
RLC: A REINFORCEMENT LEARNING BASED CHARGING
SCHEME FOR BATTERY SWAP STATIONS

by

Yutao Xu

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

June 2023

© Copyright by Yutao Xu, 2023



To my parents, for the infinite love and support you have always

provided.

ii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of RLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 BSS Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Current State and Limitations of BSS . . . . . . . . . . . . . . 6
2.1.2 BSS Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 BSS Charging Objectives . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Traditional Algorithms for BSS Charging . . . . . . . . . . . . 8
2.1.5 DRL for BSS Charging . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Value and Policy Based DRL . . . . . . . . . . . . . . . . . . 14
2.4.2 From Actor-Critic Based DRL to Deep Deterministic Policy

Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Integrating Predictive Information into DRL . . . . . . . . . . 16

2.5 Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iii



Chapter 3 Reinforcement Learning Based Battery Charging . . . 19

3.1 System Model and Problem Formulation . . . . . . . . . . . . . . . . 19
3.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Details of RLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Prediction Module . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 MDP for Charging Optimization . . . . . . . . . . . . . . . . 26
3.2.3 Utilizing Reinforcement Learning for Charging Optimization . 36

Chapter 4 Performance Evaluation . . . . . . . . . . . . . . . . . . . 38

4.1 Experimental Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Experiment Configuration . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Prediction Module Evaluation . . . . . . . . . . . . . . . . . . . . . . 42
4.4.1 Total Electricity Load Prediction . . . . . . . . . . . . . . . . 42
4.4.2 Number of Demanded Batteries . . . . . . . . . . . . . . . . . 45
4.4.3 Insights on the Prediction Module . . . . . . . . . . . . . . . . 48

4.5 RLC Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.1 Performance of RLC for BSS with 15 Batteries . . . . . . . . . 49
4.5.2 Performance of RLC for BSS with 10 Batteries . . . . . . . . . 52
4.5.3 Performance of RLC for BSS with 5 Batteries . . . . . . . . . 54
4.5.4 Insights on RLC . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 5 Conclusion and Future Work . . . . . . . . . . . . . . . . 58

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

iv



List of Tables

3.1 Key Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Electricity Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Total Electricity Load Prediction with 96 Look-back Time Step
and 1 Predicted Time Step . . . . . . . . . . . . . . . . . . . . 44

4.3 Total Electricity Load Prediction with 192 Look-back Time Step
and 1 Predicted Time Step . . . . . . . . . . . . . . . . . . . . 44

4.4 Total Electricity Load Prediction with 96 Look-back Time Step
and 24 Predicted Time Step . . . . . . . . . . . . . . . . . . . 45

4.5 Total Electricity Load Prediction with 192 Look-back Time Step
and 24 Predicted Time Step . . . . . . . . . . . . . . . . . . . 45

4.6 Number of Demanded Batteries Prediction with 96 Look-back
Time Step and 1 Predicted Time Step . . . . . . . . . . . . . . 47

4.7 Number of Demanded Batteries Prediction with 192 Look-back
Time Step and 1 Predicted Time Step . . . . . . . . . . . . . . 48

4.8 Number of Demanded Batteries Prediction with 96 Look-back
Time Step and 24 Predicted Time Step . . . . . . . . . . . . . 48

4.9 Number of Demanded Batteries Prediction with 192 Look-back
Time Step and 24 Predicted Time Step . . . . . . . . . . . . . 49

v



List of Figures

2.1 Architecture of Battery Swap Station . . . . . . . . . . . . . . 7

2.2 Architecture of RNN . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Architecture of LSTM . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Architecture of GRU . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Workflow of RLC . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Workflow of Prediction Module . . . . . . . . . . . . . . . . . 25

4.1 24-hour Electricity Load Curve with Prediction Results . . . . 42

4.2 One Week Electricity Load Curve with Prediction Results . . 43

4.3 24-hour Number of Demanded Batteries Curve with Prediction
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 One week Number of Demanded Batteries Curve with Predic-
tion Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Electricity Cost for BSS with 15 Batteries . . . . . . . . . . . 50

4.6 Average SOC Discreacy Rate for BSS with 15 Batteries . . . . 51

4.7 Battery Service Rate for BSS with 15 Batteries . . . . . . . . 51

4.8 Electricity Cost for BSS with 10 Batteries . . . . . . . . . . . 52

4.9 Average SOC Discrepancy Rate for BSS with 10 Batteries . . 53

4.10 Battery Service Rate for BSS with 10 Batteries . . . . . . . . 53

4.11 Electricity Cost for BSS with 5 Batteries . . . . . . . . . . . . 54

4.12 Average SOC Discrepancy Rate for BSS with 5 Batteries . . . 55

4.13 Battery Service Rate for BSS with 5 Batteries . . . . . . . . . 55

vi



Abstract

Battery Swapping Station (BSS) is emerging as a promising solution to the prevalent

issue of range anxiety among Electric Vehicle (EV) users. Typically, BSS replaces the

drained battery of an incoming EV with a fully charged one. In this thesis, we propose

a cutting-edge battery charging and swapping approach for BSS, termed Reinforce-

ment Learning-based Charging (RLC). This innovative strategy enables the provision

of partially charged batteries to EVs with lower energy requirements while simulta-

neously minimizing the overall energy expenditure of BSS. Technically, RLC employs

an ensemble learning-based forecasting module to predict the electricity demand per-

taining to EV battery swapping. Furthermore, it utilizes Deep Deterministic Policy

Gradient (DDPG) to strategize the battery charging process within BSS. Specifically,

the predicted electricity demand is fed into the DDPG agent, enabling it to adapt to

the changing patterns of EV arrivals. Our experimental results indicate that RLC

outperforms the baseline charging schemes in terms of overall electricity cost, aver-

age SOC discrepancy rate, and battery service rate. Our future work will focus on

incorporating more real-life elements, such as dynamic electricity price and battery

degradation, to further refine the proposed learning-based charging scheme.
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Chapter 1

Introduction

1.1 Background and Motivation

Over the past decade, the electric vehicle (EV) market has experienced an extraor-

dinary growth trajectory. In 2021 alone, global EV sales reached a record high of

6.6 million units, resulting in a twofold increase from the previous year. This is a

significant leap from the modest sales of 120,000 units in 2012 [1]. Such a robust surge

in EV adoption has been primarily catalyzed by various government initiatives en-

dorsing the transition towards cleaner, more sustainable modes of transportation [2].

Nevertheless, despite the amazing progress, concerns over extended charging periods,

which often lead to range anxiety, still pose a serious barrier for many prospective

EV owners [3].

In response to this challenge, Battery Swap Station (BSS) has emerged as a

promising solution. These stations provide a quicker alternative to conventional

charging methods, enabling fast and e�cient battery replacements. Consequently,

BSS has proven e↵ective in alleviating charging anxiety among EV owners [4]. More-

over, since BSS handles battery charging and storage, it can implement an e↵ective

charging scheme to avoid peak hours and reduce charging costs, ultimately playing a

significant role in peak shaving for the power grid [5].

As the reliance on BSS continues to grow, addressing the complexities associ-

ated with charging infrastructure management becomes increasingly crucial [6]. It is

imperative to develop charging schemes that are both cost-e↵ective and sustainable

since they directly impact operational expenses. By dynamically adjusting the charg-

ing rates for individual batteries, BSS operators can optimize energy consumption,

thereby reducing costs and improving e�ciency. Considering the high power con-

sumption of BSS, their electricity usage patterns can significantly a↵ect the overall

load profile of the grid. Substantial fluctuations in electricity demand can trigger

voltage instability, accelerate the wear and tear of grid infrastructure, and in extreme

1



2

scenarios, result in blackouts. Therefore, optimizing electricity usage in BSS can help

maintain grid stability by smoothing the load profile and preventing grid overloading

[7][4].

EV charging schemes in BSS typically fall into two categories: 1) real-time and 2)

pre-determined algorithms. Pre-determined algorithms operate under the assumption

that BSS operators have comprehensive knowledge of future vehicle arrival schedules.

However, this ideal assumption is not valid in most practical applications, except for

cases similar to electric buses that operate on fixed schedules. Conversely, real-time

algorithms do not rely on prior knowledge of future information and operate conser-

vatively, providing a worst-case performance guarantee for all potential future EV

arrivals. However, several real-world studies have demonstrated that energy demands

for EVs, as well as their arrival patterns, often exhibit a specific pattern. This is

particularly evident when considering the phenomena of peak and o↵-peak hours,

often associated with workplace charging [8][9]. For instance, peak hours typically

occur in the early morning and late afternoon, while o↵-peak hours generally take

place during the night. Therefore, integrating predictive information as features in

a Markov Decision Process (MDP) state involved in real-time algorithms could yield

substantial benefits. In a real world scenario, EVs arrive at BSS dynamically, and

each EV’s energy demand is addressed as much as possible. Upon arrival, the BSS

operator is informed of an EV’s profile. Di↵erent EVs have distinct arrival times and

profiles. When determining the charging rate for each battery in a given time slot, the

BSS operator needs to accurately predict the arrival times and profiles of future EVs.

If we anticipate the arrival of more EVs with high energy consumption, the operator

should proactively charge the available batteries at higher rates, ensuring a su�cient

SOC to meet the incoming demand. Conversely, if the prediction indicates that only

a few EVs with low energy demands will arrive in the near future, the operator may

consider delaying the charging of some batteries. This approach combines the adapt-

ability of real-time algorithms with valuable insights derived from predictive models,

potentially leading to more e↵ective and e�cient EV charging strategies.

Devising an e�cient charging scheme to manage battery charging speed is a com-

plex problem. While existing studies primarily focus on swapping fully charged bat-

teries with EVs, this thesis explores the possibility of providing non-fully charged



3

batteries to EVs as long as the batteries can meet the EVs’ energy requirements.

With this alternative approach, BSS could o↵er a more personalized and e�cient

charging service, catering to individual EVs’ energy needs and minimizing the overall

energy cost.

1.2 Overview of RLC

The objective of this thesis is to develop a charging scheme to control charging speeds

in BSS and minimize the cost of BSS while satisfying EV energy demand. We propose

an innovative charging scheme for BSS called Reinforcement Learning-based Charging

(RLC). This framework consists of two primary components: a prediction module and

a charging strategy optimization mechanism.

In the prediction module, we utilize an ensemble method that combines the capa-

bilities of Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and

Gate Recurrent Unit (GRU) models. By harnessing the strengths of these models,

the ensemble learning technique provides robust and accurate predictions. LSTM,

RNN, and GRU are neural network architectures specifically designed for dealing

with sequential data, which makes them ideal for prediction tasks [10]. In a BSS,

predicting future demands involves understanding temporal patterns, including an-

ticipate demand and e↵ectively schedule battery charging, which these models excel

at.

For charging strategy optimization, we employ the Deep Deterministic Policy Gra-

dient (DDPG) algorithm, a Deep Reinforcement Learning (DRL) algorithm. This

algorithm is specifically designed to minimize charging costs while addressing the en-

ergy needs of EVs, generating continuous actions that correspond to specific charging

speeds for each battery. Despite the challenges posed by large-scale state and action

spaces and the utilization of real-time data, the DDPG algorithm o↵ers a scalable

and e�cient solution for optimizing BSS charging strategies.

In the context of the Markov Decision chain, the ensemble method for prediction

serves as a feature extraction mechanism. By incorporating predicted data on EV

arrivals and battery swap loads into the state representation, the DDPG algorithm

can generate well-informed and optimal charging strategies. This synergy between

the prediction module and the reinforcement learning agent empowers the framework
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to adapt to fluctuations, such as variations in car arrival patterns and EV energy

demand. By updating the model’s understanding of the environment and e↵ectively

responding to fresh data, the framework provides a dynamic and adaptive solution

for optimizing BSS charging strategies.

In this thesis, we propose a strategy to regulate charging rates within a BSS with

the goal of reducing operational expenses while satisfying EV energy requests. This

strategy involves the application of an RLC scheme. Initially, we formulate the rele-

vant charging optimization problem. Following that, we utilize a predictive model to

anticipate both the total EV electricity load and the number of EV batteries required.

Subsequently, we extract key parameters from the EV, BSS, and grid, constructing

a vector that succinctly represents the current state of the BSS while incorporating

the predicted information. In the next phase, we design a DDPG network that takes

the BSS state vector as input and generates an optimal charging policy. We then

devise a reward function to facilitate the learning process of our model. After com-

pleting these steps, we train the DDPG network to adopt a policy that optimizes

the reward function, leading to an enhancement in the overall performance of the

BSS. Finally, we evaluate the e�ciency of our proposed RLC scheme and compare it

against existing solutions using real-world BSS data.

The main contributions of this thesis are as follows:

• We propose a novel RLC scheme to optimize charging rates in a BSS, aiming

to reduce operational costs while satisfying EV energy demand. Our approach

incorporates short-term and long-term predictions to forecast the number of EV

batteries demanded and the total EV electricity load.

• The predictive data is integrated into a DRL framework, serving as the founda-

tion for the decision-making process. By utilizing a DDPG network, our scheme

dynamically determines the optimal charging policy. This policy is trained to

maximize a carefully designed reward function, which significantly enhances

BSS performance.

• In contrast to conventional methods, our scheme explores the possibility of

providing EVs with non-fully charged batteries, as long as these batteries can

fulfill the energy requirements of the EVs. This approach introduces a significant
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paradigm shift in BSS operations, o↵ering potential cost and energy savings.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 provides a review of related works on BSS charging optimization, en-

semble learning techniques, and DRL algorithms.

Chapter 3 introduces the DDPG algorithm for generating optimal charging strate-

gies in BSSs. We explain the fundamentals of the algorithm and describe the architec-

ture of the actor and critic networks. Additionally, we present the proposed ensemble

method that integrates LSTM, RNN, and GRU models for predicting EV arrivals

and EV swapping load at BSS. We also outline the process of incorporating predicted

information into the Markov Decision Process (MDP) framework.

In Chapter 4, we present the experimental setup, describe the dataset used, and

define the evaluation metrics used to assess the performance of the proposed approach.

We provide a detailed analysis of the results obtained from the ensemble method for

predicted information and the DDPG algorithm for charging scheme optimization.

Furthermore, we compare the proposed approach with existing methods.

The thesis concludes in Chapter 5 with the Conclusion and Future Work section,

where we summarize the main findings and contributions of this research. We discuss

the limitations of the current work and propose potential avenues for future research

to further advance the state of the art in BSS management and optimization.



Chapter 2

Related Work

2.1 BSS Charging

2.1.1 Current State and Limitations of BSS

At present, there are two primary methods for refueling electric vehicles (EVs): tra-

ditional charging and battery swapping. Traditional charging, which necessitates an

EV being connected to a power source for an extended period, is well-established,

with charging stations progressively expanding across the globe. However, battery

swapping, a technique that rapidly exchanges an EV’s depleted battery with a fully

charged one, shows considerable promise for the future due to its distinct advantages.

Battery swapping stations can accomplish a full “”recharge” in just a few minutes,

dramatically reducing the wait time compared to traditional charging methods. This

rapid turnaround is particularly crucial for commercial operations where vehicle down-

time translates into financial losses [6]. Furthermore, battery swapping enables the

centralization of charging, which could lead to more e�cient power management and

alleviate pressure on the power grid during peak demand periods [5].

Despite these advantages, battery swapping has its share of limitations. The de-

ployment of a battery swapping station entails high capital and operational costs,

which include expenses for real estate, battery inventory, and advanced swapping

equipment. The rapidly evolving pace of battery technology presents another chal-

lenge. As newer, more e�cient battery technologies continually emerge, battery swap-

ping stations must shoulder the additional financial burden of perpetually updating

their battery supplies to maintain e�ciency and relevance [6].

Notwithstanding these challenges, certain companies recognize the substantial po-

tential in battery swapping. Nio, a Chinese EV manufacturer, serves as a prime

example [11]. The company has made significant investments in battery swapping

technology, establishing over hundreds of such stations throughout China. These

6



7

stations o↵er customers the option to swap their batteries in minutes, providing a

unique advantage for their EVs. Nio is not confining its battery swapping technology

to China alone. In 2022, the company ventured into the European market, indicating

its intention to globally propagate this technology. Despite existing challenges, these

developments underscore the promise that battery swapping holds for the future of

EV refueling.

2.1.2 BSS Structure

Figure 2.1: Architecture of Battery Swap Station

As depicted in Fig. 2.1, a BSS facilitates the exchange of depleted batteries in

EVs for charged ones based on users’ needs. The BSS comprises battery storage and

charging facilities, an automated swapping mechanism, and an information aggrega-

tor. The storage and charging facilities maintain a battery inventory and multiple

charging stations for recharging depleted batteries, preparing them for future swaps.

The BSS features a fixed number of charging ports, each accommodating a single

battery. When an EV arrives at the BSS, it requests a battery with a specific en-

ergy capacity, prompting the information aggregator to select an appropriate battery

from the inventory and direct it through the swapping mechanism. The BSS informa-

tion aggregator oversees all BSS operations, including battery inventory management,

charging schedule coordination, and communication with the electrical grid [12].
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2.1.3 BSS Charging Objectives

In recent years, there has been a growing body of research dedicated to optimizing

charging strategies for BSS, with various objectives. These objectives can be broadly

categorized into three main aspects: economic-related optimization, service quality-

related optimization, and grid-related optimization [4]. Each of these aspects focuses

on specific challenges and goals in BSS management and operation.

Economic-related optimization aims to minimize the operational costs associated

with battery charging and replacement at BSSs. Approaches in this category strive

to optimize battery charging and discharging schedules and determine the optimal

number of batteries to minimize daily operational costs. These strategies consider

factors such as electricity prices, demand charges, and battery degradation to find

cost-e↵ective charging schemes.

Service quality-related optimization focuses on enhancing the user experience by

minimizing waiting times, ensuring battery availability, and meeting the energy de-

mand of EVs. Various algorithms and techniques have been proposed to strike a

balance between service quality and operational costs. These approaches take into

account factors such as battery swap waiting times, battery availability, and EV en-

ergy requirements to provide e�cient and reliable charging services.

Grid-related optimization centers around mitigating the impact of BSS operations

on the power grid. This aspect involves optimizing charging and discharging schedules

to minimize peak loads, flatten the load profile, and e↵ectively utilize renewable en-

ergy sources. By strategically managing the charging process, BSSs can help stabilize

the grid, reduce grid congestion, and maximize the utilization of renewable energy.

2.1.4 Traditional Algorithms for BSS Charging

Current research on BSS charging strategy optimization encompasses various ap-

proaches, with mixed-integer linear programming (MILP) and genetic algorithms

(GA) being commonly employed. In [13], the authors focus on minimizing charging

costs and energy loss while considering constraints such as bus voltage deviation, net-

work power flow, and maximum power consumption. They propose a hybrid method

that combines GA and particle swarm optimization (PSO). Similarly, in [14], the

author formulates optimization objectives to maximize the BSS’s battery stock level
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and minimize average charging damage. A comparative analysis of GA, di↵erential

evolution (DE), and PSO algorithms is conducted to solve the optimization problem.

For service quality-related optimization, in [15], the authors investigate a realistic

BSS framework that addresses EV battery charging time and driving distance. Their

objective is to satisfy customer demands with a quality-of-service (QoS) guarantee

while considering dynamic energy pricing and varying EV arrival rates with di↵erent

battery states-of-charge. They propose solutions for both online optimal BSS control

and o✏ine optimal BSS design, striking a balance between charging flexibility and

battery costs. Additionally, in [16], the author utilizes a day-ahead operation method

with MILP to maximize QoS scores.

While the previously mentioned works focus on QoS-related or grid-related objec-

tives, we now turn to studies that emphasize economic-related objectives. In [17], the

author aims to design a charging schema that minimizes operational costs by develop-

ing an integrated algorithm that combines the advantages of GA, DE, and PSO. The

use of MILP to solve the mathematical model is a common approach. Going back

to 2014, in [18], the authors develop a deterministic integer programming model to

optimize the operations of battery exchange stations with the objective of minimizing

operation costs. The model takes into account factors such as vehicle-to-grid technol-

ogy, dependencies on power and transportation networks, and interactions between

di↵erent exchange stations. An MILP approach is employed to solve the formulated

optimization problem. In the same year, in [19], the authors propose an optimal

scheduling model under time-of-use (TOU) electricity pricing. They utilize MILP to

solve the formulated optimization problem. In 2019, in [20], the author develops a

mathematical model for uncertainty-constrained BSS optimal operation. The model

addresses random customer demands for fully charged batteries and leverages avail-

able batteries to reduce operation costs through demand shifting and energy sellback,

while considering battery degradation for practicality.

2.1.5 DRL for BSS Charging

DRL has recently emerged as a promising approach for optimizing BSS charging

schemes [21]. By combining deep learning with reinforcement learning, DRL facil-

itates the learning of optimal decision-making strategies in complex environments.
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Unlike traditional optimization methods such as MILP and GA, DRL can adapt to

dynamic changes and uncertainties in BSS operations, such as varying energy de-

mands from di↵erent EVs and fluctuating electricity prices, making it an attractive

choice for managing battery swapping and charging processes in real-world scenarios.

Although DRL has been widely applied in various domains, its application in BSS

charging scheme optimization is still in its early stages.

In 2019, a reinforcement learning-based charging model was developed to optimize

battery swapping station operations and maximize profit [22]. This model employed

a Q-learning algorithm that considered trade-o↵s and adapted to the varying rates

of incoming vehicles. In 2020, the authors of [23] utilized DRL and proposed a

BSS model that determined the optimal real-time charge/discharge power of charg-

ing piles to minimize operating costs. By implementing the DDPG algorithm, the

model accounted for the stochastic operation of electric buses and the uncertainty of

electricity prices, resulting in lower operating costs compared to existing benchmark

control methods. In 2021, in [24], the authors modeled an individual car-sharing BSS

as a coupled queuing network and implemented a Deep Q-Network (DQN) to control

the charging operation of replaced batteries. This approach led to higher profits than

the baseline scheme. In 2022, an Automated Guided Vehicle scenario was consid-

ered [25], involving automated guided vehicles commonly used in material handling

systems with internally mounted battery packs. The proposed policy used a Markov

decision process framework, and a DQN was adopted to solve the problem.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine learning that enables an agent

to achieve its goals by interacting with its environment. In each interaction cycle,

the agent selects an action based on the current state of the environment, executes

the action, and receives a corresponding response from the environment, including

feedback in the form of rewards and the subsequent state. This iterative process aims

to maximize the expected cumulative rewards across multiple interaction cycles [26].

In certain cases where the agent’s environment is fully known, the agent may not

need to interact with the environment to gather data. This situation is typical in a

well-defined grid world. However, this approach is not realistic for most scenarios.
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In real-world reinforcement learning situations, particularly in complex physical envi-

ronments, calculating state transition probabilities for actions in the Markov decision

process becomes challenging. Therefore, the agent must interact with the environment

and learn from the collected data, resulting in a model-free reinforcement learning ap-

proach. Value-based RL methods are a type of model-free RL that focus on learning

an optimal value function. This value function estimates the expected future rewards

for each state-action pair. The primary objective of these approaches is to determine

the best actions to execute in each state by assessing their anticipated rewards [27].

By optimizing the value function, an agent can improve its decision-making process

and enhance its overall performance within the environment.

2.2.1 Q-learning

Q-learning is a widely-used value-based RL algorithm. It updates the Q-values using

the Bellman equation through iterations, combining the immediate reward with the

discounted maximum Q-value for the subsequent state [28]. This iterative approach

enables the agent to explore the environment randomly and gradually learn the opti-

mal action-value function. As a result, the agent becomes well-trained and can make

better decisions over time.

2.3 Deep Learning

Deep Learning, which is a distinct subset of Machine Learning, heavily relies on

artificial neural networks for its operations, and often is referred to as deep neural

networks. The term “deep” in Deep Learning signifies the inclusion of multiple hidden

layers within the neural networks. Networks equipped with a significant number of

these hidden layers are commonly referred to as “deep” [29].

In this thesis, we utilize three distinct Deep Learning models - LSTM, RNN, and

GRU - to form the foundation of our ensemble learning strategy. By harnessing the

unique advantages inherent in each of these Deep Learning architectures, our goal is

to develop an ensemble model that not only achieves high predictive accuracy but

also exhibits robustness in handling time series forecasting.
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2.3.1 RNN

Figure 2.2: Architecture of RNN

RNN is a class of neural networks specifically designed to recognize patterns in

sequential data such as text, genomes, handwriting, or time series data [30]. The

architecture of RNN, represented in Fig. 2.2, is characterized by the presence of

loops, enabling information to persist from one step in the sequence to the next -

a feature that gives the network its “recurrent” attribute. This feature makes RNN

particularly apt for tasks where the sequence of elements matters, such as language

modeling or time series prediction. However, RNN have a noted limitation - their

inability to handle long-term dependencies due to the “vanishing gradient” problem

[31]. This issue arises during the training of an RNN using gradient-based methods

when the gradient signal may become vanishingly small, resulting in slow learning or

a complete cessation of learning.

2.3.2 LSTM

LSTM networks, illustrated in Fig. 2.3, are a subtype of RNNs, designed specifi-

cally to address the vanishing gradient problem [32]. They manage this through the

implementation of a sophisticated cell state capable of retaining information in mem-

ory over extended periods. This feature makes LSTM suitable for tasks involving

sequences with long-term dependencies. Each LSTM cell consists of three gates: an
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Figure 2.3: Architecture of LSTM

input gate, a forget gate, and an output gate. These gates regulate the addition of

new information to the cell state, the discarding of old information, and the determi-

nation of the current output based on the cell state. This intricate gating mechanism

enables LSTM to learn longer sequences and maintain an extended memory, which is

an attribute not found in vanilla RNN.

2.3.3 GRU

Figure 2.4: Architecture of GRU

GRU, depicted in Fig. 2.4, is designed as a simpler and more computationally
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e�cient alternative to LSTM [33]. Similar to LSTM, GRU is also a variant of RNN

that e↵ectively addresses the vanishing gradient problem and is proficient at handling

longer sequences.

A GRU cell consists of two gates: a reset gate and an update gate. The reset

gate determines how to combine the new input with the previous memory, while the

update gate defines how much of the previous memory to retain. While GRU has

fewer parameters and thus are quicker and easier to compute, they may not perform

as e↵ectively as LSTM on tasks that require more complex memory manipulation.

However, the choice between LSTM and GRU can vary depending on the specific

requirements and constraints of a given task.

2.4 Deep Reinforcement Learning

In traditional RL, state-action pairs are typically stored in a mapping structure,

where each action corresponds to the reward that can be obtained in the current

state. However, this approach is only suitable for environments and actions with

limited dimensions and discrete values. As the dimensions of the environment and

actions increase, the number of possible states grows exponentially. Furthermore, in

cases where the environment and actions are continuous, the number of states can

become virtually infinite. This poses a significant challenge for limited computational

resources to handle such scenarios.

To address this challenge, DRL has been developed. DRL algorithms leverage

the power of deep neural networks as function approximators for value functions or

policies. By using deep neural networks, DRL can e↵ectively capture and represent

the complex relationships between states, actions, and rewards. This capability allows

DRL to be applied to a wider range of problems, including those involving high-

dimensional and continuous environments and actions. In contrast to traditional RL

methods, which would struggle with such cases, DRL algorithms can handle these

complex and large-scale problems more e�ciently [34].

2.4.1 Value and Policy Based DRL

Value-based deep reinforcement learning methods are built on the foundation of DRL

and primarily focus on estimating the value function, which represents the expected
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cumulative reward for taking an action in a given state. By utilizing deep neural

networks to approximate the value function, these methods can e↵ectively handle

high-dimensional and continuous state and action spaces.

One well-known value-based DRL algorithm is the DQN, an extension of the Q-

Learning algorithm. DQN employs a deep neural network as a function approximator

for the Q-function, which represents the expected cumulative reward when taking an

action in a state and following the optimal policy. The goal of the DQN algorithm

is to minimize the loss function, defined as the mean squared error between the

predicted Q-value and the target Q-value. Through iterative updates of the neural

network’s parameters to minimize this loss function, DQN learns to approximate

the optimal Q-function, enabling it to discover e↵ective policies for problem-solving.

To address instability and divergence issues in deep reinforcement learning, DQN

introduces essential techniques such as Experience Replay and Target Network [35].

Experience Replay involves storing the agent’s experiences in a replay bu↵er and

randomly sampling mini-batches of experiences from the bu↵er to update the neural

network during training. This method helps break correlations between consecutive

samples, improving the stability of the learning process. The Target Network is a

separate neural network with the same architecture as the original DQN network.

It is used to compute the target Q-values during training, and its parameters are

periodically updated with those of the original network. This technique mitigates the

issue of moving target Q-values, which can lead to an unstable and divergent learning

process.

On the other hand, policy-based deep reinforcement learning methods directly

learn the optimal policy, mapping states to actions, instead of approximating the

value function like value-based methods [36]. In policy-based DRL, a deep neural

network typically parameterizes the policy. The policy network takes the current

state as input and generates probabilities for selecting each action or the mean and

standard deviation of a continuous action distribution. The objective is to optimize

the policy network’s parameters to maximize the expected cumulative reward.
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2.4.2 From Actor-Critic Based DRL to Deep Deterministic Policy

Gradient

The Actor-Critic approach is a fusion of policy-based and value-based methods within

the realm of DRL, combining two components: the actor and the critic [36]. The

actor interacts with the environment and selects actions based on the current policy.

The policy is trained using the policy gradient method, guided by the value function

provided by the critic. On the other hand, the critic approximates the value function

and evaluates the actor’s action choices. By providing feedback to the actor through

its interaction with the environment, the critic helps fine-tune the policy to maximize

the expected cumulative reward. The Actor-Critic system leverages the strengths of

both policy-based and value-based methods, e↵ectively handling the complexities of

learning optimal policies in complex RL problems. It combines the stability of direct

policy learning from policy-based methods with the value function estimation from

value-based methods for policy updates.

DDPG algorithm [37] enhances the conventional actor-critic approach used in rein-

forcement learning. Traditional policy-based methods typically result in a stochastic

policy and are utilized in online learning scenarios, leading to low sample e�ciency.

Contrarily, DQN focuses on directly estimating Q-values, excels in discrete action

spaces, and is implemented as an o✏ine algorithm. Nevertheless, DQN encounters

di�culties dealing with continuous action spaces. DDPG was conceived to address

these specific issues concurrently found in both policy-based and value-based meth-

ods. DDPG employs a deterministic policy, contrary to the traditional stochastic

ones, and is designed to optimize the Q-value using a gradient ascent process. This

amalgamation makes DDPG a powerful tool for dealing with continuous action spaces

and promoting sample e�ciency.

2.4.3 Integrating Predictive Information into DRL

Existing studies, such as [38] and [39], have demonstrated the benefits of integrat-

ing predictive information into DRL to enhance performance and robustness of re-

inforcement learning algorithms. By incorporating predictive information directly

into the input features, DRL algorithms can leverage this information during the

decision-making process. This approach has been widely adopted in various domains,
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including finance and energy sectors.

In [38], the authors propose a predictive energy management strategy for paral-

lel hybrid electric vehicles (HEVs) using velocity prediction and RL. The approach

involves modeling the HEV, defining a cost function, and employing fuzzy encoding

and nearest neighbor techniques for velocity prediction. The strategy also utilizes a

finite-state Markov chain to learn power demand transition probabilities and deter-

mine optimal control behaviors and power distribution between energy sources. The

look-ahead energy management strategy is compared to shortsighted and dynamic

programming-based methods, and the results show that the RL-optimized control

e↵ectively reduces fuel consumption and computational time. In [39], the authors

present a deep RL architecture for automating dynamic portfolio optimization. The

proposed model incorporates an infused prediction module, a generative adversar-

ial data augmentation module, and a behavior cloning module. It works with both

on-policy and o↵-policy RL algorithms and interacts with a back-testing and exe-

cution engine in real time. The infused prediction module helps capture predictive

information, enhancing the model’s ability to make informed decisions for portfolio

optimization.

2.5 Ensemble Learning

Time series forecasting has extensive applications in real-world scenarios, including

energy load prediction [40][41] and EV arrival pattern prediction [42]. As machine

learning continues to advance, deep learning, which is a subset of machine learning,

is gaining increasing popularity in the field of time series forecasting. Existing re-

search highlights the e↵ectiveness of specific deep learning algorithms for time series

forecasting, such as RNN [43], LSTM networks [44], and GRU [45]. These models

have demonstrated their ability to identify complex patterns and trends in time series

data.

Ensemble learning is an approach that improves the overall accuracy of deep

learning models by integrating the strengths of individual models and mitigating

their weaknesses [46]. This method combines the predictions of multiple base models

to generate robust and accurate predictions. The underlying principle of ensemble

learning is that a diverse group of models, each with unique strengths, can collectively
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outperform any individual model. Ensemble learning techniques, such as averaging

and weighted averaging, are used to combine the predictions from the base models

[47].

This chapter presents the background of BSS charging. Additionally, we select

three foundational models - LSTM, RNN, and GRU - for our ensemble learning

strategy. The decision to employ this strategy, rather than depending on a single

model, is influenced by the principle of diversity in model building, a concept explored

by Kuncheva [48]. This method acknowledges each model’s unique strengths and

weaknesses, understanding that their integration can result in a prediction system

that is both comprehensive and robust. Moreover, ensemble learning adds a layer

of robustness. By aggregating the predictions of multiple models, we can mitigate

the e↵ect of shortcomings from any individual model on the overall prediction [46].

Thus, if one model inaccurately predicts a particular trend, others in the ensemble

may compensate for it, leading to a collectively more precise prediction. For the RL

agent, we choose DDPG due to its successful merging of both actor and critic network

advantages. In the following chapter, we will delve into the specifics of our proposed

BSS charging schemes.



Chapter 3

Reinforcement Learning Based Battery Charging

3.1 System Model and Problem Formulation

In this section, we first outline the underlying assumptions of our study. Following

this, we present the problem formulation for our BSS optimization research. Key

notations used throughout this paper are summarized in Table 3.1. Detailed expla-

nations of these notations will be provided in the subsequent sections of this paper.

Table 3.1: Key Notations

Notation Description
S State set
s State
t Time slot
dt Number of demanded batteries
et Battery swapping load

d̂t Predicted number of demanded batteries
êtotal
t Predicted total battery swapping load

SOC
BSS
i,t Charging levels of ith batteries in BSS

SOC
EV
j,t Charging levels of jth incoming EVs

at Charging rates

3.1.1 Assumptions

To simplify the problem and facilitate modeling, we make the following assumptions:

1. All EVs are compatible with the BSS, and their batteries can be swapped using

the available mechanism.

2. The time required for the battery swapping process is negligible compared to

the time spent on charging the batteries.

3. We disregard the degradation of the batteries over time.

19
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4. If no available batteries in the BSS meet or exceed the energy requests of the

EVs, we assume that each EV has a predefined threshold level. This threshold

level is larger than their current battery level, and a battery swap will only

occur if an available battery exceeds this threshold.

5. All batteries are assumed to have identical properties - they possess the same

maximum charge capacity, undergo the same rate of degradation, and experi-

ence the same loss of power or charge for a given amount of charge consumed.

6. The charging characteristics are assumed to be identical for each battery. This

implies that all batteries take the same amount of time to charge from a given

SOC to another, assuming the same charging power is used.

3.1.2 Problem Formulation

In this section, we present the problem formulation for the BSS charging optimization

problem under investigation. The key elements of the problem are as follows:

BSS: The BSS is equipped with N batteries and M charging ports. We assume that

the number of batteries equals the number of charging ports, represented as M = N .

Time-series State: The system operates over a series of time slots represented by

T , with each time slot defined as t 2 T . At each time slot t, the state st encompasses

both internal BSS information, such as the State of Charge (SOC) of stock batteries

and external information from arriving EVs, including arrival time, SOC level, and

grid electricity price. The collection of states is denoted as S. The state st can be

represented as a Markov chain, where st 2 S and S is the set of all possible states.

EV Arrival: At the onset of each time slot t, dt EVs arrive at the BSS. The state st

is derived based on the number of demanded batteries dt and the battery swapping

load of the EVs et, with et = [e1,t, e2,t, . . . , edt,t].

SOC: The charging level of the i
th battery in the BSS at time t is represented as

SOC
BSS
i,t , while the initial charging level of the j

th EV, where j ranges from 0 to dt,

arriving at the BSS during time slot t is denoted as SOC
EV
j,t .

Battery Swapping Process: The battery swapping process is outlined in Alg. 1.

At the end of each time slot t, batteries within the BSS that is closest to, but not

less than the user’s energy request et are swapped for the j-th EV. If no batteries
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fulfill this condition, a battery in the BSS with a SOC larger than the sum of the

current EV’s SOC and a defined threshold ✓ is swapped. This occurs when SOC
BSS
i,t

is greater than SOC
EV
j,t + ✓. If neither of these conditions are met, the EV leaves the

BSS without a battery swap.

Algorithm 1 Battery Swapping Process

Require: Battery demand dt and EV requests et = [e1,t, e2,t, . . . , edt,t]

1: Let SOC
BSS
i,t denote the SOC of the i

th battery in the BSS, and SOC
EV
j,t denote

the SOC of the j
th EV;

2: for j = 1 to d do . Loop over all EV requests

3: Find a battery whose SOC
BSS

i, t is closest to, but not less than ej, t;

4: if no such battery is found then

5: Find a battery whose SOC
BSS
i,t is closest to, but not less than SOC

EV
j,t + ✓;

6: end if

7: if no such battery is found then

8: The j
th EV leaves without a battery swap;

9: end if

10: Update SOC
BSS
i,t if there was a battery swap;

11: end for

Battery Charging: The charging rate of the BSS at time t, denoted as ai,t, can be

adjusted by an RL agent. The charging constraints are formulated as follows:

SOCmin  SOC
BSS
i,t  SOCmax 8i, t (3.1)

Pmin  ai,t  Pmax 8i, t (3.2)

where SOCmin and SOCmax are the minimum and maximum battery SOC limits,

and Pmin and Pmax are the minimum and maximum charging rates of the BSS. The

constraint (3.1) ensures that the battery SOC stays within acceptable levels, while

constraint (3.2) ensures that the charging rates of the BSS stay within acceptable

limits.

Objective: The main objectives of the RL agent are:

• Minimize Electricity Cost: The RL agent should adjust the charging powers of

the batteries to minimize overall electricity cost. This involves taking advantage
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of fluctuating electricity prices to charge more during o↵-peak times and less

during peak times.

• Fulfill EV Battery Replacement Demand: The RL agent should aim to meet the

energy requests of arriving EVs as much as possible. This requires making sure

there are enough batteries with the necessary SOC available when EVs arrive.

• Maintain High SOC for BSS Batteries: The RL agent should also aim to keep

the batteries in the BSS as fully charged as possible. This provides a bu↵er to

meet unexpected surges in demand. However, this must be balanced against

the objective of minimizing electricity cost, since keeping batteries fully charged

could involve charging during peak times.

3.2 Details of RLC

In our research, we explore the application of DRL for optimizing the BSS charging

scheme with the goal of minimizing costs while meeting the energy requests of EVs.

While existing research has explored the use of DRL for BSS optimization, this thesis

represents the first attempt to incorporate predicted results and DRL to tailor charg-

ing strategies based on needed SOC from users. We employ the DDPG algorithm to

learn optimal charging policies by observing system states from the environment, EV

battery swapping loads, EV battery demand numbers from the prediction model, and

their impact on battery inventory and charging facilities.

The proposed RLC scheme’s workflow, depicted in Fig. 3.1, integrates the en-

vironment, BSS information representation, a prediction module, and an RL agent.

The prediction module predicts certain information of following time slots, such as

total EV electricity load and EV battery demand numbers. To provide further clari-

fication, we have defined two terms: when we predict the immediate next time slot,

we term it as RLC with Short Term Prediction (RLC-S), and when we are predicting

multiple future time slots, we refer to it as RLC with Long Term Prediction (RLC-

L). Detailed explanations of Short Term Prediction (STP) and Long Term Prediction

(LTP) will be provided in the subsequent sections.

In addition, the RL agent observes the environment to make informed decisions.

Based on these inputs, the RL agent generates actions for continuous charging rates
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Figure 3.1: Workflow of RLC

and receives rewards from the environment. These policies aim to prioritize battery

charging processes, taking into account available resources in BSS. For instance, dur-

ing peak usage of the BSS, the RLC scheme prioritizes e�ciently charging batteries

to a SOC level that corresponds with the expected energy demands of incoming EVs.

This strategy ensures a smooth and uninterrupted battery swapping experience. Con-

versely, when the BSS has ample available resources, the scheme adapts its charging

policies to accommodate a broader range of energy requests, including those from

vehicles with high energy demands.

The rest of this section delves into the details of the RLC scheme.

3.2.1 Prediction Module

Incorporating predictive information into the agent’s state can o↵er substantial ben-

efits. It enables the agent to focus more e↵ectively on observations and experiences,

reducing the need to interpret or anticipate system uncertainties. To incorporate this

predictive information, we employ a prediction module. While the RL agent doesn’t

inherently require prior knowledge or assumptions regarding system uncertainties, the

integration of a predictive model can provide the agent with a form of “anticipated”

state. This anticipated state can be invaluable in the agent’s decision-making process.

The objective of this predictive information is to present a probable future system
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state. It serves as a guidepost for the RL agent’s learning process, e↵ectively o↵ering

the agent a glimpse into a possible future.

Short-term Prediction vs Long-term Prediction

The prediction module is specifically designed to forecast the total electricity load and

the number of battery demand, which assists the DRL agent in making more informed

decisions. The total electricity load represents the aggregate energy demanded by

EVs at each time slot, while the number of demanded battery requests indicates

the quantity of EVs arriving at the BSS and requesting a battery swap. Given a

time series of data points Tn�ts , Tn�2, Tn�1, . . . , Tn, where ts represents the time step

of historical data, our prediction module aims to predict the subsequent time slots

of total electricity load and number of demanded battery for both short-term and

long-term predictions.

For STP, we predict the immediate next time slot Tn+1 by analyzing a length

of historical data ts. This enables the DRL agent to anticipate and make decisions

based on the upcoming time slot. For LTP, we predict l numbers of future time slots

Tn+1, Tn+2, . . . , Tn+l by analyzing the same length of historical data ts. This allows

the DRL agent to anticipate and plan for trends and changes in battery swapping

demand over a longer time horizon.

Details of Prediction Module

The workflow of our proposed ensemble learning-based forecasting module is depicted

in Fig. 3.2. Ensemble learning is employed in this research due to its ability to improve

prediction accuracy and generalization by combining the strengths of multiple base

models [49]. The initial step involves training the three base models, RNN, LSTM,

and GRU. After training the base models, their predictions are generated. To find

appropriate weights for our base models, Linear Regression (LR) is adopted for the

weighted average of the base models. The purpose of the LR model is to learn

the optimal weights for each base model, balancing their contributions to the final

predictions [50]. The equation for LR can be expressed as:

y = w1 · y1 + w2 · y2 + · · ·+ wn · yn + ✏ (3.3)
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Figure 3.2: Workflow of Prediction Module

Where y is the target variable, yi are the meta-features (in this case, predictions from

the base models), and wi are the learned weights. The predictions and true labels of

the training data are set as the meta-features and target for LR training, respectively.

By minimizing the discrepancy ✏ between the predicted output and the actual output,

LR e↵ectively learns the optimal weights for each base model (RNN, LSTM, GRU).

Once the LR model has learned the appropriate weights for each base model (RNN,

LSTM, GRU), a weighted average model is employed to combine the predictions of

the base models. The equation for the weighted average model is as follows:

yfinal = w1 · y1 + w2 · y2 + · · ·+ wn · yn (3.4)

Where yfinal is the final prediction obtained from the weighted average model, yi are

the predictions from the base models, and wi are the learned weights from the LR

model.

Alg. 2 provides a detailed process of our forecasting model. The process begins by

training the base models (RNN, LSTM, and GRU) on the training data, generating

predictions for each instance in the training data using these models. These predic-

tions, which serve as meta-features, are then used to train the LR model. The LR

model learns the optimal weights for each base model by minimizing the discrepancy

between the weighted average of the base models’ predictions and the actual labels
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Algorithm 2 Ensemble Learning Algorithm for Total Electricity Load and Number

of Demanded Batteries
Require: Training data DTrain = (X1, Y1), (X2, Y2), . . ., test data DTest =

(x1, y1), (x2, y2), . . ., base models Mi, where i = 1, 2, 3, Linear Regression model

LR, Ensemble learning model MLR

1: for Xi in DTrain do

2: for i = 1, 2, 3 do

3: Pi,T rain  Mi(Xi)

4: end for

5: end for

6: PTrain  [[P1,T rain], [P2,T rain], [P3,T rain]]

7: MLR  LR(PTrain, Y )

8: for xi in DTest do

9: for i = 1, 2, 3 do

10: Pi,T est  Mi(xi)

11: end for

12: end for

13: PTest  [[P1,T est], [P2,T est], [P3,T est]]

14: PFinal  MLR(PTest)

in the training data. Once the LR model is trained, it is used to compute the final

predictions for the testing data. Specifically, each base model makes a prediction

for each instance in the testing data, and these predictions are input into the LR

model. The LR model then generates the final prediction for each instance by taking

a weighted average of the base models’ predictions, with the weights determined by

the coe�cients it learned during training. The accuracy of these final predictions is

then evaluated against the true labels of the testing data.

3.2.2 MDP for Charging Optimization

The optimization problem can be formulated as an MDP, defined by the tuple (S,A,P ,R).
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State

The state space (S) represents the relevant information required for decision-making

in the BSS. A state st at time slot t is given by the following components:

st = (pt, dt, SOC
BSS
i,t , SOC

EV
j,t , et) (3.5)

In the state space, pt represents the electricity price at time slot t, dt denotes the

number of demanded batteries, SOCBSS
i,t refers to the battery SOC levels stored in the

BSS at time slot t, SOCEV
j,t stands for the initial EV SOC (a vector representing the

charging levels of batteries for arrived EVs at time slot t), and et signifies the battery

swapping load at time t (a vector representing the energy that each EV requests at

time slot t).

When incorporating both STP and LTP into the states, we can update the states

to include the predicted battery demand and the predicted aggregated EV swapping

load for the next time slot t+ 1 for STP, and for the next n time slots for LTP. The

DRL agent has the ability to access both short-term and long-term forecasts. This

capability enables it to make decisions that are not only informed by the immediate

future but also by potential trends and patterns in the battery swapping load and the

number of battery swap requests over an extended time frame. The states can then

be revised as follows:

s
STP
t = (pt, dt, SOC

BSS
i,t , SOC

EV
j,t , et, pt+1, SOC

EV
ave , d̂t+1, ê

ave
t+1) (3.6)

s
LTP
t = (pt, dt, SOC

BSS
i,t , SOC

EV
j,t , et, pn, SOC

EV
ave , d̂n, ê

ave
n ) (3.7)

êave
t =

êtotal
t

d̂t

(3.8)

Within these updated state expressions, represented by Eq. (3.6) for STP and Eq.

(3.7) for LTP, SOC
EV
ave,t denotes the average SOC upon arrival at the BSS. Meanwhile,

êave
t signifies the projected average energy request from the EV, which is calculated

based on the predicted number of required batteries and the predicted total electricity

load as described in Eq. (3.8).

In the case of STP, pt+1 is the electricity price in the next time slot. d̂t+1 indicates

the expected number of batteries required, providing a prediction of battery demand

for the next time slot. êave
t+1 represents the projected average energy request from the

EV for the next time slot.
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In contrast, for LTP, pn is a vector contains electricity price for the next n time

slots. d̂n is a vector that embodies the predicted information about the number of

batteries needed for the subsequent n time slots. Similarly, êave
n is a vector that

captures the projected average energy requested by the EV for the next n time slots.

Action

The action space (A) is composed of continuous charging rates for each charging

port at BSS. Let m represent the number of available charging ports in the BSS.

Consequently, the action at at any given time slot t constitutes a vector of charging

rates across all these ports:

at = (a1,t, a2,t, . . . , am,t) (3.9)

Each charging rates am,t in the vector is constrained by the maximum charging

rate Pmax:

Pmin  am,t  Pmax (3.10)

State Transition

The state transition (P(st+1|st, at)) is used to describe the state transition process

in the BSS system. The algorithm for the state transition process is shown in Alg.

3. The algorithm takes the current state st and the action at as input and produces

the next state st+1 as output. The state transition process includes observing the

electricity price pt+1, battery demand dt+1, initial EV SOC SOCEV
j,t+1, and EV request

energy et+1. Meanwhile, it updates the SOC of the BSS SOC
BSS
i,t+1 based on swapped

batteries from EV swapping load et, current SOC
BSS
i,t , and charging rates at. The

swapping scheme Alg. 1 was introduced in the previous section. Next, the predicted

aggregated EV swapping load êt+1 and predicted battery demand d̂t+1 are obtained

using the predicted model Mp. Finally, the state st+1 is set to the current state st

with the updated values of pt+1, dt+1, SOC
BSS
i,t+1, SOC

EV
j,t+1, et+1, d̂t+2, and êt+2.
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Algorithm 3 State Transition

Require: st, at

Ensure: st+1

1: dt+1  dt

2: SOC
EV
i,t+1  SOC

EV
i,t

3: pt+1  pt

4: et+1  et

5: SOC
BSS
i,t+1  [SOC

BSS
i,t , SOC

EV
i,t , et, at]

6: (d̂t+2, r̂t+2) Mp

7: st+1  st

Reward Function

The reward function (R) calculates the immediate benefit or cost associated with

taking action at in state st. In this case, the reward function is designed to minimize

three key components: the electricity cost, the discrepancy between the desired and

provided battery levels, the discrepancy between the battery full capacity and the

current capacity. In DDPG, the agent aims to minimize the negative sum of these

three components, which can be formulated as follows:

R(st, at) = �(Celec + Cdemand + Ccapacity) (3.11)

Celec represents the electricity cost, calculated as the di↵erence between the total

electricity cost at current price pt and the total cost at the minimum price pmin,

considering the charging rate at for each charging port m, where m 2 1, 2, ...,M , over

the duration of the time slot �t, the charging e�ciency ⌘ and penalty weight ↵:

Celec = ↵ ·max(0, (
MX

m=1

am,t

⌘
· pt ·�t�

MX

m=1

am,t

⌘
· pmin ·�t)) (3.12)

The goal of Eq. (3.12) is to minimize the cost of electricity used for charging the BSS.

In an environment where electricity prices fluctuate over time, charging strategies can

significantly impact the overall cost. Charging more when electricity prices are low

and less when prices are high can reduce costs. The equation for Celec is designed

to encourage the model to optimize the charging speed (am,t) in response to price
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fluctuations. If the cost at the current electricity price (pt) is higher than the cost at

the minimum electricity price (pmin), the model is encouraged to reduce the charging

speed to decrease the electricity cost. On the other hand, if the current price is

less than or equal to the minimum price, the model is encouraged to charge at a

higher speed to take advantage of the lower price. By evaluating the additional cost

incurred due to price fluctuations, this component of the reward function encourages

the adoption of a cost-e↵ective charging strategy.

Indeed, the term Cdemand in Eq. (3.13):

Cdemand = � ·
dtX

j=0

max(0, SOC
Desire
j,t � SOC

BSS
j,t+1) · B (3.13)

SOC
Desire
j,t =

SOC
EV
j,t · B + et

B
· 100% (3.14)

represents the potential additional cost that the BSS could incur when it fails to

meet the energy demands of the arriving EVs in the current time slot. In Eq. (3.14),

SOC
Desire
j,t is the desired state of charge for the j

th EV, calculated by adding the

initial energy amount of the EV to the requested energy amount and then converting

it to SOC. SOC
BSS
j,t+1 represents the state of charge of the j

th battery in the BSS,

and B denotes the battery capacity. The di↵erence between the desired and available

SOC, given by max(0, SOC
Desire
j,t+1 �SOC

BSS
j,t+1), and multiplied by the battery capacity,

provides the additional energy required to achieve the desired state of charge. The

factor � is a penalty weight that can be adjusted to control the emphasis placed on

meeting the EVs’ energy demand in the overall cost function. This design equips the

RL agent with the capability to take into account the cost of unmet demand. By

doing so, it can adapt its charging strategy to strive for fulfilling the energy requests

of the EV.

The third component, Ccapacity, defined in Eq. (3.15):

Ccapacity = � ·
MX

m=1

max(0, SOCmax � SOC
BSS
m,t+1) · B (3.15)

represents the potential cost associated with the discrepancy between the maximum

battery capacity and its current state. Here, � is a penalty weight that can be adjusted

to control the emphasis placed on maintaining the battery’s state of charge close to
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its maximum capacity in the cost function. This component of the reward function

encourages the RL agent to maintain an appropriate level of battery state of charge,

even in periods when no vehicles are arriving at the BSS. It’s a mechanism designed

to ensure readiness to meet future demand, thereby enhancing the overall service

e�ciency and battery lifespan.

Reward Function with STP

To incorporate STP, we add two additional components. The first component is the

potential additional electricity cost for STP, denoted as CSTP
elec :

C
STP
elec = ↵

0 ·max(0,
MX

m=1

am,t

⌘
· pt ·�t�

MX

m=1

am,t

⌘
· pt+1 ·�t) (3.16)

In Eq. (3.16), CSTP
elec represents the potential additional electricity cost for STP, which

is calculated based on the di↵erence between the total electricity cost at the current

price pt and the total cost at the predicted price for the next time slot pt+1, considering

the charging rate at for each charging port m over the duration of the time slot �t

and the charging e�ciency ⌘. ↵
0
is a penalty weight adjusted for STP. This term

encourages the model to adjust the charging speed (am,t) in response to predicted

future electricity price fluctuations. If the current cost is higher than the predicted

cost for the next time slot, the model is encouraged to reduce the charging speed to

decrease the electricity cost, and vice versa.

The second component is the potential supplementary cost that the BSS might

incur if it fails to meet the anticipated energy needs of the forthcoming EVs in the

next time slot, denoted as CSTP
demand:

C
STP
demand = �

0 ·
d̂t+1X

i=0

max(0, ˆ
SOCDesire

t · B � (SOC
top
i,t+1 +�SOCmax) · B) (3.17)

ˆ
SOCDesire

t+1 = SOC
EV
ave +

êave
t+1

B
· 100% (3.18)

SOC
top
i,t+1 = SOC

BSS,[i]
t+1 for i 2 0, 1, 2, ..., d̂t+1 (3.19)

In Eq. (3.18), the predicted average desired electricity SOC for the EV battery is

obtained by adding the average SOC of EV battery upon arrival at the BSS, and
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the projected average energy demand SOC from the EVs. In Eq. (3.17), d̂t+1 repre-

sents the predicted battery demand numbers. �SOCmax is the maximum permissible

change in SOC within a single time slot. The top d̂t+1 SOC of the BSS for the next

time slot is defined as SOC
top
i,t+1 in Eq. (3.19). By accumulating the sum of SOC

top
i,t+1

and �SOCmax, we can derive the top d̂t+1 SOC of batteries available for EV replace-

ment. The additional energy required to meet the predicted demand is calculated

by subtracting the available energy in the BSS from the predicted desired energy

amount. This energy need, when multiplied by the penalty weight �
0
, results in the

potential extra cost due to unfulfilled projected demand.

Consequently, the reward function accommodating STP can be updated as follows:

RSTP (st, at) = �(Celec + Cdemand + Ccapacity + C
STP
elec + C

STP
demand) (3.20)

This function integrates the traditional costs of electricity Celec, demand Cdemand,

and capacity Ccapacity, with the additional costs introduced for STP, namely C
STP
elec

and C
STP
demand.

Reward Function with LTP

To account for LTP, two additional components are introduced. The first component,

C
LTP
elec , represents the potential additional electricity cost if we fail to take advantage

of the lowest predicted electricity price over the next n time slots (pLTP
min ) for charging

the EV batteries:

C
LTP
elec = ↵

00 ·max(0,
MX

m=1

am,t

⌘
· pt ·�t�

MX

m=1

am,t

⌘
· pLTP

min ·�t) (3.21)

p
LTP
min = min

tkt+n
pk (3.22)

In Eq. (3.21), CLTP
elec is calculated by comparing the current electricity cost at price

pt with the cost at the predicted minimum electricity price pLTP
min over the next n time

slots. Eq. (3.22) identifies the minimum electricity price over the next n time slots.

If the cost at pLTP
min is lower than current cost, the model is encouraged to increase the

charging speed, and vice versa. As a result, the RL agent is influenced to adjust the

charging strategy in anticipation of future electricity price fluctuations.
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C
LTP
demand = �

00 ·
JX

j=1

d̂t+jX

i=0

max(0, [ ˆ
SOCDesire

t+j · B � (SOC
top
i,t+j +�SOCmax) · B]) (3.23)

ˆ
SOCDesire

t+j = SOC
EV
ave +

êave
t+j

B
· 100% (3.24)

SOC
top
i,t+j = SOC

BSS,[i]
t+j for i 2 0, 1, 2, ..., d̂t+1, j 2 1, 2, ..., n (3.25)

Eq. (3.23) introduces another component to account for LTP, which is C
LTP
demand. It

represents the potential additional demand cost if the BSS fails to meet the expected

demand of EV over the next J time slots. The cost is calculated by comparing the

required energy amount for each expected demand with the available energy amount

in the BSS. This component encourages the model to increase the charging speed when

the BSS might not be able to meet the expected future demand. In more detail, �
00

is a penalty weight that can be adjusted for LTP, d̂t+j is the expected demand at

time slot t+ j, SOC
EV
ave is the average SOC of EVs, B is the battery capacity, êave

t+j is

the average energy requirement of EVs at time slot t+ j, SOC
top
i,t+j is the SOC of the

i-th battery in the BSS at time slot t + j, and �SOCmax is the maximum possible

increase in SOC during a time slot. Eq. (3.25) shows how SOC
top
i,t+j is determined.

It is simply the SOC of the i-th battery in the BSS at time slot t+ j. This equation

ensures that the model considers the SOC of the top d̂t+j batteries in the BSS, which

are the ones that are expected to be used to meet the demand. In this context, the

model virtually “swaps” the batteries at the end of time slot based on the expected

demand d̂t+j and the average SOC of EV, SOC
EV
ave . The batteries are charged with the

maximum charging speed, �SOCmax, to replenish the energy. This operation aims

to simulate the potential situation and calculate the expected cost for the upcoming

n time slots.

The final reward function incorporating LTP can now be written as:

RLTP (st, at) = �(Celec + Cdemand + Ccapacity + C
LTP
elec + C

LTP
demand) (3.26)

Normalized Reward Function

The normalization of the reward function components can aid in achieving more

robust and stable training of the RL agent [51]. By ensuring that the individual
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components Celec in Eq. (3.12), Cdemand in Eq. (3.13), and Ccapacity in Eq. (3.15)

fall within the range of 0 and 1, we not only facilitate the RL agent’s understanding

of the relative importance of the three components, but also prevent extreme values

from adversely a↵ecting the learning process.

C
0

elec = ↵ ·
max(0, (

PM
m=1

am,t

⌘ · pt ·�t�
PM

m=1
am,t

⌘ · pmin ·�t))
PM

m=1
am,t

⌘ · (pmax � pmin) ·�t
(3.27)

C
0

demand = � ·
Pdt

j=1 max(0, SOC
Desire
j,t � SOC

BSS
j,t+1) · BPdt

j=1 SOCDesire
j,t · B

(3.28)

C
0

capacity = � ·
PM

m=1 max(0, SOCmax � SOC
BSS
m,t+1) · B

M · B (3.29)

The normalization of C
0
elec in Eq. (3.27) ensures that the RL agent considers the

fluctuations in electricity price, optimizing the charging speed accordingly.

Similarly, the normalization of C
0
demand in Eq. (3.28) ensures that the RL agent

places proper emphasis on meeting the energy demands of EVs, with the normalized

value indicating the proportion of unmet demand to the total demand.

The normalization of C
0
capacity in Eq. (3.29) indicates the proportion of unused

battery capacity to the total capacity, encouraging the RL agent to maintain the

state of charge close to its maximum capacity.

Then the normalized reward function can be written as follows:

R0
(st, at) = �(C

0

elec + C
0

demand + C
0

capacity) (3.30)

represents a balance between minimizing electricity costs, meeting EV demands, and

maintaining battery capacity.

Two additional normalized reward functions are introduced after incorporating

STP. To incorporate the range of values within 0 to 1 for Eq. (3.16), we can restructure

the equation as follows:

C
0STP
elec = ↵

0 ·
max(0,

PM
m=1

am,t

⌘ · pt ·�t�
PM

m=1
am,t

⌘ · pt+1 ·�t)
PM

m=1
am,t

⌘ · (pmax � pmin) ·�t
(3.31)

In this normalized version of the equation, Eq. (3.31), the denominator represents the

maximum possible cost variation for the given charging speeds, which occurs when

the electricity price shifts from pmin to pmax.
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To normalize Eq. (3.17), we divide the total unmet demand by the total predicted

demand, yielding:

C
0STP
demand = �

0 ·
Pd̂t+1

i=1 max(0, ˆ
SOCDesire

t+1 · B � (SOC
top
i,t+1 +�SOCmax) · B)

d̂t+1 · (SOCEV
ave · B + êave

t+1)
(3.32)

In this normalized form of the equation, Eq. (3.32), the denominator is the predicted

total desired electricity amount for the next time slot. This normalization ensures

that C
0STP
demand falls between 0 and 1.

The reward function accounting for STP can be rewritten as follows:

R0

STP (st, at) = �(C
0

elec + C
0

demand + C
0

capacity + C
0STP
elec + C

0STP
demand) (3.33)

balances minimizing electricity costs, meeting EV demands, and maintaining battery

capacity, in addition to considering predicted electricity costs and demand.

To ensure the normalization of the LTP embedded reward function components

within the range of 0 to 1, we reformulate Eq. (3.21) and Eq. (3.23) as follows:

C
0LTP
elec = ↵

00 ·
max(0,

PM
m=1

am,t

⌘ · pt ·�t�
PM

m=1
am,t

⌘ · pLTP
min ·�t)

PM
m=1

am,t

⌘ · (pmax � pmin) ·�t
(3.34)

C
0LTP
demand = �

00 ·
PJ

j=0

Pd̂t+j

i=1 max(0, [ ˆ
SOCDesire

t+j · B � (SOC
top
i,t+j +�SOCmax) · B])

Pn
j=0[d̂t+j · (SOCEV

ave · B + êave
t+j)]

(3.35)

In Eq. (3.34), the denominator represents the maximum possible cost variation

for the given charging speeds, which occurs when the electricity price shifts from pmin

to pmax.

In Eq. (3.35), the denominator is the sum of predicted total desired electricity

amount for the next J time slots.

Finally, we can express the reward function with LTP components as follows:

R(st, at) = �(C
0

elec + C
0

demand + C
0

capacity + C
0LTP
elec + C

0LTP
demand) (3.36)

This reward function balances minimizing electricity costs, meeting EV demands,

and maintaining battery capacity, while also considering long-term predictions of

electricity costs and demand.
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Algorithm 4 Deep Deterministic Policy Gradient

1: Initialize actor network ✓µ and its target network ✓µ0

2: Initialize critic network ✓Q and its target network ✓Q0

3: Initialize replay bu↵er M

4: while not converged do

5: for each episode t = 1, 2, 3, ... do

6: Observe state st

7: Select action at = µ✓µ(st) + ✏, with ✏ ⇠ N (0, �)

8: Execute action at and observe reward rt and new state st+1

9: Store transition tuple (st, at, rt, st+1) in M

10: Sample a mini-batch of transitions from M

11: Update critic by minimizing the loss:

12: L = 1
N

P
i(yi �Q✓Q(si, ai))

2

13: with yi = ri + �Q✓Q0 (si+1, µ✓µ0 (si+1))

14: Update the actor policy using the sampled policy gradient:

15: r✓µJ ⇡ 1
N

P
iraQ✓Q(s, a)|s = si, a = µ✓µ(si)r✓µµ✓µ(s)|si

16: Update target networks:

17: ✓µ
0 = ⌧✓µ + (1� ⌧)✓µ0

18: ✓Q0 = ⌧✓Q + (1� ⌧)✓Q0

19: end for

20: end while

3.2.3 Utilizing Reinforcement Learning for Charging Optimization

Our study leverages the DDPG algorithm [37], a renowned model-free, o↵-policy

actor-critic algorithm adept at addressing continuous control challenges. This algo-

rithm is particularly e↵ective in optimizing high-dimensional action or policy spaces

and employs four neural networks: the actor network, actor target network, critic

network, and critic target network. The actor network is responsible for formulating

policy decisions, acting as a decoder that interprets system states and develops ap-

propriate policies. On the other hand, the critic network functions as an evaluator

of the policies proposed by the actor network, taking in a blend of observations and

policies and utilizing the reward value as a performance indicator. Equipped with
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the knowledge gained from the critic network, the actor network can then formu-

late policies that lead to higher rewards. The actor and critic target networks are

incorporated to enhance learning stability by gradually adjusting the values within

the network. This results in the DDPG algorithm learning to adapt charging rates

in accordance with resource availability. The learning process involves continuous

optimization of the decision-making approach, modifying the charging rates based

on the prevailing system state, resource availability, and lessons learned from past

experiences. The actor network’s focus on optimal policy creation, coupled with the

critic network’s emphasis on high reward generation, fosters a culture of continuous

progress within the algorithm. Operating within a reinforcement learning framework,

the actor-critic duo learns the most e↵ective strategies through a process of trial and

error, using feedback from the environment to hone its decisions. The inclusion of

target networks further steadies this learning process, providing a more consistent

target for learning updates and reducing the risk of destabilizing feedback loops, a

common issue in traditional reinforcement learning methods. This stable learning

environment facilitates more precise and reliable policy optimization, ensuring that

the DDPG algorithm consistently delivers decisions that boost the performance of

the BSS.

In this chapter, we introduce two proposed schemes, RLC-S and RLC-L. Both

of these schemes incorporate a prediction module to anticipate future trends and

demands, playing a crucial role in improving the e↵ectiveness of the BSS. Specifi-

cally, RLC-S integrates a STP, focusing on immediate future demands, while RLC-L

integrates a LTP, focusing on broader and longer-term trends. We expect both of

these schemes to outperform existing strategies, o↵ering enhanced predictive accu-

racy and operational e�ciency in the realm of BSS. Further details and performance

evaluations of these schemes will be discussed in the following chapters.



Chapter 4

Performance Evaluation

In this chapter, we provide a comprehensive overview of the experiments conducted to

evaluate the performance of our proposed DRL-based BSS optimization framework.

We start with an explanation of the dataset used in the study, followed by the ex-

perimental setup and the evaluation metrics we employed to assess the performance

of our approach. Lastly, we present the results obtained from these experiments and

compare them to other relevant benchmarks and methods.

Current charging/swapping schemes cannot be directly utilized, which is why we

did not include state-of-the-art schemes in our experiments. Instead, we focused our

experiments on comparing RLC-S and RLC-L with the following charging methods:

• Greedy Charging: A policy that sets a fixed maximum charging speed irrespec-

tive of the demand or electricity price.

• Random Charging: This policy randomly selects battery charging rates within

a defined minimum and maximum range.

• Demand-based Charging (DBC): This algorithm charges N batteries at full

speed when N vehicles arrive at a given timeslot, while other batteries are

charged at half the maximum speed.

• DDPG-based Charging: This policy uses DDPG to determine the charging

rates. However, no predictive information is utilized by DDPG.

4.1 Experimental Dataset

Selecting an appropriate dataset that accurately represents the arrival patterns of

EVs and the operational conditions of a real-world BSS is important to e↵ectively

evaluate the performance of our proposed RLC scheme. Previous studies have mainly

38
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adopted two approaches for obtaining such data: simulated data and EV charging

databases.

Simulated data, generated through simulations, allows for controlled experiments

and the manipulation of specific variables. However, it has limitations in fully cap-

turing the complexity and variability of real-world scenarios, which may a↵ect the

generalizability of the experimental results. On the other hand, data extracted from

existing EV charging databases o↵ers the advantage of working with real-world infor-

mation. However, this data requires adaptation and preprocessing to fit the context of

a BSS, as the operational requirements and customer interactions in battery swapping

systems may di↵er from conventional charging stations.

Table 4.1: Electricity Rates

TOU Price Periods TOU Prices (¢/kWh)
O↵-Peak 7 p.m. – 7 a.m. 7.4
Mid-Peak 11 a.m. – 5 p.m. 10.2

On-Peak 7 a.m. – 11 a.m. and 5 p.m. – 7 p.m. 15.1

In our research, we opted to use data derived from an EV charging database, ACN

data [8], to ensure that our experiments are grounded in real-world conditions. EV

battery demand numbers and EV battery swapping load are extracted from the ACN

dataset. This dataset provides information on EV arrivals and corresponding energy

requests. Additionally, we integrated the Time of Use (TOU) electricity rates defined

by the Ontario Energy Board [52], as shown in Table 4.1. These choices allow us to

better evaluate the e↵ectiveness of the RLC-S and RLC-L schemes in comparison to

alternative charging schemes and to demonstrate their ability to address the unique

challenges associated with BSS management. Moreover, working with real-world data

contributes to the relevance and generalizability of our findings, thereby increasing

the practical applicability of our proposed RLC scheme.

4.2 Experiment Configuration

The scale of a BSS depends on the number of batteries it contains. In our simulations,

we considered three di↵erent settings with varying scales. Specifically, we examined
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a BSS equipped with 15 batteries, another with 10 batteries, and a third with 5 bat-

teries. The specific numbers allow for the examination of small (5 batteries), medium

(10 batteries), and relatively large (15 batteries) scale operations. This range can help

understand how di↵erent scales impact the performance of the proposed schemes. In

addition, these numbers are reasonably realistic for real-world BSS, making the out-

comes of the simulation more applicable and useful [11]. Unless otherwise specified,

the remaining parameters were kept consistent across all settings.

The MDP time slots were defined with time discretized into quarters [53][24][23].

The charging e�ciency ⌘ was set to 0.9 [24], and each battery B had a capacity of

50 kWh. The maximum and minimum charging rates, Pmax and Pmin, were set to

50 kW and 0 kW, respectively [54]. For the arriving EVs’ SOC, SOC
EV
j,t , we used a

Gaussian distribution with a mean of 30% and a standard deviation of 5% [55]. As

mentioned in the previous section, we extracted the number of demanded batteries dt,

the electricity load for each EV et, and the TOU electricity price pt from real-world

data.

We used 65 weeks of data to train both the ensemble learning-based predictive

model and the DDPG agent, while 5 weeks of data were employed to evaluate the

performance of the proposed RLC-S and RLC-L schemes. The DDPG agent utilized

a rectified linear unit (ReLU) activation function for the critic networks and a hyper-

bolic tangent (tanh) activation function for the actor networks. The discount factor

was set to 0.99. The replay bu↵er size was set to 100,000, the minimum batch size was

set to 1,000, and the batch size for learning was 64. All of the base models of ensemble

learning were configured with a hidden layer size of 128. The learning rate was set

to 0.01, and we trained the models using the Adam optimizer. The loss function was

defined as the mean squared error between predicted and actual values. A look-back

window of 96 time slots, equivalent to one day, and 192 time slots, equivalent to two

days, was used for STP and LTP, respectively, based on the following experimental

results. We assume that the threshold ✓ is 10%. This threshold is considered as

a compromise between the user’s energy demand and the BSS’s available resources.

The value of 10% is chosen under the assumption that even if the BSS cannot fully

meet an EV’s energy demand, an EV user would likely accept a replacement battery

that can provide at least 10% SOC, which should enable the EV to reach another
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charging station or continue its journey for a short distance.

4.3 Evaluation Metrics

We employed the following metrics to evaluate the performance of our proposed RLC-

S and RLC-L schemes:

• Electricity Cost: This corresponds to the cumulative expense of electricity

utilized by the BSS. A lower electricity cost indicates that the BSS is e�ciently

managing its energy consumption and making better use of dynamic pricing

signals. Electricity costs are in logarithmic scale.

• Average SOC Discrepancy Rate: This metric indicates the mean propor-

tional di↵erence between the targeted and actual SoC levels received during a

battery exchange. A lower average SOC discrepancy rate implies that the BSS

is providing batteries with SoC levels closer to the desired levels, resulting in

higher customer satisfaction and better operational performance.

• Battery Service Rate: This metric defines the proportion of the total number

of batteries serviced by the BSS to the total count of EV battery demands. A

higher battery service rate suggests that the BSS is e↵ectively meeting the

demand for battery swaps and e�ciently utilizing BSS resources.

To assess the accuracy and e↵ectiveness of the prediction module, we utilize two

evaluation metrics:

• Mean Absolute Error (MAE): This metric measures the average absolute

di↵erence between the predicted and actual values for variables such as battery

demand and electricity price.

• Root Mean Squared Error (RMSE): This metric calculates the square root

of the average squared di↵erence between the predicted and actual values for a

variable.
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4.4 Prediction Module Evaluation

We assessed the performance of our ensemble-based prediction model by comparing

it to three base models: RNN, LSTM, and GRU, using the MAE and RMSE metrics.

4.4.1 Total Electricity Load Prediction

Fig. 4.1 presents a 24-hour sample data, showcasing the actual curve of the total

electricity load along with the predicted results generated by di↵erent algorithms. As

depicted in this graph, it is clear that all predicted algorithms successfully follow the

trend of the true total electricity load curve. We observe that before 5:00, the total

electricity load remains nearly 0 kWh. During the peak hour, from 6:00 to 8:00, the

electricity load reaches a maximum of approximately 300 kWh. Besides this major

peak, a smaller peak can be seen at 12:00 when the electricity load reaches around

100 kWh. Additionally, we identify a mild period of increased electricity load between

12:00 and 16:00, with a load of about 50 kWh.

Figure 4.1: 24-hour Electricity Load Curve with Prediction Results

In our analysis, we further investigate a one-week electricity load profile, focusing

solely on weekdays, as illustrated in Fig. 4.2. This graph displays the daily vari-

ations in electricity demand from Monday to Friday, showing that each prediction

algorithm e↵ectively follows the actual trend of the total electricity load. Concur-

rently, we observe recurring daily peaks and troughs throughout the weekdays, which
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are consistent with the patterns identified in the 24-hour total electricity load curve

in Figure 4.1. Notably, the peak hour occurs around morning, and mild peak hours

can be observed in the afternoon.

Figure 4.2: One Week Electricity Load Curve with Prediction Results

Total Electricity Load with STP

Table 4.2 presents a comparison of the Ensemble Learning model’s performance with

that of the three base models (RNN, LSTM, and GRU) using the MAE and RMSE

metrics. The look-back time step is set to 96, which is equivalent to 24 hours, and

the output is focused on STP with 1 predicted time step. As shown in the table,

the Ensemble Learning model exhibits superior performance, achieving the lowest

MAE of 7.232788 and RMSE of 17.460322. In terms of MAE, the Ensemble Learning

model demonstrates improvements of approximately 14.16%, 7.25%, and 14.73% over

the RNN, LSTM, and GRU models, respectively. Similarly, for the RMSE metric,

the Ensemble Learning model displays enhancements of around 5.0%, 1.56%, and

5.95% compared to the RNN, LSTM, and GRU models, respectively. These results

underline the e↵ectiveness of the ensemble learning approach in predicting short-

term electricity load with a 96 look-back time step and 1 predicted time step. The

substantial percentage improvements achieved by the ensemble learning model further

emphasize its superiority over the base models in terms of prediction accuracy.
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To further examine the e↵ectiveness of our ensemble learning-based model for STP

of total electricity load, we set the look-back time step to 192, which is equivalent

to 48 hours. The results can be seen in Table 4.3. With a 192 look-back time step,

the Ensemble Learning model continues to outperform the base models, yielding the

lowest MAE and RMSE values. In terms of MAE, the Ensemble Learning model shows

improvements of approximately 11.12%, 3.83%, and 4.34% over the RNN, LSTM, and

GRU models, respectively. Similarly, for the RMSE metric, the Ensemble Learning

model demonstrates enhancements of around 5.66%, 0.73%, and 1.16% compared

to the RNN, LSTM, and GRU models, respectively. These results highlight the

robustness and adaptability of the ensemble learning approach in handling di↵erent

look-back time steps, further establishing its e↵ectiveness for STP of total electricity

load.

Table 4.2: Total Electricity Load Prediction with 96 Look-back Time Step and 1
Predicted Time Step

Metric RNN LSTM GRU Ensemble Learning
MAE 8.425430 7.798631 8.482590 7.232788
RMSE 18.379395 17.737808 18.564583 17.460322

Table 4.3: Total Electricity Load Prediction with 192 Look-back Time Step and 1
Predicted Time Step

Metric RNN LSTM GRU Ensemble Learning
MAE 8.719349 8.148189 8.187557 7.847148
RMSE 18.503582 17.639829 17.714649 17.511306

Total Electricity Load with LTP

For LTP, Table 4.4 provides a performance assessment of the Ensemble Learning

model compared to the three base models (RNN, LSTM, and GRU) using the MAE

and RMSE metrics. The look-back time step is set to 96, equivalent to 24 hours, and

the prediction focuses on 24 time steps. The Ensemble Learning model consistently

outperforms the base models, achieving the lowest MAE and RMSE values. Specifi-

cally, the Ensemble Learning model demonstrates significant improvements over the
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RNN, LSTM, and GRU models in both metrics, with 6.44%, 1.96%, and 4.82% im-

provement in MAE, and 4.78%, 0.68%, and 2.57% improvement in RMSE, respec-

tively. These results highlight the e↵ectiveness of the ensemble learning approach for

long-term electricity load forecasting with a 96 look-back time step and 24 predicted

time steps.

Table 4.5 presents a performance comparison between the Ensemble Learning

model and the base models using a 192 look-back time step and 24 predicted time

steps. The Ensemble Learning model maintains its superior performance, achieving

the lowest MAE and RMSE values. Specifically, the Ensemble Learning model demon-

strates improvements of approximately 2.49%, 2.71%, and 5.69% in MAE, and 0.63%,

4.18%, and 3.74% in RMSE over the RNN, LSTM, and GRU models, respectively.

Table 4.4: Total Electricity Load Prediction with 96 Look-back Time Step and 24
Predicted Time Step

Metric RNN LSTM GRU Ensemble Learning
MAE 8.874624 8.468581 8.723219 8.302767
RMSE 20.063794 19.235966 19.608810 19.104075

Table 4.5: Total Electricity Load Prediction with 192 Look-back Time Step and 24
Predicted Time Step

Metric RNN LSTM GRU Ensemble Learning
MAE 8.394177 8.413154 8.680063 8.185546
RMSE 19.025359 19.729267 19.641021 18.905046

4.4.2 Number of Demanded Batteries

Fig. 4.3 and Fig. 4.4 depict the number of demanded batteries for a 24-hour period

and a one-week period, respectively. As with the total electricity load prediction,

the ensemble learning model, along with the base models (RNN, LSTM, and GRU),

accurately follows the trend of the true number of demanded batteries. The demand

pattern for batteries closely mirrors the electricity load pattern since the total elec-

tricity load is directly related to the energy required for battery demand.

In the 24-hour number of demanded batteries curve (Fig. 4.3), all prediction

algorithms e↵ectively capture the actual trend of the number of demanded batteries.
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Figure 4.3: 24-hour Number of Demanded Batteries Curve with Prediction Results

We observe that battery demand is virtually non-existent before 5:00. The demand

then experiences a significant increase during peak hours, from 6:00 to 8:00. A smaller

peak is evident at 12:00, and a moderate rise in demand occurs between 14:00 and

16:00.

Figure 4.4: One week Number of Demanded Batteries Curve with Prediction Results

The one-week number of demanded batteries curve (Fig. 4.4) showcases patterns

similar to the 24-hour curve, with daily fluctuations from Monday to Friday. The

prediction algorithms e↵ectively capture the actual trend of the number of demanded
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batteries. The peak hour consistently takes place around morning, with milder peak

hours occurring in the afternoon.

Number of Demanded Batteries with STP

Table 4.6 presents a comparison of the prediction performance for the number of

demanded batteries using the Ensemble Learning model and the three base models

(RNN, LSTM, and GRU). The performance is evaluated based on two metrics: MAE

and RMSE. The look-back time step is set to 96, which is equivalent to 24 hours, and

the output focuses on STP with 1 time step of output. As shown in the table, the

Ensemble Learning model outperforms the base models, achieving the lowest MAE

of 0.265075 and RMSE of 0.713261. In terms of MAE, the Ensemble Learning model

demonstrates improvements of approximately 25.36%, 17.45%, and 21.82% over the

RNN, LSTM, and GRU models, respectively. Similarly, for the RMSE metric, the

Ensemble Learning model displays enhancements of around 10.21%, 1.33%, and 1.53%

compared to the RNN, LSTM, and GRU models, respectively. These results indicate

that the Ensemble Learning model is more accurate in predicting the number of

demanded batteries with a 96 look-back time step and a single predicted time step

compared to the RNN, LSTM, and GRU models.

To further examine the e↵ectiveness of our ensemble learning model, we set a

192 look-back time step and 1 predicted time step. As shown in Table 4.7, the

Ensemble Learning model outperforms the base models, achieving the lowest MAE

of 0.288359 and RMSE of 0.716058. The improvements in MAE are approximately

22.38%, 20.43%, and 30.09% over the RNN, LSTM, and GRU models, respectively.

For the RMSE metric, the enhancements are around 5.87%, 1.00%, and 10.57% com-

pared to the RNN, LSTM, and GRU models, respectively.

Table 4.6: Number of Demanded Batteries Prediction with 96 Look-back Time Step
and 1 Predicted Time Step

Metric RNN LSTM GRU Ensemble Learning
MAE 0.355282 0.321016 0.339137 0.265075
RMSE 0.794378 0.722892 0.724356 0.713261
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Table 4.7: Number of Demanded Batteries Prediction with 192 Look-back Time Step
and 1 Predicted Time Step

Metric RNN LSTM GRU Ensemble Learning
MAE 0.371670 0.362359 0.412517 0.288359
RMSE 0.760759 0.723310 0.800816 0.716058

Number of Demanded Batteries with LTP

Table 4.8 provides a performance comparison of the Ensemble Learning model and the

base models (RNN, LSTM, and GRU) for LTP of the number of demanded batteries.

The look-back time step is set to 96, equivalent to 24 hours, and the output focuses

on 24 predicted time step. As shown in the table, the Ensemble Learning model

demonstrates superior performance, achieving the lowest MAE of 0.314241 and RMSE

of 0.817748. The improvements in MAE are approximately 23.7%, 17.1%, and 21.0%

over the RNN, LSTM, and GRU models, respectively. For the RMSE metric, the

enhancements are around 5.73%, 0.36%, and 2.42% compared to the RNN, LSTM,

and GRU models, respectively.

For a 192 look-back time step and 24 predicted time step, Table 4.9 presents the

performance comparison of the Ensemble Learning model and the base models. The

Ensemble Learning model continues to outperform the base models, achieving the

lowest MAE of 0.307174 and RMSE of 0.809523. The improvements in MAE are

approximately 25.1%, 15.4%, and 20.7% over the RNN, LSTM, and GRU models,

respectively. For the RMSE metric, the enhancements are around 7.36%, 1.65%, and

2.42% compared to the RNN, LSTM, and GRU models, respectively.

Table 4.8: Number of Demanded Batteries Prediction with 96 Look-back Time Step
and 24 Predicted Time Step

Metric RNN LSTM GRU Ensemble Learning
MAE 0.411739 0.379010 0.397670 0.314241
RMSE 0.867443 0.820693 0.837975 0.817748

4.4.3 Insights on the Prediction Module

In the previous sections, we compared the performance of Ensemble Learning with the

base models (RNN, LSTM, and GRU) for both total electricity load prediction and
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Table 4.9: Number of Demanded Batteries Prediction with 192 Look-back Time Step
and 24 Predicted Time Step

Metric RNN LSTM GRU Ensemble Learning
MAE 0.410289 0.363161 0.387423 0.307174
RMSE 0.873763 0.823098 0.829572 0.809523

the number of demanded batteries prediction. The results reveal that the Ensemble

Learning model consistently outperforms the base models in both scenarios.

For STP, when the look-back time step is set to 96, the performance of the En-

semble Learning model is better than the case when the look-back time step is set

to 192. Conversely, for LTP, we observe that a 192 look-back time step yields better

performance than a 96 look-back time step. Based on these findings, we will adopt

a 96 look-back time step for STP and a 192 look-back time step for LTP in our

forecasting model.

4.5 RLC Evaluation

We evaluate and compare the performance of our proposed RLC-S and RLC-L schemes

with Greedy Charging, Random Charging and DDPG-based Charging schemes in the

context of a BSS with 15 batteries, 10 batteries and 5 batteries respectively. We ex-

amine three essential metrics: electricity cost, average SOC discrepancy rate, and

battery service rate.

4.5.1 Performance of RLC for BSS with 15 Batteries

Electricity Cost

As demonstrated in Figure 4.5, the logarithmic-scale representation of the electricity

costs for the five charging strategies, the superior performance of both the RLC-S

and RLC-L schemes is evident when compared to the Greedy Charging, Random

Charging, DBC and DDPG - based Charging schemes. The RLC-L scheme notably

outshines the others, registering the lowest electricity cost across all strategies. This

translates to cost reductions of 89.05%, 67.26%, 75.81%, 13.4%, and 6.1% when com-

pared to the Greedy Charging, Random Charging, DBC, DDPG - based Charging,

and RLC-S schemes respectively.
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Figure 4.5: Electricity Cost for BSS with 15 Batteries

Average SOC Discrepancy Rate

The average SOC discrepancy rate for each strategy is shown in Fig. 4.6. A lower

SOC discrepancy rate indicates that the BSS can supply batteries with SOC levels

more in line with the customers’ needs, improving customer satisfaction and the BSS’s

operational e�ciency. In maintaining a lower average SOC discrepancy rate, the RLC-

S and RLC-L schemes excel compared to the Random Charging, DBC and DDPG-

based Charging schemes. The Greedy Charging strategy serves as a benchmark,

due to its methodology of filling the battery in the BSS to the maximum possible

extent. The RLC-L scheme proves to be superior by achieving the lowest average SOC

discrepancy rate among the Random Charging, DBC, DDPG-based Charging, and

RLC-S strategies, while closely matching the benchmark set by the Greedy Charging

strategy. This result validates the RLC-L’s ability to make accurate battery demand

forecasts and adjust the charging strategies accordingly, thus catering to customer

needs more e↵ectively.

Battery Service Rate

Fig. 4.7 illustrates the battery service rates for the tested strategies. A higher battery

service rate indicates a more e�cient use of BSS resources and a greater ability to

meet the demand for battery swaps. The RLC-S and RLC-L outperform the Random
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Figure 4.6: Average SOC Discreacy Rate for BSS with 15 Batteries

Charging, DBC and DDPG-based Charging schemes significantly in terms of battery

service rate. The Greedy algorithm, again, serves as the benchmark for this metric.

The RLC-L attains the highest battery service rate among all the strategies, coming

close to the benchmark set by the Greedy Charging strategy. This highlights the RLC-

L’s proficiency in accurately predicting battery demand and e↵ectively managing the

BSS’s battery inventory. Consequently, the RLC-L scheme is better equipped to fulfill

battery demand and enhance the operational e�ciency of the BSS.

Figure 4.7: Battery Service Rate for BSS with 15 Batteries
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4.5.2 Performance of RLC for BSS with 10 Batteries

Electricity Cost

Figure 4.8: Electricity Cost for BSS with 10 Batteries

As illustrated in Fig. 4.8, both the RLC-S and RLC-L schemes continue to demon-

strate superior performance over the baseline strategies in terms of electricity cost.

Particularly, the RLC-L scheme achieves the lowest cost among all strategies. In more

specific terms, the RLC-L strategy leads to cost reductions of 85.1%, 62.4%, 72.76%,

8.9%, and 2.7% when compared to the Greedy Charging, Random Charging, DBC,

DDPG - based Charging, and RLC-S strategies, respectively.

Average SOC Discrepancy Rate

As depicted in Fig. 4.9, the RLC-S and RLC-L strategies maintain a superior perfor-

mance in terms of achieving a lower average SOC discrepancy rate compared to the

Random Charging, DBC and DDPG-based Charging methods, mirroring the results

observed in the experiment with 15 batteries. The Greedy Charging strategy serves

as a benchmark as well. Among these, the RLC-L strategy emerges as the most

e↵ective, achieving the lowest average SOC discrepancy rate, while closely matching

the benchmark set by the Greedy Charging strategy. Notably, the performance of

the RLC-L strategy is close to that of the upper bound set by the Greedy Charging

strategy.
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Figure 4.9: Average SOC Discrepancy Rate for BSS with 10 Batteries

Battery Service Rate

In the context of battery service rate, as depicted in Fig. 4.10, the RLC-S and RLC-L

strategies significantly outperform Random Charging, DBC and DDPG-based Charg-

ing. The RLC-L scheme, in particular, excels by delivering the highest service rate,

demonstrating its enhanced capacity to cater to battery demand and manage battery

inventory e↵ectively. Notably, the performance of the RLC - L scheme approaches

the upper bound set by the Greedy Charging strategy.

Figure 4.10: Battery Service Rate for BSS with 10 Batteries
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4.5.3 Performance of RLC for BSS with 5 Batteries

Electricity Cost

As indicated in Fig. 4.11, both RLC-S and RLC-L schemes continue to showcase their

superiority in managing electricity costs, even in the context of a smaller BSS. The

RLC-L scheme shines once again, demonstrating the lowest electricity cost among

all schemes. Specifically, the RLC-L strategy represents a cost reduction of 81.5%,

62.19%, 53.19%, 28.6% and 8.2% when compared to the Greedy, Random, DBC,

DDPG, and RLC-S schemes, respectively. This consistent performance underlines

the e�cacy of our proposed schemes in optimizing electricity costs across di↵erent

scales of BSS.

Figure 4.11: Electricity Cost for BSS with 5 Batteries

Average SOC Discrepancy Rate

As depicted in Fig. 4.12, the RLC-S and RLC-L schemes continue to outperform

the Random Charging, DBC and DDPG-based Charging strategies in terms of main-

taining a lower average SOC discrepancy rate. The RLC-L scheme proves to be

exceptional, securing the lowest average SOC discrepancy rate among all the strate-

gies, and closely approximating the upper bound set by the Greedy Charging scheme.

This rea�rms the superior capability of the RLC-L scheme in satisfying customer

battery demands even within the confines of a smaller-scale BSS.
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Figure 4.12: Average SOC Discrepancy Rate for BSS with 5 Batteries

Battery Service Rate

Fig. 4.13 showcases the performance of the RLC-S and RLC-L schemes in terms

of battery service rate, with the RLC-L strategy outshining all others by achieving

the highest rate. The RLC-L scheme, in particular, is remarkable in securing the

topmost battery service rate, nearing the upper bound set by the Greedy scheme.

This underscores its superior capability in accurately forecasting battery demand

and e↵ectively managing the BSS’s battery inventory, irrespective of the BSS’s size.

Figure 4.13: Battery Service Rate for BSS with 5 Batteries



56

4.5.4 Insights on RLC

Our results underscore the e↵ectiveness of the proposed DRL-based BSS optimiza-

tion framework, RLC, which incorporates predictive capabilities to guide the charg-

ing strategy. In particular, the RLC-L scheme, which uses long-term predictions,

demonstrates superior performance across all metrics, highlighting the importance of

foresight in BSS management.

Our RLC scheme can adeptly handle varying operational scales, demonstrating its

robustness and scalability. Despite the decrease in available resources as the BSS size

reduces from 15 to 5 batteries, the RLC maintains its superiority over the baseline

methods in electricity cost, average SOC discrepancy rate, and battery service rate.

This robustness suggests that the RLC scheme is capable of optimizing BSS operations

across a range of di↵erent settings.

Additionally, the RLC scheme consistently outperforms the baseline methods,

including the DDPG-based charging strategy that lacks predictive capabilities. This

superiority underlines the value of incorporating predictive information into the DRL

framework, with the RLC strategies utilizing projected trends in battery demand and

electricity prices to make more informed decisions.

When it comes to customer satisfaction, as indicated by the average SOC dis-

crepancy rate, the RLC scheme markedly outperforms the baseline methods. In par-

ticular, the RLC-L strategy secures the lowest average SOC discrepancy rate across

all settings, implying that it is highly e↵ective in meeting customers’ preferences for

battery SOC levels during a swap. This success is vital, given that meeting customer

expectations is key to the commercial success of a BSS.

Furthermore, the RLC scheme excels in the battery service rate, demonstrating its

proficiency in managing battery inventory to meet the demand for swaps. Notably,

the RLC-L scheme consistently delivers the highest battery service rate, emphasizing

its superior ability to balance the competing objectives of minimizing electricity cost

and maximizing service level.

While our results highlight the e�cacy of our RLC approach, they also showcase

its significant improvement over existing solutions for BSS management. The key

di↵erences and advantages primarily lie in two aspects: scenario setup and method-

ological approach.
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• Scenario: RLC addresses a dynamic real-world scenario where EVs arrive at

BSS at di↵erent times with varying energy demands. By leveraging individual

user profiles, including their energy demand and SOC, RLC personalizes the

battery swapping process. This personalization ensures that each EV’s energy

demand is met as closely as possible, significantly enhancing the customer’s

battery swap experience.

• Approach: A defining characteristic of RLC is its integration of a prediction

model into the DRL framework. By including short-term or long-term pre-

diction into the charging strategy, RLC is capable of anticipating future EV

arrivals and adjusting charging rates accordingly. This ability enables RLC to

optimize the charging strategy in a way that minimizes costs while contributing

to a more stable and e�cient power grid.

Overall, RLC not only outperforms traditional methods in terms of operational

e�ciency but also in personalizing the battery swapping process based on individual

EV requirements. By adopting a more realistic scenario setup and incorporating

predictive capabilities into the DRL framework, our RLC approach is better equipped

to address the complexities and challenges associated with BSS management.
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Conclusion and Future Work

5.1 Conclusion

Our research aimed to provide intelligent and practical solutions to the challenges

involved in operating and managing BSS, a significant component of the rapidly ex-

panding EV industry. The main objective of the proposed strategies was to markedly

improve the operational e�ciency of the BSS, while considering key variables such

as the instability of electricity prices, the fluctuation of battery service rates, and

varying SOC discrepancy rates.

To address these complexities, we introduced two novel methodologies, RLC-S

and RLC-L. These schemes were designed with a keen emphasis on adaptability, scal-

ability, and optimization, suitable for various scales of BSS operations. In practical

situations, EVs dynamically arrive at BSS, each with unique energy needs and SOC.

On arrival, the BSS operator receives each EV’s profile. Accurately predicting fu-

ture EV arrivals and profiles is crucial in deciding charging rates for each battery. If

predictions show high energy-demand EVs arriving, the operator should proactively

charge batteries at higher rates to meet demand. If only a few low-energy-demand

EVs are expected, the operator might delay some charging. By e↵ectively predicting

future EV arrivals and adjusting charging rates accordingly, the operator can optimize

the charging strategy, minimize costs, and contribute to a more stable and e�cient

power grid.

Our results indicate that both RLC-S and RLC-L consistently outperform tra-

ditional strategies like Greedy Charging, Random Charging, DBC and DDPG-based

Charging. They demonstrated their e↵ectiveness and e�ciency by consistently achiev-

ing three primary objectives. First, they managed to lower electricity costs, which

is vital given the instability of energy market prices. Second, they elevated battery

service rates, indicating a more e�cient usage of battery resources. Finally, they

maintained a relatively low average SOC discrepancy rate, showing their capability

58
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to manage the di↵erence between the charge levels of swapped out and in batteries.

However, while our findings are promising, it is vital to recognize certain lim-

itations of our proposed methodologies. The models we presented are built upon

key assumptions, such as all EVs being compatible with the BSS, and the battery

swapping time being negligible in comparison to the charging time. Moreover, our

methodologies currently do not account for potential battery degradation over time,

which could considerably influence the BSS’s e�ciency and the batteries’ lifespan.

These assumptions represent potential areas for further investigation in future re-

search.

Additionally, our prediction models, while generally accurate, are not flawless.

Numerous real-world variables, including weather conditions, tra�c patterns, and

individual driving habits, can a↵ect the arrival times and energy demands of EVs.

These variables are not currently accounted for in our model, suggesting room for en-

hancement and fine-tuning to improve our BSS management strategies’ e↵ectiveness.

This thesis demonstrates how our methodologies not only excel beyond traditional

methods, but also hold immense potential to transform the operational aspects of BSS

in the EV industry. As we persist in our endeavor to create e�cient, sustainable,

and adaptable solutions, we are confident that these innovative strategies will play a

significant role in the future of battery management within the EV landscape.

5.2 Future Work

The outcomes of this research present a wealth of opportunities for further investiga-

tions. Although the proposed RLC scheme has demonstrated significant e↵ectiveness

in managing BSS, several facets can be delved into for further refinement and opti-

mization:

• Incorporation of Additional Real-world Variables: The simulations and

experiments conducted in our study were based on a simplified representation

of BSS operations. In practical scenarios, there are numerous other factors that

could influence the performance of BSS. These include varying rates of battery

degradation, a wide range of EV types, and diverse customer behaviors and

preferences. By integrating these considerations into the RLC framework, we
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could potentially augment the model’s precision and real-world relevance.

• Implementation of Advanced Forecasting Models: While our prediction

module built on ensemble learning has yielded satisfactory results, the adoption

of more sophisticated predictive models could enhance forecasting accuracy.

For instance, transformer-based models or attention-based models, known for

their e�ciency in handling sequential data, might further improve the predictive

power of our system.

• Exploration of Multi-agent Learning: Our research was based on the op-

eration of a single BSS. In a real-world context, there are likely to be multiple

BSS that interact and influence each other’s operation. Delving into the realm

of multi-agent reinforcement learning could furnish insights on how to optimally

manage a network of interconnected BSS.

• Integration with Power Grid Operations: BSS also have the potential

to be integrated into power grid operations, providing essential services such

as frequency regulation and demand response. The development of a DRL

framework that simultaneously optimizes both BSS operations and grid services

could be a promising avenue of research, creating a more holistic solution for

energy management in the context of EVs.

Overall, while our research has achieved significant progress in the management

of BSS, these prospects for future work illustrate the vast potential for further ex-

ploration in this field, potentially leading to even more sophisticated and e�cient

strategies for BSS operation.
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