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Universidad de Oviedo, 33006 Oviedo, Spain
3)Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Rd, Halifax,
Nova Scotia, B3H 4R2, Canada

(Dated: 21 February 2022)

Many crystal structure prediction protocols only concern themselves with the electronic energy of molecular
crystals. However, vibrational contributions to the free energy (Fvib) can be significant in determining accurate
stability rankings for crystal candidates. While force-field studies have been conducted to gauge the magnitude
of these free-energy corrections, highly accurate results from quantum mechanical methods, such as density-
functional theory (DFT), are desirable. Here, we introduce the PV17 set of 17 polymorphic pairs of organic
molecular crystals, for which plane-wave DFT is used to calculate the vibrational free energies and free-
energy differences (∆Fvib) between each pair. Our DFT results confirm that the vibrational free-energy
corrections are small, having a mean value of 1.0 kJ/mol and a maximum value of 2.3 kJ/mol for the PV17
set. Furthermore, we assess the accuracy of a series of lower-cost DFT, semi-empirical, and force-field models
for computing ∆Fvib that have been proposed in the literature. It is found that calculating the Fvib using
the Γ-point frequencies does not provide ∆Fvib values of sufficiently high quality. In addition, ∆Fvib values
calculated using the various approximate methods have mean absolute errors relative to our converged DFT
results of equivalent or larger magnitude than the vibrational free-energy corrections themselves. Thus, we
conclude that, in a crystal structure prediction protocol, it is preferable to forego the inclusion of vibrational
free energy corrections than to estimate them with any of the approximate methods considered here.

I. INTRODUCTION

Polymorphism,1–3 the ability of a substance to exist
in more than one crystalline phase, is of great interest in
many domains of chemistry and materials science, partic-
ularly in drug development.4,5 Because polymorphs ex-
hibit different chemical and physical properties, it is of-
ten interesting to know a priori whether a polymorph
with certain desirable properties will be obtained. The
field of molecular crystal-structure prediction (CSP)6,7

aims to use computational methods to predict the ther-
modynamically stable polymorph, which is often (but not
necessarily) also the experimentally observed structure,
beginning from the molecular diagram alone. CSP is par-
ticularly useful for the elucidation of crystal structures
of new molecules, such as a pharmaceutical compound,
or when searching for solid-state structures that exhibit
specific properties like charge-carrier mobilities.8,9

There is not one unique way to conduct a CSP study.
The challenge is in determining a suitable balance be-
tween cost and accuracy to predict the likely isolable
polymorph(s) and the crystal energy landscape. Can-
didate structures are initially generated by sampling
the conformational and solid-form configuration space
(usually with restrictions to the most common space
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groups) of a molecule of interest.10,11 While dispersion-
corrected density-functional theory (DFT) has shown
promise for the subsequent energy ranking,12–20 it still
remains unfeasible to apply DFT to all candidates due
to the vast number of structures generated. As a re-
sult, CSP studies tend to take the form of a multi-
level refinement approach, where several methods are
used sequentially to narrow the list of potential candi-
date structures.14,20–22 Classical force fields,23 density-
functional tight binding,24,25 or minimal-basis semi-
empirical methods26,27 may be employed in the early
stages of energy ranking to minimize the number of DFT
calculations that need to be performed.

While there are notable exceptions,15–17 most CSP
protocols are zeroth-order CSP,6 in which only the elec-
tronic energies are considered while other contributions
to the free energy are neglected. In real molecular crys-
tals, lattice vibrations, known as phonons, contribute in
a small but significant way to the free energy. Using a
classical force-field approach, it has been shown that the
vibrational contributions to the free-energy difference for
most organic polymorph pairs are quite small, rarely ex-
ceeding 2 kJ/mol.28 Inclusion of vibrational effects still
resulted in the reordering of ca. 10-20% of the studied
structure pairs,28,29 due to the small energy differences
between isolable polymorphs. Therefore, an accurate
treatment of these vibrational effects is desirable in or-
der to accurately determine the free-energy landscape of
a given compound and to find the thermodynamically
stable structure. However, due to the expensive nature
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of phonon frequency calculations, it is at present very
computationally demanding to use DFT methods to cal-
culate vibrational free-energy corrections, especially for
the large-unit-cell molecular crystals commonly encoun-
tered in CSP studies.

As an alternative, approximate methods and models
have been proposed to compute the phonon frequencies
and vibrational free-energy contributions at reduced cost.
When using approximate methods, it is important to con-
sider the trade-off between accuracy and cost. The vibra-
tional free energies calculated using some approximate
methods have been compared to converged DFT free en-
ergies for a few small molecular crystals.30–32 However,
in CSP studies, we are interested in computing the rel-
ative free-energy corrections for a crystal structure pair,
which may or may not benefit from error cancellation. In
this work we propose a new benchmark set, termed the
PV17 dataset, for vibrational free energies and energy
differences of molecular crystals. The purpose of this
new data set is twofold: i) to provide a reasonably sized
benchmark set of high quality (harmonic) vibrational free
energy data, and ii) because the dataset contains crystal
pairs, it also allows the assessment of approximate meth-
ods regarding the calculation of vibrational free-energy
differences, and consequently their suitability for incor-
poration into a CSP protocol.

To build the PV17 dataset, we use the Nyman poly-
morph library (NPL2016),29 which contains a large set of
molecular crystal structures primarily consisting of two
polymorphs for a given organic molecule. A subset of
17 polymorph pairs from this library are identified in-
volving crystals with small unit cells to ensure that the
high-level benchmark calculations are feasible. The ref-
erence vibrational free-energy data in the PV17 dataset
uses dispersion-corrected DFT to evaluate the phonon
frequencies and vibrational free-energy corrections within
the harmonic approximation. A fully anharmonic or even
quasi-harmonic treatment would be desirable, but much
more costly, and would complicate the application of the
PV17 set to gauge the quality of approximate vibrational
models. The B86bPBE-XDM33–35 functional is used in
conjunction with a plane-wave basis set as our high-level
method to calculate the reference vibrational free ener-
gies because of its high accuracy and reliability for molec-
ular crystals.8,9,18,19,36

Several approximate methods and models are exam-
ined in this work using the data in the new PV17 dataset:
(i) distributed multipole analysis (DMA) force fields im-
plemented in the DMACRYS package23 using the Williams
and FIT potentials; (ii) sHF-3c,26,27 which is a minimal-
basis Hartree–Fock method with added empirical correc-
tions for dispersion and basis-set incompleteness; and
(iii) DFTB3-D3(BJ),24 a dispersion-corrected density-
functional tight-binding scheme. In addition, we also
examine a recent pairing of DFTB3-D3(BJ) with a cor-
rective model, termed the mode-matching32 approach,
which has shown excellent results for computing various
thermodynamic quantities. Mode matching serves as an

additive correction to the DFTB3-D3(BJ) phonon den-
sity of states, although it is easily applicable to other
methods.

Our results confirm28,30,32 that computing vibrational
corrections at the Γ-point only is insufficient to obtain
converged values with both high and low levels of the-
ory. The errors yielded by the approximate methods in
the calculation of vibrational free-energy differences, in-
cluding the mode-matching approach, are found to be
comparable in magnitude to the free-energy differences
themselves. This indicates that there are no grounds for
preferring these approximate methods over zeroth-order
CSP, and that further efforts are needed to develop accu-
rate and cheap vibrational models for routine application
in CSP studies. Overall, the converged vibrational cor-
rections to the free-energy differences have values of 2.3
kJ/mol or less, with an average value of 1.0 kJ/mol, con-
firming the previous force-field result28 that such correc-
tions need only be applied when two (or more) candidate
structures are nearly degenerate.

II. BACKGROUND THEORY

A. Phonons and free-energy corrections

Phonon frequencies (ω) are obtained at an arbitrary
wavevector q within the first Brillioun zone as solutions
of the secular equation

det

∣∣∣∣ 1√
MmMn

C̃ξηmn(q)− ω2(q)

∣∣∣∣ = 0, (1)

where Mm is the mass of atom m, ξ and η are the Carte-

sian directions, and C̃ is the Fourier transform of the
force-constant matrix, which is given by

Cξηmn ≡
∂2E

∂uξm∂u
η
n

, (2)

where uξm is the displacement of atom m in Cartesian
direction ξ. The force-constant matrix is constructed as
the second derivative of the potential-energy surface with
respect to two nuclear displacements and can be com-
puted via finite-difference methods or density-functional
perturbation theory (DFPT).37

Within the harmonic approximation, the Gibbs free
energy is

G = Estatic + Fvib + pV, (3)

where Estatic is the equilibrium, ground-state DFT en-
ergy, Fvib is the vibrational contribution to the Helmholtz
free energy, and pV is the pressure-volume work, which
is negligible at ambient pressure. The accurate calcu-
lation of Fvib and its difference between crystal pairs is
the focus of this work. In the harmonic approximation,
the vibrational free energy per unit cell can be computed
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from the harmonic phonon frequencies as

Fvib =
1

Nq

3n∑
i=1

Nq∑
q

~ωi,q
2

+ kBT ln

[
1− exp

(
−~ωi,q
kBT

)]
,

(4)
where kB is Boltzmann’s constant and T is the temper-
ature. The sums run over the 3n phonon branches (n is
the number of atoms in the unit cell) and the Nq sam-
pled q-points in the first Brillouin zone. The first term
in Eq. 4 is the zero-point energy and the second is the
temperature-dependent contribution to the Fvib.

In this work, the finite-difference approach is used to
calculate the force-constant matrix (Eq. 2). The conver-
gence of the Fvib with respect to the size of the supercell
or, equivalently, the q-point sampling of the Brillouin
zone, was studied by systematically varying the supercell
according to the formula

ni = int

[
max

(
1, Rk|bi|+

1

2

)]
, (5)

where ni is the size of the supercell in the i = a, b, and c
directions, bi is the corresponding reciprocal lattice vec-
tor of the primitive unit cell, and Rk is a length parame-
ter. For each individual crystal, the Rk parameter was in-
creased until the Fvib was converged to within a threshold
of 0.5 kJ/mol per molecule. The phonon frequencies were
then Fourier-reinterpolated on a 12×12×12 Monkhorst-
Pack38 mesh, and the final value of Fvib was calculated
by integration. An example of the difference between the
converged phonon density of states (phDOS) and one ob-
tained by reinterpolation using only the Γ-point is shown
in Figure 1 for the Iβ phase of ethylenediamine. It is clear
from this figure that sampling q points other than Γ is es-
sential to capture the features of the phDOS, particularly
at low frequency. It is important to note that the sec-
ond, temperature-dependent, term in the harmonic free
energy (Eq. 4) diverges when ω → 0. Therefore, the
low-frequency region of the phDOS dominates the ther-
mal contribution to the harmonic free energy, for which
reason it is essential to model the dispersion of the low-
frequency vibrations correctly.

B. Mode Matching

The mode matching method is a hybrid approximate
model recently proposed by Cook and Beran designed
to correct the low-level DFTB3-D3(BJ) phonon density
of states to yield accurate thermodynamic properties in
molecular crystals.32 The mode matching approach cal-
culates the harmonic vibrational frequency for mode i at
point q, ωi(q), as

ωi(q) ≈ ωlow
i (q) +

[
ωhigh
i (Γ)− ωlow

i (Γ)

]
. (6)

There are three items required for the evaluation of
the mode matching frequencies: i) phonon frequencies

FIG. 1. Overlay of the DFT phDOS for the Iβ phase of
ethylenediamine (CCDC code ETDIAM16) computed at Γ
and using a converged q-point grid.
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at Γ computed with an accurate high-level theoreti-
cal method, ii) the frequencies at Γ calculated with a
cheaper, less accurate, low-level method, and iii) the con-
verged phDOS from the less accurate method. In Cook
and Beran’s work, plane-wave DFT was employed for the
high level of theory and DFTB for the low level method.
An example of mode matching is shown in Figure 2 for
the Iβ phase of ethylenediamine. The advantage of this
simple model is that it is no longer necessary to ade-
quately sample the Brillouin zone with DFT, and in-
stead DFTB can be used for this purpose, which leads to
a significant reduction in computational cost. Figure 2
shows that the mode matching method is successful in re-
producing the high-frequency, low-dispersion features of
the phDOS. However, the low-frequency acoustic part of
the phDOS as well as the region encompassing the inter-
molecular lattice vibrations, which dominate the thermal
contribution to the free energy, are not as well repro-
duced.

C. Treatment of the Acoustic Modes

Acoustic phonons correspond to low-frequency long-
wavelength vibrations of the solid and, hence, are
the slowest to converge with respect to q-point sam-
pling. Due to their low frequencies, the acoustic modes
(AM) also have high contributions to the temperature-
dependent term of the Fvib (Eqn. 4). In addition, due
to the fact that the acoustic frequencies at Gamma are
not zero, Cook and Beran’s mode matching method can-
not be applied to correct the DFTB acoustic frequencies
using the DFT frequencies at Γ.

One way of evaluating the acoustic contribution to the
Fvib is the Debye model, in which the solid is assumed to
behave like a vibrating continuum and the acoustic vibra-
tions are treated as stationary waves spanning the whole
crystal. A slightly different version of the Debye model
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FIG. 2. Top: Overlay of the phDOS of the Iβ phase of
ethylenediamine (ETDIAM16) computed with QE and DFTB
using a converged supercell. Bottom: the same phDOS with
QE and the shifted DFTB phDOS calculated using the mode
matching method.
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was proposed by Nyman et al.30 and subsequently used
by Cook and Beran32 to treat the vibrational acoustic
modes (AM). In this AM model, the phonon dispersion
is assumed to be sinusoidal in the wave-vector, as in a
one-dimensional atom chain. The acoustic frequencies
are given in terms of a Debye-like frequency, ωD, by

ωac = ωD sin

(
π

2

|q|
|qzb|

)
, (7)

where |qzb| is the norm of the vector q at the correspond-
ing Brillioun zone boundary. The Debye-like frequency

ωD =
2v|qzb|
π

, (8)

is therefore the frequency at the zone boundary for
the corresponding direction in reciprocal space (consider
q = qzb in Eq. 7). In this equation, v is the velocity of
sound propagating through the crystal along direction q
obtained by solving the Christoffel equation,

det
∣∣Γij − ρv2δij∣∣ = 0, (9)

where ρ is the density and δij is the Kronecker delta. The
Γij ’s are the 3×3 Christoffel matrices given by

Γij =
∑
nm

qnCinmjqm, (10)

where qn are direction vector Cartesian components in
reciprocal space.

In their AM model, Nyman et al. chose 13 symmetry-
unique directions, corresponding to the simplest Lebe-
dev integration quadrature, and used them to compute
an average Debye frequency, which is ultimately the only
parameter in the model.30,32 The elastic constant tensor
(Cinmj) required to calculate the sound velocities along
the different propagation directions is computed using
the stress-strain relations. DFT calculations for a series
of small unit-cell deformations at the equilibrium geom-
etry are used to determine the stress as a function of
strain and linear least-squares fits are used to compute
the elastic constant tensor.32

III. COMPUTATIONAL METHODOLOGY

Geometry optimization and phonon frequency calcula-
tions were performed for our benchmark set of polymorph
pairs in order to calculate the harmonic Fvib. In all geom-
etry optimizations, both the atomic positions and lattice
vectors were allowed to fully relax, unless otherwise spec-
ified. Phonons were always calculated at the same level
of theory as the geometry optimization. All free energies
were calculated at 300 K. The specific parameters used
within each method are given below.

Phonon frequency calculations conducted with the
Quantum ESPRESSO,39 CRYSTAL17,40 and DFTB+24 pack-
ages used the frozen phonon method as implemented in
the phonopy41 code, v. 2.9.3. The mode matching cal-
culations used the Modematch program of Ref. 32. The
force-field calculations used the DMACRYS23 code, v. 2.3.0,
together with the autold and autofree programs of
Nyman,29 which construct a series of linear supercells
required to obtain the phonons beyond the Γ-point and
subsequently calculate the vibrational free energy.

Plane-wave DFT43 calculations used periodic bound-
ary conditions and the projector augmented-wave
(PAW)44 approach implemented in the Quantum
ESPRESSO39 (QE) software package, v. 6.5. We used the
B86bPBE33,34 generalized-gradient approximation func-
tional and the exchange-hole dipole moment (XDM) dis-
persion model.35,45 The convergence thresholds were set
to 10−5 and 10−4 Ry for the energy and forces, respec-
tively. In addition, the convergence in the pressure was
set to 10−2 kbar. Kinetic-energy and charge-density cut-
offs of 80 Ry and 800 Ry, respectively were used along
with a Monkhorst-Pack (MP)38 k-point mesh selected by
using an Rk value of 50 bohr in Eq. 5.

sHF-3c26,27 calculations were performed using the
CRYSTAL1740 code. Full geometry optimizations (cell
and atomic positions) were carried out starting from
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TABLE I. Molecular structures, Cambridge Crystallographic Data Centre (CCDC)42 codes, converged B86bPBE-XDM Fvib

values (in kJ/mol per molecule), and the corresponding supercell sizes, for all crystal structures in the PV17 dataset.

Compound CSD code Supercell Fvib Compound CSD code Supercell Fvib

ETDIAM16 2×1×2 274.77 QQQCIV01 3×1×2 105.55
ETDIAM18 2×2×1 276.21 QQQCIV08 3×3×1 106.45

ethylenediamine acetonitrile

CUMMIG01 2×1×3 286.26 TRITAN03 2×2×1 201.79
CUMMIG02 2×3×2 285.07 TRITAN10 2×2×2 201.95

bicyclopropylidene 1,3,5-trithiane

EFUMAU 2×2×1 315.50 THHYDT 3×2×2 184.47
EFUMAU03 2×3×1 315.20 THHYDT02 3×2×1 183.45

pyrrolidine 2-thiohydantoin

XOCJEE 2×1×4 209.12
XOCJEE01 2×2×2 207.39

DAVVUR 1×2×2 1163.31 1-nitro-2-methylisothiourea

DAVVUR 1×2×2 1163.31 GICTIV 2×1×2 242.64

GICTIV01 2×2×1 242.90

1,7-di-t-butyl-3,9-dimethyl-dibenzonaphthyrone 1,1’-dinitro-3,3’-azo-1,2,4-triazole

TRDMPP01 2×2×2 400.69 MALEHY10 2×2×2 204.85

TRDMPP02 1×2×2 402.83 MALEHY12 3×2×2 205.05

cyclo-D-alanyl-L-alanyl maleic hydrazide

MALIAC12 2×1×2 190.94 FUMAAC 2×1×2 191.14
MALIAC13 4×2×1 190.81 FUMAAC01 3×2×2 193.02

maleic acid fumaric acid

OXALAC03 2×1×2 113.07 SUCACB02 2×1×2 251.65

OXALAC04 2×1×2 111.49 SUCACB07 2×2×3 250.32

oxalic acid succinic acid

REKBUE 3×2×1 379.18 EFURIH 2×2×1 489.43
REKBUE01 3×3×1 378.73 EFURIH04 2×2×2 489.03

N,N’-oxalyldiglycine scyllo-inositol

the B86bPBE-XDM equilibrium geometries. The conver-
gence thresholds on the root-mean-square in the gradient
and displacement between subsequent optimization steps
were set to 3× 10−5 and 1.2× 10−4 a.u., respectively,
which are one order of magnitude smaller than the de-
fault values. The maximum value for the trust radius was
set to 0.25 a.u. and a 4×4×4 MP k-point mesh was used.
Phonon frequencies were scaled by 0.86, as recommended
by Ref. 26.

SCC-DFTB3-D3(BJ)24,25 calculations with the 3ob-3-
125 parametrization were performed using the DFTB+24

code, v. 20.2.1. Full geometry optimizations were
started from the QE equilibrium geometries. The

MaxForceComponent parameter, which sets the thresh-
old for convergence in the forces, was set to 10−5 a.u.
Atomic Hubbard derivatives and the parameters used in
the D3(BJ) dispersion model were set to those described
in Ref. 25.

Force-field calculations were carried out under the
rigid-body approximation as implemented in the
DMACRYS23 code, which employs distributed atomic mul-
tipoles to represent electrostatic contributions. Both the
FIT46 and the Williams (W99)47 force fields were used,
where W99 was supplemented with parameters for sul-
fur from Ref. 48. Atom-centered multipoles were cal-
culated up to rank 4 (hexadecapole) from a distributed
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multipole analysis49 of the electronic density computed
using B3LYP/6-31G** with the Gaussian0950 program.
Rigid-molecule lattice relaxations were then performed,
followed by computation of the phonon frequencies51 us-
ing the autold and autofree programs of Nyman.30

autold generates a series of linear supercells to sample
the Brillioun zone beyond the Γ-point;30 here we selected
a target q-point distance of 0.12 Å−1. autofree then col-
lects the frequencies from the supercells and computes
the Fvib.

IV. RESULTS

A. The PV17 Benchmark

The PV17 benchmark was assembled using the Nyman
Polymorph Library29 as a starting point. Structures in
the library were sorted by cell volume, as this roughly cor-
relates with the numbers of atoms and electrons within
the unit cell, and with the computational cost of the even-
tual phonon frequency calculations. We selected poly-
morph pairs with both members having volumes less than
600 Å3 for further consideration. This choice is necessary
to keep the cost of the DFT phonon calculations feasible,
although it may introduce a bias in the benchmark set
towards small and rigid molecules. We then proceeded to
perform geometry relaxation and phonon calculations on
this subset. Compounds were eliminated from the bench-
mark if convergence problems were encountered, if the
supercell sizes required for the phonon calculations ex-
ceeded our available computational resources, or if both
“polymorphs” converged to the same structure upon re-
laxation. This can occur if the two reference experimen-
tal crystal structures have essentially the same packing,
but were determined at different temperatures.52

The resulting benchmark set of 17 polymorph pairs is
shown in Table I, along with the converged Fvib values
and corresponding supercell sizes for each crystal. The
final results for the ∆Fvib between each polymorph pair
are shown in Table II. By convention, we take ∆Fvib as
the Fvib value obtained for the structure with the higher
number in its assigned CCDC code minus that for the
structure with the lower numbered CCDC code.

In a previous study using a distributed-multipole force
field approach, Nyman and Day28 found the harmonic
|∆Fvib| to be less than 1 kJ/mol for more than 70% of
the polymorph pairs studied in their work, and greater
than 2 kJ/mol in fewer than 6% of cases. Table II shows a
summary of our high-level B86bPBE-XDM results, giv-
ing the electronic energy difference between each poly-
morph pair, the converged ∆Fvib, and the resulting free-
energy difference. Compared to Nyman and Day’s re-
sults, the DFT values are similar, although somewhat
larger than the force-field results. The average |∆Fvib| is
1 kJ/mol and values greater than 2 kJ/mol occur for 2/17
(12%) of the compounds considered, although no values
exceeded 2.5 kJ/mol for our limited dataset. However, we

TABLE II. Computed B86bPBE-XDM relative electronic en-
ergies (∆E), converged vibrational free-energy corrections
(∆Fvib), and relative free energies (∆G), for the PV17 bench-
mark. All values are in units of kJ/mol per molecule. The
last row shows the average magnitude of each quantity.

Polymorph Pair ∆E ∆Fvib ∆G
ETDIAM 0.0 1.4 1.4
QQQCIV −0.6 0.9 0.3
CUMMIG 4.9 −1.2 3.7
TRITAN −0.3 0.2 −0.1
EFUMAU 1.0 −0.3 0.7
THHYDT −1.2 −1.0 −2.2
DAVVUR −4.6 2.3 −2.3
XOCJEE 0.8 −1.7 −0.9
GICTIV −6.7 0.3 −6.5

TRDMPP −2.0 2.1 0.1
MALEHY −0.2 0.2 0.0
MALIAC 0.3 −0.1 0.2
FUMAAC −7.4 1.9 −5.5
OXALAC −2.4 −1.6 −4.0
SUCACB 0.0 −1.3 −1.4
REKBUE −3.5 −0.5 −4.0
EFURIH −6.0 −0.4 −6.4
|Avg.| 2.5 1.0 2.3

expect greater differences in the optical region of the ph-
DOS, and therefore greater |∆Fvib|, if the molecules un-
der study are larger and more flexible than those present
in the PV17 set, particularly if polymorphs present dif-
ferent molecular conformations.

Nyman and Day also determined that vibrational
free-energy corrections altered the stability ordering for
roughly 9% of polymorph pairs when employing the har-
monic approximation.28 Our results in Table II show that
the ordering is reversed for 3/17 pairs (18%). There were
a further two pairs that were predicted to be degenerate
based on the electronic energy alone, for which the Fvib

entirely determines the stability ranking.
Lastly, the results in Table II suggest that the accu-

racy requirement for the adequate calculation of ∆Fvib

between polymorph pairs is quite high. For instance,
the best available DFT-based multilevel methods for the
calculation of host-guest binding energies yield associa-
tion free energies with an average error above 2 kcal/mol
(8.4 kJ/mol).53 The average ∆Fvib in Table II is 8 times
lower than this value and, in fact, all our examined low-
level methods (Table III) yield absolute Fvib for individ-
ual crystals with average errors lower than 2 kcal/mol.

B. Assessment of Low-Level Methods

With our benchmark values in hand, we proceed to
assess the performance of selected low-cost methods for
prediction of Fvib and ∆Fvib for our set of 17 polymorph
pairs. The results are collected in Table III for Fvib and
Table IV for ∆Fvib. Γ indicates results obtained using
only the Γ point, while “Conv.” indicates results ob-
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TABLE III. Absolute Fvib (kJ/mol per molecule) values for all crystals in our PV17 benchmark set. Results are shown for
three electronic structure methods (sHF-3c, DFTB3-D3(BJ), and B86bPBE-XDM) and the mode-matching approach. Free
energies were calculated using either the Γ point only or with a converged (Conv) supercell. For B86bPBE-XDM, results are
also given for the combination of Γ-point frequencies for the optical and the AM model for the acoustic modes (Γ+AM).

sHF-3c DFTB3-D3(BJ) Mode B86bPBE-XDM
Polymorph Pair Γ Conv Γ Conv Match Γ Γ+AM Conv

ETDIAM16 285.5 281.5 275.8 272.3 273.6 279.3 274.3 274.8
ETDIAM18 287.1 282.4 275.8 272.6 275.1 280.7 275.7 276.2
QQQCIV01 108.6 106.0 107.4 105.1 104.7 107.9 105.0 105.5
QQQCIV08 109.0 106.3 110.7 107.3 105.7 110.3 105.9 106.4
CUMMIG01 297.0 293.4 289.5 287.8 286.5 289.5 283.8 286.3
CUMMIG02 297.6 293.5 289.1 287.5 283.8 288.5 281.7 285.1
TRITAN03 208.3 205.4 205.5 203.6 200.9 204.3 200.7 201.8
TRITAN10 210.9 204.9 207.2 203.2 201.0 207.3 200.8 202.0
EFUMAU 327.3 325.4 317.3 316.2 314.7 317.3 313.5 315.5

EFUMAU03 327.4 325.3 318.2 316.6 313.2 316.7 313.1 315.2
THHYDT 185.5 182.3 189.0 186.7 184.4 187.2 184.5 184.5

THHYDT02 185.7 179.7 189.7 185.6 181.9 188.4 182.1 183.4
DAVVUR 1198.5 1185.1 1182.5 1171.7 1159.0 1175.5 1160.9 1163.3

DAVVUR01 1202.7 1188.7 1187.4 1176.1 1161.8 1179.0 1163.8 1165.7
XOCJEE 208.8 204.0 214.9 212.1 205.9 212.4 205.7 209.1

XOCJEE01 208.6 203.2 212.7 208.7 206.1 212.6 206.0 207.4
GICTIV 231.8 227.2 260.1 258.4 240.3 243.3 236.5 242.6

GICTIV01 234.6 227.3 267.7 265.1 238.7 247.8 238.7 242.9
TRDMPP01 405.8 399.9 404.4 399.8 399.6 406.2 399.8 400.7
TRDMPP02 409.1 404.0 403.9 399.6 400.4 407.0 400.0 402.8
MALEHY10 208.8 205.0 211.1 207.4 203.5 209.5 203.6 204.8
MALEHY12 205.5 203.2 207.3 207.1 204.0 206.1 202.1 205.1
MALIAC12 189.8 187.8 192.4 192.0 190.0 192.6 189.3 190.9
MALIAC13 193.1 187.6 194.2 189.9 189.4 194.8 189.0 190.8
FUMAAC 187.0 185.7 192.3 191.6 188.3 191.3 187.4 191.1

FUMAAC01 197.3 188.9 198.9 193.3 189.9 200.6 190.0 193.0
OXALAC03 109.8 107.6 113.4 111.5 111.8 114.9 111.8 113.1
OXALAC04 111.0 107.6 113.9 111.7 110.3 114.5 109.4 111.5
SUCACB02 255.6 250.9 254.9 253.0 250.8 255.2 250.0 251.6
SUCACB07 253.5 249.0 253.1 250.2 248.1 253.8 247.5 250.3
REKBUE 376.3 370.1 379.9 375.1 377.9 384.6 378.3 379.2

REKBUE01 381.1 371.3 381.4 375.5 376.9 387.8 375.7 378.7
EFURIH 497.8 494.4 479.9 476.9 488.0 492.9 487.3 489.4

EFURIH04 498.0 493.4 479.5 475.1 486.5 493.6 487.1 489.0
MAE 7.3 6.0 5.6 3.8 1.7 4.2 2.0 –
MAX 37.1 23.0 24.8 22.2 4.4 13.3 6.1 –

tained using a converged supercell. Specific to the plane-
wave DFT data, we also include the free-energy results
calculated using the Γ-point frequencies for the optical
contribution and the AM model for the acoustic contri-
bution, as this is much more computationally expedient
than fully converging the Fvib. These latter results allow
us to determine the relative importance of converging the
optical and acoustic modes for computation of ∆Fvib.

Considering the absolute Fvib values in Table III, Γ-
point-only calculations give fairly large errors, following
the order of HF-3c>DFTB+>DFT. In contrast, using
the AM model for the acoustic contribution and calcu-
lating the optical contribution to the free energy with
the DFT Γ-point frequencies results in quite good per-
formance, with a mean absolute error (MAE) of only
2.0 kJ/mol. This error can be reduced even further,
to 1.7 kJ/mol, by accounting for q-point dependence of

the optical modes using a converged DFTB calculation
in combination with the mode matching approach. This
confirms the high accuracy of the mode matching method
seen for Fvib in Cook and Beran’s study.32

Table IV compares the performance of the various ex-
amined methods in the calculation of vibrational free en-
ergy differences for polymorph pairs. In this table and
unlike Table III, we have also included DMACRYS re-
sults with the FIT and W99 force fields. The reason
for this difference is that, because the DMA force fields
use rigid molecules, it is not possible to calculate the in-
tramolecular contribution to Fvib. The DMA force field
results in Table IV assume implicitly that the intramolec-
ular contribution to the vibrational free energy is the
same for both polymorphs.

In contrast to the results for the absolute free energies,
we no longer see significant differences in performance
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TABLE IV. Relative Fvib (kJ/mol per molecule) values for all polymorph pairs in the PV17 benchmark set. Results are shown
for two DMA force fields (DMACRYS), three electronic structure methods (sHF-3c, DFTB3-D3(BJ), and B86bPBE-XDM),
and the mode-matching approach. Results are reported using either the Γ point or with a converged (Conv) supercell. Only
converged results are shown for the DMA calculations. For B86bPBE-XDM, results are also given using the Γ point with the
AM correction (Γ+AM).

DMACRYS sHF-3c DFTB3-D3(BJ) Mode B86bPBE-XDM
Polymorph Pair W99 FIT Γ Conv Γ Conv Match Γ Γ+AM Conv

ETDIAM 0.0 0.5 1.6 0.9 0.1 0.2 1.4 1.4 1.4 1.4
QQQCIV 0.3 0.3 0.4 0.3 3.3 2.2 1.0 2.3 0.9 0.9
CUMMIG 0.3 0.5 0.7 0.1 −0.4 −0.3 −2.7 −1.0 −2.1 −1.2
TRITAN 1.4 −0.1 2.6 −0.5 1.7 −0.5 0.1 3.1 0.1 0.2
EFUMAU 0.6 0.3 0.1 0.0 0.9 0.4 −1.5 −0.6 −0.4 −0.3
THHYDT 0.5 0.7 0.2 −2.6 0.6 −1.1 −2.5 0.8 −2.4 −1.0
DAVVUR 1.1 1.1 4.2 3.6 4.9 4.4 2.8 3.4 2.9 2.3
XOCJEE −0.4 −0.3 −0.3 −0.8 −2.2 −3.4 0.2 0.2 0.3 −1.7
GICTIV 0.3 0.7 2.8 0.1 7.6 6.7 −1.6 4.5 2.2 0.3

TRDMPP 1.4 1.3 3.3 4.1 −0.4 −0.1 0.8 0.8 0.2 2.1
MALEHY −1.4 −1.6 −3.3 −1.8 −3.8 −0.2 0.5 −3.3 −1.5 0.2
MALIAC −0.1 −0.2 3.2 −0.2 1.7 −2.0 −0.6 2.3 −0.3 −0.1
FUMAAC 2.0 2.2 10.3 3.2 6.5 1.8 1.6 9.3 2.6 1.9
OXALAC 0.7 −0.2 1.3 0.0 0.5 0.1 −1.5 −0.4 −2.4 −1.6
SUCACB −0.7 −1.6 −2.0 −1.9 −1.8 −2.8 −2.8 −1.5 −2.5 −1.3
REKBUE 0.8 −0.4 4.9 1.2 1.5 0.4 −1.0 3.3 −2.6 −0.5
EFURIH 0.9 −0.7 0.2 −1.1 −0.4 −1.7 −1.5 0.8 −0.2 −0.4

MAE 1.1 0.8 2.2 1.0 2.1 1.5 0.8 2.0 0.9 –
MAX 2.3 1.8 8.4 2.0 7.3 6.4 1.9 7.4 2.2 –

between the three QM methods when considering free-
energy differences. Γ-point only calculations with sHF-
3c, DFTB3-D3(BJ), and B86bPBE-XDM all yield mean
absolute errors (MAEs) of nearly 2 kJ/mol and maximum
errors (MAX) of 7.3-8.4 kJ/mol. In some cases, most no-
tably for fumaric acid (FUMAAC), the ∆Fvib computed
using only the Γ point can be much higher than the con-
verged values, emphasizing the importance of properly
accounting for the low-frequency phonon dispersion and
the acoustic contributions. Thus, using only the Γ-point
frequencies to assess the magnitude of the free-energy
correction in CSP studies may be quite misleading, and
is not recommended.

Comparing the force-field, converged low-level QM,
and mode matching results with the converged
B86bPBE-XDM reference values, we see that all give
fairly equivalent error statistics, with MAEs of 0.8-
1.5 kJ/mol and maximum errors of ca. 2-7 kJ/mol. Of
these approaches, DFTB3-D3(BJ) gives the largest er-
ror for 1,1′-dinitro-3,3′-azo-1,2,4-triazole (GICTIV), in-
dicating that it might not perform well for azo com-
pounds. Indeed, from Table III, GICTIV shows
the largest errors in absolute Fvib for DFTB3-D3(BJ)
as well. Mode matching tends to give lower er-
rors than the converged DFTB results, particularly
for acetonitrile (QQQCIV), 1,7-di-t-butyl-3,9-dimethyl-
dibenzonaphthyrone (DAVVUR), 1,1′-dinitro-3,3′-azo-
1,2,4-triazole (GICTIV), and most of the systems with
dimeric H-bonds involving either COOH or CONH
groups. However, it is notable that the DMA force fields
give comparable overall errors to the semi-empirical QM

methods, and mode matching, with a much lower com-
putational cost.

Finally, we consider the performance of using the
B86bPBE-XDM optical contribution estimated from the
Γ-point frequencies coupled with AM model for the
acoustic contribution. The rationale beyond this combi-
nation is that the low-frequency, long-wavelength acous-
tic modes are the slowest to converge with respect to
q-points and are missing from the Γ-point treatment en-
tirely. We can therefore add the acoustic contribution to
Fvib from the approximate AM model to the Γ-point re-
sults as a correction and, because the optical modes typ-
ically have a weaker dependence on q-points, this may
be a good approximation to the converged result. The
AM approximation has an additional set of calculations
on top of the Γ-point frequency calculations, since it re-
quires evaluation of the elastic constants.

Inclusion of the AM model correction more than
halves the MAE relative to the Γ-point-only results with
B86bPBE-XDM. Notably the Γ+AM approach gives
significantly better agreement with the converged ref-
erence values for many of the polymorph pairs, such
as acetonitrile (QQQCIV), 1,3,5-trithiane (TRITAN),
1,1′-dinitro-3,3′-azo-1,2,4-triazole (GICTIV), maleic hy-
drazide (MALEHY), maleic acid (MALIAC), N,N′-
oxalyldiglycine (REKBUE), and most significantly fu-
maric acid (FUMAAC), which consistently have the
largest error in the Γ-point calculations. Once more, this
result highlights the importance of properly accounting
for the acoustic contributions to ∆Fvib.

The cases where Γ+AM still gives errors in ex-
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cess of 1 kJ/mol are 2-thiohydantoin (THHYDT), 1,1′-
dinitro-3,3′-azo-1,2,4-triazole (GICTIV), cyclo-D-alanyl-
L-alanyl (TRDMPP), maleic hydrazide (MALEHY), suc-
cinic acid (SUCACB), and N,N′-oxalyldiglycine (REK-
BUE). With one exception, all of these compounds form
dimeric H-bonds involving two COOH or CONH groups.
This suggests that optical modes involving strong, co-
operative H-bonding networks require more extensive q-
point sampling and that changes in these H-bonding mo-
tifs between polymorphs have significant contributions to
∆Fvib. The remaining errors in the Γ+Debye results may
be due to either neglect of the dependence of the optical
modes on q-points, as seen for the dimeric H-bonds, or
to breakdowns of the AM model approximation.

V. DISCUSSION AND CONCLUSIONS

This work presented the new PV17 benchmark, con-
taining DFT absolute (Fvib) and relative (∆Fvib) har-
monic vibrational free energy data for pairs of crystalline
organic polymorphs. This benchmark was used to assess
the performance of several force-field and semi-empirical
QM methods for prediction of relative free-energy cor-
rections in molecular crystal polymorph pairs. Both
plane-wave DFT frequency calculations at the Γ point,
augmented with treatment of the acoustic modes us-
ing a Debye-like model, and the recent mode-matching
approach32 showed good performance for prediction of
the absolute Fvib for the individual molecular crystals.

However, none of the methods studied were able to
benefit significantly from error cancellation in the eval-
uation of ∆Fvib for the polymorph pairs. Overall, the
MAEs obtained with all examined methods were compa-
rable to the average magnitude of ∆Fvib itself. As an
illustration, a method that consistently gives a ∆Fvib of
zero, which is equivalent to a zeroth-order CSP protocol,
would yield an MAE of 1.0 kJ/mol and MAX error of
2.3 kJ/mol, which are on par with, or better than, the
results obtained with all of the methods considered in
this study. Thus, although free energies calculated at a
low-level of theory may be useful in other contexts, our
recommendation at present is to neglect thermal free-
energy effects on CSP ranking entirely, rather than to
calculate them with a low level of theory and introduce an
additional uncontrolled error. However, some of the ap-
proaches examined, like Cook and Beran’s mode match-
ing approach and also combining a DFT Γ-point fre-
quency calculation with a model for the acoustic contri-
bution do show promise, but more work is required until
practical CSP protocols can benefit from these methods.

While the magnitudes of our predicted thermal correc-
tions were slightly larger than those obtained previously,
we confirm the finding of Nyman and Day28 that ∆Fvib is
generally small in magnitude. This means that thermal
effects need only be taken into account at the conclusion
of a CSP protocol if two or more polymorphs are nearly
degenerate, with a relative energy difference of less than

ca. 2.5 kJ/mol.
Calculating ∆Fvib for polymorph pairs is very chal-

lenging because it is a small difference between large
numbers. The individual Fvib values have typical magni-
tudes of ca. 100-500 kJ/mol per molecule for the molecu-
lar crystals considered here, while the differences between
polymorphs of the same compound have magnitudes un-
der 2.5 kJ/mol. Thus, it is reasonable that converging the
total Fvib to within 0.5 kJ/mol, which requires relatively
dense q-point grids in some cases, may not be entirely
satisfactory for the purpose of CSP candidate ranking
based on the free energy. In addition, we have not con-
sidered quasi-harmonic or anharmonic effects, whose in-
clusion would complicate matters even further. While the
present work represents an advance over the previous as-
sessment of ∆Fvib using DMA potentials, even more pre-
cise benchmarks for ∆Fvib are highly desirable, as well
as the development of more accurate vibrational models
for organic molecular crystals.

SUPPLEMENTARY MATERIAL

Crystal structures for all polymorphs in the PV17
benchmark, optimized with B86bPBE-XDM using Quan-
tum ESPRESSO.
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