
UNSUPERVISED IMAGE CLASSIFICATION OF FISH WITHOUT
THE INFERENCE OF CLUSTER NUMBER

by

Bhupathiraju Akhilesh Varma

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2023

© Copyright by Bhupathiraju Akhilesh Varma, 2023

This thesis is humbly dedicated to my beloved family, whose

unwavering love and support have been my constant motivation and

inspiration.

ii

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . vii

Acknowledgements . viii

Chapter 1 Introduction . 1

Chapter 2 Related Work . 6

Chapter 3 Materials and Methods . 11

3.1 Datasets . 11
3.1.1 Train and Test Sets . 12

3.2 Machine learning models . 13
3.2.1 DeepDPM . 13
3.2.2 MoCo . 15
3.2.3 ViT-MAE . 16
3.2.4 Real-ESRGAN . 18
3.2.5 Training . 20

3.3 Metrics . 21
3.3.1 Evaluating DeepDPM . 21
3.3.2 Evaluating ESRGAN . 23
3.3.3 Evaluating ViT-MAE . 24

Chapter 4 Results . 25

4.1 Initial results . 25

4.2 Image Enhancement . 26

4.3 DeepDPM results using MoCo before enhancement 27

4.4 DeepDPM results using MoCo after enhancement 31

4.5 Comparing results before and after Real-ESRGAN enhancement . . . 32

4.6 Use of ViT-MAE embeddings . 33

iii

4.7 DeepDPM results before and after enhancement with ViT-MAE . . . 33

4.8 Visualizing the clusters . 37

Chapter 5 Conclusion and Future work 40

5.1 Conclusion . 40

5.2 Limitations and Future work . 41

Bibliography . 45

iv

List of Tables

3.1 Summary of the datasets used in the initial analysis 11

3.2 Summary of five species of fish used in the study 13

4.1 Results obtained by evaluating the DeepDPM algorithm on dif-
ferent datasets. 26

4.2 Results of MoCo model pretrained on ImageNet 29

4.3 Results of MoCo model trained from scratch on fish4k dataset . 30

4.4 Results of MoCo model pretrained on ImageNet after enhancement 32

4.5 Results of MoCo model trained from scratch on fish4k dataset
after enhancement . 32

4.6 Results obtained using ViT-MAE embeddings before image en-
hancement under different settings 34

4.7 Results obtained using ViT-MAE embeddings after image en-
hancement under different settings 35

v

List of Figures

3.1 Images of the five fish species used in the study 13

3.2 DeepDPM architecture . 14

3.3 MoCo architecture . 16

3.4 ViT-MAE architecture . 17

3.5 Real-ESRGAN architecture 19

4.1 Image size distribution before enhancement 27

4.2 Image size distribution after enhancement 27

4.3 Pixel intensity distribution before enhancement 28

4.4 Pixel intensity distribution after enhancement 28

4.5 Amphiprion clarkii before enhancement using Real-ESRGAN . 28

4.6 Amphiprion clarkii after enhancement using Real-ESRGAN . . 28

4.7 Chaetodon lunulatus before enhancement using Real-ESRGAN 29

4.8 Chaetodon lunulatus after enhancement using Real-ESRGAN 29

4.9 Visualization dashboard to view the clusters 38

4.10 Cluster 4 . 38

4.11 Cluster 3 . 38

4.12 Cluster 0 . 38

4.13 Cluster 2 . 38

4.14 Fish species count in each cluster 39

vi

Abstract

This thesis investigates deep learning techniques, particularly unsupervised image

classification, for identifying and clustering fish images captured with underwater

cameras. In collaboration with Innovasea, the goal is to streamline fish species iden-

tification and reduce labor-intensive manual labeling of camera data at the White

Rock Dam test site in Nova Scotia, Canada. We developed an unsupervised clus-

tering framework based on the DeepDPM deep learning model. We first reproduced

DeepDPM results on several standard datasets. We then integrated ViT MAE em-

beddings with DeepDPM and applied ESRGAN-based image processing to enhance

fish images, which are often blurry and low resolution. These techniques improved

clustering accuracy from 30% to 80% for five species of fish. However, using a cluster

visualization tool we developed, we observed that fish with similar appearances were

clustered together. Our results demonstrate progress towards automating fish species

classification and suggest future avenues of research towards this goal.

vii

Acknowledgements

I would like to express my sincere gratitude to Dr. Christopher Whidden for his in-

valuable advice, support, and encouragement during this project. Since the beginning

of this project, he has been an exceptional mentor, always patient and kind. I would

like to extend my appreciation to DeepSense and Innovasea for putting their trust in

me and giving me the chance to work with them, which was extremely beneficial to

my thesis. I am also grateful to Matt from Innovasea for his constant support and

confidence in it and for providing the necessary information for this task. I also wish

to thank the MITACS Accelerate program for providing the grant that funded our

research. Furthermore, I am thankful to the whole faculty and the Computer Science

Department for their thoughtful guidance throughout my coursework. Lastly, I am

deeply grateful to my family and friends for their unconditional support throughout

this academic year.

viii

Chapter 1

Introduction

The monitoring of fish migration is crucial for various reasons, including maintaining

healthy fish stocks and monitoring the impact of human activity and pollution on fish

[3]. The majority of fish observation is still done manually, either by people fishing

[84] or by professionals watching videos and painstakingly counting fish. This process

is not only time-consuming and tedious [12] but also highly prone to errors due to

human limitations such as fatigue and a limited attention span [23]. Also, manual

monitoring can lead to species misidentification, producing false-positive and false-

negative errors, which can result in systematic bias in data [76] [70], make it harder

to understand the actual status or distribution of species [72] [11] [22], and negatively

influence management decisions [39]. Misidentification problems can happen when

identifying small, hard-to-see fish [59], new invaders [57], fish underwater or on video

[43] [44], or when data are collected by resource users or volunteers [83] [69] [39] [24].

To overcome these limitations, there is a growing need for automated methods that

can identify and classify fish species accurately and efficiently.

This is where machine learning techniques may provide a promising solution by

automatically grouping fish based on their species, thereby reducing the need for

manual counting and increasing the accuracy and efficiency of fish identification and

classification. For example an algorithm that can be used to detect patterns in fish

behavior and count the fish more accurately than a human observer, even in heav-

ily polluted waters as done in [29]. Another example can be a convolutional neural

network as used by Chen et al. [19] could be trained to recognize the distinguish-

ing features of various fish species based on their appearance in photos and videos.

Similarly, an automated system based on a deep convolutional neural network was

developed by [55] to identify and group fish species and assists marine biologists learn

more about the different kinds of fish and where they live. Knausgaard et al. con-

structed a deep learning system [58] to recognise temperate fish, whereas Shafait et

1

2

al. created a system [85] that detects and counts fish from underwater films collected

in an uncontrolled environment.

Unfortunately, all these still requires vast quantities of expert-labeled training

data. According to Kandimalla et al. (2022) [53] and Ayyagari et al. [9], we need

1000-2000 labeled images of each species of interest across multiple environments

(2022). As deep learning models are made up of complex neural networks that learn

to recognize patterns and make accurate predictions based on the training data.

For deep predictive models to work well, it needs many training data labeled by

experts. The more labeled training data, the better the model can learn to find

relevant features and work well with new data. If there is not enough training data,

the model might try to fit the data too well or not learn the patterns in the data,

making it bad at handling new data. Due to the diverse range of fish species, it is

often difficult to monitor them without human intervention, which can result in a

waste of time and resources. These resources could otherwise be put toward more

valuable tasks like improving data analysis methods, which would help us learn more

about fish populations and how they act, or doing more research on fish populations,

which would help us learn more about their current status and needs, and could help

us come up with more effective ways to protect them.

Innovasea has created a system based on deep learning that automatically classi-

fies and counts fish by integrating video and sonar data to monitor underwater fish

[53]. Equipment has been installed and tested at the White Rock hydropower dam.

Even though the system is automated, it must be taught to identify the fish captured

on video as salmon, trout, redfish, or bluefish. Supervised learning involves learning

a mapping between input data and output labels, using a labeled dataset. In con-

trast, unsupervised learning involves identifying patterns and structure in the input

data, without the use of output labels. Supervised learning is frequently used for

classification tasks, whereas unsupervised learning is used for tasks like clustering or

dimensionality reduction. To overcome the problem we have, unsupervised clustering

may be used which can automatically group fish species with comparable character-

istics, which may greatly reduce the time and effort needed to label images of new

species or in new environments.

Unsupervised clustering is a more difficult task than supervised clustering because

3

the model must separate clusters based on inherent qualities of the data rather than

specified categories. For this reason, unsupervised clustering is not commonly used

and, to the best of our knowledge, has not previously been used for fish. However,

recent unsupervised models such as SCAN [37] and DeepDPM [79] have shown great

potential to cluster common deep learning datasets such as ImageNet [25] which

suggests they may be useful for clustering fish species.

Unsupervised clustering falls into two categories: parameterized (like SCAN [37])

and non-parametric (like DeepDPM [79]). With parameterized models, some data-

related hypotheses are formed. On the other hand, non-parametric techniques are

made up of a group of algorithms that don’t make any assumptions about how training

data is mapped. This means non-parametric models are more flexible and can capture

more complex relationships in the data but may require more data to perform well.

When it comes to clustering, which is a technique of grouping similar data points

together based on their characteristics, the difference between parametric and non-

parametric models in terms of K value is as follows:

Parametric clustering models: Before training a parametric clustering model,

the number of clusters (K) is usually set as a fixed parameter; the user must specify

the value of K (the approximate number of clusters), and the correct choice of K is

always debatable. The model’s architecture and hyperparameters limit the number

of clusters in parametric models. In these models, the number of clusters that the

algorithm will try to find is based on the value of K. If the K value is well estimated,

the number of clusters may only sometimes be ideal. One way to solve the problem

is to run the clustering algorithm many times with different K values and choose the

one that gives the best results.

Non-parametric clustering models: In these models, the number of clusters

is not set as a fixed parameter ahead of time. Instead, the algorithm determines the

number of clusters based on the data itself. These models can be more flexible than

parametric models, as they do not make assumptions about the number of clusters.

However, they may require more data to achieve good performance.

Nevertheless, this has several limitations that make it challenging to implement.

Executing the method multiple times on massive datasets can be highly challenging,

especially in Deep Learning, as training with various alternative cluster sizes may

4

not always be feasible. It is computationally costly to train, requires a great deal

of energy, and has a bad environmental influence; it cannot be scaled. Thus, non-

parametric techniques such as DeepDPM developed by Ronen et al [79]. come into

play; being a non-parametric model, it does not need the user to provide the K value;

instead, the model guesses it by adjusting the K value via split-merges of clusters.

It also employs a novel amortized inference for Expectation-Maximization (EM) in

mixture models [79]. While this technique has demonstrated promising results in

managing big datasets and addressing dataset imbalance, we wanted to explore if it

is relevant to our particular use case of classifying fish from underwater footage.

Machine learning classification models use sets of input values called ’features’ to

make classifications. For unsupervised clustering of images we need to convert an

image to an embedding of image features such that the image embedding captures

relevant differences between the images. Embedding models pre-trained on large im-

age datasets are commonly used to improve the utilization of unlabeled data and

achieve better generalization [20]. However, in many cases, better performance can

be achieved by fine-tuning a pre-trained embedding on the dataset of interest or by

training a new feature embedding model from scratch, but at the expense of increased

training time. DeepDPM [79] uses unsupervised pretrained features extractor namely,

MoCo [45] for extracting features from the images similar to how SCAN does. In our

case, this was not showing much promising results. So, we used ViT-MAE [46] for

pretraining and extracting the embeddings from images. This gave a major boost to

the clustering results. Detecting the fish species accurately, it is reasonable to assume

that high-quality images can produce good quality embeddings during pretraining.

However, detecting fish species from low-resolution images captured by a camera can

be challenging for deep learning models. Therefore, ESRGAN, a deep learning tech-

nique, was used to improve the image quality and subsequently enhance the accuracy

of the classification model. Utilizing these techniques, we observed improvements in

clustering metrics (NMI, ARI, and accuracy) from 0, 0, and 37 to 75, 74, and 83

for five fish species when comparing the pre-trained MoCo model without enhance-

ment to the enhanced ViT-MAE model trained with a latent dimension of 64 for 400

epochs. Overall, our results demonstrate that DeepDPM has the potential to cluster

fish images by species which may reduce the time needed to label new datasets of fish

5

images.

Our contributions include :

• Replicating the results of DeepDPM on the datasets mentioned in their paper.

• Using DeepDPM model on Fish4knowledge dataset to cluster images into dif-

ferent species.

• Used a deep learning technique ESRGAN to enhance the low-quality images

present in fish4knowledge dataset to increase performance of the clustering

model.

• Applying embeddings obtained from ViT-MAE pretraining instead of MoCo

pretraining to achieve much better quality clusters.

• Developing a tool to visualize the clusters created from the model to better

understand them. By analyzing the generated clusters, we observed that sim-

ilar fish species were clustered together, which provides valuable insights into

the model’s performance and suggests promising directions for future work in

automated fish species classification.

Chapter 2

Related Work

Supervised learning is an approach that facilitates the discovery and optimization

of a function capable of associating an input with its corresponding output within

an input-output pair, commonly referred to as a ”training example” [60]. It teaches

computers how to solve problems using a set of examples. The goal is to create a

function (f) that can understand the relationship between the input and output in

these examples and then use it to predict outputs for new, unseen inputs [81].

The two most common types of supervised learning are classification and regres-

sion.

Classification is a machine learning technique that predicts categorical outputs

by assigning instances to specified classes based on known input values. It can be

applied to structured and unstructured datasets and includes binary and multi-label

classification types [31].

Regression is a supervised learning technique that identifies correlations between

variables and predicts continuous values based on these relationships. It can be

categorized into simple linear regression and multiple regression, which includes linear

and non-linear types [31].

For the case of fish classification task, we have a set of images (input) and labels

(output) that tell us what type of fish is in the image. Instead of manually selecting

features of the fish from the images, which can be challenging and time-consuming,

it is often better to gather a large dataset of labeled images and use supervised

learning to find the function (f) that maps the input to the output. The model

learns the relationship between the images (input) and their corresponding species

labels (output). Once trained, the model can predict the species of new, unseen

fish images and classify them into families or species. This approach simplifies the

classification by automating the identification process [81].

Classification of underwater fish images is difficult because of factors like image

6

7

size, color, texture, and similarities between different species. Since manual classifi-

cation takes a lot of time and effort, researchers have developed machine learning and

deep learning techniques to help with this task [36] [73].

The process of fish classification typically involves three main steps: preprocessing,

feature extraction, and classification. Different techniques and algorithms are used

in each step [7]. In preprocessing, the fish images are resized, detected, and cropped.

Feature extraction involves extracting image characteristics like shape, size, texture,

and color. Different methods are used, like measuring distances and angles, GLCM,

Gabor filters, SIFT, and SURF [7].

Some methods used for classification include measuring the fish’s length, width,

and thickness with laser light [87] and looking at their shape, texture, and color [86]

[74]. However, variations in water conditions, background, and similarities between

species make classification difficult [73]. Different techniques have been developed

to classify fish based on their shape, texture, biomass content, and other physical

features. These include algorithms like Support Vector Machine (SVM), Back Propa-

gation (BP) algorithm, hybrid algorithms like HGAGD-BPC, GAILS-BPC, Bayesian

classifier, and Convolutional Neural Networks (CNNs) [7].

These methods have varying levels of accuracy, with some reaching up to 100%

[73] [7]. Some techniques are less time-consuming and cheaper, like those using a

mix of feature extraction and clustering algorithms. For instance the paper proposed

by Sarika [82] provided a hybrid CNN architecture for recognizing underwater fish

species using the Fish4Knowledge [4] dataset, tackling the problems of low-quality

images and complex backgrounds. The system used CNN to find features and SVM

and K-Nearest Neighbor (k-NN) to classify them. This gave it better results than

traditional and existing deep learning methods at the time. In addition, CNN and

other deep learning models like AlexNet, ResNet-152, VGGNet, and YOLO have

been used for fish classification, with some achieving high accuracy rates. Real-time

applications like Mask R-CNN and GOTURN have also been developed [73].

Unsupervised learning is an approach that focuses on identifying patterns, struc-

tures, or relationships within unlabelled data without relying on pre-defined input-

output pairs. It enables computers to analyze and process data without being explic-

itly programmed, allowing the model to discover hidden structures within the data.

8

The goal is to create a function (f) that can identify these patterns and group similar

inputs together, even when no explicit output is provided [52]. Clustering, Principal

Component Analysis, Anomaly Detection, and Autoencoders are the four different

types of unsupervised tasks that may be performed [52]. Clustering might be the

most important unsupervised learning task. It involves finding a pattern in a data

set that is not labeled. Hence, a cluster is a group of items that are ”similar” to one

another but ”dissimilar” to the objects in other clusters [52] [32].

Clustering can be broadly categorized into two types: parametric and nonpara-

metric [42]. Parametric clustering methods assume a fixed number of clusters (K),

while nonparametric methods do not assume a fixed number of clusters and can

adapt to the data structure. Some examples of parametric clustering algorithms in-

clude k-means, Gaussian mixture models, and hierarchical clustering. Examples of

nonparametric clustering algorithms include DBSCAN and mean-shift. The Dirichlet

Process Mixture (DPM) model is another good example of Bayesian nonparametric

(BNP) clustering.

Recently, deep clustering models, which leverages deep neural networks to learn

clustering-friendly representations, has been widely applied in various clustering tasks

[99]. These methods can also be broadly classified into parametric and nonparamet-

ric approaches. Parametric deep clustering methods can be divided into two types:

two-step approaches and end-to-end methods. In two-step approaches, clustering is

performed on features extracted in a pretext task, such as running K-means on em-

beddings transformed by UMAP [71]. Examples include the work of McConville et

al. and SCAN [90], which employs unsupervised pre-trained feature extractors. On

the other hand, end-to-end deep clustering methods learn both features and cluster-

ing simultaneously, often through alternation, using autoencoders [49] or variational

autoencoders (VAEs) [56] with an extra clustering loss.

SCAN clustering is a two-step procedure that separates feature learning and clus-

tering. In the first stage, a self-supervised task employs an unsupervised contrastive

learning method to obtain semantically meaningful features. This process involves

training a deep neural network using a pretext task to facilitate learning useful fea-

tures from unlabeled data. The authors of SCAN utilize either MoCo [45] or SimCLR

[16] for feature representation learning.

9

In the second stage, the clustering task, SCAN [90] performs clustering on the

learned feature representations using the K-means algorithm. The model is fine-

tuned with a clustering goal that makes it easier for meaningful groups to form. The

objective function comprises two main components: (i) maximizing the similarity

between each data point and its cluster centroid and (ii) promoting uniformity across

clusters via maximization of the entropy of the cluster assignments [90].

In the absence of ground-truth annotations, SCAN [90] is employed to group im-

ages into clusters that make semantic sense automatically. SCAN assumes a fixed

number of clusters (K) and uniform class weights, implying a balanced dataset as-

sumption. This assumption may be unrealistic in purely unsupervised scenarios, and

SCAN’s performance deteriorates when the estimate of K is inaccurate. Despite these

limitations, SCAN achieves state-of-the-art (SOTA) results in unsupervised image

classification tasks [90].

Nonparametric deep clustering methods combine deep learning and nonparametric

clustering techniques to find the optimal number of clusters. Some methods, like

AdapVAE [100], use a DPM prior [8] [35] [8] for a VAE [56], while others, like DCC,

use a nearest-neighbor graph in the latent space of an AE [49] [79].

DeepDPM [79] is a state-of-the-art (SOTA) nonparametric deep clustering method

that figures out the number of clusters (K) as it learns, so it does not need to know K

ahead of time. DeepDPM used two ways to extract features: an end-to-end method

where features and clustering are learned using alternative optimization and a two-

step method where features are learned once before clustering and kept the same.

The two-step technique used SCAN [90] and MoCo [45] for unsupervised feature ex-

traction. In end-to-end, similarly to DCN [97], an autoencoder is trained with a

reconstruction loss. The method beats both deep and non-deep nonparametric meth-

ods. It gets SOTA results through a dynamic architecture that adapts to changing K

values and a unique loss based on new amortized inference in mixed models [79]. Our

system uses DeepDPM as the primary clustering model to group the fish images.

In the case of unsupervised fish classification task, we have a set of images (input)

without any labels (output) indicating the type of fish in the image. Instead of

manually selecting features of the fish from the images or relying on labelled data,

unsupervised learning can be applied to find patterns within the images themselves.

10

This can be achieved by gathering a large dataset of unlabelled images and using

unsupervised learning techniques, such as clustering or dimensionality reduction, to

identify groups or structures in the data.

The model learns to group the images (input) based on their similarities or inher-

ent patterns, allowing for the classification of fish into families or species even without

explicit labels. Once the model has identified these groups, new, unseen fish images

can be assigned to the existing groups based on their resemblance to the patterns

discovered during the learning process. This approach simplifies the classification

by automating the identification process while leveraging the information contained

within the unlabelled data itself.

There is limited study on fish image clustering. In our review of the research on

fish image classification, we found that the majority of studies focused on supervised

algorithms. Notably, Rodrigues [78] worked on the evaluation of fish clusters using

five automatic fish species classification schemes based on image analysis, combining

various feature extraction techniques, data clustering algorithms, and input classifiers,

while Hong Yao [98] developed a fish image segmentation method that combines an

improved k-means clustering algorithm with mathematical morphology to enhance

accuracy and stability. Sun, Y [88] worked on an adaptive fast clustering algorithm

for fish swarm image segmentation that combines the extraction of fish swarm hy-

poxia image features and the K-Means++ algorithm. Ibrahim [51] developed a fish

image segmentation model using the Salp Swarm Algorithm (SSA) and Simple Linear

Iterative Clustering (SLIC) method, with initial parameters optimized by SSA. The

model works well in various situations and is better than previously used methods

for finding fish in real-world images. Saifullah’s [80] study uses K-means cluster-

ing for fish object detection based on color and grayscale images. In order to get

fish contours, the process includes image preprocessing, segmentation with K-means

clustering, and morphological processing. However, these studies primarily focus on

parametric clustering techniques. According to our knowledge, this is the first study

to employ non-parametric, unsupervised deep clustering of fish images and classify

them into different species.

Chapter 3

Materials and Methods

In this study, only five species from the Fish4Knowledge (fish4k) dataset [4] were

used, and the DeepDPM [79] clustering algorithm was applied to them. Even though

there are 23 species in total in this dataset, the dataset is very unbalanced and only

10 of them have at least 200 images. In addition, the species with the most and

second most images have a similar appearance so we excluded the most common

species to provide a better comparison. The images were divided into train and

validation sets as detailed below. Real-ESRGAN deep learning [93] approach was

used to enhance the low-quality images before clustering to increase the clustering

accuracy. We compared the impact of various embedding methods, such as MoCo

and ViT-MAE, to assess their effectiveness. In addition, a tool was made to help see

and understand the clusters better.

3.1 Datasets

As was stated in the initial research analysis, the outcomes of DeepDPM were re-

produced using the MNIST [27], Fashion-MNIST [95], USPS [50], STL10 [21], and

ImageNet [26] datasets in both balanced and unbalanced configurations.

Datasets Used Train samples Val samples Data dimension GTK
MNIST [27] 60,000 10,000 28×28 10
USPS [50] 7,291 2,007 16×16 10

Fashion-MNIST [95] 60,000 10,000 28×28 10
STL10 [21] 5,000 8,000 96×96×3 10

ImageNet-50 [26] 64,274 2,500 224×224×3 50

Table 3.1: Summary of the datasets used in the initial analysis

The Fish4Knowledge dataset [4] consists of 27,370 verified fish images acquired

from live video footage. The dataset is divided into 23 classes, with each class repre-

sented by a species based on distinctive characteristics such as the presence or absence

11

12

of components, specific number, or particular shape. The data is very imbalanced,

with the most frequent species being approximately 1000 times more common than

the least common. The fish images are obtained using fish detection and tracking

software, and the species are manually labeled by marine biologists. Overall, the

Fish4Knowledge dataset is a significant resource for study on fish recognition, track-

ing, and behaviour analysis, with different features representing each species and the

dataset grouped into digestible clusters.

In the Fish4Knowledge dataset, only six species have at least 2,500 images each,

while the remaining species have a maximum of 500 images each [4]. Although Ronen

et al [79]. claimed that DeepDPM should theoretically be capable of identifying

clusters of rare species, we opted to include just five of the 23 species due to the

extreme imbalance and the prevalence of low-resolution images. The selected five

species represent a diverse mix among the 23 species, as three of the six species with

a substantial count exhibit strong similarities. The representative images of these five

species are illustrated in Figure 3.1.

3.1.1 Train and Test Sets

The dataset was acquired from the official fish4Knowledge website, and images in each

of the five folders were randomly divided into train and validation folders with an 8:2

split ratio between the train and validation sets. The order of the images within these

sets was then randomised before performing the clustering to reduce training bias.

The count of each species included in the train and validation sets is shown in Table

2. The species distributions in this dataset are extremely uneven, ranging from 241

total photos connected with Hemigymnus fasciatus to 4049 images associated with

Amphiprion clarkii, while the validation set exhibited a similar distribution.

The images include the fish and small amount of background and are only a small

portion of the original camera images that were used to identify these fish. These

images are usually blurry and of low resolution. Using the ESRGAN deep learning

approach, enhanced higher resolution versions of the photos were made from the

train and validation folders, and this set of folders was then utilised for clustering

evaluation.

The enhanced pictures were put to use in the pretraining process utilising the

13

MoCo and ViT-MAE algorithms to generate embeddings, which were then used to

execute the unsupervised clustering approach with the DeepDPM.

Chromis
chrysura

Amphiprion
clarkii

Chaetodon
lunulatus

Myripristis
kuntee

Hemihym-
nus fasciatus

Figure 3.1: Images of the five fish species used in the study

Fish Species Train samples Val samples
Chromis chrysura 2826 707
Amphiprion clarkii 3208 803
Chaetodon lunulatus 2045 512
Myripristis kuntee 277 70

Hemigymnus fasciatus 192 49

Table 3.2: Summary of five species of fish used in the study

3.2 Machine learning models

3.2.1 DeepDPM

DeepDPM [79] is a nonparametric deep clustering approach that, unlike the majority

of deep unsupervised clustering algorithms, does not need the number of clusters to

be specified beforehand. It dynamically infers and changes the number of clusters

during training using split and merge method. It consists of two main components:

the first is a clustering net, which produces soft cluster assignments for each input

data point, while the second consists of K subclustering nets (one for each cluster k,

k ∈ 1, . . . , K). These subclustering nets generate soft subcluster assignments

based on the previously generated soft cluster assignments from the clustering net [79].

Soft cluster assignments involve a probabilistic approach to assigning data points to

clusters. Unlike hard clustering, where each data point is assigned to a single cluster,

soft clustering assigns a degree of membership to each data point across multiple

clusters. This means that a data point can belong to more than one cluster with

14

varying degrees of membership [2] [1]. The subcluster assignments support split and

merge decisions that enable the number of clusters to change on the fly. Introducing a

new loss function in DeepDPM, inspired by the expectation-maximization algorithm

used in Bayesian Gaussian mixture models (EM-GMM) made it more stable and

efficient.

Differentiation is the computation of a function’s derivative, which measures the

sensitivity of a function’s output to changes in its input. In machine learning, dif-

ferentiation is frequently used to calculate gradients, which are subsequently used

to update model parameters during training [10]. DeepDPM [79] is a deep cluster-

ing model leveraging neural networks to learn flexible data clustering. Unlike offline

clustering approaches like K-means, DeepDPM is differentiable for most of the train-

ing process, enabling the computation and propagation of gradients throughout the

model for gradient-based optimization. The only exception to DeepDPM’s differen-

tiability occurs when discrete splits or merges transpire within the model, as these

non-differentiable operations prevent gradient computation at these points. Deep-

DPM’s use of differentiation enables optimization using gradient-based approaches,

which can help the model discover more accurate data clusterings. This might be one

of the reasons why DeepDPM outperforms other clustering techniques including the

traditional and deep non-parametric clustering algorithms on a wide range of datasets

and metrics [79].

Figure 3.2: DeepDPM architecture : DeepDPM’s pipeline - given features X, the
clustering net outputs cluster assignments, R, while the subclustering nets generate
subcluster assignments, R. Upon the acceptance of split/merge proposals, all those
nets are updated during the learning. [79]

The clustering portion of the technique employs split-merge as inspired by [15] to

modify the K value for clusters having a subcluster pair associated with it. There

are two main components to it: the first is a clustering net made up of an MLP

architecture with one input layer, one hidden layer, and an output layer (K neu-

rons). K subclustering nets are present in the second (one for each cluster k). As in

15

citechang2013parallel, split-merge is utilised to modify the K value during training.

The model architecture, including the last layer of the clustering net, evolves as K

varies. The Bayesian GMM’s EM (Expectation Maximization) employs a new loss

in this situation. The new amortised EM has improved point prediction across all

batches, not just the current batch. As a result of the function’s smoothness, loca-

tions in the observation space that are close to one another should have labels that

are comparable.

Authors of DeepDPM found that the model dominated consistently across all

datasets and measures, and its performance advantage only grew in unbalanced sce-

narios. Altogether, the results show that DeepDPM does better than other paramet-

ric, nonparametric clustering algorithms on most datasets and metrics (both classical

and deep) [79]. Therefore, we chose DeepDPM as our unsupervised model for this

thesis.

3.2.2 MoCo

Momentum Contrast (MoCo) is a self-supervised technique for unsupervised repre-

sentation learning based on deep learning. [45]. MoCo uses contrastive learning to

acquire visual representations that may be used for subsequent tasks such as image

categorization. In contrastive learning, the model is taught to tell the difference be-

tween two pictures that are the same and two pictures that are different. MoCo uses

momentum contrast, in particular, to do this.

Momentum contrast is a method that uses a momentum encoder to help the model

learn better ways to represent things. The model maintains two encoders throughout

training: a current encoder and a momentum encoder. The momentum encoder is

updated by gradually averaging the current encoder’s weights over time, enabling the

model to acquire more stable picture representations. It has also been helpful for

tasks like object detection and semantic segmentation [45] .

MoCo v2 [17], an upgraded version of the Momentum Contrast (MoCo) [45] self-

supervised learning algorithm, incorporates several improvements over the original

MoCo method. The improved version has a larger batch size, a better plan for

negative sampling, and a dynamic queue for storing negative examples. The old

1-layer fully connected layer has been replaced with a 2-layer MLP head, and blur

16

Figure 3.3: MoCo architecture - MoCo model trains a visual representation encoder
by matching an encoded query q to a dictionary of encoded keys using a contrastive
loss. The dictionary keys k0,k1,k2,... are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch enqueued and the
oldest mini-batch dequeued, decoupling it from the mini-batch size. The keys are
encoded by a slowly progressing encoder, driven by a momentum update with the
query encoder. This method enables a large and consistent dictionary for learning
visual representations [45]

.

enhancement has been added. These changes have made it easier to set up more

reliable baselines and do better than SimCLR without needing long training batches.

The training process has become more efficient and stable, resulting in improved

performance on subsequent tasks. MoCo v2 [17] has achieved impressive results on

several benchmarks, such as ImageNet classification, object detection, and instance

segmentation. It has also been used as a pre-training method for transfer learning in

many fields, such as natural language processing and medical imaging [17].

3.2.3 ViT-MAE

Masked autoencoder for vision transformer (ViT-MAE) [46] is a new methodology

for training a vision transformer [30] to recognize an incomplete image and predict

17

its original version. Vision Transformers (ViT), are a sort of deep neural network

that apply the self-attention mechanism of Transformers to computer vision tasks

[30]. Transformers [91] were initially developed to do problems related to natural

language processing. In ViT-MAE, a set of masks is applied to the image before

feeding it into the encoder transformer, which only processes the visible part of the

patches. The model then learns to reconstruct the original image from the masked

version through an asymmetrical encoder-decoder architecture using mask tokens and

positional encodings. It uses the mean squared error (MSE) to evaluate the loss be-

tween the reconstructed and original images. The model’s primary purpose is to

make predictions about the raw pixel values for the areas that have been masked.

Being a self-supervised pre-training model which uses autoencoders, there is no la-

beling requirement because the model can internally mask patches and learn how to

reassemble them.

Figure 3.4: ViT-MAE architecture [46]

Coming to the main architecture of the model, the masked autoencoder employs

the typical ViT (Vision Transformer) design, which consists of a stack of Transformer

blocks, each of which has a multi-head self-attention block and an MLP block with

LayerNorm (LN). The end of the encoder is LN. After the encoder, a linear projection

layer is utilised to accommodate the varying widths of the MAE (Multi-Adversarial

18

Encoder) encoder and decoder. The MAE adds sine-cosine positional embeddings to

both the encoder and decoder inputs. The network does not employ layer scaling or

relative positioning. To accommodate ViT’s class token, an auxiliary dummy token

is added to the encoder input during MAE pre-training; this token will be used as

the class token for training the classifier in linear probing and fine-tuning. The MAE

functions properly with or without the token.

The performance of the MAE (masked autoencoder) model was compared with

other techniques, such as DINO, MoCov3, or BEiT, after pre-training on ImageNet-

1K and fine-tuning it end-to-end.

ViT-MAE embeddings are obtained by training a ViT model with a masked au-

toencoder (MAE) objective. The MAE objective is to mask random patches of the

input image and reconstruct the missing pixels. This forces the model to learn rich

visual representations that can capture both local and global information. MoCo

embeddings are obtained by training a convolutional neural network model with a

contrastive learning objective. The contrastive learning objective is to distinguish

between positive and negative pairs of image patches based on their similarity in a la-

tent space. This encourages the model to learn invariant features that can generalize

across different views or augmentations.

Some benefits of employing ViT-MAE embeddings as opposed to MoCo embed-

dings [45] include:

• ViT-MAE embeddings do not require large batch sizes or memory banks for

contrastive learning, which makes them more efficient and easier to train.

• ViT-MAE embeddings are not dependent on data augmentations or hard neg-

ative mining, which can add biases or noise into the training process.

3.2.4 Real-ESRGAN

Most of fish images present are small and blurry which resulted in poor classification

performance. To deal with this, Real-ESRGAN [93] was used as an image enhancer to

increase the resolution of the fish images with the goal of improving classification per-

formance. Real-ESRGAN is a state-of-the-art image super-resolution algorithm based

on an enhanced version of the ESRGAN architecture. Enhanced Super-Resolution

19

Generative Adversarial Network (ESRGAN) [94] is a deep learning-based method

used for increasing the resolution of low-quality images. It works by using a genera-

tor and discriminator network both made up of deep convolutional neural networks

(CNNs) [62] to improve the quality of the generated image. The generator network

uses a series of residual blocks and feature fusion modules to learn high-level image

features and create realistic-looking high-resolution images.

Figure 3.5: Real-ESRGAN architecture [93]

ESRGAN in fact is an improved version of SRGAN [64]. ESRGAN attempted to

improve SRGAN by altering its model’s architecture and loss mechanisms. SRGAN,

like other GANs [40], consists of two algorithms: one that generates a picture and

another that determines if the image is real or fake. GANs (Generative Adversarial

Networks) [40] are a type of generative, unsupervised neural networks that approxi-

mate the data-generating distribution used to make a given dataset [40]. They have a

generator (G) and a discriminator (D) network [40]. The generator makes new pieces

of data similar to the training data, and the discriminator decides whether a piece of

data is accurate. In a zero-sum game, the two networks are trained together. The

generator tries to trick the discriminator by making more realistic data, while the

discriminator tries to get better at spotting fake data [40]. Comparing a generated

image against a genuine image, ESRGAN determines which is more realistic.

ESRGAN can be a useful tool for improving the quality of low-quality fish images

by generating high-quality, super-resolved images. These images can provide more

detailed information and make it easier to accurately identify and classify different

species of fish.

20

3.2.5 Training

The training of the DeepDPM clustering model typically requires two steps. First,

embeddings are created from the images, which are then used as inputs to the main

clustering model. There are several ways to create these embeddings, including using

the deep unsupervised feature extractors MoCo or SimClr [16], as described in the

original paper. The feature extractor can be trained from scratch for the given data

or pre-trained weights can be used. If the dataset is small, the feature extractor can

be skipped and UMAP can be applied directly to the raw data or an autoencoder

followed by a UMAP [71] can be used to generate the low-dimensional representations

of the images to be clustered. Although the DeepDPM clustering algorithm can work

on higher dimensions, the authors recommend keeping the maximum dimension to

128D. If the dataset is relatively low-dimensional (< 128D), it is possible to train the

algorithm on the raw data itself. Before passing the embeddings to the clustering

stage, an autoencoder [48] must be trained on top of the embeddings. An autoen-

coder is a type of artificial neural network used for unsupervised learning. It learns to

produce a compressed representation of input data by training itself to ignore signal

’noise’ . It has three layers: an input layer, a hidden layer for encoding, and an output

decoding layer [48]. If the datasets mentioned in the original DeepDPM paper are

used, they already have pre-trained autoencoder weights. Thus, for any new datasets

we perform end-to-end training in the script, training an autoencoder on top of the

MoCo embeddings, including the feature extraction pipeline where learning of cluster-

ing and features takes place. For implementing DeepDPM the original implemenation

has been used which can be found on the GitHub [13].

For our use case, we compared embeddings generated using MoCo from scratch

against pre-trained MoCo weights that were trained on the ImageNet dataset. In

all experiments, the clustering net is configured with 50 hidden units. A batch size

of 128 is used, and the clustering net is trained with a learning rate of 0.002, while

the subclustering nets use a learning rate of 0.005. The end-to-end DeepDPM al-

ternation clustering model was trained for 400 epochs. The total training time for

this model was approximately. For performing the MoCo pretraining from scratch

lightly’s implementation has been used which can be found on the documentation

page [68].

21

The original authors of ViT-MAE found that masking a high proportion of the

input image, such as 75, yields a nontrivial and meaningful self-supervisory task. The

target for training contained normalized pixel values. The total training batch size

was calculated as the product of training-args-train-batch-size, training-args-gradient-

accumulation-steps, and training-args-world-size. The base-learning-rate was set to

1.5e-4, and the model was trained with 100 epochs. For training ViT-MAE embed-

dings Hugging face’s image-pretraining has been used, which can be found on its

GitHub [34] In addition to this Real-ESRGAN was used to improve the quality of im-

ages of fish4knowledge. For this, the original github documentation of Real-ESRGAN

was used. Default scale factor of 3.5 was used to enhance the images. For performing

image enhancement using the Real-ESRGAN, the original source code has been used

which can be found on Github [92].

3.3 Metrics

Unsupervised clustering models are difficult to evaluate since there are no goal values

or labels to compare with [65]. Unsupervised models, in contrast to supervised models,

lack a defined objective function or performance metric that can be improved or

measured [38]. As a result, assessing unsupervised clustering models necessitates

a variety of methodologies that are dependent on the data and the purpose of the

analysis [54]. As a result, we decided to use a dataset consisting of fish in which the

target value is already present and evaluated it using supervised clustering metrics.

3.3.1 Evaluating DeepDPM

For evaluation metrics, we employed the same clustering metrics as DeepDPM [79].

These include the three main ways of measuring the efficacy of supervised clustering

evaluations namely Accuracy, NMI and ARI. Here, the accurary measures the propor-

tions of instances that are correctly clustered, while the NMI and ARI tell us about

the quality of the clusters. A point that should be considered while evaluating the

clustering model’s performance is that there may be certain instances, particularly

with highly imbalanced datasets, where all images may be classified into one or two

clusters. In such situations, the resulting clusters may be meaningless, even if the

accuracy is high. So, while looking at the overall clustering performance, it is better

22

to take a holistic approach where we consider multiple factors, including the ARI and

NMI values. Suppose if these values are close to or near zero, they indicate that the

clusters are either randomly assigned or of poor quality.

Clustering Accuracy (ACC), is represented as

ACC = max
m

∑︁N
i=1 1(yi = m(zi))

N
(3.1)

where N is the total number of data points and yi represents the Ground-Truth

(GT) class label associated with each data point. i, zi represents the forecasted clus-

ter assignment in accordance with the clustering algorithm that is being considered,

⊮(·) is the indicator function, and m is defined by all of the feasible one-to-one

mappings that exist between the anticipated class membership and the actual one.

DeepDPM uses the Hungarian algorithm to determine how accurate a cluster is by

fixing problems with how the predicted labels match the actual labels. It generates a

confusion matrix, identifies the optimal one-to-one mapping between labels to min-

imize discrepancies, and computes the accuracy by dividing correct assignments by

the total number of data points. It effectively represents clustering performance while

accounting for potential label assignment discrepancies.;

Normalized Mutual Information (NMI) is defined by

NMI =
2× I(y; z)

H(y) +H(z)
(3.2)

where H(.) represents entropy and I(.; .) stands for mutual information (MI). The

fact that this measure does not take into account high cardinalities while calculating

the MI term, which is included in the numerator, is one of its shortcomings (i.e.,

over clustering). The NMI does not have a sensitive enough detection system for

overclustering.;

Adjusted Rand Index (ARI) : The Rand index (RI) is a metric that is used to

quantify the percentage of ”right” judgements made for each pair of data points. If

two instances come from the same GT class and are given the same cluster assignment

(also known as a true positive, or TP), then a choice was made correctly. However,

if the examples came from separate GT classes and were given different clusters,

then the decision was incorrect (a true negative, TN). In a similar manner, clustering

23

mistakes may be divided into two categories: false positives (FP) and false negatives

(FN) (FN). Hence, RI may be calculated as follows:

RI =
TP + TN

TP + TN+ FP + FN
(3.3)

The Rand index provides the basis for the ARI measure, which is an adjusted

version of the original index. Given a set S of N elements, and two groupings or

partitions (e.g. y and z) of these elements, a contingency table can show the overlap

between y and z. table [ckl] where each value ckl is the number of things that are

shared by both yk and zk : ckl = |yk ∩ zk|. Let ak be the sum (f each row, meaning,

ak =
∑︁

l ckl, and bk the sum of each column, i.e. bk =
∑︁

k ckl.

The ARI measure is then computed by:

ARI =

∑︁
k,l

(︁
nkl

2

)︁
−
[︁∑︁

k

(︁
ak
2

)︁∑︁
l

(︁
bl
2

)︁]︁
/
(︁
n
2

)︁
1
2

[︁∑︁
k

(︁
ak
2

)︁
+
∑︁

l

(︁
bl
2

)︁]︁
−
[︁∑︁

k

(︁
ak
2

)︁∑︁
l

(︁
bl
2

)︁]︁
/
(︁
n
2

)︁ (3.4)

The greater their values, the better.

3.3.2 Evaluating ESRGAN

The Real-ESRGAN model uses a combination of four loss functions during training

to generate high-quality super-resolved images. These loss functions include: L1 loss:

The L1 loss measures the absolute difference between the generated image and the

ground truth image on a pixel-by-pixel basis. The formula for L1 loss is:

L1(x, y) = ||x− y||1 (3.5)

where x and y are the generated image and the ground truth image, respectively;

and ||.||1 denotes the L1 norm. Perceptual loss: The perceptual loss measures the

difference between the high-level features of the generated image and the ground truth

image. It is calculated using a pre-trained deep neural network that extracts feature

maps from the input images. The formula for perceptual loss is:

Perceptual(x, y) = ||Φ(x)− Φ(y)||1 (3.6)

where Φ(.) denotes the feature extraction function; and ||.||1 denotes the L1 norm.

Adversarial loss: The adversarial loss measures how well the generated image can fool

24

the discriminator network, which is trained to distinguish between real and generated

images. The formula for adversarial loss is:

Adversarial(x) = − log(D(G(x))) (3.7)

where x is the generated image; G(.) denotes the generator function; D(.) denotes

the discriminator function; and log(.) denotes the natural logarithm. Total Variation

(TV) loss: The TV loss measures the total variation of the generated image, which

is used to preserve the edges and fine details of the original image. The formula for

TV loss is:

TV (x) = ||∇x||1 (3.8)

where ∇x denotes the gradient of the generated image with respect to its spatial

coordinates; and ||.||1 denotes the L1 norm. The overall loss function for the Real-

ESRGAN model is a weighted sum of these individual losses, as follows:

Totalloss(x, y) = w1∗L1(x, y)+w2∗Perceptual(x, y)+w3∗Adversarial(x)+w4∗TV (x)

(3.9)

where w1, w2, w3, and w4 are the weights assigned to each loss term, respectively.

3.3.3 Evaluating ViT-MAE

The Mean Squared Error (MSE) is a loss function used in the training of masked au-

toencoder for vision transformer to measure the difference between the reconstructed

output and original input images in the pixel space. Similar to BERT, the loss is

computed exclusively on masked patches. The formula for MSE loss is:

MSE(ytrue, ypred) =
1

N

∑︂
(ytrue − ypred)

2 (3.10)

where ytrue is the ground truth input image, ypred is the output image generated by

the autoencoder, and N is the total number of pixels in the image. The objective

is to reduce the MSE loss during training, which is achieved by modifying the au-

toencoder’s weights through backpropagation. The autoencoder may learn to create

output pictures that are as comparable as feasible to the input images by minimizing

the MSE loss.

Chapter 4

Results

All the experiments were conducted on Google Colab Pro having a single Tesla T4

gpu. The training process, which included creating embeddings from the MoCo pre-

trained model and performing clustering, required approximately 6 hours. In contrast,

training the MoCo model from scratch and then clustering consumed around 10 hours.

The time taken for ViT-MAE was comparable to that of training MoCo from scratch.

4.1 Initial results

Table 4.1 displays the findings that were replicated on both balanced and imbalanced

MNIST [27], Fashion-NIST [95], USPS [50], STL10 [21], and ImageNet [25] datasets.

As per the original paper [79], for the MNIST, USPS, and Fashion-MNIST datasets,

as well as their unbalanced versions, the same (and fixed) data embeddings were used

as input, and parametric clustering was done with ground truth K given to them and

compared with DeepDPM. It can be observed from the results in Table 4.1 that the

algorithm was usually successful in estimating the value of K for each of the datasets.

Surprisingly, we detected fewer clusters and with reduced accuracy than reported by

the authors for both USPS datasets. In addition, as reported by the authors, we

observed that DeepDPM may overestimate the number of clusters on the ImageNet

dataset. The model underestimated the K value for the USPS dataset, but the K

value was overstated for the ImageNet dataset. The original value of K for the Ima-

geNet dataset was 50, but the value of K in the paper and in the new results was 52.

In the USPS dataset, the original value of K was 10, but the value of K in the paper

and the new results were 9 and 7. Similarly, for the USPS-imbalanced dataset, K

value in the paper and the new results were 9 and 8. Thus, it became apparent that

replicating the results of DeepDPM on the USPS dataset proved to be challenging.

However, by training the model for an extended duration and increasing the number

of epochs, there is potential for the model to converge towards the accurate value of

25

26

value of K. The Acc column indicates the accuracy of the clustering findings, whereas

the PaperAcc column indicates the accuracy stated in the original study DeepDPM

research paper. In general, the Acc scores were marginally lower than the PaperAcc

scores, showing a certain degree of variation in the clustering results. Only, the USPS,

USPS-imbalanced datasets showed a noticeable gap between Acc and PaperAcc. In

the USPS dataset, the Acc was 0.727, while the Paper Acc was 0.89, indicating a

difference of 0.163. Similarly, in the USPS-imbalanced dataset, the Acc was 0.809,

while the Paper Acc was 0.94, indicating a difference of 0.131. The performance of

DeepDPM was affected by the imbalance of the datasets, with better performance

achieved on balanced datasets. Overall, the difference between the original K values

and the values used in the paper and in the new results is small, ranging from 1 to 2.

Despite observing some differences, as detailed above, DeepDPM’s initial results

were quite promising, as the model was able to figure out the exact number of clusters

most of the time without being told. So far, DeepDPM has only been tested on

standard datasets and not on real datasets of fish. The next step was to test the

algorithm on a set of real fish in fish4knowledge.

Table 4.1: Results obtained by evaluating the DeepDPM algorithm on different
datasets.

Datasets Used Evaluation Metrics

NMI ARI Acc PaperAcc K PaperK OrgK

MNIST 0.941 0.953 0.9787 0.98 10 10 10
MNIST-imbalanced 0.941 0.953 0.978 0.98 10 10 10
Fashion-MNIST 0.687 0.534 0.663 0.62 10 10 10

Fashion-MNIST-imb 0.670 0.515 0.612 0.61 10 10 10
USPS 0.826 0.70137 0.727 0.89 7 9 10

USPS-imbalanced 0.864 0.807 0.809 0.94 8 9 10
STL 10 0.768 0.670 0.832 0.85 10 10 10
ImageNet 0.736 0.515 0.645 0.66 52 52 50

4.2 Image Enhancement

Our initial findings from clustering the original fish4knowledge dataset using Deep-

DPM were not impressive. We hypothesised that, given that DeepDPM operates on

extracted picture features, the majority of image pixel values would fall within a 50

27

to 250 range. These blurry low resolution underwater camera images may be of insuf-

ficient quality to extract distinguishing characteristics from, preventing the clustering

algorithm from classifying them properly based on species. So, we chose to apply an

image enhancement technique to the original fish4knowledge dataset’s photos. After

conducting some research, we determined that the Real-ESRGAN model can serve

our needs.

Real-ESRGAN is an effective way to increase the resolution of low-quality fish

images, resulting in improved image quality. This can help intensify the features of

the fish, such as their scales and fins, and help better identify the fish species. More-

over, ESRGAN is a cost-effective and time-efficient method to enhance the quality of

low-quality fish images. It can be applied directly to poorly captured images, thus

reducing the need for expensive equipment and saving time and effort in capturing

new images, mainly when dealing with a large volume of images.

Pixel intensity refers to the value associated with each pixel in an image [5] [6].

Following picture enhancement, the range of pixel intensities grew from 50-250 to

500-2500. This may be seen by comparing the before and after photographs in figures

4.3 and 4.4. The average size of images also increased from being in the range of

50-150 before enhancement figure 4.1 to 200-500 after enhancement figure 4.2.

Figure 4.1: Image size distribution be-
fore enhancement

Figure 4.2: Image size distribution af-
ter enhancement

4.3 DeepDPM results using MoCo before enhancement

Table 4.2 and Table 4.3 show the results of training and validation experiments for the

DeepDPM clustering algorithm using the pre-trained MoCo embeddings trained on

28

Figure 4.3: Pixel intensity distribution
before enhancement

Figure 4.4: Pixel intensity distribution
after enhancement

Figure 4.5: Amphiprion clarkii before
enhancement using Real-ESRGAN

Figure 4.6: Amphiprion clarkii after
enhancement using Real-ESRGAN

29

Figure 4.7: Chaetodon lunulatus
before enhancement using Real-
ESRGAN

Figure 4.8: Chaetodon lunulatus after
enhancement using Real-ESRGAN

Table 4.2: Results of MoCo model pretrained on ImageNet

Train

Exp No NMI ARI Acc Final K Org K L-Dim Epochs

1 0.02± 0.031 0.01± 0.032 0.38± 0.013 1.66± 0.57 5 32 400
2 0.0± 0 0.0± 0 0.37± 0.001 1.33± 0.57 5 64 400
3 0.005± 0.008 0.02± 0.035 0.38± 0.017 2± 1 5 128 400

Validation

Exp No NMI ARI Acc Final K Org K L-Dim Epochs

1 0.001± 0.002 0.0± 0.0 0.37± 0.001 2± 0 5 32 400
2 0.0± 0.0 0.0± 0.0 0.37± 0.0 1.33± 0.57 5 64 400
3 0.02± 0.033 0.02± 0.032 0.38± 0.014 2± 1 5 128 400

Imagenet and the MoCo embeddings trained on the fish image dataset from scratch,

respectively. The ”Experiment No” (Exp No) column implies different runs of the

DeepDPM model on the same dataset. Each experiment is executed under varying

settings of latent dimensions (L-dim) and epochs, factors that may impact the fi-

nal result. The table presents the results of three different settings, showcasing the

mean and standard deviations of three independent runs for all performance metrics,

including K.

The results displayed in Table 4.2 reveal that the NMI, ARI, and accuracy values

for all three experiments are relatively low, suggesting suboptimal clustering algo-

rithm performance. The performance remained consistently low across the exper-

iments regardless of the latent size suggesting that this factor did not impact the

30

Table 4.3: Results of MoCo model trained from scratch on fish4k dataset

Train

Exp No NMI ARI Acc Final K Org K L-Dim Epochs

1 0.31± 0.078 0.28± 0.085 0.56± 0.048 2.33± 0.57 5 32 400
2 0.34± 0.09 0.29± 0.099 0.57± 0.043 3.66± 0.57 5 64 400
3 0.19± 0.038 0.15± 0.044 0.50± 0.027 2.33± 0.57 5 128 400

Validation

Exp No NMI ARI Acc Final K Org K L-Dim Epochs

1 0.31± 0.064 0.28± 0.076 0.56± 0.043 2.33± 0.57 5 32 400
2 0.33± 0.082 0.29± 0.093 0.57± 0.041 3.66± 0.57 5 64 400
3 0.20± 0.040 0.17± 0.047 0.50± 0.028 2.33± 0.57 5 128 400

clustering process. The final K value for all experiments reaches up to 2, which is

considerably different from the original K value of 5. In particular, the final K value

is approximately 2 for experiments 2 and 3, and around 3 for experiment 3. This in-

dicates that not only did the algorithm struggle to perform well, but it also failed to

identify the correct number of clusters within the dataset. The NMI and ARI scores

of the three experiments in Table 4.2 are more or less zero. Moreover, the accuracy

remains relatively constant across all experiments, with a value of approximately

0.38. This behaviour is also reflected in the validation results, further supporting the

observation.

In contrast, the results in Table 4.3 show an improvement in the performance of the

clustering algorithm when using the embeddings trained from scratch on the dataset.

In all three settings, we observed much higher NMI, ARI, and accuracy values than

in the previous table. The NMI and ARI scores of the three experiments in 4.3 have

reached an average value of 0.28 and 0.24. The highest NMI score observed was 0.34,

which is in experiment 2. Similarly, the accuracy score improved when training from

scratch, with the highest score of 0.57 achieved in experiment 1. All the experiments

ended up with K values of around 3, which is still less than the original K value

of 5. In particular, experiment 3 in Table 4.3 shows the best performance, with

an NMI value of 0.34, an ARI value of 0.29, and an accuracy value of 0.57. These

values are much higher than the corresponding values in Table 4.2. It is also observed

that as the latent dimensions increase, the model performance slightly improves up

to 64 dimensions. However, when the latent dimensions reach 128, the performance

experiences a decline. This trend is more evident when examining the NMI and

ARI values, which exhibit approximately a 45% drop in percentage. The accuracy

31

demonstrates a similar behavior. The final K value showed only a slight variations

in these experiments. Likewise, the measures in the validation data, as presented in

Table 4.3, exhibit a comparable pattern.

Overall, these results show that the MoCo embeddings trained on the given fish

dataset were better at grouping the fish images in the Fish4Knowledge dataset than

the MoCo embeddings pre-trained on ImageNet.

4.4 DeepDPM results using MoCo after enhancement

Comparing the two tables, we can observe that the clustering performance is better in

Table 4.5 than in Table 4.4, as the NMI, ARI, and accuracy values are higher in Table

4.5. The highest average NMI value in Table 4.4 is 0.046, while in Table 4.5, it is 0.35.

The highest average ARI value in Table 4.4 is 0.025, while in Table 4.5, it is 0.31.

The highest average accuracy value in Table 4.4 is 0.38, while in Table 4.5, it is 0.60.

The NMI, ARI, and Acc values in Table 4.5 are higher than those in Table 4.4 across

all experiments. Furthermore, the final number of clusters consistently approximates

3 in Table 4.5, which implies that the clustering algorithm can identify better clusters

compared to Table 4.4, where the final number of clusters varies between 2 and 4.

Based on these metrics, Table 4.5 outperforms Table 4.4 on both the training and

validation datasets.

A similar pattern was observed in Table 4.5, where the NMI and ARI values

experienced a slight increase as the latent dimensions expanded and subsequently

decreased when the dimensions reached 128. However, the accuracy did not follow

this trend; it continued to increase as the dimensions grew. This observation suggests

that the latent dimensions indeed had an impact on the clustering performance, as

previously noted before the enhancement was made.

In conclusion, Table 4.5 performs better than Table 4.4 regarding NMI, ARI,

accuracy and K; it indicates that the MoCo embeddings trained from scratch are

better than the MoCo models trained with ImageNet weights.

32

Table 4.4: Results of MoCo model pretrained on ImageNet after enhancement

Train

Exp No NMI ARI Acc Final K Org K L-Dim Epochs

1 0.046± 0.019 0.02± 0.015 0.33± 0.013 2± 0 5 32 400
2 0.025± 0.016 0.018± 0.001 0.38± 0.012 1.66± 0.57 5 64 400
3 0.035± 0.01 0.025± 0.021 0.38± 0.003 2± 1 5 128 400

Validation

Exp No NMI ARI Acc Final K Org K L-Dim Epochs

1 0.040± 0.007 0.019± 0.025 0.32± 0.0291 2± 0 5 32 400
2 0.019± 0.001 0.019± 0.002 0.38± 0.009 1.66± 0.57 5 64 400
3 0.034± 0.037 0.025± 0.021 0.37± 0.01 2± 1 5 128 400

Table 4.5: Results of MoCo model trained from scratch on fish4k dataset after en-
hancement

Train

Exp No NMI ARI Acc Final K Org K L-Dim Epochs

1 0.29± 0.024 0.26± 0.062 0.60± 0.028 2.33± 0.57 5 32 400
2 0.35± 0.093 0.31± 0.053 0.57± 0.035 3.66± 0.57 5 64 400
3 0.21± 0.082 0.15± 0.039 0.51± 0.033 3.33± 0.57 5 128 400

Validation

Exp No NMI ARI Acc Final K Org K L-Dim Epochs

1 0.32± 0.049 0.26± 0.009 0.60± 0.013 2.33± 0.57 5 32 400
2 0.34± 0.034 0.30± 0.097 0.57± 0.021 3.66± 0.57 5 64 400
3 0.21± 0.004 0.19± 0.078 0.51± 0.046 3.33± 0.57 5 128 400

4.5 Comparing results before and after Real-ESRGAN enhancement

Tables 4.2, 4.3, 4.4, and 4.5 illustrate the performance contrast in terms of image

enhancement between a MoCo model pre-trained on ImageNet (Tables 4.2 and 4.4)

and a MoCo model trained from scratch on the fish4k dataset (Tables 4.3 and 4.5).

While comparing Tables 4.2 and 4.4, we can observe that pre-training on ImageNet

results in lower performance before the image enhancement. The NMI values in the

training and validation experiments range between 0.0 and 0.02, the ARI between

0.0 and 0.02, and the accuracy between 0.37 and 0.38. After performing the image

enhancement, we can notice the performance improvement (Table 4.4) for all three

parameters. The NRI, ARI, and accuracy increased to a range between 0.025 and

0.046, 0.018 and 0.025, and 0.33 and 0.38, respectively. The number of clusters

obtained on the dataset became consistent after enhancement.

Similarly, comparing tables 4.3 and 4.5, we can observe that the NMI, ARI, and

accuracy for the training and validation datasets before enhancement ranged between

33

0.19 and 0.34, 0.15 and 0.29, and 0.50 and 0.57, respectively, resulting in 3 clusters

in all the cases. In contrast, the results after enhancement show better performance.

After enhancement, the NMI values range from 0.21 to 0.35, the ARI values range

from 0.15 to 0.31, and the accuracy values range from 0.51 to 0.60, with the final

number of clusters reaching up to 4 in some cases (Table 4.5).

When comparing the K values to earlier experiments without enhancement, they

are slightly higher, indicating that both MoCo pretraining from scratch and image

enhancement have an influence on the choice of K.

Overall upon comparing the results from these tables to those from previous tables

before enhancement, it is seen that Real-ESRGAN image enhancement has a positive

impact on clustering performance. And the MoCo model trained from scratch on the

fish4k dataset results in better clustering performance than pre-training on a larger,

more general dataset such as ImageNet.

4.6 Use of ViT-MAE embeddings

Despite the picture enhancements, the clustering model still did not perform well

enough to be used to automatically cluster fish images for labeling. To address this,

we decided to try a new method of picture embedding extraction. After attempting

a few various embeddings and realising that MoCo, as utilised by the developers of

DeepDPM, was not well suited to low resolution fish images, we settled on utilising

the embeddings acquired using ViT-MAE.

4.7 DeepDPM results before and after enhancement with ViT-MAE

The below tables, Table 4.6 and Table 4.7 present the results of DeepDPM clustering

experiments conducted with ViT-MAE embeddings using different settings before and

after applying the Real-ESRGAN image enhancement technique.

The experiments were performed on the same five classes of the Fish4Knowledge

dataset for consistency, and the models were evaluated based on NMI, ARI, accuracy,

and K value. Although Experiment 2, which used a latent dimension of 64 for 400

epochs, had the best overall performance in terms of NMI, ARI, and K values (0.64,

0.63, and 4 in Table 4.6, and 0.75, 0.74, and 4 in Table 4.7), Table 4.7 generally had

34

higher NMI and ARI values for other experiments. Additionally, Table 4.7 had higher

accuracy values for most experiments, with the highest accuracy being in Experiment

3 at 0.84 and 0.84 in Experiment 5 in Tables 4.6 and 4.7, respectively. The accuracy

values showed a slight increase in most of the cases except in experiments 2 and 3.

Regarding the final K value, Table 4.6 and Table 4.7 have a similar range of values

(3-5) for most of the experiments, and there is little difference in the average value of

the final K between the two tables. However, the number of matches between the final

K and the original K value, which is the number of clusters in the original dataset,

is higher in Table 4.7 than in Table 4.6 for all experiments, indicating that Table 4.7

can match the original K value, thus producing better clustering results than Table

4.6.

Table 4.6: Results obtained using ViT-MAE embeddings before image enhancement
under different settings

Train

Exp No NMI ARI Acc Final K Org K L-Dim Epochs

1 0.47± 0.023 0.42± 0.003 0.69± 0.006 4± 0 5 64 200
2 0.64± 0.069 0.63± 0.089 0.79± 0.007 4.33± 1.15 5 64 400
3 0.63± 0.009 0.61± 0.028 0.84± 0.001 3± 0 5 64 800
4 0.59± 0.052 0.57± 0.062 0.78± 0.025 4.6± 1.15 5 32 400
5 0.60± 0.065 0.55± 0.050 0.76± 0.065 3.66± 0.57 5 128 400

Validation

Exp No NMI ARI Acc Final K Org K L-Dim Epochs

1 0.45± 0.048 0.41± 0.016 0.68± 0.011 4± 0 5 64 200
2 0.63± 0.068 0.62± 0.089 0.80± 0.004 4.33± 1.15 5 64 400
3 0.62± 0.001 0.61± 0.002 0.83± 0.003 3± 0 5 64 800
4 0.58± 0.048 0.56± 0.063 0.78± 0.027 4.6± 1.15 5 32 400
5 0.59± 0.052 0.54± 0.044 0.76± 0.063 3.66± 0.57 5 128 400

The results shows that the performance in Table 4.7 is generally better than that

in Table 4.6 in terms of NMI, ARI majorly and also accuracy. The higher original K

values in Table 4.7 also suggest that it produces more precise clustering results than

Table 4.6. This means that the models in Table 4.7 were better at classifying the fish

images into their respective species.

Experiments 1, 2, and 3 have the same latent dimension (64) but different epoch

counts (200, 400, and 800, respectively). The clustering performance (NMI, ARI, and

Acc) typically improves as the number of epochs grows, but Experiment 2 resulted in

the most outstanding performance in both tables. It achieved the highest performance

35

Table 4.7: Results obtained using ViT-MAE embeddings after image enhancement
under different settings

Train

Exp No NMI ARI Acc Final K Org K L-Dim Epochs

1 0.64± 0.085 0.62± 0.117 0.73± 0.087 6± 1 5 64 200
2 0.75± 0.011 0.74± 0.006 0.83± 0.006 4.66± 0.57 5 64 400
3 0.70± 0.005 0.68± 0.012 0.79± 0.009 4± 0 5 64 800
4 0.72± 0.027 0.72± 0.030 0.82± 0.019 4± 1 5 32 400
5 0.67± 0.004 0.61± 0.005 0.84± 0.002 3± 0 5 128 400

Validation

Exp No NMI ARI Acc Final K Org K L-Dim Epochs

1 0.64± 0.084 0.60± 0.154 0.69± 0.081 6± 1 5 64 200
2 0.74± 0.009 0.74± 0.006 0.83± 0.005 4.66± 0.57 5 64 400
3 0.69± 0.002 0.68± 0.004 0.79± 0.008 4± 0 5 64 800
4 0.69± 0.011 0.71± 0.029 0.81± 0.024 4± 1 5 32 400
5 0.66± 0.002 0.60± 0.003 0.84± 0.001 3± 0 5 128 400

metrics (NMI, ARI), and the accuracy is almost close to the best one for both train and

validation sets, with NMI at 0.64 and 0.75, ARI at 0.63 and 0.74, and Acc at 0.79 and

0.83, respectively. This shows that if the latent dimension is large enough, increasing

the number of epochs makes the model learn better up to a certain threshold, after

which it may stop improving or even worsen. In both Tables 4.6 and 4.7, as the

number of epochs and latent dimensions increased, the performance of the clustering

model in terms of ARI and NMI initially improved but declined when the latent

dimensions reached 128. However, this observation does not hold for accuracy, as

Table 4.6 exhibited the same trend as discussed previously, whereas, in Table 4.7,

accuracy increased alongside the latent dimensions.

Considering Experiments 4 and 5, we observe that they each have 400 epochs

but different latent dimensions (32 and 128, respectively). The performance of Ex-

periment 4 is somewhat similar, if not better, than that of Experiment 5 in all the

metrics except for the K value, where Experiment 4 performed better in Table 4.6,

resulting in number of clusters close to 4 (Final K = 4) compared to the original

number (Original K = 5). While in Table 4.7, Experiment 4 had a better perfor-

mance than Experiment 5, the only exception being in terms of accuracy for both

training and validation sets. This suggests that the configuration was not as effective

in clustering and classification tasks. This shows that the latent dimension and no

of epochs act as a tunable hypermeter specific to the dataset enabling the model to

36

capture complicated data patterns, resulting in enhanced clustering performance.

In our case, with a latent dimension of 64 and 400 epochs, Experiment 2 had the

best clustering performance overall. This combination of latent dimension and epochs

gives the ideal balance between the model’s capacity to learn complicated patterns,

training duration, and convergence.

Upon analyzing the training and validation results for the five experiments, with

three replicates each, we did not observe indications of overfitting or underfitting

in most cases. In most experiments, the training and validation metrics are close,

indicating a good balance and suggesting that our results do not suffer from overfitting

or underfitting. The only exception is in the case of Experiment 1 where the validation

accuracy value was lower than the train (Table 4.7). Experiment 1 demonstrates

lower performance metrics, especially when compared to other experiments. This

could be attributed to underfitting, possibly caused by an inadequate number of

training epochs. Experiments 2, 3, and 4 exhibits relatively stable performance across

training and validation sets, with only minor differences in the metrics. This suggests

that these models are better at generalizing to unseen data and have achieved a

better balance between overfitting and underfitting. Lastly, Experiment 5 has a

lower NMI and ARI on both the training and validation sets compared to other

experiments, suggesting that the model may be underfitting the data. However,

the overall performance is still good, which indicates that overfitting is not a major

problem in these models.

In conclusion, a suitable latent dimension and a number of epochs are required

for effective clustering performance. The right latent size typically enables the model

to capture and learn complex patterns in the data, while the right number of epochs

allows the model to learn effectively without overfitting or underfitting. Finding the

best combination of these two factors is key to achieving the best clustering per-

formance. Altogether, the improved results indicate that the embeddings generated

using ViT-MAE are of higher quality and more suitable for clustering fish images

from the Fish4Knowledge dataset, independent of the image enhancement methods

used compared to the earlier MoCo embeddings. DeepDPM gave variable results with

each run, so it may be necessary to run the clustering algorithm multiple times to

obtain valuable clusters under each setting. In our experiments we ran the DeepDPM

37

model for three times for every setting and reported the average result along with its

standard deviation.

4.8 Visualizing the clusters

Figure 4.9 presents a visualization tool that allows for the examination of clustered

data about various fish species. Upon analysis of the clustered outputs, our model

did not find the correct clusters; however, it was capable enough to identify the major

fish species in the dataset to a certain extent. The three major clusters correspond

closely to the three most common fish in this dataset. The model primarily struggled

to cluster fish species with lower frequencies accurately. The two least common fish

were grouped together with Chromis chrysura in the fourth cluster.

A more comprehensive understanding of these findings can be gleaned from the

stacked bar graph in Figure 4.14, which displays the count of each fish species within

the respective clusters. This visualization is derived from the most favorable experi-

ment we conducted, which utilized ViT-MAE embeddings of the ESRGAN-enhanced

dataset with a latent dimension of 64 and a training duration of 400 epochs.

Cluster 3 is the largest having 859 images, with Chromis chrysura constituting 82%

of them. The remaining proportions are comprised of Myripristis kuntee (8%), Hemi-

gymnus fasciatus (5%), Amphiprion clarkii (3%), and Chaetodon lunulatus (1%).

Cluster 2 contains the least number of images, totaling 22. It is predominantly com-

posed of Chaetodon lunulatus (14 images), followed by Amphiprion clarkii (5 images),

Hemigymnus fasciatus (2 images), and a minor presence of Chromis chrysura (1 im-

age). Cluster 0 is nearly exclusively Chaetodon lunulatus (99.79%), with an insignifi-

cant presence of Chromis chrysura. Cluster 1 primarily consists of Amphiprion clarkii

(98.72%), accompanied by a small percentage of Chaetodon lunulatus and an even

smaller percentage of Hemigymnus fasciatus. Cluster 4 mainly comprises Amphiprion

clarkii (98.02%), with minor proportions of Chaetodon lunulatus and Hemigymnus

fasciatus.

Upon examining the final clustering results, it is important to recognize that

this model should be applied cautiously, as it primarily distinguishes species with

high counts while failing to recognize the rare-group species, which were combined

into single clusters. To address this issue, we hypothesize that the clustering model

38

or other approaches could be further applied to the combined clusters to subdivide

them and identify the rare species. Also, it is worth noting that the clustering results

are influenced by the choice of embeddings, latent dimensions, and number of epochs

utilized in the training

Figure 4.9: Visualization dashboard to view the clusters - Cluster 1

Figure 4.10: Cluster 4 Figure 4.11: Cluster 3

Figure 4.12: Cluster 0 Figure 4.13: Cluster 2

39

Figure 4.14: Fish species count in each cluster

Chapter 5

Conclusion and Future work

5.1 Conclusion

In this analysis, non-parametric and unsupervised clustering algorithm models were

tested on the Fish4Knowledge dataset to see how well they clustered fish images

using different embeddings with and without image enhancement. The goal was

to investigate the potential for unsupervised clustering methods to separate fish by

species and reduce the time needed to label datasets for supervised models. After

reviewing our final outcome on the Fish4Knowledge dataset, it is worth noting that

achieving a close approximation, rather than an exact number of clusters, may be

considered acceptable if the resulting clusters demonstrate strong consistency with

the actual species classification.

The original Fish4Knowledge dataset had low-resolution images from software

that found and tracked fish, which made clustering less accurate. As expected, after

enhancing the images using the Real-ESRGAN deep learning approach, the clustering

results improved slightly, resulting in higher accuracy rates for all three evaluation

metrics (NMI, ARI, and Acc). Our results showed that the initial pre-trained MoCo

model had poor performance. After applying the image enhancement, the perfor-

mance was slightly improved, and the final number of clusters became a bit more

consistent. From our findings, the MoCo model trained from scratch on the fish4k

dataset outperformed the ImageNet pre-trained model in terms of NMI, ARI, and

accuracy. The image improvement on top of it also led to better performance; in the

end, the number of clusters averaged between 3 and 4. In the end, the results of the

study suggest that the embeddings made with ViT-MAE are better suited to grouping

fish images from the Fish4Knowledge dataset. Overall, the combination of ViT-MAE

embeddings with the Real-ESRGAN image enhancement improved the mean values

of NMI, ARI and accuracy values from 58, 55, 77 to 69, 67, 80. Our results suggest it

is possible to achieve good clustering results by enhancing the picture’s quality and

40

41

employing embeddings generated by a suitable self-supervised model. Our study pre-

sented the results by calculating the mean of three separate runs for each experimental

setting and subsequently comparing these values using the standard deviation.

It is important to note that we did not conduct an in-depth statistical analysis

to assess the validity of our findings, which may necessitate further investigation to

confirm the robustness of the results.

In summary, we found that unsupervised clustering models (DeepDPM) [79] could

be a promising alternative to supervised deep learning for classifying fish images. We

also discovered that image enhancement techniques helped improve clustering per-

formance. Additionally, we observed that embeddings from ViT-MAE outperformed

those obtained from MoCo on Fish4Knowledge dataset. Later, we wish to apply our

model on the remaining species of fish4k dataset as well.

Our study demonstrates that unsupervised clustering models hold promise for

accelerating the process of fish species labeling by utilizing the unsupervised clustering

algorithm DeepDPM and enhancing its performance through image improvement

techniques, suitable embeddings, and ideal latent dimensions. These models could

shorten the time needed for human labeling by grouping the bulk of fish species into

discrete groups, making labeling easy. However, more research and validation are

required to prove that these models successfully reduce the burden associated with

manual labeling.

5.2 Limitations and Future work

Our goal with this work was to investigate whether unsupervised clustering methods

could be applied to group fish images into clusters of species without the need for

manual labeling of species. As such, there are several limitations to our results and

many avenues that require further exploration.

The first problem is the lack of enough training data. Deep learning models trained

with a large amount of data can perform more effectively and prevent overfitting. [47].

One alternative to this is to use self-supervised pretraining. We generally observe

that the performance of deep learning models on supervised tasks is improved by

unsupervised pretraining, which leads to improved initialization, regularization, and

feature extraction[33]. DeepDPM paper for instance, uses self-supervised pretraining

42

using models such as MoCo and then performs clustering.

In our particular use case, we observed that the embeddings obtained from pre-

training using the ViT-MAE model were more effective than those obtained from

the MoCo model. Several self-supervised learning approaches have been proposed re-

cently, including I-JEPA [41], which is a non-generative approach for self-supervised

learning from images that predicts the representations of different parts of an im-

age from a single context part. It is based on JEPA, a general framework for self-

supervised learning that captures dependencies between two inputs [63] [61]. In addi-

tion to I-JEPA, other approaches such as BeiTv2, SimMIM, DINO, and MoCo v3 have

also been proposed. BeiTv2 involves masked image modeling with vector-quantized

representations [75], while SimMIM utilizes a ViT encoder with both masked and

non-masked patches as inputs [96]. DINO, which stands for self-distillation with no

labels, is a self-supervised learning approach that predicts the output of a teacher net-

work using a standard cross-entropy loss [14]. Meanwhile, MoCo v3 has a structure

similar to SimCLR but differs in its momentum encoder [18].

Another problem that arises is due to the absence of high-resolution images in

the Fish4Knowledge dataset because fish are usually a small part of the total cam-

era image. It is well known that the quality of images has a crucial influence on

the performance of deep learning models. It can affect the models’ ability to gen-

eralize and maintain robustness. The presence of low-quality images in the training

dataset may introduce biases or outliers, which can hinder the model’s performance

on new, unseen data. This phenomenon was observed in the results of the clustering

analysis conducted on the Fish4Knowledge dataset, where images with poor quality

contained less informative data and were more challenging to classify using unsuper-

vised learning. Factors such as noise or blur in images can obscure important object

features, making it difficult for deep-learning models to detect or classify them [89].

It is important to note that low-quality images may not accurately represent the true

distribution of real-world data, causing the models to perform poorly on unseen data.

Examples of factors that can cause image degradation include compression artifacts

or low resolution, which can alter the shapes or colors of objects and make them

appear different from what the model learned during training [28] [77]. Although

ESRGAN was utilized to enhance the quality of fish images in the Fish4Knowledge

43

dataset, there are numerous other image enhancement techniques that can also be

employed. One such technique is Swin2SR, an improved version of SwinIR, which

incorporates Swin Transformer v2 layers to address issues such as training instabil-

ity, resolution gaps between pretraining and fine-tuning, and data requirements [67].

Swin2SR has demonstrated state-of-the-art performance in classical, lightweight, and

real-world image super-resolution tasks [67]. SwinIR, on the other hand, is an image

restoration tool based on the Swin Transformer architecture, which comprises shallow

and deep feature extraction modules and a high-quality image reconstruction module

[66].

In some of our experiments we successfully obtained five clusters, which matched

the original number of clusters in the dataset. However, these clusters grouped infre-

quent species together and were not fully coherent enough to effectively classify the

fish according to their respective species. It is essential to note that these results, al-

though promising, have been obtained from a limited dataset. Also, the performance

of DeepDPM exhibited a slight variability across different runs; this variability, al-

though it is less, represents a limitation of the DeepDPM method, as it may require

knowing the suitable configuration so that the data can be clustered easily. After

looking at the clusters, it is essential to consider that there may be instances where it

needs to be clarified whether the clustering was performed based on specific attributes

such as color, shape, or size. So, to validate the effectiveness of the proposed cluster-

ing model in real-world applications, further testing on more extensive and diverse

datasets is necessary. Also, it is necessary to check how well the model works on new,

unlabeled datasets to see if the clusters it makes help cut down on labeling time and

classify fish by species.

In conclusion, the clustering results from this work are promising and suggest that

unsupervised learning models can be used to classify fish by species, which will cut

down on the time needed to label them. Nevertheless, it is crucial to continue to refine

the models, and experiment with different enhancement techniques and embeddings,

and evaluate their performance on a broader range of datasets to fully understand

their potential impact on the fish species labeling process.

Unsupervised learning techniques may potentially aid in accelerating the process

of labeling fish species and, to some extent, assist in identifying rare or previously

44

unobserved species in new datasets. Since these methods do not use already-made la-

bels, they can find unique patterns in outlier species and group them reasonably well.

This capability facilitates the efforts of researchers and professionals in identifying

and tracking uncommon species that might otherwise be overlooked or misidentified

through traditional supervised learning techniques. DeepDPM clustering has the po-

tential to assist in the identification of uncommon fish; however, the current results

suggest that further refinement is required to distinguish rarer species when dealing

with highly unbalanced data properly. By solving this issue, unsupervised learn-

ing approaches can become even more important discovery and monitoring tools for

elusive or uncommon fish species.

Bibliography

[1] Unsupervised deep embedding for clustering analysis, 2019.

[2] Efficient and precise single-cell reference atlas mapping with symphony. 2020.

[3] 2022. [online]. available: https://nlai.blue/the-importance-of-monitoring-
marine-ecosystems-for-sustainable-ocean-resource-use/. [accessed: 08- jul-
2022]., 2022.

[4] Fish recog ”fish recognition ground-truth data”,
homepages.inf.ed.ac.uk, 2022. [online]. available:
https://homepages.inf.ed.ac.uk/rbf/fish4knowledge/groundtruth/recog/.
[accessed: 09- jul- 2022]., 2022.

[5] Pixel intensity - an overview. https://www.sciencedirect.com/topics/

computer-science/pixel-intensity, 2022.

[6] What does intensity mean in image processing? https://sage-answer.com/

what-does-intensity-mean-in-image-processing/, 2022.

[7] Mutasem K Alsmadi and Ibrahim Almarashdeh. A survey on fish classifica-
tion techniques. Journal of King Saud University-Computer and Information
Sciences, 2020.

[8] Charles E Antoniak. Mixtures of dirichlet processes with applications to
bayesian nonparametric problems. The Annals of Statistics, pages 1152–1174,
1974.

[9] Kameswari Devi Ayyagari, Christopher Whidden, Corey Morris, and Joshua
Barnes. Towards low cost automated monitoring of life below water to de-
risk ocean-based carbon dioxide removal and clean power. In NeurIPS 2022
Workshop: Tackling Climate Change with Machine Learning, 2022.

[10] Atılım Güneş Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey.
The Journal of Machine Learning Research, 18(1):5595–5637, 2018.

[11] Lawrence R Beerkircher, Freddy Arocha, Alex Barse, Eric Prince, Victor Re-
strepo, Joseph Serafy, and Mahmood Shivji. Effects of species misidentification
on population assessment of overfished white marlin tetrapturus albidus and
roundscale spearfish t. georgii. Endangered Species Research, 9:81–90, 2009.

[12] Jacob Bergman, Kevin Bierlich, Robert Schick, and David Johnston. Improved
accuracy for automated counting of a fish in video using deep learning. Frontiers
in Marine Science, 8:658135, 2021.

45

https://www.sciencedirect.com/topics/computer-science/pixel-intensity
https://www.sciencedirect.com/topics/computer-science/pixel-intensity
https://sage-answer.com/what-does-intensity-mean-in-image-processing/
https://sage-answer.com/what-does-intensity-mean-in-image-processing/

46

[13] BGU-CS-VIL. Deepdpm. https://github.com/BGU-CS-VIL/DeepDPM, 2022.

[14] Mathilde Caron, Hugo Touvron, Ishan Misra, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers.
arXiv preprint arXiv:2104.14294, 2021.

[15] Jason Chang and John W Fisher III. Parallel sampling of dp mixture models
using sub-cluster splits. Advances in Neural Information Processing Systems,
26, 2013.

[16] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-
ple framework for contrastive learning of visual representations. arXiv preprint
arXiv:2002.05709, 2020.

[17] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines
with momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[18] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training
self-supervised vision transformers. arXiv preprint arXiv:2104.02057, 2021.

[19] Yu-Cheng Chen, Chih-Chung Chen, and Chih-Hung Lin. An automated fish
species classification system using improved alexnet and transfer learning. In
2017 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-
TW), pages 1–2. IEEE, 2017.

[20] Yunpeng Chen, Xiaohang Zhan, Xinyu Gong, Siyuan Qiao, and Changshui
Zhang. Unsupervised learning of visual representations by solving jigsaw puz-
zles. CoRR, abs/2106.05232, 2021.

[21] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer net-
works in unsupervised feature learning. In Proceedings of the fourteenth in-
ternational conference on artificial intelligence and statistics, pages 215–223.
JMLR Workshop and Conference Proceedings, 2011.

[22] Hugo Costa, Giles M Foody, S’ılvia Jim’enez, and Lu’ıs Silva. Impacts of species
misidentification on species distribution modeling with presence-only data. In-
ternational Journal of Geo-Information, 4(4):2496–2518, 2015.

[23] Lopes-Silva Tarćısio de Melo; Silva-Júnior Antônio Carlos; Santos-Silva Ed-
son Nascimento; Pompeu Paulo dos Santos. Evaluation of three methods for
manually counting fish in dam turbines: numerical counting versus intersection
counting versus qualitative counting with a correction factor applied to each
method hydrobiologia. Hydrobiologia, 848(18):4157–4168, 2021.

[24] MP Dekar, LR Brown, JA Hobbs, and et al. Fish misidentification and potential
implications to monitoring within the san francisco estuary, california. Fisheries
Research, 9(2):467–474, 2018.

https://github.com/BGU-CS-VIL/DeepDPM

47

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
geNet: A Large-Scale Hierarchical Image Database, 2009.

[26] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pages 248–255, 2009.

[27] Li Deng. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[28] Samuel F Dodge and Lina J Karam. Understanding how image quality affects
deep neural networks. arXiv preprint arXiv:1604.04004, 2016.

[29] Alves-Pereira Alessandra; Silva-Júnior Antônio Carlos; Santos-Silva Edson
Nascimento; Pompeu Paulo dos Santos. Automated detection, classification
and counting of fish in fish passes using deep learning models and computer
vision techniques. Frontiers in Marine Science, 8:823173, 2021.

[30] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[31] Salim Dridi. Supervised learning - a systematic literature review. Cornell
University, 2021.

[32] Salim Dridi. Unsupervised learning - a systematic literature review. Research-
Gate, 2022.

[33] D. Erhan, Y. Bengio, A. Courville, P. Manzagol, P. Vincent, and S. Bengio.
Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11, 2010.

[34] Hugging Face. Transformers. https://github.com/huggingface/

transformers, 2022.

[35] Thomas S Ferguson. A bayesian analysis of some nonparametric problems. The
Annals of Statistics, pages 209–230, 1973.

[36] Mohamad Mostafa M Fouad, Hossam M Zawbaa, Tarek Gaber, Vaclav Snasel,
and Aboul Ella Hassanien. A fish detection approach based on bat algorithm.
In International Conference on Advanced Intelligent Systems and Informatics,
pages 273–283. Springer, 2016.

[37] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc
Proesmans, and Luc Van Gool. Scan: Learning to classify images without
labels, 2020.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

48

[38] Jonatan Garc’ıa-Guti’errez, Ana Garc’ıa-Serrano, Bel’en Ru’ız-Mezcua, and
Fernando Mart’ınez-Santiago. Evaluation metrics for unsupervised learning al-
gorithms. arXiv preprint arXiv:1905.05667, 2019.

[39] Eva Garcia-Vazquez, Gonzalo Machado-Schiaffino, Daniel Campo, and Francis
Juanes. Species misidentification in mixed hake fisheries may lead to overex-
ploitation and population bottlenecks. Fisheries Research, 114:52–55, 2012.

[40] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial networks. arXiv preprint arXiv:1406.2661, 2014.

[41] Priya Goyal, Mathilde Caron, Benjamin Lefaudeux, and Yann LeCun. Self-
supervised learning from images with a joint embedding predictive architecture,
2022.

[42] Hayit Greenspan and Tanveer Syeda-Mahmood. Parametric and non-
parametric clustering for segmentation. In Biomedical Image Processing, pages
227–250. Springer, 2010.

[43] J S Griffith. Estimation of the age-frequency distribution of stream-dwelling
trout by underwater observation. The Progressive Fish-Culturist, 43(1):51–53,
1981.

[44] Douglas R Hatch, Mark Schwartzberg, and Peter R Mundy. Estimation of
pacific salmon escapement with a time-lapse video recording technique. North
American Journal of Fisheries Management, 14(3):626–635, 1994.

[45] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9729–9738, 2020.

[46] Tong He, Bo Chen, Lei Wang, Zhiqiang Zhang, and Liang Zhang. Masked
autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377,
2021.

[47] Ren S. Sun J. He K., Zhang X. Deep residual learning for image recognition.
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[48] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality
of data with neural networks. science, 313(5786):504–507, 2006.

[49] Geoffrey E Hinton and Richard S Zemel. Autoencoders, minimum description
length and helmholtz free energy. In Advances in Neural Information Processing
Systems, 1993.

49

[50] J. J. Hull. A database for handwritten text recognition research. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 16(5):550–554, 1994.

[51] Abdelhameed Ibrahim, Ali Ahmed, Sherif Hussein, and Aboul Ella Hassanien.
Fish image segmentation using salp swarm algorithm. In Aboul Ella Hassanien,
Mohamed F. Tolba, Mohamed Elhoseny, and Mohamed Mostafa, editors, The
International Conference on Advanced Machine Learning Technologies and Ap-
plications (AMLTA2018), pages 42–51, Cham, 2018. Springer International
Publishing.

[52] S. S. Kadam and S. S. Kulkarni. Unsupervised learning - a systematic literature
review. International Journal of Computer Applications, 182(30):1–6, 2021.

[53] Vishnu Kandimalla, Matt Richard, Frank Smith, Jean Quirion, Luis Torgo, and
Chris Whidden. Automated detection, classification and counting of fish in fish
passages with deep learning. Frontiers in Marine Science, page 2049, 2022.

[54] Harpreet Kaur. How to evaluate unsupervised learning models. Towards
Data Science Blog Post (https://towardsdatascience.com/how-to-evaluate-
unsupervised-learning-models-3aa85bd98aa2), 2020.

[55] Asifullah Khan, Aisha Khanum, and Abdul Rauf Baig. Automatic fish species
classification using deep convolutional neural networks: a comprehensive study.
Wireless Personal Communications, 114(1):579–595, 2020.

[56] Diederik P Kingma and Max Welling. An introduction to variational autoen-
coders. arXiv preprint arXiv:1906.02691, 2019.

[57] Joseph E Kirsch, Robert Feeney, Anne Goodbla, Catherine Hart, Zachary J
Jackson, Andrea Schreier, and Ryan Smith. The first record of large-scale loach
occurrence in the united states. Journal of Fish and Wildlife Management,
9:246–254, 2018.

[58] Kristian Muri Knausg̊ard, Arne Wiklund, Tonje Knutsen Sørdalen, Kim Tal-
laksen Halvorsen, Alf Ring Kleiven, Lei Jiao, and Morten Goodwin. Temperate
fish detection and classification: a deep learning based approach. Applied In-
telligence, 52(6):6988–7001, 2022.

[59] Huei-Meei Ko, Wei-Jen Wang, Tai-Sheng Chiu, Meng-Hsien Lee, Ming-Yih Leu,
Kuan-Ting Chang, Wei-Jen Chen, and Kwang-Tsao Shao. Evaluating the accu-
racy of morphological identification of larval fishes by applying dna barcoding.
PLoS ONE, 8(1):e53451, 2013.

[60] Sotiris B Kotsiantis. Supervised machine learning: A review of classification
techniques. Informatica (Slovenia), 31(3):249–268, 2007.

[61] Yann LeCun. A vision to make ai systems learn and reason like humans, 2019.

50

[62] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[63] Yann LeCun, Ben Dickson, Ben Dickson, Ben Dickson, Ben Dickson, Ben Dick-
son, Ben Dickson, Ben Dickson, Ben Dickson, Ben Dickson, and Ben Dick-
son. Meta's yann lecun on his vision for human-level ai: A conversation with
techtalks founder ben dickson (part ii). TechTalks, 3(1):1–18, March 2022.

[64] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew P Aitken, Alykhan Tejani, Johannes Totz, and
Zehan Wang. Photo-realistic single image super-resolution using a generative
adversarial network. arXiv preprint arXiv:1609.04802, 2016.

[65] Yuxin Li, Jiaqi Liang, Zhiyong Zhang, and Xuefeng Wang. Exploring and
comparing unsupervised clustering algorithms. Journal of Physics: Conference
Series, 1668(3):032012, 2020.

[66] Jingyun Liang, Jiezhang Cao, Huajun Sun, Xiaodong Xu, Zhengjun Zhang,
and Liqing Zhang. Swinir: Image restoration using swin transformer. arXiv
preprint arXiv:2108.10257, 2021.

[67] Jingyun Liang, Jiezhang Cao, Huajun Sun, Xiaodong Xu, Zhengjun Zhang,
and Liqing Zhang. Swin2sr: Swinv2 transformer for compressed image super-
resolution. arXiv preprint arXiv:2209.11345, 2022.

[68] Lightly. Lightly. https://docs.lightly.ai/self-supervised-learning/

examples/moco.html, 2023.

[69] Peter B Marko, Shing C Lee, Aaron M Rice, John M Gramling, Thomas M
Fitzhenry, Justin S McAlister, Glenn R Harper, and Amy L Moran. Mislabelling
of a depleted reef fish. Nature, 430(6996):309–310, 2004.

[70] Brett T McClintock, Larissa L Bailey, Kenneth H Pollock, and Theodore R
Simons. Unmodeled observation error induces bias when inferring patterns and
dynamics of species occurrence via aural detections. Ecology, 91(8):2446–2454,
2010.

[71] Leland McInnes and John Healy. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[72] Jessica L Metcalf, Victoria L Pritchard, Sarah M Silvestri, Jill B Jenkins, Jef-
frey SWood, David E Cowley, R Paul Evans, Dennis K Shiozawa, and Andrew P
Martin. Across the great divide: genetic forensics reveals misidentification of
endangered cutthroat trout populations. Molecular Ecology, 16(21):4445–4454,
2007.

https://docs.lightly.ai/self-supervised-learning/examples/moco.html
https://docs.lightly.ai/self-supervised-learning/examples/moco.html

51

[73] Jini Mol and Albin Jose. Fish species classification using optimized deep learn-
ing model. International Journal of Advanced Computer Science and Applica-
tions, 13(9):798–804, 2021.

[74] Y Nagashima and T Ishimatsu. A morphological approach to fish discrimi-
nation. In IAPR Workshop on Machine Vision Applications, pages 306–309,
1998.

[75] Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye, and Furu Wei. Beit v2:
Masked image modeling with vector-quantized visual tokenizers. arXiv preprint
arXiv:2208.06366, 2022.

[76] James T Peterson and Craig Paukert. Data conversion. In Standard Sampling
Methods for North American Freshwater Fishes, pages 195–216. American Fish-
eries Society, 2009.

[77] Hong Mostofi Yasamin Sen Pradeep Prashnani, Ekta Cai. Deeper image quality
transfer: Training low-memory neural networks for blind image quality assess-
ment. arXiv preprint arXiv:1808.05577, 2018.

[78] Freitas M.H.G Rodrigues, M.T.A. and F.L.C Pádua. Evaluating cluster detec-
tion algorithms and feature extraction techniques in automatic classification of
fish species. Pattern Analysis and Applications, 2014.

[79] Meitar Ronen, Shahaf E Finder, and Oren Freifeld. Deepdpm: Deep clustering
with an unknown number of clusters. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 9861–9870, 2022.

[80] Shoffan Saifullah. K-means and morphological approach on image segmentation
for fish detection. In 2022 19th International Conference on Electrical Engineer-
ing/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), pages 1–4, 2022.

[81] Alzayat Saleh, Marcus Sheaves, and Mostafa Rahimi Azghadi. Computer vision
and deep learning for fish classification in underwater habitats: A survey. arXiv
preprint arXiv:2203.06951, 2022.

[82] Sarika. Underwater fish species recognition using deep learning techniques. In
2019 6th International Conference on Signal Processing and Integrated Networks
(SPIN), pages 7–8. IEEE, 2019.

[83] Daniel J Schill and James A Lamansky, Jr. The ability of southwest idaho
anglers to identify five species of trout. Idaho Fish and Game Report No. 00-
12, 1999. see Supplemental Material, Reference S3.

[84] Fisheries Inventory Section. Fish collection methods and standards: Version4
[pdf file], 1998.

52

[85] Faisal Shafait, Ajmal Mian, Mark Shortis, Bernard Ghanem, Phil F Culver-
house, Duane Edgington, Danelle Cline, Mehdi Ravanbakhsh, James Seager,
and Euan S Harvey. Fish identification from videos captured in uncontrolled
underwater environments. ICES Journal of Marine Science, 73(10):2737–2746,
2016.

[86] Concetto Spampinato, Daniela Giordano, Rosario Di Salvo, Yun-Heh Jessica
Chen-Burger, Robert B Fisher, and Gayathri Nadarajan. Automatic fish clas-
sification for underwater species behavior understanding. In Proceedings of the
first ACM international workshop on Analysis and retrieval of tracked events
and motion in imagery streams, pages 45–50. ACM, 2010.

[87] Frank Storbeck and Berent Daan. Fish species recognition using computer
vision and a neural network. Fisheries Research, 51(1):11–15, 2001.

[88] Y. Sun and X. Luo. Algorithm of adaptive fast clustering for fish swarm color
image segmentation. In 2019 IEEE 4th International Conference on Cloud
Computing and Big Data Analysis (ICCCBDA), 2019.

[89] Hongyi Tang, Neel Joshi, and Ashish Kapoor. Deep learning network for blind
image quality assessment. In 2014 IEEE International Conference on Image
Processing (ICIP), pages 377–381. IEEE, 2014.

[90] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc
Proesmans, and Luc Van Gool. Scan: Learning to classify images without
labels. In European conference on computer vision, pages 268–285. Springer,
2020.

[91] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017.

[92] Xintao Wang. Real-esrgan. https://github.com/xinntao/Real-ESRGAN,
2022.

[93] Xintao Wang, Liangbin Xie, Kaiyang Yu, Chao Dong, and Chen Change Loy.
Real-esrgan: Training real-world blind super-resolution with pure synthetic
data. arXiv preprint arXiv:2107.10833, 2021.

[94] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
and Chen Change Loy. Esrgan: Enhanced super-resolution generative adver-
sarial networks. arXiv preprint arXiv:1809.00219, 2018.

[95] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a
novel image dataset for benchmarking machine learning algorithms,
2017. cite arxiv:1708.07747Comment: Dataset is freely available at
https://github.com/zalandoresearch/fashion-mnist Benchmark is available at
http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/.

https://github.com/xinntao/Real-ESRGAN

53

[96] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao,
Qi Dai, and Han Hu. Simmim: A simple framework for masked image modeling.
arXiv preprint arXiv:2111.09886, 2021.

[97] Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong. Towards k-
means-friendly spaces: Simultaneous deep learning and clustering. In Pro-
ceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 3861–3870. JMLR. org, 2017.

[98] Hong Yao, Qingling Duan, Daoliang Li, and Jianping Wang. An improved
k-means clustering algorithm for fish image segmentation. Mathematical and
Computer Modelling, 58(3):790–798, 2013. Computer and Computing Tech-
nologies in Agriculture 2011 and Computer and Computing Technologies in
Agriculture 2012.

[99] Yifan Zhang, Xiang Li, Yijun Wang, and Xiang Zhang. Deep clustering: A
comprehensive survey. arXiv preprint arXiv:2210.04142, 2022.

[100] Tingting Zhao, Zifeng Wang, Aria Masoomi, and Jennifer G Dy. Stream-
ing adaptive nonparametric variational autoencoder. arXiv preprint
arXiv:1906.03288, 2019.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Related Work
	Materials and Methods
	Datasets
	Train and Test Sets

	Machine learning models
	DeepDPM
	MoCo
	ViT-MAE
	Real-ESRGAN
	Training

	Metrics
	Evaluating DeepDPM
	Evaluating ESRGAN
	Evaluating ViT-MAE

	Results
	Initial results
	Image Enhancement
	DeepDPM results using MoCo before enhancement
	DeepDPM results using MoCo after enhancement
	Comparing results before and after Real-ESRGAN enhancement
	Use of ViT-MAE embeddings
	DeepDPM results before and after enhancement with ViT-MAE
	Visualizing the clusters

	Conclusion and Future work
	Conclusion
	Limitations and Future work

	Bibliography

