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Abstract

The adoption of advanced intelligent manipulator systems to carry out pick-and-

handover tasks has seen a rise in both the manufacturing and healthcare sectors,

thanks to their impressive precision, adaptability, and operational efficiency. Execu-

tion of these tasks demands the synergistic functioning of various modules, encompass-

ing the sensor system used for gathering environmental data, the control algorithm

used for manipulator, and the trajectory planning algorithm. The primary objective

of this thesis focuses on building a framework, which integrates these modules. A

significant merit of this framework is its inherent capacity for easier upgrades. Due

to its modular structure, it allows for the modification or replacement of individual

components without causing any disruptions to the overall system.

Initially, a vision-based impedance control method is employed with a 7-degree-of-

freedom (7-DOF) Franka Emika (FE) Panda robotic manipulator to accomplish pick-

and-handover tasks, featuring human-like fruit grasping capabilities, which ensures

a basic framework with different modules is built. Subsequently, two low cost vision

modules are established for both two-dimensional (2D) and three-dimensional (3D)

object recognition, localization, and anthropomorphic manipulation, utilizing the You

Only Look Once version five (YOLOv5) system. The salient attribute of this segment

revolves around attaining a commendable level of accuracy using low-cost cameras.

The innovative modular-based framework also allows for a smooth transition between

different types of camera modules, such as shifting from a standard camera module

to a depth camera module or a laser module.

To facilitate the end-effector in picking up objects with varying characteristics, a

novel Difference-based Dynamic Movement Primitives (DMPs) algorithm is utilized

for trajectory planning module to generate human-like trajectories. Finally, a variable

impedance controller is designed for control module to strike an optimal balance

between precision, safety, and efficiency during the object pick-and-handover task.

xi
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Chapter 1

Introduction

This chapter introduces the significance of intelligent control system for robotic ma-

nipulators in diverse industries, providing an overview of the motivation, contribu-

tions, and structure of this thesis.

1.1 Application of Intelligent Robotic Manipulators

Intelligent control systems for robotic manipulators have been widely researched and

developed over the years. They are applied in various industries such as manufactur-

ing, healthcare, logistics, and others. Two applications to be discussed in this chapter

are manufacturing and healthcare.

1.1.1 Manufacturing

Fig. 1.1 depicts an instance of a manipulator utilized in the manufacturing industry.

This particular system is designed to efficiently carry out assembly tasks.

Intelligent manipulator systems have become increasingly popular in manufactur-

ing applications due to their ability to provide high accuracy, flexibility, and effi-

ciency. [12] discusses the development and implementation of an online compliance

error compensation system for industrial manipulators, aimed at improving accu-

racy and reducing deformation in high-force processes by using an elasto-geometric

robot model and force sensor measurements. [13] develops a deep learning-based

object detection solution using 3D point clouds for a collaborative mobile robotic

manipulator, aimed at automating Small and Medium-sized Enterprises (SME) pro-

duction processes, with detailed principles, procedures, and experimental validation

in automatic name tags production and plug-in charging tasks. A framework for

task allocation in human-robot collaborative assembly planning, using a multiagent

human-robot team approach with two abstraction layers, where nominal coordinated

1
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optical fiber sensing techniques [4].

[15] presents an IoT-based human-robot collaborative control scheme for robot-

assisted minimally invasive surgery, using a hierarchical operational space formula-

tion and IoT technology to facilitate task execution, collision detection, and smooth

swivel motion, with improved performance in RCM constraint and surgical tip accu-

racy demonstrated through experiments on a patient phantom. A motion planning

system for assistive or rehabilitation robotics using a learning by demonstration ap-

proach based on dynamic movement primitives, offering high generalization, accurate

user motion reproduction, and efficient adaptation to object position changes, with

reduced memory allocation and computational time is introduced in [16].

Figure 1.4: Surgical robot with ability to perform automated lung cancer treatment
[4]

1.2 Research Motivation

To improve robotic manipulators’ service quality, better intelligent control systems

need to be developed for pick-and-handover task. Such system should have the fol-

lowing functions: 1) the robot is aware of the surrounding environment (such as

the positions of objects, targets, and obstacles in the environment) with visual sen-

sors; 2) based on the start point, obstacles, and target position from the gathered
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environment information, perform advanced trajectory/path planning; 3) when the

manipulator encounters its environment or interacts with humans or environment,

it receives force/torque information through various sensors, and performs real-time

adjustments to planned trajectory/path to improve force and position convergence

performance based on the advanced control method.

In response to the complexities inherent in the intelligent control of robotic ma-

nipulators, this thesis endeavors to establish an integrated manipulator system that

incorporates all crucial challenges as distinct signal modules. The primary objective

is to empower this system with the ability to accurately grasp an object and transfer

it to a moving human hand.

1.3 Thesis Contributions and Outline

This thesis first presents the development and integration of an overhead web cam-

era, a qb robotic hand, and a Panda robotic manipulator using the Robot Operating

System (ROS). The system demonstrates human-like identification and grasping of

delicate fruit in an experimental setting, with the robot maintaining awareness of its

2D surrounding environment. A custom YOLOv5 dataset is trained to facilitate hu-

man hand detection and enable successful pick-and-handover maneuvers. The study

also develops a high-accuracy object recognition and localization vision system, with

a depth error of less than 1.5%, using two low-cost webcams and YOLOv5. Further-

more, a novel DMP algorithm is introduced to learn and generate human-like motions

specific to tasks associated with different objects. In the end, a variable impedance

control algorithm is introduced to generate various interaction forces between the

end-effector and the environment. The benefit of this system lies in its modular ap-

proach, affordability, and adaptability. It allows for easy and cost-effective upgrades

or modifications, enhancing the system’s flexibility and operation life. It imitates

human-like motions, enabling delicate handling of various objects, making it adapt-

able for diverse applications. Moreover, its high-accuracy vision system is particularly

noteworthy for its precision despite the use of low-cost equipment.

The intelligent manipulator system created in this study has been published in

the 2022 International Congress of Canadian Mechanical Engineering (CSME). Fur-

thermore, the cost-effective yet high-precision camera vision modules, along with the
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unique difference-based DMPs algorithm crafted for this work, have been accepted by

the 2023 International Federation of Automatic Control (IFAC). The work in com-

pleting a pick-and-handover task, utilizing this specialized vision module and variable

impedance control, was submitted to the Transactions of the Canadian Society for Me-

chanical Engineering (TCSME) in December 2022 and revised in April 2023. Please

read the Appendix A for my publication list.

The contents of this thesis are organized as follows. Chapter 1 highlights the sig-

nificance of intelligent control for robotic manipulators in the fields of manufacturing

and healthcare. Chapter 2 reviews the foundational literature related to pick-and-

handover maneuvers, object detection algorithms, sensors used to get the information

of surrounding environment, Learn from Demonstration (LfD) trajectory planning al-

gorithms, and Variable impedance control. Chapter 3 introduces the general system

integration for an intelligent manipulator system used for pick-and-handover task,

which encompasses a wide range of functions and algorithms, from low-level mo-

tor control algorithms to high-level impedance control algorithms. Chapter 4 delves

into the development of more accurate vision modules for a manipulator’s pick-and-

handover task. The DMP algorithm, which enables the manipulator to effectively

handle objects of varying shapes is introduced in chapter 5. Chapter 6 discusses the

implementation of a variable impedance control method, guiding the manipulator to

interact with the environment using different force levels. Finally, Chapter 7 con-

cludes the work presented in this thesis and proposes several prospective areas for

future research.
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and considerations involved in each stage of the handover process.

Moreover, [5] recommends distinguishing between sensors used for pre-handover

and physical handover phases. The primary purpose of pre-handover sensors is to

relay object information to the manipulator, encompassing Kinect cameras (RGBD),

optical sensors, motion capture systems, and additional cameras. These will be elab-

orated upon in the following section. Conversely, the main aim of physical handover

sensors is to notify the manipulator when to open its end-effector to release the ob-

ject into the human hand, or close it to retrieve the object. Force/torque sensors are

widely employed for this task. [20] completed a manipulator task utilizing an Opti-

Track system as the pre-handover sensor, paired with an ATI Gamma force/torque

sensor mounted at the wrist for the physical handover phase. This setup measures

the interaction force exerted on the object as it transitions from the giver to the

receiver. [21] explores how task-oriented robotic grasping strategies influence the ef-

ficiency and human perception of collaborative tasks, indicating that such strategies

can significantly enhance human-robot interaction by reducing task completion time

and improving the user experience. The main sensor used to collect the data in this

paper is the force/torque sensor mounted on the robot’s wrist, and the IMU.

2.2 Sensors Used for Surrounding Environment Information

To successfully interact with moving objects or a human’s hand, the robot requires the

use of different sensors to continuously track their coordinates in real-time. Popular

choices for such sensors include the Kinect camera, optical sensors, motion capture

systems and cameras [5]. Fig. 2.2 shows the concept of sharing environment between

manipulator and different sensors, cameras [6], RGBD cameras [7], motion capture

systems [8] and optical sensors [9].

RGBD cameras provide both color and depth information, allowing for accurate

tracking of objects and humans in 3D, making them useful for object recognition,

tracking, manipulation, and human-robot interaction [22]. [23] presents a system for

multimodal human-robot interaction, allowing the user to use natural language to ask

the robot to grasp objects detected using a low-cost RGBD camera. [24] describes

the use of an RGBD camera in conducting experiments to integrate human-robot

and human-human object handover interactions for the purpose of developing and
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Cameras can capture high-resolution images with color information, making it eas-

ier to identify and distinguish between different objects based on their visual charac-

teristics, such as shape, color, texture, and size. These advantages also make cameras

useful for gathering information of the surrounding environment, such as detecting

and tracking objects or people. [29] describes the design of a human-robot co-working

scheme using natural language and computer vision, demonstrating the integration

of Google voice recognition and YOLO software with a KINOVA robotic arm for

collaborative robot interaction. [30] presents a vision-based dynamic object recogni-

tion system by using high quality industrial camera for pick-and-place tasks, which

detects landmark features and provides grasping points for randomly located objects,

with evaluations demonstrating accurate detection of location, posture, distance, and

object type, and successful pick-and-place task execution by a robotic manipulator.

In this thesis, cameras were chosen as the sensor to gather information of the

surrounding environment, as they offer many advantages compared to other sensor

setups. One of the most important advantages is that images captured by cameras

can be supplied to most object detection algorithms directly, which is useful for

determining the coordinates of the object and hand during interactions.

2.3 Object Detection Algorithms

Fig. 2.3 shows the concept of object detection algorithm for this thesis. You only look

Once (YOLO) [31], Single-Shot Detector (SSD) [32], Faster Region-Convolutional

Neural Networks (R-CNN) [33], and Mask R-CNN [34] are popular object detection

algorithms used in computer vision and machine learning applications. YOLO and

SSD are fast and simple to implement but have lower accuracy, while Faster R-CNN

and Mask R-CNN offer higher accuracy but are slower and require more computa-

tional resources. YOLO and SSD are better for detecting small objects and have fewer

false positives, while Faster R-CNN and Mask R-CNN can handle more complex ob-

ject shapes and sizes, and can detect object masks. Ultimately, the choice of which

algorithm to use depends on the specific application and the trade-off between speed,

accuracy, and computational resources available. For this thesis, YOLO was chosen

as the object detection algorithm due to its fast, real-time performance, ability to

detect small objects well, and ability to reduce false positives. These characteristics
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the parameters of motion primitives to improve efficiency and robustness in high

dimensional problems. In our approach, we implemented a difference-based DMPs

algorithm to enhance the practicality and safety of the regenerated trajectory.

DMPs have several advantages over IRL, making them suitable for real-world

applications. One of the most significant advantages is their adaptability to changes

in the task and environment. Another advantage is that DMPs can adjust the shape

and timing of trajectories based on feedback from the environment, allowing the robot

to adapt to new situations. A difference-based DMPs was employed as the trajectory

planning algorithm in this thesis.

2.5 Impedance Control

Impedance control is a popular control method for human-robot interaction and has

been applied in numerous studies [41] [42] [43].

It is used in this framework because it is easy to implement, robust, and can

achieve safe, compliant physical interaction with human users. The controller feed-

back is designed in Cartesian space because the position of the objects are given in

Cartesian space. The general control torque is computed as

τ = JT (−Kx̃− B(J q̇)) + C(q̇, q)q̇, (2.1)

where

K =

[

Kt 0

0 Kr

]

, (2.2)

B =

[

Bt 0

0 Br

]

, (2.3)

x̃ ∈ R
6 contains the Cartesian position and orientation errors, J ∈ R

6×k is the Ja-

cobian matrix, Kt, Kr, Bt, Br ∈ R
3×3 are diagonal matrices that contain the transla-

tional and rotational impedance stiffness and damping parameters, respectively.

[44] provides an overview and comparison of key concepts and principles, imple-

mentation strategies, important techniques, and real-world applications related to

the impedance control of robotic manipulation. Several advanced impedance control

methods were summarized in this article, such as force-tracking impedance control,
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hybrid impedance control, robust impedance control, and adaptive impedance con-

trol. Force-tracking impedance control allows a robot to maintain a predetermined

force on an object while also adapting to changes in the object’s position or move-

ment, thereby achieving a balance between stiffness and flexibility in handling tasks

[45]. Hybrid impedance control combines force and position control, allowing a robot

to maintain a specified force along a certain direction (usually normal to the contact

surface) while accurately controlling position in the other directions, thus enabling

effective interaction with both its environment and humans [46]. Robust impedance

control ensures stability and desired dynamic performance when interacting with un-

certain environments, even in the presence of unknown or variable parameters such

as changes in mass, stiffness, or damping [47]. Variable impedance control automati-

cally adjusts the control parameters in real-time to match the changing dynamics of

the environment or task, thereby optimizing performance and interaction with un-

predictable surroundings [48]. In human-robot interaction, the advantage of adaptive

impedance control lies in its ability to safely and efficiently respond to unpredictable

human behavior in real-time, adjusting the robot’s force and motion to maintain

smooth, natural interaction, which enhances user experience, safety, and the overall

effectiveness of the collaborative task. For this reason, variable impedance control

was chosen for this thesis.



Chapter 3

The Integration of Intelligent Manipulator System

This chapter introduces the general system integration for an intelligent manipulator

system, which encompasses a wide range of functions and algorithms, from low-level

motor control algorithms to high-level control algorithms for human-robot interaction

and environment-robot interaction. To verify the feasibility of the system, a vision-

based impedance control method is applied to a 7-degree-of-freedom (7-DOF) Franka

Emika robotic manipulator to complete pick-and-place tasks with human-like grasping

of fruits.

3.1 Background

As robotic manipulators becomes more prevalent in various fields such as manufac-

turing, healthcare, and education, it is crucial to develop a general flowchart that

outlines the different stages of research in the system of intelligent manipulator con-

trol. This flowchart would help researchers to identify the position of their research

in the broader context of the control system, facilitating the integration of their work

into the existing framework. A flowchart for the system of intelligent manipulator

control of this thesis could be structured as shown in Fig. 3.1, which is the summary

of Fig. 3.2, Fig. 3.4, and Fig. 3.5. The first step is to determine the end-effector’s

Cartesian coordinates based on the kinematic and dynamic models of the manipula-

tor. This involves using mathematical models to calculate the position, velocity, and

acceleration of the end-effector based on the joint angles of the manipulator. The

second step is to generate the desired trajectory of the end-effector based on sensory

information, such as the coordinates of the start point, goal point, and obstacles

in between. This involves using algorithms to plan a safe and efficient trajectory

for the manipulator to follow. The third step involves considering the force interac-

tion between the manipulator and its environment, including any human interaction.

This includes developing control algorithms that can allow the end-effector to apply

15
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revolute or prismatic. For a robot with n links, the relationship between the position

of the end-effector and the first joint can be expressed as follows:

T 0
n = T 0

1 T
1
2 T

2
3 · · ·T

n−1
n (3.1)

Where T 0
n is the transformation matrix between the frame of the first joint and

the end-effector, and T n−1
n is the transform matrix between adjacent joints. A trans-

formation matrix is made up of a rotation matrix, Ri−1
i , and a prismatic matrix, P i−1

i

as follow:

T i
i−1 =

[

Ri−1

i P i−1

i

0 1

]

(3.2)

P i−1

i is composed of three prismatic vectors, in which a joint’s frame travelled in

X, Y, and Z direction as shown as follow:

P i
i−1

=









Px

Py

Pz









(3.3)

Ri−1

i is used to express the orientation angle of a frame as shown as follow

Ri
i−1

=
[

x̂i−1
i yi−1

i zi−1
i

]

(3.4)

Where x̂i−1
i , ŷi−1

i , and ẑi−1
i are the projection matrix for the three axes of the

original frame between the rotated frame and the original frame about the X-, Y-,

and Z-axis of the original frame, respectively. To describe the transformation matrix

as easily as possible, a popular convention, Denavit-Hartenberg diagram, will be

introduced.
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i−1Ti =















cos(θi) − sin(θi) cos(αi−1) sin(θi) sin(αi−1) ai−1 cos(Θi)

sin(θi) cos(θi) cos(αi−1) − cos(θi) sin(αi−1) ai−1 sin(θi)

0 sin(αi−1) cos(αi−1) di

0 0 0 1















(3.5)

3.1.2 Trajectory Planning for the End-Effector

Several steps are required to generate a desired trajectory for the end-effector, as

shown in Fig. 3.4.

To begin the process, the path planner must be provided with the Cartesian

coordinate of the end-effector or a particular joint, along with the coordinates of

obstacles marked as No-go areas and the target location. The coordinates of the

joints and end-effector are commonly obtained through the manipulator’s encoder,

while sensors on the manipulator or in the surroundings are usually used to detect

obstacles and target coordinates.

After obtaining this information, the path planner takes charge and generates

a path for the end-effector to follow. This path is based on the sensory data and

considers the position of any obstacle in the workspace. Once the desired path is

generated, it is sent to the trajectory planner for further processing.

The trajectory planner takes the desired path generated by the path planner and

generates a trajectory for the end-effector to follow as an output for this section.

This trajectory is created based on the manipulator’s specific capabilities, such as the

joints’ range of motion, and considers any physical constraints or limitations present.

The trajectory planner ensures that the manipulator moves in a smooth and efficient

manner, while also meets any performance requirements or safety standards.
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3.2 Problem Formulation

To verify the feasibility of the intelligent manipulator system, a vision-based impedance

control method is applied to a 7-DOF Franka Emika robotic manipulator for com-

pleting pick-and-place tasks with human-like grasping maneuvers of fruits.

The general form for a k-DOF serial robotic manipulator can be written as:

M(q)q̈ + C(q̇, q)q̇ +G(q) = τ + τf , (3.6)

where M(q) ∈ R
k×k is the symmetric and positive definite inertia matrix of the

robot, C(q̇, q) ∈ R
k×k is the Coriolis and Centrifugal torque matrix, G(q) ∈ R

k

is the gravity torque matrix, τ ∈ R
k is the control input torque, τf ∈ R

k is the

joint friction torque, and q ∈ R
k, q̇ ∈ R

k, and q̈ ∈ R
k are the joint positions, joint

velocities, and joint accelerations, respectively. The dynamic matrices, M , C, and G

are calculated internally by the FE Panda robot model library and the friction, τf , is

internally compensated for. The simulations in this thesis use the estimated dynamic

parameter values as determined by [49].

The integration of the system components is facilitated through ROS, allowing

for efficient communication and coordination between different hardware and the

controller. YOLOv5 object detection algorithm is trained to detect fruits and used

to capture their locations in the workspace. For the grasping tasks, a qb-SoftHand

robotic hand is employed as the end-effector. The desired experimental results will

demonstrate the successful achievement of autonomous human-like pick-and-place

tasks by the Franka Emika robot. While the primary aim of this thesis is to accomplish

a pick-and-handover task, successfully completing this task will lay a solid foundation

for future work in this area.

3.3 Experiments and Results

The experiments and results used to verify the intelligent manipulator system will be

introduced in this section.
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The training images were uploaded to Roboflow, an online platform used for orga-

nizing, annotating, and augmenting images. The images were annotated by drawing

a bounding box around the object and identifying its class. The annotated images

were randomly split into training, validation, and test datasets. The data was further

augmented by randomly flipping, rotating, and adjusting the brightness and hue of

the images. In total, 1300 images were used for training, 400 images for validation,

and 100 images for an independent test set.

The YOLOv5 model was trained in a Google Colab environment with GPU re-

sources to accelerate the training process. A code snippet from Roboflow was copied

into the Colab environment to download the prepared dataset. Taking the implemen-

tation computer configuration into consideration, the smallest and fastest pre-trained

YOLOv5 model was chosen for fine-tuning.

The YOLOv5 model was repeatedly trained by optimizing key hyperparameters,

such as image size, batch size, and learning rate, and evaluated based on metrics

such as mean Average Precision (mAP@0.5:0.95), precision, and recall. The model

was initially trained with an image size of 416 and gradually increased to 624, 832,

and 1024 with a batch size of 16 for 300 epochs. An increase in (mAP@0.5:0.95) was

observed from 0.652 to 0.835 when the image size was increased from 416 to 1024.

An inference made on a image (A) and a live video (B) for the pick-and-handover

task is shown in Fig. 3.10. The trained weights were downloaded for the deployment

onto the application.

3.3.5 Task Execution

The task execution process is developed in C++ in sequence with the impedance

controller provided by franka. The flowchart for the pick-and-place task is provided

in Fig. 3.11. The controller is executed at 30 Hz. For each subtask, while the end-

effector is moving, the error between the current and desired positions is calculated

until it reaches a specified threshold. Once the error has been calculated according

to the appropriate subtask, the impedance controller is computed, and the control

torque is applied to the robot.

Additionally, counters are implemented in each subtask to check that the error

is within the error threshold for 500 loops. This is to avoid moving on to the next



















Chapter 4

Object Detection and Localization Module

As mentioned earlier, the selected calculation method for the vision modules was

found to be inaccurate, which in turn affected the determination of the target and

obstacle coordinates. This chapter discusses the development of more accurate vision

modules for a manipulator pick-and-handover task. The first part focuses on a 2D

vision module, while the second part introduces a 3D vision module for more complex

environments.

4.1 Background Theory

The dimensional estimations are converted from pixel to millimeter using the formula:

l = nd tan(
θ

N
), (4.1)

where l is the real length of the line in mm, n is line’s length in pixels in the picture,

d is the distance between camera and object, θ is the view angle of the camera, and

N is the diagonal resolution of camera.

Based on the Logitech Pixel-Perfect technology, each pixel in an image represents

the same distance in the real world. As shown in Fig. 4.1, θ
N

represents the angle of

one pixel in the image, and d tan( θ
N
) represents the real length of a pixel. Therefore,

the real length of an object, l, can be calculated by multiplying the number of pixels,

n, by the real length of a pixel.

4.2 Problem Formulation

To verify the accuracy of the vision module and apply it to real-time situations, the

equation will be modified to include the YOLOv5 object detection box in this chapter.

A manipulator pick-and-handover task is performed to demonstrate the feasibility of

36
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Figure 4.2: Schematic dimensions of the top view

Cx = d

(

N1 − (nXmin
+ nXmax

)

2
tan

(

θ

N

))

, (4.2)

Cy = d

(

N2 − (nYmin
+ nYmax

)

2
tan

(

θ

N

))

, (4.3)

where N1 and N2 are the horizontal and vertical dimensions of the camera’s frame in

pixels, nmin and nmax are the pixel values of the detection box edges in X- and Y-axes,

θ is the view angle of the camera, and N is the diagonal dimension of the camera’s

frame in pixels.

The X, Y and Z distances between the detected object’s center and the camera

are represented as:

PO
C =

[

Cx Cy Cz

]

, (4.4)

where Cz is a known constant with a preset height of the location of the object.

To calculate the object’s position in the manipulator’s reference frame, the fol-

lowing equation is applied:

PM
O = PO

C + PC
M , (4.5)

where PM
O is the object’s position in the manipulator’s reference frame and PC

M is

the camera’s position in the manipulator’s reference frame.
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4.3.2 Two-Camera Based 3D Vision Module

The localization of an object in the 3D space can be achieved with two cameras and

the YOLO algorithm. As shown in Fig. 4.3, one camera is placed at the top of the

workspace, and another camera is placed at the side of the workspace. The position

of the side camera is adjusted so that it is at the center of the left boundary of the

top camera’s frame. A YOLO algorithm is deployed on each camera. The YOLO

algorithm can identify the object in the frame, encompass the object with a bounding

box, and return the dimensions and the position of the bounding box in pixels. With

known view angle and position of the cameras, the distance between the center of the

bounding box and the cameras can be determined, so that the position of the object

can be calculated and sent to the robotic arm. Figs. 4.3 and 4.4 show the schematics

of the side and top view of the experimental setup. The distances between the center

Figure 4.3: Schematic of the side view

line in X-, Y-, and Z-axes of the side camera and top camera and object, C∗

•
where
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∗ = T, S for top and side and • = X, Y, Z, can be calculated as

CT
X=

N1 − (nT
Xmin

+ nT
Xmax

)

2
d1 tan(

θ

N
), (4.6)

CT
Y =

N2 − (nT
Ymin

+ nT
Ymax

)

2
d1 tan(

θ

N
), (4.7)

CS
X=

N2 − (nS
Xmin

+ nS
Xmax

)

2
d2 tan(

θ

N
), (4.8)

CS
Z=

N1 − (nS
Zmin

+ nS
Zmax

)

2
d2 tan(

θ

N
), (4.9)

where N1 and N2 are the horizontal and vertical dimensions of the top and side

cameras’ frame in pixels, n∗

•min
and n∗

•max
are the pixel values of the detection box

edges in X-, Y-, and Z-axes in side and top camera‘s frame, θ is the view angle of

the cameras, and N is the diagonal dimension of the top and side cameras’ frame in

pixels. Note that the distance in X-axis can be determined by either camera in (4.6)

and (4.8). The distances between the object and top camera, d1, and side camera, d2

can be calculated as:

d1= H + CS
Z , (4.10)

d2= D + CT
Y . (4.11)

Substituting 4.7 and 4.9 into 4.10 and 4.11, d1 and d2 can be calculated by:

d1= H +
N1 − (nS

Zmin
+ nS

Zmax
)

2
d2 tan(

θ

N
), (4.12)

d2= D +
N2 − (nT

Ymin
+ nT

Ymax
)

2
d1 tan(

θ

N
), (4.13)

where H and D are the distances between two cameras in X and Z directions, respec-

tively. By combining (4.6)–(4.13), the X, Y, and Z distances between the object’s

center and the top camera, PC
O , can be calculated as:

dx=
N1 − (nT

Xmin
+ nT

Xmax
)

2
d1 tan(

θ

N
), (4.14)

dy=
N2 − (nT

Ymin
+ nT

Ymax
)

2
d1 tan(

θ

N
), (4.15)

dz= d1, (4.16)

PC
O =

[

dx, dy, dz

]

. (4.17)
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including the calculated distance between the camera and the object, and the pixel

information of the bounding box.

Table 4.2 shows the measured distance from the object to the camera, the distance

calculated by the vision module in the frame of the camera, the absolute error and

the relative error. The absolute error between measured and calculated distances is

calculated as:

eabsolute = |dmeasured − dcalculated|, (4.19)

The relative error between measured and calculated distances is calculated as:

erelative =
|dmeasured − dcalculated|

dmeasured

× 100%, (4.20)

where eabsolute and erelative are absolute and relative errors between measured and

calculated distances, respectively. dmeasured and dcalculated are measured and calculated

distances from the object to the camera, respectively.

The maximum error is 0.013m, which is suitable for the manipulator pick-and-

handover situation. The error may be caused by: 1) The inaccuracies of the bounding

boxes, which can be improved by using a polygon bounding box during the training

process. 2) The orientation of the camera is not completely parallel with the work

bench.

Location
Pixel Information
(X min, X max, Y min, Y max)

Calculated Distance (m) (X, Y)

1 (568, 640, 414, 480) (0.348, 0.254)
2 (567, 640, 207, 273) (0.347, 0)
3 (568, 640, 0, 67) (0.348, -0.253)
4 (288, 351, 0, 68) (0, -252)
5 (0, 76, 0, 65) (-0.349, -0.254)
6 (0, 74, 207, 273) (-0.347, 0)
7 (0, 75, 416, 480) (-0.347, 0.255)
8 (287, 350, 412, 480) (0.001, 0.252)
9 (288, 350, 207, 274) (0.001, 0)

Table 4.1: Pixel information and calculated distance (m)
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Table 4.3: Object positions with reference to the top camera [x, y, z]
Measured (cm) Calculated (cm) Absolute Error (cm)

[−9.5, 23.2, 93.3] [−9.3, 21.2, 91.9] [0.2, 0.1, 0.4]
[7.5, 32.1, 93.5] [8.0, 34.0, 92.4] [0.5, 1.9, 0.9]
[0.0, 24.1, 93.5] [0.0, 24.7, 92.1] [0.0, 0.6, 1.4]
[0.8, 29.8, 74.4] [0.3, 28.9, 74.2] [0.5, 0.9, 0.2]
[−9.0, 1.9, 74.4] [−8.7, 1.1, 74.1] [0.3, 0.8, 0.3]
[8.5, 1.2, 74.6] [8.0, 1.0, 74.2] [0.5, 0.2, 0.4]

percentage error is under 1.5% in Z-axis, which is suitable for this application. Some

errors may be due to the inaccuracies of the bounding boxes, which can be improved

by additional training of the YOLO algorithm.

4.5 Experiment

Pick-and-handover tasks are executed for two different fruits (orange and apple) in

different locations to test the performance of the developed framework. The unit

of coordinates introduced in this paragraph is meter, and they are considered in

the Cartesian coordination frame of the base link of the robotic manipulator. The

parameters used for the vision system are N1 = 640, N2 = 480, N = 800, and

θ = 78◦. The impedance parameters with proper units are set as Kt = 525N/m,

Kr = 52.5N/m, Bt = 35N · s/m, and Br = 11N · s/m. During the execution of the

code, the robot can perform the following process: i) identify the location of the fruit;

ii) pick up the fruit; iii) handover the fruit to the location of the user’s hand.

Fig. 4.7 and 4.8A show the end-effector in the initial position. Fig. 4.7 and 4.8B

show the end-effector grasping the object. Figs. 4.7 and 4.8C show that the manip-

ulator moves to the suitable moving orientation. Figs. 4.7 and 4.8D show the action

“handover”. The same process is executed to handover an apple where the user’s

hand is in a different location after the orange handover. The same process is done

for the apple pick-and-handover task to validate the performance of the experimental

setup. The videos of the pick-and-handover tasks for orange and apple are available on

YouTube: https://youtu.be/N73M2FvOR84 and https://youtu.be/JFarYWA5sEM.

Fig. 4.9 and Fig. 4.10 show the recorded end-effector’s trajectories for the orange

and apple experimental pick-and-handover tasks, respectively. The trajectory plots
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show that both trials follow similar paths. Comparing to the previous work, the

trajectory of performing task is smoother. However, the turning trajectory can be

curved to reduce the wear and tear of the manipulator and improve the stability of

the pick-and-handover task performance in the future.

Figure 4.9: The plot of end-effector’s position for orange pick-and-handover task
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Figure 4.10: The plot of end-effector’s position for apple pick-and-handover task

4.6 Summary

In this chapter, the development of accurate vision modules for manipulator pick-

and-handover tasks is discussed. A one-camera based 2D vision module is presented,

which uses the YOLOv5 object detection algorithm and a single camera to determine

the 2D position of an object. The 2D vision module is tested in real-time situations

and demonstrates a suitable accuracy for manipulator pick-and-handover tasks. The

maximum error in the 2D vision module is 0.013 m, which is acceptable for most

pick-and-handover tasks.

Additionally, a two-camera based 3D vision module is introduced for more com-

plex environments. The 3D vision module uses two cameras and the YOLO object

detection algorithm to determine the position of an object in 3D space. The experi-

mental results show that the 3D vision module is capable of accurately determining

the object’s position, with small absolute errors in the X, Y, and Z dimensions.

Two fruit pick-and-handover experiments have been successfully carried out to

confirm the efficacy of the 2D vision modules. However, the equal step end-effector

trajectories utilized in this chapter are only appropriate for objects that can be
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grasped from above, such as oranges and apples. They are not well-adapted for

objects necessitating a side grasp, like bottles. To overcome this limitation, a more

complex trajectory planning algorithm will be presented in the following chapter.

An experiment designed to evaluate the performance of the 3D vision module in the

pick-and-handover process will be conducted using this advanced trajectory planning

algorithm in chapter 5.



Chapter 5

Proposed Advanced Trajectory Planning Algorithm

In the chapter 4, it was discussed that picking objects with various shapes, such as

cups and bottles, using the equal step end-effector trajectory developed by a coder

can be challenging. In this chapter, the Difference-based DMPs algorithm will be

introduced, which can effectively handle objects with different shapes.

5.1 DMPs Theory

The aim of DMPs is to build an attractor model with a stable second-order system

[36]. To change the target trajectory, the final state of the system can be changed by

adjusting the attracting point. An n-dimensional DMPs trajectory can be represented

by following second-order ordinary differential equations,

ζv̇= α(β(g − y)− v) + f(t), (5.1)

ζẏ = v, (5.2)

where ζ is a value-control parameter, g ∈ R
n is the goal state, y ∈ R

n current state,

v ∈ R
n is the current velocity, and α, β are constants similar to P and D gains in

the PD controller. The f term is a trajectory learning term which is expressed as

f(t) =

∑N

i=1 Ψi(t)wi
∑N

n=i Ψi(t)wi

, (5.3)

where Ψi are the kernel functions, wi are weight parameters, and N is the number of

kernel functions. Using (5.3), a complex trajectory can be described by changing the

weight of different kernels. Since the trajectory learning term f is highly dependent

on time, it is difficult to directly add other dynamic systems to it or synchronize

multiple DOF trajectories. Therefore, a time-independent term x is used to replace

the time for discrete type DMPs,

ζẋ = −αxx, (5.4)

50
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where αx is a constant. The system will converge to zero for any initial value x0. The

parameter αx will influence the convergence speed of the system. The kernel function

Ψi is constructed as a radial basis function (RBF),

Ψi(x) = exp(−hi(x− ci)
2) = exp(−

1

σ2
i

(x− ci)
2), (5.5)

where σi and ci represent the width and the center location of the kernel function, Ψ,

which are obtained by the demonstration trajectory. To ensure that the forcing term

f converges to zero when the state of the system converges to g, the expression of f

is changed to

f(t) =

∑N

i=1 Ψi(t)wi
∑N

n=i Ψi(t)wi

x(g − y0), (5.6)

where y0 is the initial state. In (5.6), x is used to ensure that f is converging to zero

with decreasing x.

5.2 Problem Formulation

The DMPs algorithm has a primary advantage of generating demonstration-based

trajectories with similar shapes for various start and goal points. This feature makes

it a useful tool for tasks that require the repetition of the same movement pattern,

such as in robotic assembly and manufacturing. However, DMPs may not perform

optimally when there is a considerable difference between the execution start and goal

points and the demonstrated start and goal points for manipulator pick-and-handover

tasks.

Nevertheless, three essential elements are critical in pick-and-handover tasks: 1)

Precise positioning and alignment of the end-effector when interacting with the en-

vironment, 2) Avoiding collisions during the end-effector’s movement, and 3) Guar-

anteeing the robustness and fluency of the generated trajectory. Considering these

challenges, conventional DMPs might struggle to create suitable trajectories. As a re-

sult, this section utilizes difference-based DMPs as the trajectory planning algorithm

to tackle these issues effectively.
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where x̄, x, δDMP , x̂∈ R
6. δDMP is the difference between the start coordinate

and goal coordinate of the demonstration trajectory. x is the current position of the

manipulator, x̄start and x̄end are the start and end positions used to regenerate the

DMPs trajectory, x̂start and x̂end are the start and end position of the demonstrated

trajectory.

5.4 Experiment Result

5.4.1 Hardware Setup

Fig. 5.2 shows the equipment setup for this section in the Advanced Control and

Mechatronics (ACM) Lab at Dalhousie University. As labeled in Fig. 5.2, the system

includes a 7-DOF FE Panda robotic manipulator, one qb-SoftHand end-effector, a

Logitech C920 HD webcam, and a Logitech C930E HD webcam.

Figure 5.2: The equipment setup the Advanced Control and Mechatronics (ACM)
Lab at Dalhousie University
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coordinates of the target object are calculated. The coordinates are input to the

DMPs trajectory planning algorithm to generate a desired trajectory based on the

current end-effector and object positions. A set of actions is prescribed to perform the

pick-and-place task which is shown in the following section. The generated trajectory

is then input to the impedance controller. The desired joint torques are commanded

to the robot and the manipulator’s state is measured by encoders and torque sensors

and sent back to the controller to complete the closed-loop control. Simultaneously,

open and close commands are sent to the qb-SoftHand to allow the hand to execute

the desired actions at the designated times.

5.4.3 Task Execution

The process of the pick-and-place action of the robotic manipulator that is executed

within the DMPs trajectory planning node is introduced in this section. First, the

manipulator is directed to the X-coordinate of the object. It is intentionally not

directed to the Y- and Z-coordinates of the object to avoid collision. Next, the DMPs

trajectory is generated using (5.7) and executed to adjust the robotic arm’s end-

effector to the desired pick-up orientation. Then the manipulator is directed to the

Y- and Z-coordinates of the object. When the object position is reached, the grasping

action will be performed and the object can be picked up by the end-effector. The

end-effector will then move to a suitable moving orientation and the robotic arm

will move to the target place location. Once the target location is reached, the end-

effector will be adjusted again to a suitable place orientation via the generated DMPs

trajectory and drop the object at the desired location. Finally, the manipulator will

return to the starting position and orientation.

5.4.4 Experiment Results

Two objects were considered separately in the experimental testing, an orange and a

bottle. Considering that the orange must be approached from the top and the bottle

must be approached from the side, two demonstration trajectories were recorded to

regenerate different end-effector motions for each object. Because the coordinates of

the object have already been determined at the beginning of the task, the movement

of the robotic arm will not affect the experiment execution. The parameters used
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for regenerating the trajectory in (5.6) are α = 60, β = 15, αx = 1, N = 1000,

τ = 1
Ndemo

, and Ndemo is the number of data points for each demonstration. The

impedance parameters are Kt = 525N/m, Kr = 52.5N/m, Bt = 35N · s/m, and

Br = 11N · s/m. The top camera’s position relative to the manipulator’s base is

PM
C = [0.64, 0.375, 1.065] m. The parameter of cameras are N1 = 640, N2 = 480,

and N = 800.

Figure 5.4: The profile of the end-effector position for orange pick-and-place task

Figs. 5.4 and 5.5 show the recorded end-effector’s trajectories for the orange and

bottle experimental pick-and-place tasks. The trajectories between black dots in Fig.

5.4 and Fig. 5.5 are generated by difference-based DMPs.

Fig. 5.6A shows the end-effector in the initial position. Fig. 5.6B shows the end-

effector grasping the object. Fig. 5.6C shows the manipulator passes an orange to a

human. Fig. 5.6D shows the manipulator finishes the task and returns to the default

position. Fig. 5.7A-D show a similar task with a bottle with a different learned DMPs

trajectory where the manipulator approaches the bottle from the side. The video of

the pick-and-place task is available at https://youtu.be/qlepM2Lrlno.
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6.2 Problem Formulation

Safety is paramount in the field of human-robot interaction. Traditionally, to protect

humans from harm, robotic arms are designed to cease operation abruptly when a

human approaches. However, this method is not suitable for scenarios where the

robot must interact and collaborate with humans, as it interrupts the continuity of

the task.

In these cases, a more complex approach that allows the robot to adapt its behavior

based on the proximity and actions of humans is needed. This calls for the integration

of variable impedance control into the robotic manipulator. This control scheme

enables the robot to determine when it needs to complete tasks with more force or

when a gentler, softer approach is necessary. The integration of such a control system

will ensure a safe and efficient interaction between human and robot. This section

introduces a pick-and-handover experiment to verify the feasibility of the variable

impedance control in this scenario.

6.3 Proposed Algorithm Description

Consider the impedance controller introduced in the previous chapter. The controller

feedback is designed in Cartesian space because the position of the objects are given

in Cartesian space. The control torque is computed as

τ = JT (−Kx̃− B(J q̇)) + C(q̇, q)q̇, (6.1)

where

K =

[

Kt 0

0 Kr

]

, (6.2)

B =

[

Bt 0

0 Br

]

, (6.3)

x̃ ∈ R
6 contains the Cartesian position and orientation errors, J ∈ R

6×k is the Ja-

cobian matrix, {Kt, Kr, Bt, Br} ∈ R
3×3 are diagonal matrices that contain the trans-

lational and rotational impedance stiffness and damping parameters, respectively.
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Since x̃ is assumed to be constant in this section, to generate an interaction force be-

tween the end-effector and the environment varying over time, the impedance stiffness

matrix should be varying over time as a function of time:

Kt =









Ktx

Kty

Ktz









=









fx(t)

fy(t)

fz(t)









, (6.4)

where Ktx, Kty, and Ktz represent the stiffness gains in the X-, Y-, and Z-axes, while

fx(t), fy(t), and fz(t) denote three time-dependent functions that are employed to

adjust the stiffness values dynamically throughout the task execution.

6.4 Experiment Results

This section will showcase a experiment which uses the variable impedance to improve

the efficiency and safety of the manipulator pick-and-handover task.

6.4.1 Task Execution

The process of the pick-and-handover action of the robotic manipulator that is exe-

cuted within the trajectory planning code is introduced in this section. The flowchart

for the pick-and-handover task is provided in Fig. 6.2. At first, the coordinates of the

desired fruit and hand is detected by vision module. Afterwards, the end-effector’s

position is aligned to the object in X-axis to avoid collision. Next, the orientation of

the end-effector is adjusted to a desired pick-up orientation. And then the end-effector

is directed to the Y- and Z-coordinates of the object. The grasping command will be

sent to end-effector when the object position is reached, and the object can be picked

up by the qb-SoftHand. The qb-SoftHand then raises and adjusts the orientation to

avoid collisions with the surface of the box. Once the manipulator is in a collision-free

state, it will then move towards the position of the hand and adjust the orientation

to a desired place once at the same time. The manipulator consistently tracks the

operator’s hand movements, allowing them to receive the objects in various locations.

Once the manipulator reaches the position of the hand and is held above the hand

for a set amount of time, the qb-SoftHand will receive a command to open and place
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Table 6.1: The stiffness for each stage of the proposed pick-and-handover task

Step Description Stage Stiffness

1 Hold at the default position No interaction High

2 Move towards object`s location and adjust
orientation

No interaction High

3 Pick the object, Raise arm and adjust
orientation

Interact with object Medium

4 Move towards hand`s initial location Interact with object Medium

5 Follow the movement of the hand Interact with human Low

6 Move back to default position No interaction High

7 Hold at the default position No interaction High

the fruit in the hand. Afterward, the manipulator will return to its original position

and orientation for further use.

Generally, as shown in Table 6.1, the operation of a robotic manipulator is divided

into three main stages: a) No interaction with either an object or a human; b) Inter-

action with an object; and c) Interaction with a human. These stages utilize varying

degrees of stiffness for the end-effector, depending on the nature of the interaction.

1. When the end-effector is not interacting with any object or human, a high level

of stiffness, denoted as Kt(high), is employed. This is done to minimize the position

tracking error and maintain precise control over the manipulator’s movements.

2. When the end-effector interacts with an object, a medium level of stiffness,

denoted as Kt(med), is used. This setting ensures a balance between control and

flexibility, preventing any potential damage to the object during interaction.

3. Lastly, when the end-effector interacts with a human operator, a low level of

stiffness, denoted as Kt(low), is applied. This softer approach prioritizes the safety

of the human operator, allowing for a gentler interaction and minimizing any risk of

harm.

By tailoring the stiffness according to the interaction, the system can provide an

optimal balance between precision, safety, and efficiency.
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operator, and thus a high stiffness, Kt(high), is employed. The purple plot repre-

sents the trajectory where the end-effector interacts with the object, necessitating a

medium stiffness, Kt(med). Lastly, the green plot illustrates the trajectory where the

end-effector interacts with the human operator, requiring a low stiffness, Kt(low).

Figure 6.4: The end-effector’s actual trajectories with varying stiffness

Fig. 6.5 displays the desired X-, Y-, and Z-coordinate plots alongside the actual

X-, Y-, and Z- coordinate plots. The plots show a slight delay of approximately 0.7

seconds before 75 seconds, which may be caused by various factors such as network la-

tency, processing delays, or hardware limitations. However, after 75 seconds, a larger

delay of around 1.5 seconds is observed, which can be attributed to the continuous

object detection of a moving hand. This process increases the computational load

significantly and can lead to longer processing times, resulting in the observed delay.

To improve the overall performance, optimizing the object detection algorithm could

be considered. The plot indicates that the convergence in X and Y directions is better
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than that in Z direction. This could be due to the weight of the grasping object, as it

can significantly affect the convergence in Z-axis. The weight of the object creates a

gravitational force that needs to be counteracted by the impedance controller, which

can result in less precise control over Z-axis.

Figure 6.5: The end-effector’s actual trajectories vs desired trajectory

6.5 Surface Cleaning Task Using Variable Impedance Control

This section introduces another application of variable impedance control - enabling

the end-effector to apply force to its environment. This feature expands the range of

tasks that the robot can perform. Considering the interaction between the end-effector

and its environment as a process similar to compressing a spring allows for a better

understanding of the forces involved. There are two methods to generate varying

forces: 1) compress the same spring with a longer displacement, or 2) compress the

same displacement using different springs. For manipulator applications, the second

method is more convenient as the end-effector’s trajectory would need to be replanned

if the first method is used. As a result, this section will introduce how to generate

the various force for the interaction between the end-effector and the environment by

using variable impedance control.







69

0 10 20 30 40 50 60
-10

-5

0

5

10

15

20
Force(X)

Force(Y)

Force(Z)

Figure 6.8: The interaction force (N) between the end-effector and environment

Fig. 6.9 illustrates the magnitude of the composition of force during the entire

experiment. Initially, from 0 - 10 seconds, the composition of force decreases as the

gripper moves in the negative Y direction. Between 10 seconds and 48 seconds, the

composition of force exhibits a linear increase. This is because the impedance stiff-

ness of the system also increases linearly during this time period. As the stiffness

of the system increases, the force required to maintain the desired position also in-

creases. After 48 seconds, the composition of force becomes more noisy. This change

in behavior is a result of the gripper making contact with the edge of the box.

Fig. 6.10 presents a comparison between the desired and actual trajectories of the

end-effector, as mapped in X-, Y-, and Z-coordinates. This visualization serves to

confirm the efficacy of the variable impedance control algorithm.

The X-coordinate demonstrates a high degree of convergence, largely attributed

to the absence of force in this specific direction. A slight, consistent discrepancy is

observed in Y direction, indicate the manipulator has to counteract friction during

task execution. Notably, a substantial constant difference between the desired and

actual trajectories is apparent in the Z direction, which can be attributed to the

pressure exerted by the end-effector on the box surface during interaction.



70

0 10 20 30 40 50 60
8

10

12

14

16

18

20

22
Composition of Forces (N)

Figure 6.9: The forces (N) between the end-effector and environment

10 20 30 40 50 60 70

Time(s)

0.2

0.4

0.6

X
 p

o
s
it
io

n
(m

)

XYZ Position

Desired

Actual

10 20 30 40 50 60 70

Time(s)

-0.2

0

0.2

0.4

Y
 p

o
s
it
io

n
(m

)

Desired

Actual

10 20 30 40 50 60 70

Time(s)

0.2

0.3

0.4

Z
 p

o
s
it
io

n
(m

)

Desired

Actual

Figure 6.10: Desired coordinates VS. actual coordinates



71

6.6 Summary

This chapter introduces the utilization of the variable impedance control algorithm

for two cases: 1) complete a object pick-and-handover task with different impedance

stiffness, and 2) generate various interaction forces between the end-effector and the

environment. In future research, machine learning algorithms will be integrated with

the variable impedance control approach to develop more intelligent control methods

to adapt stiffness during task execution.



Chapter 7

Conclusions and Future Work

This chapter provides a summary of the work presented in this thesis and proposes

potential research areas that expand upon the concept of intelligent control for ma-

nipulators.

7.1 Conclusions

The first part of this thesis introduces the design, development, and incorporation of

an advanced intelligent manipulator system for executing pick-and-place tasks em-

ploying a vision-based impedance control method. The intelligent manipulator sys-

tem encompasses several modules, primarily focusing on object detection, trajectory

planning, and the generation of varying interaction forces.

The second area of exploration involves the development of precise 2D and 3D vi-

sion modules. These modules serve as the “eyes” of the manipulator system, allowing

it to identify, localize, and understand objects in its environment. This task is ac-

complished using the YOLOv5 object detection algorithm, known for its remarkable

speed and accuracy. This high-performance deep learning algorithm enables the ma-

nipulator system to recognize various objects in real-time, regardless of their shape,

size, or position.

The third part of the study concentrates on the establishment of an innovative

trajectory planning strategy. The strategy is centered on the application of DMPs,

which allows the manipulator to create and follow paths from a start point to an end

point, replicating human-like motion. This enables the manipulator to not just move

from one point to another, but also to adapt its movements based on the environment

and the task at hand. The use of difference-based DMPs offers improved flexibility

and adaptability in the system’s performance.

Lastly, the research focuses on the application of a variable impedance control

algorithm. This algorithm allows the manipulator to adjust the interaction forces

72
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between its end-effector and the surrounding environment. This is a key feature in

manipulator systems, as it enables the system to handle different objects with varying

degrees of force and precision, thus performing tasks in a safe and efficient manner.

In order to verify the performance of the developed system, a series of experiments

were carried out. The results show that the intelligent manipulator can perform

pick-and-handover tasks with high accuracy and efficiency. Additionally, the system

demonstrated an ability to autonomously execute tasks in a human-like manner,

suggesting that it could smoothly interact with human operators and adapt to changes

in the workspace.

In conclusion, this thesis provides a comprehensive exploration of a vision-based

impedance control manipulator system. The combination of the YOLOv5 object de-

tection algorithm, difference-based DMPs trajectory planning, and variable impedance

control algorithm has resulted in a manipulator system that can perform pick-and-

handover tasks accurately, efficiently, and in a human-like manner.

7.2 Future Work

In the future, various intelligent and cooperative control methods are required for

multi-mobile-manipulator systems to complete different tasks. Some challenges ex-

ist in this field, such as swift shifting of control methods and controller parameters

based on task requirements during execution, separating complex tasks into sub-tasks

while keeping executing efficiency, human detection, and interaction while navigating

and co-manipulating in a dynamic environment. The problems may be magnified

when mobile collaborative robots are employed as service robots. To improve robotic

manipulators’ service quality when working with humans in a complex environment,

novel control systems for robotic manipulators are needed. The objective of the future

research is to propose a novel cooperative control approach and reinforcement learn-

ing (RL) method for collaborative robots to complete complex tasks with multiple

robots in the system and with humans in a dynamic environment.
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