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Abstract  

In Canada, stroke is the leading cause of adult disability and the third leading cause of death. 

Ischemic stroke is the most common type, making up approximately 85% of all stroke patients. 

Endovascular treatment (EVT) is effective for severe ischemic stroke patients. Unfortunately, EVT 

requires specialized equipment and personnel, which limits its availability.  

There are several clinical and imaging factors that are critical in determining eligibility for EVT. 

Furthermore, in stroke, minutes matter as the brain dies quickly after onset, making EVT 

treatment's effectiveness highly time dependent. For this reason, timely across to EVT is critical. 

This study is to create a binary classification model to predict the EVT eligibility of stroke patients 

and discover attributes of the patient information that help to make efficient decision on transfer 

EVT eligible patient. Following algorithms applied to dataset: Logistic Regression, Decision Tree, 

Random Forest, and Support Vector Machine. 
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1.0 Introduction 

Stroke is a catastrophic disease that affects 13.7 million people worldwide each year, and 5.5 

million people die as a result (1). Stroke can be classified into two types: hemorrhagic stroke and 

ischemic stroke. Hemorrhagic stroke occurs when the blood vessel burst within the brain and 

ischemic stroke occurs when a blood clot blocks the blood flow in artery in the brain (2). Age is 

the most well-known key factor that affects incidence of stroke, the average age of stroke patients 

was 69 years old in 2005 (3). Furthermore, the Public Health Agency of Canada (PHAC) presented 

the increase in incidence of stroke with age, which is shown on Figure 1 from PHAC from 2012/13. 

They found that 10% of Canadians aged 65 years or older will experience a stroke and 20% for 

age group 85 years or older will experience a stroke (4).  

 

Figure 1: Stroke occurrence (%) and number of people y five-year age group and sex in Canada 2012-2013 (4) 

According to the annual statistic report of American Heart Association, 87% of all strokes are 

ischemic stroke. Fortunately, ischemic strokes are treatable, the medical treatment with 
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thrombolysis using either tPA (tissue plasminogen activator) also known as alteplase. Alteplase 

and TNK (Tenecteplase). Thrombolysis treatment is given through an intravenous (IV) in the arm, 

and it dissolve the blood clot that blocks the blood flow in the brain. Thrombolysis treatment 

should be administered to stroke patients as soon as possible, and it can only be given with in 4.5 

hours of symptom onset. The faster administration of a thrombolysis drug to restore blood flow in 

the brain helps to limit the risk of brain damage and functional impairment (5). National Institute 

of Neurological Disorders and Stroke conducted one of the key randomized clinical trials to prove 

the effectiveness of alteplase, the result showed that 39% of alteplase-treated patients will not have 

disability as compared to 26% of patients who are not treated. Thus approximately 25% of 

ischemic stroke patients can be effectively treated with alteplase (6). Among the cases of the 

ischemic stroke approximately 30-40% is due to a large vessel occlusion (LVO) which is the most 

severe type of ischemic stroke (7). A new highly effective treatment for ischemic stroke due to 

LVO is called endovascular treatment (EVT), which mechanically removes the clot using stent 

retriever the procedure called a thrombectomy. The blood clot may be removed by trapping it in a 

stent then pull it out with the clot. The Figure 2 shows how does the EVT removes the blood clot 

(8). 
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Figure 2: Procedure of Stent Remove the Blood Clot (8) 

EVT is a highly effective treatment method when compares to alteplase, about 26.9% of EVT 

treated stroke patients will recover with no disability compared to 12.9% of patients who did not 

receive EVT and 46.0% of EVT treated patients will only have minor disability compared to 26.5% 

who did not receive EVT (9). It should be noted that both treatments are synergistic, and ischemic 

stroke patients can receive both treatments if they are eligible, as each treatment has different 

contraindications. Eligibility for EVT is determined using a CT Angiogram (CTA) which shows 

the location of the blood clot, and it allows for the evaluation of the collateral circulation of the 

brain. The clot needs to be accessible through the EVT procedure, and it needs to be in a large 

vessel in the brain. However, EVT requires specialized equipment and personnel to conduct the 

procedure. Thus, EVT has limited availability to ischemic stroke patients that live outside of the 

catchment of a hospital that provides EVT (10).  

Not all the hospitals have the ability to treat ischemic stroke, hospitals with a CT (computed 

tomography) scanner and expertise to treat stroke patient are called as Designated Acute Stroke 
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Hospitals (DASH) in Nova Scotia. For example, in Nova Scotia in Canada, there are 11 DASH 

across the province, and among them only one hospital is capable of treating stroke patients with 

EVT, the QEII. Figure 3 from Nova Scotia Health Authority that shows the location of all DASH 

around Nova Scotia. 

 

Figure 3: DASH around the Nova Scotia 

The yellow boxed hospitals are only able to administer thrombolysis treatment to ischemic stroke 

patients red boxed hospital QEII is only one that is capable of EVT as well as thrombolysis 

treatment. Stroke patients outside the catchment of the QEII, will be transported to a DASH where 

yellow boxes, if patients are eligible for EVT, the DASH urgently transfers the patient to QEII. 

Similar to Nova Scotia, region across Canada and internationally must transfer ischemic stroke 

patients to EVT-capable hospitals. A study from Ontario showed that 34% of patient who were 

transferred for EVT ended up to receiving EVT, and the remaining 66% of patients were ineligible 

for treatment upon arrival (11). These cases are called futile transfer: a small but costly portion of 

overall transfer volume. Futile transfer incurs significant burden cost to healthcare system and 
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could cause delay for other patients. Therefore, optimizing the decision on the ischemic stroke 

patients will hopefully decrease the futile transfer rate, and lessen on the cost and delay burdens. 

The objective of this research project is to figure out the adaptability of the machine learning 

algorithms on transfer patient for EVT prediction through the creation of classification machine 

learning models with following algorithms logistic regression, support vector machine, decision 

tree, and random forest. Furthermore, discovering the valuable attributes that are correlated with 

the prediction for EVT eligibility. A historical dataset of ischemic stroke patient data who were 

transferred to get EVT is used to build the machine learning model. Therefore, this machine 

learning model could support decision making on EVT eligibility of ischemic stroke patients to 

minimize the futile transfer rate which will result in better transfer cost efficiency and less delay 

on patient transfers in the healthcare system. 
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2.0 Literature Review 

In the following section, the literature related to the application of machine learning to the clinical 

area of stroke is described. The primary purpose of this section is to review studies where machine 

learning has been applied to ischemic stroke patients in order to determine the state-of-the-art in 

this area and to identify research gaps. The outline of this section is as follows—Section 2.1 

discussed research methodology used to extract the related studies and papers; and the rest of these 

sections are categorized by each study’s: diagnostic, prognostic, patient outcome prediction, and 

stroke prediction. 

2.1 Search Methodology 

Google Scholar, PubMed, and Novanet were used to identify the relevant papers and studies. The 

keyword included ‘machine learning, ‘ischemic Stroke,’ ‘logistic regression,’ ‘random forest’, 

‘decision tree’, ‘support vector machine’, and ‘XG Boost.’ The search with these keywords on 

three databases produced 517 records. Thirty-five duplicated records were removed during the 

initial screening process. During the screening session, the titles and abstracts of the documents 

were reviewed, then 407 articles were excluded as they were focused on an unrelated topic. 

Unfortunately, five papers could not be retrieved due to limited access, and 45 articles were 

excluded due to insufficient information, poor model performance, and a lack of relationship 

between the research objective. Therefore, the search ended up with 35 articles, which are 

discussed in the rest of this chapter. The search methodology is overviewed in a PRISMA 

(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram. The 

detailed process and results are shown in the Figure 4. 
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Figure 4: PRISMA Flow Diagram (12) 

2.2 Focus 

The final 32 articles that are included in this review were categorized into four categories: 

diagnostic model, prognostic model, patient outcome prediction model, and stroke prediction 

model. Diagnostic models’ objective is to diagnose the current state of ischemic stroke using 

patient data, predictive models aim to use the given data of patients to predict the recurrence of 

ischemic stroke (prognostic), patient outcome prediction models predict the results of treatments 
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and post-stroke patients’ disabilities, and the stroke prediction models are simply making a 

binary decision for whether patients will have a stroke or not based on the primary patient 

dataset. There are nine articles in the diagnostic model, five in the prognostic model, 14 in the 

patient outcome prediction model, and four on stroke prediction model. Table 2.1 categorized the 

articles based on the focus of the articles. 

Topic Articles Authors for each paper 

Diagnostic Model 9 Maier et al., Grosser et al., Subudhi et al., Lee et al., You 

et al., Allen et al., Bandi et al., Adam et al., Hayashi et 

al.(13–21) 

Prognostic Model 5 Abedi et al., Lin et al., Ntaios et al., Kim et al. Mitra et 

al., (22–26) 

Patient Outcome 

Prediction Model 

14 Monteiro et al., Meier et al., Jiang et al., Li et al., Su et 

al., Chiu et al., Kappelhof et al., Ramos et al., OS et al., 

Brugnara et al., Hung et al. Lozano et al., Alqudah et al., 

Rui et al.(23,27–39) 

Stroke Prediction 

Model 

4 Emon et al., RVS technical Campus, Islam et al., Yu et 

al.(40–43) 
Table 1: Summary and distribution of articles in final review 

2.3 Diagnostic Model 

There are two main types of strokes: ischemic and hemorrhagic stroke. However, ischemic, and 

hemorrhagic stroke also classifies into different type of stroke depending on the condition. For 

example, ischemic stroke is a blockage of an artery, but depends on the inital location of the blood 

clot, they classify into two different group: thrombotic stroke (where blood clot developed in the 

blood vessels insider the brain) and embolic stroke (where blood clot develops elsewhere in the 

body and travels to one of blood vessels in the brain). Bandi et al. and Adam et al. created the 

stroke type classifiers that support a faster and more accurate diagnosis of stroke (19,20). Bandi et 

al. applied machine learning techniques to identify, classify, and predict the type of stroke from 

various clinical information on the stroke patient. They created two types of models; one is for 

attribute extraction from medical records based on NIHSS (National Institute of Health Stroke 
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Scale). Then the second model, the random forest model based on multiple algorithms, which 

classifies the type of stroke by using three hierarchical modules: 1. Ischemic Stroke 2. Intra 

Cerebral Hemorrhage 3. Subarachnoid Hemorrhage. The best performance model classifies stroke 

type with an accuracy of 96.67% (19). Adam et al. created the machine learning classification 

model that classifies the ischemic stroke type based on the patient information with CT and MRI 

(magnetic resonance imaging) results. Their model also classifies the stroke type into ischemic 

and hemorrhage based on the patient information. The model showed an excellent performance 

that classifies types of strokes with higher than 0.95(95%) accuracy and ROC area (20). From 

Japan, Hayashi et al. created a diagnostic model that identifies the large vessel occlusion in acute 

ischemic stroke patients. The model has based on a patient dataset with 51 attributes that categorize 

into past medical history, vital signs, and presence of symptoms. The LVO prediction model has 

a decent result as AUROC with 0.898 and an accuracy of 89.7% (21). 

Ischemic stroke is usually diagnosed with assistance from CT imaging, using non-contract 

CT(NCCT) and MR (magnetic resonance) imaging. NCCT or MRI is used to distinguish between 

an ischemic stroke and hemorrhagic stroke, and to obtain information about the progression of the 

stroke. Additionally, CT Angiogram and CT perfusion provide additional information about 

potential treatment options for ischemic stroke. MRI using DWI (Diffusion Weighted Image), and 

FLAIR (fluid-attenuated inversion recovery) can also be used to determine treatment eligibility for 

ischemic stroke when MRI is being used. NCCT and MRI is used to diagnose ischemic stroke 

patients by identifying the lesion segmentation and the infect core size. CTA is used to detect the 

vessel that is occluded, CTP or DWI/FLAIR on MRI is used to determine the size of the penumbra 

(salvageable brain tissue) compared to the size of the core (dead brain tissue). Many studies that 

have machine learning applications support interpretation of imaging of ischemic stroke patients 
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from CT, CTA, CTP, DWI, and FLAIR. Maier et al. compared the nine classification methods to 

determine the best fit model for stroke lesion segmentation. They used Thirty-seven 

multiparametric MRI datasets of ischemic stroke patients for evaluation. The random decision 

forest and convolutional neural networks classification approach outperformed all previously 

published results(13). Grosser et al. investigated the addition of spatial attributes on image-based 

parameters for the lesion outcome prediction model to determine whether the spatial attributes 

improve the outcome. The combination of spatial attributes and image-based parameter showed 

better performance on multi-parametric tissue outcome prediction, which outperformed the model 

with an image-based attributes only (14). Subudhi et al. created the automated segmentation 

method based on machine learning model to detect the ischemic stroke using the DWI sequence 

of MRI. They preprocessed the MRI dataset with morphological and statistical datasets through 

the expectation-maximization process, and then they trained the model to identify the cerebral 

infarction and to categorize them into three groups: total anterior circulation stroke syndrome, 

partial anterior circulation stroke, and lacunar stroke syndrome. The random forest model achieved 

93.4% accuracy, which could be used in the decision-making process in treating the ischemic 

process (15). Another study from Asia made a similar approach, which used machine learning to 

interpret the brain imaging, Lee et al. created the binary classification model to identify stroke 

within 4.5 hours, which is the recommended time window for thrombolysis(16). You et al. created 

the hierarchy evaluation system of the LVO detection model for ischemic stroke patients, which 

used a deep learning model to transform unstructured data from the non-contrast CT image into a 

structured data format. (17). Allen et al. created a machine learning model to support the decisions 

on eligibility for thrombolysis for ischemic stroke patients. The binary classification model used 
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the emergency stroke patients’ admission data, and six binary classification models resulted in 81% 

to 86% accuracy (18). 

2.4 Prognostic Model 

The prognostic models for ischemic stroke patients focused on predicting the probability of a 

recurrent acute ischemic stroke and identifying the directly related attributes that affects risk of 

recurrence of an ischemic stroke. Lin et al. and Abedi et al. studied recurrent stroke prediction 

from a machine learning classification model (22,44). The model from Lin's project used patient 

data who underwent a documented carotid ultrasound within 30 days of experiencing an acute first 

stroke. The model predicts recurrent stroke inpatients based on 43 attributes of carotid 

sonography(44). Abedi's research team created six classification models based on the patient-level 

data that indicate the stroke patient's long-term recurrence. The models were categorized into 

1,2,3,4, and 5 years of window time for stroke recurrence from the first stroke. Among the five 

window times, the 1-year recurrence model performed better than other time windows (22). Ntaios 

et al. developed a machine learning-derived prognostic model for predicting the cardiovascular 

risk of ischemic stroke patients. The 12 variables for the model were selected by the LASSO (Least 

Absolute Shrinkage and Selection Operator). The outcome of the model assessed was a major 

adverse cardiovascular event: non-fatal stroke, non-fatal myocardial infarction, and cardiovascular 

death during a 2-year follow-up (24). Mitra et al. created the automated diagnostic model to 

identify chronic ischemic infarcts that may be used to aid the development of post-stroke 

management strategies. Their approach is based on Bayesian-Markov Random field classification 

to segment probable lesion volumes present on FLAIR. Furthermore, a random forest classification 

of the information from multimodal (T1 and T2 weighted, FLAIR, and apparent diffusion 



 
 

１２ 
 

coefficient) MRI images and context-aware attributes extract the areas with a high likelihood of 

being classified as lesions(26). 

2.5 Patient Outcome Prediction Model 

The patient outcome prediction model is the most active area of study in machine learning 

application in ischemic stroke. This section includes 14 papers relating to outcome prediction for 

ischemic stroke patients, which takes up the largest portion of the extracted literature. This section 

is divided into three sections: Patient functional outcome prediction, treatment outcome prediction, 

and other prediction models. 

2.5.1 Patient Functional Outcome Prediction 

The mRS(modified Rankin Scale) is a severity score representing the degree of disability in 

patients who had a stroke; the scale is in the range of 0 to 6, with a higher score indicating more 

severely handicapped status and 6 indicating death (27). When predicting the stroke patient’s 

functional outcome, studies usually look for a 3-month and 6-month time window from the 

patient’s admission. Meier et al., Monteiro et al., and Jiang et al. applied the classification machine 

learning algorithms to patient data who had an acute ischemic stroke about 3-month ago to predict 

the functional outcome of stroke patients based on mRS(27–29). Meier’s model yields a binary 

decision from mRS, the mRS < 2 for a good outcome and mRS ≥5 for a poor outcome(28). 

Monteiro’s classification model’s decision standard is as follows: mRS ≤ 2 is a good outcome, and 

mRS > 2 is a poor outcome(27). Jiang et al. test out the combination of the data type with clinical 

and imaging attributes for the prediction model to figure out the combination that performs best. 

Their mRS score standard for classification as 0-2 mRS are favorable outcomes, and 3-6 mRS is 

unfavorable (27,29). Furthermore, these three studies compared the existing functional outcome 
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prediction model for stroke patients, such as SPAN-100, ASTRAL score, THRIVE score, and 

DRAGON score. Through the comparison between existing model and machine learning model, 

all of the machine learning models outperformed on classification(27–29). Research from South 

Korea showed that Vitamin D is a well-known predictor of poor outcomes for cardiovascular 

disease. Thus, Kim et al. created the classification machine learning model to figure out the 

reciprocal relationship between 25-hydroxyvitamin D level and the prognosis of acute ischemic 

stroke. As the outcome value, the mRS (modified Rankin Scale) score was used to indicate a score 

between 3 to 6 as a poor outcome. The research outcome, a low 25-hydroxyvitamin D level was 

associated with poor outcomes in patients with acute ischemic stroke (25).  Li et al. developed the 

machine learning model to predict the 6-month unfavorable outcome of acute ischemic stroke. The 

model predicts the mRS score of patients and then classifies them into two groups: mRS 3 to 6 as 

a poor outcome and otherwise good outcome at 6-month. Afterward, the machine learning model 

was compared with other scores that predict the patient outcome at 6-months, such as the HIAT 

score, THRIVE score, and the NADE nomogram. The machine learning model had significantly 

better results(30). Su et al. created the machine learning classification model that predicts the mRS 

at hospital discharge and then discretized the mRS into two groups a good outcome with mRS 0-

2 and a poor outcome with mRS ≥3. Various attributes were used to build the model: demographic 

characteristics, medical comorbidities, NIHSS total scores, initial physiological parameters at 

admission, initial laboratory parameters of blood tests, and data of urine tests (31). 

2.5.2 Treatment Outcome Prediction 

The mRS was also widely used to predict the outcomes after reperfusion therapies for acute 

ischemic stroke; the reperfusion therapies are thrombolysis and endovascular thrombectomy 

(EVT). Chiu et al. developed the classification machine learning model to predict reperfusion 
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therapy for acute stroke patients. First, they used the data of patients who were required for 

reperfusion therapy. The model classifies the outcome into three different groups based on mRS: 

favorable outcome (mRS 0-2), intermediate outcome (mRS 3-4), and miserable outcome (mRS 5-

6). Then they compared the existing prediction model DRAGON score with the machine learning 

model (32). Kappelhof et al. and Ramos et al. created the classification machine learning model 

that predicts the poor outcome of endovascular treatment for acute ischemic stroke patients. Both 

studies’ standards for poor outcome was the mRS ≥5 to make it to the binary classification problem. 

Kappelhof’s model performance was significantly better than Ramos’ model, with about a 30-40% 

difference in accuracy(33,34). Os et al. also developed the classification model for endovascular 

treatment outcomes. Still, they created two models: one that predicts functional independence and 

one that indicates the reperfusion status. The outcome variable for the reperfusion model was 

modified TICI-score ≥ 2b as a good outcome. And the model for functional independence in 3-

month used the mRS ≤2 as a good outcome (35). Brugnara et al. developed the endovascular 

treatment outcome prediction model by predicting the mRS score 90 days after treatment. Their 

model classifies outcomes into two groups: favorable outcomes (mRS ≤2) and unfavorable 

outcomes(mRS>2), which is like other studies. However, they approached with an integrative 

assessment of clinical, multimodal imaging, and angiographic characteristics for model build-up. 

Their research gradually adds data attributes to the base model, which builds with baseline clinical 

and conventional imaging characteristics. Thus, the model shows higher AUC and accuracy each 

time they add more attributes (36). 

2.5.3 Other Prediction Models 

There were also a number of studies that developed other predictive models in the application area 

of stroke. Hung et al. and Lozano et al. created the predictive machine learning model for mortality 
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and morbidity of acute ischemic stroke patients 3-months after admission (23,37). Hung’s group 

made two models predicting M&M (Mobility and Mortality) and readmission rates. In addition, 

they implemented various resampling methods to balance the class distribution. This study also 

identifies the essential predictive factors for M&M and readmission rates for acute ischemic stroke 

patients (23). Lozano created the random forest model for the M&M prediction according to three 

groups of the stroke patient: 1) ischemic stroke, 2) ischemic stroke + intracerebral hemorrhage 3) 

intracerebral hemorrhage. Group 2 showed the most stable mortality prediction, and group 1 as 

well. Furthermore, they tested the top 7 critical variables to predict mortality and morbidity, and 

NIHSS scores at 48 hours and 24 hours showed the best performance (37). BI (Barthel Index scale) 

is an effective method for measuring the performance of active daily living. Alqudah et al. created 

the classification machine learning model that predicts BI of post-stroke patient through machine 

learning algorithms. They applied the chi-squared test to reduce the number of parameters while 

developing the model, ending with a better prediction performance on each model (38). In China, 

the research group from Hebei university made a creative application of machine learning for a 

patient outcome prediction model. Rui et al. created the XG boost model to predict the length of 

hospital stay for acute ischemic stroke patients. They had plenty of data, around 18,000 patients, 

to build the model. They applied the 10-fold cross-validation method to train the model, and the 

model showed excellent performance of 96% accuracy, 0.82 recall rate, and 0.79 F1 scores (39). 

2.6 Stroke Prediction Model 
As mentioned in the previous section, early awareness of the sign of strokes will significantly 

reduce the mortality of stroke patients. Thus, the prediction of stroke would be helpful to react 

faster when a stroke occurs or to be prepared so they can save their lives and reduce the risk of 

functional disabilities. Machine learning algorithms are actively applied to create the stroke 

prediction model using patient data. Emon et al. created the supervised machine learning model 
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that predicts stroke based on various patient data variables. The patient dataset was collected from 

the medical clinic of Bangladesh, which has 12 different attributes related to patient history by 

whether patients had a stroke or not. They applied ten machine learning algorithms to find the best 

model for stroke prediction. The weighted voting algorithm made the best performance on stroke 

prediction with 97% of accuracy (40). Stanford University’s research team also created the stroke 

classification model with an automatic attribute selection algorithm that selects robust attribute 

based on the proposed heuristic method: conservative mean. Through their algorithm, they tried 

out various scenarios with different numbers of attribute for the machine learning model in order 

to figure out the best attribute selection scenario. Then they created two different types of a 

prediction model with SVM (Support Vector Machines) and MCR (Margin-based Censored 

Regression) algorithms. The combination of attribute selection and MCR showed the best 

performance with accuracy and the highest AUC (area-under-curve) (41). Islam et al. also created 

the integrated stroke prediction model. They applied the SMOTE (Synthetic Minority 

Oversampling Technique) to handle the imbalanced data to overcome the over-fitting issue. Then 

they compared the model performance before the SMOTE application and after. Therefore, the 

accuracies were increased by 1.5~3% depending on the model type, and there was an improvement 

in other values such as precisions and recall rates (42). The research team from South Korea 

created a supervised machine learning classification model to predict the stroke severity of patients 

over 65 years use the baseline characteristics of patients and some attribute from NIHSS. Most 

stroke prediction models were binary classification models, but they created a model that predicts 

the five different classes and shows the severity of the stroke(43).  
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2.7 Discussion/Research Gap 

This literature review provided a brief overview of the current state of machine learning applied 

to the clinical area of ischemic stroke. There were two purposes of this literature review. First, 

identify the research trends, such as important factors or attributes of the dataset related to ischemic 

stroke patients, and find out what algorithms are applied while developing the machine learning 

models. The following are the key points of the current state of the machine learning application 

for ischemic stroke patients: 

1. Most machine learning models outperform the existing models or scores related to 

ischemic strokes while both look for the same objectives. 

2. Data preprocessing or data cleaning methodologies directly affect the model qualities. 

3. Reducing the number of attributes for the outcome value takes less time for model 

development and increases accuracy. The higher number of attributes causes the model to 

be more complex and reduce performance.  

4. The machine learning model is mostly focused on patient outcome prediction, and the mRS 

is the most well-known measure of outcome for stroke patients. 

Secondly, the literature review allows us to determine the research gaps in the literature. Studies 

about outcome prediction for ischemic stroke patients was on research trend, then diagnostic, 

prognostic, and stroke prediction models follows. However, there was a lack of studies that applied 

machine learning to decision making through the treatment process for acute ischemic stroke; 

specifically, transfer eligibility of ischemic stroke patients to access EVT. Among the literature in 

this review, only one paper was related to the model that supports the decision on thrombolysis 

eligibility in ischemic stroke patients(18). There are two treatments for ischemic stroke patients: 

thrombolysis (with Alteplase and Tenecteplase) and EVT. Depending on the circumstances, these 
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treatments could be limited to the patients based on various clinical factors; thus, a better decision-

making process could be made with the support of the classification models to prevent unnecessary 

expense and time. 
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3.0 Method 
This section describes the given dataset's brief description and model development procedure for 

this project. The main processes included data preprocessing, description of the machine learning 

algorithms, and evaluation method. Figure 5 represents the procedure of machine learning model 

development. 

  

Figure 5: Process of EVT Eligibility Prediction Model Development 
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3.1 Data Description and Ethics 

Data from patients in Nova Scotia that were transferred for EVT is acquired from NS Health. The 

data from each patient that is obtained from them to build the model is described below. This study 

was conducted under an existing approved ethic application (File Number: 1028274). Additionally, 

the data access request was also previously approved by NS Health.  

Attribute Description 

MRN Unique number represents the patient 

Sex Sex of patient 

Age Age of patient 

PMHX Other medical history 

Pre-Stroke (mRS) Pre-stroke disability 

Multiphase CT Whether patient took a multiphase CT 

Date/time of first CT Time of first CT at thrombolysis centre 

Date/time of first CTA Time of first CTA at thrombolysis centre 

ASPECTS (Alberta Stroke Program Early CT 

Score) 

Brain condition measured from first imaging 

Covers Arch Whether covers arch 

Covers Whole Brain Whether covers whole brain 

Venous Contamination Whether are contaminated 

Occlusion Location The large vessel location of the clot 

Collateral Status The extent of collaterals from first imaging 

Referring Center Origin medical center of patient 

Patient Transferred Whether patient transferred to EVT center 

Re-Image Whether patient got another CT after transferring 

Collateral Status 2 The extent of collateral from second imaging 

Repeat ASPECTS Core size measured after second imaging 

Thrombectomy Performed Whether thrombectomy (EVT) performed on 

patient or not 

Date Year of patient information recorded 

Miscellaneous Any special note from the doctor 
Table 2 : Description of Data 

3.2 Data Preprocessing 

Data preprocessing is the essential preparation for the machine learning model. The primary 

purpose of data preprocessing is to check the dataset's quality. Six standards in data preprocessing: 

1. Accuracy: To check whether the data entered is correct or not. 

2. Completeness: To check whether the data is available or not recorded. 
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3. Consistency: To check whether the same data is kept in all the places that do or do not 

match. 

4. Timeliness: The data should be updated correctly. 

5. Believability: The data should be trustable. 

6. Interpretability: The understandability of the data. 

3.2.1 Data Cleaning 

Data cleaning is the first step of data preprocessing, which removes incorrect, incomplete, and 

inaccurate data from the dataset. As the first step of data cleaning is dealing with the missing values. 

The attributes with more than 20% missing values are deleted. Data sample that has the missing 

values on attributes with categorical values, such as collateral status and occlusion location are 

deleted since they can’t be filled up with other values. Attributes with less than 20% of missing 

value such as ASPECTS were filled up with the average value. 

3.2.2 Attribute Selection 

Selecting the dataset's attribute affects the quality of the machine-learning model. First, the 

attribute "Patient transferred" was dropped since the machine learning model predicts the patient 

should transfer for EVT to the EVT center. Thus, the attribute "Patient transferred" and any 

samples with the label of “No” In "Patient transferred" attributes were dropped from the dataset. 

In the given dataset, some of the dropped attributes are unrelated to predicting whether the patient 

got the EVT. Also, the model predicts the eligibility of the EVT from the first imaging, any 

attributes related to the second imaging also dropped because this was done when they were 

already transferred after the decision to transfer was made. Therefore, following attributes were 

dropped: MRN, PMHx, Multiphase CT, CTA, Patient Transferred, Arch Coverage, Brain 
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Coverage, Venous Contamination, Re-imaged, collateral status2, Repeat ASPECT, Onset to 

Recanalization Time and mRS. 

3.2.3 Transformation of values/data split 

All data should be numerical to create a model. There are two types of categorical values which 

are binary or multiple categorical values: 

1. Binary: sex, patient transferred, thrombectomy received. 

2. Multiple: collateral status, occlusion location, referring center. 

The values in binary forms substitute with 0 and 1. However, the categorical value with more 

than two types of value is transformed in the following tables. 

Collateral Status 

Categorical Value Numerical Value 

Good 0 

Intermediate 1 

No 2 

Poor 3 
Table 3: Transformation of Categorical Value for Collateral Status 

Occlusion Locations 

Categorical Value Numerical Value 

CAROTID T 0 

ICA 1 

M1 2 

M2 3 

No Occlusion 4 

Tandem 5 
Table 4: Transformation of Categorical Value for Occlusion Location 

The referring center attribute is dropped, and two new attributes were added: driving distance and 

Euclidean distance to the EVT center from the referring medical center. This was calculated using 

Google Maps for each referring centre to the QEII. There were 14 referring center locations; the 

transformation proceeded as shown Table 5. 
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Referring Centre Driving Distance (Km) Euclidean Distance (Km) 

DGH 8 3.28 

Cobequid 17.8 13.71 

CEHHC Colchester 92.7 81.5 

SSRH 101 79.1 

VRH 105 87.4 

Aberdeen 157 127.57 

Cumberland Regional 195 137 

St. Martha’s Reginal 217 166.9 

Prince County Hospital 297 197.02 

YRH 302 221.7 

QE PEI 329 182.88 

CBRH 400 312.58 

Newfound Land Regional Health 
Centre 

1054 768.85 

Eastern Health St. John 1480 896.72 
Table 5: Distance Information from the Referring Hospital to EVT Centre 

After transforming the categorical values, the dataset has nine attributes. The dataset is split into 

training and test sets with a ratio of 3:7 and 4:6. This result in two sets of a machine learning model 

for each algorithm. 

3.3 Additional Study 

The additional studies proceeded with additional attributes in the additional dataset provided from 

NS stroke registry to determine new attributes affect the quality of the model. Through merge the 

original with new dataset to test out the algorithms as well. 

3.3.1 Data Merge 

Three attributes were chosen from the new dataset to add to the original dataset. First, the 

healthcare number of the patient linked the two datasets. The new attributes are in following: 

1. Onset to First CT Time: The time patient took to get a first CT onset time in minutes 

(Numeric) 
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2. Onset to First Hospital Arriver: Patient transfer time to get to the first hospital in minutes 

(Numeric) 

3. tPA: Whether patient got tPA or not (Binary Numeric) 

The health card number were used for the data linkage of two dataset through match the health 

card number of patient. The comparison between the model from the original dataset and merged 

dataset’s result will be discussed in chapter 4. 

3.4 Machine learning Algorithms 

The objective model of this project is a supervised binary classification model with the response 

variable of Received EVT as a binary variable. Therefore, the binary classification algorithms were 

applied to develop the prediction patient receive EVT. Four different supervised learning 

algorithms which are specialize for binary classification were applied to the preprocessed dataset: 

logistic regression, decision tree, random forest, and support vector machine (SVM). According 

to those four algorithms were suitable for simple binary classification, however, the XG boost 

model is more suitable for complex classification studies which is not suitable for this study. 

3.4.1 Logistic Regression 

Logistic regression is a well-known statistical technique that analyzes the relationship between 

multiple independent and dependent variables and estimates the probability of occurrence of result 

variables by fitting linear regression equation to sigmoid function to create the logistic regression 

model (45). The response variable for this study is in the binary value. Thus, the binary logistic 

regression algorithm was applied to solve the problem. Equation 1 represents the linear regression 

equation, and equation 2 represents the sigmoid function used for the binary logistic regression 

model. 



 
 

２５ 
 

         𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ 𝛽𝑛𝑋𝑛  (1)                     

         𝑝 =
1

1+𝑒
−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯𝛽𝑛𝑋𝑛)

 (2)                         

Where the parameter 𝛽 value between 0 and 1, which is the probability of the positive class label 

given 𝑋. 𝑋 is the weight of each attribute of the dataset, and n represents the number of the attribute 

in the dataset and 𝑝 represents the probability of the binary outcome. 

3.4.2 Decision Tree 

The decision tree algorithm is a decision support tool that shows the various possibilities and 

results in a flowchart-like tree structure. The decision tree consists of the internal node, the attribute 

or attributes of the dataset, the branch represents a decision rule, and the leaf node represents the 

outcome (46) The Figure 6 depicts the structure of the decision tree algorithm. 

 

Figure 6: Decision Tree Structure (47) 

The decision tree is based on the attribute selection measure (ASM), which provides the rank of 

each dataset attribute. The best score attribute will be selected as a splitting attribute. In the 

classification tree, the information gain, since the split point, results in the largest information gain 

for a given criterion. The following equation 3, represents the information gain calculation. 
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                                                         𝐼𝐺(𝐷𝑝, 𝑓) = 𝐼(𝐷𝑝) − ∑
𝑁𝑗

𝑁
𝐼(𝐷𝑗)𝑚

𝑗=1   (3)     

The parameters are labeled following: 

𝑓: Feature split on 

𝐷𝑝: Dataset of the parent node   

𝐷𝑗: datset of the jth child node where  

𝐼: Impurity criterion 

𝑁: Total number of samples 

𝑁𝑗: Number of samples at jth child node 

There are two types of impurity criterion (I): entropy and Gini. Entropy measures the randomness 

or impurity in a dataset. The Gini index is used to measure the purity of a specific class after 

splitting along a particular attribute. Both entropy and Gini index are calculations of the dataset's 

purity, and as both values are close to 0, the information gain increases according to the equation 

(3) (48). 

3.4.3 Random Forest 

The random forest algorithm is an extended version of the decision tree. The general procedure is 

ensembled the multiple decision trees and makes a prediction collected from the votes of the 

individual trees (49). The following process chart depicts the process of the random forest 

algorithm. 
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Figure 7: Example of the Random Forest (50) 

3.4.4 SVM 

The SVM is a commonly used kernel-based machine learning approach to classification, which 

creates multiple hyperplanes and then selects the one with the maximum margin. The basic process 

of the SVM has generated a hyperplane to separate the data into different classes, and a hyperplane 

is chosen to maximize the margin between classes. The margin represents the distance between 

the hyperplane and the nearest data point (51). 

 

Figure 8: SVM Representation of SVM Hyperplane (52) 

Equation 4 represents the binary classification SVM, and 5 and 6 represent the optimization of 

weight factor w. 
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                                                                    𝑓(𝑥) = 𝑠𝑔𝑛(𝑤𝑇𝑥 + 𝑏)  (4) 

                                                                   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
||𝑤||2

2
 (5) 

                                                                   𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1          ∀𝑖 = 1, … , 𝑛 (6) 

Where x is the input vector, w is the weight vector, b is the bias term, and f(x) represents the 

decision function which returns +1 if the argument is positive or zero and -1 if the argument is 

negative (53). 

3.5 Model Evaluation 

Three tools were used for the model evaluation to determine the best performance model.  The 

main methods for evaluating binary classification models are the confusion matrix, classification 

report model, and AUC (Area Under Curve). 

3.5.1 Confusion Matrix 

The confusion matrix is a well-known evaluation method for the performance of classification 

models in machine learning and statistics. It summarizes the models' performance by comparing 

the result variables’ labels with the true class labels of the dataset. For example, the binary 

classification model displays four different numbers, which are TP (True Positive), FP (False 

Positives), TN (True Negative), and FN (False Negative); all of those options are shown in the 

matrix on Figure 9. These four numbers are the correct and incorrect observation numbers on each 

label. The following figure is the template of the confusion matrix of binary classification (54). 
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Figure 9: Template of Confusion Matrix 

 

3.5.2 Classification Report 

Use the four values provided by the confusion matrix to calculate the metrics of the evaluation:  

1. Precision: The accuracy of positive predictions, which is the proportion of TP among 

all instances classified as positive. 

2. Recall: The completeness or sensitivity of the classification, which is the proportion of 

TP among all actual positive instance. 

3. F1-Score: Balance between precision and recall, which is weighted average of 

precision and recall. 

4. Support: Total number of observations in each class. 

These values key indicators to calculate the evaluation metrics for model performance and 

comparison between algorithms. The Figure 10 is the template of the classification model from 

Python which calculates the performance metrics. 
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Figure 10: Example of the binary classification report from the Python 

The classification report is the main method of measuring performance of the classification models. 

3.5.3 AUC (Area Under Curve) 

The AUC's main purpose is to compare different algorithms and optimal thresholds for making 

predictions to decide the best model among the various machine learning models. In addition, AUC 

is commonly used to evaluate binary classification performance. Area calculation under the ROC 

(Receiver Operating Characteristic) curve, which is a plot of the TP rate against the FP rate at 

various threshold values. The TP and FP rates calculation is shown in equations 7 and 8 values 

based on the confusion matrix. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (7) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (8) 

The value of AUC represents the probability that a randomly chosen positive example is ranked 

higher than a randomly chosen negative example by the classification model. The indicator of 

AUC is between 0 to 1. An indication of AUC close to 1 means perfect classification performance, 

while close to 0 means missing out on classification (55). 
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3.6 Model Development and Evaluation 

All models were developed using Python 3 on Visual Studio Code. The functions that were used 

the “sklearn” packages to apply the four machine learning algorithms and get the evaluation 

metrics variables. The coding for the models is attached in the Appendix A. 
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4.0 Results 

Data was obtained for patients that were transferred from a referring stroke centre in Nova Scotia to QEII. 

The total number of patients records obtained was 101 and end up with 78 patient data after data 

preprocessing. Also, as mentioned in Section 3.3.1, new dataset was provided from NS health. The number 

of patients that match both datasets were 42 (merged data). The number of patients records used in model 

development is described in the following diagram shown in figure 11. 

  

Figure 11: Number of data change from data preprocessing and data linkage 
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The result of this project is described in this chapter. Section 4.1 is described the result of data cleaning. 

Section 4.2. is about the data exploratory analysis of the dataset after data cleaning. Section 4.2 is about the 

data exploratory analysis. Section 4.3 illustrates the correlation between attributes in the dataset. Sections 

4.4 to 4.7 result from the machine learning model from four different algorithms with two sets of data split 

0.7/0.3 and 0.6/0.4 ratio then the section 4.8 is the model comparison. The section 4.9 is described about 

the false negative rate of best model. 

4.1 Data Cleaning 

The first problem detected from the given dataset was the inconsistency of the data record method 

and record error. For example, attributes “Occlusion location” and “Collateral status had a few 

spelling errors and inconsistencies in the records, such as unnecessary comments and different 

units of measure. 

 Number of Missing 
Values 

Percentage of missing 
value (%) 

MRN 0 0 

Age 0 0 

PMHx 105 97.2 

CT time 108 100 

Sex 0 0 

Multiphase CT 0 0 

CTA 5 4.95 

ASPECTS 1 1 

Arch Coverage 5 4.95 

Brain Coverage 6 5.94 

Venous 
Contamination 

5 4.95 

Occlusion Location 3 2.97 

Collateral status 10 9.9 

Patient Transferred 0 0 

Re-imaged 10 9.9 

Time between 1st and 
2nd image 

21 20.8 

Collateral status2 42 41.6 

Repeat ASPECT 33 32.7 

Thrombectomy 
Performed 

19 18.8 
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Onset to 
Recanalization Time 

56 55.4 

Date 0 0 

mRS 106 98.1 

Referring Center 0 0 

Table 6: Summary of Missing Values 

4.2 Data Exploratory Analysis 

After data preprocessing, the dataset ends up with nine attributes: age, sex, ASPECTS, occlusion 

location, collateral status, patient transferred, thrombectomy performed, date, and referring centre. 

The exploratory data analysis is proceeded to discover any characteristics of dataset. 

4.2.1 ASPECTS 

The ASPECTS score is an important standard in the decision to transfer patients for EVT and to 

determine EVT eligibility. 

  
Figure 12: Patient got EVT depends on ASPECTS. 
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Figure 12 represents the number of patients who got an EVT among the transferred patients with 

ASPECTS. The scores under five did not have the opportunity to get the EVT, and the average 

value of ASPECTS was 8.56. 

4.2.2 Occlusion Location/Collateral Status 

The occlusion location and collateral status were correlated with the classification model's 

response variable. The location of the clot is the blood vessel in the brain where the clot persists. 

The location may have an effect on the changes to the ischemic core while the patient is transferred, 

which is why it was important to include this variable. Collateral status, for example, 60% of 

patients with a blood clot in the M1 region got EVT. The collateral status represents the ability of 

blood to flow through a collateral vessel in the brain region. The 14% of patient with less than 

intermediate status got EVT. The Figure 12 is the represents the patients’ occlusion location and 

collateral status who got EVT. 

 
Figure 13: Patient got EVT by Occlusion Location and Collateral Status (Occlusion: Left, Collateral: Right) 
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4.3 Correlation Matrix 

The correlation between the attributes was calculated to discover those attributes mainly affected 

by response variable. The following figure is the correlation table representing all attribute 

correlations from the original dataset. 

 

Figure 14: Correlation Table of the Original Dataset 

Among the nine attributes, the ASPECTS was the most positively correlated, and the Occlusion 

Location and Collateral Status showed a high negative correlation to the response variable. The 

following figure shows the correlation between attributes in the merged dataset. The following 

table is representing the correlation coefficient for original dataset to thrombectomy performed in 

Table 7. 

Variable Coefficient of Correlation 

Age 0.015 

Sex -0.091 

ASPECTS 0.29 

Occlusion Location -0.11 

Collateral Status -0.19 
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Date -0.096 

Driving Distance -0.053 

Euclidean Distance -0.037 
Table 7: Summary of correlation coefficient for original dataset 

 

Figure 15: Correlation Table of Merged Dataset 

The following table is the summary of correlation coefficient for merged dataset to 

“Thrombectomy Performed” in Table 8. 

Variable Coefficient of Correlation 

Age 0.15 

Sex 0.0081 

ASPECTS 0.21 

Occlusion Location -0.16 

Collateral Status -0.20 

Date 0.024 

Driving Distance -0.18 

Euclidean Distance -0.16 

tPA 0.11 

Onset to 1st hospital 0.017 

Onset to 1st CT 0.15 
Table 8: Summary of correlation coefficient for merged dataset 

After adding three attributes to the dataset, correlation coefficients differ slightly from the original 

dataset. ASPECTS was the most positively correlated with the “Thrombectomy Performed” 
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response variable. However, the new dataset generally increased the correlation coefficient of all 

other attributes to the response variable. Age also turned out to be positively correlated, and new 

attributes the onset to first CT time and tPA with the response variable. For the negative correlation, 

collateral status and occlusion location stayed negatively correlated with the response variable. 

The driving and Euclidean distance to the EVT center also significantly increased the negative 

correlation coefficient. According to the calculations of the coefficient of correlation, the merged 

dataset shows better potential to create better model, but it has small sample size compared to the 

original dataset. 

4.4 Decision Tree Model Result 

4.4.1 Original Dataset 

The decision tree models’ performance is described in the classification reports shown on Figure 

15 and 16. 

 

Figure 16: Classification Report of Decision Tree-Original Set (0.7/0.3) 

 

Figure 17: Classification report of Decision Tree-Original Set (0.6/0.4) 
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The decision tree with 0.7/0.3 split had better performance overall—about a 9% difference in the 

accuracy and 7% higher in the f-1 score. Also, the AUC of the 0.7/0.3 model was 0.14 higher than 

the other one. The AUC of each model is shown in Figure 18. 

Figure 18: AUC of Decision Tree Model-Original (Left: 0.7/0.3.Right:0.6/0.4) 

4.4.2 Merged Dataset 

The classification reports for decision tree model for merged dataset are described in Figures 19 and 20. 

 

Figure 19: Classification report of Decision Tree-Merged (0.7/0.3) 

 

Figure 20: Classification report of Decision Tree-Merged (0.6/0.4) 
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In the case of the decision tree model with the merged dataset, the accuracy for each data split was 

equal to 50%, and the F-1 score was similar to the 0.6/0.4 one, which is 2% higher than the F-1 

score. Figure 21 is the AUC of the merged dataset’s decision tree models. 

 

Figure 21: AUC of Decision Tree Model-Merged (Left:0.7/0.3, Right:0.6/0.4) 

The 0.7/0.3 model showed a slightly higher AUC than the 0.6/0.4 model. In the decision tree 

algorithm, the merged dataset showed better overall performance when compared to the original 

dataset. 

4.5 Random Forest Model Result 

4.5.1 Original Dataset 

The performance of the random forest model for the original data are described in the classification 

report shown on Figures 22 and 23.  

 

Figure 22: Classification Report of Random Forest-Original (0.7/0.3) 
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Figure 23: Classification Report of Random Forest-Original (0.6/0.4) 

The 0.7/0.3 split model showed better accuracy and F-1 score, about 7% and 4% higher than the 

other model. However, as shown in the following figure, the 0.6/0.4 split model has about 0.08 

higher AUC than the 0.7/0.4 split model. 

 

Figure 24: AUC of Random Forest Model-Original (Left:0.7/0.3, Right:0.6/0.4) 

4.5.2. Merged Dataset 

The classification reports shown in Figure 25 and 26 describes the model performance of the 

random forest model on merged dataset. 

 

Figure 25: Classification report of Random Forest-Merged (0.7/0.3) 
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Figure 26: Classification report of Random Forest-Merged (0.6/0.4) 

In the merged dataset, the split of 0.6/0.4 showed better overall performance than 0.7/0.3. The 

0.6/0.4 model had a 12% higher accuracy and a 10% higher F-1 score. However, the AUC of the 

model had only a 0.01 difference, as shown in the following figure. 

 

Figure 27: AUC of Random Forest Model-Merged (Left:0.7/0.3, Right:0.6/0.4) 

In the random forest algorithm, the split of 0.7/0.3 original dataset had the best performance 

compared to other cases. 

4.6 Logistic Regression Model 

4.6.1 Original Dataset 

The classification reports Figures 28 and 29 show the original dataset's logistic regression 

performance. The data split of 0.6/0.4 ratio got a 6% higher accuracy and 0.09 in F-1 Score. 
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Figure 28: Classification report of Logistic Regression-Original (0.7/0.3) 

 

Figure 29: Classification report of Logistic Regression-Original (0.6/0.4) 

The AUC of both models is above the 0.5 line and has a slight difference. The 0.7/0.3 split model 

is 0.03 higher in the AUC, as shown in the following figure. 

Figure 30: AUC of Logistic Regression Model-Original (Left:0.7/0.3, Right:0.6/0.4) 

4.6.2 Merged Dataset 

The logistic regression algorithm’s performance on the merged dataset was poor compared to the 

original dataset. In the case of the merged dataset, the split of 0.7/0.3 ratio had 11% higher accuracy 

and 0.11 F-1 score. The reports are shown in Figures 31 and 32. 
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Figure 31: Classification report of Logistic Regression-Merged (0.7/0.3) 

 

Figure 32: Classification report of Logistic Regression-Merged (0.6/0.4) 

The logistic model's AUC was significantly lower compared to other algorithms. Since AUC is 

extremely low, defining a better model was pointless. The following figure depicts the AUC of 

both models. 

Figure 33: AUC of Logistic Regression Model-Merged (Left:0.7/0.3, Right:0.6/0.4) 
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4.7 Support Vector Machine 

4.7.1 Original Dataset 

The support vector machine algorithms on the original dataset performance are summarized in the 

classification report shown in Figures 33 and 34. 

 

Figure 34: Classification report of SVM-Original (0.7/0.3) 

 

Figure 35: Classification report of SVM-Original (0.6/0.4) 

The result of the SVM with the original dataset made a remarkable result. Accuracy of the 0.7/0.3 

split model had 76% accuracy, 8% higher than the 0.6/0.4 split model, and 0.86 F-1 score, 0.07 

higher than the 0.6/0.4 split model. Also, the 0.7/0.3 split model is slightly higher in AUC than the 

0.6/0.4 split model. The AUC graphs are shown in the following figure. 
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Figure 36: AUC of SVM-Original (Left:0.7/0.3, Right:0.6/0.4) 

4.7.2 Merged Dataset 

The performance of the SVM on the merged dataset are shown in the classification reports shown in Figure 

37 and 38. 

 

Figure 37: Classification report of SVM-Merged (0.7/0.3) 

 

Figure 38: Classification report of SVM-Merged (0.6/0.4) 

In the case of SVM with merged data, the data split of 0.6/0.4 ratio had a better performance with 

11% higher accuracy and a 0.09 higher F-1 score than the 0.7/0.3 split model. The following figure 

shows that the AUC of both models was equal in this case. 
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Figure 39: AUC of SVM-Merged (Left:0.7/0.3, Right:0.6/0.4) 

4.8 Model Comparison 

The performance was collected using two split methods in 0.7/0.3 and 0.6/0.4 ratios on four 

different algorithms. The result summary will be discussed in two sections: the original and merged 

datasets. The three-performance metrics were used for the model comparison: accuracy, AUC, and 

F1 score. 

4.8.1 Original Dataset Models 

The following three figures represent the comparison of model performance by the evaluation 

metrics mentioned in the previous section: Accuracy (Figure 40), AUC (Figure 41), and F-1 Score 

(Figure 42). 
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Figure 40: Accuracy Comparison of Models (Original Dataset) 

From the accuracy perspective, SVM performed best on the original dataset with 76% accuracy 

on 0.7/0.3 data split ratio and 68% on 0.6/0.4 data split ratio. On the other hand, the decision tree 

model had the lowest accuracy in the case of the original dataset at 48% on the 0.7/0.3 data split 

ratio and 39% on the 0.6/0.4 data split ratio. 

 

Figure 41: AUC Comparison of Models (Original) 

The model's prediction performance can be measured through the AUC comparison. On the 

original dataset, the logistic regression model with a split data ratio of 0.7/0.3 had the highest AUC 
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of 0.6. On the other hand, with a divided data ratio of 0.6/0.4, the SVM had the highest AUC of 

0.58. 

) 

Figure 42: F1 Score Comparison of Models (Original) 

Since the model is a binary classification and based on a small dataset, the F1 score should 

considered for the model performance metrics. The accuracy is looking for the correct prediction 

out of all predictions, while the F1 score measures the balance between precision and recall. Figure 

42 shows that the SVM had the highest F1 score compared to other algorithms, 0.86 in the data 

split of 0.7/0.3 ratio and 0.71 in the 0.6/0.4 ratio. 

4.8.2 Merged Dataset Models 

The same metrics from the previous section were applied to the model comparison for the merged 

dataset. First, the accuracy of each model was compared. As shown in the following figure, the 

SVM had the highest accuracy for the merged dataset and both cases of the split data method: 58% 

in 0.7/0.3 split and 69% in 0.6/0.4 split. However, on the merged dataset, the logistic regression 

model had the lowest accuracy for both cases. 
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Figure 43: Accuracy Comparison of Models (Merged) 

In comparing the AUC of the model, the SVM also had the highest AUC among the four algorithms. 

For both cases of split ratio, SVM had 0.58 in AUC. Also, the logistic regression model performed 

worse in AUC, as shown in the following figure. 

 

Figure 44: AUC Comparison of Models (Merged) 

Then F1 score was also compared for the models from the merged dataset. As shown in the 

following figure, the SVM made the highest F1 score over the other models, with 0.8 in the data 

split of 0.6/0.4 ratio and 0.71 in the data split of 0.7/0.3. 
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Figure 45: F1 Comparison of Models (Merged) 

4.9 False Negative 

The machine learning model in the healthcare system, the false negative rate is a critical metric. 

It represents the model fail on negative classification. In this study the false negative is the case 

of don’t transport patient that should be transport to EVT centre which can cause the serious 

consequences. According to the previous section the SVM had a best performance. However, to 

be apply into the healthcare filed the false negative rate should be checked. The Table 9 is the 

false negative rate for each case of SVM model. 

Original Dataset- 

0.7/0.3 

Original Dataset-

0.6/0.4 

Merged Dataset-

0.7/0.3 

Merged Dataset-

0.6/0.4 

0 28.4% 0 0 

Table 9: False Negative Rate of SVM model 

Among the four cases of SVM, three types had 0 case of false negative except the SVM from 

original dataset with 0.6/0.4 data split. 
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5.0 Discussion 

By comparing the three metrics, the effective ratio for the data split on each dataset and the best 

algorithm could be selected with the highest potentiality. The original dataset's split data ratio of 

0.7/0.3 better performance than 0.6/0.4 data split. However, in the merged dataset, the data split of 

0.6/0.4 ratio generally showed a better result than the 0.7/0.3 split since it had a small sample size. 

In accuracy metrics comparison, the SVM dominated all other algorithms in the case of both 

datasets. The accuracy of SVM models was usually 10~30% higher than the lowest accuracy 

models. 

Furthermore, the AUC evaluation was different for each dataset. The logistic regression models 

from the original dataset had the highest AUC and SVM second. But the merged dataset logistic 

regression case had the lowest AUC, and SVM had the highest AUC. Finally, the metrics 

comparison of the F-1 Score also shows that the SVM performed best in all cases. Therefore, 

overall evaluation selects the SVM as the best-fit algorithm for predicting transfer patient for EVT 

and the best potential for future study for further benefits. 

Furthermore, in the correlation table from Chapter 4, variable attributes were discovered that help 

decide on the EVT eligibility. The ASPECTS and age were the main elements in deciding the 

transfer of patients to the EVT center. However, the correlation table shows occlusion location, 

collateral status, driving distances to the EVT center, and onset to 1st CT time are important 

variable to consider prior to transferring patients for EVT. ASPECTS still had the highest 

correlation with the EVT eligibilities, but the previously mentioned attributes had higher 

coefficients of correlation than the age of the patient. 
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5.1 Limitations 

The most significant limitation of this study was the given dataset. The dataset was collected from 

various neuroradiology residents by hand. Therefore, the dataset had some inconsistencies in the 

data recording method; even if it were standardized through data cleaning, some data may still be 

inaccurate. Furthermore, the small data size was this study's most critical limitation, which can 

cause overfitting. Since the given dataset was 101 patients and through the data preprocessing, 

only 78 of them were used for model development, and the merged dataset with additional data 

attributes resulted in only 42 patients. 

The next limitation of the project was the inconsistent data record. Since, the dataset was recorded 

from different hospitals across Nova Scotia and recorded by various neuroradiology residents. The 

patient data recording methods were different for each resident. Thus, the inconsistency of the data 

was substituted with the standardized values, but some inaccuracy could be caused. Furthermore, 

among the 21 given attributes, more than five of the attributes were deleted due to missing values. 

Among the deleted attributes, some of the attributes could be highly affected by the received EVT 

prediction. 

5.2 Future Study 

The first future study that could be initiated would be the same study to be conducted on a larger 

dataset. As mentioned in the previous section, fewer data can cause many problems, which results 

in a low-quality model. If the dataset is more than several thousands of data samples will generate 

significantly improved performance and stability compared to this study’s result. However, the 

number of stroke patients annually in Nova Scotia that receive EVT is approximately 100 per year, 

therefore, the study would have to use national data to achieve this desired number. Furthermore, 

to improve the model’s overall performance, new algorithms could be applied such as the 
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ensembled model can be applied to the study, which is a combination of multiple algorithms to 

create stronger model. 

The subsequent possible future study from would be to create a clinical decision support tool. In 

the current state, only 30~50% of patients are available to get the EVT when the patient is 

transferred to the EVT center. However, the prediction accuracy of the machine learning model is 

more than 95% of accuracy. In that case, the machine learning model can be developed into the 

clinical assistant to support decision-making for transferring patients for EVT, helping to lower 

the time for a decision. As the decision-making time decreases, the patient will have a higher 

chance of getting an EVT. Furthermore, the current system’s futile transfer rate is 70~50% and the 

machine learning model have higher accuracy on decision making on EVT patient transfer. The 

application of the machine learning models decrease in futile transfer rate will bring many benefits 

by saving the cost incurred from unnecessary transfer costs. 
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6.0 Conclusion 

The project's main objective was to determine the adaptability of the machine learning algorithm 

predicts transfer patient EVT. The overall performance of each model showed effective results and 

proved that machine learning algorithms were adaptive to the prediction of patient transfer for 

EVT. The support vector machine algorithms performed best among the four different algorithms. 

Furthermore, this study discovers attributes of patient information correlated that support with 

EVT eligibility decision. The most correlated attribute was the ASPECTS. The following attributes 

are also related to the prediction variable: ages, occlusion locations, collateral status, driving 

distance, Euclidean distances, tPA, and onset to first CT time. This study discovered many 

potentials for the machine learning model's future studies, and its application to stroke system 

optimization through improved decision making. First, this study has a certain opportunity to 

improve by applying the larger dataset and boost algorithms. Secondly, the clinical assistant tool 

can be created based on the machine learning model that can improve the current state of the EVT 

provision to ischemic stroke patients. The current failure rate of getting EVT is 70~50% after 

ischemic stroke patients are transferred. The failure rate can be decreased by creating the clinical 

assistant tool. The clinical assistant tool will bring many benefits by saving the costs for the patient 

transferring and shortening the processing time for decision-making, which can reduce the delay 

in patient transportation and the fatality of ischemic stroke patients. 
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Appendix A – Python Codes 
Decision Tree 

 

Random Forest 
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Logistic Regression 

 

 

Support Vector Machine 
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