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ABSTRACT  

One of the most realistic solutions to the problem of power outages in remote areas is hybrid energy 

sources (HES). Forecasting is necessary because HES uses renewable energy sources, which are 

often either intermittent or insufficient. By directly influencing planning and management 

techniques, forecasting plays a crucial part in energy systems. Due to electronic devices shutting 

down as a result of generating unwanted harmonics that degrade the system's quality, inaccurate 

forecasting can lead businesses to lose money. Choosing a trustworthy and efficient forecasting 

model is crucial. 

 In this thesis, regression and classification are the two supervised machine learning techniques 

used for prediction of renewables. There are two sections to the thesis. The regression using the 

ARIMA model is covered in the first section. Three studies on ARIMA are presented in order to 

examine the stationarity of a time series. The third study suggests a novel technique that involves 

moving non-stationary data to a domain that deals with it as a stationary time series. The first two 

studies provide a new technique to test stationarity. The thesis' second section, on classification, 

focuses on a new approach to energy management. To create a new dataset that may be used to 

anticipate energy management (EM), the new technique advises gathering the outcomes of energy 

management from many decision-making procedures throughout a range of time periods. 
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Chapter 1. Introduction 

1.1 Background and Motivation  

Electricity is one of the most critical factors affecting the growth of developing nations, but 17% 

of the world’s population still has no access to reliable electrical power [1]. The main sources of 

electricity for people living in remote areas are diesel and gasoline generators [2].  Aboriginal 

Affairs and Northern Development Canada (AANDC) has reported that the negative impacts of 

using diesel and gasoline generators fall under the three main categories of environmental, social, 

and economic sustainability. Lumos Energy stated that these impacts could be mitigated by using 

renewable energy sources [3], yet renewables also have some disadvantages. For example, some 

renewable energy sources such as wind and solar may be insufficient and only sporadically 

available [4]. Overcoming these issues can be achieved by using Hybrid energy sources HES [5].  

HES contain one or more sources of renewable energy and can also be combined with one or more 

conventional energy sources. All these sources work in standalone or grid-connected mode [6]. 

Solar and wind energy are the main hybrid sources that combine with other sources to form HES 

in remote areas. Numerous studies have been conducted on HES, covering different topics such as 

forecasting and Energy Management EM. Forecasting plays a vital role in HES, as it gives 

designers a clear idea about the behavior of HES variables, such as weather conditions and load 

over short time periods. Table (1.1) shows the typical number of variables usually predicted when 

studying HES. 

One of the biggest concerns that should be considered when building HES is the continuity of 

electricity flowing to the load. This concern can be solved by the application of a robust Energy 

Management Strategy (EMS), as it increases the lifetime of the components and protects them 

from overload damage [7]. The common methods employed to achieve EMS are linear 

programming, software, and artificial intelligence (AI), such as differential evolution algorithm, 

particle swarm optimization, genetic algorithm, and artificial neural networks [8]. 
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Table 1.1 HES Variables 

Reference Year Variables Method HES 

[8] 2014 Solar irradiance, wind 

Speed, and fuel price 

Empirical Mode Decomposition 

(EMD), Cascade-Forward 

Neural Network (CFNN) 

Wind farm, solar farm, fuel cell 

and conventional thermal power 

plant 

[9] 2014 Power output 

 

Autoregressive Moving 

Average model with Exogenous 

inputs (ARMAX) 

Grid-connected photovoltaic 

system 

[10] 2015 Solar irradiance, wind 

speed, and temperature 

Autoregressive (AR) model Solar and wind energy system 

[11] 2017 Wind speed Model combining Fourier series 

and Autoregressive Moving 

Average (ARMA) 

Nuclear power plant, wind 

farm, battery storage, natural 

gas boiler, and chemical plant 

[12], [13] 2019 Solar radiation, ambient 

temperature, and wind speed 

Artificial Neural Network 

(ANN) 

Solar and wind energy system 

[14] 2022 Power output IDGC-GRNN and IDGC-

RBFNN 

Solar and wind 

 

1.2 Thesis Objectives 

 This thesis  provides a comprehensive study of HES, covering renewable energy sources (solar 

and wind energy) and traditional sources (gasoline and diesel generators). The work is divided into 

two main parts. The first part focuses on studying the initial step in the Box-Jenkins approach, as 

illustrated in Figure (1.1). This step contains two processes, namely detection and transformation. 

The detection process, which includes autocorrelation function (ACF) and statistical tests, checks 

to see whether the time series is stationary.  

If it is stationary, we proceed to the Box-Jenkins’s approach. Otherwise, the time series is 

transformed to stationary in the transformation process. The transformation can be done using the 

differencing method or the logarithmic transformation approach based on the used data. These 

processes could be done in more than one step. In thesis a novel technique is proposed to convert 

nonstationary data to stationary from the first step and compared with previous work done. The 

second part of this thesis shines new light on EM by proposing a novel concept for achieving an 

energy management strategy. The new concept suggests collecting EM results from conventional 
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methods to form a new dataset that can be used in forecasting EM, instead of relying on the other 

methods. 

 

Figure 1.1 Box-Jenkins approach. 

The objectives of this thesis are listed below. 

1.2.1 Part 1: 

1. Leveraging the Fast Fourier Transform (FFT) concept to detect trends and seasonal 

components in a time series.  

2. Applying FFT instead of Autocorrelation Function (ACF) in a Box-Jenkins’s algorithm.  

3. Comparing FFT results to those of ACF.  

4. Introducing a new technique to remove the trend and seasonal components from the first 

step and compare it to other techniques to validate the proposed work.  
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1.2.2 Part 2: 

1. Developing a HES consisting of renewable and traditional energy sources based on 

machine-learning algorithms.  

2. Proposing an optimal HES that is based on the technique for order of preference by 

similarity to the ideal solution (TOPSIS), using different combinations to minimize fossil 

fuel emissions and the overall cost. 

3. Calculating five criteria based on the time series load data to evaluate different 

combinations of sources.  

4. Synthesizing the dataset from the TOPSIS method results, which can then be used in 

forecasting the sources that should be connected to the load. 

5. Validating the proposed work by using different intelligent approaches.   

 

1.3 Thesis Contribution 

Achieving the thesis objectives has already resulted in several contributions, including two 

conference papers  [15] [16] and three published journal articles [17]  [7], [18]. A summary of the 

contributions is given below:  

• The work in [15] proposes using the FFT technique for detecting trend and seasonal 

components in a time series. The results are compared to the ACF to evaluate its 

performance. The results show that the proposed FFT outperforms ACF in most cases. 

Electrical load data is used as a case study in [16].  

• The work in [17] proposes a novel adaptive DC technique to improve the forecasting of 

any nonlinear datasets like most renewables to enhance the system’s reliability. This 

technique removes the trend component from a time series and makes it a stationary time 

series. The results of the proposed technique are compared with the differencing technique 

as a way to validate the proposed work, proving its effectiveness. To evaluate the 

performance of the proposed technique in removing the trend, ACF is used for both 

methods. 

• The work in [7]proposes a new methodology to achieve EMS based on machine-learning 

classification algorithms such as Random Forest (RF), Decision Tree (DT), Gaussian Naive 
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Bayes (Gaussian NB), and K-Nearest Neighbors (KNN). The new methodology is applied 

to a dataset that was collected from a common method. It is found that the DT algorithm 

achieved the best performance compared to the RF and Gaussian NB algorithms, while the 

KNN algorithm presents a weak performance, especially over class 3. After standardizing 

the dataset, the KNN algorithm is able to compete with RF and Gaussian NB algorithms in 

some of the classes. 

• The proposed work in [18]presents energy management using multi-criteria decision-

making and machine-learning classification algorithms for intelligent systems. The work 

is divided into two stages. In the first stage, a historical load dataset is used to model and 

calculate the five criteria. TOPSIS method results are combined with the five criteria and 

the load dataset to synthesize an artificial dataset. In the second stage, machine-learning 

algorithms, namely random forest (RF) and light gradient boosted machine (LightGBM)  

are used to predict the combination of the energy sources to validate the proposed work. 

Evaluating the algorithms shows the superiority of the RF algorithm, with an accuracy of 

81.81%, over LightGBM, with an accuracy of 68.6% respectively. 

A breakdown summary of the thesis contributions is illustrated in Figure 1.2. 

 

Figure 1. 2 Breakdown summary of thesis contributions. 

 

1.4 Thesis Outline 

The thesis is organized into six chapters, as detailed below: 
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• Chapter 2 introduces an overview of a non-stationary time series and evaluates the 

performance of the Fast Fourier Transform (FFT) in detecting the trend and seasonal 

components in the time series. The FFT is used to enhance the SARIMA model to forecast 

short-term electrical load data. 

• Chapter 3 proposes a new method to remove the trend component. The method is validated 

by comparing its results with those in the relevant literature. 

• Chapter 4 presents an energy management strategy hybrid energy systems sources based 

on machine-learning classification algorithms.  

• Chapter 5 presents an energy management strategy that uses multi-criteria decision-making 

and machine-learning classification algorithms for intelligent systems. 

• Chapter 6 provides the conclusions for the thesis and suggests future research directions. 
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Chapter2. Identifying Seasonality in a Time Series by Applying Fast Fourier Transform 

[15] 

(The materials presented in this chapter are based on conference papers published in IEEE Canada 

Electric Power Conference, EPEC 2019 [15], and the Canadian Conference on Electrical and 

Computer Engineering, CCECE 2019 [16].) 

Abstract 

Studying time series characteristics is essential, as most forecasting models assume that time series 

must be stationary. In addition, non-stationary time series can cause unexpected behaviors or create 

a non-existent relationship between two variables. This chapter aims to shine new light on the Fast 

Fourier Transform (FFT) technique by examining its efficiency in identifying trends and 

seasonality and applying it to different time series, these series were recorded over different time 

scales. A comparison between FFT and the Autocorrelation Function (ACF) is conducted. The 

results show that FFT successfully identifies trends and seasonality. The most obvious observation 

is that, unlike the FFT technique, ACF has limitations in determining the exact seasonality time 

that repeats itself.  

2.1 Introduction 

Several studies have been conducted on time series because of their importance in planning and 

decision-making. Researchers are interested in studying and analyzing the time series, along their 

trend, seasonal, cycle, and random components. Understanding the behavior of these components 

helps build a successful model that can clarify the data to allow for prediction. A stationary time 

series [19] occurs when the mean, variance, and autocorrelation are constant along a period of the 

time series. A stationary time series is especially crucial to understand, as a non-stationary time 

series can be very difficult to predict, and therefore cannot be modeled or forecasted. The results 

gathered from a non-stationary time series can be false or misleading, in particular when there is a 

non-existent relationship between two variables. Also, some models and approaches, such as the 

Box-Jenkins approach [19], assume that the time series should be stationary [20]. 

 

Trend and seasonal components can turn a stationary time series into a non-stationary one. These 

two components occur when the mean and variance fluctuate over time. Therefore, many 
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researchers have looked for ways to detect whether there is a trend or seasonal component in a 

time series.  

In this chapter, the Fast Fourier Transform algorithm has been applied to different datasets to 

evaluate its performance in detecting seasonal components. ACF is used to validate the results of 

FFT.  

2.2 Literature Review 

In[21], four graphical techniques, a run sequence plot, a seasonal sub-series plot, multiple box 

plots, and an autocorrelation plot were used to detect the seasonality in a time series. The authors 

stated that to employ a seasonal subseries plot and box plot, the seasonal periods must be known. 

Likewise, [22] mentioned that the time plot of the whole series could be used to identify the 

seasonality by determining whether there are repeated peaks and troughs in regular periods, that 

have similar magnitude.  

 

The Buys Ballot table has been used to detect the presence of trends and seasonal effects in time 

series [23]. Several graphics that were proposed by the Buys Ballot table were employed to check 

the existence of seasonality [24]. Besides graphical techniques, other statistical tests could be used 

to identify seasonality. These tests were summarized in [21] into three groups: the χ2 Goodness-

of-Fit test, the Kolmogorov-Smirnov goodness-of-fit test, and the Nonparametric test. The authors 

applied different types of tests to the row variances of the Buys Ballot table, with the Student t-

test and Wilcoxon Signed-Ranks test showing promising results in the detection of seasonality. 

Wind speed in winter and summer have been compared to study seasonality by applying various 

signal processing techniques. Continuous Wavelet Transform [25] identified the seasonality of 

wind speeds in winter and summer time series.  

 

In [26], the historical rainfall data at Ilorin, North Central Nigeria was studied. The authors used 

Mann-Kendell trend analysis, the Augmented Dickey-Fuller (ADF) test, and ACF to identify the 

trend component. The results showed that the observed data was non-stationary. Additionally, they 

used Fourier Transform to convert the historical rainfall data from the time domain to the 

frequency domain to detect seasonality. The authors stated that the historical rainfall data showed 

seasonality every 12, 6, and 4 months. 



9 
 

 

In [27], the Box-Jenkins’s algorithm was used for forecasting. This study focused on building a 

statistical model for forecasting the monthly average surface temperature in Ghana's Brong-Ahafo 

region to understand the dynamics of the events. The authors used ACF and decomposing to 

determine the seasonality. All these approaches confirmed the presence of seasonality. ACF plays 

a vital role in the Box-Jenkins algorithm, which is considered the main tool for identifying trend 

and seasonal components. In [28], the researchers affirmed that seasonality must be significant; 

otherwise, the ACF tool cannot detect it.  

2.3 Methods and Results 

FFT is used widely in signal processing and data analysis. This technique is a way to convert the 

time series from a time domain to a frequency domain. The number of computations in FFT is less 

than in Discrete Fourier Transform (DFT), because FFT reduces the complexity of computing by 

using the factor N/2 log N, where N is the number of points [29]. The FFT algorithm is also useful 

for identifying seasonality in a time series [26].  

Figures (2.1a), (2.2a) show mean daily temperature and monthly wind data, respectively, plotted 

as a time series. The time series of mean daily temperature has a low frequency of regular pattern 

showing small rough edges throughout the sine wave. The time series of monthly wind has a 

smooth regular pattern up and down. The most important concept regarding output of FFT is the 

significant spikes and their locations. Figure (2.1b) shows the FFT output of mean daily 

temperature. The time series is formed from one frequency that is represented by a significant 

spike, indicating a seasonality. The time series tends to repeat itself every 365 days. In contrast, 

Figure (2.2b) shows the results of running the FFT technique. The significant spike located at 

3.445 × 10−8 𝐻𝑧 means the time series of wind speed tends to iterate itself every 12 months. 

Neither the mean daily temperature times series nor the monthly wind the time series needs to 

apply FFT or any other techniques, as the presence of seasonality is obvious. However, FFT is still 

required to determine the time in which the series repeats itself. 
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Figure 2.1 a) Time series of daily temperature data. b) FFT output of mean daily temperature.  

 

Figure 2.2 a) Time series of monthly wind data. b) Results of running FFT. 
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Figure (2.3a) shows the time series of hourly internet traffic data, with noticeable protrusions of 

seasonality. This is illustrated in the frequency domains, as shown in Figure (2.3b). The significant 

spike tends to repeat itself every 23 hours, and there are harmonics and noise components. 

 

Figure 2.3 a) Time series of hourly internet traffic data. b) Output of FFT for the time series of hourly internet traffic 

data. 

Figure (2.4a) displays the time series of the monthly Sutter County workforce, while Figure (2.4b) 

illustrates several spikes located at different times. The significant spike indicates that the time 

series of the monthly Sutter County workforce exhibits seasonality that repeats itself every 12 

months. Figures (2.5a) and (2.6a) show the time series of the monthly civilian labor force and 

Nigerian power consumption, respectively. Without a doubt, the FFT results demonstrate that there 
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is no seasonality in both time series, civilian labor force and Nigerian power consumption, as 

shown in Figures (2.5b) and (2.6b), respectively. 

 

 

Figure 2.4 a) Time series of monthly Sutter County workforce. b) Component that forms the time series of the 

monthly Sutter County workforce. 

 

Figure 2.5 a) Monthly civilian labour force. b) Results of running FFT. 
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Figure 2.6 a) Time series of monthly Nigerian power consumption. b) Results of applying FFT to the time series of 

monthly Nigerian power consumption. 

Figure (2.7a) shows time series of annual unemployment. The output of running FFT displays 

insignificant spikes, as shown in Figure (2.7b). From this figure, we can see that the time series of 

annual unemployment does not include a seasonal component. 

 

Figure 2.7 a) Time series of annual unemployment. b) Output of applying FFT to the time series of annual 

unemployment. 
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2.4 Autocorrelation Function (ACF)  

ACF measures the relation between every two consecutive observations in a time series. The ACF 

coefficient 𝑟1, 𝑟2, 𝑟3……. 𝑟ℎ measures the relationship between 𝑥𝑡 and 𝑥𝑡−1, 𝑥𝑡 and 𝑥𝑡−2, 𝑥𝑡 and 

𝑥𝑡−3 …. 𝑥𝑛 and 𝑥𝑡−𝑛, respectively. The coefficient of 𝑟ℎ can be written as: 

        𝑟ℎ =
𝐴𝑢𝑡𝑜𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑙𝑎𝑔 ℎ

𝑉𝑎𝑟𝑎𝑖𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠
=

∑    (𝑥𝑡−�̅�)(𝑥𝑡+ℎ−�̅�) 𝑛−ℎ
𝑡=1

∑ (𝑥𝑡−�̅�)2𝑛
𝑡=1

      (2.1) 

Where 𝑥𝑡 is the observation at any time, �̅� is the mean of the time series, and  ℎ is the difference 

of two moments in time, called a lag. The lag can be calculated as: 

ℎ = 𝑡 − 𝑠            (2.2) 

Several studies have used ACF to determine whether the time series is stationary or not and to 

identify the existence of seasonality [26], [27], [16]. 

Figure (2.8) shows the output of ACF of the time series of monthly wind speed. The results are 

compared to those for FFT in Figure (2.2b). The ACF plot illustrates a sine wave with minimal 

reduction in length as the lag increases, which results in a tailing off. The spikes at lags 1, 12, and 

24 for monthly data indicate that seasonality repeats itself every 12 months. This result supports 

the FFT technique. 

  

Figure 2.8 Output of ACF for the time series of monthly wind speed. 

Figure (2.9) shows the output of ACF for the time series of electrical load.  ACF has significant 

positive spikes at lags 24, 48, and 72 for hourly data. In comparing these results to those for FFT 
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presented in [16], we found that the ACF results indicate that the time series of the electrical load 

has a seasonality of 24 hours, while the FFT indicates a seasonality of 12 and 24 hours.   

 

Figure 2.9 Output of ACF for the time series of an electrical load. 

2.5 Conclusion 

Many sets of time series have been analyzed by applying FFT to determine the seasonal 

component. It also allows for the identification of any trends, whether upward or downward, in the 

time series. FFT results have displayed good performance in detecting seasonality. The output of 

this technique shows promising results in determining a trend. Correspondingly, FFT 

outperformed ACF, as ACF has restrictions in identifying the exact time of the repeated 

seasonality. The seasonality must be significant before ACF can detect it. 
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2.6 SARIMA Forecasting Model of Short-Term Electric Load Data Enhanced by Fast 

Fourier Transform-based Seasonality Detection [16] 

Abstract 

 The Seasonal Autoregressive Integrated Moving Average (SARIMA) model forecasts short-term 

electric load data. These types of data are affected by weather conditions, which means they have 

a seasonal component. For this reason, representing the data in the frequency spectrum domain 

will reflect the exact seasonal time. FFT has been used to detect the existence of the seasonal 

component in a time series of hourly electrical load data. This technique gives a clear view of the 

behavior of the time series in frequency domain, which shows the three main components at 

frequencies f1=3.17e−8 Hz, f2=1.157e−5 Hz, and f3=2.315e−5 Hz. These frequencies have been 

converted into time which are 𝑡1 = 8760h , 𝑡2 = 24h, and𝑡3 = 12 h, respectively. The model that 

has been selected to forecast the electrical load data is SARIMA (6,1,1) (4,1,1). Most of the 

predicted values fall into the 95% confidence interval. 

2.7 Introduction  

Forecasting helps designers in planning and decision-making, since it gives an insight into future 

uncertainty using the past and current behavior of given observations. Furthermore, load 

forecasting plays a vital role in the energy system, as inaccurate forecasting could cost power 

companies both money and time. Therefore, choosing a reliable and effective load forecasting 

method is important. 

For this purpose, several approaches have been employed to study and forecast electrical load. 

These approaches can be divided into three groups [30]: traditional approaches, artificial 

intelligence approaches, and support vector regression approaches. The Seasonal Autoregressive 

Integrated Moving Average (SARIMA) model, based on the Box-Jenkins approach, is one of the 

more popular traditional methods. Due to the reliability of the Box-Jenkins, several researchers 

have used this model, confirming its importance in the forecasting literature [31]. In the present 

dissertation, SARIMA was applied to hourly electrical load data from January 2017 to December 

2017 to achieve a short-term prediction of electrical load data for the given data.  

When studying and analyzing a time series, it is important to identify its pattern to ensure accurate 

predictions. The seasonal component of the time series affects the accuracy of the prediction. 

Usually, the seasonal component is easily identified by visual inspection of graphing techniques 
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such as run sequence plots, seasonal sub-series plots, multiple box plots, or the autocorrelation plot 

[27]. However, in some cases, when the time series is very long and there is a large concentration 

of observed data, the detection of seasonality is difficult. To the best of our knowledge, most 

studies of electrical load forecasting use visual inspection of graphing techniques to detect 

seasonality. Therefore, we use FFT to detect seasonality in electrical load data. 

To forecast short-term electricity demand in Singapore, two-time series models were suggested in  

[32]: the multiplicative decomposition model, and the SARIMA model. The authors stated that the 

multiplicative decomposition model had slightly higher accuracy than SARIMA. The 

autoregressive integrated moving average (ARIMA) model was applied to forecast seven years of 

domestic, commercial, and industrial electricity demand in Tamale, Ghana [33]. The selected 

models showed that the industrial electricity demand did not rise faster than either the domestic or 

commercial electricity demand. For forecasting load demand in distribution substations, [34] 

conducted a study comparing the ARIMA model, Artificial Neural Networks (ANN), and 

Adaptive Neuro-Fuzzy System techniques. Their study shows that ANN outperformed the ARIMA 

model and Adaptive Neuro-Fuzzy System techniques. In [30], energy consumption was predicted 

using the ARIMA model and a non-linear autoregressive neural network (NAR) model. Even 

though both models are considered adequate, comparing the predictive error value favors the 

performance of the ARIMA model. The study found that the two methods performed well, but 

they preferred the ARIMA model because of its simple structure. 

2.8 Methodology and Material 

A. Autoregressive Integrated Moving Average (ARIMA) Model 

The ARMA model consists of Autoregression (AR) and Moving Average (MA). The addition of 

“I”, turning the model into ARIMA, indicates that it has the ability to convert a time series from 

non-stationary to stationary. The ARIMA model has been further expanded into SARIMA, or the 

seasonal autoregressive integrated moving average model, giving it the ability to deal with 

seasonal time series. SARIMA can be written as: 

∅𝑝(𝐵)ɸ𝑃(𝐵𝑠) (1 − 𝐵)𝑑 (1 − 𝐵𝑠)𝐷 𝑋𝑡 = 𝛩𝑞(𝐵)𝛩𝑄(𝐵𝑠)𝜖𝑡                               (2.3) 

where 𝐵 is the backward shift operator; ∅𝑝, ɸ𝑝, 𝛩𝑞 , 𝛩𝑄 are the polynomials of p, q, P, Q; and p, d, 

and q are the order of the non-seasonal AR model, ordinary differencing and non-seasonal MA 
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model, respectively. P, D, and Q represent the seasonal SAR model, seasonal differencing and 

seasonal SMA model, respectively. 

B. Box-Jenkins Approach 

In 1970, Box and Jenkins proposed a new approach to forecast data from historical data. The Box 

and Jenkins Approach can analyze and   predict several types of time series. The Box-Jenkins 

strategy, as indicated in [26], is suitable for both short- and medium-term prediction. This approach 

is based on four basic steps:  

• Model Identification: The number of orders p and q are identified using the autocorrelation 

function (PACF) and partial autocorrelation (ACF) plots, respectively. The number of 

orders can be determined by counting the first spikes that cross the significance limit in the 

PACF and ACF plot. A lower number of orders is preferable, as it makes the model simple. 

• Estimation of model parameters: Determining which ARIMA model to choose depends on 

the Akaike Information Criterion (AIC) and Bayesian information criterion (BIC) value 

that make a trade-off between the fit statistics of the model and its complexity. Therefore, 

the one with the minimum AIC value should be chosen as the appropriate model.  

• Diagnostic of the model: The final model is chosen using two factors: residuals and 

estimated parameters. 

• Forecasting: The chosen and tested model is ready for forecasting. 

C. Stationary and Non-stationary Data 

When the mean, covariance, and autocorrelation are constant over time, the data becomes 

stationary. Non-stationary data can never be modeled and forecasted due to their unpredictable 

nature. This indicates that all non-stationary data should be converted to a stationary form before 

performing any forecasting. 

D. Fast Fourier Transforms (FFT) 

A time series consists of several signals that have different amplitudes and periods. FFT converts 

these time series from time domain to frequency domain, and clearly shows for each signal the 

individual frequencies and the dominant frequency. This can help in identifying the seasonality in 

the time series, especially when the seasonality is not shown in the time series. An FFT algorithm 

can be written as follows:  

𝐹(𝑛) = ∑   𝑓(𝑘)𝑒−2𝑗𝜋𝑛𝑘/𝑁𝑁−1
𝐾=0               (2.4) 

Where N is the number of samplings.  



19 
 

2.9 Results and Discussion 

Before applying the Box-Jenkins approach, the stationarity of the data must first be examined. It 

is very clear from figure (2.10) that the mean and variance of the data do not look constant over 

time, which results in the non-stationarity of the data. Also, the Augmented Dicker-Fuller (ADF) 

test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test with p-values of 0.6522 and 0.01, 

respectively, confirm that the data are not stationary. Therefore, differencing is mandatory to make 

the series stationary [26]. Since the time series of electrical load data might be affected by different 

factors such as weather conditions, we can assume that the time series of electrical load data is 

seasonal. Hence, the time series has been converted from the time domain to the frequency domain 

by Fourier Transformation to check the seasonality.  

 

 

Figure 2.10 Hourly electrical load data. 
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Figure 2.11 Time series of electric load data in frequency domain. 

The frequency spectrum of the time series of electric load data for Figure (2.11a) shows there 

are three components at frequencies 𝑓1=3.17𝑒−8 Hz, 𝑓2= 1.157 𝑒−5 and 𝑓3= 2.315 𝑒−5. These 

frequencies were converted into time to gain a clear understanding of the frequency domain. 

Therefore, 𝑓1, 𝑓2 and 𝑓3 correspond to the time𝑠 𝑡1 = 8760h , 𝑡2 = 24h and𝑡3 = 12 h, as shown 

in Figure (2.11b). We obtained these values by using the following equation:  

𝑡 = 1/𝑓  (h)               (2.5) 

Where f is a frequency and t is a time. 

These components form the time series of electric load data. The component at 𝑡1 = 8760 h 

represents the whole pattern of the time series of electric load data, which we are not interested in. 

Meanwhile, the component at 𝑡2 = 24h, which has the strongest significance in its amplitude, 

represents the day pattern and it tends to repeat itself every 24 hours. The component at 𝑡3 = 12 h 

represents the half day pattern and it tends to repeat itself every 12 hours.  

The auto.arima function in R Studio was employed to fit the ARIMA model to the electrical load 

time series. This function selects the model with the lowest AIC (Akaike Information Criterion) 

value. Table (2.1) shows the selected model, SARIMA (6,1,1) (2,1,1), as well as other suggested 

models.  
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Table 2.21 Suggested Models and Their AIC and BIC 

Model AIC BIC 

SARIMA (1,1,1) (1,1,1) 82552.29 82587.67  

SARIMA (6,1,1) (2,1,1) 81208.21 81286.05 

SARIMA (6,1,1) (0,1,1) 82755.18 82818.87 

SARIMA (7,1,1) (1,1,1) 82101.56 82179.4 

 

• Estimation of model parameters  

 The model selected based on the minimum AIC and BIC values is SARIMA (6,1,1) (2,1,1).  

 

Figure 2.12 Residual plots of electrical load data. 

• Diagnostic of the model: 
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The standardized residual is used to evaluate the goodness of fit of the ARIMA model by checking 

whether there are any pattern or significant correlation. Figure (2.12.a) shows the standardized 

residual has no specific pattern with zero mean and constant variance between -2 to 2, which means 

there is no outliers.  In addition, the ACF of the residual and the P-values for the Ljung-Box test 

are used to evaluate the goodness of fit of the ARIMA model.  The ACF of the residual in figure 

(2.12.b) shows that there are a few spikes at different lags that exceed the confidence limits, which 

means the model is well fitted. The P-values for the Ljung-Box test shows that all P-values are 

higher than 5%, so we accept the null hypothesis that says it is a good model, figure (2.12.c).   

• Forecasting 

SARIMA (6,1,1) (2,1,1) has been used to forecast one day ahead for the electrical load data. Figure 

(2.13) shows the time series of the electrical load followed by the forecasts as a blue line. Note 

that the upper and lower portion of 80% and 95% are in light blue and blue colors. 

 

 

 

 

 

 

 

 

 

2.10 CONCLUSION  

In this chapter, the time series of electrical load data was studied, and the stationarity was checked 

using ADF and KPSS tests. The results show that the series is not stationary. In addition, the 

seasonality of the series was determined by converting the time series of an electrical load from 

the time domain to the frequency domain using the adopted technique. The technique shows the 

Figure 2.13 Forecasting 24 hours of electrical load data. 
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main components that form the series and the significant component that tends to repeat itself. The 

best model was selected based on AIC and BIC and has high order, increasing the complexity. The 

model was used to forecast the time series of electrical load data one day ahead. Most of the 

forecasted data fell into the 95% confidence interval. We can determine from these results that it 

is possible to employ the SARIMA models to forecast hourly electrical load data.  
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Chapter3. A Proposed Novel Adaptive DC Technique for Non-Stationary Data Removal 

 

(The material presented in this chapter is based on a paper published in the journal Elsevier, Heliyon, 
2023.[17])  
 

Abstract 

The stationarity of a time series is an important assumption in the Box-Jenkins methodology. 

Removing the non-stationary feature from a time series can be done using a differencing technique 

or a logarithmic transformation approach, but it is not guaranteed to be accomplished in one step. 

This paper proposes a new adaptive DC technique for removing a non-stationary time series at the 

first step. The technique involves transferring non-stationary data into another domain that deals 

with it as a stationary time series, because it is much easier to be forecasted in that domain. The 

adaptive DC technique has been applied to different time series, including gasoline and diesel fuel 

prices, temperature, load, and the number of internet users time series. The performance of the 

proposed technique is evaluated using several statistical tests, including Augmented Dickey-Fuller 

(ADF), Kwiatkowski-Phillips-Schmidt-Shin (KPSS), and Phillips Perron (PP). Additionally, the 

technique is validated by comparing it with a differencing technique. The results show that the 

proposed technique slightly outperforms the differencing method. The importance of the proposed 

method is its capability to get the stationarity data from the first step, whereas the differencing 

approach sometimes needs more than one step. 

3.1  Introduction 

Various studies have used different models to forecast electricity prices, load, and stock market 

prices. As presented in the previous chapter, one of the most popular techniques is the 

Autoregressive Integrated Moving Average (ARIMA) due to its simplicity and accuracy [35]. The 

ARIMA model is typically used for estimation if the time series of the data is stationary. The term 

“stationary data” indicates that data mean, variance, and autocorrelation are constant for a time 

period of the time series [36]. Figures (3.1a) and (3.1b) show different cases of non-stationarity, 

namely the mean and variance changing, respectively, in the time series over time. For prediction 

purposes, stationary data are much easier to predict than non-stationary data. Trend and seasonality 

are two main components that can convert stationary to non-stationary data and vice versa. These 

two components play an important role in varying the mean and the variance [37]. 
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Figure 3.1 Various cases of non-stationary data. a) Time dependent mean. b) Time dependent variance. 

More specifically, the trend controls the mean, and the seasonality controls the variance. Numerous 

studies have been conducted to understand whether the data has a trend or seasonal component. 

The Box-Jenkins approach, as shown in Figure (3.2), assumes in the first step that the time series 

should be stationary [36][19].  Checking for stationarity is presented separately in Figure (3.3). 

There are two main processes in the stationarity step: detection and transformation. The detection 

process includes aspects such as autocorrelation function (ACF), statistical tests [38], and Fast 

Fourier Transform (FFT) [16]. This process is concerned with checking whether the time series is 

stationary. In a case where the time series is stationary, we proceed to the Box-Jenkins approach. 

Otherwise, the time series is transformed into stationary, which is called the transformation 

process. Transformation can be done using a differencing technique or a logarithmic 

transformation approach, but these sometimes require several steps to convert non-stationary data 

into stationary data. Additional steps potentially increase the error, particularly if the converted 

data will be used for prediction after the conversion.    

  

 

Figure 3.2 Flowchart of Box-Jenkins steps. 



26 
 

 

Figure 3.3 Flowchart showing the first stage in the Box-Jenkins approach. 

In this chapter, a novel technique known as an Adaptive DC Technique is proposed to remove the 

non-stationarity from the different time series of gasoline and diesel fuel prices, temperature, load, 

and the number of internet users. The advantage of this technique is its capability to remove the 

non-stationarity from the first step for any kind of data compared to other techniques. The results 

of the adaptive DC technique are compared to the differencing technique using statistical tests such 

as the Augmented Dickey-Fuller (ADF), Kwiatkowski-Phillips-Schmidt-Shin (KPSS), and 

Phillips Perron (PP). The proposed technique has proved its effectiveness.  

The aim of this chapter is: 

1. To propose an Adaptive DC technique that will improve the forecasting of nonlinear datasets of 

most renewables, resulting in the enhancement of reliability.  

2. To validate the proposed technique by comparing it with benchmark work done in that area. 

3.2 Literature Review 

In [39], a hybrid model consisting of Auto-Regressive Integrated Moving Average (ARIMA) and 

Artificial Neural Network (ANN) methods is examined over several datasets. As the Augmented 

Dickey-Fuller (ADF) test shows, Turkey’s intraday electricity market price and the exchange rate 

between the British pound and the U.S. dollar dataset are non-stationary, so a natural logarithmic 
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function is used to transform them into stationary datasets. The results indicate that the ARIMA 

performs well when the dataset is stationary, and ANN models work well with non-stationary data; 

however, if the dataset is stationary, the performance is improved. 

The ARIMA model was used to forecast a small-scale agricultural load in [40]. A small-scale 

agricultural load is non-stationary, so the transformation can potentially be done using 

differencing, deflating, or logging. Furthermore, in [41], the authors claimed that log 

transformation and differencing are suitable approaches to remove the non-stationarity, but that 

more than one step may be needed, which is time-consuming and increases the error profile. They 

used a differencing technique to convert the Johns Hopkins epidemiological data from non-

stationary to stationary. Four graphical techniques are employed in [21] to detect seasonality in 

time series: a run sequence plot, a seasonal sub-series plot, multiple box plots, and an 

autocorrelation plot. The authors mentioned that seasonal subseries and box plots have limitations 

in identifying the seasonal.  In addition to the graphical techniques, there are other statistical tests, 

such as the Chi (χ2) goodness-of-fit, the Kolmogorov-Smirnov goodness-of-fit, and the non-

parametric test, all of which can be used to identify seasonality [38].  Different types of tests are 

applied to the row variances of the Buys Ballot table in [21], using the Student T-test and Wilcoxon 

Signed-Ranks test. These showed promising results in detecting seasonality. 

In [42], various signal processing techniques were used to detect the seasonality of winter and 

summer time series wind speed by applying Continuous Wavelet Transform. One of the most 

common spread tools employed in the literature to identify seasonality is the Auto-Correlation 

Function (ACF) tool. Researchers utilized the Box-Jenkins algorithm for forecasting, which 

focuses on building a statistical model for forecasting the monthly average surface temperature in 

the Brong Ahafo region of Ghana to understand the dynamics of events. For determining 

seasonality, they used the ACF and decomposing the monthly average surface temperature into 

various components. All these approaches confirmed the presence of seasonality. 

Table (3.1) presents some studies that have been conducted to check and remove stationarity. Time 

series forecasting techniques, Neural networks, Wavelet, and a Kalman filtering estimator are the 

commonly used techniques for forecasting. Many hybrid techniques are proposed in the literature 

to improve the accuracy of the forecasting models, especially for nonlinear data[43] [44]. 
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3.3 Removing Non-Stationarity  

The stationarity in a time series is a potential condition in the Box-Jenkins approach. For this 

reason, many methods such as differencing and de-trending have been used to achieve this 

condition. In the present thesis, the differencing technique is the main tool used in the Box-Jenkins 

approach for the removing a trend. A proposed technique, called the Adaptive DC technique, is 

also presented here. Figures (3.4), (3.5), (3.6), (3.7) and (3.8) show the time series of hourly diesel 

prices, hourly gasoline prices, daily temperature, hourly load and the number of internet users, 

respectively.  

Table 3.1 Sampling of Studies That Apply Common Tools to Identify and Remove Stationarity 

Reference Year Time series 

dataset  

Checking / Removing 

stationarity  

Comments 

[45] 

 

2009 Load demand 

time series 

Differencing method.  

 

• Hard to detect stationarity in a long time 

series, but gives a clear view in a short time 

series. 

• Two and one non-seasonal and seasonal 

differentiation, respectively. 

[46] 2012 Weekly rainfall Autocorrelation Function 

(ACF) and / Logarithmic 

transformation and 

differencing method. 

• The seasonality must be significant; 

otherwise, the ACF tool cannot detect it. 

• The stationarity in mean and variance are 

done by performing log transformation and 

differencing of the original data. 

[47] 2015 Wind speed  the Augmented Dickey-

Fuller (ADF) / 

Differencing method. 

• ADF tends to reject the null hypothesis. 

One non-seasonal and one seasonal differentiation, 

respectively. 

[48] 2016 Wind speed Autocorrelation Function 

(ACF) / Differencing 

method. 

• Seasonality must be significant, or the ACF 

tool cannot detect it.  

• Only one differencing.  

[49] 2017 Temperature ACF and ADF/ 

Differencing method. 

• ADF tends to reject the null hypothesis. 

• One seasonal differentiation. 

 

[50] 2020 solar power 

generation 

KPSS/ Differencing 

method. 

• KPSS tend to reject the null hypothesis. 

• the first difference 

[51] 2021 Electricity 

Consumption 

ADF/ Differencing 

method. 

• ADF tends to reject the null hypothesis. 

• Differencing method. 

[52] 2022 Somalia GDP 

growth rates 

ADF and PP/ Differencing 

method. 

• The first difference 
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Figure 3.4 Hourly diesel prices. 

 

 

Figure 3.5 Hourly gasoline prices. 

 

 

Figure 3.6 Daily temperature. 
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Figure 3.7 Hourly load. 

 

Figure 3.8 The number of internet users 

3.3.1 Differencing Technique 

This technique is easy to use but needs to be applied more than once to remove the non-stationary 

part. The differencing equation is written as follows: 

Difference(𝑡) = 𝑋𝑡  −  𝑋𝑡−1 ……… (8) 

where 

 𝑋𝑡 ∶ The current observation. 

𝑋𝑡−1 ∶ Previous observation. 

Figures (3.9), (3.10), (3.11), (3.12) and (3.13) show the time series of hourly diesel prices, hourly 

gasoline prices, daily temperature, hourly load and the number of internet users, respectively, after 

applying the first differencing consecutively. 
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Figure 3.9 Differencing of the time series of diesel price. 

 

 

Figure 3.10 Differencing of the time series of diesel price. 
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Figure 3.11 Differencing of the time series of temperature. 

 

 

Figure 3.12 Differencing of the time series of load. 
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Figure 3.13 Differencing of the time series of the number of internet users. 

 

3.3.2 Proposed Adaptive DC Technique 

The proposed Adaptive DC technique is a novel approach that can be used to remove trend from a time 

series. The proposed technique has been inspired by DC offset removal in electrical signals. In the Adaptive 

DC technique, the time series is divided into groups of three points. The mean of the groups is calculated, 

and every three points are subtracted from the mean. Figure (3.14) explains the procedure of the Adaptive 

DC technique flowchart, and the following equation describes it: 

𝑦𝑖 = 𝑥𝑖 − ∑ (𝑥𝑗/3)
𝑗+2
𝑗  …………..(9) 

where 𝑥𝑖 indicates the input data; 𝑦𝑖  denotes the proposed converted data; 𝑖 = 1; 𝑛, 𝑗 = 1,4,7 … . . 𝑛 −

2;  𝑛 is the data size; and 𝑗 changes for each 3𝑖. After performing thousands of runs of the proposed strategy, 

we found that the best size of j is a pattern of 1,4,7, and so on. The proposed method could work well with 

different cases of j, but the best performance is found to be when j is defined based on the above pattern. 

The Adaptive DC technique has been applied to the time series of hourly diesel prices, hourly gasoline 

prices, daily temperature, hourly load and the number of internet users, as shown in Figures (3.15), (3.16), 

(3.17), (3.18) and (3.19), respectively.  
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Figure 3.14 Adaptive DC technique flowchart. 

 

Figure 3.15 Adaptive DC technique of diesel. 
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Figure 3.16 Adaptive DC technique of gasoline. 

 

Figure 3.17 Adaptive DC technique of temperature. 
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Figure 3.18 Adaptive DC technique of load. 

 

Figure 3.19 Adaptive DC technique of the number of internet users. 

3.4 Results and Discussion  

Statistical tests, including ADF, KPPSS and PP, are widely used for checking the stationarity of a 

time series [27]. The p-values of the tests are compared to 0.05 to decide whether to reject or accept 

the null hypothesis, where the null hypothesis is non-stationary. In ADF and PP, if p ≥ 0.05, the 

null hypothesis is true. For p < 0.05, the value is significant enough to reject the null. A key 

difference between the ADF test and the KPSS test is that the null hypothesis of the KPSS test in 

the series is stationary. Table (3.2) shows that the five-time series are non-stationary. The ability 

of the statistical tests to identify the stationarity in the time series depends on the time series length 

[53]. ADF and PP are appropriate tests when the time series length is 25 observations.  
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Table 3.2 Results of Statistical Tests of Time Series 

Time series Length of time 

series 

P- value of 

ADF test 

P- value of 

KPPSS test 

P- value of PP test Status of time series 

Diesel prices 467 0.8839 0.01 0.9069 Non-stationary 

Gasoline prices 467 0.14 0.01 0.2051 Non-stationary 

Temperature 336 0.176 0.01 0.138 Non-stationary 

Load 8760 0.656 0.01 0.1 Non-stationary 

Number of internet 

users 

105 0.44 0.1 0.9 Non-stationary 

 

Table (3.3) shows statistical test results after applying the differencing method. The ADF, KPPSS, 

and PP tests indicate that diesel prices, gasoline prices, and temperature time series are stationary, 

while the results of the KPPSS, ADF and PP tests show that the number of internet users time 

series is non-stationary. Therefore, the second differencing is mandatory. For more investigation 

in regarding the stationarity of the number of internet users time series, the series in figure (3.13) 

is split into three contiguous sequences, then we can calculate the mean of each group of numbers 

and compare the values. The results clearly imply that the mean of the three contiguous sequences 

is considerably different from each other describing the series is non-stationary.  Figure (3.20) 

shows the number of internet users time series after applying the second differencing.  

From Table (3.4), it is obvious that the five-time series are stationary after applying the Adaptive 

DC technique. Compared to the results from Table (3.3), it is clear that the proposed technique 

outperforms the differencing technique.  

Table 3.3 Results of Statistical Tests After Applying Differencing Technique 

Time series Length of time 

series 

P- value of  

ADF test 

P- value of 

KPPSS test 

P- value of 

PP test 

 Status of time series 

Diesel prices 467 0.01 0.1 0.01 Stationary 

Gasoline prices 467 0.01 0.1 0.01 Stationary 

Temperature 336 0.01 0.1 0.01 Stationary 

Load 8760 0.01 0.1 0.01 Stationary 
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Time series Length of time 

series 

P- value of  

ADF test 

P- value of 

KPPSS test 

P- value of 

PP test 

 Status of time series 

Number of 

internet users 

105 0.4 0.022 0.8 Non-Stationary 

 

 

Figure 3.20 2nd Differencing of the time series of the number of internet users.  

 

Table 3.4 Results of Statistical Tests After Applying the Adaptive DC technique. 

Time series Length 

of time 

series 

P- value 

of ADF 

test 

P- value 

of 

KPPSS 

test 

P- value 

of PP 

test 

Status of time 

series  

Diesel prices 467 0.01 0.1 0.01 Stationary 

Gasoline 

prices 

467 0.01 0.1 0.01 Stationary 

Temperature 336 0.01 0.1 0.01 Stationary 

Load 8760 0.01 0.1 0.01 Stationary 

Number of 

internet users 

105 0.01 0.1 0.01 Stationary 
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3.5  Conclusion 

In this work, we propose a novel Adaptive DC technique to convert a non-stationary time series 

into a stationary one in the first step. The adaptive DC technique was applied to various time series 

of different lengths. The differencing technique was also applied to the same series to validate the 

results using the ADF, KPSS, and PP tests. The results of the Adaptive DC technique and 

differencing technique were compared. When applying both techniques to gasoline and diesel fuel 

price, temperature, and load time series, the small comparison did not show any significant 

difference. However, when applying them to the number of internet users time series, the Adaptive 

DC technique was found to eliminate the non-stationary portion from the first step compared to 

the differencing technique. 

In comparison, the differencing technique may need more than one step. This makes the Adaptive 

DC technique superior to the differencing technique, because the proposed technique reduces the 

number of steps, thus minimizing the processing time. As the data becomes more complicated, the 

other techniques required more steps for the conversion compared to the proposed technique. The 

additional steps will increase the total error for the forecasted data. 
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Chapter4. Energy Management of Hybrid Energy System Sources Based on Machine-

Learning Classification Algorithms   

(The material presented in this chapter is based on a paper published in the journal Elsevier [7].) 

Abstract 

Hybrid energy systems (HES) that contain renewable energy sources, such as wind and solar 

energy, help to minimize CO2 emissions. Therefore, studying these systems to improve their 

performance has become especially important these days due to the global environmental crisis. 

Within HES, energy management (EM) is an essential topic that has been covered in detail by 

numerous studies, showing that errors in EM can lead to HES blackouts. Recent research has 

experimented with energy management strategy (EMS) to achieve optimal EM. 

This chapter introduces a robust one-hour-ahead forecasting model. The research has two main 

objectives. The first is to determine which energy source should supply the demand-side, using 

different machine-learning algorithms such as Random Forest (RF), Decision Tree (DT), Gaussian 

Naive Bayes (Gaussian NB), and K-Nearest Neighbors (KNN). The second objective is to compare 

the results of these algorithms in order to choose the one with the best performance and rank them 

based on performance and accuracy. The results show that the DT algorithm achieves the best 

performance compared to the RF and Gaussian NB algorithms, whereas the KNN algorithm has 

the lowest accuracy, especially over class 3 that represents solar and diesel generator. The results 

prove that the RF, DT, and Gaussian NB algorithms are reliable. 

4.1 Introduction 

Forecasting plays a vital role in the electrical engineering industry, as it gives designers a clear 

idea about energy system configuration over short-term periods. Such forecasts can help plan and 

manage generated renewable energy as an alternative power source to reduce overall costs and 

CO2 emissions stemming from conventional energy sources.  If the forecasting is inaccurate, the 

energy system can break down. Hybrid energy systems (HES) consist of intermittent renewable 

energy sources such as wind and solar, so they need accurate forecasting models. The performance 

of HES depends on several variables that need to be considered, such as the load, power 

production, weather conditions, fuel prices, and power management [54]. A proper load forecast 

allows designers to determine power production capacity. Additionally, knowing weather 
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conditions enables designers to predict optimum solar and wind energy availability. These 

variables can either enhance or reduce the performance of HES. 

To date, numerous studies have been conducted on forecasting and energy management, and 

several methods have been applied to achieve better results [44], [55]. EMS and optimization 

usually work side by side to guarantee load electrification and minimize energy production costs. 

A successful EMS gives the hybrid energy system stability and protects its components from 

damage caused by overloading [56]. 

 

Figure 4.1 Common methodology. 

 

As HES potentially includes solar and wind energy, EMS is mandatory, because solar and wind 

power are intermittent and oftentimes insufficient. Figure (4.1) represents the schematics of the 

traditional energy management methodology in a HES that contains solar and wind. In the first 

step, which involves forecasting the variable historical datasets for a day ahead, the results are 

used to create an EM using a genetic algorithm (GA), differential evolution (DE), neural network, 

fuzzy logic, or neuro-fuzzy techniques. In the proposed methodology, information obtained from 

the energy management technique is used to generate a dataset. Consequently, the dataset is used 

to forecast the source that should run in the HES. To the best of our knowledge, no previous study 

has investigated this topic. This study has two main objectives: 1. to forecast the scheduling of the 
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energy sources using machine-learning algorithms such as Random Forest (RF), Decision Tree 

(DT), Gaussian Naive Bayes (Gaussian NB), and K-Nearest Neighbors (KNN); and 2. to compare 

the results of the algorithms named above. The novelty of the proposed work is: 

1. To propose a model for scheduling prediction. 

2. To validate the proposed work by using different intelligent approaches.   

4.2 Literature Review  

One of the factors that should be considered when building a HES is the load problem. This 

problem can be solved by applying different methods and techniques, such as regression analysis, 

time series analysis, artificial neural networks, genetic algorithms, support vector machine, fuzzy 

logic, and adaptive network-based fuzzy inference. Recently, hybrid methods and intelligent 

approaches have been attractive to researchers in solving the load problem [57].  

In [16], hourly short-term electric load data were predicted by applying the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model. The authors used the Fast Fourier 

Transformation algorithm (FFT) to detect the existence of seasonality in the time series of 

electrical load data. In [58], a fuzzy logic and adaptive neuro-fuzzy inference system (ANFIS) was 

used to forecast hourly short-term load in Turkey, with Artificial Intelligence (AI) being described 

as a powerful technique for determining the load problem. In addition, the researchers stated that 

using Artificial Neural Networks (ANNs) with Particle Swarm Optimization (PSO), Back 

Propagation Algorithm (BPA) or Fuzzy Logic (FL) as hybrid methods would increase the accuracy 

of solving this problem [59]. Several different ANN architecture performances in forecasting the 

load were evaluated in [60]. The authors affirmed that intelligent forecasting methods are superior 

to conventional methods with regard to accuracy. Multivariate adaptive regression splines 

(MARS), artificial neural network (ANN) and linear regression (LR) methods were used to 

determine short, mid-, and long-term load forecasting [61]. Several factors that affect HES 

indirectly were summarized in detail in [62]. 

Knowing in advance the amount of energy produced from renewable and traditional energy 

sources in a HES is recognized as a fundamental process in HES design. Forecasting the power 

production has received considerable attention in recent years, with many researchers applying 
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various approaches and techniques to achieve high forecasting accuracy. In [63], a multi-layer 

perceptron (MLP) model was employed to forecast wind power production 24 hours in advance. 

Meanwhile, the authors in [64] used Recurrent Neural Network (RNN) to forecast solar power 

production from a photovoltaic power plant. The researchers in [65] employed three different 

methods to forecast photovoltaic power production, namely, Auto Regressive Integrated Moving 

Average (ARIMA), Radial Basis Function Neural Network (RBFNN), and Least Squares Support 

Vector Machine (LS-SVM). In [66], solar power production was forecast using a hybrid Wavelet-

PSO-SVM forecasting model based on SCADA. 

Weather conditions, wind speed, solar irradiation, and temperature all directly affect the amount 

of power produced in a HES[54]. Wind speed was predicted in [67] using a novel hybrid 

forecasting system containing three modules (a data preprocessing module, an optimization 

module, and a forecasting module). The authors in [68] applied an autoregressive moving average 

with echo state network compensation to improve the accuracy of short-term wind speed 

forecasting. A hybrid deep learning model that contains a gated recurrent unit (GRU), a neural 

network and an attention mechanism was used to forecast the solar irradiance changes in four 

different seasons [69]. Meanwhile the authors in [70] demonstrated that forecasting solar 

irradiance is vital to renewable energy generation.  

An intelligent hybrid clustered for wind speed forecasting model was proposed based on different 

combinations of ANN, WNN, and the least- square methods. The model is based on two different 

steps of forecasting using back-to-back results to increase the number of inputs in the second stage 

to improve system accuracy. The model uses preprocessed data based on clustering techniques; at 

the end, the forecasted data are aggregated [55]. A hybrid model consisting of Neuro Wavelet 

(WNN), Time Series, and Recurrent Kalman filter for wind speed forecasting was proposed based 

on two different stages. The model depended on using the error from the first stage as an input for 

the second stage to improve the system accuracy and reduce the training time [56]. Hybrid Models 

of ANN, WNN, and a Kalman filter based on clustering techniques for smart grid integration were 

proposed for short-term load forecasting. The model convergence in this approach is very fast but 

it is also more complicated and if there is any error at any stage, the error will be accumulated [71]. 

An adaptive method based on a multi-model partitioning algorithm (MMPA) was developed to 

forecast a short-term electricity load using historical data. Different real cases derived from 
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measurement loads taken at the Hellenic Public Power Cooperative Company were studied. The 

obtained results showed that the proposed method could determine the component of the electricity 

load time series [72]. Several ANN models have been built based on different combinations of 

learning algorithms and transfer functions. Real data were divided into three stages: training, 

validation and testing stages. The models’ outputs were compared to each other to identify the 

most reliable one. The selected model was then used to forecast energy consumption a year ahead 

[73]. HOMER software was used to analyze the technical and economic viability of hybrid energy 

systems in the Masirah Island power system in Oman. They evaluated different scenarios using 

package DIgSILENT. The authors stated that the hybrid energy system containing diesel, 

photovoltaic, and a wind turbine is a good choice, as it reduces operational costs [74]. A 

comprehensive study was done to predict the hourly energy from a solar thermal collector system.  

The authors used random forest (RF), extra trees (ET), decision trees, and support vector regression 

(SVR). These models were evaluated based on ability (stability), accuracy and computational cost. 

The obtained results showed that RF and ET performances are equal, and that they are more 

accurate than DT [75]. The daily total energy generation of an installed photovoltaic system was 

predicted using the Naïve Bayes classifier. The classifier applied to a one-year historical dataset 

such as daily average temperature, daily total sunshine duration, daily total global solar radiation 

and daily total photovoltaic energy generation parameters. The results proved that the Naïve Bayes 

classifier effectively predicts the total energy generation, giving an accuracy of 82.1917% [76]. 

The authors in [27] claimed that many machine-learning algorithms, such as linear regression 

(LR), K nearest neighbor regression (KNN), support-vector machine regression (SVMR), and 

decision-tree regression (DTR), are used in renewable-energy predictions. They stated that the 

most used machine-learning algorithms were for solar energy and wind-energy predictions. The 

following section summarizes the different algorithms encountered in machine learning. 

4.3 Machine Learning  

Machine learning (ML) is an application of artificial intelligence (AI). It is widely used in every 

sphere of human life because of its ability to solve real-life problems. Figure (4.2) shows the two 

main steps in achieving ML algorithms. The two stages of the dataset are divided into two unequal 

groups—training and testing datasets—to designate training and testing stages. In the training 
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stage, the dataset is used as input in the selected algorithm to train it. The trained selected algorithm 

is then fed by testing the dataset to evaluate the selected algorithm performance in the testing stage. 

 

Figure 4.2 Two main steps in achieving ML algorithms 

ML problems can be divided into three types: supervised, unsupervised and reinforcement. No 

specific algorithm can solve ML problems due to their complexity, which sometimes requires a 

unique algorithm [77]. The main reason for selecting Random Forest (RF), Gaussian Naive Bayes 

(Gaussian NB), Decision Tree (DT) and K-Nearest Neighbor (KNN) is the type of problem that 

needs to be solved. These algorithms can solve the classification problem. The second reason is 

the number of data points and features, as different algorithms can handle different sized datasets. 

Also, these algorithms do not require normalization of data and easy to implement. 

4.3.1 Random Forest (RF) 

Breiman [78] introduced Random Forest in 2001. RF is a supervised ML algorithm that is widely 

used due to its robust performance [79]. However, because the most practical classification 

problems are imbalanced, many algorithms cannot accurately handle them. RF can overcome this 
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challenge by applying a cost-sensitive learning and sampling technique [80]. Figure (4.3) presents 

the main steps of RF. 

 

Figure 4.3 Main steps involved in the Random Forest (RF) algorithm. 

4.3.2 Gaussian Naive Bayes (Gaussian NB) 

Gaussian Naive Bayes is a simple probabilistic algorithm. It is one of the most well-known of the 

Naive Bayes (NB) algorithms that uses the Bayes’ theorem. The approach is designed to handle 

continuous attributes associated with each class that is distributed according to Gaussian 

distribution [81]. The significant advantages of the NB family are that it can be applied to practical 

classification problems, it requires less training data, and it can be trained very effectively in 

supervised learning. A significant drawback of the NB family is that the attributes are assumed to 

be independent, which is almost impossible [82]. Figure (4.4) illustrates the primary stages 

involved in the Gaussian NB algorithm. 

. 

Figure 4.4 Gaussian Naive Bayes algorithm flowchart. 
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4.3.3 Decision Tree (DT) algorithm 

Decision Tree algorithms were first introduced by Ho in 1995. Later, a multiple DT algorithm was 

used to form the RF algorithm [83]. The DT approach can be employed to solve classification or 

regression problems. Unlike many other algorithms, DT can handle a wide range of attributes and 

does not require scale normalization before model building and application. Furthermore, 

regarding data preparation, the DT algorithm is not affected by missing data [84]. Figure (4.5) 

shows the flowchart of DT. 

 

Figure 4.5  the flowchart of DT algorithm. 

4.3.4 K-Nearest Neighbor (KNN)  

K Nearest Neighbor (KNN) is one of the most frequently used algorithms in machine learning due 

to its ease of use and versatility  [85]. However, because KNN uses all the training data, it requires 

time to read it and memory to store it. The authors in  [86] provide a good summary of the 

advantages and disadvantages of KNN techniques. The letter “K” indicates the number of nearest 

neighbors. In contrast, the term “nearest neighbor” indicates that the algorithm is searching for the 

closest point needed for the classification and labeling of the nearest point assigned to it. The 

nearest neighbor distance between two points can thus be calculated using a Euclidean distance 

function, as shown in Equation (4.1): 

𝐷 = √∑ (𝑏𝑖 − 𝑎𝑗)2𝑛
𝑖=1  ……………… (4.1) 

where D is the distance between the two points a and b. 

Algorithms such as KNN and support vectors that use distance measures between input 

variables could face some issues, one of which is the differences in input variable scales. 

This issue could lead to difficulty during model creation, and their performance could be 

poor during learning. Therefore, standardizing or normalizing data on the same scale is 
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highly recommended  [87]. Equations (4.2) and (4.3) can be used to standardize or normalize 

the data. 

normalization value =
(𝒙−µ)

𝝈
……………….. (4.2) 

where µ is the mean of the feature values and 𝜎 is the standard deviation of the feature values. 

standardization value =
=(𝒙−𝑥𝒎𝒊𝒏)

(𝒙𝒎𝒂𝒙−𝒙𝒎𝒊𝒏)
 ………………. (4.3) 

where Xmax and Xmin are the maximum and the minimum values of the feature, 

respectively. 

4.4 Evaluating Metrics  

An essential step in building a machine-learning model is evaluating its performance. Various 

metrics can be used for this purpose as well as for comparative purposes. Accuracy, which is a 

common evaluation metric for classification problems, is calculated as shown in Equation (4.4): 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑂
 ………………. (4.4) 

Where TP is true positive, TN is true negative, and 𝑇𝑂 is total number of predictions. TP is when 

the predicted value is yes and the actual output is also yes, while TN is when the predicted value 

is no and the actual output is also no.  

Overall classification accuracy is often not an appropriate metric for evaluating model 

performance in the case of a dataset with imbalanced data  [88]. In addition, sometimes the 

algorithm understands only one or two classes, which means the algorithm could be biased towards 

one class over the others. A few of the more powerful metrics that can provide a clear idea about 

model performance when dealing with imbalanced data are given below: 

• Precision 

The precision metric can be calculated as shown in Equation (4.5) by the number of true 

positives (TPs) divided by the number of TPs and False Positives (FPs). 

Precision  =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  ………………. (4.5) 

• Recall 

Recall is another important metric, which is defined as the number of TPs divided by the number 

of TPs and the number of FNs, as expressed in Equation (4.6): 
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Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 …………………….. (4.6) 

• F1 Score 

 The F1 Score metric shows the robustness and precision of the model and seeks to find the balance 

between precision and recall. Mathematically, it can be expressed as: 

F-Score =
2

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

 …………………… (4.7) 

4.5 Data Analysis and Hybrid Energy System Description 

The scheduling dataset includes 336 instances and 5 attributes: 4 inputs and 1 output variable. The 

inputs are hourly load, temperature, and availability of solar and wind, while the output is the 

scheduling of the hybrid energy sources. The inputs are numeric and have values across various 

ranges. The last attribute is the class output variable. The class output type is nominal and has six 

values. These values are encoded as presented in Table (4.1). Figures (4.6), (4.7), (4.8), and (4.9) 

display the graphical distribution of the temperature, load, solar availability, and wind availability 

attributes, respectively. Each color represents the class and number of attributes. As can be seen, 

there is a different overlap distribution for the class values on each attribute. The temperature and 

load attributes have a Gaussian-like distribution and a nearly Gaussian distribution with a skew, 

respectively. The sun and wind attribute values are 0 and 1, where 0 means there is no wind or 

solar and 1 means there is wind or solar. The classes are imbalanced, indicating an unequal number 

of instances in each class. 

Table 4.1 Encoded Values for Different Classes. 

Class Class Encoding 

Solar and Wind        16 1 

Gasoline Generator    90 2 

Solar and Gasoline Generator    13 3 

Wind and Gasoline Generator  152 4 

Solar, Wind and Gasoline Generator       27 5 

Gasoline Generator and Diesel Generator    39 6 
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Figure 4.6 Graphical distribution of temperature. 

 

Figure 4.7 Graphical distribution of load. 
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Figure 4.8  Graphical distribution of the availability of sun. 

 

Figure 4.9 Graphical distribution of the availability of wind. 
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4.6 Focus of the Present Research 

A HES consisting of two renewable energy sources (solar and wind energy) and two traditional 

energy sources (gasoline and diesel generators) is studied in this thesis. The power output of the 

solar and wind turbine is 20 kW and 25 kW, respectively, while the output for the gasoline and 

diesel generators is 50 kW and 55 kW, respectively. The system is used to supply a remote 

community. The maximum load in the remote community is 100 kW, and the minimum load is 

23.6 kW. The sources of the HES have been scheduling more than 336 hours over two weeks. ML 

algorithms are employed to predict the scheduling of the HES sources. Specifically, the scheduling 

dataset is divided into two groups: 70% is for training the machine-learning algorithms, and the 

rest is for testing the algorithms. 

4.7 Results and Discussion  

Predicting a source that will meet the demand is one of the essential factors that should be 

considered when designing a hybrid energy system. As we stated in the literature review, many 

studies paid attention to power consumption, power generation, and weather prediction, but not 

scheduling prediction. The results of schedule prediction for a hybrid energy system were 

successfully obtained in the present study. Table (4.2) shows the overall accuracy of the algorithms 

applied to the scheduling dataset. RF, Gaussian NB, and DT algorithms resulted in reliable 

percentages. The accuracy can be used for evaluating binary and multiclass classifiers.  

However, because the data are imbalanced, the overall accuracy cannot be a reliable metric to 

evaluate the algorithms, as the overall accuracy treats all classes equally and does not give attention 

to minority classes. This problem has been solved by using precision, recall, and F1-score metrics. 

These metrics show how the algorithms deal with individual classes.  

Table 4.2 Overall Accuracy of Algorithms 

Algorithm Accuracy of training data Accuracy of testing data 

RF 99.5 95.05 

Gaussian NB 95 95 

DT 100 95 

KNN 32.34 38.61 

KNN Standard Scaler 97 95 
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Figure (4.10) presents the use of precision metric for evaluating the algorithms over the classes. 

As can be seen, the DT algorithm shows overall excellent performance, followed by the RF and 

Gaussian NB algorithms. The KNN algorithm shows the worst performance, especially in class 3. 

Figure (4.11) shows the use of recall metric for assessing the algorithms over classes 1, 2, 3, 4, 5, 

and 6. As shown in the figure, it is clear that the DT algorithm has the highest performance of the 

classes, while the RF and Gaussian NB algorithms and the KNN have the lowest.  

 

 

 

Figure 4.10 Precision metric. 

 

 

Figure 4.11 Recall metric. 
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Figure (4.12) depicts that utilizing the F1-score metric gives nearly the same results as the 

precision and recall metrics regarding performance. Even though class 3 occurs only 13 times 

in the dataset, RF, Gaussian NB and DT have a robust performance at every performance 

stages. The obtained results from the precision, recall, and F1-score metrics show the 

algorithm’s real performances. Moreover, they show how the overall accuracy gives 

misleading results due to imbalanced data. In general, it is noticeable that the RF, Gaussian 

NB and KNN algorithms are biased to specific classes, whereas the DT algorithm 

understands all classes. 

 

 

Figure 4.12 F1-score metric. 

Standardizing the dataset is an amendment to the performance of the KNN algorithm. Figures 

(4.13), (4.14), and (4.15) manifest the performance of the KNN algorithm after standardizing 

the dataset. It is noticeable that there is a significant change in the KNN performance in cases 

where the KNN algorithm could understand all the classes. Due to the amendment, the KNN 

algorithm competed with the RF and Gaussian NB in only some of the classes.  
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Figure 4.13 Precision metric: KNN algorithm performance post-dataset standardizing. 

 

 

Figure 4.14 Recall metric: KNN algorithm performance post-dataset standardizing. 
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Figure 4.15 F1 score metric: KNN algorithm performance post-dataset standardizing. 

 

The confusion matrix was generated to summarize the algorithms' performances, as shown in 

Figure (4.16). The columns represent the actual results, while the rows represent the predicted 

results; the correct predictions are highlighted in red. As can be seen, seven values were correctly 

classified as class 1. Reading down the class 3 column, one value that should be class 3 was 

classified as class 1. Also, 23 values were correctly classified as class 2. Reading down the class 6 

column, three values that should be class 6 were classified as class 2. The RF algorithm correctly 

classified the other values, namely classes 4 and 5, figure (4.16a).  

 

Figure 4.16 Confusion matrix of the algorithms. 
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4.8 Conclusion 

This chapter proposed a novel technique for next-hour forecasting in order to optimize the energy 

management of hybrid energy systems. Machine-learning algorithms, such as RF and DT, were 

applied to energy management datasets to forecast which sources should supply the demand-side. 

The work was validated by comparing the two algorithms to Gaussian NB and KNN. The results 

from the overall accuracy metric indicate that the algorithms are reliable in forecasting energy 

management. However, these results are somewhat misleading, as the algorithms demonstrate 

biases to specific classes. Thus, a classification report was used instead of the overall accuracy 

metric. In utilizing classification, it was found that the DT algorithm achieved excellent 

performance compared to the RF and Gaussian NB algorithms. In contrast, the KNN algorithm 

presented a weak performance compared to the RF, DT, and Gaussian NB algorithms, especially 

over class 3. Finally, after standardizing the energy management dataset, the KNN algorithm was 

able to compete with the RF and Gaussian NB algorithms in some of the classes. 
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Chapter5. Energy Management Using Multi-Criteria Decision Making and Machine-

Learning Classification Algorithms for Intelligent Systems 

 
(The materials presented in this chapter are based on a journal paper published in Elsevier [18].) 

Abstract 

A hybrid energy system (HES) is one of the most effective solutions for power demand, especially 

in remote areas. It is well known that a HES usually includes renewables like solar or wind energy 

sources. However, as renewables can be intermittent, effective energy management plays an 

essential role in organizing the power flow in hybrid energy sources. In this chapter, a HES 

composed of wind, gasoline, and a diesel generator is used to electrify a specific remote area. The 

sources of the HES are categorized in different arrangements to select the best combination from 

all available six energy source combinations, based on five criteria. The technique for the order of 

preference by similarity to find the ideal solution (TOPSIS) is used. This work is divided into two 

stages. In the first stage, a historical load dataset is used to model and calculate the five criteria. 

TOPSIS results are combined with the five criteria and the load to form a dataset. In the second 

stage, machine-learning algorithms, namely random forest (RF) and light gradient boosted 

machine (LightGBM) algorithms, are used to predict the combination of the energy sources as a 

means of validating the proposed strategy. The evaluations show the superiority of the RF 

algorithm (with an accuracy of 81.81%) over the LightGBM algorithm (with an accuracy of 

68.6%). The behavior of both algorithms is explained using the confusion matrix. RF classifies the 

classes G1G2 and G2 correctly but misclassifies some values of the other classes. LightGBM, on 

the other hand, classifies G2 correctly, but misclassifies values for other classes. 

5.1 Introduction 

Most remote communities suffer from a lack of essential services, including sufficient access to a 

power grid. Connecting these communities to the grid is possible, but the cost and transmission 

power losses can be high. A hybrid energy systems (HES) that contain renewable energy sources 

combined with more conventional energy sources is an ideal solution in such cases. However, 

because renewables, like solar and wind, are considered intermittent energy sources, a HES require 

a highly accurate energy management strategy (EMS) to organize energy flow from the HES 

sources to the load. An EMS is considered efficient if it protects HES components from damage 
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and ensures energy flow under all conditions. As well, an EMS is important for optimizing the size 

and cost of an energy system [43] [44] [56] [55] [89]. 

Energy management in a HES is usually done with software such as MATLAB, Simulink, 

HOMER and TRNSYS, or with artificial intelligence such as differential evolution algorithm, 

fuzzy logic quasi-steady-state time-series models, particle swarm optimization, genetic algorithm 

and artificial neural networks [89]. In this chapter, the energy management plan is forecasted using 

a dataset created with TOPSIS. 

The novelty of the work is: 

1. To propose an optimal HES based on TOPSIS using different combinations to minimize 

fossil fuel emission and overall costs as well as to increase the penetration of renewable 

energy resources. The results of this hybrid model will be used for the next stage. 

2. To calculate five criteria based on time series load data to evaluate different sources 

combinations.  

3. To create a dataset from TOPSIS method results that can be used in forecasting the sources 

that should be connected to the load. 

4. To forecast energy management based on machine-learning algorithms. 

5. To validate the proposed work by comparing the forecasted dataset with a different 

approach like LightGBM.  

The hybrid energy system in this work consists of wind, gasoline and diesel generators and is used 

to electrify a remote area. The authors assume that the wind speed is sufficient to generate energy 

from the wind farm. The sources of the HES are categorized in different combinations (alternatives 

in the TOPSIS method) to select the best hybrid energy source from all possible available sources 

based on five criteria, using TOPSIS. The work is divided into two stages. In the first stage, a 

historical load dataset is used to model and calculate the five criteria. The TOPSIS method results 

are combined with the five criteria and the load to form a dataset. In the second stage, machine-

learning algorithms, specifically RF and LightGBM, are used to predict possible alternatives to the 

energy sources. 
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5.2 Literature Review  

5.2.1 Power Management 

An electrical power management system provides precise information about power flow in an 

electrical power system. It records and provides the power system’s data, which will be used to 

manage the power system components. In [90], a promising smart-grid system configuration was 

introduced with a tree-like node classification to ease the distributed generation strategies 

management based on load management, distributed storage, and renewable sources. The authors 

in [91] analyzed forty variables connected to industry power management using factor analysis. 

The factors were considered from behavioral, change, contingency, economic and technological 

perspective.  A novel optimization model to evaluate the contribution of vehicle-to-grid V2G 

systems to assist power management within realistic configurations of small electric power 

systems, including green energy, was proposed in [92]. 

In [93], the authors proposed an EMS for a sustainable stand-alone HES composed of wind farm, 

solar arrays, and bioethanol. A genetic algorithm technique is introduced to size the stand-alone 

system optimally. To validate the introduced technique, various load scenarios were tested. 

Researchers in [94] suggested sizing HES using different EMS. The EMS applied in the proposed 

model are cycle-charging strategy (CCS), load-following strategy (LFS), and peak-shaving 

strategy (PSS). Genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-

based optimization techniques (BBO) are applied to size the HES by keeping energy index ratio 

at 1. Net present cost (NPC), cost of energy (COE), renewable fraction (RF), and emissions of 

CO2 from diesel generator were also considered in the study. 

 Meanwhile, the authors in [95] proposed various hybrid power generation technology 

management options. Some well-known algorithms have been applied to manage the load sharing 

and to improve the performance of the hybrid system. The results obtained show that a combination 

of fuzzy logic controller with quantum behaved particle swarm optimization (QPSO) gives the 

best performance among other combinations, which including ant colony optimization (ACO), 

cuckoo optimization algorithm (COA), imperialist competitive algorithm (ICA), and particle 

swarm optimization (PSO). In [96], a hybrid power system composed of solar cells, fuel cells and 

a battery, along with an electrolyzer and H2 tank, was presented. A control logic technique was 

introduced and then verified with SIMULINK. The simulation results obtained depict the 

efficiency of the model. In [97], a hybrid energy system composed of 1 MW wind farm, 1.1 MW 
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solar array, 300 kW fuel cell, 300 kW diesel generator and 72 kWh batteries, and designed its 

management strategy, was debuted. The load profile was estimated, and the system was sized using 

HOMER software. SIMULINK was then applied to obtain the simulation results. The results 

proved the feasibility of the power management strategy of the proposed hybrid power system. 

The authors in [98] showcased an autonomous stand-alone hybrid power system composed of solar 

panels energy and a backup fuel cell. A Simulink model was developed to test the effectiveness of 

the system presented. The obtained results proved the feasibility of their model. 

5.2.2 Multi-Criteria Decision-Making (MCDM) 

Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is used 

to evaluate multiple conflicting criteria in decision-making in a variety of disciplines. MCDM is 

applied when multiple criteria (or objectives) must be considered together to rank or choose among 

the evaluated alternatives. The study in [99] proposed an MCDM technique based on AHP to 

evaluate five renewable power generation sources: biomass, geothermal, concentrated solar power, 

solar photovoltaic, and wind energy. The results obtained from the case study show that the best 

power generation techniques are solar photovoltaic and concentrated solar power, respectively. In 

[100], 13 renewable and non-renewable power sources for generating electricity in the United 

States using MCDM techniques were compared. The attained results conclude that biopower and 

geothermal energies are the optimal sustainable energy sources in the US. In most scenarios, 

renewable energy sources are more sustainable than fossil fuels, and nuclear ones are more 

favorable than fossil fuels. Renewable energy sources in Turkey were ranked in [101] using Fuzzy 

TOPSIS, based on the amount of energy produced, capacity installed, efficiency, job creation, 

investment cost, land use, operation and maintenance cost, payback period, and value of CO2 

emissions. The results showed that hydropower is the best energy source option in Turkey, 

followed by geothermal power, regulator and wind power, respectively.  

In [102], the VIKOR method was combined with the AHP technique to select the optimal option 

of different renewable energy sources in Spain. The results showed that biomass energy is the best 

option, followed by wind power and solar thermo-electric alternatives. The researchers in [103] 

proposed a modified fuzzy TOPSIS approach to choose the best energy technology from various 

energy sources. A fuzzy AHP technique was applied to determine the weights of each criterion in 

order to build pairwise comparisons. The findings showed that wind energy is the optimal energy 
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source option in the studied area. A MCDM technique to select the optimal sustainable power 

generation technology was presented in [104]. MULTIMOORA (Multi-Objective Optimization on 

the basis of a Ratio Analysis plus Full Multiplicative Form) [105] and TOPSIS were applied, with 

the results showing that hydro and solar thermal energies are the best sustainable energy options 

in the studied area, followed by wood CHP and wind power. The fuzzy TOPSIS technique was 

employed in [106] to select the engine flywheel material.  

In [107], the TOPSIS method determined investment opportunities in the Mokran coasts region in 

Iran by specifying the important infrastructures for entrepreneurial activities. Among 22 

investment options, and by asking some experts and applying the best-worst MCDM [108], the 

researchers found commercial centers, loading, private port sites, particular areas of fisheries, and 

warehouses more attractive to investors. Other researchers [109] applied the fuzzy TOPSIS 

technique to determine the best combat response in case of oil spill accident in the Brazilian sea. 

Ten combat options, two decision criteria, and three decision-makers were applied, while in [110], 

the authors a fuzzy TOPSIS technique to determine the best location to build an urban distribution 

center.  

A comprehensive state of the art review of the most recent advances in methodologies and 

applications of fuzzy MCDM in the energy field was investigated in [111], and in [112], the authors 

presented a new divergence measure to rank and choose the RES in MCDM techniques based on 

fuzzy TOPSIS; they then compared it with some existing algorithms. The results showed that the 

ranking outcomes were almost similar to the existing MCDM techniques. A state-of-the-art review 

for optimizing different manufacturing processes using the TOPSIS method was conducted in 

[113]. Some areas reviewed included milling, drilling, turning, electric discharge machining, 

abrasive jet machining, and micromachining. The authors in [114] introduced an optimal mapping 

of HES composed of wind farm, solar arrays, storage, and a diesel generator for households in 

southern Nigeria. The research considered technical, economic, environmental, and sociocultural 

criteria and was done based on HOMER software and the TOPSIS method. 7.23 kWh/day per 

household's electrical power demand was met either with the wind/solar/battery model or with the 

wind/solar/battery/diesel generator model.  

In [115], the researchers introduced Social, Technical, Economical, Environmental, and Political 

STEEP-fuzzy AHP-TOPSIS techniques to determine thermal power plants and suggest their 
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locations in India. Fuzzy AHP is used to specify the weights of qualitative and quantitative criteria 

affecting the location selection process. The TOPSIS method is used to rank the alternative 

locations according on their overall performance. The authors in [116] applied TOPSIS to rank the 

significance and attractiveness of the stack of fuel cells as a sub-system in the automotive industry 

and to evaluate the labor and equipment needed in the laboratory and industry scale, while [117] 

introduced an AHP method in combination with benefits, opportunities, costs, and risks (BOCR) 

to determine an optimal wind farm project. 

5.2.3 Machine Learning 

Machine learning is a technology that belongs to artificial intelligence, which is applied to analyze 

the data automatically with minimal human interaction. A model was showcased in [118] to 

enhance the currently low-rate prediction accuracy of heart failure (HF). The results showed that 

the developed method could perform with 93.33% prediction accuracy. In [119], the authors 

investigated and tested a hybrid machine-learning technique that deals with big data analysis to 

optimize energy harnessing in the field of smart energy management. The manipulated data were 

taken from different conventional and green energy sources. A study in [120] reviewed the famous 

novel and classical algorithms that are applied in renewable energy technology. The study also 

provided a comprehensive literature review for various classification techniques, including support 

vector machines and artificial neural networks. 

In [121], a model was presented that forecasted the climate for daily power generation at the 

Zhonghe PV station in North China using a random forest algorithm. The results showed a good 

outcome compared to the other three methods applied for comparison. A hybrid model of machine-

learning algorithms to optimize power consumption in residential buildings was debuted in [122], 

with the results showing that the applied model could enhance building energy prediction 

accuracy. The authors in [123] looked at various machine-learning techniques applied in renewable 

power generation and renewable energy planning according to available data. They also 

investigated PV modules and wind farm sizing. In [124], state-of-the-art machine-learning models 

were applied in power systems. A novel taxonomy of the models was first applied, and then their 

applications were discussed. The authors concluded that hybrid ML models are robust, precise, 

and more effective for renewable power systems. Researchers in [125] presented a new forecasting 

algorithm based on a convolution neural network (CNN) combined with LightGBM to improve 

the forecasting accuracy and robustness of wind power data. 
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Fidelity and computational costs, along with the solidity of extra trees (ET) and random forest for 

forecasting hourly PV power output, were examined and compared in [126]. The comparison of 

ET and RF’s performance was done via the supervised machine-learning technique called support 

vector regression (SVR). From the computational cost viewpoint, ET outperformed RF and SVR 

and was found to be an ideal candidate for PV output forecasting. Finally, in [127], the authors 

used five machine-learning techniques to perform long-term wind energy forecasting. Various 

scenarios were taken into consideration to determine the performance of the machine-learning 

algorithms. Promising results were obtained, especially for long-term wind power forecasting. 

5.3 Methodology  

5.3.1 TOPSIS 

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method was 

developed in 1981 by Hwang and Yoon [19]. The researchers’ aim in creating TOPSIS was to find 

the closest and farthest alternatives to the ideal and negative solutions [99]. In consequence, the 

designer can exclude farthest alternative from the system. Also, TOPSIS is suitable for situations 

with many alternatives and attributes. The steps in TOPSIS are simple and fixed, regardless of the 

criteria or number of alternatives [7]. However, one of the main drawbacks of the method is that 

there is no equation to derive the weight values, so only decision-makers can assign these values 

[95]. Only the decision-maker’s subjective weights are considered, while the end-user’s evaluation 

is disregarded. 

However, involving end-users in evaluating the weight of the criteria and taking their judgments 

into consideration is essential to overcome issues that may arise from adding or deleting an 

alternative [128]. This can be done using the AHP or FAHP methods. Rank reversal phenomenon 

is another disadvantage may occur in MADM methods, such as the Borda–Kendall (BK) method 

for aggregating ordinal preferences and the simple additive weighting (SAW) method. This paper 

does not need to address the rank reversal phenomenon issue, because the case study that the paper 

dealt with is fixed.  TOPSIS has proved its ability to solve selection problems with a finite number 

of alternatives. Due to its advantages [129], this method has been widely used in many fields, like 

manufacturing systems and engineering, environmental management, marketing management, 

design, business, water, and human resources management. 
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The TOPSIS method is described by the following steps: 

• Constructing the decision matrix: A decision-making problem has m alternatives, and 

each alternative has n criteria. The decision matrix 𝑋𝑖𝑗can be written as follows: 

 

 
𝑋𝑖𝑗 = [

𝑥11 𝑥12 … 𝑥1𝑛

𝑥21 𝑥22 … 𝑥2𝑛

: : : :
𝑥𝑚1 𝑥𝑚2 … 𝑥𝑚𝑛

] 

 

(5.1) 

where 𝑗𝑡ℎ is the criterion of the 𝑖𝑡ℎ alternative, 𝑖=1,2, …, m  and 𝑗=1,2, …n. 

 

• Calculating normalized matrix: The different criteria are converted from dimensional 

criteria into non-dimensional criteria to compare them. Equation (5.2) is used to 

normalize the decision matrix𝑋𝑖𝑗: 

 
𝑥𝑖𝑗̅̅̅̅ =  

𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 
(5.2) 

   

• Calculating the weighted normalized decision matrix by Equation (5.3): 

 

 𝑉𝐼𝐽 =  𝑋𝑖𝑗
̅̅ ̅̅  × 𝑊𝑗  (5.3) 

 

where 𝑊𝑗 is the relative weight of the  𝑗𝑡ℎ criterion. The summation of criterion weight must be 

equal to 1. 

• Determining the positive-ideal and negative-ideal solutions: Identifying beneficial and 

non-beneficial criteria.  The beneficial criteria are the higher criteria value that are 

desired, while the non-beneficial criteria are the lower criteria values that are desired.  

• Calculating the Euclidean distance from the ideal best and worst by Equations (5.4) and 

(5.5)  

 

 𝑆𝑖
+ =  [∑ (𝑉𝑖𝑗 − 𝑉𝑗

+)
2𝑛

𝑗=1 ]
−0.5

  (5.4) 
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 𝑆𝑖
− =  [∑ (𝑉𝑖𝑗 − 𝑉𝑗

−)
2𝑛

𝑗=1 ]
−0.5

  (5.5) 

 

where S+ is the ideal best and S- is the ideal worst 

• Calculating Performance Score using Equation (5.6): 

 

 𝑃𝑖 =
𝑆𝑖

−

𝑆𝑖
+ + 𝑆𝑖

− (5.6) 

Using TOPSIS, the weight values of the criteria are assigned randomly, because there is no 

equation to derive the weight values. This issue is considered the main weakness in the method 

[100]. To calculate the weight values of a criteria, other methods like AHP and FAHP can be used. 

5.3.2 Analytic Hierarchy Method (AHP) 

The analytic hierarchy method (AHP), developed by Saaty, is a powerful multi-criteria decision-

making tool that has been applied in numerous applications in various fields such as economics, 

politics, and engineering [130]. It is a powerful method for analyzing and solving complex decision 

problems. The foremost step in the AHP method is creating a hierarchical structure that contains 

the goal at the top level, the criteria at the middle level, and the alternatives at the bottom level, as 

shown in Figure (5.1). 

 
Figure 5.1 Hierarchical tree of criteria for AHP analysis. 

 

The second step is creating a pairwise comparison matrix. This matrix contains the decision-

maker's judgments, which show the relative importance of various criteria with respect to the goal. 

The judgments are evaluated in a scale of relative importance developed by Saaty, as presented in 

Table (5.1). The judgments must be consistent; otherwise, they will lead to a wrong decision [101]. 
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Table 5.1 Scale of Relative Importance 

Scale Definition 

1 Equal importance 

3 Moderate importance 

5 Strong importance 

7 Very strong importance 

9 Extreme importance 

2, 4, 6, 8 Intermediate value 

 

The third step is to calculate the normalized pairwise comparison matrix, followed by calculating 

the relative priority weights for the criteria.  

The fourth step is to compute a Consistency Index, which is given by Equation (5.7): 

 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐼) =  
𝜆 𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 (5.7) 

where 𝜆 𝑚𝑎𝑥 is an approximated eigenvector, and 𝑛 is the number of criteria.      

 

The final step is checking the consistency, which can be difficult to achieve. Consistency is 

measured by the Consistency Ratio (CR), as shown in Equation (5.8). 

 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑟𝑎𝑡𝑖𝑜 =  
𝐶𝐼

𝑅𝐼
 (5.8) 

where 𝑅𝐼 is random index of random consistency of a randomly generated pairwise comparison 

matrix, as presented in Table (5.2) [131].  

 

Table 5.2 Random Consistency of a Randomly Generated Pairwise Comparison Matrix 

n 2 3 4 5 6 7 8 9 10 … 

RI 0.00 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 … 

 

The pairwise comparison matrix is considered consistent if the consistency ratio is less than 10 %. 

If it is greater than 10%, the pairwise comparison matrix needs to be re-evaluated. The authors in 

[132] explain how to identify inconsistent judgments and make them consistent. 

5.3.3 Fuzzy Analytic Hierarchy Method (F-AHP) 

The Fuzzy Analytic Hierarchy Process (F-AHP) was developed based on AHP, so F-AHP's uses 

are very similar to AHP's uses; the main difference is that F-AHP uses a range of values, whereas 
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AHP uses crisp values. Using a range of values allows the F-AHP method to remove the vagueness 

and uncertainty in decision-making. This benefit makes F-AHP superior to AHP. The procedure 

for executing the F-AHP method is as follows [103]: 

• Create a pairwise comparison matrix using fuzzy numbers. 

• Calculate the fuzzy geometric mean for each criterion (𝑟𝑖)̃, as shown in Equation (5.9), 

where �̃�1𝑛  is a fuzzy value of the pair-wise comparison of criterion i to criterion n. 

 

 𝑟𝑖  ̃ = (�̃�𝑖1 ⊗ … . .⊗  �̃�1𝑛)1/𝑛 (5.9) 

•  

• Compute the fuzzy weight of the 𝑖th criterion using Equation (5.10). 

 

 𝑤�̃� =   𝑟𝑖  ̃ ⊗ ( 𝑟1  ̃ ⊕ 𝑟2  ̃ … . .⊕  𝑟𝑛  ̃)−1 (5.10) 

 

• De-fuzzify the fuzzy weight by using Equation (5.11). 

 𝐶𝑂𝐴 =  
𝑙 + 𝑚 + 𝑢

3
 (5.11) 

Where: 𝐶𝑂𝐴 is center of area, and  𝑙, 𝑚 𝑎𝑛𝑑 𝑢 𝑎𝑟𝑒 𝑙𝑜𝑤𝑒𝑟, 𝑚𝑖𝑑𝑑𝑙𝑒 𝑎𝑛𝑑 𝑢𝑝𝑝𝑒𝑟 values of 

the fuzzy number. 

5.3.4 LightGBM Algorithm  

The LightGBM algorithm was developed by G. Ke and his colleagues in 2017. It implements the 

Gradient Boosting Decision Tree (GBDT) algorithm. LightGBM is widely used for solving 

classification and regression problems [133]. It is more powerful than many other machine-

learning algorithms like XGBoost. The advantages of LightGBM are that it occupies less memory 

and has less training speed. Many parameters and sittings are adjusted manually, which makes the 

algorithm complicated. The algorithm performance can be improved by optimizing the algorithm 

parameters using the Bayesian hyper-parameter optimization algorithm [134]. The theory of 

LightGBM algorithm’s objective function can be written as:   

 𝑜𝑏𝑗(𝑡) =  ∑ 𝑙(𝑦𝑖

𝑛

𝑖=1

, �̂�𝑖
(𝑡)

) + ∑ Ω

𝑡

𝑖=1

(𝑓𝑖) (5.12) 

 𝐿(𝜃) = ∑ [𝑦𝑖  ln (1 + 𝑒−𝑦𝑖̂ )
𝑖

+ (1 − 𝑦𝑖) ln(1 + 𝑒)𝑦�̂�  (5.13) 
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where 𝑦𝑖 is the objective value, 𝑖 is the predicted value, 𝑡 represents the number of leaf nodes, 

𝑓𝑖  is a decision tree, and 𝐿(𝜃) is Logistic loss. 

5.3.5 Random Forest   

The random forest (RF) algorithm is an ensemble learning technique that contains numerous 

decision trees.  Leo Breiman introduced the algorithm in 2001 to overcome the main decision trees 

disadvantage, which is overfitting. Compared to other state-of-the-art algorithms like XGBoost 

and Gradient Boosting Machines (GBM), tuning the RF setting is simple, as it has a small number 

of parameters. RF is widely used to deal with regression and classification problems [78]. The 

random forest classifier consists of several decision tree models and is expressed as follows [135]: 

 {𝐷𝑇(𝑥, 𝜃𝑘)}  𝑇𝑘=1  (5.14) 

Where  𝑥 is the input vector, 𝜃𝑘 denotes the parameters that define the decision tree constructed 

using the kth bootstrap sample, and T is the number of bootstrap samples that derived from the 

training data. K represents how many samples were taken from the training dataset. The curly 

brackets indicate the use of multiple decision trees, and the indexing of the trees from 1 to T is 

shown by the subscript 𝑇𝑘=1.  To classify the input vector x, the equation, in other words, describes 

the ensemble of T decision trees that are being employed. 

Several metrics, such as the confusion matrix, were used to evaluate the performance of the 

algorithms. The confusion matrix is utilized to summarize an algorithm’s performance when 

dealing with classification problems [136]. The performance of the algorithms is shown by the 

confusion matrix's four measures, which are true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN) [60].  The matrix rows represent actual classes, while the columns 

represent their predicted classes. The confusion matrix could deal with a nxn classification 

problem. 

Generally, LightGBM is a robust algorithm that shows superiority in solving multi-classification 

problems when compared to Random Forest, Decision Tree, Xgboost, Catboost, Extra Trees, 

Neural Network, Baseline and Linear algorithms, as presented in Table (5.3) [137]. LogLoss 

metric has also been used for evaluating the performance of the algorithm. RF performs well when 

compared to the same algorithms, as presented in Table (5.4). 
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Table 5.3 Comparison Between LightGBM and Other Classification Algorithms 

    Dataset 

 

 

Algorithm 

Amazon-

commerce-

reviews 

Car 

 

Cnae-9 

 

Connect-4 Mfeat-

factors 

Segment Vehicle 

Decision 

Tree 

Lightgbm Lightgbm Lightgbm Lightgbm Lightgbm Lightgbm Lightgbm 

Xgboost Lightgbm Lightgbm Lightgbm Lightgbm Xgboost Xgboost Xgboost 

Catboost 

 

Lightgbm Lightgbm Lightgbm Lightgbm Catboost 

 

Catboost 

 

Catboost 

 

Extra Trees Lightgbm Lightgbm Lightgbm Lightgbm Lightgbm Lightgbm Lightgbm 

Neural 

Network 

Lightgbm Lightgbm Lightgbm Lightgbm Neural 

Network 

Lightgbm Neural 

Network 

Baseline Lightgbm Lightgbm Lightgbm Lightgbm Lightgbm Lightgbm Lightgbm 

Linear Linear Lightgbm Linear Lightgbm Linear Lightgbm Linear 

 

Table 5.4 Comparison Between Random Forest and Other Classification Algorithms. 

      Dataset 

 

 

Algorithm 

Amazon-

commerce-

reviews 

Car 

 

Cnae-9 

 

Connect-4 Mfeat-

factors 

Segment Vehicle 

Decision 

Tree 

RF RF RF RF RF RF RF 

Xgboost Xgboost Xgboost Xgboost Xgboost Xgboost Xgboost Xgboost 

Lightgbm Lightgbm Lightgbm Lightgbm Lightgbm Lightgbm Lightgbm Lightgbm 

Catboost 

 

Catboost 

 

Catboost 

 

Catboost 

 

Catboost 

 

Catboost 

 

Catboost 

 

Catboost 

 

Extra Trees RF RF Extra Trees RF RF RF RF 

Neural 

Network 

RF Neural 

Network 

Neural 

Network 

Neural 

Network 

Neural 

Network 

Neural 

Network 

Neural 

Network 

Baseline RF RF RF RF RF RF RF 

Linear Linear RF Linear RF Linear RF Linear 

5.4 Case Study  

A single source or combination of various sources has been proposed to form a HES to provide 

electricity load in a remote community. Table (5.5) shows sizing of single source or combination 

of various sources, where the sizing of the combination of various sources are calculating by 
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summing the single sources. A three-day dataset was used to comprise the hourly load of a remote 

community. The minimum and maximum values of the load of the remote community are 8 kW 

and 89.1 kW, respectively. Energy management of the hybrid energy system has been done using 

the TOPSIS method. Selecting the best alternative was achieved based on the following five 

criteria:  

1. Efficiency of the energy sources.  

 Efficiency =  
output of the source power kW

size of the source power 𝐾𝑤
 × 100  (5.15) 

 

2. CO2 emissions.  

 𝐶𝑂2  emission (Kg)  =  emission rate ∗  Liter (L) (5.16) 

 

The CO2 emissions of gasoline and diesel generators are 2.29 kg/L and 2.66 kg/L, respectively. 

3. Gasoline and diesel fuel prices 

 Fuel Price =  Fuel consumption (liter)  ∗  Liter Price ($) (5.17) 

  The gasoline and diesel fuel prices are CAD $0.981 and CAD $0.896/ kW, respectively. 

4. Labor 

 Labour =  Rate Maintenance ∗  output of the source power  (18) 

 

        The rate maintenance for gasoline and diesel generators is CAD $0.015 and CAD $0.01, 

respectively. 

5. Consumption of fuels 

The reference in [138] is used to determine the consumption of fuels. 

These five criteria are divided into two categories: positive-ideal and negative-ideal solutions. The 

efficiency of the energy sources criterion is a beneficial criterion, while the other criteria are 

desired to be non-beneficial. 
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Table 5.5 Different Alternatives of Hybrid Energy Sources 

Sources Size of Sources 

Wind farm (W) 25 kW 

Gasoline generator (G1) 50 kW 

Diesel generator (G2) 55 kW 

Wind farm and gasoline generator (WG1) 75 kW 

Wind farm and diesel generator (WG2) 80 kW 

Gasoline and diesel generator (G1G2) 105 kW 

 

5.5 Proposed Model Framework 

The overall process of the proposed energy management of the HES model is depicted in Figure 

(5.2). In the first stage, the load dataset is used as input to calculate the five criteria. Then the 

alternative energy sources are evaluated based on these five criteria, using the TOPSIS method. 

The best combinations are saved as a dataset, which is called a pre-processed dataset. In the second 

stage, the dataset is used as input to the classification machine-learning algorithms.  

5.6 Results and Discussion 

Based on the TOPSIS method, the decision matrix has been constructed using Equations (5.15), 

(5.16), (5.17) and (5.18), as shown in Table (5.6).  

Table 5.6 Decision Matrix at 34.2 kw 

Sources Fuel 

consumption 

(Liter) 

Price($) Efficiency 

(%) 

CO2 (Kg) Labor 

($/Kw)  

G1 14.17239 13.90311 68.4 32.45477 0.513 

G2 11.30805 10.13201 62.18182 30.07942 0.342 

G1G2 16.08765 15.19662 17.1 39.3888 0.4275 

WG1 5.900244 5.788139 18.4 13.51156 0.138 

WG2 4.052453 3.630998 16.72727 10.77953 0.092 

W 0 0 0 0 0 
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Figure 5.2 Overall process of proposed EM of the HES model. 

The decision matrix values were calculated based on the first value of the load, which is 34.2 kW. 

The second step is, applying Equation (5.2) to convert the data in Table (5.6) from dimensional 

criteria into non-dimensional criteria. The aim in doing this is to make them comparable, as shown 

in Table (5.7).  

Table 5.7 Normalized Matrix 

Sources Fuel consumption (Liter) Price($) Efficiency (%) CO2 (Kg) Labor ($/Kw)  

G1 0.390179 0.39994 0.7034 0.52591 0.0486 

G2 0.31132 0.29146 0.6394 0.4874 0.032 

G1G2 0.442908 0.43715 0.1758 0.638 0.0405 

WG1 0.162439 0.16650 0.1892 0.2189 0.0130 

WG2 0.11156 0.104450 0.1720 0.1746 0.008 

 

The calculations of the weights of the criteria were done based on the following methods: 

1. APH method 

2. F-APH method 

1. Calculating the weights of the criteria using AHP method  

Table (5.8) shows the pairwise comparison matrix that was written according to the scale of 

relative importance. The relative importance of the five criteria to each other was collected based 

on the directors’ judgments of the remote community.  
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Table 5.8 Pairwise Comparison Matrix 

 Efficiency (%) CO2 (kg) Price($) Labor($/Kw) Fuel consumption (Liter) 

Efficiency (%) 1 2 3 4 7 

CO2 (kg) 0.5 1 5 4 9 

Price ($) 0.33333 0.2 1 3 3 

Labor ($/Kw) 0.25 0.25 0.333 1 4 

Fuel 

consumption 

(Liter) 

0.1428 0.111 0.333 0.25 1 

 

Table (5.9) presents the normalized pairwise comparison matrix, whose results were obtained from 

the Table (5.6), using Equation (5.2).  Table (5.9) also shows the weights of the criteria. The 

consistency was checked by applying Equation (5.7). The consistency equals 0.08, which means 

that the directors’ judgments are acceptable. 

 

Table 5.9 Normalized Pairwise Comparison Matrix 

 Efficiency 

(%) 

CO2 (kg) Price($) Labor($/Kw) Fuel 

consumption 

(Liter) 

Efficiency (%) 0.4491 0.5616 0.3 0.326531 0.29 

CO2 (kg) 0.22 0.281 0.51 0.321 0.35 

Price ($) 0.1 0.056 0.10 0.24 0.1 

Labor ($/Kw) 0.1 0.070 0.03 0.081 0.166 

Fuel 

consumption 

(Liter) 

0.06 0.031 0.03 0.020 0.04 

Weight 0.38 0.34 0.13 0.09 0.03 

 

The results obtained from Table (5.7) were used to calculate the weighted normalized matrix. 

These results were then applied to calculate the Euclidean distance from the ideal best and worst 

using Equations (5.3) and (5.4). Finally, the performance score of the HES was identified using 

Equation (5.5) and Table (5.10). 
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Table 5. 10 Performance Score of Hybrid Energy Sources Based on AHP 

Sources Fuel 

consumption 

(Liter) 

Price($) Efficiency 

(%) 

CO2 (Kg) Labor ($/Kw)  Si+ Sj- Pi Rank 

G1 0.148 0.1375 0.0914 0.048 0.0014 0.154 0.193 0.55 4 

G2 0.118 0.1002 0.0831 0.045 0.00097 0.109 0.232 0.67 3 

G1G2 0.168 0.1503 0.0228 0.059 0.00121 0.192 0.148 0.43 5 

WG1 0.0617 0.0572 0.0245 0.020 0.0003927 0.075 0.29 0.79 2 

WG2 0.042 0.035 0.02236 0.016 0.00026 0.070 0.319 0.81 1 

 

2. Calculating the weights of the criteria using the F-AHP method  

The pairwise comparison matrix in Table (5.10) is rewritten in fuzzy numbers, as shown in Table 

(5.11). 

Table 5.11 Pairwise Comparison Matrix in Fuzzy Numbers 

 Efficiency (%) CO2 (kg) Price($) Labor($/Kw) Fuel 

consumption 

(Liter) 

Efficiency 

(%) 

(1,1,1) (1,1,1) (2,3,4) (3,4,5) (6,7,8) 

CO2 (kg) (1,1,1) (1,1,1) (4,5,6) (3,4,5) (9,9,9) 

Price ($) (1/4,1/3,1/2) (1/6,1/5,1/4) (1,1,1) (2,3,4) (2,3,4) 

Labor ($/Kw) (1/5,1/4,1/3) (1/5,1/4,1/3) (1/4,1/3,1/2) (1,1,1) (3,4,5) 

Fuel 

consump. (L) 

(1/8,1/7,1/6) (1/9,1/9,1/9) (1/4,1/3,1/2) (1/5,1/4,1/3) (1,1,1) 

 

Table (5.12) shows the fuzzy geometric mean for each criterion using Equation (5.9). The results 

presented in Table (5.12) are used to calculate the fuzzy weight of the ith criterion using Equation 

(5.10), as shown in Table (5.13). De-fuzzification of the fuzzy weight of the ith criterion can be 

done using Equation (5.11), as shown in Table (5.14). The process for calculating the Euclidean 

distance from the ideal best and worst using Equations (5.4) and (5.5), and then applying Equation 

(5.6) to calculate the performance score of the HES, can be seen in Table (5.15).  
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Table 5.12 Fuzzy Geometric Mean for Each Criterion 

 Efficiency (%) CO2 (kg) Price($) Labor($/Kw) Fuel 

consumption 

(Liter) 

Fuzzy geometric 

mean 

Efficiency 

(%) 

(1,1,1) (1,1,1) (2,3,4) (3,4,5) (6,7,8) (2.04,2.4,2.75) 

CO2 (kg) (1,1,1) (1,1,1) (4,5,6) (3,4,5) (9,9,9) (2.55,2.8,3) 

Price ($) (1/4,1/3,1/2) (1/6,1/5,1/4) (1,1,1) (2,3,4) (2,3,4) (0.69,0.9,1.14) 

Labor 

($/Kw) 

(1/5,1/4,1/3) (1/5,1/4,1/3) (1/4,1/3,1/2) (1,1,1) (3,4,5) (0.4,0.6,0.77) 

Fuel 

consumption 

(Liter) 

(1/8,1/7,1/6) (1/9,1/9,1/9) (1/4,1/3,1/2) (1/5,1/4,1/3) (1,1,1) (0.23,0.26,0.3) 

 

Table 5.13 Fuzzy Weight of the ith Criterion 

 Efficiency 

(%) 

CO2 (kg) Price($) Labor 

($/Kw) 

Fuel 

consumptio

n (Liter) 

Fuzzy 

geometric 

mean 

Fuzzy weight 

Efficiency 

(%) 

(1,1,1) (1,1,1) (2,3,4) (3,4,5) (6,7,8) (2.04,2.4,2.75) (0.25,0.34,0.46

) 

CO2 (kg) (1,1,1) (1,1,1) (4,5,6) (3,4,5) (9,9,9) (2.55,2.8,3) (0.3,0.4,0.5) 

Price  

($) 

(1/4,1/3,1/2

) 

(1/6,1/5,1/4

) 

(1,1,1) (2,3,4) (2,3,4) (0.69,0.9,1.14) (0.08,0.1,0.19) 

Labor 

($/Kw) 

(1/5,1/4,1/3

) 

(1/5,1/4,1/3

) 

(1/4,1/3,1/2

) 

(1,1,1) (3,4,5) (0.4,0.6,0.77) (0.05,0.08,0.1) 

Fuel 

consumptio

n (Liter) 

(1/8,1/7,1/6

) 

(1/9,1/9,1/9

) 

(1/4,1/3,1/2

) 

(1/5,1/4,1/3

) 

(1,1,1) (0.23,O.26,0.3

) 

(0.028,0.08,0.5

) 

 

Table 5.14 De-fuzzification of the Fuzzy Weight of the ith Criterion 

Fuzzy geometric mean Fuzzy weight De-Fuzzy weight 

(2.04,2.4,2.75) (0.25,0.34,0.46) 0.35 

(2.55,2.8,3) (0.3,0.4,0.5) 0.4 

(0.69,0.9,1.14) (0.08,0.1,0.19) 0.1 

(0.4,0.6,0.77) (0.05,0.08,0.1) 0.07 

(0.23,0.26,0.3) (0.028,0.08,0.5) 0.03 
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Table 5.15 Performance Score of Hybrid Energy Sources Based on F-AHP 

Sources Fuel 

consumption 

(Liter) 

Price($) Efficiency 

(%) 

CO2 (Kg) Labor 

($/Kw)  

Si+ Sj- Pi Rank 

G1 0.136 0.159 0.0914 0.0404 0.0017 0.158 0.199 0.55 4 

G2 0.108 0.116 0.0831 0.0375 0.0011 0.109 0.242 0.68 3 

G1G2 0.155 0.1748 0.02286 0.049 0.0014 0.1956 0.155 0.44 5 

WG1 0.056 0.066 0.0245 0.0168 0.00047 0.075 0.301 0.79 2 

WG2 0.039 0.041 0.0223 0.013 0.00031 0.070 0.33 0.82 1 

 

The weighted normalized matrix results were used to calculate the Euclidean distance from the 

ideal best and worst using Equations (5.4) and (5.5). The performance score of the HES was 

identified using Equations (5.6) and Table (5.13). 

It was found that the ranks are almost similar, as shown in Figures (5.3), (5.4), and (5.5). The 

reason for this finding is that the AHP and F-AHP methods used to calculate the criteria weight in 

the third step in the TOPSIS method gave almost equal results. Figure (5.3) shows that the wind 

and the combination of gasoline and diesel generator are the best and worst alternatives, 

respectively, when the load is 23 kW. However, when the load changed from 23 kW to 66 kW, the 

wind farm and gasoline generator combination are the best alternative, and the wind farm, diesel 

generator and gasoline generator become the worst alternative, as shown in Figure (5.4). Increasing 

the load value from 66 kW to 76 kW led to changes in the ranks of the HES, where the best 

alternative becomes the combination of the wind farm and diesel generator, as shown in Figure 

(5.5).  
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Figure 5.3 Rank of the HES at 23 kW. 

 

Figure 5.4 Rank of the HES at 66 kW. 
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Figure 5.5 Rank of the HES at 76 kW. 

The outputs of the TOPSIS method that employed the AHP method to calculate criteria weights 

are collected for use in the second stage as a dataset. The dataset contains 7 columns and 72 

rows. The first 6 columns are liter, efficiency, price, labor, CO2, and load, which are called 

attributes. Every 6 attributes belong to a class. The TOPSIS technique omitted the G1 class, which 

left us with 5 dataset classes, namely the G2, G1G2, W, WG1, and WG2 classes. The RF and 

LightGBM algorithms are applied to the new dataset, which is divided into training and testing 

datasets at 30% and 70%, respectively. The training dataset is used to train the algorithm, while 

the testing dataset is held out to measure the generalized performance of the algorithm. As an 

essential condition, this dataset must not be seen by the algorithm prior to its use in order to 

prevent it from contributing to the learning aspect of the algorithm[139], [140]. The performance 

of RF and LightGBM classifiers were evaluated using the accuracy metric. The results showed RF 

accuracy at 81.81 and LightGBM at 68.6. Because the dataset is almost balanced, the results are 

acceptable to some extent. 

To summarize the algorithm’s performance, a confusion matrix is derived, as shown in Figure 

(5.6). The rows in the confusion matrix correspond to what the machine-learning classifier 

predicted, and the columns correspond to the known true value. It is obvious from Figure (5.6a) 

that the RF classifier classified G1G2 and G2 classes correctly. However, the RF classifier 
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misclassified one value as W by saying it is WG1 and misclassified two values as G1G2 by saying 

they were W. Also, the RF classifier correctly classified two values as WG2, but misclassified two 

values as G1G2 by saying they were WG2.  

 

 
Figure 5.6 Confusion matrix. 

 

Figure (5.6b) shows the confusion matrix for the LightGBM classifier. The confusion matrix 

illustrates that the LightGBM classifier classified the WG1 and WG2 classes correctly but   

misclassified the other classes. Improving LightGBM performance could be done by increasing 

the number of instances, or it could use a Bayesian hyper-parameter optimization algorithm to 

optimize the algorithm parameters, which may lead to improved LightGBM algorithm 

performance. 

5.7  Conclusion 

In this chapter, the TOPSIS method was used to create an energy management plan for a HES 

based on five criteria. These criteria are energy efficiency, CO2 emissions, gasoline and diesel fuel 

prices, labor, and consumption of fuel. A historical load dataset was used to determine the five 

criteria. Since no equation in the literature was found to derive the weight values in the TOPSIS 

method, the AHP method was utilized here to calculate the criteria weights. The AHP results were 

validated using the F-AHP method. It was noticed that the AHP and F-AHP results were almost 

the same. The outcome of the TOPSIS was then collected to create a new dataset. Two different 

machine-learning algorithms were applied to the new dataset to forecast the best alternative. The 

accuracy metrics showed that RF (81.81%) outperformed LightGBM (68.6%).  
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Chapter6. Conclusions & Future Work  

6.1 Conclusions 

This thesis studied hybrid energy systems (HES) and discussed forecasting as one of the most 

important aspects to be considered when operating these systems. Two types of forecasting – 

regression and classification – were investigated, with the intention of finding the best way to 

increase the reliability of HES. For regression forecasting, the thesis focused on the ARIMA 

model, and a deep study was conducted on non-stationary time series. For classification 

forecasting, the thesis dealt with two case studies that used several machine-learning algorithms 

to activate one or more sources that would be effective and reliable in a HES.  

 

Chapter 2 presented the non-stationary time series concept and the problems that could occur 

between two variables if the time series remained non-stationary. Therefore, the Fast Fourier 

Transform (FFT) was proposed to identify the stationarity. FFT was used here to enhance the 

performance of the SARIMA model in forecasting short-term electric load data. Chapter 2 also 

provided a comparison between the FFT technique and the Autocorrelation Function (ACF), where 

it was found that FFT offered an acceptable performance for identifying trend and seasonality. 

 

Chapter 3 proposed a new adaptive DC technique for converting a non-stationary time series to a 

stationary time series in one step. The adaptive DC technique was evaluated by applying it to 

several different time series. The results were compared with the results of the differencing 

technique using statistical tests, including Augmented Dickey-Fuller (ADF), Kwiatkowski-

Phillips-Schmidt-Shin (KPSS), and Phillips Perron (PP). The comparison showed that the 

proposed technique slightly outperformed the differencing method, which shows the ability of the 

adaptive DC technique to achieve stationarity data in one step. In contrast, the differencing 

technique sometimes needed more than one step. 

 

Chapters 4 and 5 presented a new perspective on energy management concepts. The two chapters 

suggested forecasting techniques as an alternative way of using energy management methods. In 

Chapter 4, a dataset was collected from the energy management method. The dataset was used as 

input in supervised machine-learning algorithms to forecast which energy source should supply 
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the demand-side. The results showed that the DT algorithm achieved the best performance 

compared to the other tested algorithms.  

 

The results obtained in Chapter 4 provided motivation to conduct further investigations on a new 

dataset. For this purpose, the TOPSIS method was employed in Chapter 5 to achieve optimal 

forecasting using the machine-learning algorithms RF and LightGBM. The findings showed that 

RF outperformed LightGBM, with an accuracy of 81.81% compared to 68.6%, respectively. 

6.2  Future Work 

Based on the results presented in this research, further analyses and investigations are 

recommended for future work. In Chapter 4, a novel adaptive DC technique could be implemented 

with the ARMA function instead of a differencing method. Other suggestions come from Chapters 

4 and 5, as they present a new idea and are rich in future work possibilities. The five criteria could 

be expanded to n criteria or could involve more than one level of criteria. The decision-maker 

judgments could be made by a questionnaire. 

Also recommended as future research directions would be to evaluate other forecasting techniques 

and make a comparison between energy management methods. To implement the work in chapter 

5, we would need to divide it into two stages: reading and process stages. The reading stage would 

involve reading the load measurement. To achieve this stage, a data acquisition system that 

contains a smart meter sensor, signal condition, and analog-to-digital circuits could be used. In the 

process stage, the TOPSIS method and machine learning could be employed to create a new dataset 

and to forecast which energy source should be connected to the load, respectively. This stage could 

be done using a personal computer or Arduino board. In addition, the accuracy of managing hybrid 

energy sources could be increased by building a hybrid forecasting system that consists of 

scheduling and fault forecasting models. The fault forecasting model can serve as closed-loop 

feedback to the scheduling forecasting model, and this will ensure the proper functioning of the 

hybrid system. 
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