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Abstract

In 1973, Black-Scholes and Merton developed a partial differential equation that mod-

els the price evolution of a European call option, now referred to as the Black-Scholes

equation. Because of its importance in options pricing, there has been a lot of research

put into developing solvable derivative models. Through a gauge transformation,

the classical Black-Scholes equation can be transformed into a Schrodinger equation.

From there, we apply supersymmetric methods to construct a family of orthogonal

solutions in terms of exceptional Hermite polynomials. We use these techniques to

generalize the classical Black-Scholes equation and obtain solvable derivative models.

iv



Chapter 1

Introduction

In 1973, Black-Scholes [1] and Merton [2] developed a partial differential equation

that models the price evolution of a European call option. Because of the impor-

tance of the Black-Scholes in options pricing, there has been a lot of research put

into developing solvable derivative models. The Black-Scholes equation is a diffusion

equation that can be transformed into a Schrödinger equation by a change of variables

and by gauge transformations. Once in Schrödinger form, we can use the method of

supersymmetric quantum mechanics (SUSYQM) applied to the quantum harmonic

oscillator to generate a new family of exact orthogonal solutions. These solutions will

be generated by the exceptional Hermite polynomials, orthogonal polynomials that

generalize the classical Hermite polynomials. This will generate solvable models for

derivative pricing.

We begin with a brief introduction to stochastic differential equations. We intro-

duce some stochastic calculus and show that stochastic differential equations can be

modeled as backward Kolmogorov equations. We then review some Strum-Liouville

theory, since the Black-Scholes equations and its generalizations are all second order

equations, and separation of variables.

In chapters 3 and 4, we develop the transformation techniques needed to transform

backwards Kolmogorov equations into Schrödinger form and introduce SUSYQM.

What’s important to note is that every second order differential equation can be put

in Schrödinger form using a change of variables and a gauge transformation. These

transformations are critical for us to derive other solvable derivative models. We

also introduce the Darboux transformation and its generalization, the Darboux-Crum

transformations. These are important transformations for the SUSYQM method.

Next, we introduce the classical Hermite polynomials and their properties. This

gives us the tools we need to derive exact orthogonal solutions from the Schrödinger

equation with potential. A brief introduction to hypergeometric functions is given
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and we show that the classic Hermite polynomials satisfy a hypergeometric equation.

We then use SUSY to construct the translationally invariant shape potential. We

use them to derive the exceptional Hermite polynomials and discuss some important

properties that will later allow us to construct solvable derivative models.

We then introduce the classical Black-Scholes equation and discuss some of its

generalizations. We begin with the derivation of the classical Black-Scholes equation

and its solutions. Then we use the techniques developed in chapters 3 and 4 to

trasnform the Black-Scholes equation into Schrödinger form. This gives us the Black-

Scholes Hamiltonian.

Finally, we apply the SUSYQM method and exceptional Hermite polynomials to

construct solvable derivative models. We use these to examine the double knockout

barrier model discussed by Jana and Roy [10], as well as the solvable model with

variable drift and the solvable model with varrying carrying cost.



Chapter 2

Differential Equations

Differential equations appear throughout math, science, and engineering to model

various physical processes. This chapter is an introduction to stochastic differential

equations, differential equations with both a deterministic component and a random,

stochastic component, and stochastic calculus. These topics will reappear in chapter

6 when we will use them to derive the Black-Scholes equation and Black-Scholes

formula. We also discuss Sturm-Liouville problems, which are the main class of

differential equations we will be manipulating. We finish with a review of separation

of variables on the class of differential equations that will be of interest to us.

2.1 Stochastic Differential Equations

For functions b(x) and σ(x), a time-homogeneous Ito-process is a solution to the

stochastic differential equation

dXt = μ(Xt) dt+ σ(Xt) dWt, X0 = x. (2.1)

This is a purely formal notation. It means that the process Xt satisfies the integral

equation

Xt = X0 +

∫ t

0

μ(Xu)du+

∫ t

0

σ(Xu)dWu (2.2)

The change in Xt consists of a deterministic part and a stochastic part. We

represent the deterministic part as μ dt, where μ is the deterministic growth rate.

The stochastic component in is denoted by σ dWt, where σ is called the volatility

because it measures the standard deviation of Xt. The measure dWt is a random

variable taking values in a continuous analogue of the normal distribution, which is

known as a Wiener process, or Brownian motion. We normalize this distribution so

that dWt has the mean of zero and variance equal to dt.

The integral with respect to du in (2.2) is an ordinary integral, while the integral

3
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with respect to dWt is a Ito integral. An Itô integral∫ b

a

f(τ)dWτ

is defined as the limit n→∞ of
n∑

i=1

f(ti−1)[Wti −Wti−1
] (2.3)

where ti is a partition of [a, b] into n equal intervals.

A helpful interpretation of the stochastic differential equation (2.1) is that in

a small time interval of length Δt the stochastic process Xt changes its value by an

amount that is normally distributed with expectation μ(Xt)Δt and variance σ(Xt)
2Δt,

and is independent of the past behavior of the process.

This follows from the fundamental properties of the Wiener process Wt. The

independence property is that for every 0 ≤ s1 < t1 ≤ s2 < t2 the random variables

Wt2−Ws2 and Wt1−Ws1 are independent. The other key property is that Wt+Δt−Wt

is normally distributed with with zero mean and variance equal to Δt.

For a function F (φ) of a normally distributed random variable φ the expectation

operator is

E[F (φ)] =
1√
2π

∫ ∞

−∞
F (x)e−x

2/2 dx,

To make sure that Wt has zero mean and variance of dt, we can write

dWt = φ
√
dt

To check this, firstly,

E[φ] =
1√
2π

∫ ∞

−∞
xe−x

2/2 dx = 0.

Then,

E[dWt] = E[φ
√
dt] =

√
dtE[φ] = 0.

Secondly, using integration by parts,∫ ∞

−∞
x2e−x

2/2 dx =

∫ ∞

−∞
e−x

2/2 dx =
√
2π

Then

E[φ2] = 1, E[dW 2
t ] = E[φ2 dt] = dt
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Hence,

V ar[dWt] = E[dW 2
t ]− E[dWt]

2 = E[dW 2
t ] = dt.

Another important property of Wt is that the expected value of an Itô integral is

zero,

E

[∫ b

a

f(τ)dWτ

]
= 0 (2.4)

where f(t) is a non-anticipating process. The integral has zero expected value because

each term in the approximating sum (2.3) has zero expected value:

E
[
f(ti)(Wti+1

−Wti)
]
= E [f(ti)]E

[
(Wti+1

−Wti)
]
= 0.

Equivalently, the process

m(t) =

∫ t

a

f(τ)dWτ

is a Martingale.

2.2 The Feynman-Kac-Formula

A backward Kolmogorov equation is a partial differential equation

ut +
1

2
σ(x)2uxx + μ(x)ux − ν(x)u = 0 (2.5)

with a terminal condition u(x, T ) = g(x).

Proposition 2.2.1. Let Xt be an Itô-process defined by the stochastic differential

equation (2.1). Then, a solution of (2.5) is the function u defined by the conditional

expectation

u(x, t) = E

[
e−

∫ T
t ν(Xs) dsg(XT ) | Xt = x

]
,

Proof. For 0 ≤ t0 < T let Yt be the Itô process

Yt = e
− ∫ t

t0
ν(Xτ ) dτu(Xt, t)

By Itô’s lemma,

d(f(Xt, t)) =
1

2
fxxdX

2
t + fxdXt + ftdt.

From (2.1),

dX2
t = σ(Xt)dW

2
t = σ(Xt)dt.
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Then,

d(f(Xt, t)) = fxdXt +

(
1

2
σ(Xt)

2fxx + ft

)
dt

=

(
1

2
σ(Xt)

2fxx + μ(Xt)fx + ft

)
dt+ σ(Xt)fxdWt

Now we have

dYt = ∂t

(
e
− ∫ t

t0
ν(Xτ ) dτ

)
u(Xt, t)dt+ e

− ∫ t
t0

ν(Xτ ) dτ d(u(Xt, t))

= e
− ∫ t

t0
ν(Xτ ) dτ (−ν(Xt)u(Xt, t)dt+ d(u(Xt, t)))

= e
− ∫ t

t0
ν(Xτ ) dτ

((
ut +

1

2
σ(Xt)

2uxx + μ(Xt)ux − ν(Xt)u

)
dt+ σ(Xt)ux dWt

)

The dt coefficient vanishes by (2.5). Then

dYt = e
− ∫ t

t0
ν(Xτ ) dτσ(Xt)ux(Xt, t) dWt

Integrating this equation from t to T ,

YT − Yt =

∫ T

t

e−
∫ s
t ν(Xτ ) dτσ(Xs) ux(Xs, s) dWs

Taking expectations, the right side is zero by (2.4). Then,

E[YT − Yt | Xt = x] = 0

We have

E[Yt | Xt = x] = E

[
e−

∫ t
t ν(Xτ ) dτ u(Xt, t) | Xt = x

]
= u(x, t)

And,

E[YT | Xt = x] = E

[
e−

∫ T
t ν(Xτ ) dτ u(XT , t) | Xt = x

]
= E

[
e−

∫ T
t ν(Xτ ) dτ g(XT ) | Xt = x

]

Hence,

u(x, t) = E

[
e−

∫ T
t ν(Xτ ) dτ g(XT ) | Xt = x

]
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2.3 Sturm-Liouville Problems

We are interested in eigenvalue problems posed as a second-order Sturm-Liouville

equation

(P (x)y′(x))′ +R(x)y(x) = λW (x)y(x), X(a) = X(b) = 0 (2.6)

where −∞ ≤ a < b ≤ ∞. Dividing by W (x) and setting

1

2
σ(x)2 =

P (x)

W (x)

μ(x) =
P ′(x)
W (x)

ν(x) = − R(x)

W (x)

transforms (2.6) into the second-order eigenvalue problem

1

2
σ(x)2y′′ + μ(x)y′ − ν(x)y = λy,

which we encounter in dealing with diffusion equations and stochastic differential

equations. Another type of Sturm-Liouville problem that will be of interest is the

Schrodinger equation

y′′ − U(x)y = λy.

By integration by parts, we can derive Green’s identity.

∫ b

a

((Py′1)
′y2 − (Py′2)

′y1) dx = P (x)(y′1(x)y2(x)− y′2(x)y1(x))
∣∣∣b
a

Suppose that y1(x), y2(x) are solutions of (2.6) with eigenvalues λ1 �= λ2. Then,

Green’s identity implies

(λ1 − λ2)

∫ b

a

y1(x)y2(x)W (x)dx = P (x)(y′1(x)y2(x)− y′2(x)y1(x))
∣∣∣b
a
,

If we impose boundary conditions so that the right-side is zero, then we get that the

eigenfunctions of (2.6) are orthogonal. We also assume that W (x) > 0 so that

∫ b

a

y1(x)y2(x)W (x)dx
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is a positive-definite inner product. We will also assume that there exists a complete

basis of solutions yn(x), n = 1, 2, . . . corresponding to eigenvalues λn. Without loss

of generality, we assume that the eigenfunctions are orthonormal:∫ b

a

yn(x)
2W (x)dx = K

for all n. This means that for a function φ(x) that is square-integrable on a ≤ x ≤ b

we have

φ(x) =
∞∑
n=1

Anyn(x),

where the An are generalized Fourier coefficients

An =
1

K

∫ b

a

φ(x)yn(x)W (x)dx.

2.4 Method of Separation of Variables

Consider the partial differential equation in form of

1

2
σ(x)2uxx + μ(x)ux + ut = ν(x)u (2.7)

where u = u(x, t). The separated solution to it is of the form

u(x, t) = X(x)T (t) (2.8)

Plugging the form (2.8) into the PDE (2.7), we get

1

2
σ(x)2X ′′(x)T (t) + μ(x)X ′(x)T (t) +X(x)T ′(t) = ν(x)X(x)T (t)

Dividing by X(x)T (t),

1

2
σ2(x)

X ′′(x)
X(x)

+ μ(x)
X ′(x)
X(x)

− ν(x) = −T ′(t)
T (t)

Since the left side is a function of x and the right side a function of t, both sides must

be equal to a constant.

Then the PDE is equivalent to a pair of separated ordinary differential equations

for X(x) and T (t):

−1

2
σ2 X ′′ − μX ′ + νX = λX

T ′ = λT



9

Hence the solution of the diffusion equation (2.7) can be given as

u(x, t) =
∞∑
n=1

Xn(x)e
λnt, (2.9)

where X = Xn(x) is a solution of the second-order boundary-value problem

−1

2
σ2 X ′′ − μX ′ + νX = λnX, X(a) = X(b) = 0. (2.10)

In particular if all the eigenvalues λn > 0 are positive and the {Xn}n are a com-

plete orthonormal basis of solutions to (2.10), then the diffusion equation (2.7) with

terminal condition u(x, T ) = φ(x) can be solved as

u(x, t) =
∞∑
i=1

aie
λitXi(x)

where the ai are the generalized Fourier coefficients of φ(x) relative to the basis Xi(x).

If we are solving a diffusion equation with an initial condition, then we make the

transformation t = T − τ to obtain

uτ =
1

2
σ(x)2uxx + μ(x)ux + ν(x)u

In this case the form of the solution is

u(x, τ) =
∞∑
n=1

Xn(x)e
−λnτ (2.11)



Chapter 3

Transformation Techniques

A second-order eigenvalue equation is exactly solvable if it can be changed its solution

can be expressed in terms of previously known functions. We will later express solu-

tions in terms of hypergeometric functions, especially Hermite polynomials. We will

need the following transformations: a change of variables and gauge transformations.

Using separation of variables to reduce diffusion equations to second-order equations

in one variable, we can obtain a large class of solvable diffusion equations by ap-

plying such transformations to the hypergeometric equation, specifically the Hermite

differential equation.

We are interested in second-order differential equations of the form

1

2
σ(x)2

∂2f

∂x2
+ b(x)

∂f

∂x
= ν(x)f (3.1)

which we express in operator form as

Lf = 0, (3.2)

where f = f(x) is the unknown function and

L =
1

2
σ(x)2∂2

x + b(x)∂x − ν(x). (3.3)

3.1 Change of Variables

A change of variables is an invertible transformation y = Y (x). Let x = X(y)

be the inverse transformation. Hence we have X(Y (x)) = x. The corresponding

transformation of the unknown function f �→ g is

g(y) = f(X(y)). (3.4)

A change of variables transforms the second-order operator equation (3.2) into

L̂g = 0,

10
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where the transformed operator

L̂ =
1

2
σ̂(y)2∂yy + b̂(y)∂y − ν̂(y) (3.5)

is given by

σ̂(y) =
σ(X(y))

X ′(y)

b̂(y) =
b(X(y))

X ′(y)
− σ(X(y))2X ′′(y)

2X ′(y)3

ν̂(y) = ν(X(y))

(3.6)

Here is the derivation of this transformation law. We want

(L̂g)(y) = (Lf)(X(y)).

Using f(x) = g(Y (x)) and (3.3) gives

(Lf)(x) = 1

2
σ(x)2 ∂x [g

′(Y (x))Y ′(x)] + b(x) g′(Y (x))Y ′(x)− ν(x)g(Y (x))

=
1

2
σ(x)2(Y ′(x))2 g′′(y) +

(
1

2
σ(x)2Y ′′(x) + b(x)Y ′(x)

)
g′(y)− ν(x)g(y)

From there, taking derivative of

X(Y (x)) = x,

we have

Y ′(x) =
1

X ′(Y (x))
=

1

X ′(y)

Y ′′(x) = − 1

X ′(Y (x))2
X ′′(Y (x))Y ′(x) = −X ′′(y)

X ′(y)3

using which yields the transformation law (3.6).

3.2 Gauge Transformation

A gauge transformation is a transformation of the dependent variable by a multipli-

cation operator:

g(x) = h(x) f(x), (3.7)
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where h(x) is some invertible function. The corresponding operator transformation

is

L̂ = hLh−1

=
1

2
σ̂(x)2∂2

x + b̂(x)∂x − ν̂(x)

The transformation law for the components is

σ̂(x) = σ(x)

b̂(x) = b(x)− σ(x)2
h′(x)
h(x)

ν̂(x) = ν(x) +
1

2
σ(x)2

(
h′′(x)
h(x)

− 2

(
h′(x)
h(x)

)2
)

+ b(x)
h′(x)
h(x)

(3.8)

To derive this transformation law note that

∂x

(
g(x)

h(x)

)
=

g′(x)
h(x)

− h′(x)g(x)
h(x)2

∂2
x

(
g(x)

h(x)

)
=

g′′(x)
h(x)

− 2h′(x)g′(x)
h(x)2

+

(
2h′(x)2

h(x)3
− h′′(x)

h(x)2

)
g(x)

and hence that

L
[
g(x)

h(x)

]
= h−1L̂g

L̂g = h(x)L
[
g(x)

h(x)

]

=
1

2
σ(x)2g′′(x) +

(
b(x)− σ(x)2

h′(x)
h(x)

)
g′(x)+

−
[
ν(x)− 1

2
σ(x)2

(
2h′(x)2

h(x)2
− h′′(x)

h(x)

)
+ b(x)

h′(x)
h(x)

]
g(x)

A Schrodinger operator is a special class of second-order differential operators of

the form

L = ∂zz − U(z),

where the function U(z) is called the potential.

The Schrodinger form is a canonical form for second-order operators because every

second-order operator can be put into Schrodinger form by a scaling and a gauge

transformation.
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Consider a second-order operator

T = p(x)∂xx + q(x)∂x + r(x)

Apply the change of variables x = ζ(z) that satisfies

ζ ′(z)2 = p(ζ(z)). (3.9)

Explicitly,

z =

∫ x=ζ(z) dx√
p(x)

.

In this way

∂zz = p(x)∂xx +
1

2
p′(x)∂x.

Set

μ(x) = exp

(
1

2

∫
q(x)− 1

2
p′(x)

p(x)
dx

)
.

A direct calculation shows that

μTμ−1 = p(x)∂xx +
1

2
p′(x)∂x + V (x),

where

V (x) =
p′′(z)
4

− q′(x)
2

−
(
q(x)− 1

2
p′(x)

)(
q(x)− 3

2
p′(x)

)
4p(x)

+ r(x).

Set

H = −∂zz − V
(
ζ(z)

)
,

so that T [y] = λy if and only if H[ψ] = −λψ, where

ψ(z) = μ
(
ζ(z)

)
y
(
ζ(z)

)
.

Let us apply this method to the isotonic oscillator.

Example 1. For the generalized Laguerre equation, the operator T above is given

by

T = x∂xx + (α + 1− x)∂x + n.

We can calculate the potential for the Schrodinger form of T using the formula for V

above

V (x) =
p′′(z)
4

− q′(x)
2

−
(
q(x)− 1

2
p′(x)

)(
q(x)− 3

2
p′(x)

)
4p(x)

+ r(x).

=
1

2
−

(α + 1− x− 1
2
)(α + 1− x− 3

2
)

4x
+ n

= −x

4
+

(
n+

1

2
+

α

2

)
+

1− 4α2

4x
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The change of variables to transform T into Schrodinger form is given by

z =

∫ x=ζ(z) 1√
x
dx = 2

√
ζ(x)

Hence the desired transformation is

x = ζ(z) =
z2

4
.

The Hamiltonian for the isotonic oscillator can now be written in Schrodinger form

H = −∂zz − V (z),

where the potential is given by

V (z) = − z2

16
+

(
n+

1

2
+

α

2

)
+

1− 4α2

z2
.



Chapter 4

The Supersymmetric Method

In 1882, G.Darboux [13] studied the eigenvalue problem of Schrodinger equation of

the form

−φ′′ + Uφ = λφ.

If φ0 is a solution for λ = 0, then φ̂0 = φ− φ′0
φ0
φ is a solution to

−φ̂′′ + Û φ̂ = λφ̂

where

Û = U − 2∂2
x log φ0

. The transformation transforms U �→ Û that satisfies the same equation is called

the Darboux transformation. We will see below that there is a way to relate the

eigenfunctions of the two potentials. This means that if U is exactly solvable, then

so is Û .

The concept of “Supersymmetry” was discovered by Ramond [14] in 1971. He

proposed a wave equation for free fermions based on the structure of the dual model

for bosons. In 1982, Witten [15] studied SUSY in the simplest case of SUSY quantum

mechanics (SUSYQM). It involves pairs of operators that have a particular relation,

which are called partner operators with the corresponding partner potentials[16].

4.1 Darboux Transformation(Factorization Method)

Let H = −∂2
x+U be a Schrodinger operator where ∂x is the first-order derivative with

respect to x, and U = U(x) is the potential. Consider an eigenfunction Φ0 = Φ0(x)

with eigenvalue λ0, that is HΦ0 = λ0Φ0, or more explicitly,

−Φ′′0 + UΦ0 = λ0Φ0 (4.1)

Set

W =
Φ′0
Φ0

= ∂x log Φ0, (4.2)

15
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and observe that

W ′ +W 2 =
Φ′′0
Φ0

. (4.3)

Hence, dividing the linear equation (4.1) by Φ0 we obtain the Ricatti equation

W ′ +W 2 = U − λ0 (4.4)

Set

A = −∂x +W (4.5)

A† = ∂x +W (4.6)

and use (4.4) to factorize the second-order Schrodinger operator as

H − λ0 = A†A (4.7)

= (∂x +W )(−∂x +W )

= −∂2
x −W∂x +W∂x +W ′ +W 2

= −∂2
x + U − λ0

By construction AΦ0 = 0, and therefore the factorization (4.7) determines the eigen-

function Φ0, up to a constant multiple, as the kernel of A. For this reason we will

call Φ0 the factorizing eigenfunction and λ0 the factorizing eigenvalue.

Exchange the order of the factors in (4.7), and introduce

Ĥ = AA† + λ0 (4.8)

which is called the partner operator. By an explicit calculation,

Ĥ − λ0 = (−∂x +W )(∂x +W )

= −∂2
x +W 2 −W ′

= −∂2
x + U − 2W ′,

and hence Ĥ is also a Schrodinger operator with potential

Û = U − 2∂2
x log Φ0. (4.9)

The transformation from H �→ Ĥ, or equivalently U �→ Û is called a Darboux trans-

formation. A given operatorH has infinitely many possible Darboux transformations.

Each such transformation is governed by a choice of factorizing eigenfunction.
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Now introduce the function Φ̂0 = 1/Φ0 and observe that BΦ̂0 = 0, and that

Φ̂′0
Φ̂0

= −W.

Therefore, ĤΦ̂0 = λ0Φ̂0, and so we can use Φ̂0 as the factorizing function on Ĥ to

obtain the factorization (4.8). Therefore, every Darboux transformation can has an

inverse transformation H → Ĥ.

4.2 Intertwining relations

Let H = A†A + λ0 and Ĥ = AA† + λ0 be partner operators, as defined above.

Multiplying H by A† from right and Ĥ by A† from left, we get

HA† = A†AA† + λA†

and

A†Ĥ = A†AA† + λA†.

Thus, we obtain the intertwining relation

HA† = A†Ĥ.

Similarly, we have the dual relation

AH = ĤA. (4.10)

Now suppose that Φ is an eigenfunction of H with eigenvalue λ �= λ0. Explicitly,

HΦ = λΦ, λ �= λ0.

Set

Φ̂ = AΦ,

and check that by the intertwining relation above,

ĤΦ̂ = (ĤA)Φ = (AH)Φ = A(HΦ) = λAΦ = λΦ̂ (4.11)

Since λ �= λ0, the function Φ̂ �= 0. Therefore Φ̂ is and eigenfunction of Ĥ with

eigenvalue λ.
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Conversely, suppose that

ĤΦ̂ = λΦ̂, λ �= λ0.

Set

Φ =
1

λ− λ0

A†Φ̂.

By the intertwining relations,

HΦ =
1

λ− λ0

A†ĤΦ̂ =
λ

λ− λ0

A†Φ̂ = λΦ.

In other words, Φ is an eigenfunction of H with eigenvalue λ. Also,

AΦ =
1

λ− λ0

AA†Φ̂

=
1

λ− λ0

(Ĥ − λ0)Φ̂

= Φ̂

Therefore, if λ �= λ0 the the eigenfunctions of H and Ĥ are in one-to-one correspon-

dence.

For the λ0 eigenvalue, the correspondence between eigenfunctions is different. We

already saw that AΦ0 = 0. Therefore we cannot construct an eigenfunction of Ĥ in

this way. In this case, set Φ̂0 = 1/Φ0 and hence by (4.2) and (4.3)

ĤΦ̂0 = −∂2
x(1/Φ0) + (W 2 −W ′)/Φ0 + λ0/Φ0

= Φ′′0/Φ
2
0 − 2(Φ′0)

2/Φ3
0 + ((Φ′0/Φ0)

2 − Φ′′0/Φ0 + (Φ′0/Φ0)
2)/Φ0 + λ0/Φ0

= λ0/Φ0 = λ0Φ̂0.

4.3 Darboux-Crum Transformations

In 1955, Crum[17] generalized Darboux transformation with the regular eigenvalue

problem by n successive transformations that are similar to Darboux transformation.

A Darboux-Crum transformation is just an iterated Darboux transformation that uses

n ≥ 1 factorization functions to construct a partner operator. The original operator

and the partner are then related by an n-th order intertwining relation.
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Consider a Schrodinger operatorH = −D2+U , and let Φ1,Φ2, ...,Φn be eigenfunc-

tions with the corresponding eigenvalues λ1...., λn. We assume that these eigenvalues

are distinct.

Set H0 = H, U0 = U and let Hn = −∂2
x + Un be a Schrodinger operator where

Un = U0 − 2∂2
x logWr(Φ1, ...,Φn). (4.12)

Note that in the case n = 1, we define Wr(Φ1) = Φ1. Suppose that Φ is an eigen-

function of H0 with eigenvalue λ such that λ /∈ {λ1...., λn}.

Theorem 4.3.1. Set

Φ1...n =
Wr(Φ1, ...,Φn,Φ)

Wr(Φ1, ...,Φn)

We claim that Φ1...n is an eigenfunction of Hn with eigenvalue λ.

Proof. We proceed by induction on n. The case n = 1 was proved in the previous

section. For the inductive step, suppose the result holds for n− 1 and prove it for n.

Let

Φ̂n =
Wr(Φ1, ...,Φn)

Wr(Φ1, ...,Φn−1)
.

By the inductive hypothesis, this is and eigenfunction of Hn−1 with eigenvalue λn.

Hence, we can use Φ̂n as the factorizing eigenfunction to factorize Hn−1 as follows:

Hn−1 = A†nAn + λn

where

An = −∂x + Ŵn, A†n = ∂x + Ŵn,

where

Ŵn = ∂x log Φ̂n

= ∂x logWr(Φ1, ...,Φn)− ∂x logWr(Φ1, ...,Φn−1).

Observe that by (4.12),

Un = Un−1 − 2∂xŴn,

Hence, by (4.9), Hn is the partner operator for Hn−1 with the above factorizing

function.
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By the inductive hypothesis, the function

Φ1...n−1 =
Wr(Φ1, ...,Φn,Φ)

Wr(Φ1, ...,Φn−1)

is an eigenfunction of Hn−1 with eigenfunction λ. Hence, by (4.11), the function

AnΦ1...n−1 is an eigenfunction of Hn with eigenvalue λ also. To conclude our claim,

we have to show that

AnΦ1...n−1 = −Φ1...n.

This is accomplished by the following calculation

AnΦ1...n−1 = −∂xΦ1...n−1 + ŴnΦ1...n−1

=
Wr(Φ1...n−1, Φ̂n)

Φ̂n

=
Wr

(
Wr(Φ1,...,Φn−1,Φ)
Wr(Φ1,...,Φn−1)

, Wr(Φ1,...,Φn−1,Φn)
Wr(Φ1,...,Φn−1)

)
Wr(Φ1,...,Φn−1,Φn)
Wr(Φ1,...,Φn−1)

We now use the Wronskian identities. Applying the identity which is proved in [24]

Wr(Wr(f1, . . . , fn, g), Wr(f1, . . . , fn, h)) = Wr(f1, . . . , fn, )Wr(f1, . . . , fn, g, h).

gives

AnΦ1...n−1 =
Wr(Wr(Φ1, ...,Φn−1,Φ),Wr(Φ1, ...,Φn−1,Φn))

Wr(Φ1, ...,Φn−1)Wr(Φ1, ...,Φn−1,Φn)

Alternativity gives us

AnΦ1...n−1 =
Wr(Φ1, ...,Φn−1,Φ,Φn)

Wr(Φ1, ...,Φn−1,Φn)

= −Wr(Φ1, ...,Φn−1,Φn,Φ)

Wr(Φ1, ...,Φn−1,Φn)

as was to be shown. Next, define the n-th order operator

Ânf =
Wr(Φ1, ...,Φn, f)

Wr(Φ1, ...,Φn)
, (4.13)

where f = f(x) is a smooth function. We claim that the following higher-order

intertwining relation holds,

HnÂn = ÂnH0. (4.14)

First, we claim that

Ân = (−1)nAn · · ·A1.



21

The proof is by induction. The case n = 1 was proved in the previous section.

Suppose that the assumption is true for n−1, and prove it for n. So we have to show

that

Ân = −AnÂn−1.

Set

f1...n = Ânf.

In other words, we have to prove that

f1...n = −Anf1...n−1.

This is the same proof as above, but with Φ replaced by f . So, now we have to show

that

HnAn · · ·A1 = An · · ·A1H0.

Again, the proof is by induction. The n = 1 case is just (4.10). Suppose that the

result holds for n− 1 and prove it for n. So assume that

Hn−1An−1 · · ·A1 = An−1 · · ·A1H0.

Again, by (4.10),

HnAn = AnHn−1.

Hence,

HnAnAn−1 · · ·A1 = AnHn−1An−1 · · ·A1 = AnAn−1 · · ·A1H0

as was to be shown.



Chapter 5

Classical and Exceptional Hermite Polynomials

We begin this chapter by reviewing the classical Hermite polynomials, which are the

solutions to the Hermite differential equation. We review some important properties

of the classical Hermite polynomials that we would like to remain once we gener-

alize them to the exceptional Hermite polynomials. Classical Hermite polynomials

are examples of hypergeometric functions, a generalized class of functions we briefly

introduce. The classical Hermite polynomials can be generalized using SUSY meth-

ods. These are used in order to derive the exceptional Hermite polynomials. We

spend the remainder of this section studying the exceptional Hermite polynomials

and showing that they satisfy many of the same important properties that the clas-

sical Hermite polynomials do. Later, we will use the properties in order to derive

families of orthogonal solutions that will become new families of derivative models.

5.1 Classical Hermite Polynomials

The classical orthogonal polynomials give the exact solutions of a variety of quantum

mechanical potentials. One of them, Hermite polynomials, named after the French

mathematician Charles Hermite, were invented in the 19th century but found use in

quantum mechanics. The harmonic oscillator is a solvable potential precisely because

the eigenfunctions are given in terms of Hermite polynomials. We outline the key

properties of Hermite polynomials here.

5.2 Key Properties

Recurrence Relations The Hermite polynomials are orthogonal on the interval

(−∞,∞) with a weight function w(x) = e−x
2
. They may be defined by a 3-term

recurrence relation.

Definition 5.2.1. For n ≥ 1, n ∈ Z, Hermite polynomials hn(x) are polynomials of

22
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degree n that satisfy the recurrence relation

hn+1(x) = 2xhn(x)− 2nhn−1(x), (5.1)

with h0(x) = 1 and h1(x) = 2x.

Applying an induction argument gives the another recurrence relation, which re-

lates the derivative of hn(x) with hn−1(x),

h′n(x) = 2nhn−1(x). (5.2)

Relation (5.2) is true by inspection for n = 1, 2. Suppose that this relation is true for

some n ≥ 3. Taking derivatives of (5.1) gives

h′n+1(x) = 2hn(x) + 2n
(
2xhn−1(x)− 2(n− 1)hn−2(x)

)
= 2hn(x) + 2nhn

= 2(n+ 1)hn(x),

which proves that the relation also holds for n+ 1.

Hermite Differential Equation The function hn(x) satisfies the Hermite differ-

ential equation which has the form

y′′(x)− 2xy′(x) + 2ny(x) = 0, n ∈ {0, 1, 2, ...} (5.3)

To derive this equation, we make use of (5.2). We have

h′′n(x) = 4n(n− 1)hn−2(x)

Hence,

h′′n(x)− 2xh′n(x) + 2nhn(x) = 4n(n− 1)hn−2(x)− 4xnhn−1(x) + 2nhn(x).

The right-side vanishes by (5.1), which proves (5.3)

Orthogonality Relation The Hermite polynomials satisfy the orthogonality rela-

tion
1√
π

∫ ∞

−∞
hm(x)hn(x)e

−x2

dx = 2n n! δmn, m, n ∈ {0, 1, 2, ...} (5.4)

This implies that the family of Hermite polynomials is orthogonal with respect to the

weight e−x
2
.



24

Completeness To write a function in terms of Hermite polynomials, we state the

completeness property of Hermite polynomials. The Hermite polynomials form an

orthogonal basis of the Hilbert space of functions satisfying∫ ∞

−∞
|f(x)|2 w(x) dx <∞, (5.5)

in which the inner product is given by the integral including the Gaussian weight

function w(x) defined as

〈f, g〉 =
∫ ∞

−∞
f(x) g(x)w(x) dx. (5.6)

Thus Hermite polynomials form a complete basis for L2(R, w(x)dx), the L2 space on

R with weight e−x
2
dx. A proof of the completeness property can be found in[22].

Rodrigues’ Formula The Rodrigues’ formula for the Hermite polynomials is given

by

hn(x) = (−1)n ex2 dn

dxn
(e−x

2

). (5.7)

We will prove (5.7) by establishing a relation between the Hermite polynomials and

a quantum Hamiltonian.

5.3 Hypergeometric Functions

Hypergeometric functions are solutions of the hypergeometric differential equation.

Hypergeometric functions have been studied by Euler, Gauss, Riemann, and Kum-

mer. They have a wide range of applications, including differential equations, number

theory, combinatorics, and representation theory. We will briefly introduce hyperge-

ometric functions and show that they can be used to express classes of orthogonal

polynomials, namely the Laguerre and Hermite polynomials.

Hypergeometric Equation The hypergeometric equation is a differential equa-

tion of the form

x(1− x)y′′ + [c− (a+ b+ 1)x] y′ − ab y = 0, (5.8)

where a, b, c ∈ R are constants. If c ≥ 0, then the hypergeometric equation has the

solution

F (a, b, c; x) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

xn

n!
. (5.9)
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We call F (a, b, c; x) the hypergeometric function. The general solution to the hy-

pergeometric equation is

y(x) = AF (a, n, c; x) + Bx1−cF (a− c+ 1, b− c+ 1, 2− c; x) (5.10)

where A and B are arbitrary constants.

Confluent Hypergeometric Equation The confluent hypergeometric equation

has the form

xy′′ + (c− x)y′ − ay = 0 (5.11)

which is also known as Kummer’s equation. It has a regular singularity at x = 0 and

an essential singularity at x =∞.

The two linearly independent solutions are

y1(x) = M(a, c; x) =
∞∑
n=0

a(n)xn

c(n)n!
(5.12)

y2(x) = x1−cM(a− c+ 1, 2− c; x) (5.13)

where

a(n) =
n−1∏
k=0

(a+ k)

is the rising factorial andM(a, c; x) is called the confluent hypergeometric function.

Then the second solution to (5.11) can be given by

U(a, c; x) =
Γ(1− c)

Γ(a− c+ 1)
M(a, c; x) +

Γ(c− 1)

Γ(a)
x1−cM(a− c+ 1, 2− c; x) (5.14)

Laguerre and Hermite Polynomials Observe that (1) is a special case of the

confluent hypergeometric equation.

L(α)
n (x) =

(
n+ α

n

)
M(−n, α + 1; x) (5.15)

or equivalently

L(α)
n (x) =

(−1)n
n!

U(−n, α + 1; x) (5.16)

Classical Hermite polynomials can be given in terms of Lagerre polynomials

h2n(x) = (−4)n n!L(− 1
2
)

n (x2) = 4n n!
n∑

i=0

(−1)n−i
(
n− 1

2

n− i

)
x2i

i!
(5.17)

h2n+1(x) = 2(−4)n n! xL( 1
2
)

n (x2) = 2 · 4n n!
n∑

i=0

(−1)n−i
(
n+ 1

2

n− i

)
x2i+1

i!
(5.18)
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and thus can also be regarded as solutions of the confluent hypergeometric equation.

hn(x) = 2n U

(
−n

2
,
1

2
; x2

)
. (5.19)

5.4 The Quantum Harmonic Oscillator

In quantum mechanics, the Hamiltonian for the harmonic oscillator is the Schrodinger

operator

H = −∂2
x + x2. (5.20)

For physical reasons, we want the eigenfunctions to vanish at ±∞. To obtain the

eigenfunctions, we perform a gauge transformation and a shift

T = −ex2/2He−x
2/2 + 1.

Using the transformation law (3.8) this gives

T = ∂2
x − 2x∂x,

which is the Hermite differential operator. From the Hermite differential equation

T hn = −2nhn,

we therefore obtain the eigenfunctions of the Harmonic oscillator as

ψn = e−x
2/2hn. (5.21)

Because of the change of sign and the +1 shift between T and H, the eigenvalues of

the harmonic oscillator operator are

Hψn = (2n+ 1)ψn, n = 0, 1, 2, . . .

5.5 Ladder Operators

In this section, we use SUSY methods to introduce the translationally shape invariant

potentials with showing the ladder operators A and A†, which respectively lowers and

raises the quantum number of state of the system. Then we derive the Rodrigues’

formula from ladder operators.
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Apply the Darboux transformation to the harmonic oscillator operator in (5.20).

As the factorizing eigenfunction we take ψ0 = e−x
2/2 and λ = 1 as the factorizing

eigenvalue.

Hence,

W =
ψ′0
ψ0

= −x,

A = −∂x − x

A† = ∂x − x,

which gives the factorization

H = A†A+ λ0 = (∂x − x)(−∂x − x) + 1

and the Darboux transformation

Ĥ = AA† + λ0

= −∂2
x + x2 − 2∂xW

= −∂2
x + x2 + 2

= H + 2

When a Darboux transformation gives back a the same potential up to a constant

shift, we call the potential translationally shape invariant.

Translationally shape invariant potentials have closed-form expressions for the

superpotentials and the eigenfunctions. Grandati and Berard propose an alternate

way to determine the eigenfunctions of a translationally shape invariant potential in

[18]. In [19], they generate an infinite set of solvable rational extensions for some

translationally shape invariant potentials. Translationally shape invariant potentials

is also used to extend Krein-Adler theorem and thereby to establish novel bilinear

Wronskian for classical orthogonal polynomials[20].

Observe that

A = −∂x − x

= −e−x2/2 ◦ ∂x ◦ ex
2/2 (5.22)

A† = ∂x − x

= −e−x2/2 ◦ (∂x − 2x) ◦ ex2/2 (5.23)
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Hence, using identities (5.21) and (5.2) we obtain

−Aψn = e−x
2/2∂xhn

= 2ne−x
2/2hn−1

= 2nψn−1

Similarly,

−A†ψn = −e−x2/2(∂x − x)hn

= = e−x
2/2hn+1

= ψn+1

We therefore refer to A as the lowering operator and to A† as the raising operator,

and call both of these ladder operators. In particular, applying the raising operator

n times to the ground eigenstate ψ0 gives the nth eigenstate:

(−A†)nψ0 = ψn

Also, observe that

−A† = ∂x − x = ex
2/2 ◦ ∂x ◦ e−x

2/2

Hence,

(−A†)n = ex
2/2 ◦ ∂n

x ◦ e−x
2/2.

Hence, by (5.21),

hn = ex
2/2ψn = (−1)nex2

∂n
xe
−x2

.

which gives a proof of the classical Rodrigues formula using ladder operators.

5.6 Exceptional Hermite polynomials

Let K = {k1, . . . , kl} be a finite subset of positive integers arranged in ascending

order k1 < k2 < · · · < kl. Let hn(x) be the classical Hermite polynomial of degree n.

Define the polynomials

hK := Wr[hk1 , . . . , hkl ] (5.24)

hK,n := Wr[hk1 , . . . , hkl , hn], n /∈ K, (5.25)

where Wr is the Wronskian determinant. We assume that n /∈ K because otherwise,

by properties of the Wronskian, the polynomial hK,n would be zero.
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Proposition 5.6.1. The degree of hK and hK,n is equal to

deg hK =
l∑

j=1

kj −
1

2
(l − 1)l (5.26)

deg hK,n =
l∑

j=1

kj + n− 1

2
l(l + 1) = deghK + n− l. (5.27)

Proof. The leading degree term of hK is a constant times

Wr[xk1 , xk2 , . . . , xkl ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xk1 xk2 . . . xkl

k1x
k1−1 k2x

k2−1 . . . klx
kl−1

k1(k1 − 1)xk1−2 k2(k2 − 1)xk2−2 . . . kl(kl − 1)xkl−2

...
...

. . .
...

(k1)l−1xk1−l+1 (k2)l−1xk2−l+1 . . . (kl)l−1xkl−l+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

where

(k)n = k(k − 1)(k − 2) · · · (k − n+ 1)

is the Pocchammer symbol. Each of the terms in the determinant expansion is a

constant times x raised to the power

p =
l∑

j=1

(kj − j) =

(∑
j

kj

)
− 1

2
l(l + 1).

Therefore the Wronskian above is equal to Cxp where

C = V (k1, . . . , kl)

is a polynomial in k1, . . . , kl. By inspection, this polynomial has total degree

0 + 1 + · · ·+ l − 1 =
1

2
(l − 1)l.

Also if ki = kj for two indices i �= j, then C = 0. This implies that the constant C

must be the Vandermonde determinant

V (k1, . . . , kl) =
∏

1≤i<j≤l
(ki − kj),

and that it isn’t zero because we have assumed that all the ki are distinct. This

proves equation (5.24). Equation (5.25) is proved in a similar way.
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The following Theorem was originally proved in [8].

Theorem 5.6.1. Fix a set of natural numbers K ⊂ N. The polynomial y(x) =

hK,n(x), n /∈ IK is a solutions of the differential equation

y′′(x)− 2

(
x+

h′K(x)
hK(x)

)
y′(x) +

(
h′′K(x)
hK(x)

+ 2x
h′K(x)
hK(x)

)
y(x) = 2(l − n)y(x) (5.28)

Proof. We introduce the Schrodinger operator

Hλ := −∂2
x + Uλ(x), (5.29)

where

UK(x) := x2 − 2∂2
x log hK + 2l

= x2 + 2

(
h′K
hK

)2

− 2h′′K
hK

+ 2l

is a rational extension of the harmonic oscillator.

Set

σK(x) =
x2

2
+ log hK(x)

and define the operator

TK := −eσK(x) ◦ HK ◦ e−σK(x) + 2l + 1. (5.30)

A special case of the gauge transformation law (3.8) is

eσ ◦ ∂2
x ◦ e−σ = ∂2

x − 2σ′(x)∂x − σ′′(x) + σ′(x)2

Observe that

σ′K = x+
h′K
hK

,

σ′′K = 1 +
h′′K
hK

−
(
h′K
hK

)2

−σ′′K(x) + σ′K(x)
2 = −1− h′′K

hK

+ 2

(
h′K
hK

)2

+ x2 + 2x
h′K
hK

= UK(x) +
h′′K
hK

+ 2x
h′K
hK

− 2l − 1

Hence,

TK = ∂2
x − 2

(
x+

h′′K
hK

)
∂x − σ′′K(x) + σ′K(x)

2 − UK(x) + 2l + 1
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is the exceptional Hermite operator in the left side of equation (5.28).

Let ψn(x) be the eigenfunction of the classical Harmonic oscillator as defined

in (5.21). Applying the Darboux-Crum transformation (4.12) with ψk1 , . . . , ψkl as

factorization functions gives the potential

ÛK(x) := x2 − 2∂2
x logWr[ψk1 , ..., ψkl ]

By properties of the Wronskian,

Wr[ψk1 , ..., ψkl ] = e−lx
2/2Wr[hk1 , . . . , hkl ]

Hence

ÛK = x2 − 2∂2
x log hK + 2l (5.31)

is equal to UK , the potential of the operator HK introduced above.

By the Darboux-Crum Theorem 4.3.1, the function

ψK,j :=
Wr[ψk1 , . . . , ψkl , ψj]

Wr[ψk1 , . . . , ψkl ]

is an eigenfunction of HK , so that

HKψK,j = (2j + 1)ψK,j.

Again, by the properties of Wronskian,

ψK,j =
e−(l+1)x2/2Wr[hk1 , . . . , hkl , hn]

e−lx2/2Wr[hk1 , . . . , hkl ]
(5.32)

=
e−x

2/2

hK(x)
hK,j(x).

Therefore, by (5.30),

TK , hK,j =
(
− (2j + 1) + 2l + 1

)
hK,j,

which proves the theorem.
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5.7 Orthogonality

Define the weight function

WK(x) :=
e−x

2

hK(x)2
, (5.33)

and observe that the weight is non-singular as long as hK(x) �= 0 for real x.

Definition 5.7.1. We say that K = {k1, . . . , kl} where 0 < k1 < · · · < kl is a Krein-

Adler sequence provided l = 2j is even and k2i−1 = k2i + 1 for all i = 1, . . . , j. Here

are some examples of Krein-Adler sequences:

{1, 2, 4, 5}, {2, 3, 4, 5, 9, 10}, {2, 3, 6, 7, 9, 10}.

The following Theorem was proved in [8] using earlier results by Krein and Adler.

Theorem 5.7.1. The Wronskian

hK = Wr[hk1 , . . . , hkl ]

has no real zeros if and only if K is a Krein-Adler sequence.

Hence, if K is a Krein-Adler sequence we have a well-defined inner product

〈f, g〉 =
∫ ∞

−∞
f(x) g(x)WK(x) dx. (5.34)

Note that in general, deg hK,n �= n. Therefore it’s convenient to define the excep-

tional Hermite polynomials as follows.

Definition 5.7.2. Suppose that K = {k1, . . . , kl} ⊂ N is a Krein-Adler sequence and

let

NK = deg hK =
l∑

j=1

kj −
1

2
l(l − 1).

The family of polynomials {hK,j : j /∈ K} is missing degrees

JK = {0, 1, . . . , NK − l − 1} ∪ {k +NK − l : k ∈ K}

These are the exceptional degrees. We define the index set for the remaining degrees

as the complement

IK = N0 \ JK
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and define the exceptional Hermite polynomials as

ĥK,n(x) =
hK,j(x)

(j − k1) · · · (j − kl)
(5.35)

where j = n+ l −NK . It then follows by (5.26) that deg ĥK,n = n provided n ∈ IK .

We now show that the Exceptional Hermite polynomials are orthogonal with re-

spect to WK .

Proposition 5.7.1. We have∫ ∞

−∞
ĥK,nĥK,mWK dx = δmn

√
π 2j+l j!∏l

i=1(j − ki)
, (5.36)

where j = n+ l −NK and where NK = deg hK by (5.26).

Proof. In the proof of Theorem 5.6.1 we showed that the exceptional Hermite op-

erator TK is gauge-equivalent to the Schrodinger operator in (5.29) with a gauge

factor of e−x2/2

HK(x)
. The eigenfunctions of a Schrodinger operator at different energies are

orthogonal with respect to dx. This means that if i �= j then∫ +∞

−∞
ψK,i(x)ψK,j(x)dx = 0.

Substitute (5.32) into above to get

∫ +∞

−∞
hK,i(x)hK,j(x)

e−x
2

hK(x)2
dx = 0, i �= j.

The proof for the case of i = j can be found in [21].

5.8 Example

Consider the case where K = {1, 2} and

hK = Wr[h1, h2] = 4(1 + 2x2).

For this case, the exceptional Hermite differential equation is

y′′ −
(
2x+

8x

1 + 2x2

)
y′ + 2ny = 0,
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where

y = ĥK,n =
Wr[h1, h2, hn]

(n− 2)(n− 1)

is the corresponding Exceptional Hermite polynomial of degree n. Note that, by

construction n /∈ {1, 2}. These are the excluded ”exceptional” degrees. The degree

set is therefore

IK = {0, 3, 4, 5, . . .}.

Proposition 5.8.1. We have

ĥK,n = 8(hn+4nhn−2 + 4n(n− 3)hn−4), n ∈ IK (5.37)

Proof. Recall that h1 = 2x, h2 = 4x2 − 2. Hence

1

8
Wr[h1, h2, h3] =

1

2
(4hn(x)− 4xh′n(x) + (1 + 2x2)h′′n(x))

Using the identities

2xhn = hn+1 + 2nhn−1

h′n = 2nhn−1

we have

1

2
(4hn(x)− 4xh′n(x) + (1 + 2x2)h′′n(x)) = 2hn(x)− 2xh′n(x) +

1

2
h′′n(x) + x2h′′n(x)

= 2hn(x)− 4nxhn−1(x) + nh′n−1(x) + 2nx2h′n−1(x)

= −2(n− 1)hn(x)2(n− 1)n(2x2 − 1)hn−2(x)

= −2(n− 1)hn(x) + 2(n− 1)nxhn−1(x) +−2(n− 1)nhn−2(x)

+4(n− 2)(n− 1)nxhn−3(x)

= (n− 2)(n− 1)hn(x) + 4(n− 2)(n− 1)nhn−2(x) + 4(n− 3)(n− 2)(n− 1)nhn−4(x)

= (n− 2)(n− 1)[hn(x) + 4nhn−2(x) + 4(n− 3)nhn−4(x)]

. Dividing by (n− 2)(n− 1) yields the desired result.

Note that equation (5.8.1) is another indication that 1, 2 are exceptional degrees.

The formula for ĥK,n is simply not valid for these values of n.
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Also observe that K = {1, 2} is a Krein-Adler sequence. Consequently, hK(x)

does not vanish for real x and the corresponding weight

WK =
e−x

2

16(1 + 2x2)2

is non-singular.

Next, let’s consider the example of K = {1, 3}. An explicit calculation shows that

hK = Wr[h1, h3] = Wr[2x, 8x3 − 12x] = 32x3.

In this case, K is not a Krein-Adler sequence, and the corresponding weight WK has

a singularity at x = 0. Thus the corresponding polynomials ĥK,n are eigenfunctions

of a 2nd order differential equation, but they cannot be considered to be orthogonal

polynomials.



Chapter 6

The Black Scholes Equation and its Generalizations

In this chapter we introduce introduce the general interpretation of stochastic differ-

ential equations as diffusion equations. We then show how use the general solutions

of the diffusion equations to construct pricing models of derivative assets. We then

apply these results to derive the classical Black-Scholes equation and formula for a

call option.

The generalized Black-Scholes partial differential equation plays an important

and fundamental role in valuing all derivative securities. We begin by considering the

general form of a second order linear PDE with all the variables coefficients being

functions of S. This approach can be generalized to time-dependence, but we limit

ourselves to time-homogeneous, backward Kolmogorov equations.

1

2
σ2(S)S2∂

2V

∂S2
+ μ(S)S

∂V

∂S
+

∂V

∂t
= ν(S)V (6.1)

t ∈ (0, T ), V (T, S) = g(S). (6.2)

In the model, the diffusion coefficient σ is the volatility function, and the coefficient μ

is the (absolute) risk-neutral drift. The coefficient ν is the cost of carrying the claim

once a particular asset is chosen to finance the premium.

We change of variable S = S(x), x = x(S) and set

dx =
dS

Sσ(S)

or

x =

∫ S

S0

dz

zσ(z)
(6.3)

Using 3.8, set U(x, t) = V (S(x), t). Hence the original PDE becomes

1

2

∂2U

∂x2
+ β(x)

∂U

∂x
+

∂U

∂t
= γ(x)U

36
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where by (3.6)

β(x) =
μ(S)

σ(S)
− 1

2
σ(S)− 1

2
Sσ′(S),

γ(x) = ν(S)

We can’t interpret γc as a carrying cost because y is the log of an asset price. Since

everything is time independent we should suppress dependence on t for the equation

coefficients.

Now consider a gauge transformation

U c(x, t) = exp

[∫ x

0

β(y) dy

]
U(x, t) (6.4)

By (3.8) the transformed diffusion equation is the canonical Schrodinger operator

form:
∂U c

∂t
= −1

2

∂2U c

∂x2
+ γc(x) U c

where

γc = γ +
1

2

∂β

∂x
+

1

2
β2 (6.5)

and U c(x, t) is the dependent variable and γc(x) is the potential function.

6.1 Differential Equations as Pricing Models

Let St be a stochastic process that represents the price of an asset. Then dSt/St is

the rate of return. Suppose that the evolution of the asset price is modeled by the

stochastic differential equation,

dSt

St

= μ(S) dt+ σ(S) dWt, (6.6)

where Wt is a normalized Wiener process, σ is the volatility function, and μ is the

(absolute) risk-neutral drift. Here for simplicity we assume that these parameters are

time-independent and are purely functions of the price of the underlying asset.

Consider a derivative security whose price is a function f = f(S, t) of the under-

lying asset price and time. The Taylor expansion of

f(S + dS, t+ dt) = f(S, t) + Δf
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is

Δf = f(S, t) +
∂f

∂S
dS +

∂f

∂t
dt+

1

2

∂2f

∂S2
(dS)2 + higher order terms

Since dS is a small amount and dW ∼ O(
√
dt),

(dS)2 = (μSdt+ σSdW )2

= μ2S2(dt)2 + 2μσS2dt dX + σ2S2(dW )2

then the leading term of (dS)2 is σ2S2(dW )2, which approaches σ2S2dt as dt → 0.

This result is called Itô’s lemma.

Therefore the evolution of the derivative price is governed by the equation

df =
∂f

∂t
dt+

∂f

∂S
dS +

1

2

∂2f

∂S2
(dS)2 (6.7)

= σS
∂f

∂S
dW +

(
∂f

∂t
+ μS

∂f

∂S
+

1

2
σ2S2∂

2f

∂s2

)
dt

Now we construct a risk-less portfolio g = f −ΔS, which is long one unit of the

derivative and short Δ units of underlying asset. We want to balance the portfolio

so that during the small time interval dt, the quantity Δ remains constant and dg is

totally deterministic. Using (6.6) and (6.7)

dg = df −ΔdS

= σS

(
∂f

∂S
−Δ

)
dW +

(
μS

(
∂f

∂S
−Δ

)
+

1

2
σ2S2 ∂

2f

∂S2
+

∂f

∂t

)
dt

Therefore, we can eliminate the randomness dW by choosing Δ = ∂f
∂S
. Hence,

dg =

(
1

2
σ2S2 ∂

2f

∂S2
+

∂f

∂t

)
dt

The return of the risk-less portfolio would see a growth during a time dt as

dg

g
= rdt,

where r is the risk-free interest rate. Hence,

rgdt = r

(
f − ∂f

∂S
S

)
dt

=

(
1

2
σ2S2 ∂

2f

∂S2
+

∂f

∂t

)
dt
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From there, we have

rf − r
∂f

∂S
S =

∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

i.e.
1

2
σ2S2 ∂

2f

∂S2
+ rS

∂f

∂S
+

∂f

∂t
= rf.

which is the Black-Scholes partial differential equation.

6.2 Black-Scholes Hamiltonian

The Black-Scholes equation for option pricing with constant volatility is given by

∂C

∂t
= −1

2
σ2S2∂

2C

∂S2
− rS

∂C

∂S
+ rC

where C, S, σ and r denotes the price of the option, the stock price(random variable),

the constant volatility of the stock price and the constant risk-free sport interest rate,

respectively.

Using separation of variables and a substitution,

C(S, t) = eλtψ(x)

where S = ex, −∞ < x <∞
We have

∂C

∂t
= λeλtψ

S
∂C

∂S
= eλtψx

S2∂
2C

∂S2
= eλt (ψxx − ψx)

Plugging in the Black-Scholes equation yields,

−σ2

2

d2ψ

dx2
+

(
σ2

2
− r

)
dψ

dx
+ rψ = λψ

For the right-hand side, we define the Black-Scholes Hamiltonian as

HBS = −σ2

2

d2

dx2
+

(
σ2

2
− r

)
d

dx
+ r,

and we rewrite the above eigenvalue problem as

HBSψ = λψ.
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We will derive the solution to the Black-Scholes equation

σ2S2

2

∂2V

∂S2
+ rs

∂V

∂S
+

∂V

∂t
− rV = 0, (6.8)

by transforming it into the diffusion equation, which is solvable.

First, let

x = log

(
S

K

)
⇒ S = Kex

τ =
σ2

2
(T − t)⇒ t = T − 2τ

σ2

U(x, τ) =
1

K
V (S, t)

Taking partial derivatives, we get

∂V

∂t
= −Kσ2

2

∂U

∂τ
∂V

∂S
= e−x

∂U

∂x
∂2V

∂S2
=

e−2x

K

(
∂2U

∂x2
− ∂U

∂x

)

Substituting these back into (6.8), we have

−σ2

2

∂u

∂τ
+

σ2

2

∂2U

∂x2
+

(
r − σ2

2

)
∂U

∂x
− rU = 0. (6.9)

Next let k = 2r
σ2 . Then (6.9) becomes

−∂U

∂τ
+

∂2U

∂x2
+ (k − 1)

∂U

∂x
− kU = 0. (6.10)

Now let

W (x, τ) = eαx+β2τU(x, τ), α =
1

2
(k − 1), β =

1

2
(k + 1).

The partial derivatives become

∂U

∂τ
= e−αx−β

2τ

(
∂W

∂τ
− β2W

)
∂U

∂x
= e−αx−β

2τ

(
∂W

∂x
− αW

)
∂2U

∂x2
= e−αx−β

2τ

(
∂2W

∂x2
− 2α

∂W

∂x
+ α2W

)
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Substituting these into (6.9) and simplifying, we arrive at the diffusion equation

β2W − ∂W

∂τ
+

∂2W

∂x2
− 2α

∂W

∂x
+ α2W + (k − 1)

∂W

∂x

−α(k − 1)W − kW = 0

1

4
(k + 1)2W − ∂W

∂τ
+

∂2W

∂x2
− (k − 1)

∂W

∂x
+

1

4
(k − 1)2W

+(k − 1)
∂W

∂x
− 1

2
(k − 1)2W − kW = 0.

∂2W

∂x2
− ∂W

∂τ
= 0

∂2W

∂x2
=

∂W

∂τ

The payoff option for a European style call option is given by

U0(xT ) =
1

K
V (ST −K)+ = (exT − 1)+,

Where the + in the superscript indicates the postive part of the function. Since

we transformed the Black-Scholes diffusion equation into the heat equation into the

heat equation, we can describe the solution with the given boundary conditions using

convolution wih the fundamental solution

G(x, ξ) = e−
(x− ξ)2

4τ
.

The resulting solution is

W (x, τ) =
1√
4πτ

∫ ∞

−∞
e−

(x−ξ)2

4τ W0(ξ)dξ

=
1√
4πτ

∫ ∞

−∞
e−

(x−ξ)2

4τ exp
(
(βxT − αxT )

+) dξ
Let z = ξ−x√

2τ
so that ξ = x+ z

√
2τ , dξ =

√
2τdz. Then we have

W (x, τ) =
1√
2π

∫ ∞

−∞
e−

z2

2 exp

((
β[
√
2τz + x]− α[

√
2τz + x]

)+
)
dz.

This expression is nonzero if and only if

β[
√
2τz + x] > α[

√
2τz + x]⇒ z > − x√

2τ
.
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Hence we have

W (x, τ) =
1√
2π

∫ ∞

− x√
2τ

e−
z2

2 exp(β[
√
2τz + x])dz

− 1√
2π

∫ ∞

− x√
2τ

e−
z2

2 exp(α[
√
2τz + x])dz

= I1 − I2

I1 =
1√
2π

∫ ∞

− x√
2τ

exp

(
−1

2
z2 + β

√
2τz + βx

)
dz

=
1√
2π

∫ ∞

− x√
2τ

exp

(
−1

2
(z − β

√
2τ)2 + βx+ β2τ

)
dz

Let y = z − β
√
2τ , dy = dz, so that

I1 =
1√
2π

eβx+β2τ

∫ ∞

− x√
2τ
−β√2τ

e−
y2

2 dy

= eβx+β2τ

(
1− Φ

(
− x√

2τ
− β

√
2τ

))

= eβx+β2τΦ

(
x√
2τ

+ β
√
2τ

)
,

where Φ(x) is the cumulative normal distribution function. I2 can be solved

similarly to get

I2 = eαx+α2τΦ

(
x√
2τ

+ α
√
2τ

)
.

Set

d1 =
x√
2τ

+ β
√
2τ =

x+ β(2τ)√
2τ

=
log

(
S
K

)
+ 1

2
(k + 1)(T − t)

σ
√
T − t

=
log

(
S
K

)
+ 1

2
(σ

2

2
+ r)(T − t)

σ
√
T − t

d2 =
x√
2τ

+ α
√
2τ =

x+ α(2τ)√
2τ

=
log

(
S
K

)
+ 1

2
(k − 1)(T − t)

σ
√
T − t

= d1 − σ
√
T − t
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Substituting the values for I1 and I2 in for W (x, τ), we have

W (x, τ) = eβx+β2τΦ(d1)− eαx+α2τΦ(d2).

Back-substitution yields,

V (S, t) = Ke−αx−β
2τ
(
eβx+β2τΦ(d1)− eαx+α2τΦ(d2)

)
= Ke(β−α)xΦ(d1)−Ke(α

2−β2)τΦ(d2)

Finally, substituting in for α and β gives us the Black-Scholes formula

V (S, t) = SΦ(d1)−Ke−r(T−t)Φ(d2). (6.11)



Chapter 7

Application of Supersymmetric Methods to Derivative

Pricing

In this chapter, we give some examples of application of supersymmetric methods

and exceptional Hermite polynomials to construct solvable derivative models. We

will discuss knockout models, models with a variable drift and models with a variable

carrying cost.

First of all, it is not possible to reduce a diffusion equation with a general po-

tential to the heat equation. In the absence of a fundamental solution, we replace

the convolution described above with a representation in terms of generalized Fourier

coefficients.

Consider a generalized diffusion equation

1

2

∂2U

∂x2
+ β(x)

∂U

∂x
+

∂U

∂t
= γ(x)U

If β vanishes, we obtain a generalized heat equation driven by a Schrödinger operator

with potential γ(x). In finance models it is useful to retain the general form because

the first-order part of the operator can be used to model a stochastic process with

drift. However, to obtain a generalized Fourier expansion we first perform a gauge

transformation get the operator into Schrödinger form.

1

2

∂2U c

∂x2
+

∂U c

∂t
= γc(x)U c

where

U c(x, t) = exp

[
−
∫ x

a

β(y) dy

]
U(x, t) (7.1)

γc = γ +
1

2

∂β

∂x
+

1

2
β2 (7.2)

We therefore assume that the potential γc(x) is positive and exactly solvable,

meaning that we there are explicit eigenvalues λn > 0, n = 0, 1, 2, . . ., eigenfunctions

44
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φn(x), n = 0, 1, 2, . . . and normalization constants νn > 0. Explicitly, this means that

−1

2

∂2φn

∂x2
+ γc(x)φn = λnφn, n = 0, 1, 2, . . .

and that ∫ b

a

φn(x)
2dx = νn

where the (a, b) is the natural domain dictated by the form of the potential γc(x). In

other words, we apply boundary conditions to U c(x) at x = a and x = b.

Given an initial profile U0(x), a < x < b, we let

U c
0 = exp

[
−
∫ x

a

β(y) dy

]
U0(x)

and construct the generalized Fourier expansion

U c
0(x) =

∞∑
n=0

anφn(x)

where

an =
1

νn

∫ b

a

U c
0(x)φn(x)dx

The general solution of the diffusion equation can now be given using separation of

variables as

U(x, t) = exp

[∫ x

a

β(y) dy

] ∞∑
n=0

ane
−λntφn(x).

By truncating the above sum to a finite number of terms we can then obtain numerical

solutions of a given diffusion model.

7.1 Supersymmetric double knockout model

A double barrier option is a path dependent option which restricts the value of the

stock to be within two barriers, which we denote by S = ea and S = eb. In other

words, a Brownian motion of the underlying asset price ex is immediately worthless

as the asset price hits the barrier from below or above. We modify the Black-Scholes

model by imposing an infinite carrying cost to the left and to the right of the barrier

prices.
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To get the knockout barrier model take

U(x) =

⎧⎨
⎩0 a < x < b

∞ otherwise

The physical picture of this is the problem of a particle in an infinitely deep quantum

well. Then the Schrödinger equation we obtained becomes

−φ′′(x) = λφ(x) (7.3)

with boundary conditions φ(a) = φ(b) = 0. The general solution of this second-order

equation is

φ(x) = A sin [
√
λ(x− C)]

Using the boundary conditions, C = a, and

(b− a)
√
λ = (n+ 1)π, n = 0, 1, 2, . . .

Thus, the eigenvalues are

λn =

[
(n+ 1)π

b− a

]2
, n = 0, 1, 2, . . .

Normalize the norm of the eigenfunction to have∫ b

a

φ2
n dx = 1

This gives

1 =

∫ b

a

A2 sin2

[
π(x− a)

b− a

]
dx =

b− a

2
A2

Therefore,

A =

√
2

b− a

φn(x) =

√
2

b− a
sin

[√
λn(x− a)

]
For the double barrier Hamiltonian HBS + V we have

εn =
σ2

2
λn +

1

2σ2

(
r +

σ2

2

)2

and

ψn =

√
2

b− a
exp

[(
1

2
− r

σ2

)
x

]
sin

[√
λn(x− a)

]
, n = 0, 1, 2, . . .
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We will now use the supersymmetric method discussed in Section 4 to find another

solution of (7.3). Define the operator A = − d
dx

+ tanh(x) and its adjoint A† =

d
dx

+ tanh(x). Then we have

A†Aφ = −d2φ

dx2
+ sech2(x)φ+ tanh2(x)φ = −d2φ

dx2
+ φ

= (1 + λ)φ

The isospectral partner to this is

AA†φ = (1 + λ)φ

Setting φ = ρ−1ψ, where ρ = e(
1
2
− r

σ2 ), we can rewrite these equations as

BB†ψ = (1 + λ)ψ

B†Bψ = (1 + λ)ψ,

where

B = − d

dx
+ tanh(x) +

(
1

2
+

r

σ2

)

B† =
d

dx
+ tanh(x)−

(
1

2
− r

σ2

)

Expanding these expressions yields

BB†ψ =

(
− d

dx
+ tanh(x) +

(
1

2
+

r

σ2

))(
dψ

dx
+ tanh(x)ψ −

(
1

2
− r

σ2

)
ψ

)

= −d2ψ

dx2
+ ψ − 2sech2(x)ψ + 2

(
1

2
− r

σ2

)
dψ

dx
−

(
1

2
− r

σ2

)2

ψ

= (1 + λ)ψ

B†Bψ =

(
d

dx
+ tanh(x)−

(
1

2
− r

σ2

))(
−dψ

dx
+ tanh(x)ψ +

(
1

2
+

r

σ2

)
ψ

)

= −d2ψ

dx2
+ ψ + 2

(
1

2
− r

σ2

)
dψ

dx
−

(
1

2
− r

σ2

)2

ψ

= (1 + λ)ψ
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Simplifying the above expressions, we have for BB† that

HBB† = −
σ2

2

d2

dx2
+

(
σ2

2
− r

)
d

dx
− σ2sech2(x) + r, (7.4)

and for B†B

HB†B = −σ2

2

d2

dx2
+

(
σ2

2
− r

)
d

dx
+ r.

With the new Hamiltonian HBB† we can solve HBB†ψ = λψ to get

ψ(x) =
1√
2
e(

1
2
− r

σ2 )xsech(x). (7.5)

We will find the potential forHBB† and it’s partner potential. To find the potential

of HBB† , we first need to convert it into Schrödinger form. We can use the change of

variables outlined in chapter 3.

z =

∫ x=ζ(z) dx√
p(x)

=

∫ x=ζ(z) dx√
−σ2

= − i

σ
ζ(z).

x = ζ(z) = iσz.

Then we have

V (x) =
(σ
4
− r

2σ

)2

+ r − σ2sech2(x).

Then the new Hamiltonian becomes

HBB† = ∂zz − V (ζ(z))

HBB† = −∂zz + σ2sec2(σz)− r −
(σ
4
− r

2σ

)2

Hence the potential function is

U(z) = σ2sec2(σz)− r −
(σ
4
− r

2σ

)2

. (7.6)

Applying the transformation x = ζ(z) to the eigenfunction of the Hamiltonian, (7.5)

gives

ψ(z) =
1√
2
ei(

σ
2
− r

σ )zsec(σz).

We can now apply the Darboux transformation as outlined in chapter 4 to find the

partner potential. From (4.9) we have

Û = U − 2∂xx log(ψ(z))

Û = − 1

16σ2
(σ4 + 12rσ2 + 4r2 − 16σ4sec(σz)2). (7.7)
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Figure 7.1: Potential U = 0, 0 < x < 1 for the double knockout model and the partner
potential Û = 4tanh(x)sech2(x) obtained from SUSY.

Figure 7.2: Potentials U and Û defined by (7.6) and (7.7) for 0 < z < 1, σ = 1, r = 1
2
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7.2 Solvable model with a Variable Drift

We consider a genralized Black-Scholes equation with constant diffusion σ = σ0 and

carrying cost r = γ(S) that depends on the cost of the underlying asset. This modified

Black-Scholes equation becomes

1

2
S2 ∂

2V

∂S2
+ γ(S)S

∂V

∂S
+

∂V

∂t
= γ(S)V.

Our goal is to transform the above equation into a diffusion equation with a variable

drift function. Using the change of variables outlined in chapter 3:

S = ex, U(x) = S V (S), β(x) = γ(S),

yields the diffusion equation

1

2

∂2U

∂x2
+

(
β(x) +

1

2

)
∂U

∂x
+

∂U

∂t
= 0. (7.8)

We now suppose that

γ(S) = σ0

(
− log S − σ0

2

)
so that

β(x) = −x− 1

2

and we obtain
∂U

∂t
+

1

2

∂2U

∂x2
− x

∂U

∂x
= 0,

a diffusion equation which can be solved using Classical Hermite polynomials. By

(5.3), the general solution is

U(x, t) =
∞∑
n=0

kne
nthn(x),

where the coefficients kn are determined by the payoff function. Explicitly, the kn’s

are given by

kn = ν−1n

∫ ∞

−∞
U(x, 0)hn(x)e

−x2

dx.

where the norming constants νn are given in (5.4).

To construct supersymmetric generalizations of the above model we consider an

exceptional Hermite DE (5.28) where the zero order coefficient term is a constant.

This happens for example when K = {1, 2}, in which case

hK = Wr[h1, h2] = 8x2 + 4



51

h′′K(x)
hK(x)

+ 2x
h′K(x)
hK(x)

= 4

In this case, the exceptional Hermite DE is

y′′ −
(
2x+

8x

1 + 2x2

)
y′ = −2ny

with solutions

y = ĥn =
Wr[h1, h2, hn]

16(n− 1)(n− 2)
, n ∈ {0, 3, 4, 5, . . .}

We therefore consider the diffusion equation

1

2

∂2U

∂x2
−

(
x+

4x

1 + 2x2

)
∂U

∂x
+

∂U

∂t
= 0.

From 5.8, we know that

ĥn = hn + 4nhn−1 + 4n(n− 3)hn−2, (7.9)

and the general solution is

∞∑
n=0,3,4,5,...

kn ent (hn + 4nhn−1 + 4n(n− 3)hn−2)

where the coefficients kn depend on the payoff function. Since

β(x) = −
(
x+

4x

1 + 2x2

)
= −x

(
x2 + 5

2

x2 + 1
2

)

we obtain

μ(S) = σ0

(
β(x) +

σ0

2

)
= −σ0 log S

(
log S2 + 5

2

log S2 + 1
2

)
+

σ0

2

Changing x = logS gives the price V (S, t) of an option for a security with the variable

drift as above.

7.3 Solvable model with a Variable Carrying Cost

In this chapter, we consider a generalized Black-Scholes model with constant diffusion

σ = σ0, but a price dependent carrying cost. We modify the diffusion equation (3.1)

to
∂V

∂t
+

1

2
σ2
0S

2∂
2V

∂S2
+ rS

∂V

∂S
− ν(S)C = 0
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to include a variable carrying cost, which may be due to a varying interest rate or

dividends paid by the underlying security.

The transformations described in Section 3 are

S = ex, γ(x) = ν(S), V (S, t) = e−xU c(x, t), K = r − 1

2
.

. The transformed equation is

∂U c

∂t
= −1

2

∂2U c

∂x2
+

(
γ(x)− 1

2
K2

)
U c

We now take

ν(S) = r − (A− 1

2
log(S)2)

so that

γ(x) = r − A+
1

2
x2

thereby obtaining the solvable harmonic oscillator. This model represents a security

that pays a variable dividend with A being the value of the proportional dividend

when the price of the security is S = 1 [4]. The general solution of this diffusion

equation is

U c(x, t) =
∞∑
n=0

kne
(n+ 1

2
−K2)t− 1

2
x2

hn(x)

where kn are determined by the payoff function. Explicitly, the kn’s are given by

kn =
1

νn

∫ ∞

−∞
U c(x, 0)e−

1
2
x2

hn(x)dx,

where the normalizing constants νn are given in (5.4).

7.4 Example

We now generalize the above model by using Supersymmetric methods. Take K =

{1, 2} so that

hK = Wr[h1, h2] = 8x2 + 4

Using formula (5.31) gives the potential

Û(x) = x2 + 2

(
2x2 − 1

(2x2 + 1)2

)
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which was already discussed in Section 5.7. With this potential, the carrying cost

becomes

ν(S) = r −
(
A−

(
1

2
log S2 +

2 logS2 − 1

(2 logS2 + 1)2

))
The general solution of the diffusion equation becomes

U c(x, t) =
∞∑

n=0,3,4,...

kne
(n+ 3

2
−K2)t− 1

2
x2 ĥn(x)

2x2 + 1

where the exceptional Hermite polynomial is given by formula (7.9) and where

kn =
1

ν̂n

∫ ∞

−∞
U c(x, 0)e−

1
2
x2

ĥn(x)dx.

The normalizing constants ν̂n are no longer the classical Hermite norms, but rather

are given by the modified formula (5.36).



Chapter 8

Conclusion

We have shown how to use SUSYQM and exceptional Hermite polynomials to derive

solvable derivative models. We introduced a change of variables and gauge transfor-

mation to convert a second order PDE into Schrödinger form. We then introduced

supersymmetric methods and Darboux transformations and applied them to the clas-

sical Hermite polynomials to derive the exceptional Hermite polynomials and derive

important properties of them analogous to the classical case. We then derived the

Black-Scholes Hamiltonian which allowed us to apply SUSYQM methods. We finally

applied these techniques to several examples to obtain solvable derivative models.

Recall that the classical Black-Scholes equation (6.8) has a concise solution in the

form of the Black-Scholes formula (6.11). Notice however that the models presented

in the previous chapter do not yield such concise solution analogous to the classical

Black-Scholes formula with the methods we have presented so far. Finding a concise

formula analogous to the classical Black-Scholes formula for the generalized Black-

Scholes equation is a subject for future research.
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