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ABSTRACT 

The American beaver (Castor canadensis) is a keystone species of both significant ecological 

DQG�ELRFXOWXUDO�LPSRUWDQFH�LQ�0L¶NPD¶NL��1RYD�6FRWLD���In North America, several 

environmental covariates are known to influence C. canadensis habitat selection, including 

distance to watercourse, stream gradient, and distance to preferred hardwoods; however, specific 

distances and species vary greatly throughout their continental range, prompting the need for 

local study. In Nova Scotia, occurrence data have never been systematically collected as C. 

canadensis is a common and unthreatened species, resulting in geographic knowledge gaps. This 

thesis remedied this knowledge gap by using Maximum Entropy modelling (Maxent) to create a 

species distribution model using environmental conditions present in areas of known occurrences 

to predict areas of C. canadensis distribution across the province. Input layers consisted of 

predominantly citizen-science occurrence data, and environmental covariates which 

characterized geomorphology and forest composition. Correlation analysis and reverse stepwise 

elimination were used to generate two models: an ecological model, and a human footprint 

model, where the latter investigated the influence of anthropogenic disturbance. Each model was 

an average of 10 replicates, using 500 iterations, 10,000 background pseudo-absence points, and 

a jackknife test to measure variable importance. The ecological model produced a high averaged 

area under the receiver operating characteristic curve (AUC) for the replicated runs (0.80 +/- 

0.02), where the strongest contributors to distribution based on the permutation importance were 

µ:DWHUFRXUVH¶����������µ(OHYDWLRQ¶����������µ5HG�2DN¶����������µ$VSHQ¶����������DQG�µ*UD\�

%LUFK¶�������� Response curves indicated proximity to watercourses, low elevation, proximity to 

aspen, and distance from red oak and gray birch were important habitat associations. The human 

footprint model showed a positive relationship between occurrence points and human footprint, 

likely due to citizen-science collected occurrence data. Areas of known historic usage overlap at 

a landscape scale with distribution. The habitat association findings are consistent with previous 

studies suggesting watercourses, elevation and specific hardwood tree species are the main 

drivers of distribution, highlighting important areas of the predicted distribution of C. canadensis 

in the Wabanaki-Acadian Forest. Modelling this distribution is a practical conservation and 

management tool, which can contribute to future efforts to map biocultural connectivity in 

0L¶NPD¶NL (Nova Scotia), inform land use management, and provide insight into future species¶ 

sampling needs. Keywords: American beaver, Castor canadensis, SDM, Maxent, Nova Scotia 
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CHAPTER 1 - INTRODUCTION 

1.1 Motivation 

Biodiversity and its ecological benefits underpin planetary health and human well-being 

(IPBES, 2019; UNEP, 2021). Unfortunately, global biodiversity is declining at unprecedented 

rates, largely attributed to compounding anthropogenic pressures (Venter et al., 2016; IPBES, 

2019; UNEP, 2021; Hirsh-Pearson, 2022). Natural wetlands are one of the most biodiverse 

ecosystems and have lost up to 87% of their extent since the 18th century due to anthropogenic 

pressures, limiting their ecological benefits (Davidson, 2014; IPBES, 2019; Dertein et al., 2020). 

These rapid declines far exceed our capacity to monitor the associated spatial and temporal 

changes in species populations (Davidson, 2014; IPBES, 2019; Dertein et al., 2020). In a 

Western conservation framework, threatened species tend to receive higher priority than non-

threatened species for data collection due to the strategic allocation of limited resources (Boakes 

et al., 2010; Baker et al., 2019). However, deficient data concerning important but nonthreatened 

species reduces our ability to track current population dynamics and reflect the intricacies of 

current ecosystems for future study (Currie, 1991; Boakes et al., 2010). Species distribution 

models (SDM) are one approach used to remedy our limited data collection capacities, which 

apply an understanding of species niche requirements and available environmental data to predict 

species distribution at large spatial scales (Guisan & Zimmerman, 2000; Werkowska et al., 2017; 

Lee-Yaw et al., 2022). 

One such species that is unthreatened and under-documented is the American beaver (Castor 

canadensis). This species actively works to mediate the biodiversity crisis and restore wetland 

habitat (Müller-Schwartze, 2011). C. canadensis build dams in watercourses out of organic 

materials to create predator-resistant residences, which can increase water levels, carbon and 

nutrient sinks, primary production, biodiversity, and numerous other ecosystem services 

(Naiman et al. 1988; Hyvönen & Nummi, 2008; Larsen et al., 2021). The works of C. canadensis 

promote climate resilience, as the subsequent flooding from their dams reconnects and restores 

floodplains (Jordan & Fairfax, 2022). C. canadensis are a keystone species for these reasons and 

one of few µHFRV\VWHP�HQJLQHHUs¶��DV�WKH\�SK\VLFDOO\�DOWHU�ZHWODQGV�WR�HQULFK�KDELWDW�IRU�

themselves and other species (Menge et al., 1995; Müller-Schwartze, 2011). Though 

unthreatened, as a pillar of environmental integrity, Indigenous identity, and history in North 
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America, further efforts are required to understand the main drivers of C. canadensis 

distribution. To safeguard these important ecosystem services, this thesis developed SDMs to 

identify the landscape-scale drivers of C. canadensis distribution in the Atlantic Canadian 

province of Nova Scotia, a previously unstudied region. 

 

1.2 Background 

Poor data concerning a keystone species, though currently common and unthreatened, may 

pose ecological consequences in an uncertain future (Boakes et al. 2010; Baker et al., 2019). 

Fossil records demonstrate that C. canadensis has existed as the only extant beaver on the 

continent for at least 12,000 years, physically shaping the ecological landscape (Müller-

Schwartze, 2011). As a semiaquatic rodent, C. canadensis are known to thrive in suitable 

wetland habitat where rich vegetation grows near the riparian zone, the strip of terrestrial land 

adjacent to watercourses (Müller-Schwartze, 2011). As habitat composition varies greatly 

throughout North America, subpopulations of C. canadensis have grown to rely on diverse food 

sources, watercourse characteristics and environmental conditions (Müller-Schwartze, 2011). 

Summarized in Touhiri et al. (2018) and Müller-Schwartze (2011), previous studies of regional 

drivers of C. canadensis distribution in North America have used many SDM techniques with 

varying results by region. Past studies found strong drivers of distribution to include 

geomorphological characteristics such as watercourse proximity, watercourse gradient, elevation, 

and forest composition characteristics, such as woody and deciduous vegetation (Touhiri et al., 

2018; Dittbrenner et al., 2018). However, these characteristics vary greatly throughout North 

America and no studies have investigated C. canadensis-habitat interactions in Atlantic Canada. 

C. canadensis KDYH�EHHQ�LQWHUWZLQHG�ZLWK�0L¶NPDT�FRPPXQLWLHV�IRU�PLOOHQQLD��SOD\LQJ�D�NH\�

role both ecologically and culturally (Fauset, 1925; Michelson, 1925; Parsons, 1925). The 

0L¶NPDT�DUH�WKH�,QGLJHQRXV�SHRSOHV�RI�WKH�WUDGLWLRQDO�DQG�XQFHGHG�WHUULWRU\�RI�0L¶NPD¶NL�(the 

$WODQWLF�&DQDGLDQ�SURYLQFHV���7UDGLWLRQDO�0L¶NPDT�ZD\V�RI�OLIH�UHOLHG�ZKROO\�RQ�WKH�VXUURXQGLQJ�

natural environment, consequently developing strong connections to and reverence for the 

features, processes and ecological communities that sustained them (Historica Canada, 2022). C. 

canadensis DUH�LGHQWLILHG�LQ�PDQ\�VWRULHV�RI�0L¶NPDT�RUDO�KLVWRU\�VXFK�DV�WKDW�RI�.OXVFDS�SHWWLQJ�

the megafauna beaver until it became an appropriate non-threatening size (UINR, 2007), among 
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many others (Fauset, 1925; Michelson, 1925; Parsons, 1925). Both oral and archeological 

KLVWRULHV�UHYHDO�VHDVRQDO�SDWWHUQV�RI�UHVRXUFH�KDUYHVWLQJ�DQG�PLJUDWLRQ�RI�WKH�0L¶NPDT��UHOLDQW�RQ�

oceanic resources in the spring and summer, and inland resources in the fall and winter, which 

includes mammals such as C. canadensis for nutrition, clothing, and tools (UINR, 2007; 

Historica Canada, 2022).   

C. canadensis KDYH�EHHQ�DQG�FRQWLQXH�WR�EH�YDOXDEOH�WR�0L¶NPDT�FRPPXQLWLHV��DQG�

JRYHUQLQJ�ERGLHV�VXFK�DV�WKH�8QDPD¶NL�,QVWLWXWH�RI�1DWXUDO�5HVRXUFHV��8INR) (UINR, 2007). A 

recent Requests for Proposals (RFP) from the UINR expressed interest in modelling biocultural 

connectivity between Kluskap Indigenous Protected and Conserved Area (IPCA) and the Bras 

G¶2U�%LRVSKHUH�5HVHUYH�LQ�QRUWKHUQ�1RYD�6FRWLD��8,15, 2022). This RFP emphasized the 

LPSRUWDQFH�RI�ELRFXOWXUDO�GLYHUVLW\��DV�0L¶NPDZ�SULQFLSOHV�XQGHUVWDQG�WKH�³ZHE�RI�OLIH´�WR�

include the interconnectedness of both ecological and cultural features (UINR, 2022). C. 

canadensis are an ecological keystone species of significant cultural importance; however, in 

Nova Scotia the quantitative spatial data concerning this species is of poor quality and coverage, 

posing difficulty for these proposed biocultural connectivity modelling efforts (UINR, 2022).   

Aside from WKHLU�UHODWLRQVKLS�ZLWK�WKH�0L¶NPDT� C. canadensis and humans have a long-

shared and turbulent history of coexistence. As a furbearer, C. canadensis pelts were a 

significant driver of the fur trade leading to the European exploration and colonization of Turtle 

Island (North America) (Carlos et al., 2011). The fur trade drove the once omnipresent C. 

canadensis from an estimated 60-400 million individuals in North America prior to European 

settlement towards near-extirpation (Seton, 1929), from which the continental population has 

recovered to upwards of 9 million since the 1980s (Naiman et al., 1988). While populations are 

considered recovered from a population stability and growth perspective (Naiman et al., 1988), 

they are still a fraction of what they were once estimated to be before near-extirpation (Seton, 

1929). Today, one factor which is understood to limit population growth is land use change, and 

the impact of the expanding human footprint on wetland ecosystems (Müller-Schwartze, 2011). 

Many wetlands throughout North America have been destroyed or fragmented by roads, 

agriculture, harvest, pollution and other human activities (NWWG, 1988; Dahl, 1990; IPCC, 

2001; IPBES, 2019). This human footprint often leads to human-beaver conflict as C. canadensis 

recolonize their historic wetland habitat, now rife with infrastructure (Naiman et al., 1988; Baker 
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& Hill, 2003; Müller-Schwartze, 2011). The extent of the human footprint influence on C. 

canadensis populations throughout North America remains unknown. 

 In Nova Scotia, resources for conservation and management are often deployed on 

species listed under laws to protect species at risk, to prevent extinction and promote recovery. 

However, it is becoming increasingly valuable to understand the requirements of species before 

they become listed as endangered or at risk, to be proactive in understanding, protecting, and 

sustaining healthy populations of species with intrinsic and extrinsic value (Boakes et al., 2010, 

Baker et al., 2019; UINR, 2022). C. canadensis are a keystone species who restore wetland 

habitat and increase local biodiversity (Wright et al., 2002; Larsen et al., 2021), and therefore 

understanding and sustaining their populations is linked to many other wetland dependent 

species that benefit from their presence. In Nova Scotia, occurrence or distribution data have 

never been systematically compiled as C. canadensis is unthreatened, and thus their specific 

habitat preferences in the province remain unknown. While C. canadensis is no longer at risk of 

extirpation, it remains a keystone species of cultural importance WR�WKH�0L¶NPDT and is a symbol 

of the sovereignty of Canada (National Symbol of Canada Act, 1985). The increasing pressures of 

climate change and the human footprint on wetland ecosystems deem it critical to be proactive 

and augment the poor-quality data in this unstudied region by using statistical extrapolation to 

better predict distribution and understand local habitat associations (Boakes et al., 2010, Baker et 

al., 2019). This can provide insight into how best to support a keystone species whose activities 

foster biodiversity, safeguarding wetland habitat throughout a turbulent relationship with the 

human footprint. 

 

1.3 Introduction to study 

The primary goal of this study was to augment the poor-quality occurrence data in Nova 

Scotia by developing an SDM for C. canadensis to identify the major landscape-scale drivers of 

their distribution in the province. A secondary objective was to characterize local C. canadensis 

habitat associations, as these associations are known to vary by region and study design (Müller-

Schwartze, 2011; Touhiri et al., 2018; Baker et al., 2019), and Nova Scotia is characterized by 

the unique Wabanaki-Acadian Forest and distinctive topographic features, which have not been 

previously studied. A third objective was to investigate how anthropogenic pressures influence 
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C. canadensis distribution in the province. To remedy these geographic knowledge gaps, this 

study created a single species SDM which used environmental variables present in areas of 

known occurrences to extrapolate predicted distribution across the landscape (Guisan & 

Zimmerman, 2000; Elith et al., 2010). The research questions and associated hypotheses are: 

1. Which landscape-scale covariates are the main drivers of American beaver (C. 

canadensis) predicted distribution in 0L¶NPD¶NL��1RYD�6FRWLD�? 

H0: Each landscape-scale covariate included in the model has no influence over 
explaining the variability in predicted distribution. 

Ha: Each landscape-scale covariate included in the model has an influence over 
explaining the variability in predicted distribution. 

2. Are there any patterns or clusters in predicted distribution? 

H0: The predicted probability of occurrence is evenly distributed across the 
landscape. 

Ha: The predicted probability of occurrence is unevenly distributed across the 
landscape.  

3. How does human footprint influence distribution? 

H0: The human footprint has no effect on predicted probability of occurrence. 

Ha1: The human footprint has a positive relationship with predicted probability of 
occurrence. 

Ha2: The human footprint has a negative relationship with predicted probability of 
occurrence. 

 

To answer these research questions, a single-species SDM was constructed using 

Maximum Entropy (Maxent) modelling software (Version 3.4.4) as it is a robust presence-only 

SDM method (Phillips et al., n.d.). The SDM combined georeferenced occurrence data with 

multiple raster layers extracted from environmental datasets, composing an environmental 

covariate group data layer, which characterized C. canadensis niche requirements. 

Environmental covariates were informed based on a literature review of C. canadensis ecology, 

previous modelling efforts, and relevance to Nova Scotia. The SDM output was analyzed to 

understand the landscape-scale drivers and pattern of C. canadensis distribution in Nova Scotia. 
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To understand the relationship between human footprint and predicted distribution, the final 

model was run with a Human Footprint Index spatial data layer representing cumulative 

anthropogenic pressures (Hirsh-Pearson, 2022). While ground-truthing SDMs to validate their 

predictions are generally regarded as good practice, a second external dataset did not exist in 

Nova Scotia, as data concerning this species is limited (Araújo et al., 2019; Lee-Yaw et al., 

2022). Instead, the model was compared to a spatial data layer representing historic beaver 

flowage ponds, representing wetland habitat alterations created by beaver dams (NSDNR, 2021). 

This layer was interpreted from aerial imagery and can act as a proxy of their historic distribution 

(NSDNR, 2021). This study increases our understanding of the specific drivers of C. canadensis 

distribution in Nova Scotia, can locate areas of high and low predicted occurrence and can 

inform further data collection efforts. 
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CHAPTER 2 - LITERATURE REVIEW  

2.1 Literature search strategy 

To effectively produce an SDM for a species, it is essential that there is a sufficient 

understanding of species ecology, past modelling efforts, species distribution modelling and 

associated methods. This review contextualized the knowledge gaps related to insufficient data 

for C. canadensis and illuminated Maxent modelling as a best practice to remedy this gap. This 

review searched the databases: SCOPUS, Biological Abstracts, and ScienceDirect for published 

material as of October 2022. If relevant modelling studies were referenced in those sources 

identified, they were also investigated. Key search terms used in all databases included:  

o ³&DVWRU�FDQDGHQVLV´�25�³$PHULFDQ�beaver´�$1'�³HFRORJ\´�25�³KDELWDW´ 

o ³&DVWRU�FDQDGHQVLV´�25�³&DVWRU�ILEHU´�$1'�³VSHFLHV�GLVWULEXWLRQ�PRGHO
´ 

o ³0D[(QW´�25�³0D[LPXP�(QWURS\
´ 

o ³6SHFLHV�GLVWULEXWLRQ�PRGHO
´ 

 

2.2 Species ecology 

There are two living species of beaver today, including the American beaver (Castor 

canadensis) and the Eurasian beaver (Castor fiber) (Müller-Schwartze, 2011). C. canadensis has 

existed in North America since the Pleistocene (2.588 million ± 12,000 years) and has been the 

only extant beaver on the continent since the Holocene (12,000 ± present) (Müller-Schwartze, 

2011). C. canadensis occupies most of the continent, apart from arctic tundra regions, 

southwestern deserts, and peninsular Florida (Baker & Hill, 2003). C. canadensis are ecosystem 

engineers as they modify wetland habitats by building predator-resistant dams and lodges in 

watercourses (Müller-Schwartze, 2011). C. canadensis adults range from 40-50lbs and are 

adapted with distinct characteristics that aid in their functioning, such as a waterproof fur pelt, 

large incisors adapted to gnaw and fell trees, hand-like front feet, webbed back feet, and a flat, 

scaly tail to balance on land, steer when swimming, and use as a noise-diversion defense 

technique (Müller-Schwartze, 2011). C. canadensis live in colonies with sizes averaging 4 

individuals in northern regions to 8 in southern regions, though this is dependent on habitat 

quality, as some populations in notably poor-quality habitat are known to have fewer kits than 

those in higher quality habitat (Müller-Schwartze, 2011).  
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C. canadensis are a semiaquatic mammal and depend on an interface of both suitable 

aquatic and terrestrial habitats, called the riparian zone (Wang et al., 2019). Riparian areas in the 

C. canadensis species range vary greatly across the continent, in the types of watercourses, 

topography, and vegetation present, though C. canadensis will consistently thrive among diverse 

riparian vegetation of many compositions (Müller-Schwarze, 2011). C. canadensis dam 

structures are built out of riparian materials such as felled trees, sticks, stones, mud, and grass 

(Wright et al., 2002; Müller-Schwartze, 2011).  

While C. canadensis are capable of modifying stream flow, water level, and hydrology 

once a dam has been established, certain hydrologic characteristics of watercourses need to be 

present to establish a colony (Touihri et al., 2018). These watercourses must be sufficient in 

supplying year-round swimming, and safety from predators within their dams (Müller-Schwarze, 

�������EXW�QRW�EH�³WRR�GHHS´�WR�LQKLELW�FRQVWUXFWLRQ��6ORXJK�& Sadleir, 1977). Watercourses must 

not have extreme water level fluctuations, which flood or damage dam structures (Slough & 

Sadleir, 1977; Allen, 1983; Müller-Schwarze, 2011). Similarly, watercourses classified as 1st to 

4th order by Strahler (1957) are preferred, as increasing flow order can damage dams (Touihri et 

al., 2018). Lastly, streams and rivers are preferred, rather than lakes, as these provide an 

opportunity for increased aquatic vegetation and are conducive to protecting dam structures from 

wave action (Allen, 1983). 

C. canadensis are a central place forager, operating out of their lodges to gather food and 

materials, as travelling far distances from their lodges to forage expends energy and exposes 

them to predation risk (Müller-Schwartze, 2011). C. canadensis will travel to forage in both the 

aquatic habitat and terrestrial areas surrounding their dams up to 100 m from the shoreline 

according to Donkor & Fryxell (2000) and up to 200 m from the water according to Allen (1983) 

which depends on their specific dam site, surrounding river valley, and food sources (Allen, 

1983). However, Müller-Schwarze (2011) summarized the findings of many studies, suggesting 

that determinant food sources should grow within 30 m from occupied watercourses. 

Discrepancies likely exist due to site characteristics and forest variability across their continental 

range. While C. canadensis are known to travel between 100 - 200 m from a watercourse for 

food, dams are likely to be located within 30 m of determinant food sources (Müller-Schwarze, 

2011).   
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As a sentinel species of the wetland environment, C. canadensis modify the landscape to 

suit their niche requirements and subsequently provide essential functions and services to other 

biodiversity. While C. canadensis dams and lodges are created to act as a residence, these dams 

alter the ecosystem to create deep µIORZDJH�ponds¶, which reduce water velocity and increase the 

water level, which subsequently increases food supply from the growth of riparian and wetland 

vegetation (Larsen et al., 2021). There are a variety of ecosystem services that are impacted by 

this construction (Naiman et al., 1988). Larsen et al. (2021) summarizes a few of these impacts, 

including the ability of these dams to alter hydrology, increase nutrient and water resident times, 

sequester carbon, increase nutrient sinks, provide lotic and lentic habitat transitions, increase 

primary production, promote aquatic habitat, increase biodiversity, and increase habitat 

complexity (Larsen et al., 2021). Jordan & Fairfax (2022) note how local flooding restores 

floodplains, which promote heterogenous water temperatures and extreme climactic event 

resilience, such as that from fire, drought, and flooding (Jordan & Fairfax, 2022).  

C. canadensis rely on unique riparian vegetation and tree species for food, though the 

primary sources of food differ depending on seasonal availability and region (Baker & Hill, 

2003; Müller-Schwarze, 2011). A commonality among all C. canadensis individuals is that their 

primary consumed foods are deciduous trees, aquatic plants, and shrubs, additionally felling trees 

and seedlings to create their dams (Baker & Hill, 2003). Seasonal variation in diet includes a 

tendency towards herbaceous plants in their active growing seasons, and woody bark (the 

cambium layer) in the winter months (Baker & Hill, 2003). It is not only species present, but the 

composition of vegetation groundcover which has been identified as an indicator of C. 

canadensis damming sites (Dieter & McCabe, 1989; Müller-Schwarze, 2011). C. canadensis are 

EHVW�GHVFULEHG�DV�D�³SLFN\�JHQHUDOLVW´�VSHFLHV�DV�WKH\�FDQ�H[LVW�LQ�D�ZLGH�UDQJH�RI�HQYLURQPHQWDO�

conditions throughout their expansive range; however, there are consistent preferences 

throughout this range (Müller-Schwartze, 2011). The presence of wetland and riparian habitat 

suitable for dam-building, and the presence of forest composition and vegetation for 

consumption are the primary drivers of habitat selection (Müller-Schwartze, 2011; Touhiri et al., 

2018). However, the specific niche requirements of C. canadensis are disputed, as the range of 

suitable conditions differ by region. 

 



   
 

  10 
 

2.3 Previous modelling efforts 

In the search of Biological Abstracts and SCOPUS, there were no SDMs for C. 

canadensis. The search of ScienceDirect yielded one study of habitat preferences and forage 

selection of C. canadensis, Mahoney & Stella (2020). As few studies were found in this direct 

search, those referenced specifically as past modelling efforts in Müller-Schwartze (2011), a C. 

canadensis ecology textbook, were investigated. These ten studies were organized by year, and 

their locations, model method, and categories of covariates included were compiled (Table 2.1). 

Table 2.1 Studies identified in literature review to have used deterministic covariates to model C. 
canadensis distribution in North America. Covariate Category code: GM = geomorphologic 
characteristics; FVC = vegetation composition; HF = human footprint; OTHER = another variable not 
included in GM, FVC, or HF.  

Study   Location   Model Type  Covariate Category  
GM  FVC  HF  OTHER  

Allen (1983)   Colorado   Habitat Suitability 
Index Model   

X X X X 

Howard & Larson 
(1985)   

Massachusetts   Stream Habitat 
Classification   

X X X X 

Beier & Barrett 
(1987)   

Nevada & 
California   

Stepwise Logic 
Regression   

X X 
 

X 

McComb et al. (1990)   Oregon   Habitat Suitability 
Model   

X X 
  

Cotton (1990)   Quebec   Linear Regression 
Model   

X X X X 

Barnes & Mallik 
(1997)   

Ontario   Dam Abundance 
Model   

X X 
  

Suzuki & McComb 
(1998)   

Oregon   Habitat Classification 
Model   

X 
   

Curtis & Jensen 
(2004)   

New York   Stepwise Logistic 
Regression   

X X X X 

Mumma et al. (2018)   British Columbia   Multinomial Logistic 
Regression Model   

X 
 

X X 

Mahoney & Stella 
(2020)   

New York   Mixed-effect Logistic 
Regression Model   

 
X 

  

 

 The individual modelling efforts had significant variations in environmental predictor 

covariates, model type used, and region of study (Table 2.1). Most studies were conducted in the 

United States, whereas only three were conducted in Canada (Table 2.1). While the study design 

depends on the goals of the study, different designs, model types, input covariates, and regional 

habitat variability have led to inconsistencies regarding the drivers of C. canadensis distribution. 

Nine of the ten studies reviewed included geomorphological characteristics, eight included forest 
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vegetation composition characteristics, and five included some type of human footprint variable 

(Table 2.1). Six included another covariate exclusive of these categories, such as wolf 

populations in Mumma et al. (2018), or stream substrates in Curtis & Jensen (2004). There was 

extensive variation in how each covariate was represented, which influences the conclusions 

which can be drawn when comparing study results.  

In addition to the models reviewed in Table 2.1, a review paper by Touhiri et al. (2018) 

summarized ten modelling studies, some of which were excluded from this literature review, 

which identified important factors influencing C. canadensis distribution in past efforts. Among 

these studies, environmental covariates included home range size, forage distance, watercourse 

type, stream order, stream gradient, stream size and depth, watershed size, valley width, substrate 

type, riparian slope, deciduous species, tree stem diameter, fire and anthropogenic features 

(Touhiri et al., 2018). A second review paper by Dittbrenner et al. (2018) summarized ten 

modelling studies with three commonalities with those from Touhiri et al. (2018). The common 

covariates regarding geomorphology were valley width, stream length, stream gradient, stream 

depth, steam width, bank slope, stream substrates, stream order, and basin size (Dittbrenner et al. 

2018). The forest characteristics studied included vegetation composition, vegetation density, 

canopy cover, canopy height, stem diameter, habitat and vegetation area, and a shoreline 

development ratio (Dittbrenner et al., 2018). We can gather from these major findings that the 

primary covariates used to model C. canadensis distribution in previous efforts have used a 

combination of geomorphological and forest vegetation composition conditions. 

This section will explore the findings of these past modelling efforts for the C. 

canadensis to highlight the importance of small-scale studies based on a robust understanding of 

species ecology to understand local factors that influence population distribution. 

2QH�RI�WKH�HDUOLHVW�DWWHPSWV�WR�µPRGHO¶�C. canadensis habitat was conducted by Atwater 

(1940) in Montana to determine C. canadensis distribution using environmental and topographic 

variables. These initial qualitative studies provided the groundwork for Allen (1983) to produce a 

quantitative habitat suitability index model to investigate habitat associations in British 

Columbia. Allen (1983) found positive trends with C. canadensis occurrence and shrub 

characteristics, tree diameter at breast height, water lily, and woody vegetation dominated by 

aspen, willow, cottonwood or alder. Allen (1983) found a negative trend between occurrence and 
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stream gradients higher than 6%. Studies alike since then have progressed from qualitative 

studies and have quantitatively investigated relationships between C. canadensis and 

geomorphologic, forest, and other environmental characteristics (e.g., Howard & Larson, 1985; 

Beier & Barrett, 1987; Suzuki & McComb, 1998).  

 Watercourse characteristics, such as hydrology, stream width, bank slope and stream 

gradient have been recognized to be influential in C. canadensis distribution (e.g., Suzuki & 

McComb, 1998; Curtis & Jensen, 2004; Touhiri et al., 2018; Dittbrenner et al., 2018). Stream 

width is a geomorphologic characteristic of watercourses which has been found to be a 

determinant of C. canadensis dam locations; however, specific widths differ by location of 

population sampled. A summary of findings across the continent found that C. canadensis prefer 

to build dams in streams over 1.4 m wide, with a preference for 8 m in width (Müller-Schwarze, 

2011). However, Suzuki & McComb (1998) found that C. canadensis colonies in their small-

scale studies tended to prefer watercourse widths of 4±6 m or less (Suzuki & McComb, 1998). 

Müller-Schwarze (2011) compiled an average of studies across the continent, whereas Suzuki & 

McComb (1998) studied specific subpopulations.  

As described in Baldwin (2013), many previous studies which have investigated bank 

slope as a determinant of C. canadensis site selection found that increasing steepness of the 

riverbank was negatively correlated with occurrence, although there is no distinct number 

highlighting the preferable or intolerable slope. While baseline geomorphologic factors influence 

the first establishment of a dam in a specific watercourse, specific ranges governing local 

populations are dependent on available habitat.  

 Stream gradient has been commonly investigated and found to be a significant driver of 

C. canadensis occurrences in most models (e.g. Allen, 1983; McComb et al., 1990). C. 

canadensis generally tend to prefer low stream gradients (Howard & Larson, 1985; Beier & 

Barret, 1987). According to a study conducted in Drift Creek Basin, Lincoln County, Oregon by 

Suzuki & McComb (1998), a 3% gradient is optimal, and no dams were recorded on 

watercourses with a 10% gradient or higher. However, Retzer et al. (1956) reported that 68% of 

studied C. canadensis colonies in Colorado were situated on streams with a gradient of less than 

6%, and that gradients up to 14% were habitable. Increasing stream gradient tends to have a 
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negative influence on C. canadensis occurrence, though specific grade ranges and impacts 

depend on the location studied and stream gradients available.  

Watercourse valley width has been investigated in previous models (e.g. McComb et al., 

1990; Cotton, 1990; Suzuki & McComb, 1998). Generally, a wider valley provides more suitable 

habitat for C. canadensis (McComb et al., 1990; Cotton, 1990; Suzuki & McComb, 1998; 

Touhiri et al., 2018). It is suggested that this preference is due to narrow valleys providing poor 

support for the vegetation that are the primary food sources of C. canadensis, such as poplar, 

willow, alder, and birch (Northcott, 1964). While wider watercourse valleys are generally 

accepted to be preferable, there is discrepancy in the specific widths which are most suitable. C. 

canadensis tend to prefer to build in watercourses where the valley width is greater than 10m 

(Suzuki & McComb, 1998). However, McComb et al. (1990) found that the valleys occupied by 

C. canadensis had a mean width of 13.5m, which contrasts the latter Suzuki & McComb (1998) 

findings which found a mean width of 22.7m. While specific widths are not consistent among 

populations studied, there is a positive trend of C. canadensis sites and wider valleys, likely 

associated with habitable conditions for tree species of interest (Northcott, 1964).  

The preferred food sources of C. canadensis differ by regional availability, from willow 

stands, to brush, to southern beech, to pine in rare cases depending on the forest composition 

(Müller-Schwarze, 2011). In a study by Aleksiuk (1970) on C. canadensis diets in the Mackenzie 

Delta, NWT, it was found that preferred food sources during growing seasons were the foliage of 

willow, whereas in the winter months, the bark of willow, poplar, and alder were the primary 

source of protein and calories (Aleksiuk, 1970; Baker & Hill, 2003���&RQWUDU\�WR�$OHNVLXN¶V�

findings, when aspen and poplar are present and abundant, these species are more desirable than 

willow (Jenkins, 1981; Baker & Hill, 2003; Müller-Schwarze, 2011). A commonality of these 

trees is that they are hardwoods, with easy bark to peel off and can be gnawed with ease (Müller-

Schwarze, 2011). In Ontario, a study was conducted which provided food sources to C. 

canadensis, which concluded that the primary dietary preference was aspen, water lily, 

raspberry, alder, and red maple, of the species provided (Doucet & Fryxell, 1993). The least 

preferred sources of food are conifers, with resiny bark, such as pine and spruce (Müller-

Schwarze, 2011). Primary food sources for C. canadensis in Novak (1987) found that preferred 

vegetation included a variety of riparian plant species, such as water lily, grasses, cattails, rushes, 
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and other herbaceous species; however, deciduous woody plants are the primary limiting food 

source that determines suitable habitat (Grinnell et al., 1937; Baker and Hill, 2003). Generally, it 

is accepted that hardwood tree species and woody vegetation provide a better source of food than 

softwood species. 

Due to the variability in diet among populations, perhaps hydrologic and geomorphologic 

factors are better determinants of C. canadensis occurrence rather than variables which are 

associated with diet (Jenkins, 1981). In a following study by Beier & Barrett (1987), it was found 

that stream depth, stream gradient and stream width were the most important factors related to 

habitat use, which is consistent with many of the findings from Allen (1983). In both Jakes et al. 

(2007) and Lapointe St-Pierre et al., (2017), it was noted that the specific characteristics of 

riparian vegetation in a study area are difficult to represent without field data and are 

consequently difficult to use in predictive models (Franklin, 1995). Based on previous studies of 

the preferred C. canadensis diet, woody deciduous species can define C. canadensis habitat 

depending on regional species and local availability but are less effective at determining habitat 

than geomorphologic factors. 

Lastly, several studies investigated covariates related to human influence on C. 

canadensis distribution (Table 2.1). One study found a positive relationship between 

anthropogenic features, such as culverts, and C. canadensis occurrence, where C. canadensis 

were likely to construct a dam blocking small culverts due to the opportunistic watercourse 

constriction (Curtis & Jensen, 2004). Contrary to this finding, Allen (1983) found a negative 

relationship between a shoreline development ratio and C. canadensis occurrence. As the 

impacts of the human footprint come in many forms, their studied impacts on distribution differ 

by region and study design. 

 

2.4 Species distribution modelling 

In the field of ecology, SDMs are a practical tool which can be used to understand 

species distributions across large spatial scales which can help understand the impact of climate 

change on species distributions, direct conservation resources, and understand species habitat 

associations (Guisan & Zimmerman, 2000; Elith et al., 2010; Yackulic et al., 2013). SDMs apply 
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ecological niche theory, as they predict distribution based on the relationship between known 

occurrences and environmental conditions at those locations (Austin, 2007; Westwood, 2016; 

Lee-Yaw et al., 2022). An underlying assumption of SDMs is that the input occurrence data 

represents species in suitable habitat conditions (Westwood, 2016). SDMs can therefore predict 

distribution across a landscape, based on the composition of suitable habitat found at known 

occurrence points (Guisan & Zimmerman, 2000). Many SDM methods use different input data 

types, algorithms, and software; therefore, method selection differs based on available inputs, 

desired outputs, and intended applications (Westwood, 2016). 

Maxent is an open-source SDM method which is advantageous when compared to other 

techniques as it only requires species presence data, rather than systematically collected 

presence-absence data to generate a model with good predictive performance (Phillips et al., n.d.; 

Phillips et al., 2006; BCCVL, 2021). Maxent has proven success with modelling presence-only 

species records as the software uses randomly generated pseudo-absence background points to 

VDPSOH�HQYLURQPHQWDO�FRQGLWLRQV�LQ�µXQVXLWDEOH¶�KDELWDW��(OLWK�HW�DO����������(DFK�RFFXUUHQFH�

point is assumed to represent the ecological composition of the realized niche of a species, 

whereas those at background pseudo-absence points ideally represent that which is less suitable 

(Phillips et al., 2006). Maxent requires an understanding of the species ecology to select 

determinant environmental covariates, which are ideally sourced from multiple lines of evidence 

(Araújo et al., 2019), as it operates under the assumption that determinant covariates are not 

omitted from the model (Guisan & Zimmermann, 2000; Yackulic et al., 2013). Maxent applies 

the theory of maximum entropy to predict probability of species occurrence across a geographic 

landscape (Phillips et al., 2006). The program predicts probability of occurrence with the most 

uniform distribution (the maximum entropy), while satisfying known constraints which are based 

on the difference of environmental conditions at the presence and background points (Phillips et 

al., 2006). While SDM methods which incorporate known absences (presence-absence data) 

generally show higher performance accuracy than MD[HQW¶V�SUHVHQFH-only methods, these 

methods were not applicable due to the presence-only data available in the province (Phillips et 

DO���������:HVWZRRG���������0D[HQW¶V�XVHU-friendly interface deems it an effective modelling 

tool for this application due to the presence-only data available, the ease of use, and the programs 

demonstrated robustness (Philips et al., 2004; Phillips et al., 2006; Elith et al., 2010; Yackulic et 

al., 2013). 
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There have been many studies which investigated the species distribution, or habitat 

suitability of C. canadensis across their continental range (Table 2.1). Most notably, this review 

highlighted how specific geomorphologic and forest composition factors influencing one local 

population may not be determinant of the distribution of another population, due to C. 

canadensis being a generalist species and the variation in habitat throughout North America 

(Müller-Schwarze 2011). Therefore, as no study has been conducted in any province within 

Atlantic Canada, it is currently not understood which factors in Nova Scotia drive C. canadensis 

distribution. As Nova Scotia is home to the unique Wakanaki-Acadian Forest, there is a need to 

study C. canadensis distribution within this region to understand their specific local habitat 

associations. Aside from their national significance and ecological integrity, augmenting this 

poor data can aid future modelling and conservation efforts within the province, and help to 

reflect the complexities of current ecosystems for future studies (Boakes et al., 2010; UINR, 

2022). This study will be the first to use the Maxent to understand which covariates influence C. 

canadensis distribution in Nova Scotia. 
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CHAPTER 3 - METHODS  

3.1 Study area 

The study area I used to investigate C. canadensis-environment interactions is Nova 

6FRWLD��DQ�HDVWHUQ�FRDVWDO�SURYLQFH�LQ�&DQDGD��)LJXUH�������1RYD�6FRWLD�LV�VLWXDWHG�LQ�0L¶NPD¶NL��

WKH�XQFHGHG�WUDGLWLRQDO�WHUULWRU\�RI�WKH�0L¶NPDT�SHRSOH��7KH�SHQLQVXODU�SURYLQFH�LV�MRLQHG�WR�

North America by a thin stretch of land called the Chignecto Isthmus (Figure 3.1). Climactically, 

1RYD�6FRWLD�LV�LQ�WKH�$WODQWLF�0DULWLPH�(FR]RQH��PHDQLQJ�WKH�SURYLQFH¶V�SUR[LPLW\�WR�WKH�QRUWK�

Atlantic Ocean yields moderate average winter and summer temperatures, with mean annual 

temperatures between 5°C and 7°C (NSMNH, n.d.; Ecological Stratification Working Group, 

1995). The coastal nature of the province similarly influences precipitation, producing mean 

annual precipitation levels of 900 mm inland and 1500 mm in coastal areas (NSMNH, n.d.). 

1RYD�6FRWLD¶V�WRWDO�ODQGFRYHU�LQFOXGHV�RYHU�����PLOOLRQ�KHFWDUHV�RI�ERWK�ODQG�DQG�IUHVKZDWHU�

(NSDNR, 2008). In 2016, a landcover inventory of the province found the dominant landcover 

was forests (75.8%), followed by natural non-forested (7.8%), agriculture (4.9%), inland water 

(4.2%), wetlands (2.9%) and other combined anthropogenic cover composed the remainder 

(NSDNR���������1RYD�6FRWLD¶V�GRPLQDQW�IRUHVW�W\SH�LV�WKH�:DEDQDNL-Acadian Forest, a 

temperate forest ecosystem with a unique mix of coniferous and deciduous tree species, which 

contrasts the boreal forest, dominating most other Canadian provinces (Ecological Stratification 

Working Group, 1995; NSDNR, 2017).   
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Figure 3.1 Study area for the Maxent modelling of the American beaver (Castor canadensis) in Nova 
Scotia, Canada. An inset map highlights the location of the province as it connects to Eastern North 
America. 
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3.2 Occurrence data 

C. canadensis is a common and unthreatened species in Nova Scotia, and to our 

knowledge has not been a subject of deliberate, systematic searches for the purpose of recording 

occurrences, abundance, or occupancy. The occurrence data used in this study was a combination 

of 375 research grade occurrence points from iNaturalist (iNaturalist, 2022), and 39 occurrence 

points from Atlantic Canada Conservation Data Center (AC CDC) (AC CDC, 2022), which 

yielded a combined 414 occurrence points. iNaturalist relies on citizen-scientists to capture 

species occurrence records, and the AC CDC dataset included haphazard logged C. canadensis 

occurrences when conducting field work for other species (iNaturalist, 2022; AC CDC, 2022). 

All research grade iNaturalist points in Nova Scotia as of November 1, 2022, were used, logged 

between 2008-2021 (iNaturalist, 2022). The AC CDC dataset had a total of 131 occurrence 

records in Nova Scotia as of October 2022; however, many of these records were not 

georeferenced (AC CDC, 2022). There were 39 datapoints of the original 131 with sufficient 

information to be manually georeferenced by searching for and assigning the provided location a 

coordinate, resulting in a final dataset of 414 aggregated occurrences (Figure 3.2). 

 

Figure 3.2 The location of the aggregated occurrence data points for the Maxent modelling of the 
American beaver (Castor canadensis) in Nova Scotia, Canada. 
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3.3 Environmental covariate group data layer  

The literature review of C. canadensis ecology and previous SDM efforts for modelling 

this species informed the selection process of environmental covariates which were best able 

characterize niche habitat from available geospatial data. Of the ecologically-relevant covariates 

identified and those of known importance in previous modelling efforts, the covariates were 

included if they were both relevant to the Nova Scotian landscape and if there was an open-

source spatial dataset available covering the full extent of the study area to reliably represent the 

habitat feature of interest.  The spatial datasets used to generate these spatial layers are 

summarized in Table 3.1. 

Table 3.1 Spatial datasets used to create the environmental covariate group data layer and 
subsequent Maxent SDM for the American beaver (Castor canadensis) in Nova Scotia, Canada.  

Spatial Dataset  Brief Description   Year   Resolution   Citation   

Nature Conservancy 
Canada Stream 
Classification Layer v 
2.0  

Freshwater classification of stream 
characteristics.  

2019   Vector 
(Line)  

Millar et al. 
(2019)  

Nova Scotia 
Enhanced Digital 
Elevation Model v 2.0  

Hydrologically corrected 20m 
resolution digital elevation model.   

2006   20m    Nova Scotia 
Department of 
Natural 
Resources 
(2006)  

Nova Scotia Forest 
Inventory   

Aerial photography interpretations 
of forest characteristics. Interpreted 
and digitized from 1:10,000 air 
photos.   

1992-
2021   

Vector 
(Polygon)  

 NSDNR 
(2021)  

Nova Scotia 
Hydrographic 
Network   

Watercourse characteristics, type, 
and locations.   

2022   Vector 
(Line)   

Service Nova 
Scotia and 
Internal 
Services 
(2020)  

Statistics Canada 
Nova Scotia Census 
Files  

Provincial boundary shapefiles.    Vector  
(Polygon)  

Statistics 
Canada 
(2021)  

The Canadian Human 
Footprint Index   

Quantification of human pressures 
on terrestrial ecosystems.   

2022   300m   Hirsh-Pearson 
et al. (2022)  
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While the literature review of previous modelling efforts identified an extensive list of 

covariates which have been used to model C. canadensis distribution, many were not included in 

this study. Many geomorphological covariates such as stream order and stream depth were not 

able to be included due to a lack of available data in the province, whereas others such as bank 

slope were not included due to the 300 m2 spatial resolution of this study as this would not 

effectively represent the species-environment interaction at a generalized scale. The Nova Scotia 

Forest Inventory (NSFI) is the best classified forest data available in the study area, though the 

temporal range of data included in the dataset spans nearly 30 years, and the forest characteristics 

included are limited (NSDNR, 2021). Forest stands dominant with a specific tree species, and 

specific forest types (e.g., hardwood, mixedwood) were considered to be more effective at 

representing the foraging habits of C. canadensis than covariates such as canopy height, as 

canopy height was perceived to change more over time than dominant tree species in a forest 

stand. Additionally, many covariates such as vegetation density and stem diameter are not 

included in the NSFI and were therefore not included. Jenkins (1981) identified that perhaps 

vegetation composition is not as strong of a determinant of distribution when compared to 

watercourse characteristics; however, foraging habits and the availability of preferred food 

sources are intrinsic to species niche requirements, and therefore these species-environment 

relationships were included, as there were relevant interactions which could be captured with the 

data available.  

There were 25 candidate covariates generated for the SDM (Appendix A). There were 

two distinct categories of covariates created. Firstly, there were forest-specific covariates, 

including specific deciduous species of known nutritional value, and forest composition types. 

Secondly, there were geomorphological covariates, including watercourse characteristics and 

elevation. The extraction of each covariate layer was done in ArcGIS Pro Version 2.9.5 (ESRI 

Inc., 2021). The categorical data layers from the Nature Conservancy Canada Stream 

ClasVLILFDWLRQ�/D\HU�Y������1&&6&��ZDUUDQWHG�WKH�XVH�RI�WKH�µ(XFOLGHDQ�$OORFDWLRQ¶�WRRO�DV�DQ�

extraction method, which provides a value for each raster cell of the closest category (Appendix 

A) (ESRI Inc., 2021). Continuous data layers from the Nova Scotia Hydrographic Network 

(NSHN) and the NSFI UHTXLUHG�H[WUDFWLRQ�XVLQJ�WKH�µ(XFOLGHDQ�'LVWDQFH¶�WRRO��ZKLFK�SURYLGHV�D�

value for each raster cell of the distance to the attribute of interest (Appendix A) (ESRI Inc., 

2021). Continuous data layers from the Canadian Human Footprint Index (CHFI), and the Nova 
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Scotia Enhanced Digital Elevation Model (DEM) required resampling but no extraction 

(Appendix A) (ESRI Inc., 2021). 

To ensure that each extracted covariate which composed the environmental covariate 

group data layer was congruent, the covariate layers were constructed using a 300m spatial 

resolution, as this was the cell size of the coarsest input layer, and reduced computational 

processing requirements (Hirsh-Pearson, 2022). Each data input was converted to the uniform 

projection: NAD83 UTM Zone 20N (Seely, 2011). In ArcGIS Pro, each input layer was 

projected to the uniform projection, extracted, masked, and snapped to a 300m raster delineating 

Nova Scotia (ESRI Inc., 2021). Specific details regarding how each covariate was extracted can 

be found in Appendix A.  

Several of the 25 candidate environmental covariates generated had correlations, where 

cell values in one covariate layer had a relationship to the equivalent cell in another covariate 

layer (ArcGIS, n.d.). The correlation between the environmental covariates increases the 

similarity of the inputs into the model, which limits the assessment of each covariate's predictive 

capacity and contribution (Phillips et al., 2017). A correlation matrix was executed in ArcGIS 

3UR�XVLQJ�WKH�µ%DQG�&ROOHFWLRQ�6WDWLVWLFV¶�WRRO��$SSHQGL[�%��ZKLFK�SURGXFHG�D�WDEOH�RI�3HDUVRQV�

R correlation coefficient values between each raster layer (ArcGIS, n.d.; ESRI Inc., 2021). The 

output of the correlation matrix provided values from ±1.0 to +1.0, where layers which had 

absolute values greater than 0.7 were considered strongly correlated, and values between 0.4 and 

0.7 were considered moderately correlated (e.g., Baker, 2022). The less ecologically important 

covariate, as determined based on known life history for C. canadensis, was removed among 

strongly correlated layers. The implications of moderate correlations were considered, and the 

less ecologically relevant covariate was removed, if needed (e.g., Baker, 2022).  

Environmental covariates with strong correlations (greater than |0.7|) included Balsam 

Poplar and Willow (r = 0.99), Gradient (Complex) and Gradient (Simple) (r = 0.97), Black 

Cherry and Balsam Poplar (r = 0.91), Black Cherry and Willow (r = 0.89), and Black Cherry and 

Gray Birch (r = 0.72) (Appendix B). Balsam Poplar, Willow, and Black Cherry were correlated 

due to sparse coverage as these layers were built with 31 or fewer polygons where these species 

had 60% dominance or higher (NSDNR, 2021). These layers were all removed due to their 

perceived lack of influence on site selection on a landscape scale and their high correlations. 
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Gradient (Complex) and Gradient (Simple) had a strong correlation, as they are different 

classifications of the same data (Millar et al., 2019) (Appendix B). Gradient (Simple) was 

removed to retain more information about how gradient influences site selection. 

Environmental covariates with moderate correlations included Tidal, Alkalinity, Temp, 

Size, and Gradient (Complex), which were generated from the same source dataset (Table 3.1), 

and each had moderate correlations among each other (Appendix B). Tidal, Alkalinity, and Temp 

were removed due to having the highest correlations and being less ecologically relevant than 

Size (Complex), and Gradient (Complex) (Müller-Schwarze, 2011; Touhiri et al., 2018). Ash and 

Gray Birch were moderately correlated (r = 0.67), where Ash was removed due to having 

separate moderate correlations between Red Maple and Red Oak (Appendix B). Mixedwood and 

Hardwood were moderately correlated (r = 0.62), where Mixedwood was removed due to being 

less ecologically relevant than hardwood species (Müller-Schwarze, 2011, Touhiri et al., 2018). 

Sugar Maple and Yellow Birch were moderately correlated (r = 0.56), where Sugar Maple was 

removed due to being less ecologically relevant than birch species (Müller-Schwarze, 2011; 

Touhiri et al., 2018) (Appendix B). White Birch and Yellow Birch, Brush and Alder, and 

Elevation and Human Footprint all had correlation values between 0.4 and 0.45 but were 

regarded as ecologically significant enough for the purposes of this study to remain in the 

environmental covariate group data layer (Appendix B). 

Overall, an evaluation of the correlation matrix resulted in the removal of Balsam Poplar, 

Willow, Black Cherry, and Gradient (Simple), Tidal, Alkalinity, Temp, Ash, Mixedwood, and 

Sugar Maple. There were 25 candidate covariates developed for this modelling effort, and after a 

process of correlation analysis, there were 14 remaining (Table 3.2). 
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Table 3.2 Environmental candidate covariates used as initial inputs to model species distribution for 
the American beaver (Castor canadensis) in Nova Scotia, Canada.  

Data Source Covariate Rationale Attribute of 
Interest 

Extraction 
Method 

Layer Type 

NCC Stream 
Classification 
Layer v 2.0  

Gradient 
(Complex)  

Beavers tend to 
build dams in a 
specific range of 
gradients.    

Grad_Comp    Euclidean 
Allocation    

Categorical 
(7 classes)    
     

  Size 
(Complex)   

Larger streams 
support increased 
vegetation.   

Size_Comp   Euclidean 
Allocation    

Categorical  
(6 classes)  

NS Enhanced 
Digital 
Elevation 
Model   

Elevation    Influence on dam 
site suitability and 
vegetation.   

Elevation    Resample 
(Cubic) 

Continuous    

NS Forest 
Inventory    

Alder    Distance to 
food/materials.    

FORNON38 
FORNON39   

Euclidean 
Distance    

Continuous   
  

 Aspen     Distance to 
food/materials. 
including Large 
Tooth and 
Trembling Aspen.    

TA   Euclidean 
Distance    

Continuous   
  

 Brush    Distance to 
food/materials.    

FORNON33    Euclidean 
Distance    

Continuous   
  

 Gray Birch    Distance to 
food/materials.    

GB    Euclidean 
Distance    

Continuous   
  

 Hardwood    Distance to 
hardwood stand.   

FORNON 8     Euclidean 
Distance    

Continuous   
  

  Red Maple    Distance to 
food/materials.    

RM    Euclidean 
Distance    

Continuous   
  

  Red Oak    Distance to 
food/materials.    

RO    Euclidean 
Distance    

Continuous   
  

  Softwood    Distance to 
softwood stand.   

FORNON 2    Euclidean 
Distance    

Continuous   
  

  White Birch    Distance to 
food/materials.    

YB    Euclidean 
Distance    

Continuous   
  

 Yellow Birch    Distance to 
food/materials.    

WB    Euclidean 
Distance    

Continuous   
  

NS 
Hydrographic 
Network   

Watercourse    Distance to nearest 
watercourse 
habitat.   

 N/A   Euclidean 
Distance    

Continuous   
  

The Canadian 
Human 
Footprint  
  

Human 
Footprint   

Influence of 
anthropogenic 
disturbance from 
human footprint.    

Cumulative 
Threat Layer   

Resample 
(Bilinear)   

Continuous   
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3.4 Maximum entropy modelling procedure and reverse stepwise elimination 

 Maxent software (Version 3.4.4) inputs include presence-only species occurrence data in 

the form of georeferenced points, and multiple environmental covariate group data layers 

(Phillips et al., n.d.). The latter requires the creation of congruent raster layers, which represent 

species-environment interactions which are proven to influence species distribution, ideally from 

multiple lines of evidence (Araújo et al., 2019). The statistical relationship between the 

occurrence data and environmental covariate group data layer predicts probability of occurrence 

across the landscape, creates species-covariate response curves, and evaluates the importance of 

each covariate in the model output.  

Maxent provides the user with a variety of default and advanced settings to model species 

GLVWULEXWLRQ��3KLOOLSV�HW�DO���Q�G����)RU�WKLV�VWXG\��WKH�GHIDXOW�0D[HQW�RXWSXW�IRUPDW�µFORJORJ¶��RU�

µFRPSOLPHQWDU\�ORJ-ORJ�UHJUHVVLRQ¶�ZDV�XVHG��ZKLFK�SUHGLFWV�SUREDELOLW\�RI�VSHFLHV�RFFXUUHQFH�

across the landscape as an index that ranges from 0.0 to �����7KH�µFORJORJ¶�RXWSXW�IRUPDW�

automatically selects the type of equation (e.g. linear, quadratic, hinge) which best 

mathematically represents the species-covariate relationships (Phillips et al., 2017). The output 

includes a measure of predictive strength for the model called the area under the receiver 

operating characteristic curve (AUC) (Phillips et al., 2017). A model AUC value of 1.0 indicates 

the model has perfect predictive capacity, whereas an AUC of 0.5 indicates that the model is no 

better than random (Phillips et al., 2017).  

To generate each model, each model run was executed using 90% of the occurrence data 

to train the model and the remaining 10% was reserved to test the model. For each model run, 10 

replicate models were produced which each reserved a different 10% of the occurrence data for 

testing. Each model run analysis used a cross validated arithmetic average of 10 replicate 

models. Additionally, a jackknife test was conducted, which measures the importance, relative 

contribution, and influence of each covariate on the AUC (Phillips et al., 2017). To eliminate a 

VXEVHW�RI�WKH�VDPSOH�ELDV�LQ�WKH�RFFXUUHQFH�SRLQW�GDWD�OD\HU��WKH�³5HPRYH�GXSOLFDWH�SUHVHQFH�

UHFRUGV´�RSWLRQ�ZDV�FKHFNHG�LQ�WKH�0D[HQW�VHWWLQJV��7KLV�RSWLRQ�HOLPLQDWHG�VSHFLHV�RFFXUUHQFH�

data within the same 300m2 raster cell, which reduced the impact of the sampling bias which 

stemmed from citizen-science collected occurrence data (Phillips et al., 2017).  
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The default regularization multiplier of 1.0 was used, with 500 maximum iterations, and 

10,000 randomly generated background pseudo-absence points. While adjusting the 

regularization multiplier and number of iterations from the default parameters are known to 

reduce model overfitting, impact the accuracy, and subsequent interpretation of results (Merow 

et al. 2013), the meaningful manipulation of these parameters required external processing and 

the use of supplementary packages beyond the scope of this study (e.g., Baker, 2022). 

Additionally, Merow et al. (2013) highlight how the manipulation of the locations and number of 

randomly generated background sample points can reduce sample bias and impact the accuracy 

of a model; however, the specific best practices are disputed, and the creation of a bias file to 

direct background sample points required external processing using packages which were 

considered out of the scope of this study (Merow et al., 2013). 

After inputting the candidate covariates (Table 3.2) into Maxent, a process of reverse 

stepwise elimination was used to distill the covariate group data layer to create a model with only 

the most deterministic covariates, iteratively removing those which contributed the least to the 

predictive capacity of the model (e.g., Bale et al., 2020; Baker, 2022). Each cross validated 

model run generates AUC statistics for the test and training data as a result of the jackknife test. 

The reverse stepwise elimination process evaluated each model's output, and iteratively removed 

any variables which were worse than random predictors of distribution. This measure was 

evaluated using the jackknife test results of the AUC on test data. For each covariate, the 

jackknife test produces a model output built with only the one covariate, and a model built 

without that covariate, and produces AUC on test data values for each model (Phillips et al., 

2017). The covariates with the least capacity to predict distribution were iteratively removed if 

they had an AUC on test data equal to or less than 0.5, meaning they were worse than random 

predictors. 

The first model run used the whole environmental covariate group data layer and had an 

average test AUC for the replicate runs of 0.81 +/- 0.02. Hardwood had a moderate permutation 

importance of 4.3; however, an analysis of the AUC on test data jackknife results revealed that 

the Hardwood covariate when evaluated individually had an AUC < 0.5, meaning it performed 

no better than random as a predictor for the model. Hardwood was removed from the 
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environmental covariate group data layer for the second model run, to reduce overfitting of the 

model (Phillips et al., 2017). 

The second model run used the environmental covariate group data layer without 

Hardwood and had a lower average test AUC for the replicated runs than the first model run 

(0.80 +/-0.24). White Birch had a low percent contribution and permutation importance; 

similarly, an analysis of the jackknife test results revealed that White Birch on its own had an 

AUC < 0.5, meaning it preformed no better than random as a predictor of occurrence. In this 

model run, Size (Complex) also had a low percent contribution and permutation importance, 

though an analysis of the jackknife test results for the AUC on test data revealed it had a 0.62 

AUC value. Due to Size (Complex) having an AUC > 0.5, this variable was considered 

ecologically valuable to retain, and only White Birch was removed from the environmental 

covariate group data layer for third model run.  

The third model used the environmental covariate group data layer without Hardwood 

and White Birch. This model had an average test AUC for the replicated runs of 0.80 +/- 0.02 

(Appendix C). As each variable had a jackknife AUC test value greater than 0.5, this final suite 

of variables composed the last iteration of the model (Table 3.3). 
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Table 3.3 Final environmental covariates used as inputs to model species distribution for the 
American beaver (Castor canadensis) in Nova Scotia, Canada. 

Data Source Covariate Rationale Attribute of 
Interest 

Extraction 
Method 

Layer Type 

NCC Stream 
Classification 
Layer v 2.0  

Gradient 
(Complex)  

Beavers tend to 
build dams in a 
specific range of 
gradients.    

Grad_Comp    Euclidean 
Allocation    

Categorical 
(7 classes)    
     

  Size 
(Complex)   

Larger streams 
support increased 
vegetation.   

Size_Comp   Euclidean 
Allocation    

Categorical  
(6 classes)  

NS Enhanced 
Digital 
Elevation 
Model   

Elevation    Influence on dam 
site suitability and 
vegetation.   

Elevation    Resample 
(Cubic) 

Continuous    

NS Forest 
Inventory    

Alder    Distance to 
food/materials.    

FORNON38 
FORNON39   

Euclidean 
Distance    

Continuous   
  

 Aspen     Distance to 
food/materials. 
including Large 
Tooth and 
Trembling Aspen.    

TA   Euclidean 
Distance    

Continuous   
  

 Brush    Distance to 
food/materials.    

FORNON33    Euclidean 
Distance    

Continuous   
  

 Gray Birch    Distance to 
food/materials.    

GB    Euclidean 
Distance    

Continuous   
  

  Red Maple    Distance to 
food/materials.    

RM    Euclidean 
Distance    

Continuous   
  

  Red Oak    Distance to 
food/materials.    

RO    Euclidean 
Distance    

Continuous   
  

  Softwood    Distance to 
softwood stand.   

FORNON 2    Euclidean 
Distance    

Continuous   
  

 Yellow Birch    Distance to 
food/materials.    

YB    Euclidean 
Distance    

Continuous   
  

NS 
Hydrographic 
Network   

Watercourse    Distance to nearest 
watercourse 
habitat.   

 N/A   Euclidean 
Distance    

Continuous   
  

The Canadian 
Human 
Footprint  
  

Human 
Footprint   

Influence of 
anthropogenic 
disturbance from 
human footprint.    

Cumulative 
Threat Layer   

Resample 
(Bilinear)   

Continuous   
  

*Human Footprint covariate not used in the ecological model and only used in the human footprint model.  
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3.5 Investigation and validation 

The final suite of covariates in Table 3.3 composed the ecological model output. A 

second model was generated which added the CHFI layer to create a human footprint model. The 

human footprint layer represents factors such as built environments, crops and pastureland, night 

light pollution, population density, resource extraction, forestry, and roads, with their associated 

µWKUHDW¶�YDOXH�VXPPHG�DV an index score (Hirsh-Pearson et al., 2022). This model quantified the 

influence of the human footprint on predicted distribution. The human footprint model was 

generated, and both the output statistics and visual model were compared to the ecological model 

to assess how the distribution changed.   

External datasets are often used as a validation measure for SDMs, which could be 

alternative presence-only data, or newly created data to test whether areas of high predicted 

probability of occurrence had higher species counts than areas of low predicted probability (e.g., 

West et al., 2016; Allen & McMullin, 2019; Smith et al., 2021; Baker, 2022). For C. canadensis 

in Nova Scotia, all available occurrence data points were combined to one occurrence data layer. 

However, a unique advantage to modelling an ecosystem engineer is that C. canadensis modify 

the landscape with their damming activities and create flooded areas known as beaver flowage 

ponds, which in some cases can be seen in aerial imagery (Müller-Schwartze, 2011; NSDNR, 

2021). To use an external dataset to validate the ecological model, a polygon layer representing 

historic beaver IORZDJH�SRQGV�ZDV�XVHG�IURP�WKH�16),��16'15���������7KLV�GDWDVHW�KDV�D�³QRQ-

IRUHVW�FODVVLILFDWLRQ�FRGH´�IRU�µbeaver IORZDJH¶��16'15���������7KLV�FODVVLILFDWLRQ�LV�VHSDUDWH�

IURP�WKH�µZHWODQG¶�FODVVLILFDWLRQ�DQG LQFOXGHV�³DQ\�DUHD�WKDW�LV�RU�KDV�EHHQ�RFFXSLHG�E\�beaver ... 

this designation refers only to the water flowage area or grassy areas created by the beaver GDP�´�

DQG�LV�OLVWHG�DV�)25121�FRGH�µ��¶��16'15��������� 

Beaver flowage polygons were extracted from the NSFI dataset, and four buffers of 

varying distances were created around the polygons, including 100m, 200m, 500m, and 1000m 

(NSDNR, 2021). The original polygons, as well as the four buffer layers were sampled using the 

µ=RQDO�6WDWLVWLFV�DV�7DEOH¶�WRRO�in ArcGIS Pro (ESRI Inc., 2021). These zonal statistics calculated 

the mean and maximum probability of occurrence for each ecological model cell within a 
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flowage polygon and associated buffer. Ideally, if the ecological model output and the flowage 

polygons were complementary, the mean or maximum probability within each polygon would 

have a probability of occurrence greater than the average probability of occurrence across the 

study area. Sampling this dataset revealed whether the model built with recent occurrence data 

predicted occurrence in areas of known historic C. canadensis use. 
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CHAPTER 4 ± RESULTS 

I created two predicted probability of occurrence models for C. canadensis using the 

Maxent algorithm, the aggregated presence-only occurrence points, and the environmental 

covariate group data layer for the specified model. The ecological model revealed the significant 

species-environment interactions driving distribution in Nova Scotia, whereas the human 

footprint model revealed the influence of the human footprint on the predicted distribution. A 

historic layer of beaver flowage was used to sample the ecological model to understand the 

relationship between predicted and historic distribution. 

 

4.1 Habitat associations 

4.1.1 Ecological model 

The ecological model had a relatively high averaged AUC for the replicated runs (0.80 

+/- 0.02) (Appendix C). Generally, an AUC value between 0.7 and 0.8 is considered acceptable, 

an AUC between 0.8 and 0.9 is considered excellent, and an AUC between 0.9 and 1.0 is 

FRQVLGHUHG�µRXWVWDQGLQJ¶��+RVPHU, 1989 in Mandrekar, 2010). The ecological model AUC can 

be considered acceptable-excellent by these standards and is closer to a perfect prediction (1.0) 

than a null model (0.5). A visual representation of the averaged AUC for the ecological model 

can be found in Appendix C. There were 12 environmental covariates used in the ecological 

model which each had varying contributions to the predicted distribution (Table 4.1). The 

variables that collectively had the most permutation importance, explaining over half the 

YDULDQFH�LQ�WKH�PRGHO��ZHUH�µ:DWHUFRXUVH¶����������µ(OHYDWLRQ¶����������µ5HG�2DN¶����������

and µ$VSHQ¶����������7DEOH������ 
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Table 4.1 Percent contribution and permutation importance for twelve environmental covariates 
averaged across 10 cross validated Maxent replicate models, used to predict American beaver 
(Castor canadensis) probability of occurrence in Nova Scotia, Canada. 

Environmental Covariate  Average Percent 
Contribution (%)  

Average Permutation 
Importance (%)  

Watercourse  48.3  26.6  
Elevation  9.2  15.1  
Red Oak  4.3  11.8  
Aspen  9.3  11.4  
Gray Birch  6.5  9.9  
Yellow Birch  4.8  6.8  
Brush  6.8  5.0  
Gradient (Complex)  3.0  4.4  
Alder  1.2  4.3  
Softwood  5.0  3.3  
Red Maple  1.1  1.0  
Size (Complex)  0.7  0.3  
 
 

Based on the covariate response curves in Figures 4.1, 4.2 and 4.3, inferences about the 

strength and type of species-covariate interactions can be deduced. C. canadensis had the highest 

probability of occurrence adjacent to a watercourse (Figure 4.1). This relationship was found to 

be the strongest predictor of occurrence (Table 4.1). The watercourse gradient classes which 

were found to be most favorable were lakes, low gradients, and moderate-high gradients (Figure 

4.2). Additionally, the categorical watercourse size classes which had the highest predicted 

occurrence were small and medium tributary rivers (Figure 4.2). Watercourse gradient had a 

higher permutation importance than watercourse size (Table 4.1). C. canadensis were predicted 

to be most likely to occur in areas of low elevation, as probability of occurrence dropped below 

0.5 at elevations of 200 meters or more above sea level (Figure 4.1). These geomorphological 

covariates had a combined permutation importance of 46.4%, explaining nearly half of the 

variance in the ecological model (Table 4.1). 
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Figure 4.1 Model response curves for the geomorphologic and forest stand type species-covariate 
relationships for the predicted probability of occurrence of American beaver (Castor canadensis) in 
Nova Scotia, Canada. Response curves derived from an arithmetic average of 10 replicate cross 
validated Maxent models.  

 

 

Figure 4.2 Model response curves for the categorical watercourse characteristic species-covariate 
relationships for the predicted probability of occurrence of American beaver (Castor canadensis) in 
Nova Scotia, Canada. Response curves derived from an arithmetic average of 10 replicate cross 
validated Maxent models. 
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Figure 4.3 Model response curves for the tree stand-specific species-covariate relationships for the 
predicted probability of occurrence of American beaver (Castor canadensis) in Nova Scotia, Canada. 
Response curves derived from an arithmetic average of 10 replicate cross validated Maxent models. 
Each panel represents the variation in predicted probability of occurrence as distance increases from 
tree stands dominant at 60% or higher with the listed species. 

 

Forest types and specific species combined accounted for 53.6% of the permutation 

importance of the ecological model, of which brush and softwood stands explained 8.3% (Table 

4.1). C. canadensis were predicted to occur between 0 and 1 km of brush forest stands, as 

predicted occurrence decreased as distance increased between 1 and 5 km (Figure 4.1). They 

were most likely to occur approximately 800m from softwood stands, as predicted occurrence 

decreased for closer and further proximity, indicating that there is likely a preferable forest type 

which exists most often between known C. canadensis presences and softwood forest stands 

(Figure 4.2). Brush stands had a higher permutation importance than softwood stands and 

contributed more to predicted distribution (Table 4.1). 

Specific tree species had a combined permutation importance of 45.3%, which explained 

nearly half of the variation in the distribution (Table 4.1). Predicted occurrence was 

approximately 0.75 adjacent to Alder stands, which remained relatively constant until distance 



   
 

  35 
 

increased to 15 km, where the predicted occurrence increased indefinitely (Figure 4.3). For 

Aspen, predicted occurrence was highest between 0 and 7 km, after which it dropped to nearly 

0.0 at 40 km (Figure 4.3). Red Maple exhibited a similar response, where predicted occurrence 

was very high directly adjacent to these stands, after which it decreased to approximately 0.5 as 

distance increased (Figure 4.3). The probability of occurrence peaked between 1 and 20 km away 

from Yellow Birch, and approximately 40 km away from Gray Birch (Figure 4.3). For Red Oak 

stands, probability of occurrence is highest at 35 km away from these stands and is equal to 0.51 

adjacent to these stands (Figure 4.3). Of the specific tree species included, Alder, Aspen, and 

Red Maple had the highest predicted occurrence directly adjacent to the stands. 

The jackknife test of the AUC on test data shows a comparison between model 

performance using only a specific covariate, and model performance using the environmental 

covariate group data layer without that specific covariate (Table 4.2). The removal of the 

Watercourse covariate from the model would result in the greatest decrease in model AUC and it 

similarly had the highest AUC when considered on its own (Table 4.2). Among the other strong 

predictors were Aspen, Elevation, Gray Birch and Red Oak as the removal of these covariates in 

the model drop the AUC value by 0.01, indicating that these covariates increase the capacity of 

the model to predict test data (Table 4.2). This shows that these five covariates are strong 

predictors in the model, and that their contributions to the model are not explained in the other 

covariate layers. The weakest predictors of distribution when considered on their own were Red 

Maple, Alder, Aspen, Red Oak, and Yellow Birch, with AUC values less than 0.6 when running 

single covariate models (Table 4.2).  
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Table 4.2 The jackknife test results of the area under the receiver operating characteristic curve 
(AUC) on test data for the ecological model of predicted probability of occurrence of American 
beaver (Castor canadensis) in Nova Scotia, Canada. Responses derived from an arithmetic average 
of 10 replicate cross validated Maxent species distribution models. 
Environmental Covariate AUC With Only 

Covariate 
AUC Without Covariate 

Alder  0.57  0.80  
Aspen  0.58  0.79  
Brush  0.63  0.81  
Elevation  0.66  0.79  
Gradient (Complex)  0.61  0.81  
Gray Birch  0.60  0.79  
Red Maple  0.55  0.81  
Red Oak  0.58  0.79  
Size (Complex)  0.62  0.81  
Softwood  0.62  0.80  
Watercourse  0.74  0.77  
Yellow Birch  0.59  0.80  
All Covariates    0.81  
 

4.1.2 Human footprint model 

The human footprint model for C. canadensis in Nova Scotia had a high averaged AUC 

for the replicated runs (0.83 +/- 0.044) (Appendix C). This AUC is between 0.8 and 0.9 and can 

be considered excellent (Hosmer, 1989 in Mandrekar, 2010). There were 13 environmental 

covariates used in the model that had varying contributions to the predicted probability of 

occurrence (Table 4.3). The addition of the human footprint layer resulted in a decrease in the 

SHUPXWDWLRQ�LPSRUWDQFH�RI�µ:DWHUFRXUVH¶�IURP�������LQ�WKH�HFRORJLFDO�PRGHO�WR�������LQ�WKH�

human footprint model (Table 4.1 and Table 4.3)���µ:DWHUFRXUVH¶�KDG�WKH�KLJKHVW�SHUPXWDWLRQ�

importance (22.2%), though the human footprint layer had the second highest (18.8%), which 

superseded the rest of the environmental covariates (Table 4.3). The removal of Aspen, 

Elevation, Gray Birch, Red Oak, Watercourse, and the Human Footprint Index resulted in a drop 

of the AUC on test data (Table 4.4). 
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Table 4.3 Human footprint model percent contribution and permutation importance for 13 covariates 
averaged across 10-cross validated Maxent replicate models used to predict American beaver 
(Castor canadensis) probability of occurrence in Nova Scotia, Canada. 

Environmental 
Covariate  

Average Percent Contribution 
(%)  

Average Permutation Importance (%)  

Watercourse  43.2  22.2  
Human Footprint Index  31.4  18.8  
Gray Birch  3.2  11.7  
Elevation  1.8  9.1  
Aspen  3.9  9.0  
Red Oak  1.8  6.9  
Alder  1.6  6.7  
Yellow Birch  2.4  4.6  
Softwood  4.7  3.3  
Gradient (Complex)  2.5  3.0  
Brush   0.9  2.1  
Red Maple  0.4  1.8  
Size (Complex)  2.2  0.8  
  
 
Table 4.4 Human footprint model jackknife test results of the area under the receiver operating 
characteristic curve (AUC) on test data for the predicted probability of occurrence of American 
beaver (Castor canadensis) in Nova Scotia, Canada. Responses derived from an arithmetic average 
of 10 replicate cross validated Maxent species distribution models.  

Environmental Covariate  AUC With Only Covariate  AUC Without Covariate  
Alder  0.56  0.83  
Aspen  0.58  0.82  
Brush  0.63  0.83  
Elevation  0.66  0.82  
Gradient (Complex)  0.62  0.83  
Gray Birch  0.59  0.82  
Red Maple  0.55  0.83  
Red Oak  0.58  0.82  
Size (Complex)  0.63  0.83  
Softwood  0.63  0.83  
Watercourse  0.74  0.80  
Yellow Birch  0.59  0.83  
Human Footprint Index  0.72  0.82  
With all covariates    0.83  
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Based on the ecological model covariate response curves, each covariate response curve 

generated in the human footprint model exhibited a similar species-environment relationship to 

those identified previously (Appendix C). Alternatively, the human footprint index presented a 

0.28 probability of occurrence at value of 0, meaning that areas with no human footprint had a 

0.28 predicted occurrence (Figure 4.4). The probability of occurrence peaked at an index value 

of approximately 30, with a near-1.0 occurrence (Figure 4.4). Beyond an index value of 30, the 

probability of occurrence dropped to 0.82 (Figure 4.4). This model response curve shows areas 

where the human footprint index value is equal to 30 is where the highest predicted occurrence 

for C. canadensis is, and areas with a human footprint index value of zero are areas of low 

predicted occurrence (Figure 4.4). 

 

Figure 4.4 Model response curve for the human footprint index for the predicted probability of 
occurrence of American beaver (Castor canadensis) in Nova Scotia, Canada. Response curves 
derived from an arithmetic average of 10 replicate cross validated Maxent models. 

 

4.2 Predicted distribution 

%RWK�PRGHOV�XVHG�WKH�0D[HQW�GHIDXOW�RXWSXW�IRUPDW�RI�µFORJORJ¶�RU�µFRPSOLPHQWDU\�ORJ-

log UHJUHVVLRQ¶��ZKLFK�SURGXFHG�D�SUREDELOLW\�RI�RFFXUUHQFH�EHWZHHQ���DQG���IRU�WKH�VWXG\�DUHD�

(Phillips et al., 2017). The spatial distribution of the probability of occurrence for the ecological 

model and the human footprint model are shown in Figure 4.5.  
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Figure 4.5 Comparison of the predicted probability of occurrence of American beaver (Castor 
canadensis) in Nova Scotia, Canada where panel A) ecological model; and B) human footprint 
model, derived by running the ecological model with a resampled cumulative anthropogenic threat 
layer from the Canadian Human Footprint Index. Both models derived from an arithmetic average of 
10 replicate cross validated Maxent models. 
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The ecological model reveals patterns in the predicted distribution of occurrence 

throughout Nova Scotia based on geomorphologic and forest characteristics, shown in Panel A 

(Figure 4.5). In the ecological model, the areas with the highest predicted probability of 

occurrence appear to follow watercourses in a branch-like pattern (Figure 4.5). Large high 

probability areas appear to surround but not include the Halifax peninsula, extending west 

towards Dartmouth, Cole Harbour, and Lawrencetown, and north towards Fall River and Beaver 

Bank (Figure 4.5). A large high probability region follows the Shubenacadie River and nearby 

watercourses towards Cobequid Bay in Minas Basin (Figure 4.5). Kejimkujik National Park is a 

large high probability area which extends southeast towards Greenfield (Figure 4.5). On Cape 

Breton Island, areas of high probability include Tangier Grand Lake Wilderness Area, Lake 

Ainslie, Glace Bay, and Sydney (Figure 4.5). Tatamagouche, northwest of Truro, and the St. 

Croix River which feed into Minas Basin were also high probability areas for C. canadensis 

occurrence (Figure 4.5). Similarly, the areas surrounding the Annapolis River were shown as 

areas with high predicted occurrence (Figure 4.5). 

In the ecological model output, there are large areas where the model predicted very low 

or no occurrence (Figure 4.5). These low or no occurrence areas included the area east of 

Kemptville and the Tobeatic Wilderness Area to the southwestern tip of Nova Scotia, the 

wilderness areas between Shelbourne and Sherbrooke, and the Cape Breton Highlands (Figure 

4.5). 

 In panel B, the human footprint model reveals how the predicted distribution changes 

when the Human Footprint covariate was added (Figure 4.5). In this model, the densest area with 

the highest predicted probability of occurrence appears to surround but not include the Halifax 

peninsula (Figure 4.5). A large high probability region follows the Shubenacadie River towards 

Truro but appears to include fewer tributaries than the ecological model and fewer areas with 

very high predicted occurrence (Figure 4.5). Kejimkujik National Park appears to have moderate 

predicted occurrence, which extends southeast towards Greenfield (Figure 4.5). On Cape Breton 

Island, areas of high probability include Glace Bay, Ingonish and Sydney (Figure 4.5). The areas 

surrounding the Annapolis River were also shown as areas with high predicted occurrence 

(Figure 4.5). 
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The large areas identified as low predicted occurrence in the human footprint model are 

similar to those identified in the ecological model, which the high predicted occurrence areas are 

dissimilar (Figure 4.5). Both model outputs show regions of predicted occurrence >0.5 and areas 

with low or no predicted occurrence in similar regions, seen in the overlap of the location of 

large blue regions (Figure 4.5). However, the extent of high probability of occurrence areas are 

reduced greatly in the human footprint model, seen in the reduction of coverage of areas shown 

in red (Figure 4.5). 

 

4.3 Model validation  

For C. canadensis in Nova Scotia, all available occurrence data were combined to one 

RFFXUUHQFH�GDWD�OD\HU��KRZHYHU��WKH�16),�µbeaver IORZDJH¶�GDWD�OD\HU�ZDV�XVHG�WR�H[WHUQDOO\�

validate the ecological model. The location of the C. canadensis flowage polygons as well as the 

occurrence data layer are displayed in Figure 4.6. 

 

Figure 4.6 Locations American beaver (Castor canadensis) occurrence points used to build the 
Maxent SDM in Nova Scotia, Canada and the location of historic beaver flowage.  
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For this validation analysis, only the ecological model was sampled. The beaver flowage 

polygons are not evenly distributed in the province and have a high visual concentration near the 

northwestern portion of Nova Scotia (Figure 4.6). The occurrence points seem to appear in areas 

in reasonable proximity to beaver flowage polygons, however, C. canadensis flowage polygons 

appear in many areas where there are no occurrence points (Figure 4.6). This comparison shows 

that the areas with no occurrence points (Figure 4.6), the areas of low predicted probability in 

both models (Figure 4.5), and the areas with no or few C. canadensis flowage polygons represent 

similar landscape-scale regions (Figure 4.6). These three regions in the southern tip, northern tip, 

and the wilderness areas between Shelbourne and Sherbrooke have low representation of beaver 

use or predicted occurrence, compared to the rest of Nova Scotia (Figure 4.6).  

Of the 414 occurrence points used in the SDM, only 6 were found within a beaver 

flowage polygon (1.45%) (Table 4.5). Similarly, when a 100 m buffer was applied to the flowage 

polygons, 14 of the 414 points used were found within this area (3.38%) (Table 4.5). A 200 m 

buffer included 19 points (4.59%), a 500 m buffer included 32 points (7.73%), and a 1000 m 

buffer included 58 points (14.01%) (Table 4.5). An analysis of the mean nearest distance of the 

occurrence points to the beaver flowage polygons had a value of 3.7 km +/- 2.6, indicating that 

occurrence points are most often found over 3 km away from a flowage polygon. 

Table 4.5 Five buffer distances around beaver flowage polygons where the percentage of the 
occurrence points used to build the Maxent ecological model were found within the polygons. 

Polygon Buffer Type Occurrence Points Within Flowage Polygons Percentage (%) 

No Buffer 6 1.45% 

100 m Buffer 14 3.38% 

200 m Buffer 19 4.59% 

500 m Buffer 32 7.73% 

1000 m Buffer 58 14.01% 

 

Sampling the original flowage polygons, as well as those generated by the four buffer 

GLVWDQFHV�XVLQJ�µ=RQDO�6WDWLVWLFV¶�LQ�$UF*,6�3UR�UHYHDOHG�WKH�PHDQ�DQG�PD[LPXP�SUHGLFWHG�

probability within these polygons (Figure 4.9 & Figure 4.10). The mean values average between 

0.20 and 0.25 for all the polygons sampled, and the spread of the values decreases as size of the 

polygons increases (Figure 4.7). Alternatively, the mean distribution of the maximum values 

within each polygon increases from no buffer to a buffer distance of 1000 m (Figure 4.8). The 
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buffer distance with the highest mean maximum value of predicted occurrence was 1000 m, with 

a range including +/- 1SD between 0.38 and 0.86, indicating that the model often predicted 

suitable habitat >0.5 in a 1 km radius surrounding areas of historic beaver use (Figure 4.8). This 

value is greater than the mean probability of occurrence within all of Nova Scotia (Figure 4.9). 

 

 

Figure 4.7 Mean predicted probability of occurrence value (0 ± low, 1 ± high) for the ecological 
model raster cells in areas associated with beaver flowage, using no buffer, 100m buffer, 200m 
buffer, 500m buffer, and 1000m buffers. The mean predicted occurrence in Nova Scotia is 0.27 +/- 
0.24. 
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Figure 4.8 Mean distribution of the maximum predicted probability of occurrence value (0 ± low, 1 ± 
high) for the ecological model raster cells within areas associated with beaver flowage, using no 
buffer, 100m buffer, 200m buffer, 500m buffer, and 1000m buffers. The mean predicted occurrence 
in Nova Scotia is 0.27 +/- 0.24.  
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Figure 4.9 Histogram of the distribution of predicted probability of occurrence for C. canadensis in 
the ecological model in Nova Scotia (mean = 0.27 +/- 0.24). 

 

To understand how the ecological model predicted occurrence in relation to areas of 

historic use, each raster cell within Nova Scotia was given a value representing the distance to 

WKH�QHDUHVW�IORZDJH�SRO\JRQ�XVLQJ�WKH�µ(XFOLGHDQ�'LVWDQFH¶�WRRO�LQ�$UF*,6 Pro. A map of the 

distance to flowage across Nova Scotia is provided in panel A, compared to the ecological model 

raster in panel B (Figure 4.10). Visualization of the distance to flowage produced an output 

visually similar to the ecological model, where the furthest distances from areas of known beaver 

flowage (dark blue) align with the lowest predicted occurrence areas (light blue). This 

relationship suggests that on a landscape scale, the Cape Breton Highlands, the Fundy Coast, the 

Rossignol and Clyde River regions, and the area near Sheet Harbour are both furthest from areas 

historically occupied by beaver and have the lowest probability of occurrence based on the 

ecological model (Figure 4.10). 
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Figure 4.10 Comparative map depicting the distance to beaver flowage in Nova Scotia, Canada 
(panel A) and the ecological model of predicted probability of occurrence of American beaver 
(Castor canadensis) in Nova Scotia, Canada (panel B). Panel A was derived using Euclidean 
Distance to flowage polygons. Panel B is the output of an averaged 10 replicate cross validated 
Maxent model. 
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CHAPTER 5 - DISCUSSION 

This study created the first SDM for C. canadensis in Nova Scotia using covariates of 

known importance across their continental range. This study also investigated the relationship 

between predicted distribution and both human footprint data and areas of historic C. canadensis 

occupancy. The objectives of the study were to augment poor quality occurrence data in order to 

identify the landscape-scale drivers of distribution, identify areas of high or low predicted 

occurrence, and investigate the relationship of the human footprint on distribution. Succinctly, all 

objectives of the study were met.  

5.1 Landscape-scale drivers 

The ecological model showed that proximity to watercourse contributed the most to the 

predicted distribution (Table 4.1 and Table 4.2). This was expected as C. canadensis are wetland 

dam builders and are reliant on suitable watercourse habitat (Müller-Schwartze, 2011). The 

watercourse characteristics with the highest predicted probability of occurrence were those with 

low to moderate-high gradients, with the least preferable being very high gradients (Figure 4.2). 

These findings parallel those of past studies conducted outside of Nova Scotia, which identified a 

preference for low stream gradients, and an aversion to relatively higher gradients (e.g. Howard 

& Larson, 1985; Beier & Barret, 1987; McComb et al, 1990). Due to the spatial resolution of the 

input data and subsequent analysis, this study does not infer specific site suitability but rather 

identifies areas where watercourses are likely to provide suitable gradients. Elevation contributed 

the second most to the predicted distribution, where C. canadensis were more likely to occur at 

lower elevations, as water flows towards these low elevation areas due to gravity (Table 4.1 and 

Figure 4.2).  

The influence of forest composition on the habitat selection of C. canadensis is an 

intrinsically difficult covariate type to model. C. canadensis are a generalist species with varied 

diets (Jenkins, 1981; Beier & Barrett, 1987), and characteristics of riparian vegetation are 

difficult to represent without field data (Franklin, 1995; Jakes et al. 2007; Lapointe St-Pierre et 

al., 2017). There are limitations associated with aerial interpretation; however, the NSFI used to 

represent the forest composition covariates is the best available data in Nova Scotia representing 

these pre-classified environmental conditions (Franklin, 1995; NSDNR, 2021). The forest-related 

habitat associations are derived from the NSFI, and specific tree species covariates only 
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represent stands dominant at 60% or higher (Appendix A). C. canadensis may be equally likely 

to exist in areas where the tree species are present at lower percentages, as C. canadensis do not 

consume a whole stand worth of trees, but rather selectively forage a few (Johnston & Naiman, 

1990). However, selecting a threshold of 60% dominance or higher ensured the model was 

mostly reflecting the tree species of interest.  

Of the forest stand types, C. canadensis were predicted to occur adjacent to brush 

coverage, and 800m away from softwood stands (Figure 4.1). The brush forest class represents 

open areas with at least 25% woody plant cover (NSDNR, 2021). This is consistent with 

previous findings which emphasize the importance of deciduous woody plants and shrubs as a 

limiting factor of site suitability (Grinnell et al., 1937; Allen, 1983; Baker, 2003). The species 

response to softwood stands indicated that it is likely that a preferable forest stand type exists 

between softwood and C. canadensis occurrence (Figure 4.1). The NSFI classifies forest stand 

types as softwood, mixedwood, or hardwood (NSDNR, 2021). The negative response to 

softwood most likely indicates that the preferable stand type is therefore mixedwood or 

hardwood (NSDNR, 2021). The µHardwood¶ covariate was removed due to low predictive 

capacity overall, which may indicate that it is not the general category of hardwood forests, but 

individual hardwood species within the forest that contribute to predicted distribution (Table 4.1 

and Table 4.2).  

C. canadensis had the highest probability of occurrence directly adjacent to Red Maple, 

Alder, and Aspen stands, of the specific species included in the model (Figure 4.3). This finding 

is consistent with Doucet & Fryxell (1993), who determined the primary tree species of interest 

to C. canadensis in Ontario were aspen, alder, and red maple, of those provided. However, Red 

Maple had a very low permutation importance (Table 4.1). This may be because red maple is 

dominant throughout all of Nova Scotia and can occur in both softwood and hardwood dominant 

forest types (Webb & Marshall, 1999). Aspen was the species with the highest permutation 

importance which had a predicted probability of occurrence over 0.5 adjacent to the dominant 

stands (Table 4.1 and Figure 4.3). This finding parallels Jenkins (1981) and Müller-Schwarze 

(2011), who conclude that aspen is a preferable species when present and abundant. The 

predicted probability of occurrence is approximately 0.5 or less adjacent to stands of yellow 

birch, gray birch, and red oak (Figure 4.3). However, these tree species had relatively high 
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permutation importance, which likely indicates that their absence is preferable, or the predicted 

composition of suitable habitat is generally further from habitat including these species (Table 

4.1).  

Answering my primary research question, the ecological model of predicted C. 

canadensis occurrence in Nova Scotia derived the main landscape-scale drivers of their 

geographic distribution. We can reject the null hypothesis and accept the alternative hypothesis 

that each landscape-scale covariate included in the model has an influence over explaining the 

variability in predicted distribution. 

 

5.2 Predicted distribution 

The ecological model generated a unique predicted distribution across the Nova Scotian 

landscape. We can reject the null hypothesis of the second research question and accept the 

alternative hypothesis that predicted probability of occurrence of C. canadensis is unevenly 

distributed. The ecological model and the human footprint model, as well as the distance to 

beaver flowage revealed four large areas which were identified as low predicted occurrence with 

few beaver flowage ponds. These areas included the Fundy Coast, the Cape Breton Highlands, 

areas near Sheet Harbour, and the Southwest Nova Scotia uplands (Rossignol and Clyde River). 

These are landscape-scale regions, corresponding approximately to the terrestrial Ecoregions and 

Ecodistricts of Nova Scotia (Figure 5.1). 
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Figure 5.1 Terrestrial Ecoregions and Ecodistricts of Nova Scotia (adapted from Webb & Marshall, 
1999). 

 

In the Southwest Nova Scotia uplands Ecoregion, the Clyde River Ecodistrict (515) is 

characterized by softwood forests and barrens, and the Rossignol Ecodistrict (514) primarily 

used for forestry, has been extensively burned, and is dominated by coniferous species in the 

center and hardwoods toward the east (Webb & Marshall, 1999) (Figure 5.1). These combined 

factors may contribute to the low predicted distribution and the minimal historic beaver flowage 

in these areas, as we understand C. canadensis to prefer hardwood species (Müller-Schwartze, 

2011). Similarly, the Cape Breton Highlands Ecoregion is characterized by high elevations and 

softwood forests, though we understand low elevations to be important to predicted distribution, 

which may explain the low levels of predicted occurrence in this region (Table 4.1 and Figure 

4.1). We can deduct possible similar explanations for the Sheet Harbour Ecodistrict (519), where 

the low elevation areas support softwoods, and only the high elevation areas and hill-tops 
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support hardwood species (Webb & Marshall, 1999). Based on the findings of the ecological 

model, the type of habitat available in the Sheet Harbour Ecodistrict would not be highly 

conducive to high predicted C. canadensis occurrence, as this model predicted higher occurrence 

in areas with low elevation, near watercourses, where hardwood species such as aspen are 

present. 

 

5.3 Influence of human footprint 

To answer the final research question, a human footprint model was generated to 

understand if human footprint influenced predicted distribution. We can reject the null 

hypothesis and accept the first alternative hypothesis that the human footprint had a positive 

relationship with predicted occurrence. The human footprint AUC was higher than the ecological 

model AUC, which means the added layer increased the ability of the model to predict omitted 

test data (Appendix C). The human footprint model predicted C. canadensis occurrence highest 

in places with a relatively high cumulative threat index value, and predicted occurrence was 

lowest in areas with minimal human footprint (Figure 4.5 and Figure 5.1). The human footprint 

layer includes factors such as built environments, crops and pastureland, night light pollution, 

population density, resource extraction, forestry, and roads (Hirsh-Pearson et al., 2022).  
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Figure 5.2 Comparison of the American beaver (Castor canadensis) occurrence data layer with the 
human footprint cumulative threat index in Nova Scotia, Canada. 

 

The occurrence layer included primarily data from iNaturalist, a citizen-science generated 

observation platform. Citizen science data is known to have spatial and temporal biases due to 

differences in observer habits, and the frequent interactions between users and species in areas of 

high human population density, such as urban areas, along roads and highways, and within 

public parks (Boakes et al., 2010; Dickinson et al., 2010). Additionally, C. canadensis occupy 

wetland habitats which are often difficult to access, leading to fewer beaver-human interactions 

in undeveloped areas, and therefore these areas receive less sampling effort. A visual analysis of 

the occurrence points and the human footprint cumulative threat index value indicates a similar 

spatial distribution between beaver occurrence and high human footprint areas (Figure 5.1). It is 

possible that this relationship can be attributed to spatial bias in the occurrence data layer, that 

was largely generated through citizen science, resulting in greater beaver observations near roads 
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and high population density. Consequently, this means the model is less representative of 

inaccessible areas, such as undeveloped wetlands. Interestingly, these areas with low levels of 

human footprint (Figure 5.2), few occurrence points (Figure 5.2), and low predicted occurrence 

(Figure 4.5) were relatively far from historic beaver flowage (Figure 4.10). 

One fundamental assumption of Maxent is that the sampling is either random or 

representative throughout the study area (Phillips et al., 2009; Yackulic et al., 2013; Kramer-

Schadt et al., 2013). However, in Yackulic et al. (2013) it was found that Maxent studies 

frequently violate this assumption when using real presence-only data. Regarding the iNaturalist 

data in this study, spatial heterogeneity of accessible areas near roads and urban areas resulted in 

the oversampling of these areas and under sampling of areas far removed from accessible centers 

(Dickinson et al., 2010). The comparison of the occurrence data layer and the human footprint 

shows this in practice (Figure 5.1). Understanding how this impacts the interpretation of the 

predicted distribution is critical to effectively convey how this modelling effort can be applied.  

7REOHU¶V�)LUVW�/DZ�RI�*HRJUDSK\�VWDWHV�WKDW�³HYHU\WKLQJ�LV�UHODWHG�WR�HYHU\WKLQJ�HOVH��EXW�

near things DUH�PRUH�UHODWHG�WKDQ�GLVWDQW�WKLQJV´��7REOHU���������$FFRUGLQJ�WR�WKLV�ODZ��DV�WKH�

occurrence data was predominantly collected in highly urban areas and along road networks, this 

led to the composition of habitat in these areas to be over-represented as inputs to the model, as 

there is a greater number of occurrence points collecting similar environmental conditions. 

Consequently, this means the model predicted occurrence biased towards these environmental 

conditions. Sampling bias is known to impact the accuracy of predictive models, and correcting 

for this bias has been shown to improve model accuracy (Kadmon et al., 2004; Bystriakova et al. 

2012). The occurrence data in this study is an accidental, non-random sample, as not every C. 

canadensis individual had an equal probability of being sampled and the occurrence data is 

therefore over representative of a subset of C. canadensis individuals likely to encounter 

humans. As a result, the ecological model also overrepresents these covariate conditions and may 

not represent C. canadensis in their idealized niche habitat or across all habitable landscapes in 

Nova Scotia, but rather suitable habitat that is also conducive to beaver-human interactions. The 

human footprint model highlights this bias further to show areas of likely beaver-human 

interactions, as it effectively adds an input representing places of human occupation. 
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5.4 Limitations 

The results of this study are the relative predicted probability of occurrence of C. 

canadensis across the Nova Scotian landscape, relative to the limitations of the study including 

the non-systematic sampling of occurrence points, the high detectability of C. canadensis in 

urban areas, and the constraints of the model inputs (Yackulic et al. 2013; Westwood, 2016). As 

noted in Westwood (2016), accurately reporting model limitations is important so we can 

understand the capacity of the model and be sure to not overstate its application.  

In addition to the sampling bias associated with the nature of iNaturalist, there is user 

error associated with citizen scientists not logging the exact location of a C. canadensis 

individual in ideal riparian habitat, but rather logging their own location during the interaction, as 

pictures can be taken from far distances. Likewise, the tools used to collect the iNaturalist data 

are often not fieldwork GPS devices, which can introduce error logging the appropriate location. 

As the occurrence data was predominantly from a citizen-science database, spatial biases of the 

occurrence data were expected to impact the distribution of the model. As previously mentioned, 

this non-systematically collected occurrence data may not reflect the conditions of source 

habitat. While there are spatial filtering capabilities to account for this, these were not within the 

scope of this study. 

Maxent used randomly generated background sample points to assess the values of the 

environmental covariate group data layer at areas which represent pseudo-absences (Phillips et 

al., 2017). As the occurrence data was not systematically collected, these non-directed 10,000 

background points likely capture covariate values which may reflect highly suitable habitat 

which were not sampled due to their distance from accessible areas.  

Limitations exist for using the C. canadensis flowage layer as an external dataset. While 

the beaver flowage polygons represent historic C. canadensis landscape modification, the 

polygons are derived from the NSFI, which was used to construct the forest-composition 

covariates. This means the model cells containing these flowage polygons were not associated 

with the covariate group data layer inputs, which may have contributed to the low predicted 

occurrence within the polygons when sampled. Additionally, the NSFI is interpreted from aerial 

imagery, which lends itself to significant human error associated with the visual classification of 

wetland areas (Gallant, 2015).  
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CHAPTER 6 - CONCLUSION 

As a keystone species of significant ecological and biocultural importance, this study was 

an important first effort to understand how C. canadensis is distributed within the Wabanaki-

Acadian Forest. A primary goal was to identify the local landscape-scale drivers of this 

distribution, as the province has unique habitat contrasting those previously studied. This study 

revealed the most significant drivers of C. canadensis distribution in the province, such as 

proximity to watercourses and aspen, low elevation, and distance from red oak and yellow birch. 

Additionally, this model reveals how predicted distribution compares to historic beaver flowage 

in the province and provides valuable insights into interactions between humans and C. 

canadensis today.  

This modelling effort was not equally representative of the diversity of the Nova Scotian 

landscape, overrepresenting C. canadensis-environment interactions in urban areas and 

underrepresenting these interactions in natural, inaccessible areas due to the spatial bias of the 

occurrence data. For future studies to better understand habitat associations and distribution of C. 

canadensis throughout the province using existing data, I propose that these efforts account for 

these biases adequately (Yackulic et al., 2013). The least resource demanding options for this 

include manipulation of the occurrence data through spatial filtering, or the manipulation of the 

background sample points using a bias mask (Phillips et al., 2009; Yackulic et al., 2013; Kramer-

Schadt et al., 2013). Spatially filtering the occurrence points to remove many points within a 

small area would limit the extent of the influence of these over-represented areas on the model 

predictions. I propose a future effort use a group of the Hirsh-Pearson et al. (2022) human 

IRRWSULQW�OD\HUV�LQFOXGLQJ�µEXLOW�HQYLURQPHQWV¶��µKXPDQ�SRSXODWLRQ�GHQVLW\¶��DQG�µURDGV¶�WR�

generate a spatial bias file, which can be used to direct background sample points to oversampled 

areas, which may more effectively represent µVLQN�KDELWDW¶�FRQGLWLRQV��(OLWK�HW�DO����������In 

addition to this direction of background sample points, using external packages to adjust the 

Maxent model iterations and regularization multipliers could impact the accuracy of the model 

(Merow et al., 2013).  Ground truthing this model would aid in its interpretation and how we can 

derive more conclusive measures of the strength of its predictions (e.g. West et al., 2016; Allen 

& McMullin, 2019; Westwood et al., 2019; Smith et al., 2021; Baker, 2022). Lastly, executing a 

true systematic or random sampling effort would generate the most reliable results for an 

ecologically reflective model across the Nova Scotian landscape. 
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While this study does not conclusively represent all C. canadensis distribution in Nova 

Scotia, it predicts occurrence based on likely human-beaver interactions. The relationship 

between humans and C. canadensis remains important, as a keystone species and a national icon 

(National Symbol of Canada Act, 1985). This model contributes to a better understanding of our 

relationship with a keystone species of great ecological integrity, Indigenous identity, and 

Canadian history, highlighting places where there are likely interactions between humans and C. 

canadensis. ³$OO�PRGHOV�DUH�ZURQJ��EXW�VRPH�DUH�XVHIXO´�LV�D�IDPRXV�TXRWH�E\�*HRUJH�(��3�%R[�

(Box, 1980). This model, while fundamentally skewed towards areas of likely human-beaver 

interactions, remains a valuable new dataset and is the first of its kind in Atlantic Canada. 

Currently, known efforts are underway to model biocultural connectivity within Nova 

Scotia (UINR, 2022). This model can be used as an input for models alike, for a species of 

significant ecological and cultural importance, to highlight those specific interactions between 

people and C. canadensis. 7KLV�PRGHO�FDQ�EH�D�SUDFWLFDO�PRGHOOLQJ�WRRO�IRU�WKH�$&�&'&¶V�

Atlantic Canada Species at Risk Habitat Modelling Community of Practice, which aims to foster 

knowledge sharing in Atlantic Canada and support species at risk (AC CDC, 2023).  

As the first SDM for C. canadensis in Nova Scotia, this model lays significant 

groundwork. The model and future renditions can contribute to informing practices such forest 

management, in the case of protecting wildlife habitat in timber harvests (Stoffyn-Egli & 

Duinker, 2013), or for urban land use planning. As climate change and anthropogenic pressures 

continue to strain wetland habitats (Salimi et al., 2021), beavers have emerged as a wetland 

restoration technique (DeVries et al., 2012). This keystone species is known to enhance valuable 

ecosystem services, such as increasing riparian biodiversity (Wright et al., 2002), sediment 

deposition (Pollock et al., 2007), and floodplain connectivity (Jordan and Fairfax, 2022). We can 

and should factor the protection of these ecosystem services into future development, and this 

model may act as a proxy for where C. canadensis are likely to safeguard these wetland services 

in development prone areas (Thompson et al., 2021; Larsen et al., 2021; Jordan & Fairfax, 2022). 
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APPENDICES 

Appendix A ± Covariate Extraction Methods 

 

Table A.1 Original candidate environmental covariates generated to model species distribution for 
the American beaver (Castor canadensis) in Nova Scotia, Canada.  

Data Source    Covariate     Rationale    Attribute of 
Interest    

Extraction 
Method    

Layer Type   

NCC Stream 
Classification 
Layer v 2.0   

Tidal   Tidal influence as proxy for 
saltwater toxicity.    

Tidal    Euclidean 
Allocation    

Categorical 
(Yes/No) 

   Temperature    Watercourse temperature 
as indicator of stream 
depth.    

Temp    Euclidean 
Allocation    

Categorical   
(3 classes)  

  Alkalinity    Alkalinity can impact site 
choice.    

Alk    Euclidean 
Allocation    

Categorical   
(3 classes)  

   Size 
(Complex)   

Larger streams support 
increased vegetation.   

Size_Comp   Euclidean 
Allocation    

Categorical  
(6 classes)   

  Gradient 
(Simple)   

Beavers tend to build dams 
within a specific range of 
gradients.    

Grad_Simp    Euclidean 
Allocation    

Categorical  
(4 classes)    
   

  Gradient 
(Complex) 

Beavers tend to build dams 
in a specific range of 
gradients.    

Grad_Comp    Euclidean 
Allocation    

Categorical 
(7 classes)    
     

NS Hydrographic 
Network   

Watercourse    Distance to nearest 
watercourse habitat.   

 N/A   Euclidean 
Distance    

Continuous     

NS Forest 
Inventory    

Aspen     Distance to food/materials 
including Large Tooth and 
Trembling   

TA   Euclidean 
Distance    

Continuous     

  Balsam 
Poplar    

Distance to food/materials    BP    Euclidean 
Distance    

Continuous     

  Yellow Birch    Distance to food/materials    WB    Euclidean 
Distance    

Continuous     

  Gray Birch    Distance to food/materials    GB    Euclidean 
Distance    

Continuous     

  White Birch    Distance to food/materials    YB    Euclidean 
Distance    

Continuous     

  Black Cherry    Distance to food/materials    BC    Euclidean 
Distance    

Continuous     

  Ash    Distance to food/materials, 
including Black and White 
Ash.    

AS    Euclidean 
Distance    

Continuous     

  Sugar Maple    Distance to food/materials    SM    Euclidean 
Distance    

Continuous     

  Red Maple    Distance to food/materials    RM    Euclidean 
Distance    

Continuous     

  Red Oak    Distance to food/materials    RO    Euclidean 
Distance    

Continuous     

  Willow    Distance to food/materials    WI    Euclidean 
Distance    

Continuous     
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Data Source    Covariate     Rationale    Attribute of 
Interest    

Extraction 
Method    

Layer Type   

  Alder    Distance to food/materials    FORNON 38, 
FORNON 39    

Euclidean 
Distance    

Continuous     

  Brush    Distance to food/materials    FORNON_33    Euclidean 
Distance    

Continuous     

  Softwood    Distance to softwood 
stand.   

FORNON 2    Euclidean 
Distance    

Continuous     

  Mixedwood    Distance to mixedwood 
stand.   

FORNON 5    Euclidean 
Distance    

Continuous     

  Hardwood    Distance to hardwood 
stand.   

FORNON 8     Euclidean 
Distance    

Continuous     

NS Enhanced 
Digital Elevation 
Model   

Elevation    Influence on suitability of 
dam site suitability and 
vegetation.   

Elevation    Resample 
(Cubic)    

Continuous    

The Canadian 
Human Footprint  
  

Human 
Footprint  

Influence of cumulative 
threats from human 
footprint.    

Cumulative 
Threat Layer  
  

Resample 
(Bilinear)    

Continuous     

 

The method of extraction for each covariate constructed for the Maxent model is listed 

below organized by source dataset, which can be referenced in Table A.1. 

 

Nova Scotia Forest Inventory: 

�����������������ǣ����	��������������������������������������������Ǯ	�����ǯ����es of 38 

����͵ͻǡ��������������ǲ�����������������͹ͷΨ������ǳ�����ǲ͹ͷΨ�����������������ǳ�������������Ǥ�������

exporting the selection as a feature class, the stands were buffered 10 m and ����Ǯ����������

��������ǯ���������������������������͵ͲͲ�2 raster showing ���������ǯ�����������������������������������

alder. 

�����������������ǣ����	��������������������������������������������Ǯ�������ǯ����������

Ǯ��Ͳ͸ǡ���Ͳ͹ǡ���Ͳͺǡ���Ͳͻǡ�������ͳͲǯǤ�����������������������������������������������������������

are present at 60% or higher. After the selection was exported as a feature class, the stands were 

buffered 10 m and t���Ǯ������������������ǯ���������������������������͵ͲͲ�2 raster showing each 

����ǯ����������������������������������������Ǥ 

Distance to Balsam Poplar: NS Forest In������������������������������������Ǯ�������ǯ�

���������Ǯ��Ͳ͸ǡ���Ͳ͹ǡ���Ͳͺǡ���Ͳͻǡ�������ͳͲǯ������������������ǲ�������������ǳ�����Ͳ͸����������

60% composition. After exporting the selection as a feature class, the stands were buffered 10 m 
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and ����Ǯ������������������ǯ���������������������������͵ͲͲ�2 ������������������������ǯ��������������

the nearest stand of Balsam Poplar. 

������������������������ǣ����	��������������������������������������������Ǯ�������ǯ�������

���Ǯ��Ͳ͸ǡ���Ͳ͹ǡ���Ͳͺǡ���Ͳͻǡ�������ͳͲǯ������������������ǲ������������ǳ�����Ͳ͸����������͸ͲΨ�

composition. After exporting the selection as a feature class, the stands were buffered 10 m and the 

Ǯ������������������ǯ���������������������������͵ͲͲ�2 ������������������������ǯ������������������

nearest stand of Yellow Birch. 

������������
���������ǣ����	��������������������������������������������Ǯ�������ǯ����������

Ǯ
�Ͳ͸ǡ�
�Ͳ͹ǡ�
�Ͳͺǡ�
�Ͳͻǡ�����
�ͳͲǯ������
�����������ǲ
���������ǳ�����Ͳ͸����������͸ͲΨ�

composition. After exporting the selection as a feature class, the stands were buffered 10 m and the 

Ǯ������������������ǯ���������������������������͵ͲͲ�2 ������������������������ǯ������������������

nearest stand of Gray Birch. 

�����������������������ǣ����	���������������������������������������Ǯ�������ǯ����������

Ǯ��Ͳ͸ǡ���Ͳ͹ǡ���Ͳͺǡ���Ͳͻǡ�������ͳͲǯ������������������ǲ�����������ǳ�����Ͳ͸����������͸ͲΨ�

composition. After exporting the selection as a feature class, the stands were buffered 10 m and the 

Ǯ������������������ǯ���������������������������͵ͲͲ�2 raster showing e��������ǯ������������������

nearest stand of White Birch. 

������������������������ǣ����	��������������������������������������������Ǯ�������ǯ�������

���Ǯ��Ͳ͸ǡ���Ͳ͹ǡ���Ͳͺǡ���Ͳͻǡ�������ͳͲǯ������������������ǲ������������ǳ�����Ͳ͸����������͸ͲΨ�

composition. After exporting the selection as a feature class, the stands were buffered 10 m and the 

Ǯ������������������ǯ���������������������������͵ͲͲ�2 ������������������������ǯ������������������

nearest stand of Black Cherry. 

Distance to White and Black Ash: NS Forest Inventory polygons were selected with 

Ǯ�������ǯ����������Ǯ��Ͳ͸ǡ���Ͳ͹ǡ���Ͳͺǡ���Ͳͻǡ�������ͳͲǯ������������������ǲ���������ǳ�����ǲ������

���ǳǡ�����Ͳ͸����������͸ͲΨ������������Ǥ�������������������������������������������������, the stands 

were buffered 10 m and ����Ǯ������������������ǯ���������������������������͵ͲͲ�2 raster showing 

���������ǯ������������������������������������������������������Ǥ 

�����������������������ǣ����	��������������������������������������������Ǯ�������ǯ�������

���Ǯ��Ͳ͸ǡ���Ͳ͹ǡ���Ͳͺǡ���Ͳͻǡ�������ͳͲǯ������������������ǲ�����������ǳǡ�����Ͳ͸����������͸ͲΨ�

composition. After exporting the selection as a feature class, the stands were buffered 10 m and the 
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Ǯ������������������ǯ���������������������������͵ͲͲ�2 ������������������������ǯ������������������

nearest stand of Sugar Maple. 

���������������������ǣ����	��������������������������������������������Ǯ�������ǯ����������

Ǯ��Ͳ͸ǡ���Ͳ͹ǡ���Ͳͺǡ���Ͳͻǡ�������ͳͲǯ������������������ǲ���������ǳǡ�����Ͳ͸����������͸ͲΨ�

composition. After exporting the selection as a feature class, the stands were buffered 10 m and the 

Ǯ������������������ǯ���������������������������͵ͲͲ�2 ������������������������ǯ������������������

nearest stand of Red Maple. 

�������������������ǣ����	���������������������������������������Ǯ�������ǯ����������Ǯ�O06, 

��Ͳ͹ǡ���Ͳͺǡ���Ͳͻǡ�������ͳͲǯ������������������ǲ�������ǳǡ�����Ͳ͸����������͸ͲΨ������������Ǥ�

After exporting the selection as a feature class, the stands were buffered 10 m and ����Ǯ����������

��������ǯ���������������������������͵ͲͲ�2 raster showing each c���ǯ�����������������������������������

Red Oak. 

������������������ǣ����	��������������������������������������������Ǯ�������ǯ����������

Ǯ��Ͳ͸ǡ���Ͳ͹ǡ���Ͳͺǡ���Ͳͻǡ�������ͳͲǯ������������������ǲ������ǳǡ�����Ͳ͸����������͸ͲΨ�

composition. After exporting the selection as a feature class, the stands were buffered 10 m and the 

Ǯ������������������ǯ���������������������������͵ͲͲ�2 ������������������������ǯ������������������

nearest stand of Willow.  

�����������������ǣ����	��������������������������������������������Ǯ	�����ǯ������ͺ͵ǡ�

meaning it has less than 25% merchantable tree cover and greater than 25% woody plant cover. 

After exporting the selection as a feature class, the stands were buffered 10 m and ����Ǯ����������

��������ǯ���������������������������͵ͲͲ�2 raster sh���������������ǯ��������������������������������

stands. 

��������������������ǣ����	��������������������������������������������Ǯ�����̴����ǯ������

of 2, meaning it is 75% softwood species by basal area. After exporting the selection as a feature 

class, the stands were buffered 10 m and ����Ǯ������������������ǯ���������������������������͵ͲͲ�2 

������������������������ǯ���������������������������������Ǥ 

���������������������ǣ����	��������������������������������������������Ǯ�����̴����ǯ�

code of 5, meaning it is 26% - 74% softwood species by basal area. After exporting the selection as a 

feature class, the stands were buffered 10 m and ����Ǯ������������������ǯ���������������������������

300m2 ������������������������ǯ����������������������������������Ǥ 
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Distance to ��������ǣ����	��������������������������������������������Ǯ�����̴����ǯ�

code of 8, meaning it is less than 25% softwood species by basal area. After exporting the selection 

as a feature class, the stands were buffered 10 m and ����Ǯ������������������ǯ������was used to 

create a 300m2 ������������������������ǯ���������������������������������Ǥ 

 

Nova Scotia Stream Classification Network: 

���������������ǣ�����������Ǯ������ǯ�����ǡ���ʹͲͲ���������������������������������������������Ǥ�

����������Ǯ����������ǯ�����ǡ�������������������������������������������������Ǯ�����ǯ�����������

�����������������������������������������������������Ǯ����������	����ǯ���������	���������Ǥ������������

ǲ�������ȋȌǳ������������������������������������������ǣ�ǲ�����ǣ���������ǳ�α�ͳǡ�ǲ��ǳ�α�ʹǡ�ǲ���ǳ�α�͵Ǥ�����

Ǯ��������������������ǯ���������������������������͵ͲͲ�2 ������������������������ǯ����������������

category. 

Temperature: ����������Ǯ������ǯ�����ǡ���ʹͲͲ��������������������������������������������

�������Ǥ�����������Ǯ����������ǯ�����ǡ�������������������������������������������������Ǯ����ǯ�����������

�����������������������������������������������������Ǯ����������	����ǯ���������	���������Ǥ������������

ǲ�������ȋȌǳ������������������������������������������ǣ�ǲ�����ǣ���������ǳ�α�ͳǡ�ǲ����ǳ�α�ʹǡ�ǲ����ǳ�α�͵ǡ  

ǲ����ǳ�α�ͶǤ�����Ǯ��������������������ǯ���������������������������͵ͲͲ�2 ������������������������ǯ��

closest Temp category. 

����������ǣ�����������Ǯ������ǯ�����ǡ���ʹͲͲ��������������������������������������������

�������Ǥ�����������Ǯ����������ǯ�����ǡ�������������������������������������������������Ǯ���ǯ�����������

�����������������������������������������������������Ǯ����������	����ǯ���������	���������Ǥ������������

ǲ�������ȋȌǳ������������������������������������������ǣ�ǲ�����ǣ���������ǳ�α�ͳǡ�ǲ��������������ǳ�α�ʹǡ�

ǲ�������������������ǳ�α�͵ǡ�ǲ���������������ǳ�α�ͶǤ�����Ǯ��������������������ǯ���������������������������

300m2 ������������������������ǯ�����������������������������Ǥ 

Size (Complex): ����������Ǯ������ǯ�����ǡ���ʹͲͲ�������������������������������features was 

�������Ǥ�����������Ǯ����������ǯ�����ǡ�������������������������������������������������Ǯ����̴����ǯ�������

���������������������������������������������������������Ǯ����������	����ǯ���������	���������Ǥ�����

�������ǲ�������ȋȌǳ������������������������������������������ǣ�ǲ�����ǣ���������ǳ�α�ͳǡ�ǲ���������������

������ǳ�α�ʹǡ�ǲ������������ǳ�α�͵ǡ�ǲ�����������������������ǳ�α�Ͷǡ�ǲ�����������-������������α�ͷǳǡ�

ǲ������������ǳ�α�͸Ǥ�����Ǯ��������������������ǯ���������������������������͵ͲͲ�2 raster showing each 

c���ǯ�����������������������������������Ǥ 
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Gradient (Complex)ǣ�����������Ǯ������ǯ�����ǡ���ʹͲͲ����������������������������������������

�����������Ǥ�����������Ǯ����������ǯ�����ǡ�������������������������������������������������Ǯ
���̴����ǯ�

field was reclassified ����������������������������������������Ǯ����������	����ǯ���������	���������Ǥ�����

�������ǲ�������ȋȌǳ������������������������������������������ǣ�ǲ�����ǣ���������ǳ�α�ͳǡ�ǲ���������


�������ǳ�α�ʹǡ�ǲ����
�������ǳ�α�͵ǡ�ǲ�������������
�������ǳ�α�Ͷǡ�ǲ��������-High 
�������ǳ�α�ͷǡ�

ǲ�����
�������ǳ�α�͸ǡ�ǲ����������
�������ǳ�α�͹Ǥ�����Ǯ��������������������ǯ���������������������������

300m2 ������������������������ǯ�����������������������������������������������Ǥ 

Gradient (Simple)ǣ�����������Ǯ������ǯ�����ǡ���ʹͲͲ������������und the NSSCN line features 

�����������Ǥ�����������Ǯ����������ǯ�����ǡ�������������������������������������������������Ǯ
���̴����ǯ�

���������������������������������������������������������������Ǯ����������	����ǯ���������	���������Ǥ�����

�������ǲ�������ȋȌǳ������������������������������������������ǣ�ǲ�����ǣ���������ǳ�α�ͳǡ�ǲ����
�������ǳ�α�

ʹǡ�ǲ���������
�������ǳ�α�͵ǡ�ǲ�����
�������ǳ�α�ͶǤ�����Ǯ��������������������ǯ���������������������������

300m2 ������������������������ǯ������������������������������������������gory. 

 

Nova Scotia Hydrographic Network: 

Distance to �����������ǣ�����Ǯ��������������������ǯ����������������������������������

representing freshwater lakes and rivers. The watercourses were buffered 10 m, and the Ǯ����������

��������ǯ�����������������������e a 300m2 ������������������������ǯ�����������������������������Ǥ� 

 

Nova Scotia Digital Elevation Model: 

���������ǣ�����ǲ��������ǳ�����������������������������������������ʹͲ�2 to 300m2 cell size 

������Ǯ�����ǯ���������������������Ǥ 

 

Canadian Human Footprint: 

������	��������ǣ�����ǲ��������ǳ�����������������������������������������ʹͲ�2 to 300m2 

����������������Ǯ��������ǯ���������������������Ǥ 
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Appendix B ± Covariate Correlation Matrix  

Table B.1 Correlation matrix depicting raster layer correlations between the environmental covariate 
group data layer, where covariate is shown in black (corresponding name in below), correlation 
values > 0.7 are shown in red, and values between 0.7 > 0.4 are shown in yellow.  
  

Covariate  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  
1  1.00  -0.07  0.23  -0.06  -0.36  -0.20  -0.17  -0.15  -0.23  -0.09  -0.04  0.02  -0.26  -0.14  -0.14  -0.06  0.06  0.06  0.08  0.10  0.19  0.23  -0.34  -0.41  -0.04  
2  -0.07  1.00  -0.09  0.62  0.22  0.34  0.18  0.14  0.25  0.31  0.11  0.39  0.38  0.29  0.14  0.29  -0.11  -0.10  -0.08  0.03  0.00  -0.06  0.06  -0.01  -0.07  
3  0.23  -0.09  1.00  0.03  -0.08  -0.06  -0.02  -0.02  -0.06  0.05  0.00  -0.02  -0.14  -0.08  -0.03  0.00  0.00  0.00  0.00  -0.03  0.02  0.11  -0.09  -0.08  0.02  
4  -0.06  0.62  0.03  1.00  0.09  0.23  0.06  0.01  0.20  0.37  0.17  0.23  0.33  0.19  0.00  0.13  -0.06  -0.06  -0.07  -0.03  0.01  0.00  0.02  0.10  -0.04  
5  -0.36  0.22  -0.08  0.09  1.00  0.24  0.34  0.38  0.21  -0.06  -0.22  0.20  0.27  0.36  0.39  0.38  -0.27  -0.26  -0.09  0.02  -0.22  -0.26  0.41  0.01  -0.10  
6  -0.20  0.34  -0.06  0.23  0.24  1.00  0.38  0.25  0.67  0.46  0.46  0.40  0.34  0.18  0.22  0.37  0.04  0.02  -0.02  -0.04  0.02  -0.04  0.09  0.23  0.05  
7  -0.17  0.18  -0.02  0.06  0.34  0.38  1.00  0.91  0.72  0.11  -0.19  0.20  -0.01  0.17  0.89  0.51  -0.16  -0.15  -0.02  0.18  -0.06  -0.14  0.15  -0.01  -0.07  
8  -0.15  0.14  -0.02  0.01  0.38  0.25  0.91  1.00  0.50  -0.04  -0.29  0.19  -0.03  0.24  1.00  0.57  -0.24  -0.22  -0.01  0.24  -0.09  -0.18  0.16  -0.10  -0.11  
9  -0.23  0.25  -0.06  0.20  0.21  0.67  0.72  0.50  1.00  0.36  0.25  0.24  0.30  0.11  0.47  0.32  -0.03  -0.03  -0.02  0.00  0.00  -0.08  0.06  0.13  -0.02  
10  -0.09  0.31  0.05  0.37  -0.06  0.46  0.11  -0.04  0.36  1.00  0.46  -0.02  0.18  -0.06  -0.08  -0.02  0.21  0.19  -0.01  -0.11  0.07  0.11  0.03  0.43  0.16  
11  -0.04  0.11  0.00  0.17  -0.22  0.46  -0.19  -0.29  0.25  0.46  1.00  -0.02  0.14  -0.24  -0.33  -0.15  0.23  0.21  0.01  -0.21  0.11  0.18  -0.14  0.27  0.12  
12  0.02  0.39  -0.02  0.23  0.20  0.40  0.20  0.19  0.24  -0.02  -0.02  1.00  0.17  0.31  0.20  0.56  -0.12  -0.11  -0.01  0.16  0.09  0.02  0.03  -0.33  -0.08  
13  -0.26  0.38  -0.14  0.33  0.27  0.34  -0.01  -0.03  0.30  0.18  0.14  0.17  1.00  0.23  -0.04  0.01  -0.10  -0.11  -0.10  -0.10  -0.08  -0.19  0.18  0.09  -0.06  
14  -0.14  0.29  -0.08  0.19  0.36  0.18  0.17  0.24  0.11  -0.06  -0.24  0.31  0.23  1.00  0.26  0.44  -0.20  -0.18  -0.02  0.11  -0.05  -0.13  0.19  -0.14  -0.09  
15  -0.14  0.14  -0.03  0.00  0.39  0.22  0.89  1.00  0.47  -0.08  -0.33  0.20  -0.04  0.26  1.00  0.58  -0.27  -0.24  -0.01  0.25  -0.10  -0.19  0.17  -0.14  -0.12  
16  -0.06  0.29  0.00  0.13  0.38  0.37  0.51  0.57  0.32  -0.02  -0.15  0.56  0.01  0.44  0.58  1.00  -0.18  -0.16  0.00  0.20  0.01  0.00  0.11  -0.21  -0.08  
17  0.06  -0.11  0.00  -0.06  -0.27  0.04  -0.16  -0.24  -0.03  0.21  0.23  -0.12  -0.10  -0.20  -0.27  -0.18  1.00  0.97  0.33  0.40  0.65  0.56  -0.11  0.17  0.39  
18  0.06  -0.10  0.00  -0.06  -0.26  0.02  -0.15  -0.22  -0.03  0.19  0.21  -0.11  -0.11  -0.18  -0.24  -0.16  0.97  1.00  0.38  0.46  0.68  0.59  -0.11  0.13  0.37  
19  0.08  -0.08  0.00  -0.07  -0.09  -0.02  -0.02  -0.01  -0.02  -0.01  0.01  -0.01  -0.10  -0.02  -0.01  0.00  0.33  0.38  1.00  0.62  0.57  0.51  -0.08  -0.14  0.02  
20  0.10  0.03  -0.03  -0.03  0.02  -0.04  0.18  0.24  0.00  -0.11  -0.21  0.16  -0.10  0.11  0.25  0.20  0.40  0.46  0.62  1.00  0.68  0.54  -0.04  -0.27  0.02  
21  0.19  0.00  0.02  0.01  -0.22  0.02  -0.06  -0.09  0.00  0.07  0.11  0.09  -0.08  -0.05  -0.10  0.01  0.65  0.68  0.57  0.68  1.00  0.69  -0.15  -0.18  0.20  
22  0.23  -0.06  0.11  0.00  -0.26  -0.04  -0.14  -0.18  -0.08  0.11  0.18  0.02  -0.19  -0.13  -0.19  0.00  0.56  0.59  0.51  0.54  0.69  1.00  -0.18  -0.19  0.15  
23  -0.34  0.06  -0.09  0.02  0.41  0.09  0.15  0.16  0.06  0.03  -0.14  0.03  0.18  0.19  0.17  0.11  -0.11  -0.11  -0.08  -0.04  -0.15  -0.18  1.00  0.17  0.01  
24  -0.41  -0.01  -0.08  0.10  0.01  0.23  -0.01  -0.10  0.13  0.43  0.27  -0.33  0.09  -0.14  -0.14  -0.21  0.17  0.13  -0.14  -0.27  -0.18  -0.19  0.17  1.00  0.17  
25  -0.04  -0.07  0.02  -0.04  -0.10  0.05  -0.07  -0.11  -0.02  0.16  0.12  -0.08  -0.06  -0.09  -0.12  -0.08  0.39  0.37  0.02  0.02  0.20  0.15  0.01  0.17  1.00  
 
Covariate number associated with Table B.1:  

1   Cumulative 
Treat    

6   Ash    11   Red Oak    16   Yellow 
Birch    

21   Tidal    
2   Hardwood    7   Black Cherry    12   Sugar Maple    17   Grad Comp    22   Alkalinity    
3   Softwood    8   Balsam 

Poplar    
13   Aspen    18   Grad Simp    23   Brush    

4   Mixedwood    9   Gray Birch    14   White Birch    19   Size     24   Elevation    
5   Alder    10   Red Maple    15   Willow    20   Temp    25   Watercourse  
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Appendix C ± Ecological Model and Human Footprint Model Results 

 

Figure C.1 Area under the receiver operating characteristic curve (AUC) for the ecological Maxent 
model of predicted probability of occurrence for American beaver (Castor canadensis) in Nova 
Scotia, Canada. Test AUC derived from an arithmetic average of 10 replicate cross validated 
models. 
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Figure C.2 Area under the receiver operating characteristic curve (AUC) for the human footprint 
Maxent model of predicted probability of occurrence for American beaver (Castor canadensis) in 
Nova Scotia, Canada. Test AUC derived from an arithmetic average of 10 replicate cross validated 
models. 
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Figure C.3 Human footprint model response curves for the tree stand-specific species-covariate 
relationships for the predicted probability of occurrence of American beaver (Castor canadensis) in 
Nova Scotia, Canada, created using the cumulative threat layer in addition to the environmental 
covariate group data layer. Response curves derived from an arithmetic average of 10 replicate 
cross validated Maxent models. Each panel represents the variation in predicted probability of 
occurrence as distance increases from tree stands where the listed species is dominant with 60% 
composition or higher. 
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Figure C.4 Human footprint model response curves for the watercourse, elevation, and forest type 
specific species-covariate relationships for the predicted probability of occurrence of American 
beaver (Castor canadensis) in Nova Scotia, Canada created using the cumulative threat layer in 
addition to the environmental covariate group data layer. Response curves derived from an 
arithmetic average of 10 replicate cross validated Maxent species distribution models. Each panel 
represents the variation in predicted probability of occurrence as covariate values vary, where Size 
(Complex) Categories are Lake = 1, Headwaters and Creeks = 2, Small Rivers = 3, Medium 
Tributary Rivers = 4, Medium Main-stem Rivers = 5, Large Rivers = 6.; and Gradient (Complex) 
Categories are Lake = 1, Very Low Gradient = 2, Low Gradient = 3, Moderate-Low Gradient = 4, 
Moderate-High Gradient = 5, High Gradient = 6, Very High Gradient = 7. 
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