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Abstract

The limited accessibility of solar irradiance data drives the need for robust Global

Horizontal Irradiance (GHI) prediction models. To  date, numerous scholars have car-

ried out research looking for ways to enhance the performance of a Long Short-Term

Memory (LSTM ) model in terms of univariate and multivariate analyses. Although

high-dimensional heterogeneous weather data are desirable for enhancing forecasting

accuracy, LSTM performance deteriorates when changing from univariate to multi-

variate analyses. As previous research stops short of conducting detailed explorations

on how interactions in high dimensional heterogeneous data represent critical ele-

ments in LSTM predictive model development, the present research aims to fill that

gap. This work proposes two techniques to enhance predictive performance.

The first technique addresses implementation details regarding relevancy and re-

dundancy measures, exploring how they may, respectively, be enhanced and miti-

gated. The proposed technique is a novel hybrid feature selection method built to

optimize feature-selection using a framework based on Least Redundant/Highest-

Relevant, named Weather Recursive Feature Elimination (WRFE).  The W R F E  ap-

proach uses feature importance to measure reductions in variance in Random Forest

Regression ( R F R )  in addition to data perturbation in LSTM. The training set’s

optimal features demonstrate strong contributions to the prediction outcome, indi-

cating the proposed WRFE ’s generalizability for hourly GHI prediction. However,

high variability in irradiance conditions reduces the overall accuracy of the training

subset.

To  lessen the seasonality effect, the second proposed technique employs a deep

stack of the clustering connected layer with hybrid LSTM models. This novel Sea-

sonal Clustering Forecasting Technique (SC F T )  is then compared with other fore-

casting strategies, revealing its superiority. The S C F T  design is further validated

using Köppen climate classification data and when measured against the Granger-

Newbold and Diebold-Mariano tests. In this as well, the performance of the proposed

S C F T  shows significant stability and reliability.
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Chapter  1

Intro duct ion

1.1 Background and Problem Statement

The exponential rate of growth registered recently in P V  systems is prompting an

increased need for more integration of P V  power generation into main grid systems in

countries around the world. Additionally, remote microgrids, which typically operate

on diesel generators, are being integrated with Grid-Connected Photovoltaic ( G C P V )

systems to reduce power generation costs. Obtaining full benefits from renewable

power generation is functionally achievable only if scheduling and coordination oc-

curs between the grid system and the renewable source. Solar energy is by nature both

uncontrollable and intermittent, which means solar sources typically provide varying

outputs and peak randomly, bringing a number of challenges to the table. The main

ones are: exacerbating issues related to grid management and sustainability of con-

tinuous production and consumption balance; power quality, including stability issues

of voltage and frequency; and dificulty of power scheduling, and regulation; ensuring

a steady supply within a specified range for electricity companies and Independent

System Operators (ISOs). The issues related to the integration of P V  systems into

microgrids could be managed by holding large reserves to guarantee continuous and

dependable operations. However, large reserves come with increased costs related to

operations, transmission, repairs, and increased fuel consumption, all of which leads,

counterintuitively, to the release of more carbon emissions [1].

Considering the aforementioned problems, the research focus in recent years has

shifted to developing more accurate P V  power output forecasting models. The out-

put power production of the designed P V  system could be then estimated based on

local solar radiation and weather data. Solar irradiation and ambient temperature

have a major effect on three critical parameters of P V  panels [2]. Therefore, solar

irradiance predictive modeling is crucial to determine the size of P V  arrays, design

1
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grid-connected P V  systems, and eventually develop robust P V  power forecasting. An

important initial step for P V  power prediction systems is GHI forecasting[3][4][5]. In

general, GHI forecasting can be classified into the following three categories:

• Forecasting horizons

• Forecasting techniques

• Input features

However, if the researchers or operators lack access to stations that measure solar

irradiance and/or lack the financial resources to purchase solar irradiance devices,

the necessary data may be unobtainable for them [6] [7]. Several renewable energy

stakeholders, including solar power producers, utilities, and Independent System Op-

erators (ISOs), are keen to have highly accurate solar power forecasts. In fact, in

some jurisdictions, it is a legal requirement for power producers to provide accurate

power forecasts to their customers as a part of their power purchase agreement [8].

Historical data are being applied to Deep Learning ( D L )  algorithms as a means

to determine stochastic dependency between past and future data. These kinds of

models have been shown to outperform statistical models with regard to forecast-

ing of solar irradiance. The design workflow of forecasting application involves four

main steps: 1) Data pre-processing, which is used to clean, inspect, analyze, and

aggregate data sets; 2) feature selection, which involves choosing optimal features in

combination, aiming for peak performance in data utilization; 3) technique selection,

which involves choosing a best D L  algorithm based on predictive performance; and

4) model design, which aims to optimize the model’s performance by tuning the hy-

perparameter values. Figure 1.1 illustrates the four-step design process. Much of the

current literature focuses on applying D L  techniques to solar power and solar irradi-

ance forecasting and modeling, with the LSTM model emerging as the most prevalent

forecaster of solar irradiance [9][10][11][12].
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Figure 1.1: Design Process of Forecasting Application

1.2 Objectives and Research Questions

The LSTM model has become more prevalent as a solar irradiance forecaster and its

performance is still under investigation, which this research will seek to do. The

research is concerned with developing robust models for forecasting hourly solar ir-

radiance. In the first phase of this work, the behavior of LSTM models will be

investigated under certain geographical and meteorological conditions and according

to previous data on solar irradiance. These types of variables (i.e., exogenous and

endogenous, respectively) will be utilized as input features for hour-ahead solar irradi-

ance forecasting models. In the work, a comparison is made with regard to Univariate

Time-Series Forecasting (UTSF) and Multivariate Time-Series Forecasting (MTSF).

Secondly, as a means to better understand relationships between model components,

forecasting models typically use numerous inputs of high dimensionality variables. In

particular, redundant inputs can cause a variety of issues, such as increasing the com-

putational time, heightening the chance of under/overfitting, destabilizing estimates

on parameters, and preventing accurate detection of relationships pertaining to the

explanatory and response variables. Unlike relevancy, redundancy does not include

the response variable, whereas relevancy involves the relationship between the target

and predictors. Therefore, during the process of feature selection, it is imperative to

choose features relevant to the prediction, while simultaneously ensuring that there

is no redundancy in them as shown in Figure 1.2.

In general terms, predictive modeling can be described as a multivariate problem

in which every variable can have an impact on other input and output variables in a

variety of simple or complex ways.

To  date, the interactions and nonlinearities that may potentially exist between
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Figure 1.2: Redundancy and Relevancy measures

variables are not yet fully researched in the literature [13][14]. Even so, they represent

critical elements for developing robust predictive models. In the second phase, the

focus is on the measures and attributes of redundancy and relevancy and will investi-

gate how these can be mitigated and enhanced, respectively, to develop more accurate

forecast models. Interestingly, the results of the initial investigations show that the

LSTM performance deteriorated when additional features were added. Therefore, a

series of questions are presented that the work will attempt to answer in the current

study:

• What types of associations occur between the input features of exogenous and

endogenous variables that could be considered to enhance the overall prediction

results?

Most of the correlation analysis in the literature is performed to determine whether

a linear relationship exists among the input features [13][15][16][17]. In this study, a

feature selection technique based on correlation analysis for redundancy and relevancy

measures will be proposed as the basis for making decisions about redundant and/or

irrelevant attributes. Redundant attributes are usually measured using Pearson’s

correlation coeficient to find linear associations between the exogenous variables.

However, it could be argued that linear association is not enough to make a fully

informed decision about redundant variables. Therefore, the work will inspect and
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investigate the following:

• When two exogenous variables are correlated, should the one explaining the

variation of the endogenous variable be dropped?

• When one of the attributes violates the assumptions of the Pearson correlation

analysis, is this technique still valid?

• Should nonlinear associations for redundancy measures be taken into consider-

ation?

Irrelevant attributes are measured using the Spearman rank correlation coeficient

to measure monotonic associations between each of the exogenous variables and the

endogenous variable.

• If variables are not monotonically related to each other, which associations does

the technique overlook, if any?

It is noticed that when a univariate LSTM forecasting model shifted to a mul-

tivariate forecasting model, the predictive performance is affected and depends on

geographical and meteorological conditions [18]. Thus, considering seasonality in

LSTM model is necessary. More studies indicate that the changes of seasonality re-

quire further exploration of seasonality patterns in the weather data through LSTM

models which are capable of obtaining nonlinearity patterns rooted in the exoge-

nous and endogenous variables[19] [20]. Eficiency wise, comparing LSTM model to

D L  techniques in the domain of solar irradiance forecasting proved the ability of

LSTM model to learn from nonlinearity behavior in solar irradiance data with a long

range of temporal dependencies [9][10][11][12]. Second, the studies suggested that

LSTM model should be a potential approach for the computational complexity of

multivariate prediction due to the different weather phenomena. Further, the liter-

ature mentions that LSTM-based forecasting accuracy could be enhanced through

the application of large datasets, which have been shown to boost decision-making

capabilities. High-dimensional heterogeneous data may, however, fall prey to issues

concerning data quality. To  overcome these, the process of data mining may be ap-

plied to look for patterns, trends, anomalies, and correlations in large datasets. In

particular, a clustering algorithm such as k-means could be used for classifying data
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point as either rainy, cloudy or sunny clusters, as a way to decrease uncertainty in

solar irradiance forecasting.

1.3 Contribution

The main contributions of the research are published in the following conference and

journal papers:

• The research paper [18] investigated the behavior of LSTM models under variety

of geographical and meteorological conditions and according to historical solar

irradiance and meteorological data.

• The research paper [21] analysed the stability performance of the correlation

analysis for a one-year dataset and a ten-year timeframe.

• The research paper [21] proposed the novel W R F E  method for optimizing fea-

ture selection schema according to a Least-Redundant/Highest- Relevant frame-

work..

• The research paper [22] investigated seasonality-based hourly predictions of GHI

and performing experiments utilizing seasonal forecasting 3D LSTM models

that have been developed for pattern-recognition of the four seasons.

• The research paper [22] proposed a deep stack of the clustering connected layer

with hybrid LSTM models to improve accuracy in forecasting. The result is the

proposed SCFT .

• The research paper [22] validated the generalizability of the proposed S C F T  by

using it in regions that feature different climatic conditions than the original

test region.

1.4 Publications Associated with the Thesis

The work explained in this chapter contains materials that were published at the

following conference and journal publications that are associated with this thesis:
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• Seasonal Clustering Forecasting Technique for Intelligent Hourly Solar Irradi-

ance Systems. I E E E  Transactions on Industrial Informatics, June 4,

2022 [22].

• Optimized Feature Selection Based on a Least-Redundant and Highest-Relevant

Framework for a Solar Irradiance Forecasting Model. I E E E  Access, May  13,

2022 [21].

• LSTM and RBFNN Based Univariate and Multivariate Forecasting of Day-

ahead Solar Irradiance for Atlantic Region in Canada and Mediterranean Region

in Libya. International Conference on Energy, Electrical and Power

Engineering ( C E E P E - I E E E ) ,  Chongqing, China, Apr i l  1, 2021 [18].

• Grid-Connected Photovoltaic System: System Overview and Sizing Principles.

International Journal of Electrical and Computer Engineering ( I J E -

C E R ) ,  December 2020 [2].

1.5 Thesis Organization

• Chapter 2 includes the research that has been conducted already on Solar

irradiance forecasting systems, and enhancements that have been achieved in

stages of feature and technique selection, as well as the recommendations that

have been stated for solar irradiance forecasting application.

• Chapter 3 presents workflow of research methodology, explains data collection

and sources, and performs a comprehensive exploratory data analysis

• Chapter 4 includes the investigation of the behavior of LSTM in references

to the input feature constructure, presents the implementation and design of

the proposed models W R F E  and SCFT ,  discuses the results of the proposed

models, and performs confirmatory data analysis for validation.

• Chapter 5 is the conclusion, limitations, and directions for future works



Chapter  2

Literature Review

The focus is to explore the important aspects of the existing body of literature and

narrow the conducted research in terms of the forecasting techniques and forecasting

horizon. D L  algorithms use historical data to learn the stochastic dependency be-

tween the past and the future. Much research has been concluded and stated that

these models outperform statistical models in solar irradiance forecasting. Therefore,

the application of D L  techniques for modeling and forecasting of day-ahead solar ir-

radiance is targeted in my research. Due to the varying assumptions and range of

inputs in D L  forecasting techniques, it is dificult to compare to extant models due

to the variability in the ways that they have been studied. Regardless, a review of

the past and current literature is important for understanding the most useful models

and the benefits of LSTM over previously used models. GHI forecasting approaches

may be categorized according to the input data, the forecasting techniques, and the

forecasting horizons.

2.1 Algorithm Selection

Several different GHI forecasting approaches have been proposed in the relevant litera-

ture. These typically use geographical location, data quality, and weather conditions as

references. As such, they can be easily categorized as either statistical, tradi-tional

Machine Learning, and physical methods such as ANN, Autoregressive Inte-grated

Moving Average (ARIMA),  Autoregressive Moving Average (ARMA), Feder-ated

Learning (FL) ,  Numerical Weather Prediction (NWP), with each one adopting its own

forecasting strategy, as illustrated in Figure 2.1.

2.1.1 M L P  Model-based Solar Irradiance Forecasting

Early models, originally developed by [6], used Back-Propagation Neural Network

(BPNN) to predict solar radiation as a function of available weather data and other

8
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Figure 2.1: Forecasting Techniques

environmental variables. A  collective total of 23 years of weather data sets were

available from four sites in the southeastern USA, and these data sets were separated

into 11 years for the training data set and 12 years for the testing data set. These

weather data included daily minimum air temperature, precipitation, daily clear sky

radiation, and daylength. The predicted daily solar radiation values were compared

with the observed daily solar radiation values for these 12 years. The performance

of the model was evaluated based on Root Mean Square Error (RMSE) and the

Coeficient of Determination (R2 ) between predicted and observed solar radiation

of the test data. The performance for each yearly testing data varied from 2.29 to

3.64 for RMSE and 0.52 to 0.74 for R2 . They recommended that future research is

required to validate this approach at locations with higher latitudes.

Other research on BPNN by [23] proposed a BPNN for modeling monthly mean

daily values of global solar radiation from 41 data collection stations in the kingdom of

Saudi Arabia, divided into 31 neural network training locations and 10 testing

locations. The proposed model utilized latitude, longitude, altitude, and the sunshine

duration for the prediction of solar radiation values. The results of the proposed model

indicated relatively good performance between the predicted values and the observed

ones in terms of the Mean Absolute Percentage Errors (MAPE)  around 19.1%.
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Research on BPNN has also been extended by [24]. They estimated global ra-

diation values for different locations in the Sultanate of Oman. Meteorological data

from six weather stations in the Sultanate of Oman were obtained for the years 1987 to

1992. Eight input features entered into the BPNN including the location, month,

mean temperature, mean pressure, mean relative humidity, mean wind speed, mean

duration of sunshine, mean evaporation. The results demonstrated that the proposed

BPNN-based model can estimate the global radiation value for the given data set

with an accuracy of 93%. To  further evaluate the generalization capability of the

proposed model, they developed a model to estimate global radiation based on his-

torical data from the prior 12 months for a location in the Sultanate of Oman that has

global radiation measurement instrumentation where the model achieved a pre-

diction accuracy of 95%. The model was subsequently used to predict global radiation

data for a different location in the Sultanate of Oman where no direct measurement

instrumentation for global radiation was available.

Though prior research has therefore demonstrated some support for the useful-

ness of BPNN, later work by [25] introduced a comparative study between BPNN and

Levenberg Marquardt Neural Network (LMNN), Recurrent Elman Neural Network

(RENN), and Radial Basis Function Neural Network (RBFNN) alongside the Adap-

tive Network Fuzzy Inference System (ANFIS) for the forecasting of mean hourly

global solar radiation. The data used throughout the study are mean hourly solar

radiation values on a horizontal level, in W/m2, measured on the French island of Cor-

sica. The data cover a period of 63 days in total (i.e. 1512 h) during late spring and

early summer of 1996. A  comparison between the various models in terms of RMSE

and training time indicated that the LMNN model outperforms other techniques for

predicting hourly global solar radiation.

Despite the apparent usefulness of the LMNN model, further research on BPNN

demonstrated mixed results. For example, [26] discuss D L  techniques for estimating

solar radiation by first estimating the clearness index which is the ratio of the average

daily solar radiation, and the daily maximum radiation. RBFNN and BPNN models

were investigated using long-term data from eight stations in Oman over ten years

(1986–1998). The input parameters were latitude, longitude, altitude, sunshine ratio,

and month of the year. The output parameter is the clearness index. The estimated
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solar radiation was obtained by multiplying the estimated clearness index by the daily

maximum radiation. The authors demonstrated that both the R B F  and MLP  models

performed well based on RMSE between the observed and estimated solar radiations.

However, the R B F  model is favored since it requires less computing time.

Other research on BPNN by [27] proposed a BPNN and a Linear Auto-Regressive

Model ( A R )  for solar radiation forecasting. From the Institute of Meteorology and

Physics of the Atmospheric Environment of the National Observatory in Greece,

hourly values of solar radiation for twelve years (1984-1995) for various months of

the year were used for training and testing the network. Nine years (1984-1992)

were used for training the neural network and three years (1993, 1994 and 1995) for

testing process. Their forecasting models were able to simulate the future values of

total solar radiation time series based on their past values. The results show that

BPNN approach leads to better predictions than the A R  model with RMSE between

the measured and the estimated values of 4.9% lower than the A R  model.

Given these conflicting results in the eficacy of the BPNN model, other research

on BPNN has considered alternative models. [28], for example, presented a BPNN

model for estimation of hourly values of solar global radiation. Solar radiation data

from 13 stations throughout India around the year were used for training and test-

ing the model. The solar radiation data from 11 locations – six from South India

and five from North India – were used for training the BPNN and data from the

remaining two locations – one each from South India and North India – were used for

testing the estimated values. The nine input parameters were considered to estimate

the radiation for each city, including latitude, longitude, altitude, month, time, air

temperature, wind speed, relative humidity, and rainfall. The authors note that to

improve the performance of the network, it was necessary to divide the data. The

entire training set was divided based on region (South India and North India) and

seasons (summer, rainy and winter). The results of the BPNN model were compared

with other empirical regression models proposed in the literature. The solar radiation

estimations by BPNN were superior to the other models, with Maximum Absolute

Error (MAE) values of 0.028, 0.06, and 0.032 W/m2 for the summer, winter, and

rainy seasons, respectively. Future works of applying probabilistic forecasting tech-

nologies are recommended by [29]. Table 2.1 is a summary of several research works
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Table 2.1: MLP  Model-based Solar Irradiance Forecasting

on developing Solar Irradiance Forecasting based on MLP  Models.

2.1.2 Hybrid Model-based Solar Irradiance Forecasting

This work supports prior findings by [30] who proposed a multistage BPNN to predict

daily solar radiation. Meteorological data at Omaezaki, Japan in 1988–1993 were used

as input data to forecast solar irradiance in 1994. In the first stage, meteorological

data of the atmospheric pressure of the previous day were adopted as input data

of BPNN and the average atmospheric pressure was forecasted as the output. The

second stage was aimed to forecast the irradiance level of the next day, where the

forecasted average atmospheric pressure of the next day, as well was meteorological

data of the atmospheric pressure of the previous day, were used as inputs for the

model. The irradiance level is divided into three classes based upon clearness index.

In the final stage, three models of BPNN were designed depending on the high,middle,

and low irradiance level. Seven meteorological data from the previous day were input to

each of the three networks, and the irradiance of the next day was forecasted in

accordance with the irradiance level. Irradiance forecasts by the multi-stage and

single-stage neural networks were compared with measured irradiance. The results
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show that the Mean Bias Error (MBE) by the multi-stage BPNN was about 20%

while that by the single-stage BPNN about 30%.

Though other models have become prevalent more recently, the use of BPNN

remained in the literature until as recently as 2010, [31] developed a BPNN to forecast

the daily solar irradiance. The proposed model accepts mean daily irradiance, mean

daily air temperature, and the day of the month as input parameters, outputting a day

ahead solar irradiance. Historical data for solar irradiance and air temperature from

July 2008 to May 2009 and from November 2009 to January 2010 has been collected in

Trieste, Italy. The measurements of prediction performance were based on RMSE and

MBE. The results indicate that the proposed model performs well, while the

correlation coeficient is in the range 98–99% for sunny days and 94–96% for cloudy

days. As a means of validating the system, the authors compare the results of the

forecasted solar irradiance and the energy produced by the G C P V  plant installed on

the local building in Trieste shows the goodness of the proposed model.

Indeed, a significant amount of work has focused on similar models and compar-

isons. Work by [32], for example, used BPNN models for modelling solar resources in

Turkey. Meteorological data for the prior three years (2000–2002) from 17 stations

throughout Turkey were used as training and testing data. Meteorological and geo-

graphical data including latitude, longitude, altitude, month, mean sunshine duration

and mean temperature served as the input while the output was solar radiation. The

authors examined the proposed model with different numbers of hidden layers and

neuron numbers of the hidden layers using four different training algorithms in the

proposed forecasting model including the SCG, the Pola–Ribiere conjugate gradient

( C G P )  and the LM algorithms. The results indicate that the RMSE value is around

6.73% compared to [30] who found values closer to 12.5% and [25] who found values of

19.1%.

Despite early research suggesting the usefulness of BPNN, there have been com-

peting models that have also demonstrated promise for the prediction of solar ra-

diation. For example, [33] utilized RBFNN technique for the estimation of monthly

mean daily values of solar radiation, comparing performance to the BPNN, a classical

regression model, and Angstrom regression. The authors used solar radiation data

similar to that applied in [23]. The M A P E  for 10 locations in the kingdom of Saudi
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Arabia were used for testing the models. The results indicate that RBFNN networks

outperformed the performance of BPNN for global solar radiation modeling with the

values of M A P E  15.2%, and 19.1% for RBFNN and BPNN, respectively.

Differences in results, and conflicting findings in support of the use of BPNN,

has more recently lead to the use of Artificial Neural Networks. Most notably, [34]

evaluated the accuracy of Support Vector Machine (SVM), Artificial Neural Network

(ANN) and empirical models for the estimation of monthly mean daily Global Solar

Radiation (GSR) where different combinations of input parameters were examined.

Data used in this study was provided by the India Meteorological Department (IMD)

in eight stations from 2003- 2012. The parameters include month, latitude, longi-

tude, bright sunshine hours, day length, relative humidity, maximum and minimum

temperature. After applying sensitivity analysis, they indicated that the model using

bright sunshine hours and day length inputs performs good in radiation prediction

with the least RMSE followed by the model with minimum and maximum tempera-

ture as inputs. Regression error is further minimized if the geographical parameters

are added, with relative humidity as the least influencing input parameter. They

found a higher correlation coeficient for ANN (0.9968) and SVM (0.9912) when com-

pared to empirical models. Per recommendations by [34], the M A P E  of different

ANN models changes with the influence of geographical, meteorological variables,

training algorithm and the architecture configuration of ANN. Therefore, the appro-

priate selection of input parameters is important for predicting solar radiation with

better accuracy. Further, to improve the prediction accuracy, future research should

focus on global solar radiation prediction using k-NN, regression tree, boosting, and

random forest.

A  recent review on ANNs across 24 articles by [35] found that ANN models have

proven to be a powerful technique for predicting solar radiation in different climatic

conditions. This is due to the reliability of ANNs for accepting many input parame-

ters as compared to empirical. In addition, they conclude that ANN-based prediction

offers greater accuracy as compared to empirical models. More recent research on

the eficacy of ANNs, however, has provided mixed results. First, [36] compared

the forecasting performance of BPNN and Physical Hybrid Artificial Neural Network

(PHANN) which were trained on the same dataset. The dataset collected at the



15

SolarTechLab of the Politecnico of Milan, Italy and contained historical hourly solar

irradiances including the climatic parameters and P V  system parameters covering an

entire year, and was clustered to distinguish sunny from cloudy days and separately

train the ANN. The available dataset for 2017 was composed of 268 days, and further

divided into two sub-datasets, depending on whether the mean daily forecast irradi-

ation was greater or lower than 150 W/m2 (i.e. Sunny days and Cloudy days). The

input of the first NN forecaster were the mean values of the solar irradiance, the air

temperature, and the number of the day. The model was developed using 240 days of

the original dataset, while 28 days were used for the testing of the model. The output

layer has 24 output nodes representing the produced hourly power of the next day.

The second forecaster has a hybrid approach, including as an input the daily weather

forecast and the Clear Sky Radiation Model (CSRM). This work shows that no one

model outperforms the other under all possible conditions with an almost constant

Normalized Mean Absolute Error (nMAE).

These conflicting outcomes for ANNs have led to a more recent shift to consider

the usefulness of Multi-Layer Perception (MLP), examined by [37]. The authors

present a comparison between different prediction models for solar radiation appli-

cation, MLP, Boosted Decision Tree (BDT) ,  and a new combination of these mod-els

with Linear Regression ( L R )  for the prediction of daily global solar irradiation

(DGSR).  The performance of the proposed models was validated using a real dataset

measured at the Applied Research Unit for Renewable Energies (UR A E R )  located in

the south of Algeria. The database contains DGSR, extraterrestrial global solar ra-

diation, (mean, min and max) air temperature and sunshine duration for three years

(2014, 2015 and 2016). Different input combinations were analysed to select the rel-

evant input parameters for DGSR prediction. They found that maximum sunshine

duration significantly improves the performances of the models. The best prediction

output is achieved when the inputs features include global solar radiation, mean air

temperature, max air temperature and sunshine duration as the error between the

measured and predicted values is relatively small error. The results achieved show

that the MLP  model preforms better than the other models in terms of statistical

indicators such as R2 , RMSE, nMBE, rRMSE, MAE, and nMAE. The comparison

results showed that the MLP  model achieves high accuracy compared to the L R ,  B D T
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Table 2.2: Hybrid Model-based Solar Irradiance Forecasting

and hybrid LR-MLP,  L R - B D T  models. The results proved that the MLP  model is a

suitable approach for solar radiation forecasting. It is recommended that the effect of

applying hybrid model should be examined [38]. Table 2.2 is a summary of several

research works on developing Solar Irradiance Forecasting based on Hybrid Models.

2.1.3 Fuz z y  logic and empirical Model-based Solar Irradiance

Forecasting

In a similar way that questions about BPNN led to the consideration of alternative

models, some researchers turned to fuzzy logic models as a possible viable alterna-

tive. A  review of this work was conducted by [39]. The authors present a review

of solar radiation prediction using different ANN techniques. The ANN models are

found to outperform the Angstrom, conventional, linear, nonlinear, and fuzzy logic

models in predicting solar radiation. The performance of ANN models is improved

with the impact of geographical, meteorological variables, training algorithms and

ANN architecture configuration. The geographical and meteorological parameters

such as sunshine duration, maximum ambient temperature, relative humidity, lati-

tude, longitude, day of the year, daily clear sky global radiation, total cloud cover,
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temperature, clearness index, altitude, months, average temperature, average cloudi-

ness, average wind velocity, atmospheric pressure, reference clearness index, mean

diffuse radiation, mean beam radiation, month, extraterrestrial radiation, evapora-

tion, soil temperature were used as input variables to ANN models for solar radiation

prediction. Sunshine hours and air temperature are found to be effective inputs for

the model with correlation coeficient of 0.97. The effective input was be selected

using Niching Genetic Algorithm (NGA) and Automatic Relevance Determination

( A R D )  methodology.

One of the first such references to fuzzy logic models was by [40]. The authors

present models for global and diffuse solar irradiances for five sites in Malaysia. The

global solar irradiance is modeled using linear, nonlinear, fuzzy logic, and ANN mod-

els, while the diffuse solar irradiances is modeled using linear, nonlinear, and ANN

models, drawing on data for solar irradiations (1975–2004) taken from the five sites

in Malaysia. The input parameters included latitude, longitude, day number, and

sunshine ratio. Three statistical values were used to evaluate the proposed models

based on MAPE,  RMSE, MBE. The results showed that the ANN models are supe-

rior compared with the other models with 5.38% for the M A P E  while the M A P E  of

8.13%, 6.93%, and 6.71%, for the linear, nonlinear, and fuzzy logic models, respec-

tively. The results for the diffuse solar energy showed that the M A P E  of the ANN

model is 1.53%, while the M A P E  of the linear and nonlinear models are 4.35% and

3.74%, respectively.

[41] provided support for the eficacy of ANNs and fuzzy logic models. Here,

the ANN, the ANFIS, and NGA models, and four empirical equations are applied

for estimation of the solar radiation in Turkey. The meteorological data consist of

month number, extraterrestrial radiation, average air temperature, average relative

humidity, average sunshine duration, and daylight hours. This data with monthly

solar irradiance measured by the Turkish State Meteorological Service (MGM) at 163

stations for 20 years are used in in developing the models. Variance Inflation Factors

( V I F )  was applied to measure the existence of multi-collinearity among independent

variables and based on these results, calendar month number, extraterrestrial radi-

ation, average air temperature, and average relative humidity are determined to be
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powerful input features for the ANN, ANFIS, and MLP  models for estimation of so-lar

irradiance. In addition, various combinations of input variables are dissected and

compered based on MAE, RMSE, overall index of model performance (OI), and R2  .

The results show that the ANN model performs better than the ANFIS and MLP

models and the empirical equations in estimating solar irradiance in Turkey.

Finally, [42] explored two ANN-based models including Feed Forward Neural

Network (FFNN) and ANFIS, three temperature-based empirical models including

Meza–Varas, Hargreaves–Samani, and Chen, and MLP  for daily global solar irradi-

ance prediction in Iraq. For this purpose, daily meteorological data of maximum,

minimum and mean temperature, relative humidity, and wind speed were obtained

from 2006 to 2016 from four major cities in Iraq representing, north, west, south, and

east regions. Sensitivity analysis was conducted to determine the leading features for

the forecast. The results showed that of maximum, minimum and mean temperature,

and relative humidity are the dominant features. In addition, a comparison between

two ensemble approaches, neural average ensemble and simple average ensemble, were

applied to improve the performance of the single models. The general idea of the en-

semble technique was employed to improve the predictive performance by combining

the outputs of the single models. The results of this research indicated that while

temperature-based empirical models and MLP  model could be employed to achieve

reliable results, ANN based models are superior in performance to other models. It is

suggested that regions with different climate conditions should be considered in the

future investigations[43].Additionally, suggesting improvements in daily global solar

irradiance forecast could be achieved by model ensemble as the concept of the en-

semble structure is to increase the generalization capability of the models to improve

the prediction performance. Table 2.3 is a summary of several research works on

developing Solar Irradiance Forecasting based on Fuzzy logic and empirical Models.

2.1.4 R N N  Model-based Solar Irradiance Forecasting

The last relevant model to explore before considering current directions in predict-

ing solar irradiation is that of Recurrent Neural Networks (RNN). The first such

reference to this model of relevance is that of [44]. This paper presented a forecast-ing

solar irradiance model using recurrent back-propagation network (RBPN)  and
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Table 2.3: Fuzzy logic and empirical Model-based Solar Irradiance Forecasting

combines R B PN with Wavelet Transformation (WRBPN). A  forecast of daily solar

irradiance was carried out based on daily records of irradiance by Baosan Meteoro-

logical Station in Shanghai from 1995 to 2000. The WRBPN model demonstrates

remarkable improvement in the accuracy of the forecast for the daily solar irradiance of

a year compared with models not combining wavelet transformation. The forecast-ing

performance with wavelet analysis reports for 7.83%, which is one fourth of the

forecast performance without wavelet analysis. Future investigation like the selection

of proper mother functions of wavelet, and the optimal updating of weights and biases

could enhance the model’s performance.

This was further examined in 2011 by [45] who proposed a predictive model that

is based on RNN trained with the Levenberg-Marquardt backpropagation learning

algorithm to forecast the solar irradiance. The solar irradiance data was collected at

the Zero Energy Center at the University of the District of Columbia at Washington

D. C.  between June 2011 and July 2011. The model is designed to predict future

values of solar irradiance, based on the previous solar irradiance. The proposed

RNN showed excellent predictions based on the MSE analysis, error autocorrelation

function analysis, regression analysis, and time series response.
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In [46], combining RNN with Wavelet Neural Network (WNN) , a Diagonal Recur-

rent Wavelet Neural Network (DRWNN) diagonal recurrent wavelet neural network

(DRWNN) is proposed for forecasting hourly global solar irradiance. Historical hourly

global solar irradiance at Baoshan Meteorological Observatory in Shanghai from 2001

to 2002 is used as the input feature to the DRWNN model. The input vector of the

DRWNN has 9 inputs including the hour, ordinal number of the day to be forecasted,

defuzzificated cloud cover on the day to be forecasted, and the hourly records of global

solar irradiance of the hours 14, 15, 28, and 29 h before the hour to be forecasted. The

existing ASHRAE (2005) model gives relatively basic information of the tendency of

hourly solar radiation, so global irradiance of the hour to be forecasted, predicted with

ASHRAE model is also input to the model, along with the daily global irradiance as

released by Meteorological Observatories. The comparisons between the real records of

hourly global irradiance and the predicted ones by three models of Collares-Pereira and

Rabl, B P  network, and DRWNN found that the forecasts by DRWNN coincide with

the real records quite well and the forecasts by Collares-Pereira and Rabl, and B P

network do not perform as well as by DRWNN in regards to RMSE, and R2 .

More recent research by [47] uses RNN to forecast the daily total solar irradiance.

The input features in the proposed model are based on the data sequence of the

historical daily records of irradiance by Longhua Meteorological Station in Shanghai

from 1971to 1990. These features include solar elevation angle, solar azimuth angle,

solar hour angle, sun declination, and geographic location, sunshine durations, and the

day number of a year, the forecast time, air mass, clouds. The correlation analysis was

used to calculate the correlation coeficients between the features and solar irradiance

where the proposed model with high correlated features demonstrates remarkable

improvements in the accuracy of the forecasting daily solar irradiance compared with

that without applying correlation analysis. Table 2.4 is a summary of several research

works on developing Solar Irradiance Forecasting based on RNN Models.

2.1.5 L S T M  Model-based Solar Irradiance Forecasting

Finally, a recent paper [15] provide compelling support for the eficacy of RNN. More

specifically, however, this research suggests that a new model, LSTM may be the

most beneficial. Indeed, in [48] an ANN model and a RNN model are developed for
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Table 2.4: RNN Model-based Solar Irradiance Forecasting

the solar irradiance forecast. The meteorological data from a local weather station in

Alabama were used for the training and testing processes, which included global solar

irradiance, air-dry bulb temperature, relative humidity, dew-point temperature, wind

speed, and wind direction. Various scenarios, including different sampling fre-

quencies and moving window algorithms, are included for evaluation of the overall

performance. In addition, 10 min, 30 min, and 60 min sampling frequencies were

applied to investigate their influences on the overall performance. The results suggest

that compared with the ANN model, the solar irradiance forecast using the RNN

model has a higher forecasting accuracy. They concluded that raining data with a

higher sampling frequency; by increasing the sampling frequency of the training data

60 min to 10 min can improve the forecast performance for both ANN and RNN.

Additionally, applying a moving window algorithm can also fairly improve the pre-

diction accuracy. They indicated that cloud cover could cause a significant impact on

the forecast accuracy specifically for complex time series data forecasting [49].

The conclusions of the research [15] stated that the ability to predict day ahead

solar irradiance forecasting was compared for a LSTM, FFNN, a persistence model,
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and a Nonlinear Auto-Regressive Model (NAR) model. Six datasets from four dif-

ferent countries with diverse climatic conditions and geographical features were used.

The weather variables collected in each location from 2008 to 2018 and six experi-

ments came from weather stations in Germany, U.S.A, Switzerland, and South Korea.

To  select the most influenced meteorological parameters, the authors used a Pearson

correlation coeficient to capture the correlation between solar irradiance and each of

these meteorological parameters. As a result, they selected three exogenous fea-tures

as input features (dry bulb temperature, dew point temperature, and relative

humidity), as well as two additional categorical features (the hour of the day and the

month of the year). In case of NAR model, two additional endogenous features the

solar irradiance for the previous two days were added as input features. Experimental

results provided compelling evidence that the proposed approach of LSTM is superior

to that of FFNN and NAR in terms of RMSE.

Importantly, we believe that LSTM model demonstrates promise in its effective-

ness, though the literature is sparse, and the current model has a few notable areas

for improvement. Based on the stated suggestions from the literature, the areas for

future study that would be investigated are outlined. The LSTM model has become

more prevalent as a solar irradiance forecaster and its performance has not been

fully investigated, which this work will seek to do. Secondly, the association of ex-

ogenous (i.e. geographical and meteorological variables) and endogenous variables

(i.e. historical solar irradiance) as input features to lead to better overall prediction

results will be investigated. Third, it has been suggested that in order to increase

the accuracy of the D L  based forecasters techniques, large datasets are preferable to

enhance decision-making capabilities, however, this high dimensional, heterogeneous

data could be suffering from data quality issues as the database of historical records of

solar irradiance tends to be quite large. One way of resolving this issue is applying

clustering algorithms to classify each data point into three clusters including sunny,

cloudy, and rainy weather to reduce the uncertainty associated with forecasting solar

irradiance. A  growing body of literature has informed LSTM, though we review only

those most germane to the current research, for purposes of brevity.

The first study of relevance to consider is [50]. The authors propose LSTM to pre-dict

hourly solar irradiation forecasting along with techniques like Gradient Boosted
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Regression Trees ( G B RT )  and FFNN. It was found that LSTM models are suitable

to minimize MAE, with relatively low RMSE. An exploration of multi-location-based

models demonstrated significant performance improvement over single location-based

models which lends further support to the eficacy of LSTM. It is important to note

here that in instances where GHI values of the neighboring locations were taken along

with the target location, the future GHI of a target location is dependent on prior

GHIs of neighboring locations.

Prior work on LSTM has found similar results. [13] for instance, compare four

different models for hourly day-ahead solar irradiance forecasting by using LSTM,

persistence algorithm, linear least square regression and BPNN. The proposed LSTM

model outperformed the other models in terms of RMSE and shows less overfitting

and better generalization capability. They indicated that the performance of the fore-

casting improved by applying a large-scale training dataset, which provides support

for suggestions in the literature that the size of the dataset leads to marked improve-

ments in forecasting. While here, the proposed LSTM forecast model is trained to

discover the dependence of hourly weather forecasts between consecutive hours of the

same day, [51] proposed a hybrid CNN-LSTM model with spatiotemporal correlations

to enhance the accuracy of hourly solar irradiance forecast. The proposed model im-

plements a Convolutional Neural Network (CNN) to extract spatial features based on

meteorological parameters and an LSTM model to extract temporal features based on

historical GHI time series data. This effectively combines the temporal and spa-tial

correlations of the data to obtain accurate predictions of hourly GHI. The GHI values

of the previous 10 h are taken as the inputs of the LSTM network to predict the GHI 1

h in advance. The proposed LSTM forecast model is trained to discover the

dependence of hourly historical GHI sequences.

In [52], the authors employ LSTM and an aggregation function based on the

choquet integral as a way to forecast hourly solar irradiation. The choquet integral

improves the model by using a fuzzy measure for capturing interactions occurring

between the input features. It is worth noting that other related works utilized either

ensemble techniques such as weighted average or relied solely on individual forecast-

ing models. As neither of these strategies took into consideration any interactions
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that may happen between aggregated values, the forecasting reliability was invari-

ably worsened. The researchers in [53] looked at the forecasting accuracy of FFNN,

LSTM, and support vector regression (SVR) models in hourly GHI forecasting. Their

results showed that, under all tested conditions, the FFNN model outperformed the

LSTM and SVR models. They found that the combined forecasts of the three models

through quantile regression averaging (QRA) significantly improves forecasting accu-

racy. Moreover, the researchers also discovered that solar irradiance seasonality had

a major effect on the accuracy of forecasting. These findings support those of [54],

who introduced an LSTM based strategy for one-hour-in-advance predictions ofGHI.

One of the main conclusions of these researchers was that most of the forecasts that

were inaccurate fell on days that were partially or mainly overcast. To  overcome this

inaccuracy, the researchers introduced a clearness index as LSTM model input data.

The clearness index classifies weather type using k-means in the data processing step.

More specifically, the k-means took into account the day’s total GHI, along with the

equivalent clearness index. The classification was then simplified into three main

categories, namely cloudy, mixed (partially cloudy), and sunny. Alternative meteo-

rological data may also be used instead of, or in addition to, the clearness index in

order to identify sky conditions and weather type. In related work, and based on the

findings in [48], Pan et al. [55] explored day-ahead hourly forecasting for solar gener-

ation using an ensemble model and combined cluster analysis. However, because they

focused mainly on solar generation data clustering in order to find a weather regime,

they essentially ignored any weather-related data that may explain nonlinearity be-

havior in solar irradiance [55]. Much of the current literature focuses on applying D L

techniques to hour-ahead solar irradiance forecasting and modeling, with the LSTM

model emerging as the most prevalent forecaster of solar irradiance. A  review of the

past and current literature has suggested that the benefits of RNN and LSTM over

previously used models [15][45][47][48][50]. Table 2.5 is a summary of several research

works on developing Solar Irradiance Forecasting based on LSTM Models.

2.2 Features Selection

In every case of predictive modeling, the model’s accuracy is entirely based on data

quality. Therefore, it is crucial to appropriately choose and prepare exogenous (i.e.,
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Table 2.5: LSTM Model-based Solar Irradiance Forecasting

explanatory) variables as well as to determine any variations in the endogenous (i.e.,

response) variables. This can be accomplished by considering the most common issues

that may occur, in particular redundancy and irrelevance. Both redundancy and

irrelevance can be overcome using variable screening, followed by selecting predictive

variables that best suit the specified model.

Endogenous and exogenous variables usually get evaluated numerous times through-

out a predictive model’s selection trial. A  few of the more common feature selection

strategies are depicted in Figure 2.2. Feature selection is done using wrapper, fil-

ter, and embedded techniques. The wrapper approach, also known as the greedy

search algorithm, applies an ML algorithm to determine the best feature set for the

algorithm. However, the wrapper approach is lacking in generalization, which means

that the best subset selected would not likely be the best when applied to other ML

algorithms. As well, the wrapper method’s search procedure is quite costly from a

computational perspective. The filter method employs a number of different statis-

tical measures, such as correlation analysis, univariate statistical analysis, mutual

information, ANOVA, chi-square distribution, in order to determine the relevancy
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and/or redundancy of certain variables. The primary advantages of using the fil-ter

approach are the fast screening time, low computational cost, and the accurate

measurement of monotonic and linear degrees of variable pairs. For the embedded

approach, feature selection occurs at the design stage, when the ML algorithm is

being trained. Like the filter method, the embedded approach has the benefit of

accuracy in results and fast screening times, but like the wrapper method, they are

computationally expensive. The following section presents an overview of the main

feature selection methods specific to climatological, atmospheric and meteorological

data in application to solar irradiance. The associations of exogenous (meteorological

and geographical) variables and endogenous (historical solar irradiance) variables as

features that result in improved prediction results will be examined.

Figure 2.2: Feature Selection Methods
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Most feature selection techniques in the literature are based on correlation analy-

sis for redundancy and relevancy measures and are performed to determine whether a

linear relationship exists among the input features [13] [15] [16] [17]. Indeed, a signif-

icant amount of work has focused on other statistics and D L  techniques are extended

to extract the optimal feature subset for GHI forecasting model. The techniques in-

clude Subsets Evaluator, V IF ,ARD,NGA are proposed in [37] [41] [56] [57] [58]. ANN

and fuzzy logic models are used in [41], Specifically, ANN, ANFIS, Multiple Linear

Regression (MLR)  models, and four empirical equations are applied to estimate so-

lar radiation in Turkey. The meteorological data (month number, extraterrestrial

radiation, air temperature, relative humidity, sunshine duration, and daylight hours)

were measured in 163 stations over 20 years. To  determine the multi-collinearity of

independent variables, V I F  was used. The results indicate that Calendar Month Num-

ber (M) Extraterrestrial Radiation (Ra),Average Air Temperature (Tmean ),Average

Relative Humidity (RHmean ) can be powerful input features when estimating solar

irradiance in ANN, ANFIS, and M L R  models.

As well, the authors dissect and compare different input variable combinations

using MAE,MAE, MARE,  RMSE, overall index of model performance (OI), and R2 .

They found that ANN outperforms the ANFIS and M L R  models and the empirical

equations estimating Turkey’s solar irradiance when RMSE is at 1.65%. The accu-

racy of ANNs is supported by [56], where A R D  is used to select network inputs. The

dataset features 36 months of global radiation data (daily) measured at twelve sta-

tions in Spain. The authors aimed to estimate daily global irradiation for complex

terrain. Estimated values from the ANN model were compared to measured ones, giv-

ing an MBE of 0.2% and an RMSE of 6.0%. The daily clearness index and D OY  are

also proven to be relevant input variables. Individual station performance was around

[5.0–7.5]%. To  further validate the model, it could be applied to other topographically

complex areas. The authors in [57] proposed solving the variable selection problem

by using two applications of NGA to estimate solar radiation. This strategy selects

relevant input variables by employing different parameters of genetic algorithm. The

technique estimated daily Global Solar Radiation in northern Argentina by applying

linear regression to data obtained from 14 weather stations. From an average of 64 of

329 initial variables, the results show an R2  of 0.926 and an RMSE of 2.36 W J/m2,
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using sunshine hours and the most relevant variables (pressure, humidity, temper-

ature). In [58], the authors proposed combining Generalized Fuzzy model (GFM)

and continuous density Hidden Markov Model (HMM) to estimate solar radiation

based on meteorological data from 2009-2011. From the total 915 days, data from

the first 750 days is used to training the novel paradigm, while the remaining data is

used to validate the proposed model. After analyzing estimations from 15 meteoro-

logical parameter combinations, the authors found sunshine duration to be the main

parameter in solar radiation estimation, followed by temperature, relative humidity,

atmospheric pressure and wind speed. The R2  and RMSE for the best performing

meteorological parameter combinations in the framework are 0.9921 and 7.9124%,

respectively. Conflicting experimental outcomes have prompted a shift to reconsider

ANNs’ usefulness.

In [37], several authors compared various solar radiation prediction models, in-

cluding B D T ,  ANN, and combinations of these models using L R .  The aim is to test

predictions for daily global solar irradiation, with performance being validated by a

dataset from Algeria’s Applied Research Unit for Renewable Energies. The dataset

includes global solar radiation, sunshine and air temperature and sunshine duration

during 2014-2016. The authors analysed a range of input combinations to find the

most relevant input parameters to include in their predictive models. Of the tested

parameters, maximum sunshine duration was found to best improve the models’ per-

formance. Further, they achieved the best prediction output using input features

that included Extraterrestrial Global Solar Radiation (HO ), Sunshine Duration (SO),

Max Air Temperature (Tmax ),Mean Air Temperature (Tmean ) since errors occurring

between predicted and measured values are generally quite small. With regard to

statistical indicators like RMSE, rRMSE, R2  , nMBE, MAE and nMAE , the ANN

model was shown to perform the best of all the models (e.g., L R ,  B D T ,  and hybrid

L R -M L P  and L R - B D T ) ,  achieving a high accuracy of RMSE =  4.5233%. Regions

that have different climate conditions than those tested could be the focus of future

work.
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2.3 Summary

This chapter began with a comprehensive literature review of several forecasting tech-

niques and feature selection methods. Next, various strategies for GHI forecasting

models (MLP, fuzzy logic, RNN, and LSTM) were reviewed.



Chapter  3

Research Methodology and Data Collection

This chapter contains a portion of the works that are published in research papers

[18] [21] [22].

3.1 Introduction

The research methodology includes three phases that aim to enhance the forecast-ing

accuracy of the solar irradiance model shown in Figure 3.1. The first phase is

primarily focused on investigating the behavior of LSTM model and the influence

of the input features (e.g., univariate, or multivariate) on the model’s performance.

The main outcomes of this work show that the performance of the LSTM forecasting

model deteriorates when changed from univariate to multivariate analysis. This de-

terioration provides motivation to comprehensively analyse the way that features are

being evaluated during the selection of a predictive model for GHI. The second phase

of the research methodology is devoted to proposing a novel hybrid feature selection

method that optimizes feature selection using a Least-Redundant/Highest-Relevant

framework. The proposed W R F E  utilizes feature importance for measuring variance

reduction in R F R  and as data perturbation in LSTM . The key results show that the

proposed optimal features of the training subset make the greatest contributions to

the prediction hourly GHI. The results also prove that the high variability of irra-

diance data due to geographical and meteorological conditions lowers the reliability of

the training subset. Therefore, a primary investigation is conducted in the third

phase to analyse seasonality-based hourly predictions for GHI. The investigation finds

that seasonality affects the accuracy of predictions due to high levels of autumn- and

winter-related weather phenomena and climate uncertainty. Accordingly, the S C F T

based on an LSTM hybrid strategy and stacked layers of weather clusters is proposed.

The main results show that the proposed S C F T  forecasting approach yields improve-

ments in the learning tasks when training the LSTM model by enhancing the model’s
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Figure 3.1: Workflow of Research Methodology

ability to identify patterns within a dataset. This forms the basis for dataset clusters

and making predictions of the hourly GHI with suficient accuracy even for regions

with highly fluctuating climates.

3.2 Feature Screening

In every case of predictive modeling, the model’s accuracy is entirely based on data

quality. Therefore, it is crucial to appropriately choose and prepare exogenous (i.e.,

explanatory) variables as well as to determine any variations in the endogenous (i.e.,

response) variables. This can be accomplished by considering the most common issues

that may occur, in particular redundancy and irrelevance. Both redundancy and

irrelevance can be overcome using variable screening, followed by selecting predictive

variables that best suit the specified model. Pearson is a correlation statistic approach

that can be applied to measure degrees of relationships existing between weather

variables as given in Equation 3.1 [59].

ρ (X , Y ) =  q
P

i = 1  (x i  −  x̄ ) ( i  −  ȳ)
(3.1)

i = 1  (x i  −  x̄)2
i = 1  (yi −  ȳ)2

where x i  is the x-variable value, x̄  is the mean of the x-variable, yi is the y-variable

value, ȳ  is the mean of the y-variable, n is the number of observations.
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This approach, however, may be invalid if the variables do not satisfy Pearson corre-

lation assumptions. In Pearson correlation analysis, the two assumptions which need

testing are: 1) the normality assumption, and 2) linearity. Pearson correlations can be

highly susceptible to normality and linearity assumptions and can also easily per-ceive

outliers. Accordingly, nonparametric correlation strategies may be preferable to

Pearson correlation in some cases. Examples of nonparametric strategies include

Hoeffding’s D  and Spearman’s rho. Spearman’s rho is applied to gauge the direction

and strength of a monotonic relationship between two variables as given in Equation

3.2. This is unlike the Pearson’s correlation, which gauges the direction and strength

of a linear relationship between two variables. In the Spearman’s rho approach, the

correlation between two variables is equivalent to the Pearson’s correlation between

rank scores from the two variables. Furthermore, whereas Pearson’s correlation mea-

sures linear relationships, Spearman’s correlation determines monotonic relationships

(either linear or non-linear) and ranges between -1 and 1 [59].

P n 2

ρS (X, Y ) =  1 −  
n (n

i 

−  1)
(3.2)

where di is the difference between the two ranks of each observation. n is the number

of observations.

Hoeffding’s D  is applied as a non-parametric rank-based measure for determining

non-linear associations, as presented in Equation 3.3. The measure ranges from -0.5

to 1 when no tied ranks exist; otherwise, the measure may feature lower values. In

this technique, stronger associations between variables are indicated by larger values

[60].

(n −  2)(n −  3)D1 +  D 2  −  2(n −  2)D3

n(n −  1)(n −  2)(n −  3)(n −  4)
(3.3)

where D n  is the rank of variable n in two different samples.n is the number of obser-

vations.

3.3 Data Collection and Analysis

This research uses data from solar irradiation and weather readings from the U.S. Na-

tional Solar Radiation Database (NSRDB) and the U.S. National Renewable Energy
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Laboratory (NR E L )  [61]. The data were downloaded using the NSRDB data viewer

for Halifax, Nova Scotia, Canada, at coordinates 44.88 N and 63.51 W. In the first

model, the data covered four years (2014-2017) on an hourly basis, were for Dew Point

(DP),  Temperature (T),  Relative Humidity (RH), Pressure (P), Precipitable water

(PW) , Diffuse Horizontal Irradiance (DHI), GHI, and Solar Zenith Angle (SZA).

The four designated years were used for training, while the year 2018 was used for

testing. The Correlation coeficients indicate redundant attributes because they relay

more or less similar information, resulting in multicollinearity. Such correlated fea-

tures may cause overfitting. Therefore, the Pearson Correlation (ρP ) has been applied

for measure any linear associations occurring in the explanatory/predictors variables.

As shown in Figure 3.2, a heat map method of bivariate analysis has been utilized

for visualizing correlation coeficients. In the figure, the ρP coeficients whose values

are somewhere between (+1  and-1). The map illustrates that D P  has the strongest

positive linear relationship with PW and T  of up to ρP =  0.82 and ρP =  0.95 respec-

tively, in comparison to the other data variables. As well, the figure indicates that

PW has a positive relationship of ρP =  0.71 with T .  Moreover, in the same figure, the

correlation analysis results indicate that SZA has a negative liner relationship (ρP =  -

0.73 and ρP =  -0.77) with DHI and GHI, respectively, while RH and GHI both have a

moderate one (ρP =  -0.57). Our suggestion would be to remove one of the variables

in any explanatory variable pairs where (ρP >±0.5).  However, because GHI represents

a response variable, this should be considered when eliminating any redun-dant

variables. In other words, a stronger association between GHI and redundant

variables may mean the variable could be more relevant for the model. Based on this

assumption, and as shown in the graph, SZA and T  were retained because they show

the strongest association of the redundant variables.

The input features for the forecasting model were then formulated using the five

retained features (i.e., after eliminating DHI, D P  and PW). In Table 3.1, the descrip-

tive statistics information for the training dataset using RH, T ,  SZA, GHI, and P  is

presented. The data have been standardized to enable feature scaling. The table also

shows five features that have been scaled to a mean of 0, with a standard deviation of 1.

A  further assumption is that every variable’s contribution in the analysis is equal,

having no bias.
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Figure 3.2: Pearson Correlation

Table 3.1: Descriptive Statistics Information for Model 1 Dataset

count
G H I 1.46E+03
S Z A 1.46E+03
R H 1.46E+03
T 1.46E+03
P 1.46E+03

mean
4.91E-17
5.63E-16
-6.94E-16
9.76E-17
-1.83E-16

std
1.00E+00
1.00E+00
1.00E+00
1.00E+00
1.00E+00

min
-1.56E+00
-3.20E+00
-2.25E+00
-2.30E+00
-2.06E+00

25%
-8.39E-01
-6.47E-01
-8.35E-01
-8.63E-01
-7.98E-01

50%
-1.58E-01
2.25E-01
-1.59E-02
-1.28E-01
1.01E-01

75%
7.88E-01
8.20E-01
8.21E-01
9.47E-01
9.35E-01

max
2.26E+00
1.70E+00
1.97E+00
1.91E+00
1.42E+00

3.4 Comprehensive Data Analysis

The second model utilizes data from the same source of the first model with the same

geographic location using the NSRDB data viewer for Halifax, Nova Scotia. The

data were collected for hourly periods using large data range with time-frame of 2000 -

2018. The dataset in second model includes more meteorological data such as Direct

Normal Irradiance (DNI), Clearsky GHI (CGHI),  Surface Albedo (SA),Wind Speed

(WS), and Wind Direction (WD), in addition to the meteorological data included in

the first model (DP, T ,  RH,P, PW, DHI,GHI, SZA). Table 3.2 presents the descriptive

statistics information for the dataset that includes around 82,118 observations.

3.4.1 Redundancy Measures

Redundant attributes are usual measured by Pearson’s correlation coeficient. Figure

3.3 shows a heat map technique employed to visualize the correlation coeficients. As
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Table 3.2: Descriptive Statistics for Model2 Dataset

Variable
DHI
DNI
GHI

CGHI
D P
SZA
SA
WS
PW
WD
RH
T
P

count mean
82118     127.807411
82118     333.352456
82118      306.29678
82118     446.278161
82118       5.887337
82118      60.733491
82118        0.25704
82118       2.501217
82118       1.872482
82118     209.060881
82118      82.859269
82118       9.042456
82118     1005.62316

std
97.59748
336.5912
254.5158
271.4996
8.41948

17.82613
0.284197
1.320333
1.197914
92.49892
14.04239
8.057104
9.771198

min
1.000
0.000
1.000
2.000

-19.000
21.390
0.098
0.000
0.089
0.000

34.350
-19.000
950.000

25%
59.000
8.000

93.000
218.000

0.000
47.330
0.119
1.500
0.878

153.800
72.530
2.000

1000.000

50%
101.000
212.000
236.000
423.000

6.000
63.700
0.125
2.300
1.642

220.500
84.600
9.100

1010.000

75%
169.000
657.000
471.000
675.750
13.000
75.040
0.135
3.300
2.665

281.700
95.830
16.000

1010.000

max
466.000

1018.000
1010.000
1010.000

22.000
92.040
0.866
9.900
6.764

360.000
100.000
28.000

1040.000

can be seen, the coeficient values (+1  to -1) measure linear associations between the

exogenous variables. Inputs with linear and additive effects that have a constant rate of

change on the output could be insuficient to render a full decision on the redun-dant

variables. The effect of each input variable might have a nonlinear relationship with

other input variables, which makes the effects both nonlinear and non-additive. Thus,

nonlinear associations for redundancy measure will be tested. In Tables 3.3 and 3.4,

it is seen the Pearson and Spearman correlation coeficients for evaluating bivariate

analysis and for measuring linear or monotonic relationships in the vari-able pairs.

The coeficient values in the tables are between (+1  and -1), and the redundancy

measure depends on pairwise observations of twelve common exogenous variables,

namely DHI, DNI, CGHI, DP, SZA, SA, WS, PW, WD, RH, T ,  and P. Note that the

endogenous variable, GHI, is excluded from this analysis. All values on the diagonal are

valued as 1, as the variables are perfectly correlated with themselves. We have also

considered any off-diagonal elements in the matrix’s upper triangle that mirror those in

the matrix’s lower triangle. The above-mentioned elements include both correlation

coeficients and their respective p-values. A  hypothesis test will be performed to

determine any significances in the correlation coeficient and to gauge if the sample

data’s linear/monotonic relationship may be suficiently strong to apply in modeling

a relationship within the population. Further, we can use the two-tailed significance

test to express both the null hypothesis (H0) and alternative hypothesis (H1) of the

correlation. When looking at the Population Correlation Coeficient (ρC ),
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Figure 3.3: Heatmap of Pearson Correlation

we need to see if there is 95% confidence (at a 0.05 level of significance), in which

case:

H0:ρC = 0 (“If the population correlation coeficient equals 0, no association is de-

tected”).

H1:ρC = 0 (“If the population correlation coeficient does not equal 0, a nonzero cor-

relation may exist”).

As shown in Tables 3.3 and 3.4, the Pearson and Spearman correlation coeficients

for CGHI  and DHI are 0.73 and 0.79, respectively. Further, because p <  .0001, p

<  0.05 has been satisfied, indicating that the result is statistically significant, and

the null hypothesis is therefore rejected. Hence, there is enough evidence at the 0.05

significance level to assume there is a strong positive linear relationship between CGHI

and DHI variables across the whole population. Furthermore, there is a strongly

negative linear relationship existing between SZA and DHI, with the Pearson and

Spearman correlation coeficients being -0.74 and -0.81, respectively, and p ¡ .0001.

Therefore, between SZA and CGHI, using the Pearson and Spearman correlation
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Table 3.3: Pearson Correlation Coeficients for the Year 2000

Pearson Correlation Coeficients, N =  4309
Prob >—r—  under H0: Rho=0

DHI DNI CGHI DP SZA SA WS PW WD RH T P
DHI      1.0000      -0.13899 0.73209 0.21209 -0.74764 -0.10561 -0.11931 0.22914 -0.07357 -0.09034 0.26591 -0.04073

<.0001
DNI      -0.13899 1.0000

<.0001

<.0001
0.33324
<.0001

<.0001     <.0001
-0.08344 -0.28413
<.0001     <.0001

<.0001     <.0001     <.0001     <.0001
0.00964 -0.23606 -0.3391     0.22909
0.5269     <.0001     <.0001     <.0001

<.0001     <.0001     0.0075
-0.60108 0.11489 0.31971
<.0001     <.0001     <.0001

CGHI 0.73209 0.33324 1.0000 0.20498 -0.99034 -0.14244 -0.20453 0.13291     -0.02757 -0.37175 0.36083 0.05199
<.0001     <.0001                                      <.0001     <.0001      <.0001     <.0001     <.0001      0.0703      <.0001     <.0001     0.0006

DP 0.21209 -0.08344 0.20498 1.0000      -0.27856      -0.32152 -0.29901 0.79862 -0.11717 0.46139 0.95048 -0.15724
<.0001     <.0001 <.0001                          <.0001 <.0001     <.0001     <.0001     <.0001      <.0001     <.0001     <.0001

SZA      -0.74764 -0.28413 -0.99034      -0.27856 1.0000 0.1684      0.22045 -0.21903 0.04672     0.30492 -0.41955 -0.02892
<.0001     <.0001 <.0001 <.0001 <.0001     <.0001     <.0001     0.0022 <.0001     <.0001     0.0577

SA  -0.10561 0.00964 -0.14244      -0.32152 0.1684 1.0000      0.2056      -0.21435 0.10165     -0.04964 -0.34834 -0.15502
<.0001     0.5269 <.0001 <.0001     <.0001                          <.0001     <.0001     <.0001      0.0011      <.0001     <.0001

WS  -0.11931 -0.23606 -0.20453      -0.29901 0.22045 0.2056      1.0000      -0.1099     -0.03394 0.11374 -0.37645 -0.26426
<.0001     <.0001 <.0001 <.0001     <.0001 <.0001 <.0001     0.0259 <.0001     <.0001     <.0001

PW       0.22914 -0.3391
<.0001     <.0001

0.13291
<.0001

0.79862 -0.21903
<.0001     <.0001

-0.21435 -0.1099     1.0000
<.0001     <.0001

-0.2461
<.0001

0.54317 0.69789 -0.21472
<.0001     <.0001     <.0001

WD      -0.07357 0.22909 -0.02757      -0.11717 0.04672 0.10165 -0.03394 -0.2461     1.000 -0.20632 -0.06234 -0.12331
<.0001     <.0001 0.0703 <.0001     0.0022 <.0001     0.0259      <.0001 <.0001     <.0001     <.0001

RH -0.09034 -0.60108 -0.37175      0.46139 0.30492 -0.04964 0.11374 0.54317 -0.20632 1.0000      0.17011 -0.39697
<.0001     <.0001 <.0001 <.0001     <.0001 0.0011      <.0001     <.0001     <.0001 <.0001     <.0001

T 0.26591 0.11489 0.36083 0.95048 -0.41955      -0.34834 -0.37645 0.69789 -0.06234 0.17011 1.0000      -0.03984
<.0001     <.0001 <.0001 <.0001     <.0001 <.0001     <.0001     <.0001     <.0001      <.0001 0.0089

P  -0.04073 0.31971 0.05199 -0.15724 -0.02892      -0.15502 -0.26426 -0.21472 -0.12331 -0.39697 -0.03984 1.0000
0.0075      <.0001 0.0006 <.0001     0.0577 <.0001     <.0001     <.0001     <.0001      <.0001     0.0089

coeficients, there is a robust association of -0.99 and -0.995, respectively.

Figure 3.4 illustrates pairwise analysis in scatterplot form with monthly varia-

tions, showing a highly skewed DHI. As shown, between DHI and the CGHI  and SZA

variables, the relationships are not as robustly linear as presented in the Pearson’s

correlation coeficient. Additionally, neither WS, WD, P, nor SA exhibit strong rela-

tionships with other variables, which means they would not be considered redundant

variables in the model. Statistical investigation of the data presented in Table 3.3

gives p values to test associations between DNI and SA, CGHI  and WD, and P  and

SZA. The results, respectively, are 0.5269, 0.07, and 0.0577. If p >  0.05, the results at

the 5% level are not significant, thus showing no correlation between these variables

and also failing to reject the null hypothesis.

Normality Assumption Tests

Table 3.5 provides descriptive statistics analyses of DHI datapoints. In order to deter-

mine whether the DHI data are normally distributed, numerical techniques by looking
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Table 3.4: Spearman Correlation Coeficients for the Year 2000

Spearman Correlation Coeficients, N =  4309
Prob >—r—  under H0: Rho=0

DHI DNI CGHI DP SZA SA WS PW WD RH T P
DHI      1.0000      0.06253

<.0001
0.79752
<.0001

0.18534 -0.8105
<.0001     <.0001

0.11218 -0.1081     0.21123 -0.09791 -0.17012 0.26578 -0.05321
<.0001     <.0001     <.0001     <.0001     <.0001     <.0001     0.0005

DNI      0.06253 1.0000                   0.36116           -0.04771 -0.32036      0.08802 -0.24591 -0.34968 0.24777 -0.60306 0.1476      0.32153
<.0001                                   <.0001            0.0017      <.0001        <.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001

CGHI 0.79752 0.36116 1.0000 0.18883 -0.99505 0.12592 -0.19495 0.14136 -0.052 -0.39823 0.36101 0.04985
<.0001     <.0001                                          <.0001     <.0001     <.0001     <.0001     <.0001     0.0006      <.0001     <.0001     0.0011

DP 0.18534 -0.04771
<.0001     0.0017

0.18883
<.0001

1.0000      -0.25395
<.0001

0.31886 -0.2812     0.83268 -0.15325 0.39611 0.94648 -0.13649
<.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001

SZA      -0.8105     -0.32036
<.0001     <.0001

-0.99505
<.0001

-0.25395 1.000
<.0001

-0.1417     0.20496 -0.21981 0.07845 0.34129 -0.41371 -0.02944
<.0001     <.0001     <.0001     <.0001     <.0001     <.0001     0.0533

SA  0.11218 0.08802 0.12592 0.31886 -0.1417 1.0000      -0.17852 0.26007 0.01688 0.07367 0.29539 -0.07945
<.0001     <.0001 <.0001 <.0001     <.0001                          <.0001     <.0001     0.2679      <.0001     <.0001     <.0001

WS  -0.1081     -0.24591 -0.19495 -0.2812     0.20496 -0.17852 1.0000      -0.12072 -0.00772 0.12265 -0.35919 -0.22882
<.0001     <.0001 <.0001 <.0001     <.0001 <.0001 <.0001     0.6122      <.0001     <.0001     <.0001

PW       0.21123 -0.34968
<.0001     <.0001

0.14136
<.0001

0.83268 -0.21981
<.0001     <.0001

0.26007 -0.12072 1.0000
<.0001     <.0001

-0.31536 0.56267 0.72122 -0.24245
<.0001     <.0001     <.0001     <.0001

WD      -0.09791 0.24777 -0.052 -0.15325 0.07845 0.01688 -0.00772 -0.31536 1.0000      -0.23528 -0.10096 -0.14502
<.0001     <.0001 0.0006 <.0001     <.0001 0.2679      0.6122      <.0001 <.0001     <.0001     <.0001

RH -0.17012 -0.60306
<.0001     <.0001

-0.39823
<.0001

0.39611 0.34129
<.0001     <.0001

0.07367 0.12265 0.56267 -0.23528 1.0000
<.0001     <.0001     <.0001     <.0001

0.11297 -0.38191
<.0001     <.0001

T 0.26578 0.1476
<.0001     <.0001

0.36101
<.0001

0.94648 -0.41371
<.0001     <.0001

0.29539 -0.35919 0.72122 -0.10096 0.11297 1.0000
<.0001     <.0001     <.0001     <.0001     <.0001

-0.02882
0.0586

P  -0.05321 0.32153 0.04985 -0.13649 -0.02944      -0.07945 -0.22882 -0.24245 -0.14502 -0.38191 -0.02882 1.0000
0.0005      <.0001 0.0011 <.0001     0.0533 <.0001     <.0001     <.0001     <.0001     <.0001     0.0586

Figure 3.4: Pairwise Analysis in Scatterplot
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Table 3.5: Descriptive Statistics Analyses of DHI

Moments
N 4309 Sum Weights 4309

Mean            131.470179 Sum Observations      566505
Std Deviation 99.3737954           Variance           9875.15121

Skewness        1.17306489            Kurtosis            0.75623336
Coeff Variation 75.5865675     Std Error Mean     1.51385274

at kurtosis and skewness values to gauge normality according to criteria proposed in

[62] can be applied. In cases where sample sizes exceed 300, histograms and absolute

values of kurtosis/ skewness can be considered without including z-values. If there

is an absolute kurtosis exceeding 7 or an absolute skew value exceeding 2, it can be

used as a reference value to determine significant levels of non-normality. Based on

the above criteria, it is determined that the sample data used in our test are slightly

kurtotic and skewed, with kurtosis at 0.756 and skewness at 1.173. These results

indicate that the sample is normally distributed according to kurtosis and skewness

criteria. As a second consideration, the SAS manual [63] mentions that if the sample

size exceeds 2000, the most appropriate tests are Cramer-von Mises, Kolmogorov-

Smirnov, and Anderson-Darling. The Shapiro test is more suitable for sample sizes of

less than 2000. In the three referenced tests for sample sizes larger than 2000, the null

hypothesis applies if the data are normally distributed; otherwise, the null hypothesis

will be rejected with p values <  0.05. In our test sample, the p values show as being

below .05 for all three referenced tests, as presented in Table 3.6. This means that the

null hypothesis is rejected and the DHI data distribution is non-normal. As a third

consideration, graphical methods can be utilized in visualizing variable distribution

and comparing this distribution with theoretical variable distribution by employing

plots such as the Quantile-Quantile (Q-Q) plot. Figure 3.5 illustrates an example of

DHI data that are distributed non-normally. In this instance, the Pearson’s correla-

tion may not be the most appropriate measure to find variable associations. Instead, a

nonparametric approach, such as Spearman’s correlation, is likely a more suitable

choice. Table 3.7 presents both the Spearman and Pearson correlation coeficients in

descending rank for DHI and a range of variables.
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Figure 3.5: QQ Plot for DHI

Table 3.6: Statistics Tests for Normality Assumption of DHI

Goodness-of-Fit Tests for Normal Distribution
Test Statistic pValue

Kolmogorov-Smirnov D 0.146558 Pr > D <0.010
Cramer-von Mises        W-Sq      27.356580      Pr >W-Sq <0.005
Anderson-Darling        A-Sq     156.371578     Pr >A-Sq <0.005

Inclusion And Exclusion Criter ia of Exogenous Variables

As mentioned earlier in this research, variable screening is an effective way to decrease

excess exogenous variables, as this form of screening is able to identify variables that

are redundant. In the current context, the redundancy measure for considering very

high correlated variables using the Spearman’s coeficients Spearman Correlation (ρS )

larger than 0.8 in value. The working hypothesis is that the model’s performance

may be impeded by exogenous variables with monotonic associations. In our prior

example, the two exogenous variable subsets of CGHI  and SZA, along with T  and

DP, are all highly correlated, making them redundant. For variable inclusion, it is

needed to investigate which exogenous variable should be dropped in cases where they

are correlated. This investigation will be presented in more detail in the proposed

W R F E  technique. Table 3.8 provides a list of highly correlated variables which could

potentially be redundant. As can be seen, there is a positive monotonic relationship
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Table 3.7: Nonparametric Measure of Association with DHI for a 95 % Confidence
Interval

Variable

SZA
CGHI

T
PW
D P
RH
SA
WS
WD
DNI

P

Pearson
Rank

1
2
3
4
5
6
7
8
9

10
11

Spearman
Rank

1
2
3
4
5
9
8
7

10
6

11

Pearson
Coeficient

-0.8105
0.79752
0.26578
0.21123
0.18534
-0.17012
0.11218
-0.1081

-0.09791
0.06253
-0.05321

Pearson
P-Value
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.0005

Spearman
Coeficient

-0.74764
0.73209
0.26591
0.22914
0.21209
-0.09034
-0.10561
-0.11931
-0.07357
-0.13899
-0.04073

Spearman
P-Value
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.0075

Table 3.8: List of High Correlated Variables

First Feature
D H I
D H I

C G H I
DNI
D P
D P
T

R H

Second Feature
C G H I
S Z A
S Z A
R H
T

PW
PW
PW

Spearman Coeficients
0.79
-0.81
-0.99
-0.60
0.94
0.83
0.72
0.56

between CGHI  and DHI, where (ρS ) =  0.79. Additionally, it can be seen that there

is a negative monotonic relationship between SZA and DHI, where (ρS ) =  -0.81.

There is also a strongly negative association between SZA and CGHI, where (ρS ) =

-0.99. In the same table, a negative moderate association exists between DNI and

RH, where (ρS ) =  -0.6. Further, in comparison to other data, D P  shows the strongest

positive monotonic and linear relationships to T  (up to (ρS ) =  0.94), and a positive,

monotonic, and curvilinear relationship (up to (ρS ) =  0.83) to PW. There is also a

moderate association of (ρS ) =  0.72 between PW and T .

3.4.2 Effect of Sample Size in Correlation Analysis of Weather Data

To test stability visually, a comparison of the correlation analysis of a one-year dataset is

made. For the year 2000, there are 4309 datapoint observations, while for the ten-year

time-frame of our study period (2000-2010), there are 47,407. Thus, a relatively
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stable magnitude of correlations both in large and small data samples is observed.

Moreover, the majority of the correlation coeficients within the dataset appeared

entirely stable in relation to the dataset size, as shown in Table 3.4 and Table 3.9,

whereas some were stable but featured slight fluctuations around their true value.

This type of deviation, however, is considered trivial and is therefore tolerable. Ex-

amples of ρS changes are as follows: DNI and DHI, ρS changed from 0.06 to 0.13;

CGHI  and SA, ρS changed from 0.125 to 0.029 ; CGHI  and P, ρS changed from 0.04

to 0.02; D P  and DNI, ρS changed from -0.04 to -0.09; D P  and P, ρS changed from

-0.136 to -0.06; SA and T ,  ρS changed from 0.29 to -0.119; SA and WD, ρS changed

from 0.016 to 0.04; and T  and P, ρS ” changed from -0.028 to 0.026. As well, there

were a few fluctuations in some other correlation coeficients, changing, for instance,

from a significantly weak association to a significantly very weak or null association.

The correlation coeficients in other instances changed from a significantly weak asso-

ciation direction into its opposite significantly weak association. For instance, for SA

and RH,ρS changed from 0.07 to (-0.02); for SA and P, ρS changed from (-0.079) to

(-0.05); and for WS and WD, ρS changed from (-0.007) to (0.06). The strongest de-

viations recorded were in the associations between SA and SZA, SA and WS, and SA

and DP.  These were recorded as being from -0.14 to -0.0088, -0.17 to 0.008, and 0.3 to

-0.08, respectively. However, as our research setting makes allowances for moderate

associations when using Spearman’s coeficients with ρS values greater than 0.4, these

deviations are not considered problematic. On the other hand, as most deviations in

the correlation coeficients occurred in the yearly dataset (correlation coeficients

differ from year to year), they may warrant further investigation.

3.4.3 Relevance Measures

Evaluation of irrelevancy for irrelevant attributes is commonly done using Spearman’s

ranking of correlation coeficients. This can be performed by measuring monotonic

associations between endogenous and exogenous variables [64][65]. If the two mea-

sured variables present as being monotonically unrelated, key associations could be

overlooked. In some cases, Hoeffding’s D  statistic value can be applied in conjunction

with Spearman’s analysis in order to identify non-monotonic associations which may
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Table 3.9: Spearman Correlation Coeficients for the Years 2000-2010

Spearman Correlation Coeficients, N =  47407
Prob >—r—  under H0: Rho=0

DHI DNI CGHI DP SZA SA WS PW WD RH T P
DHI      1.0000      0.13588 0.78745 0.17698 -0.7967     0.06925 -0.12588 0.18016 -0.07869 -0.19838 0.2552      -0.01956

<.0001
DNI      0.13588 1.0000

<.0001

<.0001
0.33417
<.0001

<.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001
-0.09756 -0.29018 0.06314 -0.17986 -0.34686 0.25302 -0.59642 0.08659 0.26499
<.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001

CGHI 0.78745 0.33417
<.0001     <.0001

1.0000 0.17999 -0.9931     0.02914 -0.16265 0.14329 -0.05763 -0.36557 0.32809 0.02208
<.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001

DP 0.17698 -0.09756
<.0001     <.0001

0.17999
<.0001

1.0000      -0.26517 -0.08946 -0.2888     0.87228 -0.19075 0.42865 0.95317 -0.06206
<.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001

SZA      -0.7967     -0.29018 -0.9931 -0.26517 1.0000      -0.00886 0.18242 -0.23831 0.08875 0.30181 -0.40054 -0.01005
<.0001     <.0001 <.0001 <.0001 0.0536      <.0001     <.0001     <.0001     <.0001     <.0001     0.0287

SA  0.06925 0.06314 0.02914 -0.08946 -0.00886 1.0000      0.00834 -0.07357 0.0483      -0.02468 -0.11921 -0.05911
<.0001     <.0001 <.0001 <.0001     0.0536 0.0692      <.0001     <.0001     <.0001     <.0001     <.0001

WS  -0.12588 -0.17986 -0.16265 -0.2888     0.18242 0.00834 1.0000      -0.20134 0.06741 0.0614      -0.34695 -0.26374
<.0001     <.0001 <.0001 <.0001     <.0001     0.0692 <.0001     <.0001     <.0001     <.0001     <.0001

PW       0.18016 -0.34686
<.0001     <.0001

0.14329
<.0001

0.87228 -0.23831 -0.07357 -0.20134 1.0000
<.0001     <.0001     <.0001     <.0001

-0.32957 0.58005 0.76939 -0.13749
<.0001     <.0001     <.0001     <.0001

WD      -0.07869 0.25302 -0.05763 -0.19075 0.08875 0.0483      0.06741 -0.32957 1.0000      -0.25423 -0.13707 -0.12098
<.0001     <.0001 <.0001 <.0001     <.0001     <.0001     <.0001     <.0001 <.0001     <.0001     <.0001

RH -0.19838 -0.59642 -0.36557 0.42865 0.30181 -0.02468 0.0614      0.58005 -0.25423 1.0000      0.16244 -0.29188
<.0001     <.0001 <.0001 <.0001     <.0001     <.0001     <.0001     <.0001     <.0001 <.0001     <.0001

T 0.2552      0.08659 0.32809 0.95317 -0.40054 -0.11921 -0.34695 0.76939 -0.13707 0.16244 1.0000      0.0267
<.0001     <.0001

P -0.01956 0.26499
<.0001
0.02208

<.0001     <.0001     <.0001     <.0001     <.0001     <.0001     <.0001 <.0001
-0.06206 -0.01005 -0.05911 -0.26374 -0.13749 -0.12098 -0.29188 0.0267      1.0000

<.0001     <.0001 <.0001 <.0001     0.0287      <.0001     <.0001     <.0001     <.0001     <.0001     <.0001

not be identified when only using Spearman’s. As demonstrated in [66], if the Spear-

man rank shows as being high, this indicates a monotonic association, even if the

corresponding Hoeffding’s value is low. In general, however, monotonic associations

are key elements in predictive modeling. When the Hoeffding rank is high and the

Spearman rank is low, the association is considered non-monotonic. This pattern of

nonlinearity needs further investigation in order to gauge if and how the association

might impact the model’s performance. On the other hand, if Hoeffding’s is low and

Spearman’s is also low, this indicates a vulnerable association, which means the at-

tributes are irrelevant and can be eliminated. Table 3.10 presents a comparison of

Hoeffding’s D  and Spearman’s correlation coeficients. As can be seen, CGHI, SZA,

DNI, DHI, RH, and T  are all deemed relevant attributes to GHI, which is the tar-get.

In this comparison, DNI, CGHI, and SZA are the highest individual relevant

attributes. The results are then validated for stability via dataset testing. These

datasets were collected in approximate increments of five years (2000, 2005, 2010,

2015, and 2018) as well as for the 11-year dataset for the study period (2000-2010)
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for Halifax, NS, as shown in Table 3.11. The completed results of the validation are

given in the Appendix A.

Although Spearman’s rank correlation coeficients on different data sizes can be

employed, Gilpin [67] found that with increases in sample size, the Kendall correlation

coeficient is more practical. Croux and Dehon [68] agree that the Kendall correlation

performs better than the Spearman correlation in this regard due to its smaller GES

(gross error sensitivity), which makes it more robust, and its smaller AV  (asymptotic

variance), which increases its eficiency. The authors in [69] [70] mention that the

Kendall correlation has a computation complexity of O (n2) in comparison to the

O(n  log n)) complexity of the Spearman correlation, with n being sample size.

In which case, the best approach might be to use both techniques when dealing

with large sample sizes. An intensive screening of the features using filter methods

that rely on the data’s statistical characteristics is performed, such as parametric and

non-parametric tests. Equation 3.4 illustrates a way to capture the dependency degree

between ith exogenous variables (x) and endogenous variable (y) [71]. Strong depen-

dence shows a high degree of mutual information I ,  which indicates greater knowledge of

joint distribution p(x, y) than marginal distribution p(x)p(y). The normalized mu-tual

information (NMIFS) method proposed in [72] as a measure of irrelevancy is

applied. For both methods, Figure 3.6 validates the results, with CGHI, DHI, SZA,

DNI, RH and T  all being features that appear to make the greatest contributions to

the prediction GHI.

I (X ; Y  ) =  
x X  y Y 

p(x, y) log 
p(x)p(y)

(3.4)



45

Table 3.10: Nonparametric Relevance Measure for a 95% Confidence Interval(Year
2000

Variable Spearman Hoeffding Kendall Spearman Spearman Hoeffding Hoeffding     Kendall     Kendall
Rank           Rank         Rank     Coeficient     p-value     Coeficient     p-value     Coeficient p-value

CGHI             1                  1                1
SZA              2                  2                2
DNI              3                  3                3
DHI              4                  4                4
RH               5                  5                5
T                 6                  6                6

WS               7                  7                7
P                 8                  8                8

SA               9                  9                9
DP              10                10              10
WD             11                11              11
PW 12 12 12

0.83719 <.0001
-0.81605 <.0001
0.77333 <.0001
0.61329 <.0001
-0.57718 <.0001
0.34318 <.0001
-0.27082 <.0001
0.20816 <.0001
0.14156 <.0001
0.12775 <.0001
0.09434 <.0001
-0.07328 <.0001

0.34438
0.30864
0.23712
0.18468
0.11794
0.03636
0.02228
0.01179
0.00923
0.00659
0.00477
0.00284

<.0001 0.66575 <.0001
<.0001       -0.63577     <.0001
<.0001 0.58447 <.0001
<.0001 0.47476 <.0001
<.0001       -0.40491     <.0001
<.0001 0.23185 <.0001
<.0001       -0.18482     <.0001
<.0001 0.15667 <.0001
<.0001 0.09669 <.0001
<.0001 0.08435 <.0001
<.0001 0.06071 <.0001
<.0001 -0.04688     <.0001

Table 3.11: Nonparametric Relevance Measure for a 95% Confidence Interval (Years
2000-2010)

Variable Spearman Hoeffding Kendall Spearman Spearman Hoeffding Hoeffding     Kendall     Kendall
Rank           Rank         Rank     Coeficient     p-value     Coeficient     p-value     Coeficient p-value

CGHI             1                  1                1
DNI              2                  3                2
SZA              3                  2                3
DHI              4                  4                4
RH               5                  5                5
T                  6                  6                6

WS               7                  7                7
P                  8                  8                8

WD              9                  9                9
PW             10                11              10
DP              11                10              11
SA 12 12 12

0.79765 <.0001
0.78819 <.0001
-0.77335 <.0001
0.64949 <.0001
-0.5651 <.0001
0.28267 <.0001
-0.22272 <.0001
0.17158 <.0001
0.10625 <.0001
-0.08609 <.0001
0.08551 <.0001
0.06015 <.0001

0.3044
0.24958
0.27088
0.21172
0.10911
0.02411
0.01454
0.00757
0.00455
0.00279
0.00337
0.00261

<.0001 0.62727 <.0001
<.0001         0.5996 <.0001
<.0001       -0.59547     <.0001
<.0001 0.50311 <.0001
<.0001       -0.39649     <.0001
<.0001 0.19036 <.0001
<.0001       -0.15107     <.0001
<.0001 0.12928 <.0001
<.0001 0.06894 <.0001
<.0001 -0.0565 <.0001
<.0001 0.05617 <.0001
<.0001 0.04032 <.0001
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Figure 3.6: Degree of Mutual Information between Exogenous Variables and GHI

3.4.4 Mathematical Model of Long Short-Term Memory

For traditional ANNs, fixed-size vectors may be utilized for primary inputs. However, in

these cases, the model’s usage may be restricted when variable sized sequence data are

involved. RNN represents an improvement over traditional ANNs. As noted in [18],

RNNs represent sequence-based models, and as such are capable of obtaining data

correlations for a variety of time points. This is because the memory cells in RNNs

are updated for every time point, making them dependent on variable-length

input/output. Hence, even simple RNNs have enhanced short-term memory capacity.

Overall, RNNs’ most important feature is their so-called hidden state that recalls

information on sequences for each time step. Numerous factors of weight matrix W

are involved in computing the gradient of h as shown in equation 3.5.

ht =  tanh w

! !
ht−1

X t
(3.5)

It is found that RNNs are prone to explosion gradient and vanishing gradient

problems [73]. Gradient explosion refers to the exponentially fast increase in the

gradient, while gradient vanishing is the exponentially fast reduction in gradient, both

of which restrict RNN models’ capacity in learning long-term temporal correlations.

One possible solution for the gradient vanishing problem may be found in LSTM



47

Figure 3.7: RNN Architecture

architecture, as proposed in the study by [74], This approach intends to mitigate

both the vanishing and exploding gradients problems in order to capture long-term

dependency for the models’ inputs and outputs. In addition to RNN cells, building a

cell state that includes long-term memory information. In storing patterns, numerous

gates are formed, including the Output (o), Input (i), and Forget (f ) gates as shown in

figure 3.8.

Figure 3.8: LSTM Architecture

The gates are connected via a sigmoid dance layer which serves as a filter (e.g.,

for output, input, and forget). The outputs of these gates are formulated in the

equation3.6.
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i σ

 f  =  
σ   w  

             
g tanh

!
ht−1

xt
(3.6)

The gates will be utilized for updating the cell state Ct , as formulated in the

equation 3.7.

ct =  f  ct−1 +  i  g (3.7)

After being updated, the cell state will then be applied in computing the hidden

state as 3.8.

ht =  o  tanh (ct) (3.8)

3.5 Summary

This chapter discussed the Research Methodology steps in detail and included feature

screening and comprehensive data analysis. The chapter also looked at the LSTM

model’s mathematical formation



Chapter  4

Models Design and Results

This chapter contains materials that are published in research papers [18] [21] [22]

4.1 Model 1: Solar Irradiance Forecasting Model based on L S T M

LSTM model is being increasingly applied in solar irradiance forecasting, but the

performance of LSTM is still relatively unknown. The present section explores how

meteorological and geographical (i.e., exogenous) and past records of solar irradiance

(i.e., endogenous) variables may be incorporated as input features in day-ahead solar

irradiance forecasting models that use D L  models. In this study, the results for the

LSTM model are compared to those for the RBFNN in relation to both MTSF and

UTSF. A  comparison of MTSF and UTSF is done for daily solar irradiance readings

at yearly intervals. UTSF looks only at GHI for single time-dependent variables when

predicting day-ahead solar irradiance. So, this study will consider past data readings

for GHI and to understand any correlations that may exist and extract any potential

patterns. MTSF, on the other hand, presents multiple variables, so the predicted

GHI relies on previous values as well as weather and other meteorological variables.

The dependency can be measured using statistical analysis and may be applied to

forecasting GHI values in the future.

4.1.1 Experimental Setup

To forecast daily solar readings for Halifax, Nova Scotia , four experiments are con-

ducted using LSTM and RBFNN models designed to reflect two scenarios. These were

based on the form of input data (MTSF or UTSF)  used in forecasting and modeling

time series. From a mathematical perspective, the UTSF strategy may be expressed as

a function of past GHI values, as formulated in equation 4.1. The MTSF strategy may

also be expressed as a function of past GHI values, along with other weather and

meteorological values, as given in equation 4.2.

49
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Table 4.1: Hyperparameter Values

Hyperparameter LSTM RBFNN

Learning rate
Batch size
Optimizer

No. of Epochs
Input shape

No. of hidden layer

0.001       0.001
7              7

Adam     Adam
140          140
3-D         2-D
5 5

No. of units in each hidden layer      120 300
No. of units in output layer 1              1

Dropout rate 0.1 0.1

H t + 1  =  f  (Ht−1, Ht−2, Ht−3, . . . . . . . . . . . . . . . Ht) (4.1)

H t + 1  =  f  (Ht−1 , Ht−2 , Ht−3 , . . . . . . Ht , S Z At , RHt , Tt , Pt ) (4.2)

where: (Ht−1 , Ht−2 , Ht−3 , . . . . . . Ht ) indicates historical solar irradiance H  values

for time (t −  1, t −  2, . . . t) and H t + 1  denotes predicted solar irradiance for time t +  1.

Note that these forecasting models have been trained using daily observation data

from 2014 to 2017; they have also been tested using data from 2018. Thus, the

training dataset comprises 1,460 days, while the testing dataset comprises 365 days.

The forecasting models have been designed using Keras as applied to TensorFlow 2.0.

Table 4.1 shows the hyperparameters values for the proposed LSTM and RBFNN

models.

F i rs t  Exp er iment:UTSF  L S T M

In this experiment, the LSTM input layer is a three-dimensional tensor. Hence, the

3-D tensor for the training set (N, L,  D)  denotes the observation number, the length

of the sequence, and the number input features. Because this model has been built

using a sequence length measuring 30 days, at every time T  point, LSTM takes values

from the previous 30 days of GHI prior to T  into consideration. Thus, according to

the resultant monthly pattern, LSTM captures both trends and seasonalities, based

on which it predicts the subsequent GHI for time (T+1) .  Note that the training set

has been divided as two subsets to accommodate both input and output training.

The input training set structure looks at the adjacent 30 GHI values for time T ,
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Figure 4.1: Input and Output Training Shape for LSTM Models

thereby creating a 3-D tensor (1430, 30, 1) as well as an output training set of (1430,

1). Here, the input for the test set creates the shape (365, 30, 1), which indicates

daily GHI for 2018. The results explained in detail in section (4.1.2).

Second Experiment: M T S F  L S T M

In the second experiment, LSTM is used to find values of the previous month (30 days)

for RH, T R ,  SZA, GHI, and P. Specifically, it will be used for capturing patterns

of seasonality pattern in the weather data, and then will utilize these patterns for

predicting subsequent GHI for time (T+1) .  The input training set formation considers

adjacent 30 values for RH, T R ,  SZA, GHI, and P  for time T .  In so doing, it creates a

3-D tensor (1430, 30, 5) and the GHI output training set at size (1430, 1) as shown

Figure 4.1.

Third Experiment: U T S F  R B F N N

A  total of 1460 days of solar irradiance values are used as input for the RBFNN.

During the training task, the model was trained by employing 1430 days from the

original dataset. This created a vector of (1430, 1). Meanwhile, the output layer with 30

output nodes referred to average daily solar irradiance for the subsequent 30 days, as

vector (30, 1). The model was trained for the four years (2014-2017), after which it

was tested with the aim of predicting daily GHI for 2018.
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Figure 4.2: Loss of UTSF Models(First and Third Experiments)

Fourth Experiment: M T S F  R B F N N

In the fourth experiment, it is considered the values RH, T R ,  SZA, GHI, and P  to

create the matrix (1430, 5) as the input training set form. For the output training

set, it is considered the value GHI at size (30, 1). The model was then tested on its

ability to predict daily GHI for 2018.

The four models are trained based on batches of weekly historical values. Mini

Batch Gradient descent is applied to update the weights every batches of 7 val-ues

of GHI and weather data. Figure 4.2 and Figure 4.3 illustrate the learning

curves with 140 epochs where the final loss values on the training that are around

0.0042, 0.0461, 0.0248, and 0.0352 for UTSF  LSTM, UTSF  RBFNN, MTSF  LSTM,

and MTSF  RBFNN respectively.

4.1.2 Results and Discussion

For the forecasting models, R2  and RMSE scores have been employed for performance

verification. Low RMSE values indicate improved performance, and if the value R2

tends to 1, this points to a strong relationship existing between response variables

and predictors. In Figure 4.4b, it can seen performance metrics for all the mod-els.

As shown, LSTM gave the best performance in day-ahead forecasting, but the
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Figure 4.3: Loss of MTSF Models(Second and Fourth Experiments)

UTSF  LSTM model gave a better performance than the rest. This shows the capabil-

ity of UTSF  LSTM for forecasting GHI through the capturing of nonlinearity patterns

embedded in past GHI data. This ability is due to the memory in LSTM cells, which

enables them to store information from earlier time steps. It also demonstrates that

although the MTSF  LSTM model performed reasonably well, it was outperformed by

the MTSF  RBFNN. These results are due to the non-linear nature of the latter model

and its strong tolerance to input noise. As for the UTSF  LSTM model, it can be

seen that the RMSE between observed and estimated solar irradiance was 0.013.

Adding some more features to MTSF  LSTM bumps the RMSE up to 0.0321. In the

UTSF  RBFNN model, the RMSE was 0.0338. However, when more features are

added, it was found that the MTSF  RBFNN RMSE declined, landing at 0.0288.

As can be seen in Figure 4.5 and Figure 4.6 show the real daily GHI and forecasted

daily GHI of the four models for year of 2018 in Halifax, NS.

4.1.3 Model Validation

In model development, validation is a crucial step in the process. The amount of

solar irradiance registered in a specific location, as mentioned previously, can vary

depending on factors such as time of day, latitude, and time of year. To  validate
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(a) R M S E  values (b) R2  values

Figure 4.4: Performance of The Four Proposed Models

Figure 4.5: Measured GHI Vs. Predicted GHI of UTSF Models

Figure 4.6: Measured GHI Vs. Predicted GHI of MTSF Models
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Figure 4.7: RMSE Values for Validation Data

Figure 4.8: Measured GHI Vs. Predicted GHI of LSTM Models for Validation Data

the proposed models’ performance, a dataset from a region characterized by sub-

stantially different climatic conditions was utilized. Daily Solar irradiation for 2019,

sourced from U.S. NREL/NSRDB,  has been used for validating the models. Data

for Tripoli, Libya, were downloaded at coordinates (latitude 32.89 N and longitude

13.14 E).  From Figure 4.7, the corresponding RMSE of the four proposed models

can be seen. As shown in Figure 4.8, LSTM models display good generalizability

and a stable performance when interaction with new data. This indicates that, in

addition to memorizing training data, LSTM also had a fairly good comprehension of

the patterning within the data. These results indicate that LSTM has an overall high

performance that features good generalizability and few forecasting errors when faced

with data from a variety of regions.
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4.1.4 Summary and Recommendations

This study looked at four forecasting strategies, which were evaluated based on both

their performance and their ability to create accurate forecasts for day-ahead solar

irradiance. In the experiments, RBFNN and LSTM have been used to explore how

exogenous and endogenous variables impact forecasting performance. The results

clearly indicated that the developed UTSF  LSTM model showed the best capabili-

ties in learning long-term patterns through the techniques of capturing consecutive

hours as well as through long-term learned dependency (e.g., seasonality) behavior.

On the other hand, RBFNN gave a better performance utilizing exogenous instead of

only endogenous variables in the MTSF  RBFNN model. Overall, our results clearly

demonstrate the four models’ generalizability to give quite accurate daily predic-

tions for solar irradiance. The results have also been validated with data from a

region that features different climatic conditions from those originally tested. Over-

all, the outcome of these investigations clearly indicates the superiority of the pro-

posed UTSF  LSTM method when compared to the UTSF-RBFNN, MTSF  RBFNN,

or MTSF  LSTM developed models with regard to R2  and RMSE. Suggestions for

future work include:

• Further testing of the four models’ stability using big data,

• Optimizing feature selection techniques as this would allow the models to cap-

ture different associations and learn additional nonlinearity behaviors related

to solar irradiance and meteorological variables.
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4.2 Model 2: Optimized Feature Selection Technique

Exogenous and endogenous variables are typically evaluated several times during the

selection trial of a predictive model for GHI. This is accomplished using various statis-

tical measures (e.g., univariate statistical analysis, correlation analysis, etc.) that are

applied to gauge redundancy and relevancy in specific variables. The main benefits

of these approaches include lower computational cost, fast screening times, accu-

rate measuring of linear and monotonic degrees of variable pairs, and the removal of

features with low relevance. However, they cannot identify instances where single or

groups of predictor variables are non-monotonically associated with the response vari-

able, nor can they discern whether variables are predictive in combination with other

variables or in isolation. The present study attempts to overcome these challenges by

first describing monotonic and non-monotonic (Spearman’s rho and Hoeffding’s D,

respectively) correlation statistics in combined usage for locating groups with major

non-monotonic endogenous variable changes. The proposed work’s novelty is subset

evaluation that determines relevance using WRFE.  This is a novel hybrid feature

reduction method that optimizes feature selection using a Least-Redundant/Highest-

Relevant framework. The proposed W R F E  utilizes feature importance for measuring

variance reduction in R F R  and as data perturbation in LSTM.

4.2.1 Weather Recursive Feature Elimination ( W R F E )

After implementing comprehensive data analysis in section (3.4) to the response and

explanatory variables, it can be concluded that six features (CGHI, DHI, SZA, DNI,

RH and T )  appear to have the closest relation with the target (GHI). Even so, it

is needed to consider our previous finding, which was that CGHI  and SZA (along

with D P  and T )  are redundant attributes. Here, D P  can be eliminated, because

it is an unrelated variable (i.e., it is not one of our six above-mentioned features).

However, for the correlated variables, CGHI  and SZA, it is needed to consider the

issue mentioned earlier, namely regarding which of the two exogenous variables should

be dropped if they are correlated. To  resolve this issue, it is simply needed to look

at the mutual information and correlation coeficients between these two variables

and GHI. In this case, CGHI  is obviously more relevant to the response variable.
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However, in other cases, the variables could be non-predictive when in isolation, but

highly predictive in combination with others. When this occurs, a subset evaluation

to determine relevance is needed to perform. This can be done using a hybrid feature

reduction method that utilizes WRFE.  In this method, the feature selection process

is implemented through designing two different machine learning models. The idea

here is to measure each explanatory variable’s contribution to the final prediction,

which can be done by considering the importance measures for the various features

of each model.

4.2.2 Methodology

When adopting this approach, one first needs to design LSTM and R F R  models,

using the six mentioned features. Next, RMSE needs to be used to calculate the

performance, followed by a calculation of feature importance by looking at phase I:

data perturbation for the LSTM model as shown in 4.9, and phase I I: impurity

measure (variance reduction) for the R F R  model as shown in 4.10. The final step

is to remove the least importance feature and then to design the two models using the

remaining features. Once this is done, the performance of the new models can be

compared with that of the full model performance by using the new RMSE. If the new

RMSE is calculated to be larger than the full model’s RMSE, the eliminated feature is

important and should be kept. We can also compare any reductions in performance. If

there is a reduction in performance in comparison to a user-defined threshold (here

considered 2.5), the feature should be eliminated in cases where the drop is smaller

than the threshold. In cases where it is larger, the feature should be retained. The

threshold of 2.5 was firstly selected arbitrary with performed model tuning, then

selected it based on systematic observation for the set of the performance’s drop.

Figure 4.11 demonstrates the flowchart of the proposed WRFE,  with algorithm 1

showing the pseudocode of the proposed procedure.

4.2.3 Model Implementation

Accordingly, the feature importance for the Halifax, NS, dataset for the year 2000 is

measured. The dataset includes the six above-mentioned features. As the first step

of algorithm 1, an LSTM model as establishing in the Model 1 [18] is designed
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Algorithm 1 Proposed W R F E  Method
1: Input: a data set of n features M (F1 , F2 , . . . , F n )

2:  Output: Optimal feature subset Mbest

3:  Phase I- Modeling L S T M

4: Design L S T M  utilizing the n features

5: Calculate RMS E 1  ( R M S E  for full model performance)

6: for i  ← 1, n do

7: Eliminating least importance feature f i

8: P erturbing the n features

f 1  +  d1 , f2 +  d2, . . . , f n  +  dn

9: Calculating perturbed prediction error RMS E 2  from the perturbed dataset M ( F p n )

10: Calculating the drop in the performance

E  =  |RM SE2| −  |RM SE1|

11: i f  E  <  threshold then

12: remo v e

f i  13:             else

14: k eep f i

15: Mbest ← Mbest +  f i

16:             end if

17:  end for

18: Phase I I :  Modeling R F R

19: Design R F R  utilizing the n features

20: Calculate RMS E 1  ( R M S E  for full model performance)

21: for i  ← 1, n do

22: Eliminating least importance feature f i

23: Measuring impurity of the n features (variance reduction)

v ar ({f1 , f2 , . . . , f n } ) =      i = 1  | M ( F 1 , F 2 , . . . , F n ) |  v ar (f i )

24: Calculating prediction error RMS E 2  from the new dataset M ( F n n )

25: Calculating the drop in the performance

E  =  |RM SE2| −  |RM SE1|

26: i f  E  <  threshold then

27: remo v e

f i  28:             else

29: k eep f i

30: Mbest ← Mbest +  f i

31:             end if

32:  end for
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Figure 4.9: Proposed WRFE-phase I

and trained. Next, as stated in [75], each feature is perturbed by adding the random

Gaussian distribution noise (mean µ =  0, standard deviation σ =  1), with proba-

bility function p(a) as defined in Equation 4.3, and then the perturbed prediction is

calculated.

p(a) =  
σ
√

2π
e−

2 σ 2 (4.3)

The Euclidean distance (d) between original feature (x i )  and perturbed feature

(x̃ i  ), as defined in 4.4

v

d (xi , x̃ i ) =  t
X

( x i  −  x̃ i )2  =  0 (4.4)
i = 1

When that is completed, the perturbation effects in gradients are measured. This

is done by calculating RMSE for the perturbed and original forecasts. In the case,

the calculation is given via the gradient values that obtained from performing a

differentiation operation on the forecasts’ input sequences. A  large difference in RMSE

indicates the high importance of the variable in the system (see Table 4.2). Also an

R F R  model is designed and trained in order to calculate feature importance according

to reductions of variance (node impurity). The capability of R F R  as an ensemble

learning -based technique that leverages the power of numerous decision trees for

processing large data and enhancing forecasting decision capabilities and for handling
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Figure 4.10: Proposed WRFE-phase I I

the variance reduction criteria [76]. The designed forecast model is an ensemble of T

decision trees, each comprising split and leaf nodes, as inspired by those proposed in

[77][78]. Each split node (s) consists of a feature F n  and a threshold τ . The variance

for every single leaf node (ln ) that is related to a particular split node is calculated

as given in Equation 4.5:

n

P
j = 1  ( x j  −  µl)

2

l                         m −  1 (4.5)

Where n denotes the number of leaf nodes, m is the number of data points.

The variance reduction is computed by subtracting the variance of each (S )  from

the weighted average variance of the combined variance of the leaf nodes as given in

Equation 4.6:

w (σs )  =  
X

w i   σl
i = 1

where wi denotes the weight applied to ln values in (S ).

(4.6)

The optimal splitting

selection rules are determined by running repeated selections to minimize the variance

of a specific split node. The greater the reduction in variance, the higher that feature’s

importance is in the system (see Table 4.3). Subsequently, input data is projected into

lower-dimensional feature space by finding an optimal input feature subset. This is

done using both statistics descriptors and a hybrid technique for detecting interactions
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Figure 4.11: Flowchart of Proposed W R F E

that may occur between features. Our optimal subset includes CGHI, RH, DNI, and

DHI.

Forecasting models have been trained using hourly observation data from 2000

to 2002; they have also been tested using data from 2003. The training dataset

contains 12937 hours, while the testing dataset contains 4310 hours. The forecasting

models have been designed using Keras, as applied to TensorFlow 2.0. Table 4.4

shows the hyperparameter values for the proposed LSTM and R F R  models, while

Figure 4.12 and 4.13 demonstrate the inspection of feature importance according to

data perturbation and variance reduction.

4.2.4 Forecasting Results and Analysis

LSTM models are employed to discover seasonality pattern of the previous 24 hours

for the respective input features. These patterns are then utilized for predicting
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Table 4.2: Feature Inspection via LSTM Model

Features

CGHI
DNI
DHI
SZA
RH
T

RMSE1      RMSE2
(W/m2)     (W/m2)

45.65          49.41
45.65            48.9
45.65          48.36
45.65          43.86
45.65          48.29
45.65          43.23

Drop in
Performance

3.76
3.25
2.71
2.42
2.64
1.79

Decision

Keep
Keep
keep

Eliminate
Keep

Eliminate

Table 4.3: Feature Inspection via R F R  Model

Features

CGHI
DNI
DHI
SZA
RH
T

RMSE1      RMSE2
(W/m2)     (W/m2)

52.83          57.39
52.83          56.27
52.83          56.21
52.83          55.01
52.83          56.73
52.83          55.13

Drop in
Performance

4.56
3.44
3.38
2.18
3.9
2.3

Decision

Keep
Keep
keep

Eliminate
Keep

Eliminate

Figure 4.12: Feature Importance for LSTM
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Table 4.4: Hyperparameter Values for LSTM and R F R

L S T M  Hyperparameter Values
Learning rate                          0.001

Batch size 24
Optimizer                            Adam

No. of Epochs                          120
Input shape                             3-D

No. of hidden layer 3
No. of units in each hidden layer        100

No. of units in output layer 1
Dropout rate                            0.1

R F R  Hyperparameter
No. of tress
Max feature
Max depth

Min samples split
Min samples leaf

Criterion
Class weight

Min weight fraction leaf
Random state

Values
100

6
10
4
1

variance reduction
balanced

0.1
0

Figure 4.13: Feature Importance for R F R

subsequent GHI for time (T+1) .  The input training set formation considers adjacent

24 values for the N respective input features for time T .  Specifically, it creates a 3-D

tensor (12913, 24, N) and the GHI output training set at size (12913, 1).

RMSE and MBE values are utilized for performance verification of the designed

models that belong to weather data for different locations in Canada. The ability of

enhancing the usage in RMSE and MBE (obtained from Equations 4.7 and 4.8) alone

will not be a proper indicator of the model’s performance. Hence, the t-statistics

criteria usage should be in place with these two indicators to receive a proper evalua-

tion of the model’s performance [79]. As shown in Table 4.5, the performance of the

models shows a verified result where the t-statistic values (obtained from Equation

4.9) of the four models are less than the critical t-values.
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R M S E  =
1 X

( G H I i ,  pre −  G H I i ,  meas ) 2

!
2

(4.7)
i = 1

M B E  =  
1 X

( G H I i ,  pre −  G H I i ,  meas )
i = 1

 
(N  −  1)M B E 2 2

RM S E 2  −  M B E 2

(4.8)

(4.9)

From Figure 4.14, as can seen that models with the resulting optimal set of (CGHI,

DNI, DHI, RH) gave a better performance than the rest in GHI prediction, with

the lowest RMSE given by the model with the six features (CGHI, DNI, DHI, RH,

SZA). After filtering out the variables using combined usage of different correlation

techniques, the final optimal variables are selected during the selection trial based

on mathematical characterises including impurity measures and perturbation the-

ory. When separately adding exogenous variables to the LSTM models, as can seen

that the RMSE between observed and estimated GHI is affected. Table 4.5 presents

dataset from regions described by different climatic conditions. As shown, adding T

to LSTM model bumps the RMSE up to 2.068%, while adding SZA reduces the

RMSE to 1.824%. This study of investigating the changes of seasonality effects on

the LSTM’s learning task that has proposed in [19] [20]. These changes warrant

future investigation of seasonality patterns in the weather data through capturing

nonlinearity patterns embedded in the exogenous and endogenous variables.

4.2.5 Model Validation

Comparison of Different Feature Selection Techniques

In this section,the performance of the proposed W R F E  is compared with other fea-

ture selection methods that explained in details (see section 2.2), including the V I F

analysis proposed in [41], the A R D  method proposed in [56], the NGA proposed in

[57], the Pearson correlation analysis followed by the subset evaluator proposed in

[58], and the subset evaluator proposed in [37]. As seen in Table 4.6, the proposed

W R F E  with CGHI, DNI, DHI, and RH as input features yield the lowest RMSE

values. The proposed forecasting approach shows lower forecasting errors than the
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(a) R M S E  measurements

(b) MB E  measurements

(c) R2  measurements

Figure 4.14: Performance Comparison of Proposed W R F E  with Several Sets of Input
Features for Different Locations in Canada
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Table 4.5: Performance Comparison of the Proposed W R F E  for Different Locations
in Canada.

Lo cat in

Halifax, NS

Calgary, A B

Thunder Bay, ON

Victoria, B C

I n p u t  featurs

C G H I ,  D N I ,  D H I ,  R H
C G H I ,  DNI, DHI,  RH,  T

C G H I ,  DNI, DHI,  RH,  S Z A
C G H I ,  DNI, DHI,  RH,  P

C G H I ,  DNI, DHI,  RH,  PW

C G H I ,  D N I ,  D H I ,  R H
C G H I ,  DNI, DHI,  RH,  T

C G H I ,  DNI, DHI,  RH,  S Z A
C G H I ,  DNI, DHI,  RH,  P

C G H I ,  DNI, DHI,  RH,  PW

C G H I ,  D N I ,  D H I ,  R H
C G H I ,  DNI, DHI,  RH,  T

C G H I ,  DNI, DHI,  RH,  S Z A
C G H I ,  DNI, DHI,  RH,  P

C G H I ,  DNI, DHI,  RH,  PW

C G H I ,  D N I ,  D H I ,  R H
C G H I ,  DNI, DHI,  RH,  T

C G H I ,  DNI, DHI,  RH,  S Z A
C G H I ,  DNI, DHI,  RH,  P

C G H I ,  DNI, DHI,  RH,  PW

R M S E ( % )      M B E ( % )

1.1044            0.6723
2.0682              0.9760
1.8246              0.8508
3.1186              1.2097
2.8403              1.0376

2.0153            0.8297
2.9085              0.9842
2.2847              1.0096
3.4913              1.1760
4.0202              1.0982

3.1934            1.1043
4.5213              1.3060
3.7783              1.1034
4.1802              1.0990
4.8842              1.3011

1.0927            0.5092
1.6315              0.9894
1.4184              1.5209
3.0529              1.0371
2.0092              1.2093

R 2 ( % )

98.5112
97.5383
98.4306
96.0105
96.9954

98.0233
97.2129
98.0054
96.1143
96.0932

97.4372
96.0854
97.7086
95.3947
95.0130

98.3333
97.8704
98.8653
96.6132
96.9422

t-statistics

3.0923
3.2093
3.9042
3.9910
4.0154

3.9042
4.0283
4.1029
2.8903
2.9043

5.0214
4.9063
4.6790
4.9042
4.0127

2.8035
3.0852
3.6013
3.4072
4.0252

R a n k      cr it ical  t-value

1
3
2 3.9043
5
4

1
3
2 4.1003
4
5

1
4
2 5.8091
3
5

1
3
2 3.2064
5
4

other methods, even with highly fluctuating solar irradiance profiles. However, there

is a slight deterioration in the LSTM model performance results obtained using the

training dataset for regions with different climate conditions.

4.2.6 Summary and Recommendations

To date, interactions and nonlinearities that potentially exist between variables are

not yet fully researched in the literature. Even so, they represent critical elements

for developing robust predictive models. This work focused on redundancy and rel-

evancy, investigating how these can be mitigated and enhanced, respectively, to de-

velop a more robust forecasting model for hourly solar irradiance. Monotonic and

non-monotonic associations were probed by applying Spearman’s rho and Hoeffd-

ing’s D  correlation analysis in combined usage for locating groups that have major

nonmonotonic endogenous variable changes. It has been found that while variables

might be non-predictive in isolation, they can be highly predictive in combination
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Table 4.6: Performance Evaluation of Proposed W R F E  vs Other Feature Selection
Approaches

Ref.

Ref[41]

Ref[56]

Ref[57]

Ref[58]

Ref[37]

Proposed W R F E

Lo cation

Turkey

Southeast of Spain

Argentina

India

South of Algeria

Western Canada

Feature selection

Technique

V I F  analysis

A R D

NG A

Pearson correlation

Subsets Evaluator

Subsets Evaluator

W R F E

Opt ima l  features

M, Ra,
Tmean , RHmean

DOY,  K r e f

temperature,humidity

pressure,sunshine hours

temperature

humidity,pressure

sunshine hour, wind speed

H0, S0, Tmax, Tmean

C G H I ,  D N I ,  D H I ,  R H

Forecasting

Mo del

ANN,ANFIS

M L R

ANN

L R

HMM with G F M

B D T ,  ANN, L R

L S T M

R M S E ( % )

1.650

5.2

2.3

7.9124

4.5233

1.0927

with others. For example, RH showed a weak association to be considered as a rele-

vant attribute to GHI prediction model, however, it showed an improved predictive

performance when combining with other attributes. This finding led us to perform a

subset evaluation to determine relevance using the proposed novel hybrid feature

reduction method, WRFE.  Our aim was to optimize feature selection according to a

Least-Redundant/Highest-Relevant framework, with feature importance measur-ing

R F R  impurity and LSTM data perturbation. The simulation results of hourly

predictions for GHI demonstrate that the resulting optimal features of the training

subset make the greatest contributions to the prediction target. Overall, the out-

comes of these investigations indicate the superiority of the proposed W R F E  method

when compared to other developed models with regard to RMSE. In addition, the

study shows that the high variability of irradiance conditions lowers the reliability of

the training subset, as most deviations in the correlation coeficients occurred in the

yearly dataset. From the observations of the historical data, it was noticed that GHI

shows clear seasonal patterns through seasonal differences in solar irradiance. This

may warrant further investigation of seasonality effects.
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4.3  Model 3: Seasonal Clustering Technique for Hourly  Solar Irradiance

Forecasting

The main purpose of the study is to reach a forecasting accuracy level through layering

and stacking clusters of weather data to reduce seasonality - related uncertainty. To

enhance forecasting accuracy, high dimensional heterogeneous weather data should

be added to training datasets; yet, weather data is deemed to have seasonality -

related uncertainty. Since utilizing LSTM model does not achieve the required results,

LSTM forecasting model performance deteriorates as a result of the change from

univariate to multivariate analyses. Therefore, a primary investigation was conducted

to analyze seasonality-based hourly predictions for GHI. The investigation found that

seasonality affects accuracy of predictions due to high levels of autumn- and winter-

related weather phenomena and climate uncertainty. Accordingly, S C F T  based on an

LSTM hybrid strategy and stacked layers of weather clusters was proposed.

4.3.1 Util izing L S T M  Models in Seasonality-Based Hourly  Solar

Irradiance Forecasting

Experimental Setup

Four experiments are carried out to forecast hourly solar irradiance readings for the

2000-2018 time-frame in Halifax, NS. The experiments are conducted using LSTM

models that are designed with the ability to recognize patterns within the four sea-

sons of the year (Spring, Summer, Autumn, and Winter). The forecasting models are

trained and tested with hourly observation data for 2000-2010 and 2011-2018 respec-

tively. In the first model (M1), the training dataset has 8,928 hourly observations for

the recorded data points. The observations are from 8 am to 4 pm during Winter

(December, January and February) and include the optimal feature set. The testing

dataset has 6,550 hourly observations. Table 4.7 presents both the training and test-

ing datasets used in the four seasonal models. The forecasting models are developed

using Keras in TensorFlow 2.0. Table 4.8 presents the hyperparameter values of the

newly developed LSTM models. The Keras Tuner library in TensorFlow is used to

tune hyperparameters and find the optimal set for the application( part of the Code

shown in Appendix B).
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Table 4.7: Training and Testing Datasets Utilized in the Four Seasonal Models

Prediction Models Seasonality Dataset Training Dataset Testing Dataset
based on Seasonality                                                                                                                                            Data from (2000-2010)     Data from (2011-2018)

Model ( M1)
Model ( M2)
Model ( M3)
Model ( M4)

Data recorded from 8 am- 4 pm in Winter seasonal (Dec, Jan, Feb)
Data recorded from 7 am- 6 pm in Spring seasonal (Mar, Apr, May)
Data recorded from 5 am- 7 pm in Summer seasonal (Jun, Jul, Aug)
Data recorded from 7 am- 5 pm in Autumn seasonal (Sep, Oct, Nov)

8928 observations
13167 observations
14651 observations
10661 observations

6550 observations
9631 observations

10726 observations
7808 observations

Table 4.8: Hyperparameter Values for LSTM Model

Hyperparameter Values
Learning Rate                          0.001

Batch Size 24
Optimizer                              Adam

No. of Epochs                            100
Input Shape                              3-D

No. of Hidden layer 3
No. of Units in each Hidden Layer         50

No. of Units in Output Layer 1
Dropout Rate                             0.2

Figure 4.15: The Training and Testing Phases of The Proposed Seasonal Models
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Architecture of the Seasonal Models

The timesteps used in the models are sequencing lengths of 24 hours, which is applied

at each time-point, T .  Further, LSTM considers values for the optimal feature set

taken from the previous timestep before T .  In so doing, LSTM is able to capture

variations in daily readings, which it will then use to capture seasonality patterns in

weather data to predict subsequent GHI for time (T+1) .  The training set is

divided into two subsets (input and output) as shown in Figure 4.15. Input training

considers adjacent 24 GHI values reported for the optimal feature set at time T .  In

so doing, it creates a 3-D tensor (N, T ,D)  for the observation number (N) as well as

for the sequence length ( T )  and the number of input features (D), giving (8904, 24,

5), (13143,24,5), (14627,24,5) and (10637,24,5) for M1, M2, M3 and M4, respectively.

The GHI output training set at size gives (8904,1), (13143,1), (14627,1), and (10637,1)

for M1, M2, M3 and M4, respectively.

4.3.2 Seasonal Clustering Forecasting Technique ( S C F T )

Design of k-means Clustering Algorithm

Clustering analysis as a concept demarcates and clusters data points according to

similar characteristics. The proposed data aims to find weather types and patterns in

a specific location. Here, a k-means clustering algorithm has been employed,

with the elbow method being used to find the optimal number of clusters (k). This

represents an optimization problem, and the objective function, as given in Equation

4.10, requires the sum of squared errors (SSE) to be minimized among observations

of every cluster as well as every cluster’s centroid [80]. The process then iterates

through k, indicating the k value with the respective SSE. Then, with increases in

cluster numbers, there is a slow flattening of the curve at the same time as SSE

exhibits a rapid decrease. Note that the resulting optimal range of cluster numbers for

k is 5 to 15, as these denote inflection points for the curve and determine the k value.

In the present application, a reasonable number is 5 clusters as clearly shown in Figure

4.16. Let D  =  (x1, x2, · · · , xn ), x i   Rd , The optimization problem is formulated

as follows:
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Figure 4.16: Five Clusters of Data Points with Respective Centres

J  =  
X X

a i , j  x ( i )  −  µ(j ) 2
(4.10)

i = 1  j = 1

Minimize J  subject to

 
P

i = 1  ai,j ≥  τj ,      j  =  1, . . . , k

j = 1  ai j  =  1 for i  =  1, . . . , n

ai,j ≥  0, i =  1, . . . , n, j =  1, . . . , k

where 
P

j = 1  τ j  ≤  n, k is the number of clusters, µi is the cluster centroid, and

µj  Rd ,  ·  is the Euclidian norm.

A  Python Seaborn library pair plot is used for plotting multiple pairwise bivariate

distributions in multivariate datasets. As shown in Figure 4.17, the 13×13 plot ma-

trix illustrates 13 standardized features that have been paired. Note that the diagonal

elements indicate univariate plots for kernel density estimation ( K D E )  distributions

that correspond to individual features. These denote a continuous probability density

curve of all the data points for every individual feature in the 5 clusters. In contrast,

the off-diagonal elements represent bivariate plots for scatter distributions that cor-

respond to two individual features. Scatter plots display that there is some distinct

grouping of the point, which indicates that there is some clustering occurring. Figure
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Figure 4.17: Standardized Data Point Pair Plot, with Associated Clusters Colored
the Same in each Data Point

4.18 is a zoomed-in portion of Figure 4.17 showing clear clustering in the 2nd (DNI),

3rd (GHI), 4th (CGHI),  and 6th (SZA) features.

Climatological Criteria-based Threshold Selection

Based on the analysis, critical conclusions may be drawn regarding the unique charac-

teristics of each cluster. The variations within the 5 clusters act as a natural dataset

divider for weather types and groups. In the proposed application for forecasting

the performance of P V  systems, the behaviour of historical meteorological charac-

teristics based on sky conditions will be examined, with three weather types/groups
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Figure 4.18: Zoomed-in Portion of The Plot Matrix Showing Clustering in DNI, GHI,
CGHI, and SZA

being chosen (sunny, cloudy, and rainy). The threshold cut-off criteria of the corre-

lated standardized data points were chosen according to meteorological and weather

aspects that fundamentally affect atmospheric conditions. Consistent with this, be-

yond Earth’s atmosphere, and considering the mean solar distance and beam irradi-

ance (i.e., solar constant; W/m2, irradiance decreases when sunlight passes through

Earth’s atmosphere. The decrease is caused by absorption and reflection activities.

Hence, typical total irradiance at Earth’s surface is around 700 to 1,300 W/m2 at

solar noon and in cloudless conditions. Season, altitude, and latitude will also affect

this reading [81]. In considering the above, for the first criteria (cloudless skies), there

is a decrease in DHI irradiance and an increase in GHI. This means that clusters rep-

resenting sunny observations occur when GHI exceeds 600 W/m2 and DHI is below

100 W/m2. Atmospheric pressure is also a useful weather pattern indicator because of

the subsidence phenomenon. According to this phenomenon, low-pressure systems

generally denote warmer temperatures as well as precipitation (mainly rain) events,

whereas high-pressure systems typically denote cooler temperatures with clear skies

and no precipitation (i.e., low humidity). In our second criteria, dataset components

such as temperature, precipitation, relative humidity, and air pressure are used to

denote weather groups that are rainy or cloudy. As Table 4.9 illustrates, the min-

imum, middle, and maximum values of the dataset indicators are presented, along
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Figure 4.19: Linear Relationship Between D P  and T

with corresponding standardized values. Note that each group’s cut-off points have

also been determined based on some of these values. With close investigation, cluster

4 (index 3) data point provides the best representation of sunny day observations

with higher GHI and lower DHI. As well, it offers meteorological readings for other

features typical of sunny weather (e.g., low precipitation, fewer clouds, low air pres-

sure, etc.). Cluster 1 and cluster 2 as showing samples typical of low air pressure

and temperature. Verification also shows features such as high cloud type, which

indicates high planetary albedo consistent with evidence of cloudy weather. Clus-ter

3 and cluster 5 indicate that lower air pressure along with higher precipitation and

dew point typically characterize rainy weather. Rain is usually accompanied by clouds

and large masses of water vapor, with high humidity referring to the amount of water

vapor in the air. Cluster 2 verifies this fact, with high relative humidity being higher

in the cluster 2. Subplots (4,11) is also considered, in which the data points are

generated depicting the 5th (DP)  and 12th ( T )  features, while visually analyzing the

standardized data points for these two features ( D P  and T )  only. It is clear that the

distribution, as shown in Figure 4.19( some of the numerical representations of the

clustering results shown in Appendix C),  provides valuable insight that there is a

linear relationship between the two mentioned features.
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Table 4.9: Indicators of Cut-Off Points

Feature DHI DNI GHI CGHI DP SZA SA WS PW WD RH T P

count     4.7407e+04 4.7407e+04 4.7407e+04 4.7407e+04 4.7407e+04 4.7407e+04 4.7407e+04 4.7407e+04 4.7407e+04 4.7407e+04 4.7407e+04 4.7407e+04 4.7407e+04

mean      1.5704e-15      3.6624e-15     -2.5461e-17     -1.3616e-16     1.9011e-16      4.5881e-16     -2.3888e-15 -1.4396e-16     1.3349e-16      3.3251e-16     -4.1198e-16     4.3763e-15     -1.6606e-15

std       1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00

min      -1.3110e+00
 

-9.9036e-01
 

-1.2030e+00 -1.6358e+00 -2.9629e+00 -2.2071e+00
 

-5.5146e-01
 

-1.8775e+00 -1.4814e+00 -2.2669e+00 -3.4412e+00 -3.4916e+00 -5.6610e+00

25%       -7.0498e-01 -9.6661e-01 -8.3761e-01     -8.4149e-01     -6.7904e-01     -7.5304e-01 -5.0007e-01 -7.3718e-01     -8.2491e-01     -5.9502e-01     -7.4013e-01     -8.5529e-01     -5.1182e-01

50%       -2.7350e-01 -3.6693e-01 -2.7567e-01     -8.4074e-02     4.2171e-02      1.6684e-01     -4.7952e-01 -1.2901e-01     -1.9695e-01     1.2416e-01      1.1716e-01      2.3497e-02      5.1801e-01

75%       4.2506e-01      9.7490e-01      6.4778e-01      8.4700e-01      8.8359e-01      8.0447e-01     -4.3498e-01     5.5518e-01      6.4059e-01      7.8494e-01      9.2976e-01      9.0229e-01      5.1801e-01

max      3.4659e+00 1.9961e+00 2.7619e+00 2.0810e+00 1.9654e+00 1.5933e+00 2.0590e+00 5.2685e+00 4.1372e+00 1.6263e+00 1.2178e+00 2.4088e+00 2.5777e+00

S C F T  Methodology

S C F T  proposed in this work has been developed to apply a hybrid approach to the

LSTM models. First, the S C F T  optimizes input feature selections for the models and

then clusters the relevant meteorological data points according to sky conditions for 1-

hour-ahead GHI forecasting. Next, the S C F T  filters the clustering data points so that

they include optimal features only, as illustrated in Figure 4.20. The training and

testing methods used in the S C F T  are expressed in the algorithm 2:

• Step 1: Obtain the highest individual relevant features by measuring monotonic

associations between endogenous and exogenous variables.

• Step 2: Concatenate the training dataset for the four seasonal models (M1, M2,

M3, M4).

• Step 3: Project the concatenated seasonal data points for selected features as

well as for the remaining features in order to conduct a cluster analysis.

• Step 4: Investigate historical weather data-point behavior according to sky

conditions, using as weather groups the three clusters of sunny (MC1), cloudy

(MC2), and rainy (MC3).

• Step 5: Filter the clustered data points associated with the optimal features to

design the stack layer.

• Step 6: Train the proposed LSTM models using the clustered training datasets

(MC1, MC2, and MC3) and concatenate the resulting output predictions.

• Step 7: Test LSTM1, LSTM2, and LSTM3 against the concatenation of the

M1, M2, M3, and M4 datasets in order to forecast hourly GHI values.
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Figure 4.20: Detail Workflow of S C F T

Algorithm 2 Proposed S C F T  Method
1: Input: historical weather data for t features f t

2:  Obtain highest relevant features f r

3:  Compute standardized datapoints for f t ( n )  and f r ( l )

4:  Classify the data to Seasonalit y Datasets

5: Splitting them into Input training, output training, and testing sets.

6:  Reshape the Seasonal datasets for M1, M2, M3, M4 as sho wn in Fig1

7: for i  ← 1, N =  4 do

8: Train Mi with respectiv e datasets

9: Compute the performance for each model

10: end for

11: Concatenate training dataset for f r  (M1), f r  (M2),fr  (M3), f r  (M4)

12: Read f t

13:  Structure clustering datasets MC1,MC2, MC3

14: Setting of threshold cut-off criteria τ  for specify weather indicators

15: for j  ← 1, n do

16: i f  G H I  ≤  τ1 &  D H I  ≤  τ2 &  ( j   f r )  then

17:                     Add j  to MC1

18: else if  T  ≤  τ3 &  P  ≤  τ4 &  P  ≤  τ5 &  ( j   f r )  then

19:                     Add j  to MC2

20: else if  P W ≤  τ6 &  P  ≤  τ7 &  ( j   f r )  then

21:                     Add j  to MC3

22: end if

23:  end for

24: yt1: Train MC1 based L S T M 1

25: yt2: Train MC2 based L S T M 2

26: yt3: Train MC3 based L S T M 3

27: yt: Concatenate yt1, yt2,yt3
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Figure 4.21: Loss of Proposed Seasonal Models

4.3.3 Forecasting Results and Analysis

The four proposed seasonal models are trained using hourly historical value batches.

In this process, Mini Batch Gradient descent is applied for updating the weights for

each batch of 24 values for weather data and GHI. Figure 4.21 depicts the learning

curves for 100 epochs, showing the final loss values for the training task. The val-ues

are approximately 0.0084, 0.0129, 0.0174, and 0.0101 for M1, M2, M3 and M4,

respectively.

As shown in Figures 4.22 (b) and (c), the predicted GHI values and the actual

values are quite close for Spring and Summer. Closer observation reveals only a

slight deviation for Spring, as depicted in Figure 4.22 (b). However, for Winter and

Autumn as shown in Figures 4.22 (a) and (d), the LSTM model over-predicts the mid-

day hourly GHI values, though in the early and late hours of the day, the values are

again in close agreement with actual values for Autumn. For Winter, the values are in

close agreement only for the late hours of the day. Looking at these results, it can be

speculated that the deviation from predicted hourly GHI in Autumn and Winter may

be caused by climatic uncertainty as shown in Figures4.23. This is because ML results

heavily depend on training datasets, and prediction is usually very dificult during

this time of year due to the wide variety of weather phenomena.
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(a) M1 (b) M2

(c) M3 (d) M4

Figure 4.22: Predicted Hourly GHI for The Four Seasonal Models

Figure 4.23: Predicted Hourly GHI for Autumn and Winter Seasons

The proposed S C F T  has excellent performance in relation to M1, with an RMSE

of 13.06 W/m2, as illustrated in Figure 4.24c. For Spring, the proposed S C F T  has

both stable and good performance, with an RMSE of approximately 15.53 W/m2.

However, as mentioned previously, the forecasting performance for the LSTM mod-

els is substantially reduced for rainy and cloudy days, whereas the proposed SCFT ’s

performance is better, as depicted in Figures 4.24a and 4.24d, with the RMSE values
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of approximately 20.04 W/m2 and 18.71 W/m2. The results indicate that the models

have good forecasting performance. The results are especially impressive for M2 and

M3, while M1 are M4 less impressive. Hourly GHI, as predicted in the proposed sea-

sonal LSTM models, along with the actual hourly data for the first days of the months

January, March, June and September, 2011, for Halifax, NS, are presented in Figures

4.22 (a)–(d), and after data clustering are presented in Figures 4.24(a)–(d). Figure

4.25 shows the effects of the proposed algorithm to reduce uncertainty associated with

forecasting solar irradiance in comparison to Figure 4.23.

(a) M1 (b) M2

(c) M3 (d) M4

Figure 4.24: Predicted Hourly GHI for The Proposed S C F T

4.3.4 Model Validation

Forecasting Model Performance Using Data from Other Regions

The quality of the forecast has been shown to be strongly related to the location to

which it refers. However, this typically, does not correspond to the location of the P V

system. A  more detailed analysis would therefore be needed to test this particular
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Figure 4.25: Predicted Hourly GHI for Autumn and Winter Seasons for The Proposed
S C F T

Table 4.10: Köppen Climate Classification

City

Halifax, Canada

Tripoli, Libya

Rome, Italy

Helsinki, Finland

Shanghai, China

San Francisco, USA

Latitude and longitude coordinates

coordinates

44.6488° N, 63.5752° W

32.8872° N, 13.1913° E

41.9028° N, 12.4964° E

60.1699° N, 24.9384° E

31.2304° N, 121.4737° E

37.7749° N, 122.4194° W

Köppen climate

classification

Warm humid continental climate “Dfb”

Mid-Latitude Steppe and Desert Climate “Bsh”

Mediterran Climate ”Csa”

Warm-summer humid continental climate “Dfb”

Humid Subtropical Climate) ”Cfa”

Warm-summer Mediterranean climate ”Csb”

hypothesis. In this context, the proposed method is evaluated for datasets collected

from different climate regions according to the K¨oppen climate classification method

[82], as described in Table 4.10. The RMSE and MAE values, along with their

normalized values nRMSE and nMAE are listed in Table 4.11. The results show

that the S C F T  performance is consistently stable and that RMSE ranges between

13.48 W/m2 and 17.052 W/m2 for forecasting the highly fluctuating GHI in different

climate condition locations. The study confirms the ability of the proposed technique

for much more precise predictions in desert and Mediterranean climate regions, such

as Tripoli, Rome, and San Francisco.

Comparative Analysis of the models

Other models in the literature are used to compare the forecasting of hourly solar

irradiance. Table 4.12 presents the results of testing SCFT ’s  hourly GHI estimation

in comparison to the models proposed in [13] [17][51][52][53], and [54]. As can be

seen in the Table 4.12, the S C F T  model outperforms all the others. The S C F T
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Table 4.11: Performance Comparison of the Proposed S C F T  for Regions with Differ-
ent Climate Conditions

Location Model

M1
Halifax,Canada M2

M3
M4

S C F T
M1

Tripoli, Libya  M2
M3
M4

S C F T
M1

Rome, Italy  M2
M3
M4

S C F T
M1

Helsinki, Finland  M2
M3
M4

S C F T
M1

Shanghai, China  M2
M3
M4

S C F T
M1

San Francisco, USA M2
M3
M4

S C F T

RMSE
(w/m2)
40.2203
32.4523
30.5309
40.4634
16.8212
36.2119
30.1247
24.9804
33.5386
13.4811
38.0223
30.3225
25.1343
35.7655
15.0998
40.2621
33.0376
30.9735
44.2343
17.052
39.6343
31.2069
28.1164
39.3295
16.0336
37.9085
32.0424
27.9647
36.3283

14.9903

nRMSE
(%)

22.25863
17.9532
16.8966
22.3929
9.3053
20.0332
16.6643
13.8242
18.5536
7.4678
21.0448
16.7896
13.9048
19.7985
8.3546
22.2897
18.2753
17.1307
24.4763
10.2425
21.9353
17.2632
15.5575
21.7674
8.8735
20.9784
17.7339
15.4746
20.1075

8.29506

MA E
(w/m2)
38.2189
29.9823
26.0309
35.9423
12.5307
35.3134
25.8669
22.0924
28.6063
10.0452
37.9352
26.0346
22.9736
30.1973
12.6163
38.9509
30.4134
27.9108
39.7543
16.4464
36.6932
27.9032
24.7496
34.2333
11.8832
34.9574
28.6406
24.0323
31.1947

11.4307

nMAE
(%)

21.1535
16.593

14.4184
19.8972
6.9379
19.5481
14.3105
12.2381
15.8374
5.5685
20.9934
14.4170
12.7105
16.7136
6.9853
21.5606
16.8323
15.4508
22.0038
9.1053
20.3132
15.4453
13.6927
18.9585
6.5848
19.3406
15.8504
13.3046
17.2684
6.3336

R2

(%)
90.4002
95.1773
95.1698
94.0454
96.1238
91.5437
90.9433
90.4383
91.0292
92.9373
92.3464
92.9443
93.3838
93.2137
93.9844
90.9537
92.0967
90.0437
91.0955
92.7801
93.8759
93.9835
94.0248
93.9735
94.8342
95.0945
94.0867
94.0756
95.0945

96.9834
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Table 4.12: Performance Evaluation of Proposed S C F T  vs Other Approaches

Ref.

Ref[52]

Journal Publisher

I E E E  Transactions on Industrial Informatics

Location

Finland

Contribution

Choquet integral

Model RMSE (w/m2)

LSTM 17.95

Ref[53] I E E E  Access Pretoria,South Africa Hybrid technique QRA 34.85

Ref[54]

Ref[13]

I E E E  Access

Elsevier Energy

Hawaii

Santiago,Cape Verde

Clustered clearness index LSTM 22.13

Feature selection LSTM 76.245

Ref[51]

Ref[17]

Elsevier Renewable Energy

I E E E  Access

Lamb,Texas,USA

Denver,Colorado,USA

Hybrid technique

Hybrid technique

CNN-LSTM 48.13

WT-ENN 25.83

Proposed S C F T      I E E E  Transactions on Industrial Informatics        Libya,North Africa Seasonal clustering LSTM 13.48

model’s superior performance is likely due to the effectiveness of LSTM models in

solar irradiance forecasting, and in the clustering strategy, which reduces uncertainty

levels.

In addition to the proposed SCFT ,  the other model (M5) is designed by imple-

menting the concept of applying the choquet integral to the four proposed seasonal

LSTM models. The idea of the choquet integral-based LSTM forecasting models was

introduced in [52] where the forecasting accuracy was improved as a result of the

prediction aggregation of individual models through the fuzzy measure. The pro-

posed S C F T  is also validated by the Diebold-Mariano (DM) statistics test [83] and

Granger-Newbold (GN) statistics test [84] [85] for predictive accuracy. In both tests

the forecast accuracy of the two forecast methods are compared. The statistics of the

DM test are formulated as follows:

• H0  : E  (dt) =  0 t S C F T  and M5 have the same accuracy.

• H1  : E  (dt) = =  0 t S C F T  and M5 have different accuracy.

where dt is the loss differential of the S C F T  and M5.The formulation of the GN

test is as follows:

• H0  : r x z  >  0 S C F T  has a larger RMSE.

• H1  : r x z  <  0 S C F T  has a smaller RMSE.

where Let rx z  denotes the correlation coeficient between S C F T  and M5. As a way of

validation, the data of model [52] was entered into the proposed model, SCFT ,  and

the results showed that the performance of S C F T  outperformed the performance of

model [52]. As shown in Table 4.13, the P-values for DM, which indicates that H0  is

significantly rejected and the forecasting accuracy of the two models is different.
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Table 4.13: Statistics Tests for Comparing Forecasting Accuracy1.

Diebold-Mariano Test2

two.Sided test(α =  0.0125)

Granger-Newbold T est3

one.Sided test (α =  0.025)

Sample size
1200
2400
3600
4800
6000
7200

8400

DM Statistic
2.596

2.6065
2.6534
2.769

2.9951
3.0299
3.289

P-Value
0.00943
0.00917
0.00796
0.00562
0.00274
0.00244
0.001

GN Statistic
2.0032
2.0069
2.0702
2.0781
2.1004
2.1093

2.1689

P-Value
0.02257
0.02238
0.01921
0.01885
0.01784
0.01745
0.01504

1 The DM and GN tests are designed for comparing predictive accuracy of two
forecasting models (SCFT,M5) accounting for asymptotic data distribution. 2 The

DM test uses two-tailed criteria for setting the alpha value, while 3the GN test is a
one-tailed statistical test.

Likewise, the p-values of the GN test indicates that we reject H0  and accept the

alternative hypothesis, and the proposed S C F T  outperformed M5.

Comparison of S C F T  with Baseline models

The proposed S C F T  is compared with the state-of-the-art deep learning-based fore-

casting techniques such as Nbeats and DeepAR that are available in PyTorch Fore-

casting Documentation. Compared to Nbeats, LSTM-based proposed model (SC F T )

adopts multivariate while the former adopts univariate. Further, for information

processing, Nbeats employed deep stack of fully connected layers, whereas S C F T  ag-

gregated the data using mining clustering technique upon meteorological conditions

that impact the radiance. With respect to DeepAR, it works on multivariate prob-

abilistic forecasting with autoregressive based on recurrent networks- LSTM/GRU

models. S C F T  is the same as DeepAR, though with the clustering layer added. As

shown in Figure 4.26 the predicted hourly GHI for four seasons for 2016, Halifax,NS.

The results showed that the proposed S C F T  is superior compared to the other models

with average reduction of RMSE ranges between 6.14% - 9.43% .
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(a) Predicted hourly GHI for January

(c) Predicted hourly GHI for June

(b) Predicted hourly GHI for March

(d) Predicted hourly GHI for September

Figure 4.26: Comparison of S C F T  with Baseline Models for Different Months in 2016,
for Halifax, NS

4.3.5 Summary and Recommendations

Most of the related analyses clearly show that model performance is highly dependent

on training sets, and that seasonality strongly affects the accuracy of predictions due to

high levels of autumn- and winter-related weather phenomena and climate un-

certainty. In turn, the proposed S C F T  introduced an eficient handling strategy for

reliable forecasting by considering clustering the high variability of historical meteo-

rological observations based on sky conditions. Three weather types (sunny, cloudy,

and rainy) were chosen for clustering. The threshold cut-off criteria of the correlated

standardized data points were chosen according to meteorological characteristics that

fundamentally affect atmospheric conditions. To  examine the stability of the proposed

approach, it applied to forecast GHI for regions with different climate conditions. The
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proposed S C F T  forecasting approach showed improvements in the learning tasks when

training the LSTM model by enhancing the model’s ability to identify patterns within a

dataset. This formed the basis for dataset clusters and making predictions of the

hourly GHI with suficient accuracy even for regions with highly fluctuating climates.

The experimental results provided compelling evidence that the S C F T  is superior to

previously proposed approaches. Future smart infrastructure studies should take ad-

vantage of historical meteorological, atmospheric, and climatological data to forecast

P V  power generation for operating a secure and reliable smart system. However, as

bias errors in GHI ,DHI, and DNI measurements could lead to corresponding errors

with regard to the produced power. Solar irradiance data could be enhanced through a

close investigation of the source of bias errors in data and how bias errors may be

affected according to variables such as air mass, aerosols, altitude, zenith angle, and

Linke turbidity factor.



Chapter  5

Conclusions and Fu t u r e  Wo r k

This chapter presents in brief the study’s main contributions. As well as it highlights

some limitations uncovered during the design, implementation, and analysis of the

models. These limitations could serve as suggestions for future research directions.

5.1 Conclusion

The recent exponential growth rate of P V  systems has resulted in an increased need

for greater P V  power generation integration in the world’s grid systems. Solar energy is

characterized by its uncontrollable and intermittent nature, which makes it chal-

lenging to control and manage its produced power. This leads to several issues such

as imbalances between the amount of produced and consumed energy, and regulating

power to ensure a consistent supply range. Given these challenges, recent research

has shifted on developing more precise predictive models for the produced power of

P V  systems. These models rely on an analysis of local weather and solar radiation

data to more accurately predict the power generated by P V  systems. Short-time

horizon GHI forecasting is a crucial component in predicting P V  power generation.

The present study developed a robust model that can be used for an hour-ahead of

GHI forecasting. The proposed approach was built in three stages, as follows: 1)

the LSTM model performance was tested in relation to input feature (univariate or

multivariate) influence; 2) feature selection was optimized by analyzing the impact of

redundancy and relevancy measures; and 3) problems related to seasonality and its

adverse affects on the model’s performance were investigated.

In stage one, LSTM model behaviour was investigated under specific meteorologi-

cal and geographical conditions in relation to historical meteorological data and solar

irradiance. These exogenous and endogenous variables were then used for input fea-

tures selection in an hour-ahead of solar irradiance prediction model, comparing it to

models based on UTSF and MTSF. The performance of the LSTM forecasting model

87
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was reduced during the switch from univariate to multivariate analyses. However,

forecasting accuracy was then shown to be enhanced by multivariate input in relation to

explanatory and response variables.

The second stage of the thesis’ model development presented a comprehensive cor-

relation analysis aimed at optimizing feature selection. The purpose here was to per-

mit the LSTM model to find and capture a broad range of associations while learning

new nonlinearity behaviors for meteorological and solar irradiance variables. Based

on these explorations, the W R F E  technique was proposed as an optimizing feature se-

lection schema, using a Least-Redundant/Highest-Relevant framework. The W R F E

technique measures variance reduction in R F R  and data perturbation in LSTM, thus

replacing the traditional step of feature screening with the proposed optimizing fea-

ture selection method.

The thesis’ third stage of model development investigated seasonal pattern effects

in weather data. To  offset seasonality’s impact on the model’s accuracy, a deep

stack of the clustering connected layer with hybrid LSTM models was proposed. The

results showed that S C F T  offers highly accurate performance, providing not only

robust reliability but also generalizability of hourly GHI prediction.

5.2 Future Research

Some points were revealed during the course of this investigation, which could be

used for future work directions. Five of these points in relation to future research are

listed below.

First:  In this thesis, meteorological and solar irradiance data was used from a

satellite-based data source with 60-second temporal coverage and 4-km spatial reso-

lution. These relatively limited temporal and spatial ranges could be addressed with

higher temporal and spatial resolution satellite-based data or with other data sources,

such as ground-based measurements, NWP-based data, and Sky-Imagers data. Fur-

ther, these could be integrated or applied individually.

Second: The proposed model’s eficiency is tied to the observed data’s acces-

sibility. So, for example, as some of the parameters are unavailable, cloud motion

detection for a short time horizon (e.g., 10 minutes) could be used in GHI forecast

applications. Potentially relevant data include cloud cover and wind vectors.
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Third: This study fully investigated the effects of seasonality and geographic

dependence, which significantly improved the accuracy of the solar irradiance predic-

tion model. Therefore, future work could study on-site data in a local environment

in relation to fluctuations caused by solar position. These data could be analysed

from the perspective of stochastic or deterministic processes for cloudy or clear sky

modeling, respectively.

Fourth: The analyses and validations of the proposed work concerned historical

data in relation to meteorological and solar irradiance data tied to specific geograph-

ical locations. However, it did not conduct on-site measurements for P V  systems and

meteorological masts, mainly due to lack of collaboration and restrictions caused by

research funding. Future work could consider real-time implementation of data from

measurement stations in neighbouring locations. Such an approach could provide a

more sophisticated strategy for developing a dynamic energy management platform to

compare and incorporate real-world data with the designed forecasting data.

Fifth: The potential uses of recurrent neural networks such as that demonstrated

in the LSTM model are considered promising research directions in the application of

solar power forecasting. Research based around state-of-the-art deep learning-based

forecasting techniques could be conducted to further develop the proposed LSTM

model.
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A p p e n d i x  A

Completed Results of the Relevance Measure Val idation

Table A.1: Nonparametric Relevance Measure for a 95% Confidence Interval (Year
2005)

Variable     Spearman Rank     Hoeffding Rank     Kendall Rank     Spearman Correlation     Spearman p     Hoeffding Correlation     Hoeffding p     Kendall Correlation     Kendall p

DNI 1 3 2

C G H I 2 1 1

S Z A 3 2 3

D H I 4 4 4

R H 5 5 5

T 6 6 6

WS 7 7 7

WD 8 8 9

P 9 9 8

PW 10 10 10

D P 11 11 11

S A 12 12 12

0.78264

0.78156

-0.75127

0.63027

-0.57344

0.24819

-0.22951

0.15437

0.14673

-0.11698

0.06308

0.0235

<.0001 0.2484

<.0001 0.28438

<.0001 0.24868

<.0001 0.20379

<.0001 0.11813

<.0001 0.01899

<.0001 0.01528

<.0001 0.00807

<.0001 0.00516

<.0001 0.00467

<.0001 0.00255

0.1228 0.00188

<.0001 0.59665 <.0001

<.0001 0.6105 <.0001

<.0001 -0.57432 <.0001

<.0001 0.49028 <.0001

<.0001 -0.40611 <.0001

<.0001 0.16696 <.0001

<.0001 -0.15538 <.0001

<.0001 0.0993 <.0001

<.0001 0.11102 <.0001

<.0001 -0.07674 <.0001

<.0001 0.04096 <.0001

<.0001 0.01524 0.1545

Table A.2: Nonparametric Relevance Measure for a 95% Confidence Interval (Year
2010)

Variable     Spearman Rank     Hoeffding Rank     Kendall Rank     Spearman Correlation     Spearman p     Hoeffding Correlation     Hoeffding p     Kendall Correlation     Kendall p

DNI 1 2 1

C G H I 2 1 2

S Z A 3 3 3

D H I 4 4 4

R H 5 5 5

T 6 6 6

WS 7 7 8

P 8 8 7

D P 9 10 9

WD 10 11 11

S A 11 9 10

PW 12 12 12

0.80019

0.78788

-0.77051

0.65147

-0.61544

0.34091

-0.22162

0.2073

0.13563

0.1249

0.12163

-0.02887

<.0001 0.26532

<.0001 0.28805

<.0001 0.26162

<.0001 0.22198

<.0001 0.13295

<.0001 0.03459

<.0001 0.01465

<.0001 0.01095

<.0001 0.00662

<.0001 0.00499

<.0001 0.00837

0.0581 0.00158

<.0001 0.61622 <.0001

<.0001 0.61494 <.0001

<.0001 -0.59026 <.0001

<.0001 0.5118 <.0001

<.0001 -0.43432 <.0001

<.0001 0.23246 <.0001

<.0001 -0.15066 <.0001

<.0001 0.156 <.0001

<.0001 0.09025 <.0001

<.0001 0.08246 <.0001

<.0001 0.08324 <.0001

<.0001 -0.01928 0.0579
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Table A.3: Nonparametric Relevance Measure for a 95% Confidence Interval (Year
2015)

Variable     Spearman Rank     Hoeffding Rank     Kendall Rank     Spearman Correlation     Spearman p     Hoeffding Correlation     Hoeffding p     Kendall Correlation     Kendall p

C G H I 1 1 1

S Z A 2 2 2

DNI 3 3 3

D H I 4 4 4

R H 5 5 5

T 6 6 6

WS 7 7 7

WD 8 8 8

S A 9 9 9

PW 10 10 10

P 11 12 11

D P 12 11 12

0.81734

-0.7958

0.78947

0.63279

-0.53387

0.24284

-0.23827

0.19159

0.11532

-0.10657

0.09359

0.08071

<.0001 0.32748

<.0001 0.29287

<.0001 0.25033

<.0001 0.19413

<.0001 0.09485

<.0001 0.01852

<.0001 0.01578

<.0001 0.01276

<.0001 0.00693

<.0001 0.00394

<.0001 0.00221

<.0001 0.00283

<.0001 0.64818 <.0001

<.0001 -0.61711 <.0001

<.0001 0.59911 <.0001

<.0001 0.48626 <.0001

<.0001 -0.37293 <.0001

<.0001 0.16295 <.0001

<.0001 -0.16171 <.0001

<.0001 0.12608 <.0001

<.0001 0.08029 <.0001

<.0001 -0.07026 <.0001

<.0001 0.07021 <.0001

<.0001 0.05274 <.0001

Table A.4: Nonparametric Relevance Measure for a 95% Confidence Interval (Year
2018)

Variable     Spearman Rank     Hoeffding Rank     Kendall Rank     Spearman Correlation     Spearman p     Hoeffding Correlation     Hoeffding p     Kendall Correlation     Kendall p

DNI 1 3 3

C G H I 2 1 1

S Z A 3 2 2

D H I 4 4 4

R H 5 5 5

T 6 6 6

WS 7 7 7

PW 8 8 8

D P 9 9 9

PW 10 10 11

S A 11 11 10

PW 12 12 12

0.81317

0.80578

-0.78969

0.71814

-0.6185

0.31537

-0.23815

0.18549

0.11214

0.08631

0.078

-0.07353

<.0001 0.27617

<.0001 0.3079

<.0001 0.28928

<.0001 0.27418

<.0001 0.13871

<.0001 0.02915

<.0001 0.01779

<.0001 0.01144

<.0001 0.00439

<.0001 0.00433

<.0001 0.00264

<.0001 0.00261

<.0001 0.61672 <.0001

<.0001 0.63816 <.0001

<.0001 -0.61871 <.0001

<.0001 0.56463 <.0001

<.0001 -0.4357 <.0001

<.0001 0.21003 <.0001

<.0001 -0.16183 <.0001

<.0001 0.12543 <.0001

<.0001 0.07256 <.0001

<.0001 0.05507 <.0001

<.0001 0.05782 <.0001

<.0001 -0.04864 <.0001
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Cluster ing  Deep Stack  O u t p u t  (C lustered Datasets)

100



101

Table B.1: The 13 Standardized Features and Assigned Clusters (Data Points 1-30)

Feature0      Feature1      Feature2      Feature3      Feature4      Feature5      Feature6      Feature7      Feature8      Feature9      Feature10     Feature11     Feature12     Cluster

0       0.660644      -0.953530     -0.418768     1.485284      1.474560      -1.881645     -0.417786     0.180305      1.586512      -1.223525     -0.061421      1.645248       -0.494096      4 1

0.926257      -0.687330     -0.154342     0.166677      0.152925      -0.031432     -0.511022     0.103713      -0.166889     -1.607259     0.506483       0.011200       -1.514745      4 2       -1.116920

-0.977192     -1.122606     -0.847071     -0.087372     0.791071      -0.504116     1.788739      -0.435541     -0.092920     0.717681       -0.240193      -3.556042      2 3       -0.728716     1.084381

-0.107679     -0.619345     0.032777      0.611096      -0.473037     -0.738799     -0.275529     1.200283      -0.165960      0.136896       -0.494096      2 4       2.969433      -0.563103     0.903359

1.588128      0.873817      -1.670833     -0.479944     -1.045168     0.165769      -0.530854     -1.554641      1.519552       0.526553       4 5       0.977336      -0.938741     -0.290444     0.824144

0.273074      -0.681810     -0.490303     -0.126063     0.048707      -1.476096     -0.808737      0.639680       1.547202       4 6       1.202086      -0.941699     -0.201006     1.301634      1.114114

-1.637753     -0.455771     -0.815391     1.609250      0.270217      0.502245       1.016768       -0.494096      4

7       -1.116920     -0.430003     -1.079831     -1.537595     1.114114

8       -1.096488     -0.912121     -1.110940     -1.552287     1.474560

1.461072

1.453784

-0.448865     -0.355839     0.598645

-0.435052     -1.045168     1.574721

0.287561

1.213291

1.214951

1.214951

0.765376

1.142464

-0.494096      3

-0.494096      3

9       -0.463103     1.646360      1.222225      0.636821      0.273074      -0.442965     -0.486850     -0.738799     -0.391749     0.480512      -2.012355      1.142464       0.526553       1 10     -

1.249726     -0.977192     -1.173158     -1.526576     -1.288858     1.453784      2.085787      0.486674      0.015020      -1.283145     -0.243659      -1.371457      0.526553       0 11     -1.014761

-0.784937     -1.060388     -1.456789     1.234262      1.357348      -0.462678     -0.968576     0.477372      -0.447386     1.214951       0.891072       -0.494096      3 12     -0.728716     0.498741

-0.558758     -1.045413     0.513371      0.960954      -0.476490     0.410082      -0.176995     -2.263075     -0.213992      0.639680       0.526553       3 13     -1.004545     -0.977192     -1.079831

-1.335580     0.032777      1.195875      -0.483397     1.252594      1.029836      -0.124356     1.214951       -0.365889      0.526553       3 14     -1.280374     -0.977192     -1.184824     -1.585344

0.993965      1.422386      -0.483397     -0.202655     1.271540      0.108702      1.214951       0.639680       -0.494096      3 15     0.732155      -0.956488     -0.399325     1.073908      0.032777

-1.135393     -0.497210     0.639858      1.205008      -1.135722     0.285396       0.011200       0.526553       4 16     1.978493      0.297611      1.420544      1.305307      1.234262      -1.398347

-0.466131     0.333490      0.697179      0.135802      -0.165960      1.393856       0.526553       4 17     0.527837      -0.888459     -0.442099     -0.002281     0.032777      0.043137      -0.441958

-0.738799     -0.135729     1.311935      0.873078       -0.240193      -0.494096      3 18     -0.871739     -0.977192     -1.029279     -1.353945     -0.327669     1.176813      -0.500663     2.554659

0.609593      -1.411056     0.830697       -0.617281      0.526553       3 19     -0.228138     1.699600      1.074458      0.497247      -1.409007     -0.130671     2.085787      1.329186      -1.169073

0.431732      -1.397126      -1.120065      -1.514745      0 20     -1.229295     -0.977192     -1.165381     -1.592690     -1.649304     1.589466      2.085787      -0.202655     -1.145492     1.275079

-1.517911      -1.371457      -0.494096      0 21     -0.595910     0.912830      -0.029907     -0.523847     -0.207521     0.471489      -0.521382     -0.585615     -0.486072     -1.480432     -0.787547

0.011200       0.526553       2 22     -0.166843     -0.977192     -0.760965     0.287886      1.234262      -0.294948     -0.459224     -0.738799     0.603698      0.797038      0.839173       1.016768

-0.494096      3 23     1.426835      0.359725      1.078346      1.081254      -0.327669     -0.833752     2.085787      -0.509023     -0.004350     -0.733560     1.125951       -0.617281      0.526553

4 24     -0.125979     -0.764232     -0.659861     -0.843398     1.354411      0.655950      -0.448865     -1.198352     1.470292      -0.117852     1.214951       1.016768       -0.494096      3 25     -

0.228138     1.749882      2.093273      1.459573      0.273074      -1.336673     -0.469584     -0.355839     -0.718511     0.100030      -2.184704      1.268160       1.547202       1 26     -0.350729

-0.977192     -0.830960     0.379711      -0.327669     -0.474923     -0.486850     -0.049471     0.704758      -1.422980     1.051078       -0.617281      0.526553       3 27     0.129418      -0.820430

-0.574312     -0.347543     -0.928412     0.482702      -0.514476     0.180305      -1.082329     1.037684      -0.784722      -0.868673      1.547202       2 28     -0.197490     1.522133      1.560534

0.956372      0.513371      -0.879727     -0.466131     -0.891984     -0.298268     -0.253351     -1.166856      1.016768       0.526553       1 29     -0.289433     1.406779      1.218336      0.633148

0.993965      -0.602756     -0.479944     -0.968576     0.612962      0.148810      -0.707730      1.268160       -0.494096      1
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Table B.2: The 13 Standardized Features and Assigned Clusters (Data Points 121-
155)

Feature0      Feature1      Feature2      Feature3      Feature4      Feature5      Feature6      Feature7      Feature8      Feature9      Feature10     Feature11     Feature12     Cluster

121     -1.219079     -0.977192     -1.161492     -1.276812     1.114114      1.137566      -0.417786     1.176002      1.255538      -1.497776     1.144316       0.891072       -0.494096      3

122     1.641369      0.200005      1.027795      0.996775      0.393222      -0.884212     -0.462678     -1.504720     0.246617      -0.642505     -1.687435      1.142464       0.526553       1 123

1.304244      -0.929868     -0.150454     1.279596      -0.808264     -1.056338     -0.493756     -0.049471     -0.848205     0.870750      -0.569992      -0.742977      -0.494096      4 124     -

1.270158     -0.977192     -1.180935     -1.537595     -0.688115     1.493031      2.085787      0.027121      -0.651137     0.609507      1.190935       -1.120065      -2.535394      0 125     1.723096

-0.841134     0.082863      1.147368      -0.808264     -0.815250     2.085787      1.252594      -0.720195     -2.182859     -0.173730      -0.868673      0.526553       0 126     -0.687853

-0.977192     -0.959284     -0.769938     -0.447818     0.669406      -0.528288     2.478067      1.350704      -1.396964     1.169038       -0.742977      -0.494096      3 127     0.190713

1.309173      1.478873      1.239193      -1.529155     -0.829267     2.085787      3.090804      -1.029272     1.522229      -1.500959      -1.245761      -0.494096      0 128     -0.892170

-0.977192     -1.037056     -1.269466     -0.567966     1.203164      2.085787      2.171699      0.006598      -1.656039     1.214951       -0.994369      -0.494096      0 129     0.395031

1.217481      1.031683      0.456844      -0.447818     -0.202437     2.085787      -1.734496     -0.477650     0.044747      0.969141       -0.742977      1.547202       0 130     -0.912602

0.679165      -0.698748     -1.177641     -0.808264     1.147097      -0.490303     0.639858      -0.841468     0.821970      -0.959190      -0.617281      0.526553       2 131     -0.514183     1.572415

0.658377      0.104236      -0.688115     0.112099      -0.531742     2.171699      -1.081487     -1.860913     -0.946475      -0.365889      1.547202       2 132     0.231577      1.504386

2.342144      1.694645      0.873817      -1.974156     -0.448865     -0.891984     0.324097      -0.211076     -0.122167      1.016768       0.526553       1 133     0.701507      -0.882543     -0.364327

0.093217      0.633520      -0.033114     -0.507569     -0.049471     0.301358      0.385121      1.214951       0.388288       -1.514745      3 134     -0.432456     1.338750      0.549496

0.001392      -0.688115     0.110417      -0.486850     -0.355839     -0.961056     0.872917      -2.066037      -0.114497      0.526553       1 135     -0.074900     1.637486      2.279926

1.635877      1.354411      -1.764465     -0.459224     -0.585615     0.157347      -0.238176     -0.311468      1.519552       0.526553       1 136     1.447267      -0.474370     0.242296

0.563361      -0.087372     -0.365592     -0.504116     1.252594      -0.310900     1.175352      -0.440024      0.011200       -0.494096      4 137     0.864961      -0.950572     -0.337107     1.430189

-0.327669     -1.474598     -0.486850     -1.121760     0.034390      -0.543862     0.585594       -0.491585      -0.494096      4 138     0.200929      1.465935      2.038833      1.408151      0.273074

-1.471795     -0.462678     -0.968576     0.090816      0.316829      -0.514897      0.513984       0.526553       1 139     -0.616342     1.040015      -0.022130     -0.538539     0.393222

0.533723      -0.493756     -0.355839     -0.338692     0.895681      -0.375040      0.513984       0.526553       2 140     0.967120      0.217751      0.576716      0.537650      -0.808264

-0.316253     -0.486850     1.329186      -1.024219     -1.476096     -0.301579      -0.868673      1.547202       2 141     -0.718500     0.992690      -0.166008     -0.674440     0.513371

0.639690      -0.448865     -0.891984     -0.233420     0.620347      0.632213       0.388288       -0.494096      3 142     -0.013604     -0.977192     -0.702636     0.096890      -0.327669

-0.056102     -0.528288     0.256897      -0.307531     1.250147      -0.209754      -0.240193      -0.494096      2 143     -0.360945     0.714659      0.001202      -0.516501     0.993965

0.422711      -0.479944     -0.509023     0.821820      -0.114600     0.173793       1.016768       -0.494096      3 144     -0.636773     0.084651      -0.714302     -1.192333     -0.688115     1.131959

2.085787      2.937620      -0.849890     0.807878      1.014348       -1.120065      -1.514745      0 145     1.804823      0.069862      0.969465      0.989429      0.753668      -0.894304     -0.483397

-0.968576     0.180086      -0.361751     -0.972610      1.142464       0.526553       4 146     -0.473319     1.430442      0.743926      0.185042      0.032777      -0.073483     -0.476490     -0.355839

-0.509653     1.504886      -2.027895      0.891072       1.547202       1 147     0.926257      -0.406341     0.040088      0.107909      0.273074      -0.083014     -0.528288     -1.121760     -0.297425

-0.310803     0.457745       0.136896       -0.494096      4 148     -0.136195     1.066635      0.565050      0.016084      -0.447818     0.016785      -0.459224     -1.045168     -0.562709     -2.213211

0.540388       -0.617281      0.526553       1 149     -1.208863     -0.977192     -1.157603     -1.603709     -0.207521     1.559750      -0.517929     1.558963      -0.247737     0.168322

0.259261       -0.240193      -0.494096      2 150     -0.718500     0.874379      -0.302109     -0.802995     0.633520      0.758552      -0.441958     -0.738799     -0.495336     1.464778

0.317888       0.639680       0.526553       3 151     0.200929      0.504656      0.304513      0.027103      0.993965      0.067806      -0.479944     0.410082      0.059655      -0.337903

0.792554       0.765376       0.526553       3 152     -0.800227     0.191131      -0.745411     -1.221717     0.032777      1.120185      -0.524835     -0.355839     -0.483545     -1.214853

1.214951       -0.365889      1.547202       3 153     2.734468      -0.852966     0.495055      1.749740      0.152925      -2.149646     -0.421239     -0.509023     0.687073      -1.778530     0.324245

0.011200       0.526553       4 154     0.037475      1.495513      1.999947      1.371421      0.633520      -1.458339     -0.428145     -1.121760     0.238195      -0.346575     0.072079       0.639680

0.526553       1
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Table B.3: The 13 Standardized Features and Assigned Clusters (Data Points 3050-
3079)

Feature0      Feature1      Feature2      Feature3      Feature4     Feature5      Feature6      Feature7      Feature8      Feature9     Feature10     Feature11     Feature12     Cluster

3050     -0.756348     0.823505      -0.385706     -0.878447     0.643189     0.832025      -0.493225     -0.357080     -0.448645     1.353806     -0.826721      1.027837       0.518017       4 3051     -

1.085088     -0.218503     -1.045881     -1.499167     0.763392     1.430293      -0.493225     -0.052993     -0.467164     1.402472     -0.038255      0.776752       0.518017       0 3052     -0.889899

0.378202      -0.755090     -1.225755     0.643189     1.136782      -0.493225     -0.889234     -0.364469     1.135347     0.384721       0.525667       0.518017       0 3053     -0.643343     1.055062

-0.032041     -0.545919     0.643189     0.538514      -0.493225     -1.041277     -0.379621     1.188339     -0.327809      0.776752       1.547859       4

3054     -0.499519     1.393492

3055     -0.407061     1.583488

3056     -0.345422     1.690360

3057     -0.283783     1.725984

3058     -0.263237     1.725984

3059     -0.242690     1.669579

3060     -0.232417     1.553801

3061     -0.324875     1.399429

0.694938

1.327606

1.799159

2.070303

2.117458

1.940626

1.547664

0.985729

0.137611

0.732467

1.175838

1.430776

1.475113

1.308849

0.939373

0.411023

0.522985     -0.046258     -0.493225     -1.117299     -0.394773     1.154814     -0.802591      0.902294

0.522985     -0.587735     -0.493225     -1.269343     -0.400665     1.110473     -1.258213      1.027837

0.522985     -1.041496     -0.493225     -1.345365     -0.391406     0.995836     -1.583251      1.153379

0.522985     -1.338943     -0.493225     -1.345365     -0.369520     0.791436     -1.747189      1.278922

0.643189     -1.401919     -0.493225     -1.345365     -0.342583     0.507007     -1.635768      1.278922

0.643189     -1.210181     -0.493225     -1.269343     -0.315647     0.271245     -1.533573      1.278922

0.643189     -0.822207     -0.493225     -1.041277     -0.294603     0.129571     -1.464023      1.278922

0.643189     -0.315591     -0.493225     -0.813212     -0.279451     0.066845     -1.377441      1.278922

1.547859       2

1.547859       2

1.547859       2

0.518017       2

0.518017       2

0.518017       2

0.518017       2

0.518017       2

3062     -0.499519     1.173809      0.309836      -0.224475     0.763392     0.253438      -0.493225     -0.585146     -0.277768     0.049541     -0.889174      1.153379       0.518017       2

3063     -0.694709     0.648352      -0.432862     -0.922784     0.883596     0.848894      -0.493225     -0.509124     -0.292919     0.033319     -0.137612      1.027837       0.518017       0

3064     -1.095362     -0.387718     -1.069459     -1.521335     1.003799     1.447161

3065     -0.766621     -0.708336     -0.935852     -1.251618     0.763392     1.148028

-0.493225     -0.357080     -0.310596     0.067926     0.460657

-0.493225     -0.129015     -0.233154     0.482133     0.935440

0.902294

0.525667

0.518017       0

0.518017       0

3066     -0.458426     0.571166      -0.181366     -0.601341     0.763392     0.549760      -0.493225     -0.281058     -0.145611     0.408592     1.098669       0.525667       0.518017       0 3067     -

0.252963     0.995688      0.514176      0.063716      0.883596     -0.034450     -0.493225     -0.281058     -0.060593     0.330726     0.471303       0.776752       0.518017       2 3068     0.199055

1.028344      1.076110      0.647487      0.883596     -0.574241     -0.493225     -0.281058     0.036209      0.298282     0.312332       0.902294       0.518017       2 3069     -0.057774     1.485521

1.696989      1.079774      0.883596     -1.025753     -0.493225     -0.205036     0.141429      0.291793     -0.073030      1.027837       0.518017       2

3070     0.034685

3071     0.096324

1.515208

1.491458

1.952414

1.991710

1.319933

1.356881

0.883596     -1.319826     -0.493225     -0.129015     0.230656

0.883596     -1.381677     -0.493225     -0.052993     0.294630

0.265837     -0.495295      1.153379

0.236637     -0.810398      1.278922

0.518017       2

0.518017       2

3072     1.421560

3073     0.969541

3074     0.394245

0.565229

0.588979

0.627571

1.433705

1.115407

0.667430

1.186922

0.821141

0.300180

0.883596     -1.189939     -0.493225     0.023029

1.003799     -0.803089     -0.493225     0.099051

1.003799     -0.297598     -0.493225     0.175073

0.345136

0.384698

0.405742

0.206356     -0.761429      1.278922

0.190134     -0.696848      1.278922

0.178237     -0.609556      1.278922

0.518017       2

0.518017       2

0.518017       2

3075     0.342879      -0.251159     -0.161718     -0.331623     1.003799     0.270306      -0.493225     0.175073      0.403217      0.176074     -0.130515      1.153379       0.518017       0

3076     -0.489246     -0.203660     -0.637201     -0.996680     1.124003     0.865762

3077     -1.095362     -0.714273     -1.100896     -1.550893     1.124003     1.464592

-0.493225     0.175073

-0.493225     0.251095

0.396483

0.412476

0.187971     0.416657

0.216089     0.936150

1.027837

0.902294

0.518017       0

0.518017       0

3078     -0.787167     -0.562871     -0.916204     -1.318123     1.244206     1.158711

3079     -0.109139     -0.936925     -0.715794     -0.693710     1.244206     0.560443

-0.493225     -0.129015     1.448685

-0.493225     -0.357080     1.349357

0.637866     1.217897

0.622725     0.949634

0.902294

1.027837

0.518017       0

0.518017       0
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Table B.4: The 13 Standardized Features and Assigned Clusters (Data Points 47370-
47406)

Feature0       Feature1       Feature2       Feature3       Feature4       Feature5     Feature6       Feature7     Feature8       Feature9       Feature10     Feature11     Feature12     Cluster

47370     -0.242690     -0.990361     -0.794386     -0.486803     -0.198235     0.529518     -0.517206     0.023029     -0.547131     -0.190547     1.217897        -0.478672      -4.631195      1

47371     -0.653616     0.897722

47372     -0.859079     0.387108

-0.287466     -0.786078     -0.198235     0.784231     -0.517206     0.403139     -0.537030     -0.263007     1.217897

-0.751160     -1.222060     -0.198235     1.154213     -0.517206     0.479161     -0.547973     -0.203525     1.217897

-0.478672      -4.631195      1

-0.604215      -4.631195      1

47373     -1.146727     -0.990361     -1.140192     -1.443745     -1.159863     1.378001     2.059056       2.227665     -0.869526     1.003406       0.406721        -1.483012      -3.601353      2

47374     -0.499519     -0.889426     -0.865119     -0.967122     -1.159863     0.959101     2.059056

47375     -0.540612     -0.990361     -0.908345     -0.553309     -1.159863     0.641412     2.059056

2.227665     -0.888886     0.996918

2.227665     -0.903196     0.991510

-0.099998      -1.357469      -3.601353      2

-0.191548      -1.357469      -3.601353      2

47376     0.260694

47377     0.322333

47378     0.147689

-0.485685     -0.362128     -0.302065     -1.280067     0.452485     2.059056

-0.687555     -0.428932     -0.246644     -1.280067     0.412563     2.059056

-0.714273     -0.519313     -0.398129     -1.280067     0.525582     2.059056

2.227665     -0.909930     0.979614

2.227665     -0.907405     0.963392

2.227665     -0.897304     0.947169

-0.280969      -1.357469      -3.601353      2

-0.313615      -1.357469      -3.601353      2

-0.266775      -1.357469      -3.601353      2

47379     -0.222144     -0.542090     -0.629342     -0.738047     -1.159863     0.779171     2.059056

47380     -0.982357     -0.990361     -1.077318     -1.199891     -1.159863     1.148590     2.059056

2.227665     -0.883836     0.926621

2.227665     -0.872893     0.914725

-0.164580      -1.357469      -3.601353      2

-0.057417      -1.357469      -3.601353      2

47381     -1.002903     0.027897       -0.971219     -1.428966     -1.280067     1.379688     2.059056       1.847555     -0.976430     1.075866       0.217943        -1.483012      -1.541668      2

47382     -0.550885     -0.984424     -0.908345     -0.937563     -1.280067     0.959663     2.059056

47383     -0.098866     -0.230378     -0.428932     -0.516361     -1.159863     0.640850     2.059056

1.771533     -0.990740     1.081273

1.771533     -0.994948     1.080191

-0.221355      -1.357469      -1.541668      2

-0.173806      -1.357469      -1.541668      2

47384     0.055231       0.060553       -0.173507     -0.250339     -1.159863     0.450236     2.059056       1.771533     -0.995790     1.080191       -0.483231      -1.231927      -1.541668      2

47385     0.209328

47386     0.086050

-0.144286     -0.201014     -0.194917     -1.159863     0.408627     2.059056

-0.188816     -0.303184     -0.342708     -1.039660     0.521084     2.059056

1.695511     -0.998315     1.088843

1.619489     -1.002524     1.107228

-0.336325      -1.231927      -1.541668      2

-0.191548      -1.231927      -1.541668      2

47387     -0.448153     0.220862       -0.440721     -0.678930     -1.039660     0.773548     2.059056       1.543468     -1.008417     1.132103       -0.072320      -1.231927      -1.541668      2

47388     -0.694709     -0.628182     -0.892626     -1.155554     -1.039660     1.142405     2.059056       1.391424     -1.011784     1.152651       0.018520        -1.231927      -1.541668      2

47389     -1.043996     0.401952

47390     -0.797440     1.164903

-0.947641     -1.406798     -1.520474     1.380250     2.059056

-0.401425     -0.893226     -1.400270     0.959663     2.059056

0.935292     -1.290407     1.084517

1.011314     -1.288723     1.063969

-0.242646      -1.608554      -0.511826      2

-0.760010      -1.357469      -0.511826      2

47391     -0.653616     1.455834

47392     -0.561158     1.547863

47393     -0.509792     1.512239

47394     -0.520065     1.375680

0.050481

0.309836

0.349132

0.180158

-0.468329     -1.400270     0.639725     2.059056

-0.224475     -1.280067     0.447987     2.059056

-0.187528     -1.280067     0.405254     2.059056

-0.346402     -1.159863     0.516023     2.059056

1.087336     -1.250844     1.062888

1.163358     -1.170035     1.048829

1.239380     -1.073232     1.032606

1.239380     -0.999999     1.001243

-1.004143      -1.231927      -0.511826      2

-1.219889      -1.106385      -0.511826      2

-0.984272      -1.106385      -0.511826      2

-0.625879      -1.106385      -0.511826      2

47395     -0.427607     0.170394       -0.448580     -0.690015     -1.039660     0.767925     2.059056       1.163358     -0.946126     0.956903       -0.253291      -1.106385      -0.511826      2

47396     -0.828260     0.591947       -0.684357     -1.159249     -0.919456     1.136220     2.059056       1.011314     -0.898988     0.880118       0.053295        -1.106385      -0.511826      2

47397     -1.208366     -0.643025     -1.155911     -1.602620     -0.919456     1.593354     2.059056       1.087336     -0.859425     0.792518       0.248460        -1.106385      -0.511826      2

47398     -1.013176     0.069459

47399     -0.725528     0.888816

-0.971219     -1.428966     -0.799253     1.380812     2.059056

-0.448580     -0.937563     -0.799253     0.959101     2.059056

0.327117     -0.856058     0.904992

0.175073     -0.874577     0.911481

0.266202

0.481948

-1.106385      0.518017        2

-1.106385      0.518017        2

47400     -0.571431     1.242089       -0.004534     -0.520056     -0.799253     0.638038     2.059056       0.175073     -0.879627     0.902829       0.217943        -0.980842      -0.511826      2

47401     -0.489246     1.390523

47402     -0.468700     1.414273

47403     -0.520065     1.334118

0.266610

0.321624

0.164440

-0.265118     -0.679049     0.445176     2.059056

-0.213391     -0.679049     0.400755     2.059056

-0.361181     -0.679049     0.510400     2.059056

0.175073     -0.867001     0.867140

0.251095     -0.836697     0.846592

0.251095     -0.772723     0.841184

0.404592

0.135619

0.266912

-0.855300      -0.511826      2

-0.855300      -0.511826      2

-0.855300      -0.511826      2

47404     -0.633070     1.096623       -0.193155     -0.697404     -0.679049     0.761740     2.059056       0.251095     -0.674237     0.832533       0.406721        -0.855300      -0.511826      2

47405     -0.828260     0.577104       -0.684357     -1.159249     -0.679049     1.129472     2.059056       0.251095     -0.573226     0.835777       1.007829        -0.980842      0.518017        2

47406     -1.208366     -0.622244     -1.151981     -1.598925     -0.679049     1.586045     2.059056       0.251095     -0.494942     0.830370       0.898536        -0.980842      0.518017        2
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