for inductive concept learning. Rutgers The State University
of New Jersey-New Brunswick, 1984.

G. M. van de Ven and A. S. Tolias. Three scenarios for continual learning, 2019.

J. E. Van Engelen and H. H. Hoos. A survey on semi-supervised learning. Machine
Learning, 109(2):373–440, 2020.

F. Varno, B. H. Soleimani, M. Saghayi, L. Di Jorio, and S. Matwin. Effi-
cient neural task adaptation by maximum entropy initialization. arXiv preprint
arXiv:1905.10698, 2019.

F. Varno, L. M. Petry, L. Di Jorio, and S. Matwin. Learn faster and forget slower via
fast and stable task adaptation. arXiv preprint arXiv:2007.01388, 2020.

F. Varno, M. Saghayi, L. Rafiee Sevyeri, S. Gupta, S. Matwin, and M. Havaei. Ad-
abest: Minimizing client drift in federated learning via adaptive bias estimation.
In European Conference on Computer Vision, pages 710–726. Springer, 2022a.

F. Varno, B. H. Soleimani, M. Saghayi, L. Di Jorio, and S. Matwin. Method and
system for initializing a neural network, July 7 2022b. US Patent App. 17/609,296.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and L. Bottou.
Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of machine learning research, 11(12), 2010.

A. Waibel. Consonant recognition by modular construction of large phonemic time-
delay neural networks. Advances in neural information processing systems, 1, 1988.

A. Waibel, H. Sawai, and K. Shikano. Modularity and scaling in large phonemic
neural networks. IEEE Transactions on Acoustics, Speech, and Signal Processing,
37(12):1888–1898, 1989.

J. Wang, V. Tantia, N. Ballas, and M. Rabbat. Slowmo: Improving communication-
efficient distributed sgd with slow momentum. arXiv preprint arXiv:1910.00643,
2019.

J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor. Tackling the objective in-
consistency problem in heterogeneous federated optimization. Advances in neural
information processing systems, 33:7611–7623, 2020.

171

C. Wetterich. Fine-tuning problem and the renormalization group. Physics Letters
B, 140(3-4):215–222, 1984.

Y. Wu and K. He. Group normalization. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018.

L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive
variance reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations
for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1492–1500, 2017.

H. Yu, R. Jin, and S. Yang. On the linear speedup analysis of communication ef-
ficient momentum sgd for distributed non-convex optimization. In International
Conference on Machine Learning, pages 7184–7193. PMLR, 2019.

S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer, 2014.

J. Zhang, C. De Sa, I. Mitliagkas, and C. Ré. Parallel sgd: When does averaging
help? arXiv preprint arXiv:1606.07365, 2016.

J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. J. Reddi, S. Kumar, and S. Sra.
Why adam beats sgd for attention models. arXiv preprint arXiv:1912.03194, 2019.

X. Zhang, M. Hong, S. Dhople, W. Yin, and Y. Liu. Fedpd: A federated learn-
ing framework with optimal rates and adaptivity to non-iid data. arXiv preprint
arXiv:2005.11418, 2020.

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra. Federated learning with
non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Y. Zhong, J. Sullivan, and H. Li. Face attribute prediction using off-the-shelf cnn
features. In 2016 International Conference on Biometrics (ICB), pages 1–7. IEEE,
2016.

L. Zhu and S. Han. Deep leakage from gradients. In Federated learning, pages 17–31.
Springer, 2020.

Z. Zhu, J. Hong, and J. Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In International Conference on Machine Learning, pages 12878–
12889. PMLR, 2021.

172

M. Zinkevich, M. Weimer, L. Li, and A. Smola. Parallelized stochastic gradient
descent. Advances in neural information processing systems, 23, 2010.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations
	Glossary
	Acknowledgements
	Introduction
	Motivation
	Background
	Research Objectives
	Task Adaptation
	Federated Learning

	Contributions
	Outline

	Background to Deep Learning
	Supervised Deep Learning
	Gradient Descent
	Stochastic Gradient Descent
	Mini-batch Stochastic Gradient Descent
	Resilient Gradient-based Methods

	Background to Transfer Learning
	Content-based Categorization of Transfer Learning
	Data Transfer Learning
	Hypothesis Transfer Learning
	Information Transfer Learning

	Federated Learning

	Related Work
	Deep Learning and Convolutional Neural Networks
	Hypothesis Transfer Learning
	The First HTL Attempts
	Linking ANNs and Symbolic Representation
	Task Decomposition

	Task Adaptation
	Unsupervised Pretraining
	Pretraining CNNs
	Supervised Pretraining for CNNs

	Continual Learning
	Distributed Machine Learning
	Federated Learning
	Client Drift

	Incremental Tuning with Normalized Features
	Background
	Problem Statement
	Noise Reduction in Feature-tuning
	ENTAME
	Feature Normalization
	Maximum Entropy Initialization

	Discussion
	Maximum Entropy Predicted Labels
	Feature Normalization
	Generalized Maximum Entropy Initialization

	Experimental Results
	Feature-tuning with ENTAME
	Gradual Increase of the Norm of Head's Weights
	Domain Similarity
	Continuous Hypothesis Transfers

	Conclusion

	Incremental Tuning with Decoupled Step Sizes
	Problem statement
	FAST
	Discussion
	Geometric Interpretation
	Velocity Analysis
	Optimization Algorithm

	Experiments
	Catastrophic Forgetting
	Quick Head Learning
	Head Warmup
	Decoupled Learning Rates
	Optimization
	Convergence Performance
	FAST Compared to ENTAME

	Conclusion

	Adaptive Bias Estimation for Federated Learning
	Introduction
	Problem Statement
	Existing Solutions
	Adaptive Bias Estimation
	Setup
	Method
	Relation to FL Baselines

	Experiments
	Setup
	Model Architecture
	Baselines
	Evaluation

	Conclusions

	Conclusion and Future Research
	Limitations and future research

	Supplementary material for Chapter 2
	Proofs

	Supplementary material for Chapter 5
	Proofs
	Complementary Experiments
	task adaptation Performance
	domain adaptation Performance

	Supplementary material for Chapter 6
	Proofs

	Supplementary material for Chapter 7
	Proofs
	Algorithm Details
	Notation
	Algorithmic Costs
	Experiments Details
	Stability and norm of parameters
	Overfitting Analysis
	Local regularization sensitivity
	Discount factor sensitivity

	Bibliography

