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Abstract

This thesis presents a way to compactly represent dynamic connected planar em-

beddings, which may contain self loops and multi-edges, in 4m + o(m) bits, to sup-

port basic navigation in O(lg n) time and edge and vertex insertion and deletion in

O(lg1+ϵ n) time, where n and m are respectively the number of vertices and edges

currently in the graph and ϵ is an arbitrary positive constant. Previous works on

dynamic succinct planar graphs either do not provide a full set of update operations

or are restricted to triangulations where the outer face must be a simple polygon and

all inner faces must be triangles. To the best of our knowledge, this thesis presents

the first representation of dynamic compact connected planar embeddings that sup-

ports a full set of dynamic operations without restrictions on the sizes or shapes of

the faces.
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Chapter 1

Introduction

A particular type of graph, a planar graph, may be used to model the famous initial

graph problem known as the seven bridges of Königsberg [24]. Aside from this appli-

cation, planar graphs are also applicable to some maps in general, VLSI circuits [13],

chemical molecules [1], and spatial partitions in geographical information systems

(GIS) [13].

A more contemporary problem concerns the dramatic growth of problem sizes

with respect to the growth in computer memory [8, 18]. Although computer memo-

ries are growing, and our ability to store data in secondary or even tertiary storage

is still sufficient, being able to process this data in main memory is becoming more

cumbersome. Secondary to this concern is the size of the data structure built on

the data which is used to perform queries and updates. These data structures often

occupy much more space than the data itself. Hence, Jacobson proposed to study

succinct data structures [14].

This thesis exists at the intersection of graph theory and compact data structures,

examining a way to represent a connected planar graph embedding using compact

data structures. Much research has been conducted on static planar graphs where

O(n) bits are used to support common navigation operations such as adjacency test-

ing and efficiently listing a vertices’ neighbors [4, 5, 8, 14, 16, 21].

Static data structures offer easy access to the objects they store. However, ob-

jects either cannot be added or deleted from the structure or doing so would require

rebuilding segments or the entire structure itself. None of the prior works cited sup-

port the insertion or deletion of an edge or a vertex. Prior work on dynamic succinct

planar graphs is restricted to triangulations where the outer face must be a simple

1
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polygon and all inner faces must be triangles [2] or do not provide a full set of dynamic

operations [15]. This thesis presents a way to dynamize a compact representation of

a connected planar embedding.

The operations we aim to support include the following:

• Given a vertex v, or a directed edge (v, u), list the edges incident to v in clockwise

or counterclockwise order, starting from (v, u) when given.

• Given an edge (v, u) and a face F that (v, u) is adjacent to, list the edges

incident to F in clockwise or counterclockwise order starting from (v, u).

• Given a face and two of its vertices, insert an edge connecting these vertices

across the face.

• Delete a given edge from G so long as G remains connected.

• Given a vertex v and a face that v is a vertex of, insert a degree-1 vertex u in

the face such that v is adjacent to u.

• Given a degree-1 vertex v, delete v and the edge e it is adjacent to from G so

long as G remains connected after deleting v and e.

These operations allow for the transformation from one connected planar embed-

ding to another connected planar embedding.

1.1 Our Contribution

Our contribution is summarized by the following theorem:

Theorem 1. Given a connected planar embedding G, possibly containing multi-edges

and self loops, on n vertices and m edges, there is a compact representation of G

occupying 4m+o(m) bits that can list the edges incident to a given vertex in clockwise

or counterclockwise order in O(lg n) time per edge, list the edges incident to a face

in O(lg n) time per edge, and supports insertion or deletion of an edge or a vertex in

O(lg1+ϵ n) time for any constant ϵ > 0.
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To the best of our knowledge, this thesis presents the first dynamic compact

connected planar embedding that supports fast insertion and deletion of an edge or

a vertex and has no restrictions on the sizes or shapes of the faces. Additionally,

we present the marker model to support basic navigation operations within a given

connected planar embedding. This model is similar to the finger-update model [7]

where a finger, or marker, is maintained on a given vertex and updates to the structure

are limited to the position of the finger, or marker. The difference between the marker

model and the finger-update model is that a marker has an indicator that points to

a specific face in the given planar embedding.

1.2 Roadmap

Chapter 2 reviews related work and Capter 3 discusses the preliminaries. The data

structures used in our representation of planar embedding G and the model we derive

to support navigation and update operations are discussed in Chapter 4. Chapter 5

reviews how we support dynamic updates. Conclusions and future work is discussed

in Chapter 6.



Chapter 2

Related Work

We survey previous results on succinct representations of planar embeddings [3, 4, 8,

14, 16, 21, 22]. Succinct planar graph representations that cannot encode an arbitrary

embedding are not included; see [4] for a survey including those results. Tutte [22]

enumerated rooted planar maps and his results implied that m lg 12 = 3.58m bits are

required to encode an m-edge planar embedding. Turán [21] derived a simple suc-

cinct encoding of planar graphs that uses 4m bits. Keeler and Westbrook [16] then

showed an encoding of planar maps that achieves Tutte’s lower space bound, but no

operations are supported. Additionally, their encoding and decoding algorithms run

in linear time.

Later, researchers designed succinct data structures for planar embeddings, and

the operations supported by these structures include listing the neighbors of a given

vertex in counterclockwise or clockwise order. Barbay et. al. [3] showed how to

represent a simple planar embedding in 18n + o(m) bits to support degree and ad-

jacency queries in constant time and the listing of neighbors in constant time per

edge. Blelloch and Farzan [4] developed a data structure that occupies 3.58m+ o(m)

bits and provide the same support for queries. Ferres et. al. [8] modified Turán’s

[21] structure to occupy an additional o(m) bits and showed the following: the edges

incident to vertex v can be listed in clockwise or counterclockwise order in constant

time per edge, the edges limiting a face can be traversed in constant time per edge,

a vertex’s degree can be found in O(f(m)) for a given function f(m) ∈ ω(1) and

computing if two given vertices are neighbors in O(f(m)) time for any given function

f(m) ∈ ω(lgm). This data structure is simpler than previous solutions and can be

constructed in parallel efficiently. Fuentes-Sepúlveda et. al. [9] further show that

by using half-edges and condensing Ferres et. al.’s [8] data structures, a full set of

topological queries can be supported in efficient time.

4



5

All the above mentioned works concern succinct representations of planar graphs

in the static case. With respect to the dynamic case, Aleardi et. al. [2] show a

succinct representation of an n-vertex triangulated graph with fixed genus g and

a simple polygon boundary that supports standard navigation in O(1) time, vertex

addition in amortized O(1) time without supporting access to satellite data associated

with each vertex, amortized O(lg n) time with data access, and vertex deletion or edge

flip1 in amortized O(lg2 n) time. This data structure occupies 2.17m+ o(m) bits and

uses an additional O(g lgm) bits for representing triangulations on genus g surfaces.

Kammer and Maintrup [15] provide a dynamic data structure, a modification of

Blelloch and Farzan’s [4], that supports edge contractions and vertex deletions in

O(n) time and H(n) + o(n) bits, where H(n) is the entropy of encoding an n vertex

planar graph. Edge or vertex insertions are not supported, so their solution is for the

decremental setting only.

1Edge flipping refers to removing the edge e and replacing it with the other diagonal of Q, where
Q is the union of two triangles which create a quadrilateral.



Chapter 3

Preliminaries

We assume the word-RAM model of computation where any given input value U can

be represented in a machine word of O(lgU) bits. In addition, we assume standard

arithmetic and boolean bitwise operations are performed in constant time [6].

3.1 Notation

For the remainder of this thesis, let G be a given connected planar embedding on

n vertices, m edges and f faces that may contain multi-edges and self loops. Let

the notation |H| denote the number of elements stored in data structure H. All

logarithms are written as lg and are base 2, unless otherwise specified.

3.2 Dynamic Bitvectors

A dynamic bitvector B[1..n], supporting the following operations is a key compact

data structure (b ∈ {0, 1} in the following definitions):

• access(B, i): return the bit in B[i] for any i such that 1 ≤ i ≤ n.

• rankb(B, i): return the number of occurrences of b in B[1..i] where 1 ≤ i ≤ n.

• selectb(B, j): return the index of the jth occurrence of b in B.

• insert(B, i, b): inserts bit b between B[i− 1] and B[i] where 1 ≤ i ≤ n.

• delete(B, i): deletes the bit in position B[i] where 1 ≤ i ≤ n.

• link(B1, p, B2): attaches all the bits in B2 between bits B1[p] and B1[p + 1]

where 1 ≤ p ≤ |B1| and |B1| and |B2| are each at most n.

• cut(B, i, j): returns bitvector B′ which contains all the detached bits in B from

B[i] up to and including B[j] where 1 ≤ i < j ≤ n. B is then the concatenation

6
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of the bit ranges [1..(i− 1)] and [(j + 1)..n] and B′ holds the bits in the range

[i..j].

• flip(B, i): modifies the bit in B[i] to be a 1 if B[i] = 0 or to be a 0 if B[i] = 1

where 1 ≤ i ≤ n.

Navarro and Sadakane [19] present the following:

Lemma 1. ([19]). There exists a succinct dynamic bitvector structure that supports

access, rank, select, insert, delete, and flip in O( lgn
lg lgn

) time and supports link and cut

in O(lg1+ϵ n) time, where n is the number of bits currently in the bitvector and ϵ is

an arbitrary positive constant.

3.3 Planar Graph Traversal

The traversal of a planar embedding G developed by Turán [21], which is used by

Ferres et. al. [8] to generate a binary sequence A, is now described. From here

forward, we will refer to this traversal as a Turán traversal. An arbitrary spanning

tree T , which is rooted at some vertex v0 on the outer face of G, is computed before

the traversal. We note that a Turán traversal can be performed in counterclockwise

or clockwise order. Without the loss of generality, we use counterclockwise order and

design our data structures with respect to this ordering. We call an edge in G that

is also in T a primal edge and an edge in G not in T a dual edge. In this Turán

traversal, after we visit a vertex v and traverse or examine an edge, (v, u), incident

to it, we view (v, u) as a directed edge by orienting it from v to u, even though the

graph G is undirected.

The traversal of G begins from the vertex selected as the root v0 of T and ex-

amines one of its incident edges (v0, u) such that (v0, u) is on the boundary of the

outer face and the outer face is to its right. The traversal is a modified depth first

search (DFS) where we visit vertices in counterclockwise order. In a standard DFS,

we examine an edge (v, u) and do not traverse from v to u if u has already been

visited, unless we are returning to a parent. In the Turán traversal, we examine an

edge (v, u), and if (v, u) is a primal edge, we traverse from v to u and record a 1 in a
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Figure 3.1: Planar embedding G where the red solid edges correspond to edges in T
and blue dashed edges correspond to edges in T ∗, the dual of G complementary to T .
The violet arrow on the vertex labeled 1 and directed at the face labeled E depicts
a marker (to be discussed in Section 4.2). Bitvector A contains a Turán traversal
beginning with edge (1, 5) and proceeding counterclockwise. The violet boldfaced
1 bit indicates the marker as represented by the violet arrow on vertex 1 which is
marker 16 (to be discussed in Section 4.2).

bitvector A. Otherwise (v, u) is a dual edge, and we do not traverse it. Instead, we

remain on v, record a 0 in A and examine the next edge in counterclockwise order.

This process is repeated recursively until we have visited all vertices and returned to

the root v0 of T . All edges in G have been traversed or examined twice and A[i] in-

dicates whether the ith edge examined in the Turán traversal is a primal or dual edge.

Observe that a Turán traversal of G performs an Euler tour traversal of T and an

Euler tour traversal of the spanning tree of the dual of G with respect to T , which

we refer to as T ∗. More specifically, to define T ∗, consider some dual edge (v, u) in G

not yet examined. Let fr (fl) be the face on the right (left) side of (v, u). Examining

(v, u) advances the Euler tour of T ∗ from fr to fl, establishing fr as the parent of fl

in T ∗, and we refer to edge (u, v) as the entry edge of fl. Thus, T
∗ encodes a spanning

tree on the faces of G and each edge in G not in T is crossed by an edge in T ∗. In this
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way, every connected planar embedding can be represented as interdigitating span-

ning trees of the primal and dual trees [23]. As the Turán traversal in this thesis is

performed in counterclockwise order, the traversal of T ∗ is performed clockwise from

its root, i.e., the outer face. Figure 3.1 gives an example.
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18
15
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3 2
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14 13

16 15

Figure 3.2: The spanning tree T , shown in red, on the vertices of G from Figure 3.1
and the spanning tree T ∗, shown in blue, on the faces of the dual of G with respect
to T from Figure 3.1.

3.4 Succinct Euler-Tour Trees

Gagie and Wild [10] describe how to succinctly represent a set of Euler-Tour trees

of an n vertex forest in 2n + o(n) bits. An Euler-Tour tree is an unrooted tree
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containing directed edges (u, v) and (v, u) for every undirected edge in the given forest

and preserves an encoding of the order in which edges are visited in an Euler-Tour

tree. Tarjan and Vishkin [20] showed how to represent trees as an Euler tour. Later,

Henzinger and King [11] showed how to use an Euler tour representation of a tree to

support queries and updates. A corner is defined as the space between consecutive

edges incident to a vertex [12]. We use {a, b} to refer to the corner of Euler-Tour tree

T between the two edges traversed at the ath and bth steps of the Euler tour of T .

In [10], the merge and split operations are implied, but we state them explicitly.

Throughout this thesis, we refer to operations 3 and 4 in the lemma below as vertex

and inverse, respectively. Gagie and Wild present the results summarized in this

lemma:

Lemma 2. ([10]). Given a planar embedding of a forest F on n vertices, F can be

encoded in a data structure occupying 2n + o(n) bits such that operations 1 through

4 below take constant time, operations 5 and 6 take O(lg n) time, and operations 7

through 10 take O(lg1+ϵ n) time for some constant ϵ > 0.

1. return the predecessor and successor in the Euler tour of the tree containing the

given directed edge e.

2. return the predecessor and successor in the counterclockwise order of the edges

incident to u when given directed edge (u, v).

3. return vertex v such that v is the vertex arrived at after traversing the kth edge

in the Euler tour of T .

4. return the e′th edge encountered in the Euler tour traversal of T such that,

given a T and the eth edge encountered in the Euler tour of T , the e′th edge

encountered in the Euler tour of T corresponds to the inverse edge of e.

5. return the edge e′ such that the distance from the given directed edge e to e′ is

the given distance t in the Euler tour of the tree containing e.

6. return the Euler tour distance between the given edges e and e′ so long as the

two edges are in the same tree.
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7. delete the given edge e from the tree containing it and return the representations

of the two resulting trees.

8. insert an edge between T and T ′ at the given corners, bisecting those corners,

and return the representation of the resulting tree.

9. merge the adjacent vertices u and v to become one vertex and retain all other

edges adjacent to u and v at the given edge e that connects u and v.

10. split v into two adjacent vertices, v1 and v2, where v1 is a parent of v2. Two

incident boundary edges ei and ej are also given as parameters so that edges

incident to v starting from ei to ej in counterclockwise order are to be incident

to v1, while the remaining edges are to be incident to v2.

Operation 8 supports the insertion of an edge between two arbitrary vertices in

two trees. This update operation cannot be supported by the dynamic succinct tree

representation of Navarro and Sadakane [19] which is based on a balanced parenthesis

representation, but it is needed in our dynamic planar graph representation. Thus,

we use the result of Gagie and Wild [10] in this thesis.



Chapter 4

Data Structure and Marker Model

4.1 Data Structures

Our representation of connected planar embedding G on n vertices, m edges, and f

faces, contains the following components:

• A dynamic bitvector, A, which encodes a Turán traversal of G described in

Section 3.3. It is represented by Lemma 1 in 2m+ o(m) bits.

• A spanning tree, T , of G as defined in Section 3.3. It is represented by Lemma 2

in 2n+ o(n) bits.

• A spanning tree, T ∗, of the dual of G as defined in Section 3.3. It is represented

by Lemma 2, in 2f + o(f) bits.

Observe that T and T ∗ represent succinct Euler-Tour trees on the vertices and

faces of G, respectively, so T requires 2n+o(n) bits of space and T ∗ requires 2f+o(f)

bits of space. By Euler’s formula [17], n−m+f = 2, the latter is 2(m−n+2)+o(m)

bits. Thus the total space cost of our data structure is 2m+o(m)+2n+o(n)+2(m−
n+ 2) = 4m+ o(m).

4.2 The Marker Model

The marker model provides a way to map an index in A to specific vertices in T

and T ∗. A marker, or a marker’s value, is denoted by a single integer value i, where

1 ≤ i ≤ 2m and is some index in A. Recall that a Turán traversal of G induces an

Euler tour traversal on T and T ∗. We define the orientation of a marker as the vertex

most recently visited in the Euler tour of T and the face most recently visited in the

Euler tour of T ∗. The number of 1’s (0’s) in A corresponds to the primal (dual) Euler-

Tour tree edges just crossed in an Euler tour of T (T ∗). Therefore, a marker with

12
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value i stands on the vertex of G that corresponds to node vertex(T, rank1(A, i))

in T , and the face it points to corresponds to node vertex(T ∗, rank0(A, i)) in T ∗.

Figure 3.1 shows marker 16 as an example.

If more than one marker is maintained at a given time then, after an update, all

markers must be updated to preserve their orientation. The index a marker refers to

can be updated in O(1) time via a constant number of comparisons and arithmetic

operations due to the way we support updates. Thus, the run time to preserve the ori-

entation of all markers after an update is linear in the number of markers maintained.

In the lemma below, we consider the orientation of a marker i in G where A[i]

corresponds to some directed edge (v, u).

Lemma 3. Let (v, u) be a directed edge currently enumerated in a Turán traversal.

If (v, u) is a primal edge, then the marker is standing on u and pointing to the face

on the right side of (v, u). If (v, u) is a dual edge, then the marker is standing on v

and pointing to the face on the left side of (v, u).

Proof. We prove this by induction on i, where A[i] represents the ith enumerated

edge in the Turán traversal of G. For the base case i = 1, which represents the first

edge (v, u) enumerated in the Turán traversal. There are two cases, depending on

whether (v, u) is a primal or a dual edge.

If (v, u) is a primal edge, then the Turán traversal follows this edge to visit u,

making the marker stand on u. Since this does not advance the traversal of T ∗, the

marker points at the outer face, which is to the right of (v, u).

If (v, u) is a dual edge, then the Turán traversal does not follow (v, u) but rather

continues to stand on v. Since (v, u) is a dual edge, we advance in the traversal of

T ∗ by going from the face on one side of (v, u) to the face on the other side. When

we start the Turán traversal, the face of G we visit was to the right of (v, u), so the

marker now points to the face to the left of (v, u).
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We now assume this lemma is true after the ith step of the Turán traversal, and

we prove that it still holds after the (i+1)st step. In our proof, let (v, u) be the edge

examined in the ith step, and let F be the face that the marker points to after this

step. Then there are two cases depending on whether (v, u) is primal or dual.

In case 1, (v, u) is a primal edge. By the induction hypothesis, F is to the right of

(v, u). Furthermore, after the ith step, the marker stands on u after traversing (v, u),

and thus the next edge to examine is an edge that connects u to another vertex, w.

As F is to the right of (v, u) it is to the left of (u, v). Since (u,w) is the next edge

in counterclockwise order from (u, v), F is on the right side of (u,w). There are two

subcases, depending on whether (u,w) is primal or dual.
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Figure 4.1: Inductive cases, showing how the marker updates from the solid arrow to
the dashed arrow, when processing the next edge in counterclockwise order following
edge (v, u) where F is the initial face the marker is pointing to and F ′ is the second
face the marker points to, if the update changes the face the marker is pointing to.

In subcase 1.1, (u,w) is a primal edge. When the degree of u is 1, we have w = v,

and our reasoning below applies to both this special case and the general case. As

(u,w) is a primal edge, at the (i + 1)st step, (u,w) is traversed which relocates the
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vertex the marker is standing on from u to w and advances one edge in the Euler tour

of T . However, this does not advance the traversal in T ∗, so the marker still points

to F , which is on the right side of (u,w). This can be viewed in Figure 4.1(a).

In subcase 1.2, (u,w) is a dual edge. As (u,w) is a dual edge, at the (i+1)st step,

the Turán traversal does not traverse (u,w), so the marker continues to stand on u.

What the traversal does instead is to continue in the Euler tour of T ∗ by going from

F to the face, F ′, on the other side of (u,w), making the marker point to F ′. Since

F is on the right side of (u,w), F ′ is on the left side of (u,w), and the induction also

goes through in this case. Figure 4.1(b) shows a depiction.

In case 2, (v, u) is a dual edge. By the induction hypothesis, F is to the left of

(v, u). Furthermore, after examining (v, u) in the ith step, the marker continues to

stand on v, and thus the next edge to examine is an edge that connects v to another

vertex, w. As F is on the left side of (v, u) and the next edge in counterclockwise

order incident to v is (v, w), F is on the right side of (v, w). There are two subcases,

depending on whether (v, w) is primal or dual.

In subcase 2.1, (v, w) is a primal edge. As (v, w) is a primal edge, at the (i+ 1)st

step, (v, w) is traversed which relocates the vertex the marker is standing on from v

to w and advances one edge in the Euler tour of T . However, this does not advance

the traversal of T ∗, so the marker continues to point to F , which is on the right side

of (v, w). An example of this can be viewed in Figure 4.1(c).

In subcase 2.2, (v, w) is a dual edge. As (v, w) is a dual edge, at the (i+1)st step,

the Turán traversal does not traverse (v, w), so the marker continues to stand on v.

What the traversal does instead is to continue in the Euler tour of T ∗ by going from

F to the face, F ′, on the other side of (v, w), making the marker point to F ′. Since

F is on the right of (v, w), F ′ is on the left side of (v, w), and the induction again

goes through in this case. Figure 4.1(d) shows an example.

Because of the presence of sticks, a vertex can be incident to multiple corners of

the same face. This means multiple markers can stand on the same vertex and point
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to the same face. For simplicity, in the remainder of the thesis, we do not consider

this case except in the discussions related to vertex insertion and deletion. This case

can be addressed easily by refining our definition of an orientation. Let marker i refer

to edge (v, u). If (v, u) is a primal edge, then marker i stands on u and points to the

face on the right of (v, u) with u as the apex. If (v, u) is a dual edge, then marker i

stands on v and points to the face to the left of (v, u) with v as the apex. Then we

can modify our discussions trivially to address this case.

4.3 Navigation

Now we define two rotation operations and a traverse operation. Either rotate oper-

ation changes the face the marker is pointing to and the traverse operation changes

the vertex the marker is standing on. These operations are necessary to move the

marker to support queries and updates on our representation of G. For the operations

described below, let v be the vertex marker i currently stands on and F be the face

marker i currently points to; they will also be referred to when we discuss how to

support these operations.

• rotate ccw(i): Compute a new orientation of the marker such that the marker

is still standing on v but is pointing to the face next to F when listing all faces

incident to v in counterclockwise order.

• rotate cw(i): Compute a new orientation of the marker such that the marker

is still standing on v but is pointing to the face next to F when listing all faces

incident to v in clockwise order.

• traverse(i): Let the edge (v, w) be the (i + 1)st edge examined in the Turán

traversal. Compute a new orientation of the marker such that the marker is

now standing on w but still pointing to F .

4.3.1 Rotating Counterclockwise

We now describe how to support rotate ccw(i). To do this, first consider the ith

edge examined in a Turán traversal. One of its endpoints is v, let u be the other
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endpoint, and let (v, w) be the next edge after (v, u) in counterclockwise order. If

(v, u) is a primal edge, then, by Lemma 3, it is oriented from u to v in the ith step

of the traversal. Furthermore, face F is to the right of (u, v) and is thus to the left

of (v, u). If this edge is a dual edge, then by Lemma 3, it is oriented from v to u,

and face F is again to the left of (v, u). In either case, since (v, w) is the edge next

to (v, u) in counterclockwise order, F is to the right of (v, w). Therefore, our goal

is to compute a marker that is still standing on v but pointing to the face, F ′, to

the left of (v, w), since F ′ is the face next to F when listing all faces incident to v in

counterclockwise order.

There are now two cases, depending on whether the (i+1)st edge, (v, w), enumer-

ated in a Turán traversal, is a dual or primal edge, i.e. whether A[i+ 1] is 0 or 1. If

A[i+1] = 0, then by Lemma 3, marker i+1 continues to stand on v but point to F ′.

Therefore we return i + 1 as the answer. Otherwise, A[i + 1] = 1 and the answer is

computed as the index in A when the Turán traversal returns to v from edge (w, v).

This is computed by j =select1(A,inverse(T,rank1(A, i + 1))). This follows from

Lemma 3; since (w, v) is a primal edge, the marker j is standing on v and pointing

to the face to the right of (w, v). As the right side of (w, v) is the left side of (v, w),

the marker computed is also pointing to F ′ in this case.

Let us refer to the planar embedding and the bitvector in Figure 3.1 for an ex-

ample. We arbitrarily choose the marker that stands on vertex 2 and points to face

B. Thus, i = 2. Let us rotate counterclockwise about vertex 2. First, we examine

the bit in access(A, i+ 1) and observe that access(A, i+ 1) = 0, meaning that the

edge to be rotated over is a dual edge. Therefore, we update i by performing the

operation corresponding to the case that i+ 1 is a dual edge: i = mod(i+ 1, 2m) = 3.

This is correct as the third edge examined in a Turán traversal is (2, 5) and because it

is a dual edge, by Lemma 3, the marker i = 3 stands on vertex 2 and points to face C.

To observe counterclockwise rotations over a primal edge, we will perform another

counterclockwise rotation about vertex 2 when the marker is pointing to face C. As

noted above, with the marker standing on vertex 2 and pointing to face C, i = 3.
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We first inspect access(A, i + 1) and see that access(A, i + 1) = 1. Thus, the edge

we intend to rotate over is a primal edge. Applying the operation for the case that

access(A, i+ 1) = 1 results in computing an updated marker value of:

i = select1(A, inverse(, T, rank1(A, 3 + 1)))

= select1(A, inverse(T, 2))

= select1(A, 7)

= 11

We confirm this is correct by observing that the 11th edge enumerated in a Turán

traversal corresponds to the marker standing on vertex 2 and pointing to face A.

4.3.2 Rotating Clockwise

We now describe how to support rotate cw(i). Consider the ith edge examined in a

Turán traversal. One of its endpoints is v and let u be the other endpoint. There are

two cases, depending on whether the ith edge enumerated in a Turán traversal is a

dual edge or a primal edge, i.e. whether A[i] is 0 or 1. If A[i] = 0, then the ith edge

is a dual edge oriented from v to u. By Lemma 3, face F is to the left of (v, u), and

the other face, F ′, that (v, u) is incident to is to its right, so F ′ is the face next to F

when listing all faces incident to v in clockwise order. Since, by examining (u, v) in

the ith step, the Turán traversal advances the Euler tour of T ∗ from F ′ to F without

changing the vertex that the marker stands on, marker i− 1 stands on v and points

to F ′. Therefore, we return i − 1 as the answer. Otherwise, A[i] = 1, and the ith

edge is a primal edge oriented from u to v. By Lemma 3, face F is to the right of

(u, v). Step j =select1(A, inverse(T, rank1(A, i))) traverses this edge in reverse

order, i.e., from v to u, and by Lemma 3, marker j points to F ′ which is to the right

of (v, u). Since traversing (v, u) in the jth step makes the marker stand on u without

changing the face it points to, marker j − 1 stands on v and points to F ′, so it is the

answer we return.

Suppose our marker in G in Figure 3.1 is standing on vertex 2 and pointing to

face E. This orientation corresponds to i = 15. We arrive at i = 15 by computing

that rank1(A, 15) corresponds to having traversed the 9th edge in the Euler tour of
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T and that rank0(A, 15) corresponds to having traversed the 6th edge in the Euler

tour of T ∗. As the 9th edge in T points to vertex 2 and the 6th edge in T ∗ points

to the vertex E, i = 15 corresponds to the marker standing on vertex 2 and point-

ing to face E. Now suppose we wish to rotate clockwise about vertex 2. This single

clockwise rotation should orient the marker to continue to be standing on vertex 2

but point to face D. This can be confirmed visually in Figure 3.1. We begin by ex-

amining the bit in access(A, i) and we observe that access(A, i) = 0. Therefore, to

compute the new marker value after a clockwise rotation about vertex 2, we compute

the result of i = i − 1 = 14. As stated above, after this clockwise rotation, the

marker should be standing on vertex 2 and pointing to face D. This is correct as the

14th edge examined in a Turán traversal is (6, 2) which, by Lemma 3, corresponds

to the marker standing on 2 and pointing to face to the right of (6, 2), which is face D.

We can perform one more clockwise rotation about vertex 2 to observe a rotation

over a primal edge. From the same orientation as discussed above, we perform one

clockwise rotation. After doing so, we expect the orientation to be standing on

vertex 2 and pointing to face A. Examining access(A, i) where i = 14, as previously

calculated, confirms that access(A, 14) = 1. We therefore perform the primal edge

computation case. Specifically, we compute the following: select1(A, inverse(T,

rank1(A, 14)))−1 = select1(A, inverse(T, 9))−1 = select1(A, 8)−1 = 12−1 = 11.

This is also correct, as the 11th edge enumerated in a Turán traversal corresponds to

(3, 2) and, by Lemma 3, the marker is standing on vertex 2 and pointing to face A.

4.3.3 Traversing an Edge

Now we describe how to support traverse(i). There are two cases to consider, de-

pending on whether (v, w) is a primal or a dual edge. If A[i + 1] = 1, then the

(i+1)st edge is a primal edge. In this case, the Turán traversal traverses (v, w) in the

(i+1)st step, making marker i+1 stand on w without changing the face it points to.

Therefore, we return i+ 1 as our answer. Otherwise, A[i+ 1] = 0, then the (i+ 1)st

edge, (v, w), is a dual edge. By similar reasoning to Section 4.3.1, F is to the right

of (v, w). By Lemma 3, our goal is to compute the marker j that examines (v, w) in

reverse order, i.e., from w to v, resulting in marker j standing on w and pointing to
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the face to the left of (w, v), and thereby the face to the right of (v, w), which is F .

Marker j is computed by j =select0(A, inverse(T
∗, rank0(A, i + 1))) and this is

the answer we return.

We observe that, except for differences with respect to the bits in the rank and

select queries used, the Euler-Tour trees T ∗ and T , and the cases when A[i+1] = 0

and A[i+ 1] = 1, the rotate ccw(i) and traverse(i) operations are symmetric.

In the worst case, at most two dynamic bitvector operations and one succinct

Euler-Tour tree operation are computed in the navigation operations described above.

Combining this with Lemmas 1 and 2, the run time of the operations described in

this section is summarized in the following lemma:

Lemma 4. The data structures in this section can support rotate ccw, rotate cw,

and traverse in O(lg n) time.

4.4 Listing Edges of a Vertex or a Face

Listing Edges Incident to a Vertex

Given a vertex v or a directed edge (v, u), we wish to list the edges incident to v in

clockwise or counterclockwise order starting from (v, u) when given. Following the

discussion from Section 4.2, it is easy to see that given v or (v, u), to list the edges in

clockwise (counterclockwise) order from v, we record the index in A, associated with

the marker’s orientation, in some temporary value y and continuously call rotate cw

(rotate ccw) and report the corresponding edges until the marker’s orientation equals

y again. By Lemma 4, this takes at most O(lg n) time per edge.

Listing Edges Incident to a Face

Given some directed edge (v, u) and face F , where (v, u) is incident to F , we wish to

list all the edges in G incident to F in clockwise or counterclockwise order. To do

this, we must first ensure the marker is pointing to F .
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When given (v, u), we check if (v, u) is in T or T ∗. Without the loss of generality,

suppose (v, u) ∈ T . The distance dist from the root rT to (v, u), via Lemma 2, is

computed. Let i = select0(A, dist). The face the marker i is currently pointing to,

F ′, is computed by: vertex(T ∗, rank0(A, i)). If F
′ is not F , then we use rotate ccw

or rotate cw to compute a marker that stands on u and points to F , and we update

i by the index of this marker. In either case, by reasoning similar to Section 4.3.1,

F is to the right of the edge (u,w), examined in step i+ 1 of the Turán traversal, so

(u,w) is the edge after (v, u) in clockwise order that is incident to F .

This implies the following algorithm: To list edges incident to F in clockwise or-

der, we store i, associated with the marker’s orientation, in a temporary value y. The

edge corresponding to A[i] is reported, we continuously call traverse(i), report the

subsequent edges, and immediately stop once i = y.

To list edges incident to F in counterclockwise order, we perform the above algo-

rithm to report edges in clockwise order and, instead of immediately reporting the

edges, we temporarily store them. Then, we report the stored edges in reverse order.

By Lemma 4, listing edges incident to a face in clockwise or counterclockwise order

takes at most O(lg n) time per edge.



Chapter 5

Dynamization

We now examine insertions and deletions of edges and vertices and their effect on our

representation of G. With respect to inserting and deleting vertices and edges, we

consider how to update A, T , and T ∗ in each dynamic operation. Edge insertions and

deletions are discussed in Section 5.1. For vertex insertion and deletion, we support

the insertion and deletion of a degree-1 vertex that is connected to some other vertex

in G, which we refer to as a stick. This is discussed in Section 5.2.

5.1 Inserting and Deleting Edges

We now describe insertion and deletion of edges in our representation of G. Recall

from Section 3.3 that a Turán traversal traverses primal edges, does not traverse

dual edges, and encodes this primal edge and dual edge sequence in a bitvector, A.

To minimize the changes to the Turán traversal of G, all new edges will be made a

dual edge upon insertion into G. It is possible that this inserted dual edge may be

promoted to a primal edge in the future due to the deletion of a primal edge.

5.1.1 Inserting an Edge

We now discuss edge insertion. To insert an edge, we need two markers, i and j, and

a face, F , such that the edges examined in the ith and jth step of the Turán traversal

are two of the edges that delimit F . This specifies the face to draw the edge across.

Let v be the vertex marker i stands on and let u be the vertex marker j stands on.

These vertices, v and u, are the endpoints of the edge to be inserted. Since a single

rotate ccw or rotate cw operation can make a marker point to the face on the other

side of the edge that the marker corresponds to, we assume that both marker i and

marker j point to F for simplicity. We also assume, without the loss of generality,

that i < j.

22
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The rank0 query on A, with parameters i and j, computes the Euler tour edges

in T ∗ just processed at the ith and jth step in the Turán traversal. We denote these

Euler tour edges as i′ and j′. Recall that v is one endpoint of the ith edge examined

in a Turán traversal of G, and let w be the other endpoint. By Lemma 3, and similar

to the reasoning from Section 4.3.1, no matter if this edge is a dual edge or a primal

edge, F is to the left of (v, w). If we rotate counterclockwise from (v, w), with v as

the pivot, F is the first face encountered and is encountered before any other edge

incident to v. Therefore, when inserting an edge across F , the new edge, (v, u), is the

next edge examined in a Turán traversal. This means that (v, u) will be inserted as

the dual edge examined in the (i+1)st step of the Turán traversal. Thus, we perform

insert(A, i + 1, 0). Due to the insertion of a new bit, we also increment j, so that

marker j corresponds to the same edge after insertion. Then, by similar reasoning,

we additionally perform insert(A, j + 1, 0) to indicate that (u, v) is the dual edge

examined in the (j+1)st step. To update T ∗, we observe that drawing an edge across

F splits the face. Therefore, we perform split(vertex(T ∗, i′), i′, j′). As inserting

a dual edge only affects the faces and not the vertices, T is unaffected. Lastly, we

increment m by 1. Figure 5.1 shows an example.
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Figure 5.1: Splitting face F into two faces, F and F ′, when inserting a new edge,
(v, u), the violet edge, between marker i and marker j, where marker i corresponds
to primal edge (v, w) and marker j corresponds to dual edge (u, y).
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Lemma 5. Given two vertices u and v and an adjacent face F , an edge connecting

u and v across F can be inserted in G in O(lg1+ϵ n) time.

5.1.2 Deleting an Edge

We now discuss edge deletion. We perform an edge deletion only if, after removing

the edge, G remains connected. Deleting dual edges does not disconnect G, as the

primal edges form the spanning tree T , connecting all vertices of G. However, G

could become disconnected when deleting primal edges. Therefore, we allow primal

edge deletions only if the deletion of that primal edge does not result in G becoming

disconnected. First we discuss dual edge deletion in the subsection immediately below,

followed by our discussion of primal edge deletion.

Deleting a Dual Edge

Now, we discuss dual edge deletion. We delete the dual edge associated with marker

i, which corresponds to the ith edge, (v, u), enumerated in a Turán traversal. Let F

be the face that marker i points to. By Lemma 3, since (v, u) is a dual edge, F is to

the left of (v, u). Let F ′ be the face to the right of (v, u). We compute the inverse of

(v, u), i.e., (u, v), and let j be the index in A that corresponds to (u, v). Then marker

j corresponds to the marker standing on u and pointing to F ′. Additionally, we also

assume, without the loss of generality, that i < j.

By similar reasoning as Section 5.1.1, we compute the Euler tour edges in T ∗ just

processed at the ith and jth step in the Turán traversal and store these values in i′

and j′ respectively. Our goal is to remove the edge examined at the ith and jth steps

of a Turán traversal. As marker i points to F and marker j points to F ′, removing the

edge (v, u) removes this edge that separates F and F ′. Therefore, removing a dual

edge corresponds to merging faces in G thus, T ∗ must merge the vertices associated

with F and F ′. To do this, we perform merge(T ∗, vertex(T ∗, i′), vertex(T ∗, j′)).

To delete the bits in A at indices i and j, we first perform delete(A, i). Due to the

deletion of a bit, we decrement j so that the marker corresponds to the same edge.

We then perform delete(A, j) and decrement m. As deleting a dual edge only affects

a dual edge and the faces separated by the dual edge, T remains unaffected.
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Deleting a Primal Edge

We now discuss primal edge deletion. Throughout this discussion, let edge (v, u) cor-

respond to the edge enumerated at the ith step in a Turán traversal of G and be the

primal edge we wish to delete. When deleting a primal edge from our representation

of G, there are four items to consider. The first item to consider is how to determine if

G would be disconnected after deleting (v, u). Second, if G will not be disconnected

after deleting (v, u), how do we choose a dual edge to promote to primal? Third,

recall from Section 3.3 that a Turán traversal follows primal edges, and thus, primal

edge deletion changes the Turán traversal of G. We must then determine how we

update A to reflect a valid Turán traversal after deleting (v, u). Lastly, the fourth

item we must consider is, how are T and T ∗ affected by primal edge deletion.

To determine if G would be disconnected after deleting (v, u), we inspect the faces

on either side of (v, u). If the faces are the same, then (v, u) cannot be deleted as

(v, u) is linking two connected components in G. Without (v, u), these components

become disconnected. We can delete (v, u) such that G remains connected only if the

faces on either side of (v, u) are different.

Assuming the faces adjacent to (v, u) are different, we now discuss how to select

a dual edge to promote to primal. Recall that the ith step in a Turán traversal

corresponds to traversing (v, u) and let the jth step be the step traversing the same

edge in the reverse direction, i.e. from u to v. We assume, without the loss of

generality, that i < j. Observe that deleting a primal edge in G corresponds to

deleting an edge in T and therefore disconnecting T into two trees. Our goal is to

select a dual edge to promote to primal that connects the two trees in T . The following

lemma will be useful when we select such an edge; when proving it, we define the

interval of A corresponding to an edge of G (henceforth the interval of this edge for

short) to be [a, b] if this edge is examined in steps a and b of the Turán traversal with

a < b, e.g., the interval of (v, u) is [i, j].

Lemma 6. Between the two faces incident to (v, u), at least one of them has the

property that the interval of its entry edge does not enclose [i, j].
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Proof. Let F1 and F2 be the two faces incident to (v, u). Let g1 and g2 be the entry

edge of F1 and F2, respectively, and let k1 and k2 be the reverse of g1 and g2, respec-

tively. For simplicity, we assume, without the loss of generality, that g1 < g2.

Assume to the contrary that both [g1, k1] and [g2, k2] enclose [i, j]. Then [g1, k1] and

[g2, k2] must intersect. Furthermore, the endpoints of the interval of the entry edge of

a face correspond to the first and the last time we visit the node of T ∗ representing

this face in an Euler tour traversal of T ∗. Therefore, [g2, k2] ⊂ [g1, k1], and the node,

f2, of T
∗ representing F2 is a descendant of the node, f1, of T

∗ representing F1. By

the definition of an Euler tour, this means that between steps g2 and k2 of the Turán

traversal, the induced Euler tour of T ∗ only visits nodes that are descendants of f2

in T ∗, including f2 itself. Since f1 is the parent of f2, no marker between g2 and

k2 can point to face F1. However, either marker i or marker j points to F1, and

[i, j] ⊂ [g2, k2], which is a contradiction.

Let F be a face incident to (v, u) such that the interval, [g, k], of its entry edge,

(w, x), does not enclose [i, j]; if both faces incident to (v, u) satisfy this condition,

we choose F arbitrarily between them. Assume without the loss of generality that

marker g stands on w while marker k stands on x. We pick dual edge (w, x) to

promote to primal. The following lemma proves the correctness.

Lemma 7. (T \ {(v, u)}) ∪ {(w, x)} is a spanning tree of G.

Proof. All the markers that point to F are in [g, k]. Since either marker i or marker

j points to F , i or j must be in [g, k]. Therefore, [i, j] and [g, k] must intersect, and

[g, k] ̸⊆ [i, j].

As F corresponds to the face whose entry edge interval, [g, k], does not enclose

[i, j], we observe the following two cases:

1 ≤ g < i < k < j ≤ 2m (5.1)

1 ≤ i < g < j < k ≤ 2m (5.2)

To prove our lemma in either case, observe that the removal of edge (v, u) dis-

connects T into two connected components. One of these two components is Tu, the
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subtree rooted at vertex u. By the definition of a Turán traversal, a marker stands

on a vertex in Tu if and only if this marker is in [i, j − 1]. The inequalities for these

two cases then guarantee that the vertex that g stands on (which is vertex w) and the

vertex that k stands on (which is vertex x) are in different components of T \{(u, v)},
and the lemma follows.

We are now ready to describe our algorithm for primal edge deletion. To delete

the primal edge (v, u) enumerated at the ith step of a Turán traversal of G, we first

compute the step j where the Turán traversal traverses (v, u) in the reverse direction,

i.e., from u to v. As marker i points to the face on one side of (v, u) and marker

j points to the face on the other side of (v, u), this follows from Lemma 3, we then

perform vertex(T ∗, rank0(A, i)) and vertex(T ∗, rank0(A, j)) to compute the faces

adjacent to (v, u). If these faces are the same, then deleting (v, u) would disconnect

G, so we do not remove (v, u) and immediately return. Otherwise, the faces adjacent

to (v, u) are different. Recall that we define F to be a face incident to (v, u) whose

entry edges’ interval range does not enclose the range [i, j]. Let F ′ be the other face

incident to (v, u). We now compute [g, k], the entry edge interval of F as follows.

Since F is incident to (v, u), one of the markers, i or j, points to F . Thus, one

of rank0(A, i) or rank0(A, j) corresponds to the entry edge of F in T ∗. We apply

select0 to the rank of 0’s corresponding to the marker, i or j, that points to F and

call this value g. Then, k = select0(A, inverse(T
∗, rank0(A, g))). Without loss of

generality we assume g < k.

Next we update T and T ∗ to reflect the deletion of (v, u) and the promotion of

(w, x). With respect to T , deleting a primal edge from G corresponds to deleting

an edge from T , thereby disconnecting T . By Lemma 7, after deleting (v, u) and

promoting (w, x), T remains a spanning a tree of G. Let Tv be the tree containing

v and Tu be the tree containing u, before the deletion of (v, u). We delete (v, u)

from T . By promoting (w, x), we are connecting Tv and Tu at corners {rank1(A, g),
rank1(A, g) + 1} and {rank1(A, k), rank1(A, k) + 1}. As for T ∗, promoting (w, x) to

primal corresponds to deleting the edge connecting the faces on either side of (w, x)

so, we delete the Euler tour edge in T ∗ corresponding to rank0(A, g). This creates two

subtrees in T ∗, T ∗
F and T ∗

F ′ , where one subtree contains F and the other contains F ′.



28

Deleting (v, u) corresponds to merging faces F and F ′ and thereby reconnecting T ∗.

To merge these faces in T ∗ we first add an edge to connect the two subtrees, T ∗
F and

T ∗
F ′ , at the corners {rank0(A, i), rank0(A, i)+1} and {rank0(A, j), rank0(A, j)+1}

and temporarily store a reference to this newly added edge, ℓ, and its inverse, ℓ′.

Then, we merge F and F ′ by performing merge(T ∗, vertex(T ∗, ℓ), vertex(T ∗, ℓ′)).

Lastly, we decrement m. By Lemma 2, merging vertices and deleting edges in a suc-

cinct Euler-Tour tree takes at most O(lg1+ϵ n) time. Figure 5.2 shows an example.
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Figure 5.2: Deleting primal edge (v, u) where marker i corresponds to the edge (v, u),
stands on u, and points to the face, F , to the right of (v, u), marker j corresponds to
the edge (u, v), stands on v, and points to the face, F ′, to the left of (v, u), and (w, x)
refers to the dual edge that corresponds to the face F whose entry edge interval [g, k]
does not enclose [i, j]. The marker g corresponds to (w, x) and marker k corresponds
to (x,w). After deleting (v, u), the faces F and F ′ will merge together and (w, x) will
be promoted to primal.

Finally, we show how to update A. There are two cases. In the first case, inequal-

ity 5.1 holds. In this case, we update A to A[1, g − 1].1.A[k + 1, j − 1].A[i + 1, k −
1].1.A[g + 1, i − 1].A[j + 1, 2m], where “.” is the concatenation operator for bitvec-

tors. This can be done using a constant number of flip, delete, cut, and link

operations over A in O(lg1+ϵ n) time. To see the correctness, consider how the Turán

traversal works after edge deletion; in subsequent discussions, the tth edge refers to
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the tth edge enumerated in the Turán traversal before edge deletion unless otherwise

stated. First, observe that the Turán traversal begins with the same first edge, and,

therefore, the newly computed bitvector also begins with A[1, g− 1]. The bit at A[g]

should be flipped from 0 to 1, to reflect the promotion of (w, x) to primal. Here, we

append a 1 after A[1, g − 1]. Recall that (w, x) corresponds to this dual edge. By

flipping the bit in A[g] to reflect the promotion to a primal edge, the marker would

be standing on x in the gth step of the Turán traversal after edge deletion by Lemma 3.

Since the kth edge represents the inverse of the gth edge, the kth edge will not be

examined until the Turán traversal has explored all other vertices counterclockwise

from x and then lastly examines (x,w), the kth edge. Thus, after the marker arrives

on x, it continues the Turán traversal counterclockwise from (w, x) when standing

on x. As the kth edge was a dual edge before edge deletion, marker k would be

standing on x and examine the next edge counterclockwise from (x,w). Thus, the

next edge examined, after promoting the gth edge to primal, is the (k + 1)st edge.

The Turán traversal would continue until reaching the jth edge. As we are deleting

the jth edge, it should not be included in our newly computed bitvector. Therefore,

we then concatenate the bits A[k + 1, j − 1].

Since we are removing the jth edge, which is the inverse of the ith edge, the Turán

traversal would continue to stand on vertex u rotating counterclockwise. Thus, the

next edge encountered after the (j − 1)st edge, after removing the jth edge, and

thereby the ith edge, would be the (i + 1)st edge. The Turán traversal would then

continue its traversal, exploring G after the (i+1)st edge until reaching the kth edge.

As this corresponds to the edge we wish to promote to primal, the Turán traversal

would be different after it. Therefore, we then concatenate A[i + 1, k − 1]. The bit

at A[k] should be flipped from 0 to 1 so we immediately concatenate a 1 bit after

A[i+ 1, k − 1].

Recall that the gth edge used to be a dual edge and that the kth edge is the inverse

of the gth edge. As the kth edge was just promoted to primal, by concatenating a 1

bit after the k−1 bit above, the marker would then traverse (x,w) and, by Lemma 3,
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be standing on w. We observe that the next edge in the counterclockwise direction on

w from (x,w) would be the (g+1)st edge. The Turán traversal would continue explor-

ing G from the (g+1)st edge until reaching the ith edge. As we wish to delete the ith

edge, it should not be included in our range. Thus, we then concatenate A[g+1, i−1].

After examining the (i−1)st edge, the Turán traversal would have continued along

the ith edge. However, we have deleted the ith edge, and thereby the jth edge, from

G. Therefore, the next edge examined in counterclockwise order after the (i − 1)st

edge would be the (j + 1)st edge. The Turán traversal would then traverse the re-

mainder of G. This final range corresponds to a Turán traversal from the (j + 1)st

edge to the (2m)th edge, the last edge, so we concatenate A[j + 1, 2m].

With respect to the second case, inequality 5.2 holds. In this second case, we

update A to A[1, i− 1].A[j + 1, k − 1].1.A[g + 1, j − 1].A[i+ 1, g − 1].1.A[k + 1, 2m].

This bitvector is obtained by similar reasoning as the first case above. Thus, we have

the following lemma:

Lemma 8. An edge can be deleted from G in O(lg1+ϵ n) time, so long as G remains

connected.

5.2 Inserting and Deleting Vertices

Recall from the introduction of Section 5 that we support insertions and deletions

of sticks. This is done to minimize the changes to the Turán traversal. We observe

that by supporting insertions and deletions of sticks, a face of G is never split and

the connectivity and planarity of G is maintained throughout. Figure 5.3 shows an

example. Vertex deletion and insertion is described in the subsections that follow.

5.2.1 Inserting a Vertex

We now discuss vertex insertion. Given a vertex v and face F , that v is a vertex of, we

wish to insert u into our representation of G on F as a neighbor of v. Since a single

rotate ccw or rotate cw operation can make a marker point to the face on the other

side of the edge that the marker corresponds to, we assume that marker i stands on



31

v and points to F for simplicity. As we wish to insert u on F , we attach u to v by

adding the primal edge, (v, u), and its inverse, (u, v). This corresponds to inserting

two consecutive 1 bits into A. As the edges inserted are primal edges, attaching u

to v with a primal edge corresponds to having the (i + 1)st edge enumerated in a

Turán traversal be (v, u). The marker (i + 1) would then stand on u but continue

to point to F . Since u is a stick, the edge after the (i + 1)st edge, the (i + 2)nd

edge, enumerated in a Turán traversal would be (u, v), where marker (i + 2) would

stand on v and continue to point to F . Thus, we update A to reflect a new vertex u

attached to v with marker i by insert(A, i+1, 1). We then increment i, and perform

insert(A, i+1, 1) again. As we have inserted u, and a new primal edge connecting it

to v, T must be updated to reflect an inserted vertex. We compute the corner in T to

attach the new vertex to. The corner is computed as the most recently traversed edge

and the next edge in T . Thus, we insert a new vertex into T at the corner computed

by {rank1(A, i), rank1(A, i) + 1}. Lastly, we increment n and m to reflect the new

vertex and edge in G. These steps use O(lg1+ϵ n) time. Thus, we have the following

lemma:

Lemma 9. Given a vertex v and a face that v is a vertex of, a degree-1 vertex u can

be inserted in the face such that v is adjacent to u in O(lg1+ϵ n) time.

5.2.2 Deleting a Vertex

We now discuss vertex deletion. Given a degree-1 vertex v, we wish to delete v and

its adjacent edge in our representation of G. We assume marker i stands on v for

simplicity. As a stick in a Turán traversal is visited, via (u, v), and then immediately

traversed back from, via (v, u), the bits in A corresponding to the primal edges (u, v)

and (v, u) are next to each other in A. Since marker i stands on v, this means that ith

edge enumerated in a Turán traversal is (u, v) and the (i + 1)st edge corresponds to

(v, u). To remove v from A, we perform delete(A, i). Since (u, v) was removed due

to this call to delete, the marker i now refers to (v, u). So, we perform delete(A, i)

again. As we are deleting a vertex from G, T must be updated to reflect this. To

update T we delete the edge connecting the corresponding vertex to T and then delete

the isolated vertex. To delete the edges connecting v to T , we remove the Euler tour

edge rank1(A, i) from T . Lastly, we decrement n and m. These steps use O(lg1+ϵ n)



32

time. Thus, we have the following lemma:

Lemma 10. Given a degree-1 vertex v, v and its adjacent edge can be deleted from

G in O(lg1+ϵ n) time.
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Figure 5.3: The insertion and deletion of degree-1 vertex u into G on face F . Going
from the right figure to the left figure, this demonstrates how the insertion of u
corresponds to inserting two consecutive 1 bits into A to represent (v, u) and (u, v).
Going from the left figure to the right figure, this depicts how the deletion of a degree-1
vertex corresponds to deleting two consecutive 1 bits from A that represent (v, u) and
(u, v). Looking in either direction shows how the insertion or deletion of a degree-1
vertex does not split F .



Chapter 6

Conclusion

We have studied the problem of representing a compact connected planar embedding

under insertions and deletions of edges and vertices. Edge and vertex insertion and

deletion are supported in O(lg1+ϵ n) time for any constant ϵ > 0. We also presented

a way to navigate within our representation of G in O(lg n) time.

Although related prior works exist on dynamic succinct planar graphs, those works

either do not support a full set of update operations [15] or have restrictions on the

sizes and shapes of the faces [2] in G. To the best of our knowledge, this thesis presents

the first known representation of dynamic compact connected planar embeddings that

supports a full set of update operations without limitations on the sizes or shapes of

the faces.

Possible future work includes designing additional o(m) bit data structures to

reduce the time to compute the degree of a given vertex. Another interesting prob-

lem would be to extend or modify this representation to handle disconnected planar

embeddings.
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