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Abstract

As complex engineering systems have become more prevalent in recent years, the im-

portance of reliability and maintenance has become increasingly apparent. Maintenance

is essential to keep systems functioning properly and ensure that they perform their in-

tended functions. However, limited resources such as budget, time, and repairperson

availability can make it challenging to perform all necessary maintenance. In these sit-

uations, it is crucial to optimally allocate available maintenance resources to carefully

selected components within a system and perform the necessary maintenance actions in

order to ensure satisfactory performance after maintenance. Such a maintenance policy

is called selective maintenance (SM). When tasks are assigned to multiple repairpersons,

potentially with different skill levels and costs, it is referred to as the joint selective main-

tenance and repairperson assignment problem (JSM–RAP).

This dissertation explores four themes dealing with the optimization of JSM–RAP

for large-scale systems under uncertainty. The dissertation starts with the first theme

which provides a critical review of SM literature, identifying challenges and potential

areas for future research. The second theme introduces four column-generation-based

algorithms to effectively address the JSM–RAP for large-scale systems. The third theme

presents a piecewise-linear-approximation-based approach (PLA) and a distributionally

robust chance-constrained program with a Wasserstein ambiguity set (DRC-W) to han-

dle uncertain maintenance duration in large-scale instances of the JSM–RAP. The fourth

theme reformulates the JSM–RAP as a mixed-integer exponential conic program before

a robust optimization framework is used to capture the maintenance quality uncertainty

through non-symmetric budget uncertainty sets allowing the level of decision-maker

conservatism to be controlled.

The proposed JSM–RAP models are applied to several illustrative examples. The re-

sults demonstrate the effectiveness and advantages of the proposed models.
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Chapter 1

Introduction

In today’s fast-paced and highly competitive business environment, maintenance has be-

come a central element for ensuring the efficient and reliable operation of production-

distribution assets. The ability for firms to compete successfully depends on the ability

of production systems and equipment to perform at high levels of quantity and quality.

The increasing demands for improved product quality, reduced throughput time and en-

hanced operating effectiveness within a rapidly changing customer demand environment

continue to require a high level of maintenance performance (Ben-Daya et al., 2009).

Maintenance is defined as the combination of all technical and administrative actions

including supervision actions intended to retain an item in, or restore it to, a state in

which it can perform its required function. This can include activities such as inspection,

cleaning, testing, adjustment, and replacement of worn or defective parts, and the over-

haul or rebuilding of equipment (Saraswat and Yadava, 2008). Coordinating maintenance

activities with production schedules to maintain high performance can be challenging as

maintenance often needs to be done while equipment is not in use, potentially disrupting

production. To address this challenge, many modern systems in manufacturing, produc-

tion, and service industries use alternating sequences of scheduled missions and break

periods for maintenance (Cao et al., 2018a).

During scheduled breaks, maintenance actions are performed on components to im-

prove the system’s ability to successfully perform its subsequent missions. However, the

limited maintenance time and budget, spare parts and repair crews availability during

these breaks can restrict the number and levels of maintenance activities that can be per-

formed. Without effective maintenance planning, these systems are at risk of unexpected

failures that can lead to not only increased downtime, decreased reliability, costly repairs

and replacements, and lost revenue, but also injury or loss of human life. The decision

problem that aims to prevent these risks by selecting the components to maintain and

the level of maintenance actions to carry out within the scheduled maintenance break is

known as the selective maintenance problem (SMP) (Rice et al., 1998).

1



2

The SMP has its origins in a collaborative project between C. Richard Cassady, a pro-

fessor of Industrial Engineering at the University of Arkansas, and the US Air Force Re-

search Laboratory. The project, which took place in the late 1990s, aimed to develop a

modelling methodology for managing SM decisions and integrating maintenance plan-

ning and sortie scheduling for the Air Force (Cassady et al., 2003, 2004, 2005a,b). In

1998, Wanda Faye Rice, a graduate student working on the project, investigated the SMP

in her thesis titled “Optimal Selective Maintenance Decisions for Series Systems" (Rice,

1999). This is assumed to be the first known academic publication on the topic of the SMP

as currently known and modelled. An empirical definition of selective maintenance can

be traced back to Fisher (1965) where a conceptual framework of the SM is proposed at a

high level without any formal modelling.

Rice’s study (Rice, 1999), along with other early studies in the field, considered a basic

version of the SMP in which a small-scale system made up of identical components oper-

ating in alternating sequences of scheduled missions and break periods for maintenance,

with a single repair channel that can only perform one type of maintenance action (re-

placement) with the aim of maximizing the system reliability. These assumptions were

necessary for a foundational understanding of the concept, but they do not accurately re-

flect the complexities and uncertainties of real-world problems. As the field progressed,

over the last two decades researchers began to incorporate more realistic assumptions and

consider a broader range of factors and provide extensions to system structures, mainte-

nance policies, resource limitations, modeling methods, and solution algorithms to make

the models more applicable in real-world situations such as wind turbines (O’Neil et al.,

2022a), coal conveyor systems (Liu et al., 2009), machining lines in an engine shop (Zhu

et al., 2011), army tanks (Sharma et al., 2017), nuclear fuel production systems (Zhao

et al., 2019b), aircraft turbine engine systems (Wang et al., 2019), and flow transmission

systems (Liu et al., 2020).

Despite recent advancements in formulating and solving the SMP, several limitations

that restrict practitioners’ ability to implement it remain. Limitations such as difficulty

in quickly solving large-scale problems as encountered in many industrial and military

settings and the lack of models dealing with uncertainty in key maintenance parameters

are some of the most pressing ones.



3

Recently, a substantial extension of the SMP that addresses several complexities of

real-world systems was proposed by Diallo et al. (2019b). This extension called the

Joint Selective Maintenance and Repairperson Assignment Problem (JSM-RAP) allows main-

tenance actions to be performed by multiple repairpersons with varying skill levels and

costs. These repairpersons can perform a spectrum of maintenance actions ranging from

minimal repair (MR) to replacement. The JSM-RAP jointly determines the selection of

maintenance actions and the assignment of tasks to repairpersons, providing a more

comprehensive solution for real-world systems. A novel approach called the two-phase

method was developed by Diallo et al. (2018) to transform the non-linear JSM-RAP into a

multi-dimensional multiple-choice knapsack problem (MdMCKP) by generating all fea-

sible combinations of components, maintenance levels and repairpersons. This method

optimally selects a subset of patterns to minimize the total maintenance cost or maximize

the reliability for the next mission. However, the proposed model (JSM-RAP) still shares

similar limitations with other models in the SM literature, specifically their inability to

handle large-scale systems and address uncertainty in maintenance parameters. These

limitations mainly stem from the lack of tractable formulations for the SMP.

With limited failure events and/or short usage periods of the components, it is chal-

lenging to accurately estimate the probability distributions of key parameters with only

a limited amount of maintenance records. To that extent, risk-neutral stochastic or fuzzy

models, which are the current approaches used in literature to address the uncertainty in

the SMP, may not be suitable as they tend to have poor out-of-sample performance when

the training sample size is small (Smith and Winkler, 2006), are generally intractable

when evaluating expected loss functions (Hanasusanto et al., 2016), and do not take po-

tential negative scenarios or provide any performance guarantees (Birge and Louveaux,

2011), all of which are imperative for mission-based SMP. Alternatively, Robust Opti-

mization (RO) is a promising approach for efficiently dealing with uncertainty whilst as-

suring worst-case system reliability without the need for large sample sizes, yet tractable

formulations remain an essential requisite to make RO a successful tool for large-scale

instances of the SMP which has been proved to be NP-hard (Rice, 1999). To address

these challenges, this dissertation proposes six novel formulations that can handle the

JSM–RAP for large-scale systems and addresses the uncertain nature of the duration and

quality of maintenance actions using RO-based techniques.
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1.1 Research themes

This dissertation explores four themes dealing with the optimization of the JSM–RAP for

large-scale systems under uncertainty. Each theme is developed in a dedicated chapter.

Theme 1 introduces a comprehensive critical review of the literature on the SMP and

identifies challenges and potential opportunities for future research. Theme 2 presents

four algorithms based on column generation (CG) to solve the JSM–RAP in large-scale

multicomponent systems. Themes 3 and 4 explore methods to optimize solutions for

large-scale instances of JSM–RAP when the maintenance duration and the quality of

maintenance actions are uncertain, respectively.

1.1.1 Theme 1: A critical review of selective maintenance for mission-oriented

systems: Challenges and a roadmap for novel contributions

Despite many extensions to the SMP having been proposed in recent years, only two lit-

erature reviews on the subject have been conducted. The first by Xu et al. (2015) covered

papers published between 1998 and 2014, and the second by Cao et al. (2018a) covered

papers up to 2017. However, there has been a significant surge in research in this field in

recent years along with new advancements in robust optimization and machine learning.

This necessitates conducting an up-to-date critical review of the literature and creating a

roadmap for future developments in SMP models to make them more relevant and effec-

tive in addressing industry-scale problems.

Theme 1 provides a comprehensive critical review of the literature in the field of SM,

with a review of a total of 119 research articles related to SM optimization. These refer-

ences are reviewed using a systematic classification and analysis framework. A selection

of notable models is discussed in depth. Additionally, the challenges and limitations of

current methods are identified and opportunities for future research are presented. We

address the following research questions.

1. How has the literature on the SMP developed over the last two decades?

2. How can the characteristics of the SMP be categorized?

3. What are the main contributions and limitations of the existing literature?
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4. What are the notable models in the literature of SM?

5. What are the challenges, gaps and opportunities for future research that can im-

prove the academic and industrial contributions of the SMP?

1.1.2 Theme 2: Branch-and-price algorithms for large-scale mission-oriented

maintenance planning problems

The main challenge encountered in most SMP models is that their formulations are dif-

ficult to solve optimally, particularly for industrial-size problems that would allow prac-

titioners to implement and use the SMP for their production and service assets. (Rice,

1999) proved that the basic SMP is NP-hard, and so are all its extensions, meaning that

computational efforts increase exponentially with problem size. The large-scale instances

of the problem, and in particular its JSM–RAP extension, are still challenging to solve due

to their combinatorial and nonlinear nature. Therefore, novel reformulations, approxi-

mations, and solution methods that can handle real-life systems consisting of hundreds

of multicomponent assets are still needed (Cao et al., 2018a; Diallo et al., 2019b).

Under Theme 2, four algorithms based on CG are developed to address the JSM–RAP

for large-scale systems. The approach involves breaking down the JSM–RAP into amaster

problem andmultiple subproblems that are solved to generatemaintenance patterns, also

known as columns. Two methods are developed to handle the mixed-integer nonlinear

subproblems: a piecewise-linear approximation (PLA) and an exact reformulation into

mixed-integer exponential conic programs (MIECP). Branch-and-price (B&P) algorithms

are developed by embedding the CG method into a branch-and-bound tree to restore

solution integrality and guarantee its optimality. Accordingly, the four proposed CG-

based algorithms are: the CG method using a PLA to solve the nonlinear subproblems

(CG–PLA), the CG method that utilizes exponential conic optimization (ECO) to solve

the nonlinear subproblems (CG–ECO), the CG-PLA approach integrated into a branch-

and-bound (B&B) process (BP–PLA), and the CG-ECO approach integrated into a B&B

process (BP–ECO). A heuristic procedure is developed to quickly provide a feasible solu-

tion to initiate the column-generation algorithm. Furthermore, a stabilization scheme is

used to accelerate convergence. Numerical experiments validate the proposed approach

and demonstrate its added value in terms of computation time and solution quality.
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The main goal the chapter answers is to develop new methods to deal with the JSM–

RAP for large-scale systems. The following questions are considered:

1. How to efficiently decompose the JSM–RAP into a master problem and multiple

subproblems and generate maintenance patterns (columns)?

2. How to handle the mixed-integer nonlinear subproblems obtained when applying

CG to the JSM–RAP?

3. How to embed the CG method into a branch-and-bound tree to restore solution

integrality and guarantee its optimality?

4. How to use a stabilization scheme to accelerate the convergence of the proposed CG

approach?

1.1.3 Theme 3: Distributionally-robust chance-constrained optimization of

selective maintenance under uncertain repair duration

Most SMP models assume that the duration of maintenance actions is known in advance,

but this assumption is unrealistic due to factors such as variability of component condi-

tions and repairperson skill levels, which can lead to low system reliability or long over-

time (Khatab et al., 2017a). To address this uncertainty, most papers in the literature use

stochastic programming. Despite its intuitive risk-neutral attitude and favorable conver-

gence properties that make it a popular modelling approach when dealing with random

factors in many application areas (Birge and Louveaux, 2011), this approach has limita-

tions such as poor out-of-sample performance, especially when the size of the training

sample is small (Smith andWinkler, 2006), and intractability due to the need to compute

multivariate integrals (Hanasusanto et al., 2016). These limitations are particularly rele-

vant in the maintenance industry where failure events can be infrequent and there may

not be enough data to accurately fit distribution functions.

Theme 3 introduces the PLA-based approach and a distributionally robust chance-

constrained program with a Wasserstein ambiguity set (DRC-W) to deal with uncertain

maintenance duration in large-scale instances of JSM–RAP. The proposed PLA-based
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model linearizes the objective function of JSM–RAP and ensures effective maintenance

plans can be determined with a high probability of completion. Numerical experiments

show the added value of the proposed approach in terms of computation time and the

overall quality of solutions.

The main goal of the chapter is to propose a new methodology to address uncertain

maintenance duration for large-scale instances of JSM–RAP with limited maintenance

records. The following questions are addressed:

1. How can the nonlinear JSM-RSP be tightly approximated as a mixed-integer linear

program (MILP) that can effectively handle large-scale instances of the JSM–RAP?

2. How can probabilistic guarantees for maintenance plan completion be achieved in

the JSM-RSP?

3. How to capture uncertain maintenance duration through a Wasserstein ambiguity

set in JSM-RSP?

4. What advantages does the DRC-W provide over the deterministic case?

1.1.4 Theme 4: Robust selective maintenance optimization under maintenance

quality uncertainty

The majority of SM models assume that the post-maintenance reliability of a compo-

nent is fully determined by the maintenance level selected for it (i.e., the maintenance

quality is deterministic). However, this hypothesis turns out to be inaccurate since the

quality of maintenance can be swayed by a range of aspects not part of the planner’s

responsibility, including the proficiency of the technician performing the maintenance,

the instruments and methods utilized, operating conditions, and other uncontrollable

variability-inducing factors.

Theme 4 introduces the optimization of the JSM–RAP when the quality of mainte-

nance actions is uncertain, thus leading to uncertain post-maintenance reliability of sys-

tem components. The robust optimization (RO) framework is used to capture the main-

tenance quality uncertainty via non-symmetric budget uncertainty sets, which allow the
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level of decision-maker conservatism to be controlled. Both the nominal (deterministic)

and robust problems are reformulated as mixed-integer exponential conic programs that

can be solved using off-the-shelf solvers. Numerical experiments on benchmark instances

demonstrate the favorable computational performance of the proposed reformulations

and the importance of considering maintenance quality uncertainty when creating SM

plans.

The main goal of this chapter is to propose a formulation to handle uncertain main-

tenance quality in large-scale instances of the JSM–RAP. Three research questions are

considered.

1. How can JSM-RSP be exactly reformulated as a MIECP that can be effectively han-

dled by modern off-the-shelf solvers?

2. How the uncertainty of the post-maintenance reliability of the components could

be addressed in JSM–RAP?

3. How can the robust version of JSM–RAP be tractably reformulated as a MIECP

problem?

1.2 Dissertation outline

This dissertation is a thesis by articles and is comprised of four manuscripts (one is pub-

lished, one is resubmitted after revisions and two are submitted for publication). After

the introduction in Chapter 1, Chapter 2 presents a comprehensive critical review of the

literature on the SMP. As shown in Figure 1.1, models in the SM literature are identi-

fied, classified, and analyzed using a systematic classification and analysis framework.

A selection of notable models is discussed in depth. Additionally, the chapter identifies

the challenges and limitations of current methods and presents opportunities for future

research. Results of this chapter have been submitted for publication in a peer-reviewed

journal. A preliminary condensed version of this review work was presented at the 10th

IFAC Conference on Manufacturing Modelling Management and Control 2022 and pub-

lished in the proceedings of the conference as Al-Jabouri et al. (2022).
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Chapter 3 presents four CG-based algorithms to tackle the JSM–RAP for large-scale

systems as shown in Figure 1.1. A manuscript resulting from this chapter has been pub-

lished in Computers and Operations Research (Al-Jabouri et al., 2023).

Chapter 4 introduces the PLA-based approach and a distributionally robust chance-

constrained program with a Wasserstein ambiguity set to deal with uncertain mainte-

nance duration in large-scale instances of JSM–RAP. A preliminary version of this chap-

ter was presented at the ECSO-CMS 2022, Joint European Conference on Stochastic Op-

timization – Computational Management Science Conference. An extended version was

submitted for publication in a peer-reviewed journal.

Chapter 5 introduces the optimization of the JSM–RAP when the quality of mainte-

nance actions is uncertain, thus leading to uncertain post-maintenance reliability of sys-

tem components. The robust optimization framework is used to capture the maintenance

quality uncertainty via non-symmetric budget uncertainty sets, which allows the level

of decision-maker conservatism to be controlled. Both the nominal and robust problems

are reformulated as mixed-integer exponential conic programs that can be solved using

off-the-shelf solvers. A manuscript resulting from this chapter has been submitted for

publication in a peer-reviewed journal.

Chapter 6 draws the conclusions of this work by summarizing important observations

and introducing directions for future work based on the outcomes of the research.

Figure 1.1 below gives an overview of the organization of this dissertation and the

links between the four research contributions.
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Figure 1.1: Dissertation outline



Chapter 2

A critical review of selective maintenance for mission-oriented

systems: Challenges and a roadmap for novel contributions

2.1 Introduction

Maintenance is an essential operation for industrial and economic assets as its costs can

account for a significant percentage of a firm’s production costs (Bevilacqua and Braglia,

2000). Adequate maintenance strategies can prevent unexpected production interrup-

tions, lower spare parts inventory and operational costs, and even increase the lifespan

of industrial machines. Therefore, maintenance engineering and optimisation have been

widely studied and many interesting and significant results have been produced for a

wide range of maintenance optimisation models. Over the last 20 years, a growing num-

ber of mathematical models have been developed in the literature for the design of opti-

mal maintenance policies for repairable systems.

Many modern systems operate in an alternating sequence of missions and break pe-

riods during which maintenance actions are performed. These mission-oriented multi-

component systems are commonly found in manufacturing, production, and service in-

dustries such as production lines, aircraft, ships, and trucks that operate continuously

until their missions are interrupted to undergo maintenance. Similarly, new asset types

such as unmanned autonomous vehicles and advanced combat/defensive systems also

exhibit such patterns. The selective maintenance (SM) strategy is particularly suited for

these mission-oriented systems. To enhance the ability of such systems to successfully

complete their subsequent missions, maintenance actions are carried out on components

during scheduled breaks. However, limited maintenance resources such as time, budget,

spare parts, and repair crews restrict the number and levels of maintenance activities

that can be performed before the next mission. The optimal selection of components to

maintain and the level of maintenance actions to perform is known as the selective main-

tenance problem (SMP) and can be traced back to (Rice et al., 1998) and (Rice, 1999). The

11
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SMP is a prevalent problem in many industrial systems such as wind turbines (O’Neil

et al., 2022a), coal conveyor systems (Liu et al., 2009), machining lines in an engine shop

(Zhu et al., 2011), army tanks (Sharma et al., 2017), nuclear fuel production systems

(Zhao et al., 2019b), aircraft turbine engine systems (Wang et al., 2019), and flow trans-

mission systems (Liu et al., 2020).

The purpose of this paper is to provide an updated and comprehensive review of

the literature on the SMP up to the year 2022. A preliminary version of this review,

which appeared in (Al-Jabouri et al., 2022), has been significantly extended by adding

many more references and expanding the discussion. The review makes the following

contributions:

1. A comprehensive and categorized analysis of SM papers based on a systematic clas-

sification and analysis framework.

2. A mapping of key characteristics of the SM papers.

3. A review of prominent SM maintenance models along with the necessary assump-

tions and solving methodologies.

4. An examination of research gaps and suggestions for future research avenues.

Despite the many extensions proposed for SMP in the past two decades, only two

limited literature reviews have been published, one by Xu et al. (2015) covering papers

published between 1998 and 2014, and another by Cao et al. (2018a) covering papers

published up to 2017. However, since then there has been a significant growth of research

in the field of SM as the number of publications between the years 2018 and 2022 (54 out

of 119) is nearly equivalent to the total number of research articles published before 2018.

In addition, new advances in robust optimisation approaches and machine learning have

emerged in the SM context, thus motivating the authors to undertake an updated critical

review of the literature and propose a road-map for future developments of the SMP

models to make them more relevant and address industry-scale problems.

The remainder of this paper is organized into four sections. In Section 2.2, the scope,

research procedure, and review framework are introduced. In Section 2.3, the identified
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SMP papers are classified according to two SMP feature categories: formulation character-

istics which is composed of three sub-groups of characteristics related to system, mainte-

nance and mathematical model characteristics, and the solution approaches which are cat-

egorized depending on whether they are exact or approximate methods. Prominent SM

maintenance models along with the necessary assumptions and solution methodology are

addressed in section 2.4. Finally, in Section 2.5, research gaps identified are highlighted

and discussed, and a structured list of future research directions is outlined.

2.2 Scope and review methodology

This paper conducts a comprehensive review of research articles pertaining to the SMP

published up to 2022. The review includes both a categorization of the articles based

on SMP features and a detailed examination of notable models that encompass a wide

range of SMP characteristics. The reviewed literature includes books, peer-reviewed

conference papers, and journal articles, which were sourced from various academic re-

search databases such as Proquest, Google Scholar, Engineering Village (Compendex),

and Web of Science using the keywords such as “maintenance”, “maintenance planning”,

and “maintenance policy” in combination with “selective”, “problem” and/or “models”.

Filtering was then applied to the more than 6,000 results returned to exclude articles

from unrelated fields such as medicine, psychology, etc. A second layer of filtering was

applied to remove articles dealing with general maintenance but not addressing selective

maintenance as defined above. The list was thus reduced to 119 references (78 journal

publications, 37 conference papers, 3 reports, and 1 thesis) published up to 2022. Fig-

ure 2.1 illustrates the distribution of papers by publication year. It can be observed that

45% of the papers (54 out of 119) were published between 2018 and 2022, indicating

the significant growth of research in this field in recent years and the importance of the

proposed literature review. The 3-year moving average trend plotted in Figure 2.1 also

shows a more than doubled publication rate between 2016 and 2022. Figure 2.2 presents

the distribution of papers by publishing journal, with only venues having two or more

SMP papers included. The journal with the most SMP publications is Reliability Engi-

neering and System Safety with 17 papers out of 119.
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Figure 2.1: Publication year distribution of referenced papers

Figure 2.2: Distribution of referenced papers by journal
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Table 2.1 presents the most frequently cited articles from the literature review, sep-

arated into two sections: the first section lists the overall most cited articles, while the

second section lists the most cited articles that have been published in 2016 or later.

Table 2.1: Most cited articles (Google Scholar as of December 15, 2022)

All-time most cited articles Citations Recent most cited articles Citations
1 Cassady et al. (2001a) 234 1 Liu et al. (2020) 82
2 Duan et al. (2018) 230 2 Diallo et al. (2018) 58
3 Cassady et al. (2001b) 214 3 Shahraki et al. (2020) 53
4 Rice et al. (1998) 184 4 Khatab et al. (2018c) 48
5 Pandey et al. (2013b) 143 5 Jiang and Liu (2020b) 29
6 Dao et al. (2014) 130 6 Chaabane et al. (2020a) 28
7 Lust et al. (2009) 106 7 Yang et al. (2018) 27
8 Dao and Zuo (2017b) 102 8 Diallo et al. (2019b) 27
9 Liu et al. (2018) 100 9 Khatab et al. (2018b) 26
10 Pandey et al. (2013a) 97 10 Cao et al. (2018b) 20

2.3 Categorisation of SMP modelling and solution methods

To provide a comprehensive structure for the existing literature, this section is framed ac-

cording to two SMP feature categories: formulation characteristics and solutions approaches.

The proposed review framework is depicted in Figure 2.3. The formulation characteristics

category is composed of three groups of characteristics related to system, maintenance

and mathematical model characteristics. The solution approaches are discussed depend-

ing on whether they are exact methods or approximate algorithms. Table 2.3 provides a

two-dimensional mapping of all papers reviewed, highlighting their key characteristics.

The abbreviations used in Table 2.3 are explained in Table 2.2.
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Figure 2.3: Framework of the proposed categorization of SMP
modelling and solution approaches (Al-Jabouri et al., 2022)
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Table 2.2: Abbreviation of terms used in the mapping table

System configuration/level System & components states
S Series BSS Binary state system
P Parallel BSC Binary state components
SP Series-Parallel MSS Multistate system
CP Complex MSC Multi state components
F Fleet-level

System dependency Maintenance degree
Ind Independent Pf Perfect
Econ Economic dependence Impf Imperfect
Stoch Stochastic dependence W Worse
Struct Structural dependence M Minimal repair

Planning horizon
Id.M Identical missions Un.M Unidentical missions

optimisation criteria
R System reliability Av System availability
#SM Number of missions #MB Number of breaks
TP Total system profit UTC Unit time cost
MC Maintenance Cost MT Maintenance time
GT Gap time RV Reliability variance
DT Down Time PC Performance capacity
EE Energy efficiency ME Maintenance energy

Exact algorithm
TE Total enumeration B&B Branch-and-Bound
2-ph Two-phase approach Mx&Mn Max min approach
ECM ϵ-constraint method

(Meta)-Heuristics
CH Construction heuristic ABC Artificial bee colony
DE Differential evolution DGSA Hybrid DE & gravitation search
EGD Extended great deluge EA Exhaust algorithm
SGA Sequential game algorithm HA Heuristic algorithm
GA Genetic algorithm NSGA-II Non-dominated sorting GA
PSO Particle swarm optimisation ACO Ant colony optimisation
TS Tabu search SA Simulated annealing
CG Column generation

Deep learning
DM Data mining technique DL Deep learning technique
DQN Deep Q-Network method

Stochastic parameters
DEv Dynamic environment Dtr Deterioration
RC Recourse Consumption MBD Maintenance Break Duration
MD Mission Duration MQ Maintenance Quality
R.Av Repairpersons Availability

Notes
Fzy prg. Fuzzy programming Oc. res. Occupied resources
Size Problem size Inf. mis. Infinite mission
Int. mis. Interruptible mission Comm. solver Commercial solver
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Table 2.3: Mapping and classification based on main characteristics

# Article

System
confi

g.

System
states

Sys.d
ep

end
ency

M
aint.d

egree

P
laning

horizon

O
p
tim

.criteria

Stoch.p
aram

.

N
otes

Solution Approaches

E
xact

alg.

H
eu

ristic

Sim
u
lation

Sol ver

D
eep

learning

1 Rice et al. (1998) SP BSS,BSC Ind. Pf Id.M Max R – size ≥ 20 TE HA

2 Meng et al. (1999) SP MSS,MSC Ind. Impf, M Id.M Min MC – TE

3 Cassady et al. (2001a) SP BSS,BSC Ind. Pf, M Un.M Max R Dtr. TE x

4 Cassady et al. (2001b) CP BSS,BSC Ind. Pf Id.M Max R – TE

Min MC

Min MT

5 Cassady et al. (2003) SP(F) BSS,BSC Ind. Pf Un.M Max R - size ≥ 20 GA

6 Yu and Schneider (2003) S BSS,BSC Ind. Pf Id.M Max Av Dtr. Oc. res. x

MBD Inf. mis.

MD

DEv

7 Schneider and Cassady (2004) SP (F) BSS,BSC Ind. Pf Id.M Max R - TE x

8 Cassady et al. (2004) SP BSS,BSC Ind. Pf Id.M Max #SM - TE

9 Rainwater et al. (2004) SP (F) BSS,BSC Ind. Pf Id.M Max R - TE

10 Rajagopalan and Cassady (2004) SP BSS,BSC Ind. Pf Id.M Max R - TE

11 Cassady et al. (2005b) SP (F) MSS,BSC Ind. Pf Un.M Min MT - Oc. res. TE HA

size ≥ 20

12 Rajagopalan and Cassady (2006) SP BSS,BSC Ind. Pf Id.M Max R - TE

13 Schneider (2006) SP (F) BSS,BSC Ind. Pf Id.M Max R - TE

Max #SM

14 Iyoob et al. (2006) SP BSS,BSC Ind. Pf Id.M Max R - TE

Min MC

15 Thibaut and Jacques (2006) SP BSS,BSC Ind. Pf, M Id.M Min MC Dtr. HA

Max R

16 Hoai and Luong (2006) S BSS,BSC Ind. Pf, M Un.M Min MC Dtr. x

Max Av

Continued on Next Page
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Table 2.3: Mapping and classification based on main characteristics
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17 Khatab et al. (2007) SP BSS,BSC Ind. Pf Id.M Max R Dtr. size ≥ 20 HA MATLAB

18 Khatab et al. (2008a) SP BSS,BSC Ind. Pf, M Id.M Min MC Dtr. EGD

19 Khatab et al. (2008b) SP BSS,BSC Ind. Impf, M Un.M Min MC Dtr. SA

20 Khatab and Ait-Kadi (2008) SP MSS,BSC Ind. Pf, M Un.M Min MC Dtr. EGD

21 Lust et al. (2009) SP BSS,BSC Ind. Pf, M Id.M Max R Dtr. size ≥ 20 B&B CH&TS

22 Liu et al. (2009) SP MSS,BSC Ind. Impf, M Un.M Max R Dtr. GA

23 Maillart et al. (2009) SP BSS,BSC Ind. Pf Id.M Max #SM - Inf. mis. TE

24 Zhu et al. (2011) SP BSS,BSC Ind. Impf, M Id.M Min UTC Dtr. size ≥ 20 CH&TS

25 Ali et al. (2011b) SP BSS,BSC Ind. Pf Id.M Max R - Lingo

26 Ali et al. (2011a) SP BSS,BSC Ind. Pf Id.M Max R RC Lingo

27 Lv et al. (2011) SP (SF) BSS,BSC Ind. Pf Id.M Max R Dtr. PSO

RC

28 Chen et al. (2012) SP MSS,BSC Stoch. Impf, M Un.M Max R Dtr. GA

DEv

29 Pandey et al. (2012) SP BSS,BSC Ind. Impf, M Id.M Max R Dtr. PSO&DE

30 Maaroufi et al. (2012) CP BSS,BSC Econ. Pf Un.M Min MC Dtr. TE

Stoch.

31 Maaroufi et al. (2013b) SP BSS,BSC Econ. Impf Un.M Min MC Dtr. Oc. res. x

32 Gupta et al. (2013) SP BSS,BSC Ind. Pf Id.M Max R - size ≥ 20 Lingo

Min MC Fzy prg.

Min MT

33 Maaroufi et al. (2013a) CP BSS,BSC Econ. Pf Un.M Min MC Dtr. TE x

Stoch.

34 Pandey et al. (2013b) SP BSS,BSC Ind. Impf, M Id.M Max R Dtr. DE

Continued on Next Page
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Table 2.3: Mapping and classification based on main characteristics
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35 Ali et al. (2013) SP BSS,BSC Ind. Pf Id.M Max R RC Lingo

Min MC

36 Pandey et al. (2013a) SP MSS,MSC Econ. Impf Id.M Max R Dtr. DE

37 Pandey and Zuo (2013) SP BSS,BSC Ind. Impf, M Un.M Min MC Dtr. DE

Min #MB

38 Gupta et al. (2014) SP BSS,BSC Econ. Pf Id.M Min MC RC size ≥ 20 Lingo

Min MT

39 Pandey and Zuo (2014) SP MSS,MSC Stoch. Impf, M Id.M Max R Dtr. DE

40 Dao et al. (2014) SP MSS,MSC Econ. Impf Id.M Max R Dtr. DE

41 Haseen et al. (2015) SP BSS,BSC Ind. Pf Id.M Max R Dtr. size ≥ 20 Lingo

RC Fzy prg.

42 Schneider and Cassady (2015) SP (F) BSS,BSC Ind. Pf Id.M Max R - size ≥ 20 Mx&

Min MC Mn

43 Djelloul et al. (2015) SP BSS,BSC Ind. Impf, M Id.M Max R Dtr. x

MD

44 Hou and Qian (2015) SP BSS,BSC Ind. Pf, M Un.M Max R Dtr. MATLAB

45 Dao and Zuo (2015) S MSS,MSC Stoch. Impf Id.M Max TP Dtr. GA

46 Cao et al. (2016b) SP BSS,BSC Ind. Impf, M Un.M Max R Dtr. TE

47 Pandey et al. (2016) SP BSS,BSC Ind. Impf, M Un.M Min MC Dtr. DE

Min #MB

48 Khatab et al. (2016) SP BSS,BSC Ind. Impf, M Id.M Min MC Dtr. x

MBD

MD

49 Xu et al. (2016a) SP MSS,MSC Econ. Impf Id.M Max R Dtr. DE

50 Hou and Qian (2016) CP BSS,BSC Struct. Pf Id.M Max R Dtr. TE

Continued on Next Page
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51 Guo et al. (2016) SP MSS,BSC Econ. Impf Id.M Max R Dtr. DE

52 Khatab and Aghezzaf (2016a) SP BSS,BSC Ind. Impf Id.M Min MC Dtr. x

53 Khatab and Aghezzaf (2016b) SP BSS,BSC Ind. Impf, M Id.M Min MC Dtr. x

MQ

54 Xu et al. (2016b) SP BSS,BSC Econ. Pf Id.M Max R - EA

55 Cao et al. (2016a) SP BSS,BSC Ind. Pf, M Un.M Min MC Dtr. Int. mis. x

56 Lan et al. (2017) S(F) BSS,BSC Ind. Pf Id.M Max R Dtr. NSGA-II

Min MC MQ

Min GT

57 Sharma et al. (2017) SP BSS,BSC Ind. Impf, W Un.M Min MC Dtr. size ≥ 20 GA x

Int. mis.

58 Dao and Zuo (2017a) S MSS,MSC Stoch. Impf Id.M Max R Dtr. x

DEv

59 Jinxin and Yanling (2017) CP BSS,BSC Struct. Pf, M Id.M Max R Dtr. TE

60 Dao and Zuo (2017b) CP MSS,MSC Struct. Impf Id.M Max R Dtr. GA

61 Khatab et al. (2017a) SP BSS,BSC Ind. Impf, M Id.M Min MC Dtr. x

MBD

MD

62 Cao et al. (2017) SP BSS,BSC Ind. Impf Id.M Max Av. Oc. res. GA x

63 Diallo et al. (2017) SP BSS,BSC Econ. Pf Id.M Max R Oc. res. K-Nitro 9

Min MC Solver

64 Khatab et al. (2017b) SP BSS,BSC Ind. Impf, M Id.M Min MC Dtr. TE

MD

MBD

RC

Continued on Next Page
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65 Liu and Jiang (2018) SP BSS,BSC Ind. Impf, M Un.M Max R Dtr. HA

Min RV

66 Shahraki and Yadav (2018) S MSS,MSC Stoch. Impf Id.M Max R Dtr. x

DEv

67 Khatab et al. (2018a) SP BSS,BSC Ind. Impf Id.M Min MC Dtr. x

68 Khatab et al. (2018b) SP BSS,BSC Ind. Impf Id.M Min MC Dtr. x

69 Yang et al. (2018) SP (F) BSS,BSC Ind. Pf Un.M Min MC Dtr. size ≥ 20 SGA

Min #MB

70 Liu et al. (2018) SP MSS,MSC Ind. Impf Un.M Max R Dtr. ACO x

RC

MBD

71 Diallo et al. (2018) CP BSS,BSC Ind. Impf, M Id.M Max R Dtr. size ≥ 20 2-ph Gurobi

Min MC

72 Khatab et al. (2018c) SP BSS,BSC Econ. Impf, M Id.M Max R Dtr. Oc. res. x

Min MC

73 Chaabane et al. (2018) SP BSS,BSC Ind. Impf, M Id.M Max R Dtr. Oc. res. x

74 Chen et al. (2018a) CP MSS,MSC Ind. Impf, M Id.M Max R Dtr. PSO

MQ

DEv

75 Zhao et al. (2018) SP MSS,MSC Ind. Impf Id.M Max R Dtr. Oc. res. GA

MQ

76 Cao et al. (2018b) SP MSS,MSC Ind. Impf Id.M Max R Dtr. Fzy prog. HA

MBD

MD

Continued on Next Page
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77 Duan et al. (2018) CP BSS,BSC Ind. Impf, M Id.M Min MC Dtr. size ≥ 20 B&B SA

MQ

RC

78 Zhao et al. (2019a) P BSS,BSC Ind. Pf, M Id.M Max R Dtr. Oc. res. x

MD

79 Diallo et al. (2019b) CP BSS,BSC Ind. Impf, M Id.M Max R Dtr. size ≥ 20 2-ph Gurobi

Min MC Oc. res.

80 Ahadi and Sullivan (2019) SP MSS,BSC Ind. Pf Id.M Max R - HA

81 Diallo et al. (2019a) SP BSS,BSC Econ. Impf, M Id.M Max R Dtr. Oc. res. 2-ph Gurobi

Min MC

82 Khatab et al. (2019) SP BSS,BSC Econ. Pf Id.M Max R Dtr. Oc. res. Lingo

83 Chen et al. (2019) S MSS,MSC Ind. Impf, M Id.M Max R Dtr. Fzy prog. PSO

MQ

84 Zhao et al. (2019b) SP MSS,MSC Stoch. Impf Id.M Max R Dtr. GA

85 Wang et al. (2019) SP MSS,MSC Ind. Impf Id.M Min MC - CPLEX

86 Zhang et al. (2019a) SP BSS,BSC Ind. Impf Id.M Max R Dtr. Oc. res. ABC

Min MC MQ Fzy prog.

87 Chaabane et al. (2020b) SP BSS,BSC Ind. Impf, M Id.M Max R Dtr. Oc. res. x

Min MC R.Av

88 Liu et al. (2020) SP MSS,BSC Ind. Impf, M Un.M Max #SM Dtr. DL

89 Galante et al. (2020) SP BSS,BSC Ind. Pf Id.M Max R Dtr. size ≥ 20 CH

Oc. res.

90 Chaabane et al. (2020a) SP BSS,BSC Econ. Impf, M Un.M Min MC Dtr. Oc. res. GA

Continued on Next Page
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91 Ikonen et al. (2020) SP BSS,BSC Econ. Pf, M Id.M Max R, Dtr. size ≥ 20 ECM Baron

Min MC

92 Khatab et al. (2020a) SP (SF) BSS,BSC Econ. Impf, M Id.M Min MC Dtr. size ≥ 20 2-ph Gurobi

Oc. res.

93 Shahraki et al. (2020) S MSS,MSC Stoch. Impf Id.M Max R Dtr. Fzy prog. 2-ph GA Gurobi

Min RV MQ

94 Zhou et al. (2020) SP BSS,BSC Ind. Pf, M Un.M Max R Dtr. HA

95 Jiang and Liu (2020b) SP BSS,BSC Ind. Impf, M Un.M Max R Dtr. SA

MD

96 Jiang and Liu (2020a) CP BSS,BSC Ind. Impf, M Un.M Max R Dtr. HA

Min RV

97 Ruiz et al. (2020) SP MSS,MSC Econ. Impf, M Id.M Max R Dtr. GA&DE

Stoch. Min MC

98 Zhang et al. (2020) SP MSS,BSC Ind. Impf Id.M Min ME Dtr. DGSA

99 Khatab et al. (2020b) SP BSS,BSC Ind. Impf, M Id.M Min MC Dtr. Oc. res. 2-ph

DEv

100 Gao et al. (2021) CP BSS,BSC Ind. Impf, M Id.M Max R Dtr. GA

MD

101 Kamal et al. (2021) SP BSS,BSC Ind. Pf Id.M Max R Dtr. Fzy prog. Lingo

Min MC MD size ≥ 20

102 Xu et al. (2021b) SP BSS,BSC Ind. Impf Un.M Max R Dtr. DE DQN

103 Sun et al. (2021) SP MSS,MSC Ind. Impf Id.M Max R Dtr. Oc. res. HA

MD

104 Xu et al. (2021a) SP BSS,BSC Ind. Impf Id.M Max R Dtr. Oc. res. NSGA-III

Min MC

Continued on Next Page
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105 Li et al. (2021) S MSS,MSC Stoch. Impf Id.M Max R Dtr. GA

MQ

106 Chen et al. (2021) SP MSS,MSC Ind. Impf Id.M Max Av Dtr. GA

Max PC RC

107 Cao and Duan (2021a) SP BSS,BSC Econ. Impf Id.M Max R Dtr. GA

MQ

108 Sun and Sun (2021) SP MSS,MSC Ind. Impf Id.M Max R Dtr. ACO

109 Cao and Duan (2021b) CP BSS,BSC Econ. Pf Id.M Max R Dtr. SA

110 Hesabi et al. (2022) S BSS,BSC Ind. Impf Id.M Min MC Dtr. TE DL

111 Su et al. (2022) SP BSS,BSC Ind. Impf, M Id.M Max R Dtr. NSGA-II

Min MC MD

112 Liu et al. (2022) SP BSS,BSC Ind. Impf, M Un.M Min MC Dtr. Oc. res. GA x

MBD RC

MD

113 O’Neil et al. (2022b) CP BSS,BSC Ind. Impf Un.M Max R Dtr. Oc. res. CG& GA

size ≥ 20

114 Xia et al. (2022) SP BSS,BSC Ind. Impf Un.M Max EE Dtr. Int. mis B&B

115 Sun et al. (2022) SP MSS,MSC Ind. Impf Id.M Max R Dtr. Oc. res. HA

MD size ≥ 20

116 Kammoun et al. (2022) SP BSS,BSC Stoch. Pf Un.M Min MC Dtr. size ≥ 20 DM

117 O’Neil et al. (2022a) CP BSS,MSC Ind. Impf Id.M Max R Dtr. DL

118 Tang et al. (2022) S MSS,MSC Ind. Impf Id.M Max TP Dtr. GA x

119 Ghorbani et al. (2022) SP BSS,BSC Ind. Pf Id.M Min MC Dtr. Baron

DEv
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2.3.1 Categorisation of SMP modelling

2.3.1.1 System characteristics

System characteristics include features such as the reliability structure or configuration,

system state, system level under consideration, and system dependency.

2.3.1.1.1 System configuration The way a system is designed and organized, known

as its configuration, has a significant impact on its reliability modeling and computation

as well as its maintenance policy optimisation (Wang, 2002). The SMP has been solved for

various system configurations, including series, parallel, bridge, k-out-of-n and thereof

combinations.

The series-parallel configuration is the most commonly considered structure in the

SM literature. A large number of equipment utilized in industrial and military settings

can be represented by the series-parallel configuration (Liu et al., 2009; Zhu et al., 2011;

Chen et al., 2012; Sharma et al., 2017; Cao et al., 2018b; Zhao et al., 2019b; Wang et al.,

2019; Liu et al., 2020). Only few studies investigate the SMP for complex reliability struc-

tures. Cassady et al. (2001b) extends the original SMP to consider subsystems of complex

structures. Diallo et al. (2018) develop a two-phase approach to transform the nonlin-

ear SMP into a multidimensional multiple-choice knapsack problem (MdMCKP). Their

approach is used to optimally solve the SMP for general, large and complex reliability

structures including serial k-out-of-n systems with non-identical components.

Most SM studies express their system configuration through the Reliability Block Dia-

gram approach (RBD). However, a small number of studies in the literature use different

techniques such as Dynamic Fault Tree (Maaroufi et al., 2013a), tree and leaf represen-

tation (Hou and Qian, 2016), directed graph modeling (Dao and Zuo, 2017b), Extended

State Task Network (Chen et al., 2018a).

2.3.1.1.2 System level Most papers deal with single systems. Maintenance decisions

are made at the system components level. However, many industries usually involve

fleets of systems. For example, in the transportation industry, fleets are composed of

multiple trains, buses or airplanes (Khatab et al., 2020a). In these cases, maintenance

decisions must be made for all components in the fleet, adding an additional level of

complexity to the optimisation process.
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Several studies have presented models for optimizing the SM for fleets of assets. Cas-

sady et al. (2003) proposed a SM model to maximize the reliability of a fleet composed

of non-identical systems with non-identical missions, and different starting and ending

times. Several extensions followed (Rainwater et al., 2004; Schneider and Cassady, 2004;

Cassady et al., 2005b; Schneider, 2006; Schneider and Cassady, 2015). Other studies,

such as (Lan et al., 2017) and (Feng et al., 2017) proposed models for the maintenance

of truck fleets and military fleets respectively. (Yang et al., 2018) addressed the SMP for

a fleet of equipment required to perform phased missions with short scheduled breaks.

(Khatab et al., 2020a) proposed a novel variant of the fleet SMP where non-identical sys-

tems operating under several imperfect maintenance levels and multiple repair channels

are available.

2.3.1.1.3 System state In reliability theory, the lifespan of components or systems is

affected by ageing and wear out. Many papers in the field focus on systems that are

binary-state with binary state components (BSS-BSC) where both the system and its com-

ponents can only be in one of two states: failed or functioning. However, many systems

in practical applications have a multi-state nature where a system has a multi-state na-

ture with binary state components (BSS-BSC) or both the system and components are

multi-state (MSC-MSS). Cassady et al. (2005b) developed a method for addressing SM

decisions in MSS-BSC with non-coherent states. Khatab and Ait-Kadi (2008) general-

ized the SMP to multi-mission multi-states systems, and Liu et al. (2009) investigated

the single mission SMP in a MSS whose components are binary-state and operate under

imperfect maintenance. In these studies, capacity or productivity is often used as a mea-

sure of system performance, which is commonly used in energy transmission systems,

manufacturing systems, and power generation systems.

Pandey et al. (2013a) extended the work of (Liu et al., 2009) by considering multi-state

components in a MSS (MSC-MSS) rather than BSCs. Subsequent studies have further in-

vestigated the SMP for MSS. Dao and Zuo (2015) studied the SMP in a MSS under two

types of stochastic dependence between components. Dao and Zuo (2017a) investigated

the SMP in a MSS where components are subjected to variable loading conditions result-

ing in degradation depending on both their current operating state and the load applied.

Shahraki et al. (2020) used a Monte Carlo simulation-based approach to calculate the
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reliability of a MSS for the next mission considering different levels of stochastic imper-

fect maintenance. By taking the expected value and variance of the system reliability as

objective functions, a bi-objective SM model was proposed and solved.

2.3.1.1.4 System dependency Systems are generally made of multiple components

that may have one or several interactions generally categorized into three types: eco-

nomic, structural, and stochastic dependence. Economic dependence implies that costs

can be reduced when several components are jointly maintained. Structural dependence

is applied when several components can be structurally grouped so that the repair or

replacement of one failed component implies maintenance or dismantling of the other

working components in the group. Stochastic dependence occurs if the state of a compo-

nent (age, failure probability, failure rate, etc.) can influence those of other components

(Xu et al., 2016b).

According to Figure 2.4, the majority of SMP papers (73.9%) assume that system com-

ponents are independent. However, ignoring components’ interactions can result in bi-

ased predictions of system reliability and sub-optimal maintenance policies. Only 2.5%

of the papers consider structural dependence (Hou and Qian, 2016; Jinxin and Yanling,

2017; Dao and Zuo, 2017b) with another 2.5% considering joint economic and stochastic

dependence (Maaroufi et al., 2012, 2013a; Ruiz et al., 2020).

Figure 2.4: Distribution of papers vs component dependence

Several types of economic dependence have been studied in the literature, includ-

ing sharing setup costs over multiple components (Maaroufi et al., 2013b; Pandey et al.,

2013a), the advantage of repairing multiple identical components in each subsystem of a

series-parallel system (Dao et al., 2014), and the reduction in total maintenance cost when

simultaneously repairing multiple components in two subsystems (Xu et al., 2016a).

The effects of structural dependence on system reliability and maintenance strategies

when resources are constrained is an under-explored topic in literature. Dao and Zuo
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(2017b) examine the SM policy for multi-state systems with structural dependence and

limited resources, considering multiple hierarchical levels and disassembly sequences.

They find that failure to take structural dependence into account leads to over-estimations

of system reliability, which become more pronounced when resources are scarce.

Stochastic dependence in SM has been studied from various perspectives including

the impact of load distribution (Chen et al., 2012), variable loading conditions (Dao

and Zuo, 2017a) failure isolation and propagation (Maaroufi et al., 2013a), maintainable

and non-maintainable failure modes (Pandey and Zuo, 2014) on a system’s performance.

Studies have also examined the effect of age and degradation on failure rate (Shahraki and

Yadav, 2018), used neural networks to predict state transition probabilities (Zhao et al.,

2019b), considered two-way stochastic interactions and accounted for unknown factors

in their models (Shahraki et al., 2020). Other studies have utilized Failure Mode Effects

and Criticality Analysis (FMECA) (Li et al., 2021, 2020) and data mining techniques to

assess failure effects in selective maintenance context (Kammoun et al., 2022).

2.3.1.2 Maintenance characteristics

This section deals with the attributes related to the execution of maintenance activities

such as resource consumption and the effectiveness of actions carried out which can sig-

nificantly affect maintenance decisions.

2.3.1.2.1 Maintenance resources Resource scarcity lies at the core of SMP as it aspires

to balance the maintenance requirements and the limited available resources. Mainte-

nance resources are typically categorized according to three factors: type, allocation, and

limits.

The first factor refers to whether resources are occupied or consumed during main-

tenance. Consumptive resources such as time and budget are consumed and can be

depleted, whereas occupied resources such as repairpersons and remanufactured spare

parts can be reused. Pandey et al. (2013b) and Pandey and Zuo (2014) establish a rela-

tionship between the hazard adjustment factor, the amount of resources utilized, and the

actual age of the component. They also discovered that considering imperfect mainte-

nance allows for more efficient utilization of resources, resulting in improved reliability.

Pandey et al. (2013a) discuss the SMP when some resources are scarce while others are
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relatively abundant. The impact of resource variation on SM decisions and system relia-

bility is studied. The study illustrates the importance of performing a sensitivity analysis

so that resource allocation can be performed wisely to achieve the desired system reliabil-

ity. As for occupied resources, most papers assume that ample repairpersons are available

to perform maintenance actions during a break. However, in many real industrial main-

tenance applications, there is a limited number of repairpersons. In recent years, studies

that consider the SMP with limited availability of repairpersons have been proposed (Di-

allo et al., 2017; Khatab et al., 2018c; Chaabane et al., 2018; Diallo et al., 2019b; Khatab

et al., 2019; Chaabane et al., 2020b,a; Khatab et al., 2020b; Sun et al., 2021; Xu et al.,

2021a; Liu et al., 2022; O’Neil et al., 2022b; Sun et al., 2022).

The second factor is related to multi-mission problems and refers to whether mainte-

nance resources are distributed evenly or not among maintenance breaks (Jiang and Liu,

2020b; Khatab et al., 2020a), while the third factor refers to whether the model allows ex-

tending limited maintenance resources at some cost or not (Iyoob et al., 2006; Maaroufi

et al., 2013a).

2.3.1.2.2 Maintenance effectiveness Maintenance keeps or restores a system to a state

where its functions can be performed satisfactorily. Maintenance actions can either be

corrective (CM) or preventive (PM). These PM or CM actions can also be perfect, imper-

fect, minimal, and worse depending on the quality and level of restoration performed.

Perfect maintenance is equivalent to a component replacement whether it is working

(PM) or failed (CM); restoring it to an “as good as new” (AGAN) condition. Minimal re-

pair (MR) is a maintenance action that returns a failed component/system to a working

state without affecting its failure rate. Thus, the health state after the repair is the same as

it was right before failure which is called “as bad as old” (ABAO). Imperfect maintenance

(IM) restores a component/system to a state somewhere between AGAN and ABAO con-

ditions. Sometimes, the maintenance action is performed improperly, thus leading the

system failure rate and actual age to increase. Hence, the system’s operating condition

turns to be worse than it was before maintenance.

The original SM model (Rice et al., 1998) only considered replacement of failed com-

ponents. Later, Cassady et al. (2001a) expanded the model to include MR and PM. To the

best of our knowledge, (Khatab et al., 2008b) was the first to include Imperfect mainte-

nance (IM) in SMP, which is based on the age reduction concept (Malik, 1979). Several
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extensions followed (Liu et al., 2009; Liu and Huang, 2010; Pandey et al., 2013b; Zhu

et al., 2011; Pandey and Zuo, 2013; Khatab et al., 2018b). Sharma et al. (2017) considered

a scenario that is rarely considered in SM: the system’s operating condition may worsen

after maintenance.

2.3.1.3 Optimisation Model Characteristics

The referenced SMP models will be discussed according to the three main optimization

characteristics in Figure 2.3: optimisation objective, planning horizon, and uncertain pa-

rameters.

2.3.1.3.1 Optimisation criteria Most SMP formulations are single-objective models

that aim to maximize system reliability or minimise maintenance costs. Other objectives

that have been considered include minimizing the number of repair times (Yang et al.,

2018), environmental impacts (Khatab et al., 2018a; Zhang et al., 2020) or maximizing

availability (Yu and Schneider, 2003; Hoai and Luong, 2006; Chen et al., 2021), perfor-

mance capacity (Chen et al., 2021; Xia et al., 2022). In many applications, mission objec-

tives conflict with each other, thus requiring sensitivity analysis to find trade-offs between

several objectives. Multi-objective models permit to consider such trade-offs during the

optimisation phase (Thibaut and Jacques, 2006; Gupta et al., 2013, 2014; Haseen et al.,

2015; Lan et al., 2017; Zhang et al., 2019a; Diallo et al., 2019a; Jiang and Liu, 2020a;

Shahraki et al., 2020; Yang et al., 2018; Kamal et al., 2021; Xu et al., 2021a; Su et al.,

2022).

2.3.1.3.2 Planning horizon The planning horizon refers to the time horizon consid-

ered in the SMP models. The planning horizon is composed of a finite or infinite number

of missions with different profiles depending on whether they are identical or not, and

uninterruptible or not.

Most SMP papers assume a finite planning horizon, with the exception of the models

developed by Yu and Schneider (2003) andMaillart et al. (2009). Yu and Schneider (2003)

examine the impact of maintenance resource limitations on SM decisions for a serial pro-

duction line operating on an infinite planning horizon, while Maillart et al. (2009) inves-

tigates SMP with multiple identical missions in both finite and infinite planning horizon
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cases. The long-term performance of the optimal infinite-horizon SM plan is compared to

those obtained for the single mission and two-mission planning horizons. It is found that

the model with an infinite number of missions only yields minimal improvement in the

expected number of successful missions compared to models with one or two missions.

During the planning horizon, missions may or may not be interruptible. Interruptible

missions allow for a pause to restore a failed system to a functioning state, while uninter-

ruptible missions result in the mission being canceled or aborted if there is an interrup-

tion. Cao et al. (2016a) conclude that system availability under interruptible missions is

higher than that under uninterruptible ones. Sharma et al. (2017) develop a methodol-

ogy for applying assembly-level SM to a set of tanks during a war scenario in which the

absence of a maintenance break is considered. Although assembly-level is more expen-

sive than component-level maintenance, the study shows that the system state is easier

to diagnose at the assembly-level. Maintenance at the assembly-level is less complicated

and less time-consuming.

The majority of SMP papers concentrate on a single mission or multiple identical

missions. However, in real-world scenarios, systems often face non-identical missions

with varying duration and conditions, which increases the complexity of maintenance

decision-making process, requiring optimisation of all components across all missions.

Studies have been conducted to address this challenge by developing models that con-

sider the specific sequence of missions with different lengths (Hou and Qian, 2015),

fleet-level multi-mission systems (Yang et al., 2018), and scheduling models that find

the cost-optimal number of maintenance breaks in a finite horizon composed of non-

identical missions (Pandey et al., 2016). Recent studies have addressed the complexity of

SMP in multi-mission systems by formulating joint maintenance and repairpersons as-

signment problems (Chaabane et al., 2020a), studying the SMP in MSS running multiple

non-identical missions (Liu et al., 2020), developing hybrid algorithms that incorporate

differential evolution and deep Q-network methods (Xu et al., 2021b), introducing so-

lution methods for the multi-mission SMP that combine column-generation and genetic

algorithms (O’Neil et al., 2022b), and developing models that consider the stochasticity

of maintenance actions and duration of missions (Liu et al., 2022).
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2.3.1.3.3 Non-deterministic parameters Several parameters in the SMP are inherently

uncertain such as components deterioration processes, mission and break durations, qual-

ity of maintenance actions performed, system state determination and resource consump-

tion. Neglecting the stochastic and/or uncertain nature of many parameters can lead to

the overestimation of system reliability.

Degradation or deterioration

Components and systems are unavoidably subjected to age and usage degradation or /de-

terioration processes. To model ageing deterioration processes in a SM setting, compo-

nents’ lifetimes are commonly assumed to follow the exponential or Weibull distribu-

tions. Since failure rates are constant for the exponential distribution, corrective replace-

ments of failed components are the only maintenance option available. In contrast, the

Weibull distribution can be used to describe components with increasing, constant, or

decreasing failure rates, and offers the possibility to include IM in SMP. In these time-

dependent degradation models, usage intensity is not accounted for.

To address this limitation, various models have been proposed, such as those that

evaluate component failures based on their health condition (Khatab et al., 2018b), use

the non-homogeneous stochastic Poisson process to estimate average numbers of com-

ponent failures (Kamal et al., 2021), consider different types of failure modes such as

hard, soft, maintainable, and unmaintainable failure modes (Pandey and Zuo, 2014; Ruiz

et al., 2020), and use deep learning algorithms to predict component failure probabilities.

Some models use deep learning algorithms to predict component failure probabilities

(Hesabi et al., 2022; O’Neil et al., 2022a), and others use statistical analysis and stochas-

tic processes to estimate average numbers of failures and determine optimum mainte-

nance plans (Ikonen et al., 2020). Some studies propose new variations of the SMP that

account for uncertain operating conditions. These studies include developing new vari-

ants of the SMP in which the performance capacity and states transition intensities are

uncertain and represented by fuzzy numbers (Cao et al., 2018b), modelling operating

environments randomness as a random shock process that directly impacts the failure

process of the components (Khatab et al., 2020b), and proposing stochastic programming

approaches for SMP under uncertainties in future operating conditions (Ghorbani et al.,

2022).
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System state determination

The vast majority of SMP papers assume that system and component deterioration/ degra-

dation levels are perfectly known. However, imperfect observations/sensors introduce

additional uncertainty in the determination of components’ states and effective ages. A

limited number of papers in SM literature have addressed this by formulating nonlinear,

discrete, chance-constrained programming optimisationmodels that deal with diagnostic

uncertainty of built-in test equipment (Lv et al., 2011), using Bayes’ theorem and prob-

ability analysis to obtain component state distributions based on uncertain diagnostic

results (Haseen et al., 2015), proposing fuzzy multi-objective models to maximize fuzzy

reliability of each subsystem and developing robust SM strategies to identify optimal

maintenance actions for binary-state systems under imperfect observations (Jiang and

Liu, 2020a).

Duration of missions and maintenance breaks

SMP papers generally assume that the duration of missions and maintenance breaks are

known and constant, but this is a strong assumption that may not hold true in real-world

applications and engineering practices, as it can be challenging to estimate the exact du-

ration of missions and breaks. Stochastic mission length and maintenance duration have

been scarcely investigated in the SM literature. Some studies have used probability distri-

butions (e.g., Gamma and Triangular) to account for uncertain durations (Djelloul et al.,

2015; Khatab et al., 2017b,a; Sun et al., 2021), while others have utilized discrete random

variables (Gao et al., 2021) or fuzzy values (Gao et al., 2021; Cao et al., 2018b; Kamal

et al., 2021). Studies have shown that the stochastic nature of failure times, mission du-

ration, operation time, and effective age lead to uncertainty about the effective age of

components at the beginning of the next mission (Jiang and Liu, 2020b). The sequence of

maintenance actions also impacts the chance of completing maintenance actions if there

is stochasticity (Liu et al., 2018, 2022).

Quality of maintenance action

Most papers dealing with imperfect maintenance assume that both age reduction and ad-

justment parameters corresponding to maintenance actions are constant. However, it is

difficult to precisely evaluate the quality of maintenance actions as these are significantly
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affected by various factors such as the qualification and the degree of expertise of the

repairperson, the maintenance methods and tools used, and natural variability. There-

fore, several recent studies have started addressing this issue by considering stochastic

approaches to describe the maintenance improvement by using a known probability dis-

tributions (e.g., Gamma and Triangular) for the age reduction coefficient (Khatab and

Aghezzaf, 2016b; Cao and Duan, 2021a; Lan et al., 2017; Shahraki et al., 2020), cognitive

reliability and error analysis method (CREAM) to calculate human reliability (Zhao et al.,

2018), triangle membership function to balance the relationship between maintenance

action and cost (Chen et al., 2019), discrete random variables to represent the mainte-

nance actions and their quality (Li et al., 2021), Choquet integral (Chen and Wang, 2001)

based on λ-fuzzy measure to evaluate the capability of maintenance teams (Zhang et al.,

2019a), and incorporating deep Q-network method to approximate the effectiveness of

maintenance actions (Xu et al., 2021b).

Resource consumption

Resource consumption of maintenance actions is typically considered deterministic, but

due to uncertain judgments, unpredictable conditions, or human errors, the uncertainty

related to resource consumption is unavoidable, and ignoring it may lead to ineffective

decisions that expose systems to risks. Few studies in the SM context have considered

the uncertainty in resource consumption. Various methods have been used to account

for this uncertainty. These include for example using a normally distributed mainte-

nance duration with a chance-constrained method to restrict the feasible region so that

the solution confidence level exceeds a certain probability (Ali et al., 2011a, 2013), using

interval numbers for parameters such as time, cost, weight, and volume (Gupta et al.,

2014), considering the repair time and cost of each component as fuzzy numbers (Haseen

et al., 2015), and using homogeneous continuous-time Markov process for MSS where the

time for each maintenance task can be arbitrarily distributed (Chen et al., 2021).

2.3.2 Categorisation of solution methods

The main challenge for most SMP models is that their formulations are difficult to solve

optimally, especially for industrial-size problems that would allow practitioners to imple-

ment and use the SMP for their many systems and repairpersons. Rice (1999) proved that
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the basic SMP is NP-hard and so are all its extensions implying that computational effort

increases exponentially with problem size. Different methodologies and techniques are

used for solving the SMP which could be clustered into two groups: exact and heuristics

approaches.

Figure 2.5: Distribution of references by solution methods

2.3.2.1 Exact algorithms

Exact solution methods constitute the majority of methods employed to solve SMOP.

Such solution methods are total enumeration (Rice et al., 1998), search space reduction

(Rajagopalan and Cassady, 2006), depth-first search algorithms (Cao et al., 2016b), and

branch-and-bound type procedures (Xia et al., 2022), max-min approach (Schneider and

Cassady, 2015), sequential construction (Galante et al., 2020), and two-phase approach

(Diallo et al., 2018). Most SMP papers with exact solution methods are computationally

expensive and suitable only for small to medium-sized problems (fewer than 20 compo-

nents). Ikonen et al. (2020) propose two convexified SM optimisation models to improve

solution efficiency, including a choice between replacement or a combination of replace-

ment and repair. The improvements enable the convexified models to tackle large-scale

SM optimisation problems with up to 1000 system components.
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2.3.2.2 Heuristics, meta-heuristics and simulation

Given that the SMP is computationally expensive to solve using most of the proposed

exact methods, various other approaches such as general heuristics, meta-heuristics, sim-

ulation and deep-learning-based approaches are used to quickly find near-optimal solu-

tions.

Heuristic-based solution approaches

The original SM paper Rice et al. (1998) proposes two heuristic methods to find the com-

ponents to be repaired to yield the largest reliability increase with and without consid-

ering resources. Subsequently, several studies utilized general heuristics to handle SMPs

(Thibaut and Jacques, 2006; Khatab et al., 2007; Liu and Jiang, 2018; Ahadi and Sullivan,

2019; Zhou et al., 2020; Jiang and Liu, 2020a; Sun et al., 2021, 2022).

Meta-heuristic-based solution approaches

Due to their ease of use and adaptability, evolutionary algorithms such as genetic algo-

rithms (GA) (Holland, 1975) and differential evolution (DE) (Storn, 1995) algorithms are

widely used as solution approaches for the SMP. Cassady et al. (2003) first used GA to

find the best maintenance strategy for a large-scale SMP. Subsequently, many studies also

used GA to solve large-size instances of the SMP (Cassady et al., 2003; Liu et al., 2009;

Chen et al., 2012; Dao et al., 2014; Dao and Zuo, 2015; Sharma et al., 2017; Dao and Zuo,

2017b; Zhao et al., 2018, 2019b; Chaabane et al., 2020a; Shahraki et al., 2020; Ruiz et al.,

2020; Gao et al., 2021; Li et al., 2021; Chen et al., 2021; Cao and Duan, 2021a; Liu et al.,

2022; Tang et al., 2022).

In addition to GA, the differential evolution algorithm, which is another evolutionary

algorithm, is used intensively in SMP optimisation. Pandey et al. (2013b) are the first to

use differential evolution (DE) as a solution approach for large-size instances of the SMP.

Various studies followed suit and used DE (Pandey et al., 2013a; Pandey and Zuo, 2013,

2014; Dao et al., 2014; Pandey et al., 2016; Xu et al., 2016a; Guo et al., 2016; Xu et al.,

2021b).

Besides evolutionary algorithms, other heuristic methods are used such as simulated

annealing algorithm (SA) (Khatab et al., 2008b; Duan et al., 2018; Jiang and Liu, 2020b;

Cao and Duan, 2021b), extended great deluge (EGD) (Burke et al., 2004), particle swarm
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optimisation (PSO) (Lv et al., 2011; Chen et al., 2018a, 2019), sequential game algorithm

(SGA) (Yang et al., 2018), and ant colony optimisation algorithm (ACO) (Liu et al., 2018;

Sun and Sun, 2021).

Hybrid solution approaches

Several hybrid algorithms are used to solve the SMP. Lust et al. (2009) develop an al-

gorithm combining a construction heuristic with Tabu search in Cassady et al. (2001a).

Zhu et al. (2011) put forward the same resolution algorithm to improve the quality of

results and accelerate the convergence of the SMP for a machining line. Pandey et al.

(2012) use a hybrid evolutionary algorithm of PSO and DE to solve a binary-state SMP.

Zhang et al. (2020) propose a hybrid DE and gravitational search algorithm to solve a

complex combinatorial SMP considering energy consumption. Zhang et al. (2019a) pro-

pose another two-phase method that integrates fuzzy Choquet integral (Chen and Wang,

2001) and multi-objective artificial bee-colony algorithm (Yahya and Saka, 2014) to opti-

mise a multi-objective SMP. Xu et al. (2021b) develop a hybrid algorithm for the multi-

mission SMP for a moderate-size series-parallel system by combining a discrete DE for

searching the optimal maintenance action in large-scale discrete action spaces and a deep

Q-network method for approximating the effectiveness of maintenance actions and facil-

itating the agent training. O’Neil et al. (2022b) propose a solution method for the multi-

mission SMP based on a column-generation framework in which subproblems are solved

using a GA. The proposed hybrid algorithm is shown to obtain near-optimal solutions

and outperforms other metaheuristic solution methods. It is also shown to be capable of

solving large-scale systems composed of many of both parallel and k-out-of-n:G subsys-

tems with hundreds of components in a reasonable amount of time.

Simulation-based Approaches

Simulation-based methods offer a powerful means for evaluating system reliability due

to the modelling flexibility that it offers regardless of the type and dimension of the prob-

lem (Faulin et al., 2010). Accordingly, many studies utilized simulation-based approaches

to handle complex SMPs (Cassady et al., 2001a; Yu and Schneider, 2003; Schneider and

Cassady, 2004; Lv et al., 2011; Maaroufi et al., 2013b,a; Cao et al., 2016a; Sharma et al.,

2017; Dao and Zuo, 2017a; Cao et al., 2017; Shahraki and Yadav, 2018; Liu et al., 2018;
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Zhao et al., 2019a; Shahraki et al., 2020; Yang et al., 2018). Despite the efficiency of the

simulation-based methods in dealing with complex SMPs, they become relatively time-

consuming as the number of SM actions increase.

In this section 2.3, the identified SMP papers were classified and reviewed accord-

ing to their formulation and solutions characteristics. Features sufficiently covered and

shortcomings were identified. In what follows, a selection of key representative models

of the state-of-the-art SMP formulations and solution methods.

2.4 Selective maintenance models

This section begins with a general formulation of the SMP followed by the presentation

of 5 models representative of recent advances in the SMP: Diallo et al. (2019b); Yang et al.

(2018); Khatab et al. (2017b); Liu et al. (2018); Shahraki et al. (2020). These models have

been selected to provide the maximum coverage of the characteristics explained above

while offering the most recent, novel and advanced formulations and solution methods.

The goal is to explain the proposed models and their respective strengths and weaknesses

to assist practitioners and researchers in choosing the most suitable model for specific

maintenance situations. For each of the four models, the key features and characteristics

are emphasized, along with the model’s definition, formulation, solution method, and

limitations.

As shown in Table 2.4, the group of 5 selected SMP models cover the following fea-

tures: k-out-of-n systems, single-level and fleet-level maintenance, binary or multi-state

components/systems, stochastic dependence, single or multiple repairpersons, imperfect

maintenance, single mission and multi-missions and non-deterministic parameters such

as duration of missions, quality of maintenance, and resource consumption.

2.4.1 Generic formulation for SMP

Given a multi-component system operating a mission of duration U following a mainte-

nance break of duration T0, the SMP aims to determine an optimal maintenance plan (i.e.,

components, maintenance levels, and repair crew assignment) with one of the following

two objectives:
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Table 2.4: Classification of Prominent SM Models

Articles System
confi
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System
level
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Syst.d
ep

end
ency

#
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ep

airp
ersons
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aint.d

egree

O
p
tim

.criteria

P
lanning

horizon

Stoch.p
aram

.

Diallo et al. (2019b) CP Single BSS, Ind. many Impf.,M Max R Id.M Dtr.
BSC

Yang et al. (2018) SP Fleet BSS, Ind. many Impf. Max R Un.M Dtr.
BSC

Khatab et al. (2017b) SP Single BSS Ind. one Impf.,M Min MC Id.M Dtr.
BSC MD

MBD

Liu et al. (2018) SP Single MSS, Ind. one Impf. Max R Id.M Dtr.
MSC RC

MBD

Shahraki et al. (2020) S Single MSS, Stoch. one Impf. Max R, Id.M Dtr.,
MSC Min RV MQ

• Maximize the system reliability R(U ) during the next mission under maintenance

budget C0. The resulting SM optimization problem (SMP-MaxRel) is formulated as:

SMP-MaxRel : maxR(U )

s.t. C(xijlr) ≤ C0
T (xijlr) ≤ T0
xijlr ∈ {0,1}

• Minimize the total maintenance cost C under a required minimum reliability level

R0 during the nextmission. The resulting SM optimization problem (SMP-MinCost)

is formulated as:

SMP-MinCost : min C

s.t. R(U,xijlr) ≥R0

T (xijlr) ≤ T0
xijlr ∈ {0,1}
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In the above formulations, xijlr is a binary decision variable indicating the assignment or

not of repairperson r to perform maintenance level l on component j of subsystem i.

2.4.2 SMP with multiple repairpersons for complex reliability structures

The majority of SM models consider the basic series-parallel RBD and do not consider

the practical industrial situations where multiple repairpersons are available to carry out

maintenance actions. Indeed, in many industrial settings such as manufacturing, airline

and maritime industries, inspection and maintenance tasks are assigned to several re-

pairpersons. The resulting optimization problem is then composed of a SMP in addition

to a repairpersons assignment problem (RAP). Solving these two problems sequentially

(SMP first followed by RAP) will usually provide suboptimal decisions. Therefore, SMP

and RAP should be considered simultaneously, leading then to the joint SM and repair-

persons assignment problem (JSM-RAP) developed in (Khatab et al., 2018c; Diallo et al.,

2017). This new variant of SMP is obviously more complex to solve to optimaility and

efficient solution methods are needed. Dealing with such issue, a two-phase solution

approach is developed in Diallo et al. (2019b) and summarized in what follows.

The main idea behind the two-phase solution approach is to formulate the Joint Se-

lective Imperfect Maintenance and Repairperson Assignment Problem (JSM-RAP) for

complex multi-component k-out-of-n systems as a binary integer programming problem

(BIP). The first phase consists on generating feasible maintenance patterns each of which

is a combination of components, maintenance levels and repairpersons. The second phase

aims to select the appropriate mix of patterns that either maximize the system’s reliability

or minimize the total maintenance cost.

For illustration of maintenance patterns generation, let us consider a system where

the RBD of the ith subsystem is composed of two components Ei1 and Ei2 in parallel

(i.e., 1-out-of-2 structure). Only one repairperson is available to perform two common

maintenance levels: do-nothing (l=0) and replacement (l=1). There are then 4 possible

maintenance patterns defined as:

00
 ;

01
 ;

11
 ;

10
 ,
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where the first pattern means that no maintenance is performed on both components

during the scheduled break. The second pattern means that only component Ei2 is re-

placed, while in the third pattern 3 both component Ei1 and Ei2 are replaced. Dealing

with the fourth pattern, only component Ei1 is replaced. After generating the set Pi of
patterns for each subsystem i, the BIP version of the MINLP SMP-MaxRel to maximize

the system reliability can be formulated as follows:

[SMP ]BIP : max
xip

ln(R) =
I∑
i=1

Pi∑
p=1

ln(Rip)xip (2.1a)

s.t.
Pi∑
p=1

xip = 1 ∀i (2.1b)

I∑
i=1

Pi∑
p=1

Cip xip ≤ C0 (2.1c)

I∑
i=1

Pi∑
p=1

Tipr xip ≤ T0 ∀r (2.1d)

xip ∈ {0,1} ∀i,∀p (2.1e)

where p ∈ {1, . . . , Pi} is the pth pattern generated for subsystem i. Tipr is the total work

time of repairperson r on subsystem i under pattern p, and Cip is the total maintenance

cost of pattern p for subsystem i.

In the above optimisation problem, Constraints (2.1b) ensure that exactly one main-

tenance pattern is selected per subsystem. Constraint (2.1c) guarantees that the total

maintenance cost does not exceed the available maintenance budget. Constraints (2.1d)

ensure that if a repairperson is hired and utilized then the corresponding total mainte-

nance work time does not exceed the break duration. The last constraint (2.1e) defines

the binary decision variable xip used in the formulation.

While the two-phase approach proposed by Diallo et al. (2019b) has been found to be

effective for small to medium-sized instances of JSM-RAP, it becomes impractical to deal

with industrial-sized instances where the number of components, maintenance levels,

and repairpersons leads to a huge number of patterns to generate. To solve the JSM-

RAP for large-scale systems, O’Neil et al. (2022b) developed a Column Generation (CG)

based heuristic algorithm, where subproblems are solved using Genetic Algorithm (GA).

Future extensions in this area should focus on developing better CG schemes, finding
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exact methods to solve the subproblems generated, embed the CG scheme in the Branch-

and-Bound algorithm to guarantee optimality. Another avenue on the road map would

be to extend the pattern generation scheme to SMP for multistate systems setting.

2.4.3 SMP for fleets of systems

While most SMP consider a single system (system-level SMP), only a few papers deal

with the SMP for fleets composed of several systems (fleet-level SMP). The fleet-level

SMP (FSMP) is naturally more complex that the system-level SMP. Indeed, the number of

systems in the fleet is an additional level of combinations to be explored during the opti-

mization process (Khatab et al., 2020a). The majority of fleet-level SM models deal with

series-parallel systems subjected to a single repair channel, and operate either a single

mission or an identical alternating sequence of missions and scheduled breaks. Dealing

with several repair crews, Khatab et al. (2020a) develop a FSM optimization model for

the joint SM and repairpersons assignment decision making. Yang et al. (2018) propose

a repair frequency-based SM model for a fleet of systems working within non-identical

multi-missions subjected to multiple repairing channels (integrated support stations).

This approach will be discussed in what follows.

The FSM model proposed in Yang et al. (2018) considers a fleet of equipment/system

required to perform M phased missions with short scheduled breaks. The preparation

period of each phase starts at t0. The start and end times of the m-th mission wave are

respectively t1m and t2m. Maintenance for the first wave mission takes place during the

entire preparation period from t0 to t11. This duration usually provides the time to re-

pair all systems. During other mission stages, the break time is too short to fix all the

equipment, meaning that some systems will not meet their initial performance for the

subsequent missions. In this case, reserve systems are dispatched to be used in place of

failed systems. Therefore, the dispatched equipment might vary at each stage but the

fleet as a whole remains unchanged.

Maintenance operations are carried out by multiple Integrated Support Stations (ISS).

Each ISS can only repair one system at a time. The study assumes that an improper

maintenance schedule increases the maintenance hours or frequency leading to a need for

more maintenance resources such as personnel, support equipment, etc. Consequently,

the maintenance cost and equipment downtime will increase. Therefore, the proposed
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FSM optimization model aims to minimize the total number of repairs (N ) of the fleet

during the entire phased mission. This optimization model is formulated as follows:

[SMP ]FS : min N =
M∑
m=1

S∑
s=1

I∑
i=1

umsi (2.2a)

s.t. Fm ≤ F0m ∀m (2.2b)

Dms ≤ t1m ∀m,∀s (2.2c)

Tq ≤ t2M − t0 ∀q (2.2d)

umsi ∈ {0,1} ∀m,∀s,∀i (2.2e)

where Fm and F0m are, respectively, the failure probability and failure probability

threshold of the fleet during the m-th wave mission (m ∈ {1,2, . . . ,M}), Dms is the end

time of maintenance for the sth piece of equipment (s ∈ {1, . . . ,S}) during the m-th wave

mission, Tq (q ∈ {1,2, . . . ,Q}) is the total maintenance time of the qth ISS, and t0 is the start

time of the preparation period for the first wave mission. The basic decision variable of

the problem is umsi , which is equal to 1 if the i-th subsystem of equipment s is repaired

for dispatch in the m-th wave mission.

In the above FSM optimization problem, Constraints (2.2b) ensure the failure prob-

ability of the fleet does not exceed its threshold value for the m-th wave mission. Con-

straints (2.2c) ensure that if a piece of equipment is selected to be repaired during the

m-th wave, the end time Dms of maintenance of the s-th equipment for the m-th wave

mission should be less than the start time of the m-th wave mission. Constraints (2.2d)

force the total maintenance time for each ISS q to not exceed the end time of the last wave

mission. To solve their FSM optimization problem, Yang et al. (2018) develop a sequential

game algorithm with state backtracking. Results obtained from numerical experiments

confirm the conclusions already obtained in (Pandey et al., 2016). These conclusions state

that a high number of scheduled breaks increases maintenance cost, while a low num-

ber of maintenance breaks may increase failures during missions which in turn cause

a higher maintenance cost. This suggests finding the appropriate number of scheduled

breaks which minimizes the maintenance cost.

Dealing with the FSM approach proposed in Yang et al. (2018), some limitations can

clearly be identified. First, the approach merely relies on a restrictive assumption accord-

ing to which all equipment in the fleet share the same mission start and end times. This is
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indeed practically unusual as systems in the same fleet may start their missions at a dif-

ferent time instant. The second main drawback is related to the solution method which

is capable to provide optimal solutions only for small to medium-sized applications.

From the literature review conducted, one may clearly conclude that FSMP is another

stage of the road map where significant contributions can be made on both optimiza-

tion problem modelling and solution methods levels. One may also observe some simi-

larities between the FSMP and the well-known resource-constrained project scheduling

problem (RCPSP). It would therefore be interesting to leverage the recent advances in

RCPSP to formulate and solve large-scale FSMP. Intelligent decomposition methods such

as stabilized column generation with Branch-and-bound should also be investigated for

large-scale FSMP.

2.4.4 SMP under uncertain mission and maintenance break durations

As pointed out earlier, most existing SM models assume that the duration of missions

and breaks are deterministic. However, this assumption may not be valid in industrial

situations as it can be challenging to estimate exactly missions and breaks duration. In-

deed, such duration may be impacted by unpredictable events such as environmental and

operating conditions. To account for such uncertainty, it is more reasonable to consider

the duration of missions and breaks as random variables with appropriate probability

distributions rather than as deterministic values. The first work dealing with these uncer-

tainties in the SMP setting appeared in Khatab et al. (2017a) and will be briefly discussed

below.

In Khatab et al. (2017a), the SMmodel considers a system composed of i series subsys-

tems i ∈ {1, . . . , I} each with Ji s-independent, and possibly, nonidentical parallel compo-

nents Eij {j = 1, . . . , Ji}. During a break, several IM levels are available for each component.

The break duration T0 and the mission durationU are uncertain and modelled as random

variables each governed by a probability distribution. The resulting non-linear stochastic

SM optimization model is formulated as a chance constraint programming model as:
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[SMP ]UNC : min
I∑
i=1

Ji∑
j=1

Lij∑
l=2

C
p
ijlXijxijl +

I∑
i=1

Ji∑
j=1

Lij∑
l=1

Ccijl
(
1−X ij

)
xijl (2.3a)

s.t. R≥ R0 (2.3b)

P r(TMT ≤ T0) > τ (2.3c)
J∑
j=1

(
1−Xij

)
xijl +

J∑
j=1

Xijxijl ≤ 1 (2.3d)

xijl ∈ {0,1} ∀i,∀j,∀l. (2.3e)

where the objective function in Eq. (2.3a) minimizes the total maintenance cost. The

binary decision variable xijl is a binary decision variable: xijl = 1 if maintenance level l

is performed on component Eij , and xijl = 0 otherwise. Parameters Cpijl(C
c
ijl) are the unit

cost of preventive (corrective) maintenance level l, and Xij = 1 is the operational status of

component Eij (1 for working and 0 for failed). Equation (2.3b) refers to the requiredmin-

imum reliability level. Equation (2.3c) is a chance constraint which means that the risk

that the total maintenance time exceeds the break duration is less than 1−τ. Constraints
(2.3d) ensure that at most one maintenance level is chosen for each selected component,

and constraint (2.3e) define the binary decision variable used in the formulation.

In Khatab et al. (2017a), it is shown that assuming a deterministic mission duration

underestimates the true value of the system’s reliability that can lead to negative eco-

nomic and safety outcomes. The proposed SM approach has limitations in terms of solu-

tion methods when dealing with large-scale systems and/or limited maintenance records.

Stochastic models are not efficient in solving large-scale problems as they are intractable

when evaluating expected loss functions and tend to have poor performance when the

sample size is small. Alternatively, Robust optimization (RO) is a more promising ap-

proach for handling uncertainty while ensuring worst-case system reliability without the

need for large sample sizes but still it is crucial to have tractable formulations for RO to

be effective in SMP.

2.4.5 SMP for multistate systems (MSS)

As pointed out previously, most reported works on the SMP merely rely on the assump-

tion that the duration of missions and maintenance breaks are deterministic. However,
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such assumptions may not be valid in many real-life situations where unforeseen events

(operation conditions, human error, etc.) may introduce uncertainty in some SMP in-

put data (e.g, system parameters, mission and break durations, maintenance resources).

Therefore, input data uncertainty should be accounted for to provide more accurate

maintenance and repairpersons assignment decisions (Khatab et al., 2017b,a; Khatab and

Aghezzaf, 2016b). Dealing with SMP in the MSS setting, Liu et al. (2018) develop a SM

optimization model where uncertainties related to the quality of maintenance levels, and

duration of breaks are considered.

In Liu et al. (2018), the MSS investigated is composed of J units and performs an

alternating sequence of identical missions and scheduled breaks. Each unit j (j ∈ {1, · · · , J})
evolves in a set of states Yj = {yj,1, yj,2, . . . , yj,nj } where yj,1 refers to the worst state, yj,nj is

the best state, and nj is the number of states. At time t, the state of unit j is denoted as

Gj(t), whereGj(t) ∈ Yj . The state space of the system is denoted as S = {s1, s2, . . . , sN }where

N is the number of the possible states. Depending on the structure and the structure-

function φ(G1(t),G2(t), . . . ,GJ (t)) of the MSS, the state of the MSS at time t can be derived

from all the units’ states by G(t) = φ(G1(t),G2(t), . . . ,GJ (t)) ∈ S . A maintenance action

aj,(y,z) (y < z) when performed on unit j recovers this unit from state y to state z. The

respective cost and time of a maintenance action aj,(y,z) are denoted as cj,(y,z) and dj,(y,z). In

line with the work in (Khatab et al., 2017b,a; Khatab and Aghezzaf, 2016b), maintenance

and break duration are uncertain and modelled as random variables.

To successfully operate the next mission with the highest possible probability under

the limited maintenance resources, the SM for MSSs in Liu et al. (2018) consists to select

the set of units and the corresponding maintenance actions to be performed during the

break, and then determine the appropriate sequence planning for all the selected main-

tenance actions. To do so, a binary decision variable xv,j,(Gj (t0),z) is used to represent the

sequence of a selected maintenance action aj,(y,z) for unit j if its state is Gj(t0) at the be-

ginning of the break. Roughly speaking, xv,j,(Gj (t0),z) = 1 if the vth maintenance action is

aj,(Gj (t0),z) for unit j, and xv,j,(Gj (t0),z) = 2 otherwise. The subscript v(v ∈ 1,2, . . . , J) is an inte-

ger representing the index of the selected maintenance action. If a planned maintenance

action for a unit has not been completed by the end of a break, the unit will still be used

and considered “as bad as old” for the next mission.
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The resulting total maintenance cost C induced during a break is:

C =
J∑
v=1

J∑
j=1

nj∑
z=Gj (t0)

cj,(y,z) · xv,j,(Gj (t0),z) (2.4)

The resulting SM optimization model aiming to maximize the reliability R for the

next mission under maintenance budget C0 and break is formulated as follows:

[SMP ]MSS : max R (2.5a)

s.t.
J∑
v=1

J∑
j=1

nj∑
z=Gj (t0)

cj,(y,z) · xv,j,(Gj (t0),z) ≤ C0 (2.5b)

J∑
v=1

nj∑
z=Gj (t0)

xv,j,(Gj (t0),z) ≤ 1 ∀j (2.5c)

J∑
j=1

nj∑
z=Gj (t0)

xv,j,(Gj (t0),z) ≤ 1 ∀v (2.5d)

xv,j,(Gj (t0),z) ∈ {0,1} ∀j,∀v. (2.5e)

In the above optimization model, constraint (2.5b) ensures compliance with the bud-

get C0, constraints (2.5c) ensure that at most one maintenance action is selected for each

unit, and constraints (2.5d) ensure that each selected maintenance action is used only

once in the maintenance sequence plan. Finally, constraint (2.5e) refer to the binary deci-

sion variable xv,j,(Gj (t0),z). The saddlepoint approximation is used to simplify the compu-

tation of the multi-dimensional integration involved in evaluating R, and the resulting

optimisation problem is solved using a tailored ant colony optimisation algorithm.

For the SMP for MSS, two main common drawbacks can be identified with most pa-

pers in the literature. First, the existing work merely relies on a single repair crew as-

sumption. As pointed out earlier, this assumption is unrealistic and should be relaxed by

considering multiple repairpersons. This will naturally lead to the issue of the joint SM

and repairpersons assignment problem in the MSS setting. The second drawback identi-

fied is related to the solution methods used to solve the SMP for MSS. Indeed, a variety

of interesting heuristics-based solution methods are developed. However, the resulting

maintenance decisions are therefore near-optimal and may induce errors by, for example,
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overestimating or underestimating the maintenance cost and the reliability of the system

to operate its missions. Therefore, as future research, it would be interesting to develop

efficient solution methods capable of providing exact optimal maintenance and repair

crews assignment decisions even for large-sized SMP in MSS setting. Another avenue

on the roadmap is to develop SM optimsation models for MSS availability optimisation.

This future research issue may involve a simulation-optimization scheme or resorting to

Kronecker algebra (Khatab et al., 2012).

2.4.6 SMP with multiple objective functions

As mentioned in section (2.4.1), the majority of the existing SM models deal with a sin-

gle objective function to either maximize system reliability (SMP-MaxRel) or minimize

maintenance cost (SMP-MinCost). However, in many industrial applications, the mainte-

nance decision-maker is usually faced with finding trade-offs between several conflicting

objective functions. This led to SM models with multiple objective functions. To illus-

trate, the SM model proposed in Shahraki et al. (2020) is briefly discussed.

The SMP investigated in (Shahraki et al., 2020) considers a multi-state serial sys-

tem where J components are s-dependent and subjected to stochastic quality of im-

perfect maintenance. The degradation of component j (j = 1, . . . , J) is assumed gradual

and governed by a continuous homogeneous time Markov process whose state space

Y = {y0, y1, . . . , yn} where y0 and yn are the failed and the best states, respectively. The

state space of the entire MSS is denoted as S = {s0, s2, . . . , sN } where N + 1 is the number

of the MSS states. At a given time t, the state of the system is determined by the random

variable G(t) ∈ S .

Several maintenance levels are available during the break. When maintenance action

of level l is performed on a component, say j, the state zj of component j lies between

the perfect state yn (case of renewal) and the current state yj (case of do nothing). Ac-

cordingly, the new state zj can be computed as zj = yj + l with l ∈ [0,n − j]. For such

maintenance level, te corresponding maintenance time and cost are denoted as cj(yj,zj)

and dj(yj,zj). To select the component to maintain and the maintenance level to perform

on, a binary decision variable xjl is introduced such that xjl = 1 if maintenance level l is

carried out on component j, and xjl = 0 otherwise.
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The system reliabilityR during the next mission is uncertain due to the stochastic IM

actions. Indeed when a maintenance action is performed on a component, the state of

the entire MSS can be one of the possible states in S with a given probability. This un-

certainty is further compounded by the stochastic dependence between components of

the system. To estimate the reliability of the system Shahraki et al. (2020) used a Monte

Carlo simulation.

In the SM model developed in (Shahraki et al., 2020), two objective functions are

considered: the expected system reliability E[R] that should be maximized, and the vari-

anceV[R] of the system reliability that should be minimized. The resulting optimization

problem is formulated as:

maxE[R] =
N∑
i=0

E[R|si]Pr(G(t0) = si) (2.6a)

minV[R] =
N∑
i=0

V[R|si]Pr(G(t0) = si) +
N∑
i=0

E[R|si]2Pr(G(t0) = si) (2.6b)

−

 N∑
i=0

E[R|si]Pr(G(t0) = si)


2

s.t.
J∑
j=1

n−j∑
l=0

dj(yj , yj + l) · xjl ≤ T0 (2.6c)

J∑
j=1

n−j∑
l=0

cj(yj , yj + l) · xjl ≤ C0 (2.6d)

n−j∑
l=0

xjl = 1 ∀j (2.6e)

xjl ∈ {0,1} ∀j,∀l (2.6f)

In the above optimization problem, Equations (2.6c) and (2.6d) refer, respectively, to

the limited break duration and budget constraints. Constraint (2.6e) ensures that only

one maintenance action with specified maintenance level l can be selected for each com-

ponent j. Finally, constraint (2.6d) refers to the binary decision variable xjl . To solve the

proposed SMP, the non-dominated sorting genetic algorithm II (NSGAII) is used to find

the Pareto-optimal solutions.
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As with most multi-objective SM models in the SM literature, the proposed solution

technique is not able to handle large-scale industrial instances and cannot ensure opti-

mality. Also, the system configuration considered in the proposed model is basic (series

structure) with similar components all modelled by homogenous CTMC. Furthermore,

only one repairperson is considered. Such a formulation does not match with many real-

life applications where more complex configurations should be considered.

2.5 Research gaps and future directions

In this paper, various modelling frameworks applied to the SMP were presented, and

the studies were investigated in terms of their solution methodologies. In this section,

research gaps and potential future research guidelines are discussed. The following are

10 areas of a road map proposed to guide the development of the SMP research topic.

1. Existing exact and heuristic methods still lack the ability to handle complex reli-

ability structures and/or very large-scale multi-component systems and/or repair-

persons and/or multiple non-identical missions. Future research should focus on

developing exact or heuristic approaches that can handle these complex and large-

scale cases.

2. Most fleet-level SM models consider series-parallel systems with identical binary-

state components, a single repair channel, and same starting and ending times (i.e.,

synchronous breaks). Future research should consider complex reliability struc-

tures for each system in the fleet, and repairpersons routing for a geographically

dispersed fleet. Furthermore, the fleet SMP shares many similarities with the well-

known resource-constrained project scheduling problem (RCPSP). It would there-

fore be interesting to leverage the recent advances in RCPSP to formulate and solve

large-scale FSMP. Intelligent decompositionmethods such as stabilized column gen-

eration with Branch-and-bound must be developed to address large-scale FSMP.

3. Most studies dealing with multi-state systems employ Markov chains and the Uni-

versal Generating Function to model component deterioration and calculate state

probabilities, while others utilize simulation. Future research should focus on de-

veloping exact solutionmethods for large-scale instances by incorporating a stochas-

tic formulation and considering multiple repairpersons.
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4. Research efforts should be directed towards finding a decomposition approach to

remove the calculation of the multistate reliability from the optimisation phase as

done by Diallo et al. (2018) in the binary state case. Accomplishing such a method-

ology would allow to optimally solve the multistate SMP for large-scale systems.

Another avenue on the roadmap is to develop an analytical formulation of the SMP

for availability optimisation. That may involve a simulation-optimization scheme

or resort to Kronecker algebra.

5. Given the limited number of papers that examine the SMP in the context of struc-

tural dependence, future extensions should focus on incorporating advanced con-

cepts of structural dependence, taking into account the presence of co-located sub-

systems, and improving the assignment of repairpersons to repairs. Also, it should

examine the interactions between failuremodes under stochastic dependence through

the use of copula functions, reliability indices, and state-based interactions.

6. The majority of SM models take into account time and cost as resource constraints,

while assuming an abundance of repair capacity (channels and repair crews). Fu-

ture research should concentrate on addressing the joint maintenance and crew

scheduling problem and creating new methods of decomposition or relaxation to

solve the resulting complex combinatorial problem.

7. Few studies have addressed multi-objective optimisation problems in SMP, yet in

practice maintenance, decision-makers often have multiple objectives to consider.

Future research should focus on developing multi-objective formulations that align

with industry needs and effectivemethods to solve large-scale multi-objective SMPs.

8. The majority of SMP models assume that key parameters such as mission duration,

break lengths, quality of maintenance, and resource consumption are constant and

known. Only a limited number of papers take into account one or two of these

parameters as being stochastic and develop risk-based decision models. In reality,

many of these parameters can be uncertain due to the lack of historical data or the

variability occurring within the system. Therefore, it is crucial to design robust SMP

models that can handle uncertainty.
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9. The joint repairperson assignment extension (JSM-RAP) has proven useful. Future

extensions should focus on new ideas such as workload sharing between repairper-

sons, and the resumability or non-resumability of maintenance actions. Learning

and forgetting curves could also be integrated into the JSM-RAP formulations. A

key assumption in the JSM-RAP is that all repairs can take place without repairper-

sons colliding. This is not always true. In naval vessels, for example, work takes

place in close quarters. Thus, extending the models to consider work interruption

with or without preemption to prioritize certain repairpersons would be intriguing.

10. Recent SMP studies have only just started to explore the potential of artificial in-

telligence (AI) and deep learning techniques, but it is becoming increasingly clear

that these technologies have much to offer. Their ability to analyze large amounts

of data, identify patterns, and make predictions about system behavior can help

decision-makers make more informed decisions about when and how to perform

maintenance. Given the potential benefits, future research should focus more on

the application of AI and deep learning techniques in selective maintenance to im-

prove decision-making and overall system performance.

2.6 Conclusion

This article reviewed the literature on selective maintenance focusing on models that

have been published since the seminal works by Rice et al. (1998) and Rice (1999). These

models were identified, classified, and analyzed using a proposed framework. The article

also provided an overview of well-known selective maintenance models, including their

underlying assumptions and methods. The classification table generated during the re-

view highlighted several areas for future research and development, such as developing

methods that can handle complex and large-scale problems, creating models that ac-

count for asynchronous break periods, incorporating more complex reliability structures

and repair routing for geographically dispersed fleets, and advanced concepts of struc-

tural dependence, addressing the joint maintenance and crew scheduling problem and

developing new methods of decomposition or relaxation to solve complex combinatorial

problems. Additionally, there is a need for robust selective maintenance models that can

handle uncertain parameters, and the application of AI and deep learning techniques to

improve decision-making and system performance.



Chapter 3

Branch-and-price algorithms for large-scale mission-oriented

maintenance planning problems

3.1 Introduction

Many modern systems operate according to alternating sequences of missions and break

periods during which maintenance actions are performed. Such multi-component sys-

tems are encountered in traditional manufacturing, production and service industries

where equipment such as production lines, aircraft, ships, and trucks operate continu-

ously until they are interrupted to undergo maintenance. New assets such as unmanned

autonomous vehicles and advanced combat/defensive systems also exhibit such patterns.

The selective maintenance (SM) strategy introduced by Rice et al. (1998) is particularly

suitable for these mission-oriented systems. To improve the ability of such systems to

successfully achieve their subsequent missions, maintenance actions are carried out on

components during the scheduled breaks. Limited maintenance resources such as time,

budget, spare parts, and repair crews restrict the number and levels of maintenance ac-

tivities that can be performed before the next mission. The decision problem that en-

tails selecting the components to maintain and the level of maintenance actions to carry

out is known as the selective maintenance problem (SMP). Furthermore, when the selected

maintenance actions are to be performed by multiple repairpersons, potentially having

different skill levels and costs, the SMP that jointly determines the assignment of tasks to

repairpersons is referred to as the joint selective maintenance and repairperson assignment

problem (JSM-RAP) (Diallo et al., 2017, 2019b). The SMP and its variants have been ap-

plied to many industrial systems such as wind turbines (O’Neil et al., 2022a; O’Neil et al.,

2023a), coal conveyor systems (Liu et al., 2009), machining lines in an engine shop (Zhu

et al., 2011), army tanks (Sharma et al., 2017), nuclear fuel production systems (Zhao

et al., 2019b), aircraft turbine engine systems (Wang et al., 2019), and flow transmission

systems (Liu et al., 2020).

54
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Over the years, various extensions of the basic SMP with different systems structures,

maintenance policies, resource limitations, modelling methods, and solution algorithms

have been proposed to bring the models closer to the realities of industrial and practi-

cal settings. The reader is referred to the recent surveys by Al-Jabouri et al. (2022), Cao

et al. (2018a), and Xu et al. (2015) for a detailed account of the SMP literature. These

extensions can generally be clustered into four groups of characteristics related to the

system, maintenance, mission and mathematical model. System characteristics include

features such as system level (single system or fleet of systems) (Schneider and Cassady,

2004, 2015; Khatab et al., 2020a), system state (binary ormultistate components/systems)

(Meng et al., 1999; Pandey et al., 2013a; Dao and Zuo, 2017a; Yin et al., 2023), and system

dependency (economic, structural, or stochastic) (Xu et al., 2016a; Dao and Zuo, 2017b;

Shahraki et al., 2020). Maintenance characteristics refer to the attributes related to the

execution of maintenance activities. These attributes such as repairpersons’ availability

(ample or limited) (Diallo et al., 2017, 2019b; Chaabane et al., 2018), and the effective-

ness of actions carried out (perfect or imperfect maintenance) (Khatab et al., 2008b; Do

et al., 2015; Khatab et al., 2018b), can significantly affect maintenance decisions and re-

liability achieved. Mission characteristics include features such as mission types (single

or multi-mission) (Zhang et al., 2019b; Chaabane et al., 2020a) and planning horizon

(finite or infinite) (Yu and Schneider, 2003; Maillart et al., 2009). Model characteristics

include two main characteristics: optimization criteria (e.g., reliability/availability max-

imization and/or cost/energy/emissions minimization) (Yu and Schneider, 2003; Hoai

and Luong, 2006; Zhang et al., 2020), and parameter uncertainty and robustness (Jiang

and Liu, 2020a,b). The main challenge for most SMP models is that their formulations

are difficult to solve optimally, especially for industrial-size problems that would allow

practitioners to implement and use the SMP for their many systems and repairpersons.

Rice (1999) proved that the basic SMP is NP-hard, and so are all its extensions, implying

that computational efforts increase exponentially with problem size. Among the solution

approaches proposed for the SMP are general heuristics (Khatab et al., 2007; Lust et al.,

2009; Cao et al., 2018b; Ahadi and Sullivan, 2019; Galante et al., 2020), metaheuristics

(e.g., genetic algorithm (Dao et al., 2014), differential evolution (Pandey et al., 2013b),

and simulated annealing (Jiang and Liu, 2020b)), exact solution approaches, (e.g., total
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enumeration (Rice et al., 1998), search space reduction (Rajagopalan and Cassady, 2006),

depth-first search algorithms (Cao et al., 2016b), branch-and-bound-type procedures (Xia

et al., 2022), the two-phase approach (Diallo et al., 2018)), themax-min approach (Schnei-

der and Cassady, 2015), and machine learning (Liu et al., 2020; Kammoun et al., 2022;

Hesabi et al., 2022; O’Neil et al., 2022a). However, large-scale instances of the problem,

and in particular its JSM-RAP extension, are still challenging to solve due to its combi-

natorial and nonlinear nature. Thus, novel reformulations, approximations and solution

methods that can handle real-life systems consisting of hundreds of components are still

needed (Cao et al., 2018a; Diallo et al., 2019b).

This paper proposes a novel approach based on column-generation (CG) for solving

large-scale instances of the JSM-RAP representative of real industry problems. The pro-

posed approach is closely related to the two-phase approach developed by Diallo et al.

(2019b) to solve moderate-size instances of the problem with imperfect repair and mul-

tiple repair channels. The two-phase approach transforms the JSM-RAP into a multi-

dimensional multiple-choice knapsack problem (MdMCKP) by generating all feasible

combinations (i.e., patterns/columns) of components, maintenance levels and repairper-

sons, and then solving the MdMCKP to optimally select a subset of patterns that min-

imize the total maintenance cost or maximize the reliability for the next mission. Al-

though this approach is shown to be efficient for small-to-medium size instances, its pat-

tern generation scheme runs out of memory for industrial-size instances where the mul-

tiple components, maintenance levels and repairpersons immensely increase the number

of combinations to explore. Furthermore, the MdMCKP is a binary integer program (BIP)

and is one of the most complex members of the Knapsack Problem (KP) family, which

is known to be NP-hard in general (Cacchiani et al., 2022). Thus, an MdMCKP with a

large number of binary variables is extremely challenging to solve to proven optimality

(Zia and Coit, 2010). Another very recent pattern-based approach for solving the JSM-

RAP is proposed by O’Neil et al. (2022b). Unlike the two-phase approach of Diallo et al.

(2019b), which generates all feasible patterns at the outset, they use a CG-based heuristic

algorithm in which the subproblems are solved using the genetic algorithm (GA). Since

a metaheuristic is used to solve the subproblems, no guarantee about the quality of the

obtained solution can be provided, which is a major limitation of their approach.
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Our work builds on the approaches proposed by Diallo et al. (2019b) and O’Neil et al.

(2022b) while avoiding their drawbacks. To the best of our knowledge, this paper pro-

vides the first rigorousCG-based approach for solving the JSM-RAP. Unlike the two-phase

approach (Diallo et al., 2019b), the proposed approach generates maintenance patterns

and adds them to a restricted master problem iteratively and only as needed by solv-

ing a decomposable subproblem. Thus, the number of patterns considered represents a

very small fraction of the total number of feasible patterns. In contrast to the GA meta-

heuristic used by O’Neil et al. (2022b) to solve the nonlinear subproblems, we propose

two readily-solvable reformulations for the subproblem: (1) a piecewise-linear approxi-

mation (PLA) whose accuracy can be improved by increasing the number of breakpoints,

and (2) an exact reformulation into amixed-integer exponential conic optimization (ECO)

problem that can be handled using off-the-shelf solvers. Also, compared to O’Neil et al.

(2022b), our approach features significant improvements. Specifically, CG is embedded

in a branch-and-bound (B&B) tree to construct branch-and-price (B&P) algorithms that

restore solution integrality and guarantee its optimality. Moreover, a stabilization scheme

is applied to accelerate the convergence of CG. Extensive numerical experiments are con-

ducted to compare the performance of the proposed approach vis-à-vis state-of-the-art

solution methods. The approach is then used to solve the largest JSM-RAP instances to

date. In summary, the primary contribution of this paper is a branch-and-price algorithm

with two readily-solvable reformulations for the subproblems, as well as a stabilization

scheme to enhance the convergence of CG.

The remainder of this paper is organized as follows. Section 3.2 describes the multi-

component system structure, its working assumptions, the computation of the resources

available to carry out repairs, and the system reliability formulas. A nonlinear BIP formu-

lation and a full-pattern-enumeration reformulation are developed in Section 3.3. In Sec-

tion 3.4, the proposed B&P algorithms, including the two subproblem reformulations, the

stabilization scheme, a heuristic to generate initial feasible solutions, and the B&B pro-

cedure, are described. Several numerical experiments and the discussion of their results

are presented in Section 3.5. Conclusions are drawn and future extensions are discussed

in Section 3.6.
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3.2 Problem description

In this section, the multi-component system under consideration, along with its work-

ing assumptions and the notation system used in the mathematical formulation of the

problem are described. The imperfect maintenance model and expressions for the total

maintenance cost and duration incurred by the system components during the scheduled

maintenance break and the resulting system reliability are then derived.

3.2.1 System description

The mission-oriented system under consideration is made of s subsystems in series (i.e.,

all subsystems must function for the system to work). Each subsystem i consists of ni
statistically independent repairable binary components Eij (i.e., components transition

between failed and functioning states) connected in parallel (i.e., a subsystem functions

if at least one of its components is functioning). In reliability theory, such a system is said

to have a series-parallel configuration which is commonly encountered in many multi-

component systems. The lifetimes of the components are not necessarily identical but

follow an identical general distribution. The system performs an alternating sequence

of missions and scheduled breaks of finite duration. Maintenance actions are performed

during the breaks to improve the system’s reliability during the following mission.

The system has completed or returned from a mission and is about to undergo main-

tenance activities during the scheduled break of length D0. After the break, the system

will undertake another mission of duration M. At the beginning of the current break,

component Eij is characterized by its current age Bij and operating status Xij (Xij = 1 if

functioning, Xij = 0 if failed). Similarly, at the end of the break, component Eij is char-

acterized by its effective age Aij and operating status Yij (Yij = 1 if functioning, Yij = 0 if

failed).

3.2.2 Main working assumptions

The following assumptions are made:

1. The system consists of multiple, possibly non-identical and stochastically-independent

repairable binary components. The components and the system are either func-

tioning or have failed. This is a reasonable assumption and is supported by many
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examples in the literature (Diallo et al., 2018; Jiang and Liu, 2020a).

2. System components do not age during the break because the age of a component is

mostly operation-dependent (Diallo et al., 2019b). This is also reasonable because

the break durations are typically negligible compared to the mission duration.

3. Maintenance activities are allowed only during the break, while no maintenance

can be performed during the mission. For many mission-oriented systems, it is

impossible to interrupt the mission to carry out any maintenance action.

4. All required limited resources (budget, repairpersons, tools) are available when

needed.

5. Multiple components can be worked on simultaneously without repairpersons col-

liding.

3.2.3 Notation

Table 3.1 lists the indices, sets and parameters used in the mathematical formulation of

the problem. Furthermore, we use the following decision variables:

xijlr =

1 if maintenance level l is performed on Eij by repairperson r,

0 otherwise.
(3.1)

3.2.4 Maintenance levels, costs, and duration

During a scheduled break, corrective maintenance (CM) and preventive maintenance

(PM) actions are performed. The former is carried out on failed components, while the

latter concerns components that are still functioning.

For a failed component Eij , one maintenance level among the available (mij + 1) CM

levels
(
l ∈

{
0,1, . . . , mij

})
must be chosen to be performed. The lowest level (l = 0) and the

highest level
(
l =mij

)
stand for the "Do Nothing (DN)" and the component replacement

options, respectively. Level l = 1 refers to minimal repair (MR) which when performed

brings the component to an "as bad as old" condition. Intermediate values of 1 < l <

mij represent imperfect maintenance (IM) actions which after being performed bring the
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Table 3.1: Table of notation

s number of subsystems in series
i index of subsystems, i ∈ I where I = {1, . . . , s}
ni number of components in parallel in the ith subsystem
j index of components in subsystem i, j ∈ Ji where Ji = {1, . . . , ni}
Eij jth component of subsystem i
mij the highest maintenance level available for component Eij
l index of maintenance levels available for component Eij , l ∈ Lij where Lij =

{
0, . . . ,mij

}
q number of repairpersons available
r index of repairpersons, r ∈ {1, . . . , q}
pi number of maintenance patterns generated for subsystem i
k index of maintenance patterns generated for subsystem i, k ∈ Ki where Ki = {1, . . . , pi}
vr variable repairperson labor cost per unit of time
tcijlr(t

p
ijlr ) duration of CM (PM) when maintenance level l is performed on component Eij

by repairperson r
ccijl(c

p
ijl) cost of CM (PM) when maintenance level l is performed on component Eij

Bij(Aij ) age of component Eij at the start (end) of the break
Aijl age of component Eij at the end of the break if maintenance level l is performed
Xij(Yij ) binary status parameter of component Eij at the start (end) of the break

(1: functioning, 0: failed)
Tikr total work time of repairperson r on subsystem i under pattern k
Cik total maintenance cost of pattern k for subsystem i
C0 maximum maintenance budget available
D0 break duration
M length of next mission
Rcij(M |Aijl ) conditional reliability of component Eij during the next mission given an initial age Aijl
Rik reliability of subsystem i for the next mission under maintenance pattern k
Fik unreliability of subsystem i under maintenance pattern k, Fik = 1−Rik
R overall system reliability during the next mission
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component health condition back to somewhere between "as bad as old" and "as good as

new".

The IM model is developed on the basis of the age reduction concept initially intro-

duced by Malik (1979). Liu et al. (2009) and Liu and Huang (2010) utilize the Kijima

type-II IM model in the SMP to represent imperfect repair, with age reduction depend-

ing on maintenance cost and a characteristic constant that reflects a component’s relative

age. The approach yields better solutions than methods that do not consider IM. Pandey

et al. (2013b) redefine the age reduction model and develop a characteristic constant

based on effective age and mean residual life (MRL). Zhu et al. (2011) adopt a reliability-

centred maintenance approach in the SMP context using a hybrid hazard rate model for

IM. Pandey and Zuo (2013) propose a new hazard-rate adjustment factor dependent on

effective age and maintenance resources. Khatab et al. (2018b) extend the degradation

reduction coefficient to model IM in a multi-component SMP under periodic inspection,

assuming component-specific degradation processes and threshold-based failure, with

maintenance actions determined by degradation reduction. The age reduction-based

model (Malik, 1979) is considered in this paper, given its capacity to determine relia-

bility in a closed-form expression, as opposed to Markovian-based approaches.

Here, IM is modelled according to the age reduction approach (Malik, 1979): when a

CM of level l is performed by repairperson r on component Eij , its corresponding age Bij
is multiplied by an age reduction coefficient θijl

(
0 ≤ θijl ≤ 1

)
. Any CM action incurs a

cost ccijl and requires tcijlr units of time.

Similarly, if component Eij is still functioning, it can be subjected to a PM action

of level l ∈
{
0,2, . . . , mij

}
. Note that minimal repair (l = 1) is not available for working

components. Intermediate values of l
(
2 ≤ l < mij

)
represent IM actions that rejuvenate

the component by reducing its age by a factor ϕijl
(
0 ≤ ϕijl ≤ 1

)
. Any PM action incurs a

cost cpijl and has a duration tpijlr .

According to the above IM model, the effective age Aijl of a given component Eij at

the end of the break is computed as a function of its initial operating status Xij and the

maintenance level l performed, as follows:

Aijl = Bij
(
Xijϕijl +

(
1−Xij

)
θijl

)
. (3.2)
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The total PM and CM costs are computed as:

CPM =
s∑
i=1

ni∑
j=1

mij∑
l=2

q∑
r=1

(
vrt

p
ijlr + c

p
ijl

)
Xijxijlr , (3.3)

CCM =
s∑
i=1

ni∑
j=1

mij∑
l=1

q∑
r=1

(
vrt

c
ijlr + c

c
ijl

)(
1−X ij

)
xijlr , (3.4)

where the term (1−Xij) ensures that CM actions are available only for failed components.

The total maintenance cost is given by C = CPM +CCM . Likewise, the total time Tr spent

by each repairperson r to carry out their maintenance duties is computed as:

Tr =
s∑
i=1

ni∑
j=1

(1−X ij) mij∑
l=1

tcijlrxijlr + Xij

mij∑
l=2

t
p
ijlrxijlr

 . (3.5)

3.2.5 System reliability during the next mission

To compute the system reliabilityR during the next mission, we first compute the condi-

tional reliability Rcij(M |Aijl ) of component Eij given that its initial age is Aijl . Denote by

Rij(t) the unconditional reliability function of component Eij . Then, the reliability dur-

ing the next mission if Eij undergoes a maintenance action of level l ∈ {0, . . . ,mij} is given
by:

Rijl =
Rij

(
Aijl +M

)
Rij

(
Aijl

) . (3.6)

Given that each component undergoes exactly one maintenance action of level l (includ-

ing "Do-Nothing" when l = 0), and given that only one repairperson is needed to perform

that maintenance action, the conditional reliability Rcij(M |Aijl ) is then obtained as:

Rcij(M |Aijl ) =
mij∑
l=0

q∑
r=1

Rijlxijlr . (3.7)

Given that the ith subsystem has a parallel configuration, its reliability Ri during the next

mission is then given by:

Ri = 1−
ni∏
j=1

1− mij∑
l=0

q∑
r=1

Rijlxijlr

 . (3.8)
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Finally, the reliability R of the whole series-parallel system is computed as follows:

R =
s∏
i=1

Ri =
s∏
i=1

1− ni∏
j=1

1− mij∑
l=0

q∑
r=1

Rijlxijlr


 . (3.9)

3.3 Mathematical formulation and pattern-based reformulation of the JSM-RAP

The JSM-RAP dealt with in this paper aims to jointly select the set of components to be

maintained, the maintenance levels to be performed on the selected components, and the

repairpersons to carry out the selected maintenance actions such that the system relia-

bility for the next mission is maximized given predetermined maintenance budget and

break duration. In this section, the nonlinear BIP formulation of the JSM-RAP and its

reformulation with full patterns enumeration by Diallo et al. (2019b) are briefly exposed.

3.3.1 Nonlinear BIP formulation

The JSM-RAP is formulated as follows:

max R =
s∏
i=1

1− ni∏
j=1

1− mij∑
l=0

q∑
r=1

Rijlxijlr


 (3.10a)

s.t.

s∑
i=1

ni∑
j=1

mij∑
l=2

q∑
r=1

(
vrt

p
ijlr + c

p
ijl

)
Xijxijlr

+
s∑
i=1

ni∑
j=1

mij∑
l=1

q∑
r=1

(
vrt

c
ijlr + c

c
ijl

)(
1−X ij

)
xijlr ≤ C0 (3.10b)

s∑
i=1

ni∑
j=1

(1−X ij) mij∑
l=1

tcijlrxijlr +Xij

mij∑
l=2

t
p
ijlrxijlr

 ≤D0 ∀r (3.10c)

mij∑
l=1

q∑
r=1

xijlr = 1 ∀i,∀j (3.10d)

xijlr ∈ {0,1} ∀i,∀j,∀l,∀r.
(3.10e)

Eqn. (3.10a) is the objective function that maximizes the system’s reliability for the next

mission. Constraint (3.10b) states that the total cost of maintenance cannot exceed the
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maintenance budget. Constraint (3.10c) ensures that the gross time of the maintenance

actions assigned to each repairperson does not exceed the break duration. Constraint

(3.10d) ensures that each component receives exactly onemaintenance action of any given

level.

The above formulation is a nonlinear BIP, which makes finding optimal solutions for

real applications computationally expensive. To alleviate this computational burden, Di-

allo et al. (2019b) presented an equivalent linearized version of the above formulation

using a complete enumeration of the maintenance patterns for each subsystem.

3.3.2 Reformulation with full patterns enumeration

Amaintenance pattern is defined as the combination of components and their correspond-

ing maintenance levels to be performed by repairpersons during the break. Accordingly,

for a given subsystem i, a maintenance pattern can be represented as a matrix of dimen-

sion q × ni whose elements are the maintenance levels performed on the ni components

of the subsystem. To illustrate the generation of maintenance patterns, let us consider a

single subsystem (s = 1) composed of three (n1 = 3) components in parallel such that all

three are "failed" at the start of the break. Let us assume that two (q = 2) repairpersons

are available to carry out four (mij + 1 = 4) common maintenance levels on the two com-

ponents: Do Nothing (l = 0), Minimal Repair (l = 1), Imperfect Maintenance (l = 2), and

Corrective Replacement (l = 3). The following matrix is an example of a maintenance

pattern: 0 3 0

1 0 2


The above maintenance pattern can be interpreted as follows: the first repairperson will

replace the second component while the second repairperson will carry out a minimal

repair on the first component and imperfect maintenance on the third component. This

pattern yields the following feasible values of the decision variables: x1101 = 1, x1231 = 1,

x1301 = 1, x1112 = 1, x1202 = 1, x1322 = 1, and all others are equal to 0. In general, each

pattern (indexed by k) consists of a binary vector whose elements are defined as:

xkijlr =

1 if maintenance level l is performed on Eij by repairperson r,

0 otherwise.
(3.11)
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Herein, we use subsystem-specific patterns. Denote by pi the number of maintenance

patterns corresponding to the ith subsystem. To each pattern k (k ∈ Ki = {1, . . . ,pi}) cor-
respond a total maintenance cost Cik and a reliability value Rik, as well as a list of to-

tal maintenance times Tikr (r = 1, . . . , q) spent by each repairperson r to perform their

assigned maintenance actions on the components of subsystem i. These quantities are

computed as follows:

Cik =
ni∑
j=1

q∑
r=1

(1−X ij) mij∑
l=1

(
vrt

c
ijlr + c

c
ijl

)
xkijlr +Xij

mij∑
l=2

(
vrt

p
ijlr + c

p
ijl

)
xkijlr

 , (3.12)

Tikr =
ni∑
j=1

(1−X ij) mij∑
l=1

tcijlrx
k
ijlr +Xij

mij∑
l=2

t
p
ijlrx

k
ijlr

 , (3.13)

Rik = 1−
ni∏
j=1

1− q∑
r=1

mij∑
l=1

Rijlx
k
ijlr

 . (3.14)

The following binary decision variable is introduced to represent the selection of pat-

tern k for subsystem i:

λik =

1 if pattern k is selected for subsystem i,

0 otherwise.
(3.15)

By combining Eqns. (3.3)–(3.9) and (3.12)–(3.14), the JSM-RAP (3.10) can equivalently

be formulated as follows:

maxR =
s∏
i=1

pi∑
k=1

Rikλik (3.16a)

s.t.:
s∑
i=1

pi∑
k=1

Cikλik ≤ C0 (3.16b)

s∑
i=1

pi∑
k=1

Tikrλik ≤D0 ∀r (3.16c)

pi∑
k=1

λik = 1 ∀i (3.16d)

λik ∈ {0,1} ∀i,∀k. (3.16e)
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Let Fik = 1 − Rik be the unreliability of subsystem i when maintenance pattern k is

selected. The objective function in the above model is linearized by applying the natural

logarithm function to both sides of Eqn. (3.16a), leading then to:

ln(R) =
s∑
i=1

ln

 pi∑
k=1

(1−Fik)λik

 (3.17)

=
s∑
i=1

pi∑
k=1

ln(1−Fik)λik ,

where the last equality is valid because the variables λik are binary and, due to Eqn.

(3.16d), only one of them is equal to 1 for each subsystem.

With that, the fully-linearized formulation of the JSM-RAP becomes:

max ln(R) =
s∑
i=1

pi∑
k=1

ln(1−Fik)λik (3.18a)

s.t.:

(3.16b)− (3.16e). (3.18b)

It should be noted that in the above formulation (3.18), all binary parameters xkijlr are

fully defined whenever a pattern k is selected for subsystem i through the decision vari-

able λik. However, except for small problem instances, generating all feasible patterns

for all subsystems is prohibitively expensive.

3.4 Branch-and-price algorithms

An alternative approach that combines CG with B&B to form what is commonly known

as the B&P algorithm (Bulhões et al., 2018; Dell’Amico et al., 2020; Agius et al., 2022) is

proposed to solve the JSM-RAP. In what follows, the proposed approach is described in

detail.

3.4.1 Column-generation

Rather than generating all feasible patterns at the outset, the CG method operates by

generating them iteratively and only as needed. First, the restricted master problem is

presented, followed by the initialization and column-generation process. Finally, the two

reformulations for the subproblems are presented.



67

3.4.1.1 Formulating the restricted master problem

First, the integrality constraint in (3.18) is relaxed such that it can be solved as a linear

program (LP), referred to as the master problem, formulated as follows:

[MP ] : max ln(R) =
s∑
i=1

pi∑
k=1

ln(1−Fik)λik (3.19a)

s.t.:
s∑
i=1

pi∑
k=1

Cikλik ≤ C0 (π) (3.19b)

s∑
i=1

pi∑
k=1

Tikrλik ≤D0 ∀r (σr) (3.19c)

pi∑
k=1

λik = 1 ∀i (θi) (3.19d)

λik ≥ 0 ∀i,∀k, (3.19e)

where the symbol between parentheses next to each constraint denotes its dual vari-

able/multiplier.

The CG algorithm is initiated with only a small subset of patterns/columns, corre-

sponding to the index sets K′
i ⊂ Ki , i = 1, . . . , r, to construct a restricted version of MP re-

ferred to as the restricted master problem (RMP ). In every iteration, upon solving RMP ,
the dual variables π, σr and θi are used to look for new columns that can potentially im-

prove its optimal value, i.e., columns with a positive reduced cost. For each subsystem, a

subproblem (SP i) is solved to identify the column (indexed by k̄) with the most positive

reduced cost, if one exists, to be added to RMP in the next iteration, i.e., K′
i :=K′

i ∪ {k̄}.

3.4.1.2 Initializing the CG algorithm

To start the CG algorithm, an initial RMP must have a feasible solution to ensure that

proper dual information is passed to the pricing subproblems. Accordingly, getting a

"good" initial restricted master problem is crucial (Barnhart et al., 1998).

The initialRMP starts with one column for each subsystem i. Each initial column has

(mij+1)×q×ni binary elements xkijlr representing all maintenance choices for each repair-

person on components in each subsystem i. To find potentially good starting columns, a
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two-phase heuristic is proposed as follows:

• Phase one: Extracting the optimal value of RMP

1. Set the selected maintenance action to “Do Nothing" (i.e., l = 0 for all initial

columns).

2. Calculate the reliability Ri for each subsystem, solve the JSM-RAP in Eqns.

(3.10a)–(3.10e), and find the optimal value of RMP .

• Phase two: Generating initial columns through a greedy heuristic approach

1. Based on the reliability calculation for each subsystem in the first phase, select

the most reliable component in the least reliable subsystem

2. Apply the highest maintenance level available to the selected component such

that both its cost and duration satisfy the available budget or break duration.

3. Save the generated pattern and recalculate the reliability for each subsystem.

Exclude any subsystem from the subsequent iterations if its reliability Ri ex-

ceeds the optimal value of RMP (found in phase-one).

4. Repeat steps 1 to 3 until no additional maintenance action can be applied with-

out violating at least one of the constraints.

3.4.1.3 Generating maintenance patterns

In every iteration of the CG algorithm, a maintenance pattern is generated for the entire

system by solving a pricing subproblem thatmaximizes the reduced costRC =
∑s
i=1 ln(1−Fi)−∑s

i=1Ciπ −
∑s
i=1

∑q
r=1Tirσr −

∑s
i=1θi , which can be decomposed by i (subsystem) into r

subproblems. In this formula, the cost Ci and the rth repairperson’s maintenance time

Tir are linear functions of xijlr . Furthermore, Fi has to be expressed as a function of xijlr .

Since xijlr is binary and only one maintenance level is selected for each component (i.e.,
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l=0

∑q
r=1xijlr = 1), and using Eqn. (3.14), Fi and ln(Fi), respectively, can be rewritten as:

Fi =
ni∏
j=1

1− q∑
r=1

mij∑
l=0

Rijlxijlr


=

ni∏
j=1

q∑
r=1

mij∑
l=0

Fijl xijlr , (3.20)

ln(Fi) =
q∑
r=1

ni∑
j=1

mij∑
l=0

ln(Fijl)xijlr , (3.21)

where Fijl = 1−Rijl is the unreliability of component Eij when it undergoes maintenance

action of level l during the scheduled break. With that, the subproblem corresponding to

subsystem i (i = 1, . . . , s) is formulated as follows:

[SP i] :max ln(1−Fi)−Ciπ −
q∑
r=1

Tirσr −θi (3.22a)

s.t.:

ln(Fi) =
ni∑
j=1

mij∑
l=0

q∑
r=1

ln(Fijl)xijlr (3.22b)

Ci =
ni∑
j=1

q∑
r=1

Xij mij∑
l=2

(
vrt

p
ijlr + c

p
ijl

)
+
(
1−X ij

) mij∑
l=1

(
vrt

c
ijlr + c

c
ijl

)xijlr (3.22c)

Tir =
ni∑
j=1

Xij mij∑
l=2

t
p
ijlr +

(
1−X ij

) mij∑
l=1

tcijlr

xijlr ∀r

(3.22d)
mij∑
l=0

q∑
r=1

xijlr = 1 ∀j (3.22e)

xijlr ∈ {0,1} ∀j,∀l,∀r.
(3.22f)

Constraints (3.22e) and (3.22f) are carried forward from the nonlinear BIP formulation

(3.10). The subproblems are nonlinear because both the objective function (3.22a) and

constraint (3.22b) include logarithm functions of the decision variable Fi .

If the optimal value of a subproblem SP i is strictly positive, the newly generated col-

umn is added to the corresponding subset of patterns in theRMP to be solved in the next
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iteration. This iteration between solvingRMP and solving SP i (i = 1, . . . , s) continues un-

til no columns with strictly positive reduced cost are found (i.e., the Simplex optimality

criterion is met for RMP ).

3.4.1.4 Solving the subproblems

As noted above, the subproblems include logarithm functions and thus cannot be readily

handled bymost commercial solvers. This section provides two readily-solvable reformu-

lations for the subproblem. The first one piecewise-linearly approximates the objective

function and the nonlinear constraint, whereas the second one is a reformulation into a

mixed-integer ECO.

Piecewise-linear approximation (PLA)

We propose a piecewise-linear approximation for the nonlinear subproblem SP i in which

continuous variables are used in special ordered sets of type 2 (SOS2) (Beale and Forrest,

1976). From the objective function (3.22a) of the subproblem we define the nonlinear

function g(.) such that g(Fi) = ln(1 − Fi). Similarly, from constraint (3.22b), a nonlinear

function h(.) is defined such that h(Fi) = ln(Fi). These nonlinear concave functions are

approximated by their respective piecewise-linear functions ĝ and ĥ. Using a set of N

breakpoints {F̂in} (n = 1, . . . ,N ) for the nonlinear functions g(Fi) and h(Fi), and the SOS2

variables ψn ∈ [0,1]N , the subproblem SP i is accordingly approximated as:

[SP i]PWL :max
N∑
n=1

ln(1− F̂in)ψn −Ciπ −
q∑
r=1

Tirσr −θi (3.23a)

s.t.:

N∑
n=1

ln(F̂in)ψn =
ni∑
j=1

mij∑
l=0

q∑
r=1

ln(Fijl)xijlr (3.23b)

N∑
n=1

ψn = 1 (3.23c)

ψn ≥ 0, SOS2 ∀n (3.23d)

(3.22d)− (3.22f). (3.23e)
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Mixed-integer ECO reformulation (ECO)

Alternatively, the nonlinear subproblems can be reformulated asmixed-integer ECOprob-

lems. Starting from the original subproblem formulation (3.22), note that maximizing

ln(1 − Fi) in Eqn. (3.22a) requires Fi to take the smallest possible value such that the

equality constraint (3.22b) holds. Let us define the variable Si such that Si ≤ ln(1 − Fi).
If ln(1 − Fi) is replaced by Si in (3.22a), this inequality becomes binding at optimality.

Furthermore, letQi = ln(Fi) in (3.22b). Hence, we have eSi ≤ 1−Fi and eQi = Fi . By adding

up the two expressions we get eQi +eSi ≤ 1, which can be expanded as eQi ≤ ui , eSi ≤ vi and
ui + vi ≤ 1. The above results allow us to rewrite the subproblem (3.22) as follows:

[SP i]ECO : max Si −Ciπ −
q∑
r=1

Tirσr −θi (3.24a)

s.t.

Qi =
ni∑
j=1

mij∑
l=0

q∑
r=1

ln(Fijl)xijlr (3.24b)

eQi ≤ ui (3.24c)

eSi ≤ vi (3.24d)

ui + vi ≤ 1 (3.24e)

Qi ,Si ≤ 0 (3.24f)

ui ,vi ≥ 0 (3.24g)

(3.22c)− (3.22f). (3.24h)

In the above formulation, inequalities (3.24c) and (3.24d) are exponential conic con-

straints. Such constraints can equivalently be written as (u,1,Q) ∈ Kexp and (v,1,S) ∈ Kexp,
respectively. The notation (y1, y2, y3) ∈ Kexp describes all the points satisfying the expo-

nential cone equation y1 ≥ y2ey3/y2 , y1, y2 ≥ 0 (Mosek ApS, 2021). It should be noted that,

unlike the piecewise-linear approximation, (3.24) is an exact reformulation of SP i .

A pseudocode of the CG algorithm is provided in Algorithm 1 to summarize the steps

described above.
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Algorithm 1: Column-generation algorithm
1: Initialize: Using the two-phase heuristic (Section 3.4.1.2), generate initial columns

for RMP , stop := 0

2: while stop = 0 do

3: i := 1, stop := 1

4: Solve RMP and extract the optimal dual variables (π∗, σ r ∗, θ∗
i )

5: while i ≤ s do
6: Update the objective function of SP i based on the optimal dual variables

7: Solve SP i using either the PLA or the ECO approach (Sec. 3.4.1.4), let RCi be its

optimal value

8: if RCi > 0 then

9: Add the subproblem solution column xkijlr to RMP , stop := 0

10: end if

11: i := i +1

12: end while

13: end while

3.4.1.5 A stabilization scheme

Despite being an efficient algorithm for solving large-scale LPs, CG often suffers from

slow convergence due to the wide oscillation (i.e., instability) of the optimal dual solution

(π∗,σ∗
r ,θ

∗
i ) from one iteration to the next (Brunner and Stolletz, 2014). To overcome this

issue, the stabilization scheme proposed by Du Merle et al. (1999) is applied to the con-

vexity constraint (3.19d) and its corresponding dual variable θi . We opt to focus only on

this primal constraint/dual variable pair because preliminary experiments showed that

stabilizing the other two dual variables (π and σr) did not lead to significant improve-

ments, since either of them frequently assumed the value 0 (i.e., the primal constraint

was nonbinding). This scheme works by introducing bounds (a−i , a
+
i ), artificial variables

(h−, h+), and penalties (z+i , z
−
i ) to the dual of RMP so that θ∗

i stays close to its best-found

value. In its primal form (refer to Du Merle et al. (1999) for more details), the stabilized
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restricted master problem is stated as

[SRMP ] : max ln(R) =
s∑
i=1

pi∑
k=1

ln(1−Fik)λik +
s∑
i=1

a−i h
−
i −

s∑
i=1

a+i h
+
i (3.25a)

s.t.:

(3.19b), (3.19c)
pi∑
k=1

λik − h−i + h
+
i = 1 ∀i (3.25b)

h−i ≤ z
−
i ∀i (3.25c)

h+i ≤ z
+
i ∀i (3.25d)

λik ,h
−
i ,h

+
i ≥ 0 ∀i,∀k. (3.25e)

The parameters z+i and z
−
i linearly penalize deviations when λik lies outside of the interval[

a−i , a
+
i

]
. Intuitively, when z+i = z−i = 0 or when λik ∈

[
a−i , a

+
i

]
, the problems RMP and

SRMP become equivalent. Hence, we try to set z+i , z
−
i , a

−
i , a

+
i such that the penalty term

vanishes as the multipliers become closer to their optimal values. In any iteration, we set

a−i = θ̄i(1−δ) and a
+
i = θ̄i(1+δ), where θ̄ is the best set of multipliers found so far and δ is

a tolerance that is set initially to one, then doubled if no better multipliers are found. On

the other hand, we initiate the penalty factors z+i and z−i as vectors of ones, then divide

them by 10 every time the upper bound does not improve. These adjustments ensure

that the effect of stabilization diminishes as the algorithm converges towards the optimal

multipliers. Although the description of the CG algorithm provided earlier is based on

RMP (i.e., without stabilization), it can be easily adapted to the stabilized case.

3.4.2 Branch-and-bound

Given that the integrality constraint is relaxed in RMP , its optimal solution is likely to

be fractional and the CG algorithm provides only an upper bound (i.e., the Lagrangean

bound) on the optimum value of the original problem. An easy way to obtain a feasible

(binary) solution is to solve RMP based only on the columns generated throughout the

CG iterations with the integrality constraint (3.16e) added back. However, it should be

noted that the patterns that are required to construct the optimal solution for the BIP

formulation of the original JSM-RAP problem (3.18) might not have necessarily been
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generated along the CG algorithm iteration. Hence, the feasible solution obtained using

this direct method (if it exists) might not be optimal, and the corresponding objective

value serves only as a lower bound on the optimum value of the original problem. If

this lower bound turns out to be sufficiently close to the Lagrangean bound obtained

from the CG algorithm, one can stop and declare the feasible solution as (near-)optimal.

Otherwise, the CG algorithm can be embedded into a B&B tree to devise a B&P approach

(Barnhart et al., 1998) for which the feasible solution serves as an initial incumbent.

At any given node of the B&B tree, upon applying the CG algorithm described earlier

(with branching constraints, if any, added to the subproblems), we obtain the optimal

solution λ∗ik to RMP and an upper bound UB. If the problem is infeasible or the upper

bound is worse (lower) than the best lower bound found so far (corresponding to the

incumbent), the node needs not to be considered any further (i.e., this node is pruned

from the B&B tree). The node is pruned also if the optimal solution turns out to be

binary, in which case both the lower bound and the incumbent are updated if necessary.

These are the standard fathoming rules in B&B. The procedure terminates when all the

nodes in the tree have been evaluated, and the incumbent solution is declared optimal.

Otherwise (i.e., when the optimal solution is feasible and fractional and the upper

bound exceeds the lower bound), we branch based on the original problem variables

(x∗ijlr =
∑
k∈K′ λ∗ikx

k
ijlr) rather than the convexity variables λ∗ik. In particular, we select a

fractional variable x̄ijlr and use the valid branching rule
∑q
r=1 x̄ijlr ≤ 0 or

∑q
r=1 x̄ijlr ≥ 1,

which stipulates that the maintenance action either must or must not be performed. One

of these constraints is added to the corresponding SP i in each of the two child nodes.

We also warm-start the RMP in the child nodes by re-using the patterns inherited from

the parent node, after being filtered according to the branching rule, to initiate the CG

algorithm. This strategy significantly improves the algorithm performance since only a

few new patterns need to be generated in each node. A depth-first search (DFS) strategy

is employed to select the node to explore in the B&B tree.

3.5 Numerical experiments

In this section, four sets of numerical experiments are conducted to demonstrate the va-

lidity and accuracy of the proposed approach. The first set considers two validation ex-

periments based on literature examples from Cassady et al. (2001a); Pandey and Zuo
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(2013) and Diallo et al. (2019b). The second set of experiments compares the two-phase

approach developed in Diallo et al. (2019b) and the four CG-based approaches developed

in this paper: the CG method that utilizes PLA to solve the nonlinear subproblems (CG–

PLA), the CG method that utilizes ECO to solve the nonlinear subproblems (CG–ECO),

the CG–PLA approach when embedded into a B&B procedure (BP–PLA), and the CG–

ECO approach when embedded into a B&B procedure (BP–ECO). These comparisons are

made on the basis of the results obtained for a moderate-size serial-parallel system with

multiple repairpersons and imperfect maintenance levels. The third set of experiments

demonstrates the ability of the CG–PLA and CG–ECO approaches to deal with very large

JSM–RAP instances. The fourth set of experiments is similar to the third one but with

additional maintenance levels for added-complexity, and aims primarily to investigate

the effectiveness of the proposed stabilization scheme (Section 3.4.1.5) in accelerating the

convergence of the CG algorithm.

All CG-PLA and BP-PLA experiments in this paper are run using N = 600 break-

points. All experiments are run on Intel(R) Core(TM) i7 @ 1.30 GHz laptop computer

with 16 GB of RAM running Windows 11. The CG-PLA and CG-ECO models are solved

using the academic versions of Gurobi 9.1.1 andMOSEK 9.3, respectively. For the numer-

ical experiments in this paper, without loss of generality, we assume that the lifetimes of

components are Weibull-distributed with shape and scale parameters βij and ηij , respec-

tively. In this particular case, we have

Rcij(M |Aijl ) = exp

(Aijlηij

)βij
−
(
Aijl +M

ηij

)βijxijlr . (3.26)

3.5.1 Set of experiments #1: Validation examples

To validate and demonstrate the added value of the proposed approach, two sets of ex-

periments are conducted. The first set of experiments investigates the 2×2 series-parallel

system fromCassady et al. (2001a), Pandey and Zuo (2013) and Diallo et al. (2019b) while

the second set of experiments considers the 5× 5 series-parallel system studied in Diallo

et al. (2019b).
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3.5.1.1 Experiments set #1.1: The case of a small size system with a single

repairperson

The instance parameters are displayed in Table 3.2. For failed components, three CM

levels are considered: l = 0, l = 1, and l = 2. For working components, two PM levels

are considered: l = 0 and l = 2. The next mission duration is M = 8. Given that the

original problem in Cassady et al. (2001a) did not consider multiple repairpersons, we

set q = 1, and vq = 0. Two cases will be investigated depending on whether the limited

maintenance budget C0 is accounted for or not. For comparison purposes, the resulting

SMP in both cases will be solved using the two-phase approach (Diallo et al., 2019b), and

the B&P algorithms (BP–PLA, BP–ECO) proposed in this paper.

Table 3.2: Data for experiment #1 (Cassady et al., 2001a; Pandey and Zuo, 2013).

Eij ηij βij Xij Bij tcij1 tcij2 t
p
ij1 ccij1 ccij2 c

p
ij1

E11 15 1.5 1 15 3 1 5 6 12 12
E12 15 1.5 1 20 3 1 5 5 12 12
E21 20 3 0 8 2 2 4 5 14 14
E22 20 3 1 15 2 2 4 6 15 15

Let us first consider the case when the maintenance budget is not accounted for (i.e.,

C0 is considered infinite). In this case, for different values of the scheduled break duration

D0, the overall results are reported in Table 3.3. For each approach (two-phase, BP–

PLA, BP–ECO), Table 3.3 provides the highest achievable system reliability R for the

next mission, the total maintenance time T1 used by the single repairperson to perform

the maintenance actions, the number of nodes in the B&B tree and the CPU time for

both the BP–PLA and BP–ECO approaches. As can be observed in Table 3.3, the two B&P

algorithms reach the same optimal values of the two-phase approach, thus confirming

their validity. Furthermore, their optimal solutions are the same as those obtained by

Cassady et al. (2001a) and Pandey and Zuo (2013). One can also observe that, for such a

"toy" instance, the two-phase approach CPU times are smaller than those of the two B&P

algorithms since generating a very small number of feasible maintenance patterns and

selecting the best among them can be done rather efficiently.

Now, let us consider the second case when both duration D0 allotted to the scheduled
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Table 3.3: Results of Experiment #1.1: The case with C0 =∞.

D0
Two-phase BP–PLA BP–ECO

R(%) T1 CPUt(s) R(%) T1 # Nodes CPUt(s) R(%) T1 # Nodes CPUt(s)

16 89.25 16 0.15 89.25 16 1 0.37 89.25 16 1 0.22
12 85.89 12 0.17 85.89 12 1 0.48 85.89 12 1 0.71
9 77.53 7 0.17 77.53 7 9 3.33 77.53 7 9 4.21
5 59.71 2 0.16 59.71 2 7 2.23 59.71 2 7 4.63

break and the limited maintenance budget are accounted for. In this case, the break

duration is set at D0 = 9, while the maintenance budget varies. The results obtained by

the two-phase approach, BP–PLA, and BP–ECO are shown in Table 3.4. Once again, the

values obtained allow us to conclude that the proposed B&P algorithms are valid. When

C0 = 25, our results are the same as those obtained by Pandey et al. (2013b).

The results reported in Table 3.4 show, as one may expect, that decreasing the mainte-

nance budget C0 reduces the number of maintenance actions to be performed, and con-

sequently increases the probability of failure risk during the next mission.

Table 3.4: Results of Experiment #1.1: The case with D0 = 9.

C0
Two-phase BP–PLA BP–ECO

R(%) T1 C CPUt(s) R(%) T1 C # Nodes CPUt(s) R(%) T1 C # Nodes CPUt(s)

30 77.53 7 26 0.16 77.53 7 26 7 2.64 77.53 7 26 7 3.45
25 61.40 7 17 0.15 61.40 7 17 27 8.67 61.40 7 17 27 11.39
15 59.71 2 14 0.18 59.71 2 14 9 2.60 59.71 2 14 9 5.17
10 47.29 2 5 0.19 47.29 2 5 1 0.67 47.29 2 5 1 1.18

3.5.1.2 Experiments set #1.2: The case of a small size system with multiple

equally-skilled repairpersons

Experiments set #1.2 considers the series-parallel system and its related data from Diallo

et al. (2019b). The reliability block diagram of the system is composed of two (s = 2)

series subsystems, each of which contains five (ni = 5) i.i.d components Eij arranged in

parallel (i = 1,2; j = 1, . . . ,5). Lifetimes of components Eij are Weibull distributed with

respective shape and scale parameters βij and ηij . These parameters are set to β1j = 1.5,

η1j = 15, β2j = 3 and η2j = 20. There are q = 2 equally skilled repairpersons available

to carry out maintenance tasks with variable cost rate vr = 2. A list of four CM levels is

available for failed components: l = 0 (DN), l = 1 (MR), and l = 2 (IM) which reduces



78

the component age by half, and l = 3 (PR). For functioning components, a list of three

PM levels is available: l = 0 (DN), l = 2 (IM) reduces the component age by half, and

l = 3 (PR). Additional data related to components’ status, ages and maintenance times

and costs are depicted in Table 3.5. The duration of the scheduled break and that of the

next mission are set to D0 = 5 andM = 8, respectively.

Table 3.5: Parameters for experiment #1.2, source: Diallo et al. (2019b).

Eij Xij Bij tcij1 tcij2 tcij3 t
p
ij2 t

p
ij3 ccij1 ccij2 ccij3 c

p
ij2 c

p
ij3

E11 0 15 2 5 6 2 3 5 10 14 8 10
E12 1 12 2 5 6 2 3 5 10 14 8 10
E13 0 10 2 5 6 2 3 5 10 14 8 10
E14 1 18 2 5 6 2 3 5 10 14 8 10
E15 1 20 2 5 6 2 3 5 10 14 8 10
E21 0 8 4 7 8 3 5 4 8 10 5 7
E22 1 15 4 7 8 3 5 4 8 10 5 7
E23 0 8 4 7 8 3 5 4 8 10 5 7
E24 1 15 4 7 8 3 5 4 8 10 5 7
E25 0 8 4 7 8 3 5 4 8 10 5 7

The resulting JSM–RAP is solved using the two-phase, CG–PLA and CG–ECO ap-

proaches. The results obtained are reported in Tables 3.6 and 3.7 for different values of

the maintenance cost C0. These tables provide the highest achievable system reliabilityR
for the subsequent mission, as well as the total cost C and the total maintenance time by

each repairperson (T1,T2). They also show the CPU time and the gap between the optimal

reliability values obtained by the two-phase approach and those obtained using CG–PLA

and CG–ECO. In addition, the tables provide the size (# Nodes) of the B&B tree when the

B&P algorithms are used.

The results in Table 3.6 show that 4 out of the 5 solutions obtained using CG–PLA

and all the solutions obtained using BP–PLA are identical to those obtained from the two-

phase approach. It should be noted that the CG–PLA approach cannot always provide

optimal solutions due to the branching operation which is performed only at the final step

based on a subset of potentially interesting patterns. Thus, some of the patterns required

to construct the optimal BIP solution may not have been generated when optimizing the

subproblems. Even using BP–PLA cannot guarantee the optimality of solutions since
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the subproblems solved in each iteration are only piecewise-linear approximations of

the original subproblems SP i . Likewise, the results in Table 3.7 show that 4 out of the

5 solutions obtained using CG–ECO and all the solutions obtained using BP–ECO are

identical to those obtained from the two-phase approach. It is worth noting that, unlike

CG–PLA, the CG–ECO approach uses an exact reformulation of SP i , thus it is able to

guarantee the optimality of solutions when embedded into a B&B tree (i.e., BP–ECO).

The numerical results in Tables 3.6 and 3.7 show that the gap values for CG–PLA and

CG–ECO are usually small, not exceeding 1% and often much smaller. However, when

it comes to the computation times, both CG–PLA and CG-ECO significantly outperform

the exact two-phase approach.

Table 3.6: Results obtained in Experiment #1.2 (CG–PLA): The case of a 5-by-5 system
with 2 identical repairpersons and D0 = 5.

C0
Two-phase CG–PLA BP–PLA

R(%) C (T1,T2) CPUt(s) R(%) C (T1,T2) Gap(%) CPUt(s) R(%) C (T1,T2) # Nodes CPUt(s)

50 90.09 42 (5,5) 14.08 89.11 35 (5,4) 0.98 0.82 90.09 42 (5,5) 35 16.14
40 89.11 35 (5,4) 14.12 89.11 35 (5,4) 0.00 0.99 89.11 35 (5,4) 39 16.94
30 84.47 26 (5,2) 14.12 84.47 26 (5,3) 0.00 0.83 84.47 26 (5,2) 43 20.28
20 74.65 17 (5,0) 14.15 74.65 17 (5,0) 0.00 0.86 74.65 17 (5,0) 21 8.29
10 48.94 9 (2,0) 14.14 48.94 9 (2,0) 0.00 0.74 48.94 9 (2,0) 31 11.01

Table 3.7: Results obtained in Experiment #1.2 (CG–ECO): The case of a 5-by-5 system
with 2 identical repairpersons and D0 = 5.

C0
Two-phase CG–ECO BP–ECO

R(%) C (T1,T2) CPUt(s) R(%) C (T1,T2) Gap(%) CPUt(s) R(%) C (T1,T2) # Nodes CPUt(s)

50 90.09 42 (5,5) 14.08 89.11 35 (5,4) 0.98 2.16 90.09 52 (5,5) 29 22.01
40 89.11 35 (5,4) 14.12 89.11 35 (5,4) 0.00 2.21 89.11 35 (5,4) 37 34.53
30 84.47 26 (5,2) 14.12 84.47 26 (5,2) 0.00 2.06 84.47 26 (5,2) 41 38.71
20 74.65 17 (5,0) 14.15 74.65 17 (5,0) 0.00 1.75 74.65 17 (5,0) 37 29.27
10 48.94 9 (2,0) 14.14 48.94 9 (2,0) 0.00 1.11 48.94 9 (2,0) 31 18.15

Observations similar to those made in the previous experiments set can be made for

the results reported in Tables 3.6 and 3.7. Indeed, when the budget allotted to mainte-

nance decreases, the resulting maximal achievable system reliability for the next mission

decreases. Consequently, the number of required repairpersons to carry out maintenance

actions also decreases.
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3.5.2 Set of experiments #2: The case of a moderate-size serial-parallel system

In this set of experiments, the moderate-size series-parallel system studied in Diallo et al.

(2018) is investigated. The reliability block diagram of the system is composed of two

(s = 2) series subsystems, where the first is composed of five (n1 = 5) i.i.d. components E1j
(j = 1, . . . ,5), while the second contains eight (n2 = 8) i.i.d. components E2j (j = 1, . . . ,8)

arranged in parallel, resulting in a total of 13 components. Lifetimes of components

Eij are Weibull-distributed with the respective shape and scale parameters βij and ηij
(i = 1,2; j = 1, . . . ,ni). These parameters are set at β1j = 1.5 and η1j = 15 (j = 1, . . . ,5), and

β2j = 3 and η2j = 20 (j = 1, . . . ,8). A list of four maintenance levels is available for all

components: l = 0 (DN), l = 1 (MR: valid only for failed components), l = 2 (IM) that

reduces the component age by half, and l = 3 (PR). Two cases are considered. In the first

case, only one (q = 1) repairperson is available with a break duration of D0 = 20, whereas

q = 2 equally skilled repairpersons are available with a break duration of D0 = 5 for each

repairperson in the second case. In both cases, the variable cost rate of a repairperson is

set to vr = 2, and the duration of the next mission is M = 8. Additional data related to

components’ status, ages and maintenance times and costs are depicted in Table 3.8. For

comparison purposes, the JSM–RAP is solved using the exact two-phase, CG–PLA and

CG–ECO approaches.

Table 3.8: Parameters for experiment #2, source: Diallo et al. (2018).

Eij Xij Bij tcij1 tcij2 tcij3 t
p
ij2 t

p
ij3 ccij1 ccij2 ccij3 c

p
ij2 c

p
ij3

E11 0 15 4 6 8 2 4 5 10 14 8 10
E12 1 12 4 6 8 2 4 5 10 14 8 10
E13 0 10 4 6 8 2 4 5 10 14 8 10
E14 1 18 4 6 8 2 4 5 10 14 8 10
E15 1 20 4 6 8 2 4 5 10 14 8 10
E21 0 8 3 4 5 1 2 6 10 20 7 12
E22 1 15 3 4 5 1 2 6 10 20 7 12
E23 0 8 3 4 5 1 2 6 10 20 7 12
E24 1 15 3 4 5 1 2 6 10 20 7 12
E25 0 8 3 4 5 1 2 6 10 20 7 12
E26 1 15 3 4 5 1 2 6 10 20 7 12
E27 0 8 3 4 5 1 2 6 10 20 7 12
E28 1 15 3 4 5 1 2 6 10 20 7 12
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3.5.2.1 Experiments #2.1: The case of a single repairperson

Tables 3.9 and 3.10 report the maximum achievable system reliability R for the next

mission, the total maintenance time T1, cost C incurred, and the CPU time for different

values of the maintenance budget C0 when only a single repairperson is hired. These

tables also provide the reliability gap between the exact two-phase approach solutions

and those reached by CG–PLA and CG–ECO, as well as the size (# Nodes) of the B&B tree

when the B&P algorithms are applied.

In terms of computation time, both CG–PLA and CG–ECO outperform the two-phase

approach. On average, the exact two-phase approach takes 18.81 seconds to generate a

total of 17,865 patterns and then takes around 0.2 seconds for the optimization phase.

In contrast, the computation time for CG–PLA is on average less than 1 second, while

the CG–ECO takes about 2.5 seconds. The total number of patterns generated for CG–

PLA and CG–ECO is between 9 and 15 patterns. It is also notable that the CPU times

for the three approaches remain almost constant when the maintenance budget increases

(around 10 seconds for the two-phase approach, around 0.6 seconds for CG–PLA, and

around 2.5 seconds for CG–ECO). Notably, the CPU times for the B&P algorithms are

longer than those of the two-phase approach for this set of experiments.

Regarding the solution quality, one may observe that the gap between the exact two-

phase approach and CG-based approaches (CG–PLA, CG–ECO) does not exceed 2.16%,

with an average gap of around 0.4%. Meanwhile, the CG-based approaches generate only

about one-thousandth of the patterns generated by the two-phase approach. Similar to

previous experiment sets, the two B&P algorithms are able to solve all instances opti-

mally. These observations comfort the conclusions from the previous sets of experiments

about the validity and efficiency of the proposed approach.

Table 3.9: Results obtained in Experiments #2.1 (CG–PLA): The case of a single repair-
person and D0 = 20.

C0
Two-phase CG–PLA BP–PLA

R(%) T1 C CPUt(s) R(%) T1 C Gap(%) CPUt(s) R(%) T1 C # Nodes CPUt(s)

59 94.40 14 59 19.26 92.24 10 47 2.16 0.93 94.40 14 59 101 45.74
50 92.24 10 47 19.29 92.24 10 47 0.00 0.92 92.24 10 47 119 51.79
40 88.19 8 38 19.35 86.49 6 29 1.70 0.82 88.19 8 38 305 130.66
30 86.49 6 29 19.24 86.49 6 29 0.00 0.62 86.49 6 29 65 28.31
20 76.43 2 16 19.21 76.43 2 16 0.00 0.64 76.43 2 16 73 24.38
10 70.06 1 9 19.21 70.06 1 9 0.00 0.73 70.06 1 9 87 28.98
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Table 3.10: Results obtained in Experiments #2.1 (CG–ECO): The case of a single repair-
person and D0 = 20.

C0
Two-phase CG–ECO BP–ECO

R(%) T1 C CPUt(s) R(%) T1 C Gap(%) CPUt(s) R(%) T1 C # Nodes CPUt(s)

59 94.40 14 59 19.26 92.24 10 47 2.16 2.11 94.40 14 59 91 70.96
50 92.24 10 47 19.29 92.24 10 47 0.00 2.43 92.24 10 47 119 116.75
40 88.19 8 38 19.35 86.49 6 29 1.70 2.09 88.19 8 38 289 216.86
30 86.49 6 29 19.24 86.49 6 29 0.00 2.06 86.49 6 29 61 49.43
20 76.43 2 16 19.21 76.43 2 16 0.00 2.08 76.43 2 16 85 70.08
10 70.06 1 9 19.21 70.06 1 9 0.00 2.05 70.06 1 9 59 54.71

3.5.2.2 Experiments #2.2: The case of multiple equally-skilled repairpersons

Experiments #2.2 use the same data as in Experiments #2.1 except that two (q = 2) re-

pairpersons are now available to carry out the maintenance actions in the SM plan. The

JSM–RAP is, again, solved using all five approaches: two-phase, CG–PLA, CG–ECO, BP–

PLA and BP–ECO. The results obtained are shown in Tables 3.11 and 3.12 for different

maintenance budgets. These results include the maximum achievable system reliability

R for the subsequent mission, the induced total maintenance cost C , the total duration

Tr consumed to perform maintenance actions for each repairperson, the CPU time and

the relative gap between the optimal value of the two-phase approach and those obtained

using CG–PLA and CG–ECO. The size (# Nodes) of the B&B tree is also reported when

the B&P algorithms are used.

All CG-based approaches (with or without B&B) outperform the two-phase approach

in terms of computation time. On average, the two-phase approach requires 823.25 sec-

onds to generate 798,856 maintenance patterns and needs about 30 seconds more to find

the optimal solution. In comparison, CG–PLA takes around 1 second and CG–ECO takes

less than 4 seconds to find a solution that is at most 2.5% away from the optimal. Both

approaches are capable of providing high-quality solutions very efficiently. On the other

hand, all solutions obtained through the B&P algorithms are identical to the optimal so-

lutions found using the two-phase approach. However, one may observe that the CPU

times required for the B&P algorithms are significantly larger than those of the CG-based

approaches without B&B. It is also notable that, in all cases, the CPU times for CG–PLA

are shorter than those for CG–ECO. However, as mentioned earlier, unlike CG–PLA, CG–

ECO uses an exact reformulation of SP i that is capable of guaranteeing solution optimal-

ity when combined with B&B.
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Finally, it is worth noting that we did not observe any stabilization effect on small/moderate-

size instances. However, the stabilization appears highly effective for large-scale systems

with additional maintenance levels as will be shown in the forth set of experiments pre-

sented in Section 3.5.4.2.

Table 3.11: Results obtained in Experiments #2.2 (CG–PLA): The case of 2 identical re-
pairpersons and D0 = 5.

C0
Two-phase CG–PLA BP–PLA

R(%) C (T1,T2) CPU (s) R(%) C (T1,T2) Gap(%) CPUt(s) R(%) C (T1,T2) # Nodes CPUt(s)

54 89.79 54 (5,5) 857.68 87.29 38 (4,3) 2.50 1.01 89.79 54 (5,5) 121 83.15
50 89.12 50 (5,4) 853.76 87.29 38 (4,3) 1.83 1.13 88.12 50 (5,4) 243 142.42
40 87.29 38 (5,2) 848.54 86.49 29 (4,2) 0.80 1.22 88.19 38 (5,2) 313 158.07
30 86.49 29 (4,2) 848.76 86.49 29 (4,2) 0.00 0.83 86.94 29 (4,2) 41 16.74
20 76.43 16 (2,0) 855.23 76.43 16 (2,0) 0.00 0.66 76.43 16 (2,0) 55 15.84
10 70.06 9 (1,0) 853.89 70.06 9 (1,0) 0.00 1.04 70.06 9 (1,0) 53 19.15

Table 3.12: Results obtained in Experiments #2.2 (CG–ECO): The case of 2 identical re-
pairpersons, and D0 = 5.

C0
Two-phase CG–ECO BP–ECO

R(%) C (T1,T2) CPU (s) R(%) C (T1,T2) Gap(%) CPUt(s) R(%) C (T1,T2) # Nodes CPUt(s)

54 89.79 54 (5,5) 857.68 87.29 38 (4,3) 2.50 2.89 89.79 54 (5,5) 95 98.29
50 89.12 50 (5,4) 853.76 87.29 38 (4,3) 1.83 3.78 88.12 50 (5,4) 223 277.71
40 87.29 38 (5,2) 848.54 86.49 29 (4,2) 0.80 3.71 88.19 38 (5,2) 253 280.31
30 86.49 29 (4,2) 848.76 86.49 29 (4,2) 0.00 3.17 86.94 29 (4,2) 41 49.22
20 76.43 16 (2,0) 855.23 76.43 16 (2,0) 0.00 1.84 76.43 16 (2,0) 73 54.39
10 70.06 9 (1,0) 853.89 70.06 9 (1,0) 0.00 1.76 70.06 9 (1,0) 91 83.47

3.5.3 Set of experiments #3: Large-scale series-parallel systems

This set of experiments aims to demonstrate the ability of the proposed approaches to

deal with large-scale systems. The experiments are carried out using the series-parallel

system from Ikonen et al. (2020). The basic system is composed of 100 components dis-

tributed across s = 32 subsystems in series. Each subsystem i (i = 1, . . . , s) is composed of

i.i.d. ni components arranged in parallel (Figure 3.1). The components in the first two

subsystems are identical. Subsystems 3 to 8, 9 to 18, 19 to 25, and 26 to 32 are identi-

cally distributed as well. This basic system has a total number NC of components where

NC =
∑s
i=1ni = 100. Lifetimes of component Eij are governed by a Weibull distribution

whose shape and scale parameters are βij and ηij , respectively. Table 3.13 summarises

the overall data related to components’ status and Weibull lifetimes distribution shape

and scale parameters, as well as maintenance times and costs. Common lists of m = 2
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maintenance options are available: DN and PR for functioning components and DN and

MR for failed components.

Figure 3.1: Reliability structure for the basic system with 100 components from Ikonen
et al. (2020).

To date and to the best of our knowledge, the largest JSM-RAP instance comprising

700 components was solved by Ikonen et al. (2020). In this experiment, we will show

that the proposed CG-based approaches (CG–PLA, CG–ECO) can deal with much larger

systems. Eleven problem instances are created by duplicating the basic 100-component

basic system presented above in Figure 3.1. For instance o with 1 ≤ o ≤ 10, the system

uses NCo = 100×o components obtained by duplicating the basic 100-component system

o times. Instance 11 has NC11 = 1500 components obtained by duplicating the basic sys-

tem 15 times. For all problem instances, the break duration is set at D0=50. However,

for any given instance o, the maintenance budget is set to C0 = 500× o while the number

of repairpersons is set to q = 5× o. For example, for the second problem instance (o = 2),

the number of components NC2 = 200, the available maintenance budget C0 = 1000, and

q = 10 repairpersons will be available to perform the maintenance tasks.

In Algorithm 1, a heuristic method is used to find good-quality columns to initialize

the solving process of the RMP . In what follows, we will also investigate the perfor-

mance of this heuristic method. We will therefore run both CG-based approaches with

and without the heuristic: column-generation with piecewise linear approximation with

heuristic (CG–PLAh) or without heuristic (CG-PLA), column-generation with an expo-

nential conic reformulation with heuristic (CG–ECOh) or without heuristic (CG-ECO).

All 11 instances of the problem are solved using these four approaches. The obtained re-

sults are displayed in Figures 3.2 to 3.4 and Tables 3.14 and 3.15. For each approach, the

tables display the reliability values obtained (R), the number of repairpersons used (m),

the number of columns generated (Col.), the reliability gap (∆R) to the reliability upper
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Table 3.13: Parameters for set of experiment #3: Large-scale series-parallel system.

Eij ηij βij Xij Bij tcij1 tcij2 tcij3 t
p
ij2 t

p
ij3 ccij1 ccij2 ccij3 c

p
ij2 c

p
ij3From To

E1,1 E2,1 50 3.0 [0] [8] 12 21 24 9 15 12 24 30 15 21
E3,j E8,j 50 3.0 [0,1] [8,15] 12 21 24 9 15 12 24 30 15 21
E9,j E18,j 35 1.5 [0,1,0] [15,12,10] 6 15 18 6 9 15 30 42 24 30
E19,j E25,j 50 3.0 [0,1,0,1] [8,15,8,15] 9 12 15 3 6 18 30 60 21 36
E26,j E32,j 25 2.1 [0,1,0,1] [6,10,6,10] 6 7.5 12 6 9 12 24 30 15 21

bound obtained from the relaxed problem (where the integrality requirement is relaxed)

(Rrel), and the maintenance cost (C).

Results show that the heuristic method developed and used in the first step of Al-

gorithm 1 increases the convergence rate of the solution methods. As expected, as the

number of components increases, the problem becomes more difficult to solve. Hence,

more iterations are needed to reach solution convergence. Furthermore, the ∆R values

obtained are very small, indicating that the solutions obtained are very close to the un-

known optimal solution and could possibly even be optimal in many cases.

All four approaches reach the same solutions for all instances as shown in Figure 3.2.

However, CG–PLAh generated significantly fewer columns compared to the other three

variants of the CG-based approach as shown in Figure 3.3, making it the fastest of the

approaches as shown in Figure 3.4. Note that lines are added between data points in the

plot for better visualization. They do not represent values in between the points.

The original SMP has been shown to have an exponential time complexity (Rice et al.,

1998; Rice, 1999). The CPU times obtained for the current set of experiments #3 show

that the proposed CG–PLAh approach has an empirical second-order polynomial time

complexity as shown by the trend line in Figure 3.5. Thus, the proposed CG-based ap-

proach offers significant computation time reduction for the JSM–RAP. The reduction

enabled us to solve the JSM–RAP for large-scale systems with up to 2000 components in

less than one hour.
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(a) (b)

(c) (d)

Figure 3.2: Convergence curves for different instance sizes: (a) n = 100, (b) n = 700, (c)
n = 1000 and (d) n = 1500.

Table 3.14: Comparison between CG-PLAh and CG-PLA: the case of a large-scale prob-
lem with multiple repairpersons.

n
CG-PLAh CG-PLA

C Rrel(%)R(%) m Col. ∆R(%) CPU (s) R(%) m Col. ∆R(%) CPU (s)

100 94.51 4 108 0.12 7 94.51 4 118 0.12 10 492 94.63
200 89.50 6 276 0.06 18 89.50 6 286 0.06 16 996 89.56
300 84.75 6 414 0.00 30 84.75 7 540 0.00 33 1,500 84.75
400 80.10 8 632 0.11 52 80.10 10 856 0.11 70 1,992 80.20
500 75.85 13 815 0.05 68 75.85 11 1,200 0.05 102 2,496 75.90
600 71.83 15 1,194 0.00 142 71.83 14 1,464 0.00 128 3,000 71.83
700 67.89 16 1,617 0.09 157 67.89 14 2,205 0.09 143 3,492 67.97
800 64.29 17 1,984 0.04 250 64.29 16 3,392 0.04 344 3,996 64.33
900 60.88 20 2,781 0.00 397 60.88 18 4,014 0.00 345 4,500 60.88
1,000 57.53 21 3,300 0.08 540 57.53 20 4,600 0.08 547 4,992 57.61
1,500 43.73 31 7,215 0.00 1,771 43.73 30 10,515 0.00 1,895 7,500 43.73
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Figure 3.3: Total number of columns generated by solution method.

Figure 3.4: Average CPU times.
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Figure 3.5: Average CPU times for CG–PLAh with trendline.

Table 3.15: Comparison between CG-ECOh and CG-ECO: the case of a large-scale prob-
lem with multiple repairpersons.

n
CG-ECOh CG-ECO

C Rrel(%)R(%) m Col. ∆R(%) CPU (s) R(%) m Col. ∆R(%) CPU (s)

100 94.51 4 135 0.12 8 94.51 5 158 0.12 9 492 94.63
200 89.50 6 334 0.06 19 89.50 6 366 0.06 9 996 89.56
300 84.75 10 633 0.00 38 84.75 7 564 0.00 28 1,500 84.75
400 80.10 12 964 0.10 90 80.10 10 848 0.10 97 1,992 80.20
500 75.85 10 1,020 0.05 124 75.85 12 1,305 0.05 234 2,496 75.90
600 71.83 13 1,272 0.00 227 71.83 16 1,878 0.00 178 3,000 71.83
700 67.89 19 1,953 0.09 326 67.89 18 2,408 0.09 452 3,492 67.97
800 64.29 19 2,336 0.04 397 64.29 17 2,712 0.04 452 3,996 64.33
900 60.88 20 2,358 0.00 484 60.88 25 4,266 0.00 629 4,500 60.88
1,000 57.53 21 3,630 0.08 745 57.53 23 5,330 0.08 970 4,992 57.61
1,500 43.73 31 8,415 0.00 4,209 43.73 31 8,415 0.00 5,294 7,500 43.73
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3.5.4 Set of experiments #4: Large-scale series-parallel systems with additional

maintenance levels

In this set of experiments, the tests conducted in the previous subsection 3.5.3 are re-

peated but with additional maintenance levels. The number of maintenance levels con-

sidered is expanded from two (DN, MR) to four levels (DN, MR, IM, PR) for failed compo-

nents, and from two (DN, PR) to three levels (DN, IM, PR) for working components. Two

experiments are conducted. The first experiment (#4.1) shows how increasing the num-

ber of maintenance levels grants more flexibility to the optimizer to find a combination

of components and maintenance actions that better use the limited resources. The sec-

ond experiment (#4.2) demonstrates the effectiveness of the applied stabilization scheme

presented in Section 3.4.1.5 in accelerating the convergence of the CG algorithm.

3.5.4.1 Experiments #4.1: The case of a large-scale system with additional

maintenance levels

The results displayed in Table 3.16 show that when additional maintenance levels are

allowed, it is possible to achieve equal or slightly better results than when there are fewer

maintenance levels. Another clear trend can be seen from the results displayed in Table

3.16. As the budget increases, the number of repairpersons utilized increases along with

the number of components that can be replaced within the duration of the break. Thus,

the maximum achievable reliability increases with the budget. When the budget allows

it, additional repairpersons are added as permitted by the budget to complement the

maintenance work.

3.5.4.2 Experiments #4.2: Effectiveness of the stabilization scheme on complex

large-scale systems

To investigate the effectiveness of the proposed CG stabilization scheme, five problem

instances are created by duplicating the basic 100-component system presented in Fig-

ure 3.1. We apply both CG-based approaches with and without stabilization (i.e., CG

with PLA+heuristic and stabilization (CG–PLAh-S) or without stabilization (CG-PLAh),
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Table 3.16: Results obtained using CG-PLAh for a large-scale JSM-RAP with n = 100,
D0 = 50, m0 = 5, m = 3 for working components (DN, IPM, PM) and m = 4 for failed
components (DN, MR, ICM, CM).

C0 R(%) C m Component maintenance level (m) Summary CPUt(s)

100 35.76 99 2 R1: MR(E1,1, E2,1) MR: 7 times 5.86
R2: MR(E9,3, E11,3, E15,3, E16,3, E18,3)

200 70.63 198 2 R1: MR(E9,3, E10,3, E11,3, E12,3, E13,3, E14,3, E15,3,
E16,3, E17,3, E18,3)

MR: 14
times

6.63

R2: MR(E1,1, E2,1, E29,1, E32,1)
300 79.41 300 4 R1: MR(E1,1, E2,1) MR: 21

times
6.93

R2: MR(E3,1, E11,1, E17,1)
R3: MR(E9,3, E10,3, E11,3, E12,3, E13,3, E14,3, E15,3,
E16,3, E17,3, E18,3)
R4: MR(E27,3, E28,3, E29,3, E30,3, E31,3, E32,3)

400 88.68 396 4 R1: MR(E1,1, E2,1, E27,1, E28,1, E29,1, E30,1) MR: 28
times

7.04

R2: MR(E9,3, E10,3, E11,3, E12,3, E13,3, E14,3, E15,3,
E16,3, E17,3, E18,3)
R3: MR(E9,1, E10,1, E11,1, E12,1, E13,1, E14,1, E15,1,
E16,1, E17,1, E18,1)
R4: MR(E31,3, E32,3)

500 94.51 492 4 R1: MR(E1,1, E2,1, E26,1, E27,1, E28,1, E29,1, E30,1,
E31,1, E32,1)

MR: 36
times

8.03

R2: MR(E3,1, E4,1, E5,1, E6,1, E7,1, E8,1, E9,1, E10,1,
E11,1, E12,1, E13,1, E14,1, E15,1, E16,1, E17,1, E18,1)
R3: MR(E9,3, E10,3, E11,3, E12,3, E13,3, E14,3, E15,3,
E16,3, E17,3, E18,3)
R4: MR(E32,3)

1000 95.80 996 5 R1: R(E1,1, E12,1, E17,1,E13,1), MR(E7,1) MR: 37
times,

12.92

R2: R(E2,1), MR(E12,3, E13,3, E17,3) R: 12 times
R3: MR(E3,1, E4,1, E5,1, E6,1, E8,1, E19,3, E20,3,
E21,3, E22,3, E24,3, E25,3, E27,3, E31,3, E32,3)
R4: R(E9,1, E10,1, E11,1, E14,1, E15,1, E16,1, E18,1)
R5: MR(E9,3, E10,3, E11,3, E14,3, E15,3, E16,3, E18,3,
E23,1, E26,1, E26,3, E27,1, E28,1, E28,3, E29,1, E29,3,
E30,1, E30,3, E31,1, E32,1)

1700 95.92 1692 5 R1: R(E1,1, E2,1, E10,1, E10,2, E10,3, E11,1,
E11,2,E11,3), IM(E24,3)

MR: 24
times, IM: 7
times,

12.66

R2: R(E9,1, E9,2, E13,1, E13,2, E14,1, E14,2, E15,1,
E15,2, E18,1, E18,2, E29,2, E29,3)

R: 36 times

R3: R(E12,1, E12,2, E12,3, E16,1, E16,2, E16,3, E17,1,
E17,2, E17,3, E29,4)
R4: MR(E3,1, E5,1, E7,1, E19,1, E20,1, E21,1, E22,1,
E29,1, E30,1, E30,3, E31,1, E31,3, E32,1, E32,3), R(E9,3,
E18,3)
R5: MR(E4,1, E6,1, E8,1, E23,1, E25,1, E29,3, E30,1,
E30,3, E31,1, E32,1), IM(E26,1, E26,3, E27,1, E27,3,
E28,1, E28,3), R(E13,3, E14,3, E15,3, E29,2)
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and CGwith ECO+heuristic and stabilization (CG–ECOh-S) or without stabilization (CG-

ECOh)) on each of the five problem instances. The obtained results are displayed in Fig-

ure 3.6 and Tables 3.17 and 3.18. For each solution method, these tables display the

reliability values obtained (R), the number of iterations performed (# Iter.), the number

of columns generated (Col.), and the reliability gap (∆R) to the upper bound obtained

from the relaxed problem (Rrel).

The results obtained clearly show that applying the stabilization scheme increases the

convergence rate of the solution methods by decreasing the number of iterations per-

formed and consequently reduces the computational time and the number of generated

columns. For example, in the largest instance (n = 500), the stabilization scheme reduces

the number of iterations from 29 to 21 in the CG-PLAh case and from 37 to 25 in the CG-

ECOh case. Given that the optimality gaps ∆R obtained are very small, not exceeding

0.16%, we decided not to perform branching for this set of experiments.

We did not observe any significant reduction in the number of iterations in small/moderate-

size instances when the stabilization scheme is applied. In fact, the number of iterations

sometimes increased, a result opposite to the one expected. In contrast, stabilization is

effective for large-scale systems with additional maintenance levels as demonstrated.

All four methods reach similar solutions for all instances as shown in Figure 3.6. How-

ever, CG–PLAh-S generated significantly fewer columns compared to the other three vari-

ants of the CG-based approach as shown in Tables 3.17 and 3.18, making it the fastest

approach.

Table 3.17: Comparison of CG-PLAh, and CG-PLAh-S: The case of a large-scale problem
with multiple repairpersons

n
CG-PLAh (Unstabilized) CG-PLAh-S (Stabilized)

Rrel(%)R(%) # Iter. Col. ∆R(%) CPU (s) R(%) # Iter. Col. ∆R(%) CPU (s)

100 95.92 12 384 0.00 19.7 95.92 12 384 0.00 18.9 95.92
200 92.00 16 1024 0.01 56.9 92.00 14 896 0.01 51.6 92.01
300 88.25 22 2212 0.00 270.0 88.25 18 1728 0.00 212.3 88.25
400 84.65 24 3072 0.00 355.1 84.65 21 2688 0.00 314.1 84.65
500 81.19 29 4640 0.01 447.6 81.19 21 3360 0.01 338.1 81.20
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Table 3.18: Comparison of CG-ECOh, and CG-ECOh-S: The case of a large-scale problem
with multiple repairpersons

n
CG-ECOh (Unstabilized) CG-ECOh-S (Stabilized)

Rrel(%)R(%) # Iter. Col. ∆R(%) CPU (s) R(%) # Iter. Col. ∆R(%) CPU (s)

100 95.92 16 512 0.04 41.3 95.92 12 384 0.04 30.8 95.92
200 92.00 20 1280 0.05 107.2 92.00 16 896 0.05 75.0 92.01
300 88.25 30 2880 0.10 332.2 88.25 21 2016 0.10 232.5 88.25
400 88.65 32 4096 0.13 478.4 88.65 22 2816 0.13 328.9 88.65
500 81.19 37 5920 0.16 542.2 81.19 25 4000 0.16 366.4 81.20

Figure 3.6: Convergence curves for instance size of 500 components with different CG-
based solution approaches.
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3.6 Conclusions

In this paper, large-scale instances of the joint selective maintenance and repairperson as-

signment problem for a series-parallel system are addressed. A column-generation-based

approach that iterates between solving a restricted master problem to update the dual

multipliers and solving multiple subproblems to generate maintenance patterns is devel-

oped. Two novel reformulations are proposed for the mixed-integer nonlinear subprob-

lem: a piecewise-linear approximation and an exact reformulation into a mixed-integer

exponential conic optimization problem, both can be handled directly using off-the-shelf

solvers. A heuristic procedure is developed to quickly provide a feasible solution to ini-

tiate the column-generation algorithm. Furthermore, a stabilization scheme is proposed

to accelerate its convergence. Finally, to restore integrality and ensure the solution opti-

mality, column-generation is embedded into a branch-and-bound tree to devise branch-

and-price algorithms.

Four sets of numerical experiments are carried out and they showed the capability of

the proposed approach to deal with large-scale instances of the JSM–RAP and yield op-

timal solutions. The computation times of the CG-PLA and CG-ECO approaches were

considerably smaller than those of the two-phase approach presented in Diallo et al.

(2019b). On the other hand, the CPU times for the B&P algorithms are significantly

larger than those of the CG-based approaches without B&B. However, for all experiment

sets, the two B&P algorithms were able to solve all instances optimally. CG–ECO that

uses an exact reformulation of SP i is proven to be capable of guaranteeing solution opti-

mality when combined with B&B. For large-scale instances, whether CG-PLA or CG-ECO

is utilized, the gap between the reliability obtained from solving the JSM–RAP as a BIP

problem and that obtained from the relaxed problem is usually very small, meaning that

the solutions obtained are very close to the unknown optimal solution. The efficiency

of the proposed algorithms is such that it was possible to solve a problem with more

than double the number of components in the previous largest JSM–RAP instance solved

by Ikonen et al. (2020). Finally, The effectiveness of the stabilization scheme is demon-

strated in accelerating the convergence of the CG algorithm for large-scale systems with

additional maintenance levels.

We are working on an extension of the current formulation to the multimission and
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fleet SM problem. Most existing SM models deal with reliability as the performance in-

dicator. It would be of great value to consider system availability as well. Therefore,

we are planning to study the trade-offs between system availability and the hiring of re-

pairpersons using multi-objective optimization approaches. Future works will also focus

on extending the present approach to deal with situations where the operational per-

formance of components along with their corresponding degradation processes are both

accounted for in SM modelling and optimisation. Another important research issue to

investigate within JSM–RAP is the maintenance tasks scheduling problem. Finally, DFS

was employed as the node selection strategy in the proposed B&P algorithm due to its

lower memory consumption and because no significant difference in computation times

compared to the best-first search (BFS) strategy was observed. However, this result may

only be specific to the instances used in this study. A further systematic investigation is

recommended to fully understand the advantages and limitations of both DFS and BFS

in solving future SMPs.



Chapter 4

Distributionally-robust chance-constrained optimization of selective

maintenance under uncertain repair duration

4.1 Introduction

The operation of many assets used in military and industrial applications follows alter-

nating sequences of missions and maintenance pauses. Examples of such systems include

power plants, naval vessels and aircraft. Given that suchmission-oriented systems cannot

undergo maintenance while in service, maintenance activities are typically executed dur-

ing scheduled breaks, aiming to enhance their ability to complete subsequent missions

successfully. Furthermore, given that the available maintenance resources (e.g., budget,

time, spare parts, personnel) are not usually sufficient to complete all required mainte-

nance actions, the planner must determine an optimal subset of components to maintain

and the level of maintenance to be executed on each component. This maintenance strat-

egy is known as selective maintenance (SM), and the corresponding selection problem is

the selective maintenance problem (SMP) (Rice et al., 1998). When multiple repairpersons

possibly with different costs and skill levels are available, it is also necessary to determine

the assignment of maintenance activities to each repairperson, giving rise to the joint se-

lective maintenance and repairperson assignment problem (JSM–RAP) (Diallo et al., 2017,

2019b; An et al., 2021; Al-Jabouri et al., 2023; O’Neil et al., 2023b).

A lot of attention has been directed to the SMP in the last two decades. Problems

with various systems structures, maintenance policies, and resource restrictions have

been considered. Recent reviews on the topic include Xu et al. (2015); Cao et al. (2018a)

and Al-Jabouri et al. (2022). Solution methods developed for different variants of the

SMP include exact methods, (e.g., enumeration (Rice et al., 1998), depth-first search algo-

rithms (Cao et al., 2016b), branch-and-bound (Lust et al., 2009), search space reduction

(Rajagopalan and Cassady, 2006), and the two-phased approach (Diallo et al., 2018)),

constructive heuristics (Galante et al., 2020; Ahadi and Sullivan, 2019; Cao et al., 2018b;

95
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Khatab et al., 2007), metaheuristics (e.g., simulated annealing (Jiang and Liu, 2020b),

genetic algorithms (Dao et al., 2014), and differential evolution (Pandey et al., 2013b)),

the max-min approach by Schneider and Cassady (2015), and reinforcement learning by

Liu et al. (2020). Despite this plethora of SMP studies, handling large-scale systems is

still a challenge due to the NP-hardness of the problem resulting from its nonconvexity

(Rice, 1999). Therefore, new formulations and solution algorithms that can effectively

deal with the SMP and its extensions for large industrial-scale instances are required to

enable real-life implementation on systems often comprised of hundreds of components.

Another important limitation of most SMP models proposed in the literature is that

they assume the duration of maintenance actions to be known in advance as determinis-

tic parameters. This assumption is quite unrealistic as the high variability of component

conditions, repairperson skill levels, and other unpredictable factors such as operating

conditions and human errors make it difficult to estimate the exact duration of mainte-

nance actions accurately. A maintenance plan developed based on inaccurate duration

estimates cannot usually be fully implemented, leading to low system reliability or long

overtime (if the planner allows it) (Khatab et al., 2017a). Among the few studies that con-

sidered maintenance duration uncertainty is the work of Gupta et al. (2014), which ad-

dressed a case where parameter values for factors such as time, weight, volume, and cost

cannot be obtained precisely but are defined within interval bounds. Two SM optimiza-

tion models were developed. However, only a single repairing channel was considered

with only two maintenance levels (repair or replacement). Haseen et al. (2015) addressed

a SMP in which each component’s repair time and cost are modelled as fuzzy numbers.

However, the replacement time and cost are assumed to have fixed values. Khatab et al.

(2017a) proposed a risk-neutral stochastic programming (SP) model with probabilistic

constraints to handle the random maintenance durations which are assumed to follow

Gamma distributions. The proposed nonlinear SP model minimizes the total mainte-

nance cost with a constraint ensuring that the maintenance actions can be completed

during the break with a pre-determined threshold probability. Liu et al. (2018) devel-

oped a SP model with the uncertainty on maintenance duration following a truncated

normal distribution. A saddle-point approximation approach was used to evaluate the

system’s reliability.
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Chance-constrained programming (CCP) was proposed as a viable alternative for han-

dling duration uncertainty in the context of SMP (Ali et al., 2011a). Although CCP en-

ables the planner to balance feasibility and solution quality and to control risk exposure

by adjusting the confidence level, it suffers from some drawbacks that limit its usability.

First, the chance constraint method requires full knowledge of the probability distribu-

tions for the duration of each maintenance action type and level. It can be challenging

to determine the “true" distribution in cases when there is limited historical data, par-

ticularly for systems that have not been active for sufficient time periods or have a low

frequency of failures. This situation is typical in the maintenance industry where failure

events are infrequent and/or the components have not worked long enough to extract suf-

ficient maintenance records. Moreover, such problems can be challenging to solve since

chance constraints are generally nonconvex (Charnes and Cooper, 1959).

Alternatively, rather than presuming the existence of a fully-known probability distri-

bution for the uncertain parameters, a recentmodelling framework called distributionally-

robust optimization (DRO) (Goh and Sim, 2010) involves considering an ambiguity set of

probability distributions and solving a minimax-type problem to identify decisions that

offer protection against the worst-case parameter distribution within the set (Noyan et al.,

2022). In general, there are moment-based and statistical distance-based ambiguity sets

in the DRO literature (Postek et al., 2016). The ambiguity sets defined by moment condi-

tions encompass probability distributions that match certain moments, such as the em-

pirical first and second moments. Nevertheless, such sets do not always contain the true

distribution, and moment-based DRO approaches can be excessively conservative since

different distributions may exhibit the same or similar lower moments. On the other

hand, statistical distance-based ambiguity sets consist of probability distributions that

are in the proximity of a nominal (empirical) distribution, enough to be good estimates

of the true distribution. The proximity or vicinity is defined as a ball centered on the

nominal distribution. Many measures of statistical distances providing an assessment

of dissimilarity between two probability distributions exist and have been used to con-

struct these balls (Pflug and Wozabal, 2007; Erdoğan and Iyengar, 2006; Zhao and Guan,

2018). A desirable characteristic of distance-based DRO methodologies is the capability

to manage the level of conservatism by modifying the radius. When a prescribed level

of confidence is required, selecting an appropriate radius for certain distances, like the
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Wasserstein-1 metric, can ensure that the true probability distribution belongs to the

ambiguity set. This advantage has significantly increased the adoption of Wasserstein

distances in DRO (Noyan et al., 2022).

This paper studies the JSM–RAP with uncertain maintenance duration, aiming to

address the two aforementioned issues, namely the nonlinear nonconvex nature of the

problem, and the limitations of SP for handling duration uncertainty in terms of both

its restrictive assumption of perfect knowledge of the probability distribution and its

intractability. First, we propose a piecewise-linear approximation of the nonlinear relia-

bility objective function such that the nominal problem can be tightly approximated as a

mixed-integer linear program (MILP) without increasing the number of binary variables.

Then, to handle the uncertain maintenance duration, we replace the deterministic total

duration constraint with a data-driven DRCC that provides a probabilistic guarantee on

the satisfaction of the total maintenance duration constraint. This guarantee is enforced

for the subset of probability distributions contained in a Wasserstein ambiguity set (i.e., a

form of a ball in the space of probability distributions with respect to the type-1 Wasser-

stein metric centered at the empirical distribution) constructed based on a finite and typ-

ically small training dataset. The developed method recognizes that the statistical data

samples can usually be explained by multiple distributions and alleviates the overfitting

found in traditional SP based on a single distribution, which is consistently contami-

nated by estimation errors (Mohajerin Esfahani and Kuhn, 2018). It also enables robust

maintenance plans (in the sense that they perform well for out-of-sample realizations) to

be obtained based on a small number of training samples (in respect to the size of the

uncertain problem parameters) as is usually the case in industrial/military systems with

rare failure events. The DRCC is then approximated using a Conditional Value-at-Risk

(CVaR) constraint such that the JSM–RAP with uncertain maintenance duration, similar

to its nominal counterpart, is approximately reformulated as a MILP solved exactly and

relatively easily using off-the-shelf solvers.

The article is organized as follows. Section 4.2 defines the nominal deterministic JSM–

RAP for a multicomponent system, its modelling assumptions, and the system reliabil-

ity computations. It also presents both the classical mixed-integer nonlinear program-

ming (MINLP) formulation of the JSM–RAP as well as the proposed reformulation using

piecewise-linear approximation (PLA). In Section 4.3, the proposed DRCC formulation
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that ensures maintenance plans can be completed at a given probability is developed.

Several numerical experiments and their subsequent results discussion are provided in

Section 4.4. Conclusions are outlined and potential ideas for extension are presented in

Section 4.5.

4.2 The nominal JSM-RAP

This section provides the description and mathematical formulation of the JSM-RAP un-

der the assumption that the maintenance duration values corresponding to each compo-

nent, repairperson and maintenance level are known with certainty. This case is referred

to hereinafter as the nominal problem. The multicomponent series-parallel system under

consideration and our modelling notations and assumptions are described, then the im-

perfect maintenance (IM) model is defined, and the expressions for the overall duration

and cost of the maintenance plan are developed. A MINLP formulation of the JSM–RAP

is presented, followed by the reformulation of the nominal problem through piecewise-

linear approximation.

4.2.1 System description

As depicted in Figure 4.1, the system being considered has m subsystems arranged in se-

ries (i.e., each subsystemmust be operational for the system to function). Each subsystem

denoted by i is made up of Ji parallel repairable components Eij (i.e., the ith subsystem

can operate as long as there is at least one functioning component among its Ji compo-

nents). Subsystem components are independent with lifetimes not necessarily identically

distributed. These components do not have the same age at the end of a mission when

maintenance decisions must be made.

The series-parallel configuration is a widely studied structure in the SM literature,

and it has been applied to model numerous industrial and military equipment. Exam-

ples of such systems include machining lines in an engine workshop (Zhu et al., 2011),

coal transportation systems (Liu et al., 2009), army tanks (Sharma et al., 2017), mate-

rial delivery systems (Chen et al., 2012), shell filling and shooting equipment (Cao et al.,

2018b), aircraft turbine engine (Wang et al., 2019), nuclear fuel production assets (Zhao

et al., 2019b), low-pressure coolant injection apparatus (Ruiz et al., 2020), and flow trans-

mission equipment (Liu et al., 2020).
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The asset/system has just concluded a mission and is switched off to go through main-

tenance operations during a scheduled pause of duration D0 (see Figure 4.2). Following

the maintenance pause, the system will carry out a mission that lasts V units of time.

Xij =

1 if Eij is operational at the beginning of the break.

0 otherwise.
(4.1)

Likewise, after the break, the effective age of each component Eij is denoted by Aijl if

maintenance level l is carried out, and its status is given by a binary parameter Yij , which

is defined as:

Yij =

1 if Eij is working following the end of the break

0 otherwise.
(4.2)

By comparing Yij with Xij , it is possible to determine whether a failed component was

fixed during the pause or left unrepaired.

Figure 4.1: Series-parallel system structure.

4.2.2 Modelling assumptions

To formulate the problem, the following assumptions are made.

1. The asset/system comprises multiple binary components that are repairable, non-

identical, and operate independently. This assumption is widely accepted and backed

by multiple references (Diallo et al., 2018; Jiang and Liu, 2020a).

2. Components do not experience aging while they are inactive due to failures as their

age is mainly determined by their usage. This assumption is reasonable considering
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Figure 4.2: Sequence of mission and scheduled break.

that the duration of the failures is usually insignificant compared to mission length

(Diallo et al., 2019b).

3. Maintenance actions can only be performed during system downtime; no mainte-

nance is allowed during mission time. For a majority of mission-oriented assets, it

is impractical or impossible to suspend the mission to conduct maintenance (Jiang

and Liu, 2020b).

4. Availability of required resources such as budget, repair personnel, and tools is

guaranteed at the time of requirement (Chaabane et al., 2020a).

5. Eachmaintenance activity is performed by a single repairperson, and any repairper-

son can undertake any maintenance level on any component (O’Neil et al., 2023b;

Diallo et al., 2019b).

6. Concurrently working on multiple components is possible without any overlap or

collision between the repairpersons involved (Diallo et al., 2019b).

Table 4.1 presents the system of notation used in this paper.

4.2.3 Modelling maintenance costs and duration

Two types of maintenance actions are performed during a break/pause: corrective main-

tenance (CM) and preventivemaintenance (PM) (Yang et al., 2009; Al-Jabouri et al., 2023).

CM is executed on failed components while PM is done on components that are still in

operation.
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Table 4.1: System of notations used

i index of subsystems in series in the system considered, i ∈ I = {1, . . . , I}
j index of components in subsystem i, j ∈ Ji = {1, . . . , Ji}
l index of maintenance levels available for component Eij , l ∈ Lij ={

0, . . . ,Lij
}

r index of repairpersons, r ∈ Q = {1, . . . ,Q}
n index of breakpoints in the PLA model, n ∈ N = {1, . . . ,N }
kr index of training samples for repairperson r, kr ∈ Kr = {1, . . . ,Kr}
sr index of testing samples, sr ∈ Sr = {1, . . . ,Sr}
Eij jth component of subsystem i
ρ Wasserstein radius
1− ϵr individual chance constraint’s confidence level for repairperson r
t+ijlr(t

−
ijlr ) upper (lower) bound of the duration required to implement mainte-

nance level l on component Eij by repairperson r
tcijlr(t

p
ijlr ) nominal duration for performing CM (PM) on component Eij at main-

tenance level l by repair person r
tkijlr time required to perform maintenance level l on component Eij by

repairperson r according to training sample k
Bij age of component Eij at the start of the break
Aijl age of component Eij at the end of the break if maintenance level l is

performed
Xij(Yij ) binary variable indicating the status of component Eij at the beginning

(ending) of the
break (1: working; 0: failed)

Tr aggregate time spent by repairperson r on maintenance operations
C0 maintenance budget cap
D0 break duration
V duration of the succeeding mission
Rcij(V |Aijl ) reliability of component Eij during the subsequent mission given an

initial age Aijl
R system reliability for the upcoming mission
P an arbitrary distribution in the distributional ambiguity set
P̂ the empirical distribution in the distributional ambiguity set
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For a failed component Eij , a maintenance level among the (Lij + 1) CM levels (l ∈{
0,1, . . . , Lij

}
) available must be selected. The lowest level (l = 0) corresponds to the Do-

Nothing (DN) option while the highest level (l = Lij) is the component replacement op-

tion. Level l = 1 denotes minimal repair (MR) that aims to restore the component to its

original “as bad as old" condition when executed. Imperfect maintenance (IM) actions

fall within the range of 1 < l < Lij and result in the component’s health condition being

restored to a state between “as bad as old" and “as good as new" after completion. In this

study, IM is modelled using the age reduction approach introduced in (Malik, 1979). This

means that when a repairperson r performs CM of level l on component Eij , the age of

the component Bij is multiplied by an age reduction coefficient θijl , where 0 ≤ θijl ≤ 1.

Accordingly, the component is considered “as good as new" (i.e., , replaced) if its age is

reset to zero (θ = 0), while it is considered “as bad as old" (minimal repair) if the age

reduction coefficient is θ = 1. Each CM action incurs a cost ccijl and requires tcijlr units of

time.

Similarly, for a functioning component Eij , a PM action can be performed at level

l ∈
{
0,2, . . . , Lij

}
. It is worth noting that level l = 1 pertains to the minimal repair sce-

nario, where a failed component is returned to working condition without affecting its

failure rate. However, minimal repair is not applicable to working components, so l = 1

is not available for PM actions. Intermediate values of l (2 ≤ l < Lij) correspond to IM

actions, which rejuvenate the component by lowering its age by a proportion ϕijl, where

0 ≤ ϕijl ≤ 1. For example, when ϕijLij = 0, it corresponds to the perfect replacement (PR)

scenario where the component’s age is reset to 0. On the other hand, when ϕijLij = 1,

it corresponds to the “Do Nothing" scenario, where the component’s age remains un-

changed after the maintenance break. Every PM action incurs a cost cpijl and lasts tpijlr
units of time.

Based on the aforementioned IM model, the computation of the effective age Aijl for a

given component Eij at the end of the break is determined as a function of its initial oper-

ating status Xij and the level of maintenance l executed. This function can be expressed

as follows:

Aijl = Bij
[
Xijϕijl +

(
1−Xij

)
θijl

]
. (4.3)

When maintenance is not carried out on a component, its associated maintenance

duration and cost are set to zero. However, if a component Eij undergoes maintenance at
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level l by repairperson r, it incurs a fixed cost (cpijl or c
c
ijl). Accordingly, the total costs for

PM and CM are expressed by:

CPM =
I∑
i=1

Q∑
r=1

Ji∑
j=1

Lij∑
l=2

c
p
ijl Xij xijlr , (4.4)

CCM =
I∑
i=1

Q∑
r=1

Ji∑
j=1

Lij∑
l=1

ccijl
(
1−X ij

)
xijlr , (4.5)

where the term (1−Xij) guarantees that CM activities are exclusively conducted on com-

ponents that have failed. The total maintenance cost C is then:

C = CPM +CCM . (4.6)

Lastly, the total maintenance duration Tr spent by each repairperson r is determined by:

Tr =
I∑
i=1

Ji∑
j=1

 (
1−X ij

) Lij∑
l=1

tcijlrxijlr + Xij

Lij∑
l=2

t
p
ijlrxijlr

 . (4.7)

4.2.4 Next mission system reliability

If the unconditional reliability of component Eij is denoted by Rij(t), then Rijl the com-

ponent reliability during the next mission if Eij is subjected to a maintenance action of

level l ∈ {0, . . . ,Lij} is given by:

Rijl =
Rij

(
Aijl +V

)
Rij

(
Aijl

) . (4.8)

Considering that each component can undergo exactly one maintenance action of level

l including Do-Nothing (l = 0) and considering that only one repair person is needed to

perform that activity, Rcij(V |Aijl ) the conditional reliability of component Eij given that its

initial age is Aijl is given by:

Rcij(V |Aijl ) =
Lij∑
l=0

Q∑
r=1

Rijlxijlr , (4.9)

where xijlr is a binary decision variable defined as:

xijlr =

1 if repairperson r performs maintenance level l on Eij

0 otherwise.
(4.10)
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Also, because each subsystem i is a parallel structure, its next mission reliability Ri is

given by:

Ri = 1−
Ji∏
j=1

1−
Lij∑
l=0

Q∑
r=1

Rijlxijlr

 . (4.11)

Lastly, the next mission reliability R of the asset (series-parallel system) is:

R =
I∏
i=1

Ri =
I∏
i=1

1− Ji∏
j=1

1−
Lij∑
l=0

Q∑
r=1

Rijlxijlr


 . (4.12)

4.2.5 Mixed-integer nonlinear programming formulation

The goal of the JSM–RAP addressed here is to optimize the next mission system reliability

of the asset under consideration by jointly determining a list of components to maintain,

the levels of maintenance to be executed, and the repairers to perform them during the

break, subject to a pre-specified maintenance budget. The following MINLP formulation

of the JSM–RAP was provided by Diallo et al. (2019b).

[SMP ]MINLP :

max
xijlr

R =
I∏
i=1

1− Ji∏
j=1

1− Q∑
r=1

Lij∑
l=0

Rijlxijlr


 (4.13a)

s.t.

C ≤ C0 (4.13b)

Tr ≤D0 ∀r ∈ Q (4.13c)

Q∑
r=1

Lij∑
l=1

xijlr = 1 ∀i ∈ I ,∀j ∈ Ji (4.13d)

xijlr ∈ {0,1} ∀(i, j, l, r) ∈ (I ,Ji ,Lij ,Q). (4.13e)

The objective function in Equation (4.13a) maximizes the next mission system reli-

ability. To ensure that the maintenance cost is within the available budget, constraint

(4.13b) restricts the total cost of maintenance C calculated by equation (4.6) to be less

than or equal to the maintenance budget. To limit the total maintenance time assigned to

each repairperson Tr calculated by equation (4.7) within the break duration, constraints
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(4.13c) are used. Additionally, ensuring that every component receives just one mainte-

nance level performed by a single repairperson is enforced by constraints (4.13d).

This MINLPmodel is computationally expensive to solve or intractable as the problem

size increases. Therefore, the first contribution of this article is to develop a piecewise-

linear approximation to allow for the consideration of large-scale systems as often en-

countered in industry.

4.2.6 Reformulation of the nominal problem through piecewise-linear

approximation

The piecewise-linear approximation proposed uses continuous variables in type 2 spe-

cial ordered sets (SOS2) constraints (Beale and Forrest, 1976) to handle the non-linear

formulation (4.13) so it is tightly approximated as a MILP.

First, let Fi = 1−Ri be the unreliability of subsystem i, where

Ri =1−
Ji∏
j=1

1− Q∑
r=1

Lij∑
l=0

Rijlxijlr

 . (4.14)

Application of the natural logarithm function to to each side of Equation (4.13a) results

in the linearization of the objective function

ln(R) =
I∑
i=1

ln(1−Fi). (4.15)

Since xijlr is binary and only a single maintenance level is chosen for every component

(i.e.,
∑Q
r=1

∑Lij
l=0xijlr = 1), and using Equation (4.14), Fi can be rewritten as

Fi =
Ji∏
j=1

1− Q∑
r=1

Lij∑
l=0

Rijlxijlr

 (4.16)

=
Ji∏
j=1

Q∑
r=1

Lij∑
l=0

Fijl xijlr , (4.17)

which is equivalent to

ln(Fi) =
Q∑
r=1

Ji∑
j=1

Lij∑
l=0

ln(Fijl)xijlr , (4.18)

where Fijl = 1−Rijl is the unreliability of component Eij after undergoingmaintenance

level l during the planned maintenance break.
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Let us define the functions g,h : (0,1) 7→ R−, where g(Fi) = ln(1−Fi) and h(Fi) = ln(Fi).

To approximate these non-linear functions, a set of N breakpoints F̂in (n = 1, . . . ,N ) and

SOS2 variables ψi ∈ [0,1]N are employed for their corresponding piecewise-linear func-

tions ĝ(.) and ĥ(.). The piecewise-linearly approximated problem is written as follows:

[SMP ]P LA :

max
xijlr ,ψin

ln(R) =
I∑
i=1

N∑
n=1

ln(1− F̂in)ψin (4.19a)

s.t.

N∑
n=1

ln(F̂in)ψin ≥
Ji∑
j=1

Lij∑
l=0

Q∑
r=1

ln(Fijl)xijlr ∀i ∈ I (4.19b)

N∑
n=1

ψin = 1 ∀i ∈ I (4.19c)

ψin ≥ 0,SOS2 ∀i ∈ I ,∀n ∈ N (4.19d)

(4.13b)− (4.13d).

The objective function in Equation (4.19a) maximizes the piecewise-linearized system

reliability. The constraints in Equation (4.19b) establish the linear segments that approx-

imate the unreliability function. Equation (4.19c) ensures that the assigned weights of

the breakpoints sum up to 1, while constraints (4.19d) set the SOS2 variables that define

the breakpoints of the linear approximations.

4.3 Distributionally-robust chance-constrained programming model

Variability and uncertainty of the maintenance duration are inevitable due to unpre-

dictable operating conditions, components’ conditions that remain largely unknown un-

til maintenance has started, varying repair persons’ skill sets, and human errors. This

raises the question of what duration values (tcijlr , t
p
ijlr) to use in constraint (4.13c). If the

mean duration values (or another measure of central tendency like the median) are used,

the constraint would be violated, resulting in incomplete or unperformed maintenance

actions, in many cases. On the other hand, if the constraint is to be satisfied for all pos-

sible realizations of the uncertain duration, a very conservative maintenance plan would

be obtained with an extreme case being no maintenance performed at all. A prevalent
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approach for handling such parameter uncertainty is the use of probabilistic/chance con-

straints (Charnes and Cooper, 1959). Hence, the deterministic constraint (4.13d) would

be replaced with the following chance constraint.

PG

 I∑
i=1

Ji∑
j=1

Lij∑
l=1

t̃ijlrxijlr ≤D0

 ≥ 1− ϵr ∀r ∈ Q, (4.20)

which stipulates that the original constraint is satisfied with a probability of at least 1 −
ϵr , where ϵr ∈ (0,1) represents a risk tolerance parameter that prescribes the maximum

acceptable violation probability of the break duration constraint for repairperson r. Note

that the random variable t̃ijlr denotes the maintenance duration of maintenance level l

performed by repairperson r on component Eij and follows a known distributionG. Also,

it is worth noting that, since the status (working or failed) for all components is assumed

to be known at the beginning of the maintenance break, the parameter Xij appears in

(4.13c) and (4.7) was reduced in constraint (4.20) for simplicity and compactness.

In the context of SMP, using chance constraints for handling duration uncertainty was

first proposed in (Ali et al., 2011a). Although it enables the planner to control the trade-

off between feasibility and solution quality by adjusting ϵr , the chance constraint requires

the probability distribution of the maintenance time (G) to be known. In the absence of

sufficient historical data, especially for systems that have not been operational for a long

time or that rarely fail, it is usually difficult to deduce the “true" data-generating distri-

bution. Instead, one can construct a set P that contains the true distribution with high

probability, referred to herein as the distributional ambiguity set (DAS), and require that

the chance constraint holds for all distributions in P by replacing the chance constraint

with a DRCC as follows:

min
P ∈P

PP

 I∑
i=1

Ji∑
j=1

Lij∑
l=1

t̃ijlrxijlr ≤D0

 ≥ 1− ϵr ∀r ∈ Q. (4.21)

It is well-known that CCP problems are NP-hard, even in the simplest setting (Luedtke

et al., 2010, theorem 1). Since the chance constraint (4.20) is a special case of the DRCC

(4.21) (with a unitary ambiguity set), the latter is also intractable. However, tractable ap-

proximations exist in the literature for DRCCs (Chen et al., 2018b; Ji and Lejeune, 2021)

and they depend on the structure of the DAS. In what follows, an illustrative example

for the use of a DRCC in SMP is first presented in subsection 4.3.1. Then, the structure
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of the DAS used is explained in subsection 4.3.2. The Conditional Value-at-Risk (CVaR)

approximation used for the proposed model is presented in subsection 4.3.3. Finally,

in subsection 4.3.4, the calibration of the DAS is investigated through cross-validation

(out-of-sample testing).

4.3.1 Illustrative example

To motivate the use of a DRCC to deal with the distributional ambiguity of t̃, let us con-

sider a single-component system. At the beginning of the break, three maintenance levels

l are available: Do Nothing (l = 0), Minimal repair (l = 1) and Replacement (l = 2). These

options correspond to reliability levels R0, R1 and R2, respectively, at the end of the next

mission, where R2 > R1 > R0. The planner wants to select a maintenance action that can

be completed within a 1-hour break with 90% probability (i.e., α = 0.1 in the chance

constraint). For simplicity, let us assume that the maintenance times are normally dis-

tributed and known to the planner. A replacement has a mean duration of 50 minutes

and a standard deviation of 10 minutes, whereas a minimal repair has a mean duration

of 30 minutes and a standard deviation of 5 minutes. However, the probability distribu-

tion parameters are unknown to the planner, who has access only to a limited sample of

3 historical realizations for each repair level. For the replacement, these realizations are

35, 45 and 55 minutes, and they are 25, 30 and 35 minutes for the minimal repair. Based

on the true distribution of replacement times, option l = 2 is an infeasible option since it

can be completed within the one-hour break time with only 84.13% probability, which is

less than the required confidence level. Hence, the best feasible option is a minimal re-

pair, leading to reliability R1. However, the planner will base its decision on the available

sample data. With sample average and standard deviation of 45 and 10 minutes, respec-

tively, a probability of 93.32% for completing the replacement within the break time is

estimated. Hence, due to sampling error, the planner would mistakenly select an infea-

sible option (i.e., Replacement) rather than the best feasible one (i.e., Minimal repair).

When implementing the selected action, the planner will have two alternatives: either

to violate the chance constraint (rendering the plan infeasible), or to abandon the main-

tenance action altogether. It should be noted that abandoning the replacement is worse

than doing-nothing because valuable time and resources would have been wasted for no

reliability improvement. In some cases, damage can be caused to the system in the haste
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of closing back the system. Often, the decision-maker would opt for costly remediations

such as overtime work and/or delaying mission start.

Using a DRCC with a suitably sized DAS will prevent the selection of the infeasible

replacement option. For example, if the ambiguity set admits all normal distributions

which have means that are within 5 units of the sample average, the true distribution

will be encompassed. In other words, the planner can “hedge” against the distributional

ambiguity of the uncertain maintenance duration rather than over-relying on small data

samples that often lead to out-of-sample performance disappointments.

4.3.2 Structure of the distributional ambiguity set

To construct the DAS for each repairperson, we assume that the planner has access to a

finite (and usually small) number Kr of independent training samples for each repairper-

son (e.g., historical observations or expert opinions t̂kijlr with k ∈ Kr := {1, . . . ,Kr}). These
samples can be used to construct the empirical distribution P̂ Kr for the (known) train-

ing samples. Furthermore, we require that all distributions in Pr are supported on the

bounded polyhedral set Ξr =
{
t̃r ∈ R

I×J×L :Ht̃r ≤ h
}
, where h ∈ R

O×1 and H ∈ R
O×(I×J×L).

For example, Ξr can be the Cartesian product of the closed interval sets
[
t+ijlr , t

−
ijlr

]
, where

the lower bound t−ijlr and upper bound t+ijlr can be taken as multiples of the nominal du-

ration values or extracted from historical observations. In this case, h =
[
t+r −t−r

]⊤
and

H =
[
I −I

]⊤
, where I is the identity matrix, t+(t−) ∈ R

I×J×L is a vector that represents

the upper (lower) bound of the duration required to implement maintenance level l on

component Eij by repairperson r. For each repairperson, we use the following type-1

Wasserstein DAS:

PW

r :=
{
Pr ∈Mr (Ξr) :W

(
Pr , P̂

K
r

)
≤ ρr

}
∀r ∈ Q, (4.22)

that contains all Ξr-supported distributions that are “close" to (i.e.,within radius ρr from)

the empirical distribution. In this definition, Mr(Ξr) is the set of all distributions Pr
supported on Ξr with E

P
r

[∥∥∥t̃r∥∥∥] = ∫
Ξr

∥∥∥t̃r∥∥∥Pr (dt̃) <∞, and W

(
Pr , P̂

K
r

)
is the Wasserstein

distance between the probability distributions Pr and P̂ Kr . Accordingly, the Wasserstein

metric (Kantorovich and Rubinshtein, 1958) is defined as:

W (Pr1, Pr2)B inf
{∫

Ξ2

∥∥∥t̃r1 − t̃r2∥∥∥Π (dt̃r1,dt̃r2)
}

∀r ∈ Q, (4.23)
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where Wasserstein distance between two probability distributions Pr1 and Pr2 within the

space of measures Mr is represented by the joint distribution Π of t̃r1 and t̃r2. This dis-

tance represents the minimum cost of an optimal mass transportation plan, and the mag-

nitude of the difference between t̃r1 and t̃r2, represented by ∥t̃r1 − t̃r2∥, encodes the trans-
portation costs.

The aim is to carefully choose a radius ρr such that the ambiguity set PW

r contains

the unknown true distribution with high confidence. Besides enabling sample data to

be directly incorporated in the optimization problem, modelling the ambiguity set as

a Wasserstein ball offers many practical benefits for stakeholders, e.g., offering rigorous

finite-sample and asymptotic consistency guarantees, and under specific regularity con-

ditions, it affords computational tractability (Mohajerin Esfahani and Kuhn, 2018).

4.3.3 Tractable approximation

The DRCC (4.21) is known to be hard even in the special case when the DAS is uni-

tary (in which case it reduces to a classical chance constraint). Hence, we resort to the

tractable approximation proposed in (Ordoudis et al., 2021, proposition 1), which is done

in two steps: firstly, by conservatively approximating the chance/Value-at-Risk (VaR)

constraint using a Conditional Value-at-Risk (CVaR) constraint as shown in (Nemirovski

and Shapiro, 2007), then by tractably reformulating the worst-case CVaR constraints us-

ing standard duality techniques (See the proof of Proposition 1 in Ordoudis et al. (2021)

for more details). Thus, (4.21) can be approximated as follows:

λrρr +
1
Kr

Kr∑
k=1

skr ≤ 0 ∀r ∈ Q (4.24a)

τr ≤ skr ∀r ∈ Q,∀k ∈ Kr (4.24b)

∥ϵr(γkijlr −σ
k
ijlr)− xijlr∥1 ≤ ϵrλr ∀(i, j, l, r) ∈ (I ,Ji ,Lij ,Q) (4.24c)

I∑
i=1

Ji∑
j=1

Lij∑
l=0

t̂kijlr xijlr −D0 +
I∑
i=1

Ji∑
j=1

Lij∑
l=0

(t+ijlr − t̂
k
ijlr)γ

k
ijlr

+
I∑
i=1

Ji∑
j=1

Lij∑
l=0

(t−ijlr − t̂
k
ijlr)σ

k
ijlr + (ϵr − 1)τr ≤ ϵrskr ∀r ∈ Q,∀k ∈ Kr (4.24d)

γkijlr ,σ
k
ijlr ≥ 0 ∀(i, j, l, r) ∈ (I ,Ji ,Lij ,Q). (4.24e)
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By combining the approximated DRCC (4.24) into the piecewise-linearly approxi-

mated formulation (4.19), the DRCC JSM–RAP can be written as follows:

max
xijlr ,ψin,γ

k
ijlr ,σ

k
ijlr ,s

k
r ,λr ,τr

I∑
i=1

N∑
n=1

ln(1− F̂in)ψin (4.25a)

s.t.:

N∑
n=1

ln(F̂in)ψin ≥
Ji∑
j=1

Lij∑
l=0

Q∑
r=1

ln(Fijl)xijlr ∀i ∈ I (4.25b)

C ≤ C0 (4.25c)

λrρ+
1
Kr

Kr∑
k=1

skr ≤ 0 ∀i ∈ I (4.25d)

τr ≤ skr ∀r ∈ Q,∀k ∈ Kr (4.25e)

∥ϵr(γkijlr −σ
k
ijlr)− xijlr∥1 ≤ ϵrλr ∀(i, j, l, r) ∈ (I ,Ji ,Lij ,Q) (4.25f)

I∑
i=1

Ji∑
j=1

Lij∑
l=0

[
t̂kijlr xijlr + (t+ijlr − t̂

k
ijlr)γ

k
ijlr

]
−D0

+
I∑
i=1

Ji∑
j=1

Lij∑
l=0

(t−ijlr − t̂
k
ijlr)σ

k
ijlr + (ϵr − 1)τr ≤ ϵrskr ∀r ∈ Q,∀k ∈ Kr (4.25g)

N∑
n=1

ψin = 1 ∀i ∈ I (4.25h)

Lij∑
l=0

Q∑
r=1

xijlr = 1 ∀i ∈ I ,∀j ∈ Ji (4.25i)

ψin ≥ 0,SOS2 ∀i ∈ I ,∀n ∈ N (4.25j)

xijlr ∈ {0,1} ∀(i, j, l, r) ∈ (I ,Ji ,Lij ,Q) (4.25k)

γkijlr ,σ
k
ijlr ≥ 0 ∀(i, j, l, r) ∈ (I ,Ji ,Lij ,Q). (4.25l)

The resulting approximation is a MILP that has the same number of binary variables as

the nominal (deterministic) problem. It can be readily handled using off-the-shelf solvers.
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4.3.4 Calibrating the ambiguity set through cross-validation

The empirical distribution for each repairperson P̂ Kr converges in Wasserstein metric to

the unknown true distribution as Kr tends to infinity. Thus, for any given εr ∈ (0,1)

there is a sequence of ρKr (εr) ≥ 0 converging toward no violation of the chance constraint

such that the Wasserstein ball of radius ρKr (εr) around P̂ Kr contains the unknown true

distribution with confidence 1 − εr for every Kr (Xie, 2021). For implementation with a

given field data size, the best Wasserstein ball radius is determined via cross-validation

(Mohajerin Esfahani and Kuhn, 2018). In what follows, the cross-validation method used

is explained.

For a given value of ρr , the out-of-sample performance (i.e., reliability) of the optimal

maintenance plan x∗train(ρr) obtained by solving the JSM–RAP with DRCC for uncertain

maintenance duration (DRSMP) in (4.25) with the training set of maintenance durations

is estimated by applying the said-solution on a large number Sr of testing samples drawn

at random from the same distribution of the training samples.

• If the chance constraint is satisfied for (1 − εr)Sr or more testing samples, then the

maintenance plan x∗train(ρr) is feasible and its reliability value is the out-of-sample

reliability obtained from the DRSMP.

• If the chance constraint is not satisfied for εrSr or more testing samples, then the

obtained maintenance plan is not feasible for the testing samples. In this case,

the best subset of maintenance actions from the DRSMP solution that satisfies the

chance constraint for at least (1 − εr)Sr testing samples must be identified by solv-

ing the followingmultidimensional multiple-choice knapsack problem (MdMCKP).

The obtained objective function value is the out-of-sample reliability.

Ui is the powerset of patterns (i.e., combinations of component andmaintenance level)

selected for subsystem i in the DRSMP solution under evaluation (Ui = 1, . . . ,Ui). For each

element u of the powerset, Triu and Riu are the corresponding maintenance work time by

repairperson r and the subsystem reliability, respectively.

The following decision variables λiu and zrs are used to select the best overall mainte-

nance plan that maximizes system reliability and satisfies the chance constraint for the
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required number of testing samples:

λiu =

1, maintenance pattern u is selected for subsystem i

0, otherwise,

and

zrs =


1, if the duration of the maintenance work carried out by repairperson r

using testing sample s exceeds the break duration

0, otherwise.

The out-of-sample reliability is determined by the subset of maintenance tasks se-

lected through the following MdMCKP:

max
I∑
i=1

Ui∑
u=1

Riuλiu (4.26a)

s.t.:
Ui∑
u=1

λiu = 1 ∀i ∈ I (4.26b)

I∑
i=1

Ui∑
u=1

Triuλiu ≤D0 +Mzrs ∀r ∈ Q,∀s ∈ Sr (4.26c)

Sr∑
s=1

zrs ≤ εrSr ∀r ∈ Q (4.26d)

λiu ∈ {0,1} ∀i ∈ I ,∀u ∈ Ui (4.26e)

zrs ∈ {0,1} ∀r ∈ Q,∀s ∈ Sr . (4.26f)

The maximization of the reliability for the selected subsets of maintenance patterns from

the powerset of the DRSMP solution that does not satisfy the chance constraint for the

required number of testing samples is achieved by (4.26a). Constraints (4.26b) requires

the selection of exactly one maintenance pattern per subsystem. Constraints (4.26c) de-

termine whether the selected maintenance pattern for repairperson r has a duration that

exceeds the break duration or not. Note that M is a sufficiently large positive number.

Constraints (4.26d) safeguards that the selected pattern doesn’t violate the break length

constraint for more than ϵr×100% of the Sr testing samples. Constraints (4.26e) and

(4.26f) define the binary decision variables. The complete cross-validation method de-

scribed above is summarized as a pseudo-code in Algorithm 2.
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Algorithm 2: Choosing the best range of the Wasserstein radius using cross-

validation
1: Input data: ρmaxr , ρstepr

2: Initialize: ρr = 0, X = { } , Y = { }
3: while ρr ≤ ρmaxr do

4: Solve DRSMP (4.25) for ρr optimally using Kr training samples.

5: Store the optimal solution x∗train(ρr) (the maintenance tasks) in X and the optimal

value R∗
train(ρr) (the in-sample reliability) in Y .

6: Compute the violation probability when the optimal solution ε(x∗train(ρr)) is used

with Sr generated random testing samples.

7: if ε(x∗train(ρr)) ≤ ϵr then
8: x∗(ρr) = x∗train(ρr), R

∗(ρr) = R∗
train(ρr).

9: else

10: Generate a powerset Ui of all combinations of maintenance patterns in the

optimal solution x∗train(ρr) for each subsystem.

11: Compute the maintenance work duration Triu and reliability Riu corresponding

to each pattern u.

12: Solve the MdMCKP (4.26) that maximizes the reliability of the system while

keeping the plan feasible by selecting a “subset” of the maintenance tasks.

13: Store the optimal solution x∗test(ρr) (the subset of the maintenance tasks) in X
and the optimal value R∗

test(ρr) (the out-of-sample reliability) in Y .

14: x∗(ρr) = x∗test(ρr) , R
∗(ρr) = R∗

test(ρr).

15: end if

16: Store the values of ρr ,x∗(ρr), R∗
test(ρr).

17: ρr = ρr + ρ
step
r .

18: end while

19: Choose the best range of the Wasserstein radius as the range that has the highest

R∗(ρr) from all iterations above (ρ∗ =max(Y )).
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4.4 Numerical Experiments

The first part of this section presents the results of two sets of numerical experiments that

evaluate the accuracy of the PLA-based approach (outlined in Section 4.2.6) in solving

the nominal version of JSM-RAP. The second part assesses the performance of the DRCC

formulation developed in Section 4.3 on an extended version of the 5-by-5 serial-parallel

system from Diallo et al. (2019b).

For all numerical experiments carried out in this paper the components’ lifetimes fol-

low the Weibull distribution with scale and shape parameters of ηij and βij respectively.

Consequently, the conditional reliability Rcij(V |Aijl) takes on the following form:

Rcij(V |Aijl ) = exp

(Aijlηij

)βij
−
(
Aijl +V

ηij

)βijxijlr . (4.27)

The experiments conducted in this paper employ the Wasserstein metric induced by

the L1-norm, which implies that all resulting optimization problems are equivalent to

MILP problems. The SMP-PLA experiments utilize N = 600 breakpoints, and all exper-

iments are carried out on a Windows 11 laptop computer with an Intel(R) Core(TM) i7®

processor operating at 1.30 GHz and equipped with 16 GB of RAM. The optimization

problems are implemented in Python 3.9 and solved by Gurobi 9.1.1.

4.4.1 Computational results for the nominal problem

This subsection presents two series of numerical experiments to assess the validity of

the proposed PLA-based model for solving the nominal JSM-RAP. The first set of exper-

iments involves a comparison between the PLA-based formulation (4.19) developed in

this paper, and the 2-phase approach (see Appendix 2.4.2) by Diallo et al. (2019b). This

comparison relies on the findings attained for a moderately-sized serial-parallel system

that has multiple repairpersons with IM levels. The second set of experiments illustrates

the SMP-PLA formulation’s capability to tackle large-scale JSM-RAP instances.

4.4.1.1 Experiments #1.1: equally-skilled repair persons

The series-parallel system of moderate size investigated in Diallo et al. (2018) is consid-

ered in this set of experiments. The system is made up of s = 2 subsystems in series,

with the first subsystem comprised of n1 independent and identically distributed (i.i.d.)
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components E1j (j = 1, . . . ,5), while the second subsystem has n2 = 8 i.i.d. components E2j
(j = 1, . . . ,8) configured in parallel for a total of 13 components within the system. The

shape and scale parameters of βij and ηij (i = 1,2; j = 1, . . . , Ji) are used to determine the

Weibull distribution of the lifespan of the components. The parameter values used in this

set of experiments are set to β1j = 1.5 and η1j = 15 (j = 1, . . . ,5), and β2j = 3 and η2j = 20

(j = 1, . . . ,8). A maintenance team of Q = 2 repairpersons with equal skill levels is avail-

able. The components in the system have four available maintenance levels: l = 0 (DN),

l = 1 (MR), l = 2 (IM) which halves the component’s age, and l = 3(PR). Table 4.2 provides

further information about components’ ages, status, maintenance costs and times. The

system’s break duration is set to D0 = 10, and the next mission’s duration is set to V = 8.

To compare results, the JSM–RAP problem is solved by the exact 2-phase method from

Diallo et al. (2019b) and the SMP–PLA approach.

Table 4.2: Parameters for Experiments #1.1, source: Diallo et al. (2018).

Eij Xij Bij tcij1 tcij2 tcij3 t
p
ij2 t

p
ij3 ccij1 ccij2 ccij3 c

p
ij2 c

p
ij3

E11 0 15 4 6 8 2 4 5 10 14 8 10
E12 1 12 4 6 8 2 4 5 10 14 8 10
E13 0 10 4 6 8 2 4 5 10 14 8 10
E14 1 18 4 6 8 2 4 5 10 14 8 10
E15 1 20 4 6 8 2 4 5 10 14 8 10
E21 0 8 3 4 5 1 2 6 10 20 7 12
E22 1 15 3 4 5 1 2 6 10 20 7 12
E23 0 8 3 4 5 1 2 6 10 20 7 12
E24 1 15 3 4 5 1 2 6 10 20 7 12
E25 0 8 3 4 5 1 2 6 10 20 7 12
E26 1 15 3 4 5 1 2 6 10 20 7 12
E27 0 8 3 4 5 1 2 6 10 20 7 12
E28 1 15 3 4 5 1 2 6 10 20 7 12

Table 4.3 shows the maximum attainable asset reliability (R), total maintenance time

(D), incurred cost (C), and CPU time (CPUt) for different maintenance budget values C0

when two repairpersons are available. Additionally, this table presents the relative gap

between the 2-phase and SMP–PLA methods.

In terms of computational time, the SMP–PLA approach performs better than the 2-

phase approach. The exact 2-phase method takes a total of 853.25 seconds on average to
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Table 4.3: Outcomes of Experiments #1.1: case of two equally skilled repairpersons, and
D0 = 10.

C0
2-phase approach SMP–PLA

R∗(%) C∗ m∗ CPUt(s) R(%) C m Gap(%) CPUt(s)

54 97.97 54 2 857.68 97.97 54 2 0.0 0.02
50 97.22 49 2 853.76 97.22 49 2 0.0 0.09
40 95.90 40 2 848.54 95.90 40 2 0.0 0.08
30 92.85 30 2 848.76 92.85 30 2 0.0 0.08
20 89.50 20 2 855.23 86.50 20 2 0.0 0.03
10 74.97 10 2 853.89 74.97 10 2 0.0 0.03

produce 798,856 patterns and find the optimal solution. On the other hand, SMP–PLA is

much faster than the exact 2-phase approach, with an average time of under 0.1 seconds

to compute. Moreover, the computation times for both techniques stay relatively stable as

the maintenance budget increases (a range of approximately 10 seconds for the 2-phase

approach and 0.07 second for SMP–PLA).

In terms of solution quality, it is observed that there is virtually no discrepancy be-

tween the exact 2-phase and PLA-based methods, with a 0.0% gap observed in all ex-

periments, indicating that the solutions obtained by the PLA-based approach are opti-

mal. Although the proposed PLA-based approach is a relaxation that provides an upper

bound, and despite its tightness, it cannot guarantee optimality for the obtained solu-

tions. Nevertheless, in all numerical experiments conducted, the optimal solution was

achieved.

4.4.1.2 Experiments #1.2: large-scale series parallel systems

The aim of this series of experiments is to prove the ability of our novel PLA-based

method to handle large instances of the problem. The system considered is the same one

investigated by Ikonen et al. (2020). It is a large series-parallel system with 100 compo-

nents spread over I = 32 subsystems connected in series as depicted in Figure 4.3. The to-

tal number of components in this basic system is given by NC, where NC =
∑I
i=1 Ji = 100.

The parameter values of the system are summarized in Table 4.4. The maintenance op-

tions available for working components are PR and DN. For failed components, the op-

tions are DN andMR. Table 4.5 lists the maintenance times and costs for the components.
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Figure 4.3: The system’s reliability structure, based on the basic 100-component configu-
ration presented in Ikonen et al. (2020).

Table 4.4: Component Lifetimes and Status Parameter Values: case of Experiments #1.2.

Eij ηij βij Xij BijFrom To

E1,1 E2,1 50 3.0 [0] [8]
E3,j E8,j 50 3.0 [0,1] [8,15]
E9,j E18,j 35 1.5 [0,1,0] [15,12,10]
E19,j E25,j 50 3.0 [0,1,0,1] [8,15,8,15]
E26,j E32,j 25 2.1 [0,1,0,1] [6,10,6,10]

Table 4.5: Maintenance Data for Experiments Set #1.2.

Eij tcij1 tcij2 tcij3 t
p
ij2 t

p
ij3 ccij1 ccij2 ccij3 c

p
ij2 c

p
ij3From To

E1,1 E2,1 4 7 8 3 5 12 24 30 15 21
E3,j E8,j 4 7 8 3 5 12 24 30 15 21
E9,j E18,j 2 5 6 2 3 15 30 42 24 30
E19,j E25,j 3 4 5 1 2 18 30 60 21 36
E26,j E32,j 2 2.5 4 2 3 12 24 30 15 21
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Table 4.6: Outcomes of Experiments #1.2: large-scale instances with repairpersons and
D0 = 50.

n
SMP–PLA

R(%) C m CPUt(s)

100 94.51 492 3 1.09
200 89.50 996 6 16.01
300 84.75 1,500 6 67.14
400 80.10 1,992 8 165.48
500 75.85 2,496 13 22.72
600 71.83 3,000 15 28.02
700 67.89 3,492 16 208.33

The modular (basic) system of 100 components illustrated in Figure 4.3 was dupli-

cated to create seven distinct problem instances. For instance o (with 1 ≤ o ≤ 10), the

system is expanded by repeating the 100-component system o times, resulting in a total

of NCo = 100 × o components. The system in Instance 7 comprises 7 copies of the basic

system, resulting in NC7 = 700 components. The duration of the break is set to D0 = 50

for all problem instances. The maintenance budget and the number of repairpersons for

any instance o are set to C0 = 500 × o and Q = 5 × o, respectively. For illustration, in the

third instance (o = 3), the system hasNC3 = 300 components and themaintenance actions

will be carried out by Q = 15 repairpersons with a maintenance budget of C0 = 1500.

As previously demonstrated in Table 4.3, the PLA-based approach offers a substantial

reduction in computation time for the SMP. With this reduction in time, the JSM–RAP

can be solved for systems consisting of up to 700 components in 208.3 seconds or less

as shown in Table 4.6. As anticipated, the reliability decreases as the number of series

subsystems increases. Similarly, the total cost and the number of repairpersons needed

increase when the number of components is increased.

4.4.2 Computational results for the DRSMP

In this subsection, two series of experiments are performed to examine the effectiveness of

the DRCC formulation presented in Section 4.3. The benefits of distributional robustness

in the DRSMP are demonstrated in the first batch of experiments. The second series of

experiments examines the impacts of varying risk tolerances εr used to define the DRCC

on the solution structure.
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4.4.2.1 Experiments # 2.1: Benefit of considering distributional robustness

This section investigates the benefits of considering uncertainty and distributional am-

biguity by comparing the developed DRSMP formulation described in Section 4.3 (ρ̂ >0)

with the nominal model (NM) and the sample-average-approximation (SAA) model (ob-

tained by setting ρ̂ = 0 in the DRSMP). All three formulations are compared through

an out-of-sample test on an extended version of the 5-by-5 serial-parallel system from

(Diallo et al., 2019b). The NM uses only the nominal maintenance durations with no

uncertainty, set equal to the average maintenance duration according to the available

maintenance records (average of the training samples), while the SAA (ρ̂ =0) replaces

the unknown Pr with the discrete empirical distribution P̂ Kr , r ∈ Q, that is, the uniform

distribution on the known training samples (Mohajerin Esfahani and Kuhn, 2018).

The original system’s reliability block diagram consists of s = 2 subsystems in series,

each comprising five i.i.d. components Eij in parallel (i = 1,2; j = 1, . . . ,5). The scale and

shape parameters of ηij and βij (i = 1,2; j = 1, . . . , Ji) are used to determine the Weibull

distribution of the lifespan of the components. The parameter values used in this set of

experiments are set to β1j = 1.5 and η1j = 15 (j = 1, . . . ,5), and β2j = 3 and η2j = 20 (j =

1, . . . ,5). A maintenance team of Q = 2 repairpersons with equal skill levels is available.

The components in the system can undergo four types of maintenance: l = 0 (DN), l = 1

(MR), l = 2 (IM) i.e., component age is halved, and l = 3 (PR). Additional information

regarding components’ ages, statuses, maintenance costs, and times is presented in Table

4.7. The lengths of the scheduled break and the subsequent operational period are fixed

at D0 = 10 and V = 8 respectively.

The uncertain duration of maintenance action t̃ijlr is modelled as follows

max
{
1; tijlr(1− δ)

}
≤ t̃ijlr ≤ tijlr(1 + δ), (4.28)

where δ is an adjustable variability factor and 0 ≤ δ ≤ 1.

For assets or systems that failed rarely or that have not operated long enough, ac-

ceptable reliability data is usually scant while getting supplementary data points is im-

possible or costly. Accordingly, this experiment relies on Kr = 3 training samples for

each repairperson and Sr = 2000 testing samples for each repairperson r ∈ Q = {1, 2}. A
Wasserstein ball is constructed in the space of multivariate and non-discrete probability
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Table 4.7: Parameters for Experiment #2, source: Diallo et al. (2019b).

Eij Xij Bij tcij1 tcij2 tcij3 t
p
ij2 t

p
ij3 ccij1 ccij2 ccij3 c

p
ij2 c

p
ij3

E11 0 15 2 5 6 2 3 5 10 14 8 10
E12 1 12 2 5 6 2 3 5 10 14 8 10
E13 0 10 2 5 6 2 3 5 10 14 8 10
E14 1 18 2 5 6 2 3 5 10 14 8 10
E15 1 20 2 5 6 2 3 5 10 14 8 10
E21 0 8 4 7 8 3 5 4 8 10 5 7
E22 1 15 4 7 8 3 5 4 8 10 5 7
E23 0 8 4 7 8 3 5 4 8 10 5 7
E24 1 15 4 7 8 3 5 4 8 10 5 7
E25 0 8 4 7 8 3 5 4 8 10 5 7

distributions that is centered at the uniform distributionU (t−ijlr , t
+
ijlr) on the training sam-

ples. A Beta distribution (α = 2,β = 2) is used to simulate the testing samples. The upper

t+ijlr and lower t−ijlr bounds of the maintenance duration for each maintenance action are

determined as shown in (4.28) where the variability factor is set δ = 0.3. Finally, we set

εr = ε = 5% ∀r ∈ Q = {1, 2}. Similarly, ρr = ρ for r = 1,2.

Table 4.8: Solution profiles for the nominal (NM), sample average approximation (SAA)
and distributionally-robust (DRSMP) models.

Models
In-sample Out-of-sample Out-of-sample Overtime

(training) system compliance (testing) system (unit of time)
reliability (%) probability (%) reliability (%)

NM 98.55 24.10 89.94 0.99

SAA (ρ̂ = 0) 98.05 57.25 93.06 0.84

DRSMP (ρ̂ > 0) 97.76 99.45 97.76 0.16

We consider four indicators to evaluate the quality of obtained results: (i) the in-

sample system reliability computed based on the training samples using the nominal for-

mulation (4.19) for the NMmodel and the DRCC formulation (4.25) for SAA and DRSMP

models, (ii) the out-of-sample system reliability computed based on the testing samples

using the MdMCKP (4.26), (iii) the probability of violating the DRCC, which reports the
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infeasible sample size as a percentage of the Sr = 2000 testing samples, and (iv) the av-

erage slack or overtime values for the violated testing samples. Table 4.8 compares the

results obtained. The same results are also depicted in Figures 4.4a – 4.4d.

Table 4.8, which depicts the results obtained for the NM, SAA (ρ̂ = 0), and DRSMP

(ρ̂ > 0) models, shows that DRSMP provides the most conservative maintenance plan

(R = 97.76%), followed by SAA (R = 98.05%), which is expected since SAA maximizes

the expected reliability based on the given training samples and focuses on the average

case, while NM is a progressive approximation of SAA (R = 98.55%). On the other hand,

DRSMP aims to maximize the worst-case expected reliability over an ambiguity set under

the DRCC. The results of the out-of-sample analysis indicate that DRSMP is superior to

SAA and NM in regards to the out-of-sample compliance, out-of-sample reliability and

overtime usage. The fourth column of Table 4.8 demonstrates that the out-of-sample re-

liability achieved from DRSMP has a larger out-of-sample reliability than SAA and NM.

Indeed, the average out-of-sample reliability achieved by the DRSMP is higher than that

reached by SAA and NM by 4.70% and 7.82% respectively. Also, the results for the simu-

lation run in Figure 4.4c, illustrating the relationship between the out-of-sample system

reliability and the Wasserstein radius ρ, reveal that the system reliability attains a dis-

tinct maximum within a critical Wasserstein radius range (0.05 ≤ ρ̂∗ ≤ 0.08). Thus, the

decision-maker who overlooks ambiguity and sets ρ = 0 will achieve an out-of-sample

reliability of 92.97%. Whereas, a more knowledgeable decision-maker who recognizes

the presence of ambiguity sets ρ = ρ̂∗ and attains a 98.05% reliability. It is also notable

that the out-of-sample and in-sample reliability values are equal in the critical range of ρr ,

where the overtime is also the lowest.

Figure 4.4a illustrates the relationship between the DRSMP system reliability ((4.25))

and the Wasserstein radius ρ ∈ {0,0.01, . . . ,0.30}. With increasing ρ, the system reliability

decreases, while the compliance (1 − ε) increases as shown in Figure 4.4b. This is inline

with the fact that bigger Wasserstein radii yield more conservative decisions that allow

fewer maintenance actions to be implemented. For sufficiently large values of ρ, the

proposed approach can guarantee that the chance constraint is satisfied (i.e., the empirical

violation probabilities are smaller than ε = 5%).

The dashed vertical line in Figure 4.4c at ρ1−ε shows the radius value where the viola-

tion probability falls below the predetermined maximum risk tolerance of ε (i.e., radius
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(a) In-sample (training) system reliability

(b) Out-of-sample compliance probability

(c) Out-of-sample (testing) system reliability

(d) Overtime and slack values for the violated testing samples

Figure 4.4: Choosing a Wasserstein radius using cross-validation.
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threshold where the chance constraint is satisfied). At ρ1, the chance constraint is 100%

satisfied meaning that the selected maintenance plan with a radius value of ρ ≥ ρ1 will

certainly be completed within the maintenance break.

Figure 4.4d illustrates the relationship between the average overtime and slack values

for the violated testing samples as the Wasserstein ball radius ρ varies. At the beginning,

when ρ = 0, many maintenance activities are not completed which requires extending

the maintenance break duration (overtime). As ρ increases, the average overtime de-

creases due to more conservative solutions that allow fewer maintenance actions to be

implemented. When the satisfiability reaches 100%, the proposed approach can guaran-

tee that the maintenance plan selected fits into the break duration. At this point, there

is no overtime and there is even some slack. Note that for ρ < ρ̂∗, the in-sample reliabil-

ity is greater than the out-of-sample reliability (the optimizer over-promises and under-

delivers), whereas for ρ > ρ̂∗, the opposite happens (the optimizer under-promises and

over-delivers), which can also be linked to the over and under usage of time.

4.4.2.2 Experiments #2.2: Analysis of the risk tolerance’s impacts

To investigate the impact of varying the risk tolerance ε on the out-of-sample system re-

liability, computed using the MdMCKP (4.26), the experiment presented in the previous

sectionwas repeated four times with different risk tolerance values ε ∈ {0.02,0.05,0.07,0.10}
as depicted in Figure 4.5.

The critical range, denoted as ∆ρ̂∗, plays a crucial role in determining the out-of-

sample system reliability. It encompasses the interval of Wasserstein radius ρ where the

chance constraint is satisfied and the maximum reliability is achieved. The results pre-

sented in Figure 4.5 show that as the risk tolerance ε increases, the critical range expands.

The values of ∆ρ̂∗ for risk tolerances of 2%, 5%, 7%, and 10% are respectively 0.02, 0.04,

0.06, and 0.08, as shown in subfigures 4.5(a) to 4.5(d). The ability of the chance constraint

to accommodate a wider range of distributions contributes to the expansion of ∆ρ̂∗ as ε

increases. Despite changes in ε, it is observed that the reliability values within the critical

range remain constant.

The subfigures 4.5(a) to 4.5(d) each display two dashed vertical lines at ρ1−ε and ρ1
that denote the threshold of chance constraint satisfaction (1 − ε) and the point where

chance constraint satisfaction reaches 100%. Results of the analysis indicate that as the
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(a) ε=2% (b) ε=5%

(c) ε=7% (d) ε=10%

Figure 4.5: Out-of-sample (testing) system reliability for different risk tolerances ε.

risk tolerance ε increases, both ∆ρ̂∗ and the two dashed lines move to the right. This right-

ward movement implies that the algorithm is choosing higher values of the Wasserstein

radius to accommodate the increased risk tolerance. A managerial insight from this ex-

periment is that reduced risk tolerance decreases the width of the critical range where the

optimal radius is located. Thus, radius calibration attempts should be careful to define

an appropriate search step-size so as not to miss the critical range when the risk tolerance

value ε is low.

4.5 Conclusions

This paper aims to solve the JSM–RAP with uncertain maintenance durations in a series-

parallel system, with a particular focus on handling large-scale instances. A piecewise-

linear approximation and a DRCC program with a Wasserstein-1 ambiguity set are pro-

posed to deal with the problem. Three sets of numerical experiments demonstrated the
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ability of the proposed approaches to solve large instances of the JSM–RAP with un-

certain maintenance duration. The proposed DRCC formulation ensures that effective

maintenance plans with a high probability of completion andwith superior out-of-sample

performance of the system reliability and overtime requirement can be obtained. In ad-

dition, the computation times of the proposed PLA-based approach were significantly

lower than that of 2-phase approach (Diallo et al., 2019b). The proposed method proved

to be highly computationally efficient, as demonstrated by successfully solving a prob-

lem with the same number of components (i.e., 700) as the previous largest JSM–RAP

instance solved (Ikonen et al., 2020) with a computational time that is an order of mag-

nitude smaller. Possible extensions of the proposed approach include deriving similar

models for other variants of the SMP, e.g., multimission and fleet-based SMPs. Also, fu-

ture research should focus on the case in which the deterministic assumption is relaxed

for other SMP parameters such as mission durations, maintenance break intervals, and

quality of maintenance actions. Other ways for handling uncertainty in maintenance du-

ration could be developed, e.g., using other statistical metrics such as Phi-divergences or

the Gelbrich distance to construct ambiguity sets that leverage the available information

and reach more compact reformulations. Finally, besides the PLA approach developed in

this article, it would be interesting to explore alternative exact or approximate reformu-

lations of the JSM–RAP, e.g., conic programming reformulations.



Chapter 5

Robust selective maintenance optimization under maintenance quality

uncertainty

5.1 Introduction

In the course of their activities, many industrial and military systems, such as nuclear

plants, naval vessels, aircraft, wind turbines, and power generation systems operate ac-

cording to an alternating sequence of missions and scheduled breaks. During the time

interval between two consecutive missions, maintenance actions can be carried out to

improve the probability of successfully executing the next mission (i.e., system reliabil-

ity). Since there are limited resources for completing maintenance activities (e.g., time,

budget, spare parts, repair crews), it is often impossible to maintain all components of

a system. Hence, it is necessary to select an optimal subset of components to maintain,

then decide the level of maintenance actions to be performed, and assign repairpersons to

the maintenance actions. This maintenance decision problem is known in the literature

as the joint selective maintenance and repairperson assignment problem (JSM–RAP) (Khatab

et al., 2018c), which is an extension of the classical selective maintenance problem (SMP)

(Rice et al., 1998).

In general, SMPs are difficult to solve. The non-linearity of system reliability func-

tions and the combinatorial nature of maintenance plans make finding optimal solutions

for large-scale problems computationally cumbersome. Indeed, Rice (1999) proved that

the basic SMP is NP-hard. The mathematical expression of the system reliability typi-

cally involves products of decision variables, which results in mixed-integer nonlinear

programming (MINLP) formulations. The reader is referred to recent reviews of Xu et al.

(2015); Cao et al. (2018a); Al-Jabouri et al. (2022) for a detailed account of SMP models

and solution methods.

Given the important and challenging nature of the SMP, numerous solution approaches

have been proposed: 1) general heuristics (Khatab et al., 2007; Lust et al., 2009; Cao et al.,

128



129

2018b; Ahadi and Sullivan, 2019), 2) meta-heuristics such as genetic algorithms (Dao

et al., 2014), differential evolution (Pandey et al., 2013b), and simulated annealing (Jiang

and Liu, 2020b), and 3) exact solution approaches such as total enumeration (Rice et al.,

1998), search space reduction (Rajagopalan and Cassady, 2006), depth-first search (Cao

et al., 2016b), branch-and-bound (Lust et al., 2009), and sequential construction (Galante

et al., 2020). On the other hand, canonical mathematical programming formulations that

can be handled directly by efficient commercial solvers are still sparse (Cao et al., 2018a).

A recent breakthrough in this direction is the two-phase approach proposed by Diallo

et al. (2018), which generates maintenance “patterns" and selects an optimal subset by

solving a multidimensional multiple-choice knapsack problem (MdMCKP). Neverthe-

less, this approach requires all feasible patterns to be generated at the outset, making it

impractical for large systems. Thus, as noted by Diallo et al. (2019b), novel formulations

that can be dispatched directly to efficient exact solvers are still needed.

Whereas the original SMP model by Rice et al. (1998) assumed only one type of main-

tenance action, namely replacement of failed component, later works considered multiple

maintenance levels. Cassady et al. (2001a) added the option of minimal repair, which

when performed returns a failed component to a working state without affecting its fail-

ure rate. Later, several imperfect maintenance (IM) models, in which the system can be

repaired somewhere between as good as new and as bad as old, have been utilized. Khatab

et al. (2008b) developed an IM model based on the age reduction concept (Malik, 1979).

Pandey et al. (2013b) and Pandey and Zuo (2014) redefined the age reduction model so

that the minimal repair cost does not influence the determination of the age reduction

factor. In most of the IM models presented in the literature, it has been assumed that

the post-maintenance reliability of a component is fully-determined by the maintenance

level selected for it (i.e., the maintenance quality is deterministic). This is not a realis-

tic assumption since the maintenance quality is significantly affected by various factors

beyond the control of the planner such as the qualification and the degree of expertise

of the repairperson, the maintenance methods and tools used, operating conditions and

other uncontrollable variability-inducing factors.

Among the few studies that considered the uncertainty in maintenance quality is the

work of Khatab and Aghezzaf (2016b), which used a stochastic age reduction coefficient

following a Beta distribution to describe the maintenance improvement. Lan et al. (2017)
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considered the repair quality to be stochastic and following the Gamma distribution for

a fleet-level series system. Zhao et al. (2018) utilized the cognitive reliability and er-

ror analysis method (CREAM) to calculate the human reliability for a multi-state series-

parallel system. Chen et al. (2019) utilized a triangle membership function to balance

the stochastic relationship between maintenance action and cost for a multi-state man-

ufacturing system. The cost and time of maintenance actions were represented as fuzzy

values due to the difference in qualification levels of repairpersons. Zhang et al. (2019a)

proposed five criteria to evaluate the capability of maintenance teams using Choquet

integral based on λ-fuzzy measure (Chen and Wang, 2001). The weight of each crite-

rion was expressed as a fuzzy value obtained from experts or decision-makers. Shahraki

et al. (2020) considered IM actions for a multi-state system as random variables. The

probability of achieving the desired improved state is influenced by two factors: the his-

tory of maintenance actions performed earlier and the maintenance level. Li et al. (2021)

considered the failure effects and maintenance quality uncertainty for a multi-state series

system. A state transition matrix was used to describe the uncertainty of the maintenance

quality.

In all of the aforementioned references, risk-neutral stochastic or fuzzy models were

employed to represent maintenance quality uncertainty. Although these models lead to

maintenance plans that perform well on average, they fail to protect the planner from ad-

verse scenarios or to provide any performance guarantee, features that are crucial in the

context of mission-based systems. For instance, a vessel that undergoes selective main-

tenance between missions might require a guarantee that its reliability is above a certain

threshold in the presence of uncertainty about the maintenance quality. The problem is

exacerbated when the probability/possibility distribution is extracted from a small set of

past observations, a typical situation in the maintenance domain when the failure events

are infrequent and/or the components have not worked long enough to extract sufficient

maintenance records. It is often the case that the “true" post-maintenance reliability of a

component is only known to belong to an interval, without any distributional knowledge.

In such occasions, robust optimization (RO) provides a plausible alternative framework

for hedging against uncertainty, in the sense that a guarantee on the worst-case system

reliability can be provided. Despite the rising popularity of RO in the last two decades as

an effective and tractable approach for handling uncertainty in different applications, to
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the best of our knowledge, it is yet to be applied to deal with maintenance quality uncer-

tainty (or any other uncertain parameter) in the SMP. As mentioned earlier, a reason for

this deficiency might be that tractable formulations of the nominal SMP do not exist yet.

In light of the research gaps highlighted above, the paper makes the following contri-

butions.

1. We propose a novel reformulation of the JSM–RAP problem for the standard series-

parallel system as a mixed-integer exponential conic program (MIECP) that can be

handled directly using efficient off-the-shelf solvers. Numerical experiments con-

ducted on benchmark JSM–RAP instances show the competitive computational per-

formance of the proposed reformulation vis-à-vis state-of-the-art approaches.

2. We propose, for the first time, a RO approach to deal with the uncertain mainte-

nance quality in the JSM–RAP. Post-maintenance reliability for the components,

maintenance levels, and repairpersons are assumed to belong to non-symmetric

budget uncertainty sets that enable the level of conservatism to be controlled. The

robust problem is tractably reformulated as a MIECP and effectively solved. The

numerical experiments conducted show that the solutions obtained for the robust

problemwith properly-sized uncertainty sets have better out-of-sample performance

than their corresponding nominal problem solutions, proving the value of the pro-

posed robust approach.

The remainder of the article is organized as follows. Section 5.2 describes the nomi-

nal version of the multicomponent system under consideration, the modelling assump-

tions, system reliability computations, the classical MINLP formulation of the JSM–RAP,

and the MIECP reformulation. In Section 5.3, the proposed robust framework for han-

dling maintenance quality uncertainty along with its reformulation into a MIECP are

presented. Several numerical experiments and the discussion of the results are presented

in Section 5.4. Conclusions are drawn and future extensions discussed in Section 5.5.

5.2 The Nominal Problem

In this section, the description and mathematical formulation of the JSM–RAP are pro-

vided under the assumption that the post-maintenance reliability (or, equivalently, the
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maintenance quality) values corresponding to each component, repairperson and main-

tenance level are known with certainty. This case is referred to hereinafter as the nominal

problem. We first describe the multicomponent series-parallel system under considera-

tion and ourmodelling notations and assumptions, then define the IMmodel and develop

expressions for the total cost and duration of the maintenance plan. Finally, a MINLP for-

mulation of the JSM–RAP is presented and explained along with its reformulation into a

MIECP.

5.2.1 System description

As depicted in Figure 5.1, the system under consideration comprises m subsystems con-

nected in series (i.e., all subsystems must function for the system to work). Each sub-

system i (i = 1, · · · , s) consists of the Ji repairable binary (i.e., operate following either a

failed or a functioning state) components Eij , j ∈ {0, . . . , Ji} connected in parallel (i.e., the

ith subsystem functions if at least one out of its Ji components is functioning). Individual

components in each subsystem have states that are statistically independent, their life-

times are not necessarily identically distributed, and they do not have the same age at the

start of the break period when maintenance decisions are to be made.

Figure 5.1: Series-parallel system structure.

The system is assumed to have just finished a mission and has been turned off during

the scheduled break of length D0 to undergo maintenance activities (Figure 5.2). The

system will be used after the break to carry-out the next mission of duration M. At the

end of the last mission (i.e., at the beginning of the current break), each component Eij
is characterized by its current age Bij , and its status is given by a binary state parameter



133

Xij , defined as

Xij =

1 if Eij is working at the start of the break,

0 otherwise.
(5.1)

Likewise, at the end of the break, each component Eij is described by its effective age Aij ,

and its status is given by a binary state parameter Yij , defined as

Yij =

1 if Eij is working at the end of the break,

0 otherwise.
(5.2)

Comparing Yij to Xij reveals if a failed component has been repaired during the break or

left as is.

Figure 5.2: The sequence between the mission and the scheduled break.

5.2.2 Modelling notations and assumptions

Table 5.1 lists the notation used in the mathematical formulation of the nominal problem.

Furthermore, the following assumptions are made to model the system.

1. The system consists of multiple, possibly non-identical and stochastically-independent

repairable binary components. The components and the system are either function-

ing or failed. This is a reasonable assumption and is supported by many references

(Diallo et al., 2018; Jiang and Liu, 2020a).
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Table 5.1: Notations

i Index of subsystems, i ∈ I where I := {1, . . . , I}
j Index of components in subsystem i, j ∈ Ji where Ji := {1, . . . , Ji}
l Index of maintenance levels available for component Eij , l ∈ Lij where

Lij :=
{
0, . . . ,Lij

}
r Index of repairpersons, r ∈ Q where Q := {1, . . . ,Q}
tcijlr(t

p
ijlr) Nominal duration of CM (PM) when maintenance level l is performed

on component Eij by repairperson r
kr Variable labour cost per unit of time of repairperson r
ccijl(c

p
ijl) Cost of CM (PM) when maintenance level l is performed on component

Eij
Bij(Aij) Age of component Eij at the start (end) of the break
Aijl Age of component Eij at the end of the break if maintenance level l is

performed
Xij(Yij) Status binary parameter of component Eij at the start (end) of the break

(1: working)
Tr Total maintenance time spent by repairperson r to carry out their tasks
C0 Maintenance budget available
D0 Break duration
M Length of the next mission
Rcij(M |Aijl ) Conditional reliability of component Eij during the next mission upon

being subjected to a maintenance action of level l during the scheduled
break

R Overall system reliability during the next mission
f̄ijl The nominal unreliability of component Eij upon being subjected to a

maintenance action of level l during the scheduled break.
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2. The system performs consecutive missions separated by scheduled finite-duration

breaks and the components are maintained during the breaks.

3. System components do not age during the break because the age of the components

are mostly operation-driven (Diallo et al., 2019b). This is also reasonable because

the break durations are typically negligible compared to the mission duration.

4. Maintenance activities are allowed only during the break, but not during the mis-

sion. For many mission-oriented systems, it is impossible to interrupt the mission

to carry out any maintenance action.

5. All the required resources (budget, repairpersons, tools) are available when needed.

6. Any maintenance action can be carried out by exactly one repairperson, and any

repairperson can carry out any level of maintenance on any component.

7. Multiple components can be worked on simultaneously without repairpersons col-

liding.

5.2.3 System reliability computations

To compute the system reliability during the next mission (R), we first compute the con-

ditional reliability Rcij(M |Aijl ) of component Eij given that its initial age is Aijl . Denote by

Rij(t) the unconditional reliability function of component Eij . Then, the reliability dur-

ing the next mission if Eij undergoes a maintenance action of level l ∈ {0, . . . ,Lij} is given
by

Rijl =
Rij

(
Aijl +M

)
Rij

(
Aijl

) . (5.3)

Since each component can undergo exactly one maintenance action of level l (includ-

ing “Do-Nothing" when l = 0), and given that only one repairperson is needed to perform

that maintenance action, the reliability Rcij(M |Aijl ) is then obtained as

Rcij(M |Aijl ) =
Lij∑
l=0

Q∑
r=1

Rijl xijlr , (5.4)
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where xijlr is a binary decision variable defined as

xijlr =

1 if repairperson r performs maintenance level l on Eij ,

0 otherwise.
(5.5)

Given that the ith subsystem has a parallel configuration, its reliability during the next

mission is given by

Ri = 1−
Ji∏
j=1

1−
Lij∑
l=0

Q∑
r=1

Rijlxijlr

 . (5.6)

Finally, the reliability of the whole series-parallel system is computed as

R =
s∏
i=1

Ri =
I∏
i=1

1− Ji∏
j=1

1−
Lij∑
l=0

Q∑
r=1

Rijlxijlr


 . (5.7)

5.2.4 Maintenance levels, costs, and duration

During a scheduled break, corrective maintenance (CM) and preventive maintenance

(PM) actions are performed. The former is carried out on failed components, whereas

the latter concerns components that are still functioning.

For a failed component Eij , a maintenance level among the (Lij + 1) CM levels (l ∈{
0,1, . . . , Lij

}
) available must be selected. The lowest level (l = 0) and the highest level(

l = Lij
)
stand, respectively, for the “Do Nothing (DN)” and the component replacement

options. Level l = 1 refers to “minimal repair (MR)", which when performed brings the

component to an “as bad as old" condition. Intermediate values of 1 < l < Lij represent

IM actions, which after being performed bring the component health condition back to

somewhere between “as bad as old" and “as good as new". Here, IM is modelled according

to the age reduction approach (Malik, 1979), which means that when a CM of level l is

performed by repairperson r on component Eij , its corresponding age (Bij) is multiplied

by an age reduction coefficient θijl ,
(
0 ≤ θijl ≤ 1

)
. Accordingly, the component becomes

as good as new (replaced) if its age is reset to zero (θ = 0), whereas it becomes as bad as

old (minimal repair) if θ = 1. Any CM action incurs a cost ccijl and requires tcijlr units of

time.

Similarly, if component Eij is still functioning, it can be subjected to a PM action

of level l ∈
{
0,2, . . . , Lij

}
. Note that the level l = 1 refers to the minimal repair case,
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which when performed returns a failed component to a working state without affecting

its failure rate. There is no minimal repair option with PM actions, therefore the main-

tenance option l = 1 is not available for working components. Intermediate values of l(
2 ≤ l < Lij

)
represent IM actions which rejuvenate the component by reducing its age by

a factor ϕijl
(
0 ≤ ϕijl ≤ 1

)
. For example, ϕijLij = 0 is the perfect replacement case (i.e., the

age resets to 0), and ϕij0 = 1 is for the “Do Nothing" case (i.e., the age remains the same

after the maintenance break). Any PM action incurs a cost cpijl and has a duration tpijlr .

According to the above IM model, the effective age Aijl of a given component Eij at

the end of the break is computed as a function of its initial operating status Xij and the

maintenance level l performed, as follows:

Aijl = Bij
[
Xijϕijl +

(
1−Xij

)
θijl

]
. (5.8)

Whenever a component is not selected to undergo maintenance, the corresponding main-

tenance cost and duration are ignored. However, if component Eij is selected for mainte-

nance and a maintenance level l is selected to be performed by repairperson r, it incurs a

fixed cost (cpijl or c
c
ijl) and a labour cost per unit of time kr . Accordingly, the total PM and

CM costs are computed as

CPM =
I∑
i=1

Q∑
r=1

Ji∑
j=1

Lij∑
l=2

(
krt

p
ijlr + c

p
ijl

)
Xijxijlr , (5.9)

CCM =
I∑
i=1

Q∑
r=1

Ji∑
j=1

Lij∑
l=1

(
krt

c
ijlr + c

c
ijl

)(
1−X ij

)
xijlr , (5.10)

where the term (1−Xij) ensures that CM actions are available only for failed components.

The total maintenance cost C is given by

C = CPM +CCM . (5.11)

Likewise, the total time Tr spent by each repairperson r to carry out their maintenance

duties is computed as:

Tr =
I∑
i=1

Ji∑
j=1

(1−X ij)
Lij∑
l=1

tcijlrxijlr + Xij

Lij∑
l=2

t
p
ijlrxijlr

 . (5.12)
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5.2.5 Mixed integer nonlinear programming formulation

The JSM–RAP aims to jointly select the set of components to be maintained, the mainte-

nance levels to be performed on the selected components, and the repairpersons to carry

out the selected maintenance actions such that system reliability for the next mission is

maximized given a predetermined maintenance budget and a break duration.

Based on the description and the notations outlined earlier, the JSM–RAP was formu-

lated by Diallo et al. (2019b) as an MINLP model:

maxR =
I∏
i=1

1− Ji∏
j=1

1− Q∑
r=1

Lij∑
l=0

Rijlxijlr


 (5.13a)

s.t.

C ≤ C0 (5.13b)

Tr ≤D0 ∀r ∈ Q (5.13c)

Q∑
r=1

Lij∑
l=1

xijlr = 1 ∀i ∈ I ,∀j ∈ Ji (5.13d)

xijlr ∈ {0,1} ∀i ∈ I ,∀r ∈ Q,∀j ∈ Ji ,∀l ∈ Lij . (5.13e)

The objective function (5.13a) maximizes the system reliability for the next mission. Con-

straint (5.13b) states that the total cost of maintenance must not exceed the maintenance

budget. Similarly, constraints (5.13c) ensures that the total maintenance time of the

actions assigned to each repairperson does not exceed the break duration. Constraints

(5.13d) ensures that each component gets exactly one maintenance level and is assigned

to one repairperson. Note that the cost C and the rth repairperson’s maintenance time Tr
are given by equations (5.11) and (5.12), respectively.

5.2.6 Exponential conic reformulation

The MINLP formulation (5.13) has an objective function that includes products of deci-

sion variables, which in general cannot be readily handled by off-the-shelf solvers. How-

ever, we show that it can be exactly reformulated as mixed-integer exponential conic

program (MIECP) that can be solved by efficient solvers such as Mosek.
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First, let Fi = 1−Ri be the “unreliability" of subsystem i ∈ I , where

Ri =1−
Ji∏
j=1

1− Q∑
r=1

Lij∑
l=0

Rijlxijlr

 . (5.14)

The objective function in (12) is then linearized by applying the natural logarithm func-

tion to both sides of Equation (5.13a), leading to

ln(R) =
∑
i∈I

ln(1−Fi). (5.15)

Since xijlr is binary and only one maintenance level is selected for each component (i.e.,∑Q
r=1

∑Lij
l=0xijlr = 1), and using Equation (5.14), Fi can be rewritten as

Fi =
Ji∏
j=1

1− Q∑
r=1

Lij∑
l=0

Rijlxijlr

 (5.16)

=
Ji∏
j=1

Q∑
r=1

Lij∑
l=0

f̄ijl xijlr , (5.17)

or, equivalently,

ln(Fi) =
Q∑
r=1

Ji∑
j=1

Lij∑
l=0

ln(f̄ijl)xijlr , (5.18)

where f̄ijl = 1−Rijl is the (nominal) unreliability of component Eij upon being subjected

to a maintenance action of level l during the scheduled break. Note that maximizing

ln(1 − Fi) in Equation (5.15) requires Fi to take the smallest possible value such that the

equality constraint (5.18) holds. Thus, the equality constraint (5.18) can be replaced with

a “≥" inequality. Accordingly, the MINLP formulation (5.13) is reformulated as follows:

max ln(R) =
∑
i∈I

ln(1−Fi) (5.19a)

s.t.

ln(Fi) ≥
Q∑
r=1

Ji∑
j=1

Lij∑
l=0

ln(f̄ijl)xijlr ∀i ∈ I (5.19b)

(5.13b)− (5.13e).

Now, let us define the variable Si ≤ ln(1− Fi). If ln(1− Fi) is replaced by Si in (5.19a),

this inequality becomes binding at optimality. Furthermore, let Zi = ln(Fi). Hence, we
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have eSi ≤ 1 − Fi and eZi = Fi . By adding up these expressions we get eZi + eSi ≤ 1, which

can be expanded as eZi ≤ ai , e
Si ≤ bi and ai + bi ≤ 1. With that, problem (5.18) can be

reformulated as the following MIECP.

max
∑
i∈I

Si (5.20a)

s.t.

Zi ≥
Q∑
r=1

Ji∑
j=1

Lij∑
l=1

ln
(
f̄ijl

)
xijlr ∀i ∈ I (5.20b)

eZi ≤ ai ∀i ∈ I (5.20c)

eSi ≤ bi ∀i ∈ I (5.20d)

ai + bi ≤ 1 ∀i ∈ I (5.20e)

Zi ,Si ≤ 0 ∀i ∈ I (5.20f)

ai , bi ≥ 0 ∀i ∈ I (5.20g)

(5.13b)− (5.13e)

In the above formulation, (5.20c) and (5.20d) are exponential conic constraints. Such

constraints can equivalently be written as (ai ,1,Zi) ∈ Kexp ∀i ∈ I and (bi ,1,Si) ∈ Kexp ∀i ∈
I , respectively. The notation (x1,x2,x3) ∈ Kexp describes all the points in R

3 satisfying the

exponential cone equation x1 ≥ x2ex3/x2 , x1,x2 ≥ 0 (Mosek ApS, 2021).

5.3 The robust problem formulation

Variability and uncertainty of the maintenance quality are inevitable due to factors such

as unpredictable operating conditions, components’ conditions that remain largely un-

known until maintenance has started, varying repairperson skillsets, and human errors.

This raises the question of what values of the post-maintenance unreliability (fijlr) to use

in constraints (5.20b). Usually, the quality of maintenance actions is not known with

certainty, but it rather lies within some interval or bounded uncertainty set. A common

way to deal with such parameter uncertainty is to use a RO approach that requires the

model constraints to hold for realizations within the uncertainty set, and maximizes the

reliability function corresponding to the worst-case among these realizations.
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In this section, non-symmetric budget uncertainty sets are used to represent mainte-

nance quality uncertainty in the JSM–RAP, and we show how to tractably reformulate

the robust counterpart with this set. Specifically, let Fi , i ∈ I be subsystem-specific un-

certainty sets of the form

Fi B

fi ∈ R

Q×Ji×Lij
+

∣∣∣∣∣∣∣∣∣∣∣
fijlr = f̄ijl + f̂

+
ijlrw

+
ijlr − f̂

−
ijlrw

−
ijlr ,∀r ∈ Q,∀j ∈ Ji ,∀l ∈ Li

Q∑
r=1

Ji∑
j=1

Lij∑
l=1

(w+
ijlr +w

−
ijlr ) ≤ Γi

0 ≤ w+
ijlr +w

−
ijlr ≤ 1,∀r ∈ Q,∀j ∈ Ji ,∀l ∈ Lij

,
wherew+

i ,w
−
i ∈ [0,1]Q×Ji×Lij ,∀i ∈ I are vectors of primary uncertainty, Γi ∈

[
0, Q × Ji ×Lij

]
,∀i ∈

I , is the uncertainty budget, and f̂ +i , f̂
−
i , respectively, are the maximum positive and neg-

ative deviations from the nominal unreliability f̄i . This is a non-symmetric variant of the

budget uncertainty set introduced in Bertsimas and Sim (2004). To ensure that reliability

remains between 0 and 1, the maximum positive and negative deviations must always

satisfy f̂ −ijlr ≤ f̄ijl ≤ 1 − f̂ +ijlr . Hence, the robust counterpart of constraint (5.20b) can be

written as

Zi ≥ sup
fi∈Fi

 Q∑
r=1

Ji∑
j=1

Lij∑
l=1

xijlr ln(fijlr)

 ∀i ∈ I . (5.21)

To tractably reformulate (5.21), we utilize the approach proposed by Ben-Tal et al.

(2015) which uses Fenchel duality to decompose the problem into two parts, one that

depends on the support set Fi and is evaluated using the support function δ∗(.), and the

other depends on the functional form of the constraint and is evaluated using the partial

concave conjugate (PCC) function g∗(., .). Specifically, we use the following theorem:

Theorem 1 (Ben-Tal et al. (2015), theorem 2). The vector x ∈ X satisfies the robust constraint

g(x, f) ≤ 0,∀ f ∈ F if and only if x and v ∈ R
m satisfy the single inequality

(FRC) : δ∗(v | F )− g∗(x,v) ≤ 0,

where δ∗ is the support function of set F , defined as

δ∗(v | F ) := sup
f∈F

f⊺v, (5.22)

and, g∗(., .) is the partial concave conjugate (PCC) with respect to the first variable and defined

as

g∗(x,v) := inf
f∈Fg

v⊺f− g(x, f), (5.23)
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and g(., .) is a mapping defined over the convex domain Xg ×Fg with Xg ⊆ R
n and Fg ⊆ R

m.

Ben-Tal et al. (2015) compute δ∗i (.) and g∗(., .) for several choices of F and g∗(., .), re-

spectively. One of their results states that the robust counterpart for a constraint that is

the sum of separable functions
∑
k gk(vk , f) can be reformulated as

δ∗(v⊺|F )−
∑
k

(gk)∗(vk , f ) ≤ 0 (5.24)

Accordingly, the support function δ∗i (.) is evaluated as

δ∗i (vi |Fi) = max
f ∈Fi

f
⊺
i vi (5.25a)

=
Q∑
r=1

Ji∑
j=1

Lij∑
l=1

f̄ijlrvijlr+

max
wijlr

Q∑
r=1

Ji∑
j=1

Lij∑
l=1

vijlr(f̂
+
ijlrw

+
ijlr − f̂

−
ijlrw

−
ijlr) (5.25b)

s.t.

Q∑
r=1

Ji∑
j=1

Lij∑
l=1

(w+
ijlr +w

−
ijlr) ≤ Γi (θi) (5.25c)

0 ≤ w+
ijlr +w

−
ijlr ≤ 1 ∀(j, l, r) ∈ (Ji ,Lij ,Q) (φijlr) (5.25d)

Through strong duality, problem (5.25) is equivalent to

min
θi ,φijlr ,uijlr ,vijlr

Γiθi +
Q∑
r=1

Ji∑
j=1

Lij∑
l=1

φijlr (5.26a)

s.t.

θi + φijlr ≥ f̂ +ijlru
+
ijlr ∀(j, l, r) ∈ (Ji ,Lij ,Q) (5.26b)

θi + φijlr ≥ f̂ −ijlru
−
ijlr ∀(j, l, r) ∈ (Ji ,Lij ,Q) (5.26c)

θi ,φijlr ≥ 0 ∀(j, l, r) ∈ (Ji ,Lij ,Q). (5.26d)

Next, to evaluate the PCC function using (5.24), we define gi(x, f ) as

gi(x, f ) =
Q∑
r=1

Ji∑
j=1

Lij∑
l=1

xijlr ln(fijlr) ∀i ∈ I .
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It is decomposable ∀i ∈ I to the Q × Ji ×Lij functions

gijlr(xijlr , fijlr) = xijlr ln(fijlr).

The PCC function for gijlr(xijlr , fijlr) is

(gijlr)∗(vijlr ,xijlr) = min
fijlr

vijlrfijlr − xijlr ln(fijlr).

Since the minimization is for a convex function in fijlr , we equate its first derivative to 0

to get

vijlr −
xijlr
f ∗ijlr

= 0→ f ∗ijlr =
xijlr
vijlr

.

By substituting f ∗ijlr back, we get

(gijlr)∗(vijlr ,xijlr) = xijlr − xijlr ln
(
xijlr
vijlr

)
.

Let yijlr = −xijlr ln
(
xijlr
vijlr

)
. Note that since yijlr will have a negative sign in a ≤ constraint

(i.e., the original constraint), we want to cap it from above. So we can replace this equality

with the inequality yijlr ≤ −xijlr ln
(
xijlr
vijlr

)
. Or, equivalently,

yijlr
xijlr

≤ ln
(
vijlr
xijlr

)
. This leads to the

conic exponential constraints

vijlr ≥ xijlre
yijlr
xijlr ,

which can be written as (vijlr ,xijlr , yijlr) ∈ Kexp. Thus, the robust constraint can be refor-

mulated as

δ∗(fi |Fi)−
Q∑
r=1

Ji∑
j=1

Lij∑
l=1

(xijlr + yijlr) ≤ Zi ∀i ∈ I (5.27)

(vijlr ,xijlr , yijlr) ∈ Kexp. (5.28)

Substituting the first term of (5.25b), and the results from (5.26) in the support function

δ∗(fi |Fi) in (5.27), the robust counterparts of (5.21) can be written as (5.29h) to (5.29l).

By reintegrating the obtained robust counterparts into the ECO formulation (5.20),

the robust exponential conic version of JSM–RAP that considers the uncertainty of the
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maintenance quality can be written as

min−
∑
i∈I

Si (5.29a)

s.t.

C ≤ C0 (5.29b)

Tr ≤D0 ∀r ∈ Q (5.29c)

Q∑
r=1

Lij∑
l=1

xijlr = 1 ∀i ∈ I , ∀j ∈ Ji (5.29d)

ai ≥ eZi ∀i ∈ I (5.29e)

bi ≥ eSi ∀i ∈ I (5.29f)

ai + bi ≤ 1 ∀i ∈ I (5.29g)

Γiθi +
Q∑
r=1

Ji∑
j=1

Lij∑
l=1

(f̄ijlrvijlr

+φijlr − xijlr − yijlr) ≤ Zi ∀i ∈ I (5.29h)

vijlr ≥ xijlre
yijlr
xijlr ∀(i, j, l, r) ∈ (I ,Ji ,Lij ,Q) (5.29i)

θi + φijlr ≥ f̂ +ijlru
+
ijlr ∀(i, j, l, r) ∈ (I ,Ji ,Lij ,Q) (5.29j)

θi + φijlr ≥ f̂ −ijlru
−
ijlr ∀(i, j, l, r) ∈ (I ,Ji ,Lij ,Q) (5.29k)

ai , bi ,θi ,φijlr ,u
+
ijlr ,u

−
ijlr ≥ 0 ∀(i, j, l, r) ∈ (I ,Ji ,Lij ,Q) (5.29l)

Zi ,Si ≤ 0 ∀i ∈ I (5.29m)

xijlr ∈ {0,1} ∀(i, j, l, r) ∈ (I ,Ji ,Lij ,Q). (5.29n)

5.4 Numerical experiments

In this section, the validity and effectiveness of the proposed nominal and robust JSM–

RAP formulations are examined. The section is divided into two parts. In the first part,

two sets of numerical experiments are conducted to assess the the validity of the nom-

inal MIECP formulation described in Section 5.2.6. In the second part, the impact of

applying the robust approach described in Section 5.3 to deal with maintenance quality

uncertainty on the optimal maintenance plan and system reliability is evaluated.
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For all the numerical experiments, and without loss of generality, we assume that the

lifetimes of components are Weibull-distributed with shape and scale parameters βij and

ηij , respectively. The reliability function is calculated as

Rcij(M |Aijl ) = exp

(Aijlηij

)βij
−
(
Aijl +M

ηij

)βijxijlr .
All experiments are run on an Intel(R) Core(TM) i7 @ 1.30 GHz laptop computer with

16 GB of RAM, running Windows 11. The problems are coded in Python 3.9 and solved

using Gurobi 9.1.1 and Mosek 10.0.

5.4.1 Numerical results for the nominal problem

The first set of experiments examines the validity of the proposed MIECP formulation

(5.20) by comparing its optimal solutions and values to those obtained using the exact

two-phase approach from Diallo et al. (2019b) (described in 2.4.2). These comparisons

are made on a moderate-size, series-parallel system with multiple repairpersons and im-

perfect maintenance levels. The second set of experiments aims to evaluate the compu-

tational performance of the proposed nominal formulation when used with very large

JSM–RAP instances.

5.4.1.1 Experiments #1.1: Nominal MIECP model validation

For this set of experiments, we use the moderate-size, series-parallel system studied in

Diallo et al. (2018). The reliability block diagram of the system is composed of I = 2 se-

ries subsystems. The first one is composed of the n1 i.i.d. components E1j (j = 1, . . . ,5),

whereas the one second contains the n2 = 8 i.i.d. components E2j (j = 1, . . . ,8) arranged

in parallel, resulting in a total of 13 components. The lifetimes of all component are

Weibull-distributed with the respective shape and scale parameters βij and ηij (i = 1,2; j =

1, . . . , Ji). These parameters are set at β1j = 1.5, η1j = 15 (j = 1, . . . ,5), β2j = 3 and η2j = 20

(j = 1, . . . ,8). A list of four CM levels is available for failed components: l = 0 (DN), l = 1

(MR), and l = 2 (IM) which reduces the component age by half, and l = 3 (CR). For func-

tioning components, a list of three PM levels is available: l = 0 (DN), l = 2 (IM) reduces

the component age by half, and l = 3 (PR). Two repairpersons (Q = 2) are available, the

variable cost rate of a repairperson is set to kr = 2. Additional data related to components
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status, ages and maintenance times and costs are reported in Table 5.2. The break dura-

tion and the duration of the next mission are set to D0 = 10 andM = 8, respectively. For

comparison purposes, the JSM–RAP is solved with both the exact two-phase approach

(Diallo et al., 2019b) and the MIECP formulation.

Table 5.2: Parameters for experiments #1.1, source: Diallo et al. (2018).

Eij Xij Bij tcij1 tcij2 tcij3 t
p
ij2 t

p
ij3 ccij1 ccij2 ccij3 c

p
ij2 c

p
ij3

E11 0 15 4 6 8 2 4 5 10 14 8 10
E12 1 12 4 6 8 2 4 5 10 14 8 10
E13 0 10 4 6 8 2 4 5 10 14 8 10
E14 1 18 4 6 8 2 4 5 10 14 8 10
E15 1 20 4 6 8 2 4 5 10 14 8 10
E21 0 8 3 4 5 1 2 6 10 20 7 12
E22 1 15 3 4 5 1 2 6 10 20 7 12
E23 0 8 3 4 5 1 2 6 10 20 7 12
E24 1 15 3 4 5 1 2 6 10 20 7 12
E25 0 8 3 4 5 1 2 6 10 20 7 12
E26 1 15 3 4 5 1 2 6 10 20 7 12
E27 0 8 3 4 5 1 2 6 10 20 7 12
E28 1 15 3 4 5 1 2 6 10 20 5 12

Table 5.3 depicts the maximum achievable system reliability R for the next mission,

the total maintenance time D , cost C incurred, and the CPU time for different values

of the maintenance budget C0 when two repairpersons are hired. This table also pro-

vides the relative gap between the exact two-phase approach solutions and the solutions

obtained using the MIECP formulation.

Table 5.3: Results obtained from experiments #1.1.

C0
Two-phase approach MIECP

R∗(%) C∗ m∗ CPU (s) R(%) C m Gap(%) CPUt(s)

54 97.97 54 2 857.68 97.97 54 2 0.0 1.89
50 97.22 49 2 853.76 97.22 49 2 0.0 2.63
40 95.90 40 2 848.54 95.90 40 2 0.0 5.61
30 92.85 30 2 848.76 92.85 30 2 0.0 3.78
20 89.50 20 2 855.23 86.50 20 2 0.0 2.83
10 74.97 10 2 853.89 74.97 10 2 0.0 0.18
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From a computational time perspective, the MIECP formulation vastly outperforms

the two-phase approach. The exact two-phase approach takes on average 823.25 seconds

to generate 798,856 maintenance patterns and needs an additional 30 seconds on aver-

age to find the optimal solution. In contrast, the computational time with the MIECP

formulation is between 0.18 and 5.61 seconds. The solutions obtained using the MIECP

formulation are identical to the optimal solutions of the two-stage approach (i.e., the op-

timality gap was always 0.0%). This confirms the validity of the proposed approach.

5.4.1.2 Experiments #1.2: Large-scale JSM–RAP instances

This set of experiments aims to evaluate the ability of the proposed MIECP formulation

to deal with large-scale systems. The experiments are carried out on the series-parallel

system from Ikonen et al. (2020). The basic system is composed of 100 components dis-

tributed across I = 32 subsystems in series. Each subsystem i (i = 1, . . . , I) is composed of

i.i.d. Ji components arranged in parallel (Figure 5.3). Components in the first two subsys-

tems are identical. Similarly, each of the subsystems sets {3,. . . ,8}, {9,. . . ,18}, {19,. . . ,25},

and {26,. . . ,32} consists of identical subsystems. This basic system has a total number

of components NC =
∑32
i=1 Ji = 100. The lifetimes of all components follow Weibull dis-

tributions whose shape and scale parameters are βij and ηij , respectively. The values of

these parameters, along with the components’ status and age data, are given in Table 5.4.

A common lists of L = 2 maintenance options are available: DN and PR for functioning

components, and DN and MR for failed components. Components maintenance times

and costs are given in Table 5.5.

Figure 5.3: Reliability structure for the basic system with 100 components from Ikonen
et al. (2020).

Five test instances are created by duplicating the basic 100-component system pre-

sented in Figure 5.3 o times, where 1 ≤ o ≤ 5, such that the system has NCo = 100 × o
components. A fixed break duration of D0=50 is used for all test instances, whereas the
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Table 5.4: Parameters for experiments #1.2.

Eij ηij βij Xij BijFrom To

E1,1 E2,1 50 3.0 [0] [8]
E3,j E8,j 50 3.0 [0,1] [8,15]
E9,j E18,j 35 1.5 [0,1,0] [15,12,10]
E19,j E25,j 50 3.0 [0,1,0,1] [8,15,8,15]
E26,j E32,j 25 2.1 [0,1,0,1] [6,10,6,10]

Table 5.5: Maintenance duration and cost values for experiments #1.2.

Eij tcij1 tcij2 tcij3 t
p
ij2 t

p
ij3 ccij1 ccij2 ccij3 c

p
ij2 c

p
ij3From To

E1,1 E2,1 4 7 8 3 5 12 24 30 15 21
E3,j E8,j 4 7 8 3 5 12 24 30 15 21
E9,j E18,j 2 5 6 2 3 15 30 42 24 30
E19,j E25,j 3 4 5 1 2 18 30 60 21 36
E26,j E32,j 2 2.5 4 2 3 12 24 30 15 21

Table 5.6: Results obtained from experiments #1.2.

n
MIECP

R(%) C m CPUt(s)

100 94.51 492 3 19.6
200 89.50 996 6 438.2
300 84.75 1500 6 122.7
400 80.01 1992 8 392.5
500 75.85 2496 13 2511.4
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maintenance budget and number of repairpersons depend of o and are set to C0 = 500×o
and Q = 5 × o, respectively. For example, the second test instance (o = 2) has NC2 = 200

components, obtained by duplicating the basic system, the available maintenance budget

is set to 1000, and 10 repairpersons are available to perform the maintenance tasks. As

shown in Table 5.6, the proposed MIECP formulation enabled all the test instances to be

solved to proven optimality very efficiently. The largest test instance of 500 components

was solved in less than 42 minutes, which clearly prove the computational effectiveness

of the proposed MIECP formulation.

5.4.2 Numerical results for the robust problem

The next set of experiments uses the robust formulation developed in Section 5.3 to inves-

tigate the impact of maintenance quality uncertainty on the optimal robust maintenance

plan and system reliability. The reliability block diagram of the test system is composed

of I = 3 subsystems connected in series. Each of the first two subsystems consists of 5

i.i.d. components Eij (i = 1,2; j = 1, . . . ,5) arranged in parallel, whereas the third subsys-

tem consists of 3 i.i.d. components E3j (j = 1,2,3) arranged in parallel, resulting in a total

of 13 components. The lifetimes of all components are Weibull-distributed with respec-

tive shape and scale parameters set to βij = 1.5 and ηij = 15. The age of all components is

assumed to be 18 units of time. There are Q = 2 equally-skilled repairpersons available

to carry out maintenance duties with a variable cost rate kr = 2 (r = 1,2). A list of five

maintenance levels is available for all components: l = 0 (DN), l = 1 (MR: valid only for

failed components), l = 2 (IM1), l = 3 (IM2) and l = 4 (PR).

The duration of the scheduled break and that of the next mission are set to D0 = 8 and

M = 4, respectively. Additional data related to components’ states, maintenance times

and costs are displayed in Table 5.7.

To construct the uncertainty set, the post-maintenance reliability corresponding to

each maintenance level is considered as an uncertain parameter in a closed interval. The

upper and lower reliability bounds for different maintenance levels are illustrated in Fig-

ure 5.4. Note that the circular marker shown in each interval indicates the nominal re-

liability value for each maintenance level. The deviation from the nominal reliability

for each maintenance level reflects the complexity degree of performing the maintenance

level correctly. The deviation decreases when performing higher maintenance levels that
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Table 5.7: Parameters for experiment #2

Eij Xij tcij1 tcij2 tcij3 tcij4 t
p
ij2 t

p
ij3 t

p
ij4 ccij1 ccij2 ccij3 ccij4 c

p
ij2 c

p
ij3 c

p
ij4

E11 0 2 5 7 11 2 5 6 5 10 14 16 8 10 12
E12 1 2 5 7 11 2 5 6 5 10 14 16 8 10 12
E13 0 2 5 7 11 2 5 6 5 10 14 16 8 10 12
E14 1 2 5 7 11 2 5 6 5 10 14 16 8 10 12
E15 1 2 5 7 11 2 5 6 5 10 14 16 8 10 12
E21 0 4 7 10 15 3 5 7 4 8 10 12 5 7 9
E22 1 4 7 10 15 3 5 7 4 8 10 12 5 7 9
E23 0 4 7 10 15 3 5 7 4 8 10 12 5 7 9
E24 1 4 7 10 15 3 5 7 4 8 10 12 5 7 9
E25 0 4 7 10 15 3 5 7 4 8 10 12 5 7 9
E31 1 4 7 10 15 3 5 7 4 8 10 12 5 7 9
E32 0 4 7 10 15 3 5 7 4 8 10 12 5 7 9
E33 1 4 7 10 15 3 5 7 4 8 10 12 5 7 9

require more resources (time and cost) to be implemented. By definition, minimal repair

(MR) returns a failed component to a working state without affecting its failure rate. Ac-

cordingly, when implementingMR, the component condition cannot be improved beyond

its condition before failure, and thus MR has negative deviations only. Likewise, there is

no variability in the maintenance quality if no maintenance action is implemented (i.e.,

for DN). Since the components are assumed identical and the repairpersons are equally-

skilled, the uncertainty bounds are the same for all components and repairpersons. For

simplicity purposes, the uncertainty budgets are assumed to be the same for all subsys-

tems. We test for different values of the uncertainty budget Γi ∈ {0,0.05, . . . ,2.00}.

Figure 5.5 illustrates the relationship between the worst-case system reliability, com-

puted using the robust formulation (5.29), and the uncertainty budget Γi that controls

the level of conservatism. As expected, the worst-case system reliability deteriorates (de-

creases) as the uncertainty budget is increased since more and/or larger negative de-

viations in the components’ post-maintenance reliability are admitted. The worst-case

reliability value obtained for a given uncertainty budget serves as a lower bound for the

realized system reliability, thus provides a performance guarantee to the planner. For

example, with Γi = 1, it is guaranteed that the actual system reliability equals at least

0.5597. For the purpose of providing a performance guarantee, the uncertainty set should
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Figure 5.4: Post-Maintenance reliability bounds for each maintenance level l.

Figure 5.5: Worst-case system reliability vs. uncertainty budget.
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be properly-sized based on historical data (e.g., such that it includes a certain percentage

of the observations) or to reflect the risk attitude of the planner.

Next, we compute the out-of-sample reliability of the system based on the robust so-

lutions (maintenance plans) obtained for each uncertainty budget values. A test sample

of 1000 random post-maintenance reliability realizations for each system components is

drawn and used to calculate the overall system reliability. Each realization is drawn at

random and independently for each maintained component from the reliability inter-

vals shown in Figure 5.4 while assuming that the post-maintenance reliability for each

maintenance level follows a beta distribution with respective shape and scale parame-

ters βij = 2 and ηij = 3. These values are used for illustration purposes only. Any other

distributions and values can be used.

Figure 5.6a illustrates the relationship between the out-of-sample system reliability

and the uncertainty budget Γi . The bold line represents the average values whereas the

box-and-whisker plots display the quartiles of the test sample’s results. A closer inspec-

tion of the results reveals that the average system reliability attains a distinct maximum

in the uncertainty budget range 0.35 ≤ Γ∗ ≤ 0.50. This observation indicates that a naïve

operator who ignores the uncertainty related to the quality of the maintenance activities

(by setting Γ = 0) achieves an average out-of-sample reliability of 63.80%, compared to a

more sophisticated operator who recognizes the presence of such uncertainty (by setting

Γ = Γ∗), thus attains a 68.99% average system reliability. If the proposed robust approach

is used to improve the expected performance of the system, 0.35 ≤ Γ∗ ≤ 0.50 should be

used.

Besides the improvement in average out-of-sample system reliability, there is a simi-

lar and more profound improvement in the worst-case out-of-sample reliability (i.e., the

lowest system reliability achieved in the test sample) when using a sufficiently-large un-

certainty budget. The maximum improvement in this metric is achieved at Γ = Γ∗, with

a worst-case reliability value of 0.5820 compared to 0.4443 in the nominal case. How-

ever, even for non-optimal uncertainty budget values, the robust maintenance plan al-

ways outperforms the nominal one in terms of the worst-case performance. These is

also a significant reduction in the variability of out-of-sample system reliability when a

sufficiently-large uncertainty budget is used. To better show this effect, the coefficient of
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(a) Out-of-sample system reliability

(b) Coefficient of Variation (CV)

Figure 5.6: Effect of the uncertainty budget on system performance.

variation (CV) (i.e., the ratio of the standard deviation to the average out-of-sample sys-

tem reliability) is plotted vs. the uncertainty budget in Figure 5.6b. At the beginning,

when the uncertainty budget is small (0 ≤ Γ ≤ 0.15), the variability is high with a CV

value of 0.1. In other words, the nominal maintenance plan does not provide adequate

protection against variability and uncertainty. As the uncertainty budget is increased, the

CV decreases gradually until it reaches 0.025 for high values of Γ. This reduction is due

to the hedging effect of RO, which leads to conservative solutions that perform relatively

and consistently well even for bad scenarios.
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(a) Utilized uncertainty budget for subsystem 1.

(b) Utilized uncertainty budget for subsystem 2.

(c) Utilized uncertainty budget for Subsystem 3.

(d) Reliability of the subsystems

Figure 5.7: Utilized uncertainty budget per subsystem



155

We then investigate how the uncertainty budgets are utilized. In this context, the ro-

bust problem is perceived as a game between an adversary (i.e., nature) that tries to inflict

the maximum “damage" by controlling the allocation of available uncertainty budgets,

and a planner that tries to protect the system from this damage by prudently selecting

which maintenance actions to perform.

Figures (5.7a)-(5.7c) illustrate the utilization of uncertainty budget for each subsystem

i = (1,2,3). For the first two (5-by-5) subsystems, only one component is selected to be

maintained in each, thus limiting nature’s ability to utilize more than one unit of the

available budget. In contrast, the third subsystem is considered the weakest link in the

system since it consists of only three parallel components. Accordingly, to maximize the

system reliability, all of the components are subjected to maintenance, giving nature the

opportunity to utilize the entire uncertainty budget at its disposal.

Table 5.8: Maintenance quality and quantity as uncertainty budget increases

Uncertainty # Maintenance
Budget Subsystem 1 Subsystem 2 Subsystem 3 actions performed

0.0 - 0.1 MR IM1, IM1 R 4
0.2 - 0.3 MR,MR MR R 4

0.4 - R R 2
0.5 - R R,MR 3

0.6 - 1.0 MR - R,MR 3
1.1 - 2.0 - - R,MR,MR 3

Figure 5.7d portrays the relationship between the uncertainty budget and the result-

ing reliability for each subsystem. Moreover, Table 5.8 provides details about the main-

tenance actions performed on each subsystem at different uncertainty budgets. At the

beginning (0 ≤ Γ ≤ 0.40), when the maintenance budget available to inflict damage is

small, the maximum number of maintenance actions (within the limited break duration

and budget) are performed in all subsystems since there is no significant risk of making

these maintenance actions worse than planned. However, as the uncertainty budget is

increased, fewer maintenance actions are performed on the “non-critical" subsystems (1

and 2), especially maintenance levels that are prone to wide variability like IM1. Instead,

the maintenance budget and repairpersons’ time are used to strengthen the weakest link

in the system (i.e., the third subsystem) by performing additional maintenance actions on
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it, especially those with mild quality variability such as R and MR.

Finally, Figure 5.8 illustrates the relationship between the average computational time

when solving the robust problem (5.29) as the uncertainty budget Γi was varied. As

shown, the computational time for solving the 5-5-3 series parallel system with two re-

pairpersons is fairly stable between 1.5 and 2.5 seconds.

Figure 5.8: The computational performance of the robust problem.

5.5 Conclusions

In this paper, the important issue of maintenance quality uncertainty in the context of the

JSM–RAP with a series-parallel system was addressed through a RO framework. We first

showed how the nominal problem can be reformulated into a MIECP that can be readily

handled by efficient off-the-shelf solvers. Then, we considered the robust case and used

a non-symmetric budget uncertainty set to model the post-maintenance reliability of the

system components such that the level of conservatism can be controlled. We were able

to reformulate the robust problem into a MIECP by using the concept of Fenchel duality.

Three sets of numerical experiments demonstrated the advantages of the proposed

reformulations in terms of both computational time and solution quality. In particular,

the MIECP formulation enabled the nominal problem to be exactly solved much more

efficiently compared to the two-phase approach of Diallo et al. (2019b). In addition,

we showed how the robust formulation can be used to obtain performance guarantees,

improve the average and worst-case out-of-sample performance and reduce variability
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with a properly-sized uncertainty budget. We also analyzed how the available uncertainty

budget is utilized and how the set of maintenance actions is affected by it.

The ability to reformulate the JSM–RAP for a series-parallel systems as aMIECP opens

the door for several potential extensions. On the one hand, it would be interesting to

see if similar “nice" reformulations could be derived for systems with other reliability

structures (e.g., serial k out of n structure). Likewise, other variants of the SMP, e.g.,mul-

timission and fleet SMP, and closely-related problems such as the reliability allocation

problem might be amenable to such formulations. On the other hand, besides main-

tenance quality, other aspects of uncertainty in the SMP, including maintenance action

times and costs, mission duration and break length, can be addressed similarly in a RO

framework. Furthermore, starting from the nominal MIECP formulation, one can apply

other ways for handling uncertainty (e.g., distributionally robust optimization or robust-

stochastic optimization) in case some distributional data is available to alleviate the con-

servatism of RO. Finally, mixed-integer linear and second-order conic approximations of

the MIECP can be used to further improve the computational performance and enable

extremely large SMP problems to be solved (Ye and Xie, 2021).
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Conclusions

This dissertation explored four themes dealing with the optimization of JSM–RAP for

large-scale systems under uncertainty. The first theme provided a critical review of se-

lective maintenance literature, identifying challenges and potential areas for future re-

search. The second theme introduced four CG-based algorithms to effectively address the

JSM–RAP for large-scale systems. The third theme presented a PLA-based approach and

a DRC-W to handle uncertain maintenance duration in large-scale instances of JSM–RAP.

The fourth theme addressed the optimization of JSM–RAP when the quality of mainte-

nance actions is uncertain and impacts the post-maintenance reliability of system compo-

nents. The conclusions and future research extensions for the four themes are discussed

below.

While there has been a significant increase in research in the field of the SMP in the

last five years, driven by advancements in robust optimization and machine learning, no

recent review of the SMP literature exists. In Chapter 2 dealing with Theme 1, a state-of-

the-art literature review of SMwas conducted to provide a comprehensive understanding

of the field and its advancements. The review examined 119 research articles related to

SM optimization using a systematic classification and analysis framework to classify and

analyze the models. The review also identified the limitations and potential areas for fu-

ture research in the field.

As outlined at the end of Chapter 2, current methods for the SMP are not adequate

for handling large systems or addressing uncertainty in maintenance parameters due to a

lack of sufficient maintenance records and tractable formulations. Therefore, Theme 2 in

Chapter 3 dealt with the development of four column-generation-based methods to solve

large-scale instances of the JSM–RAP. The approaches employed a column-generation

technique which iterated between solving a restricted master problem to update the dual

multipliers and solving multiple subproblems to generate maintenance patterns. Two
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novel reformulations were proposed for the mixed-integer nonlinear subproblems (CG–

PLA, CG–ECO), and a heuristic procedure and stabilization scheme were developed to

improve the algorithm’s convergence. Additionally, CG was embedded within a B&B tree

to devise branch-and-price algorithms restoring integrality and ensuring solution opti-

mality.

Numerical experiments revealed the effectiveness of the proposed approach in solving

large-scale instances of the JSM–RAP and finding optimal solutions. The computation

times for the CG–PLA and CG–ECO approaches were found to be significantly shorter

than those of a previous two-phase approach (Diallo et al., 2019b). However, the CPU

times for the B&P algorithms were longer than those of the CG-based approaches with-

out B&B. Despite this, the two B&P algorithms were able to solve all instances optimally.

The CG–ECO approach, which uses an exact reformulation of the subproblem was found

capable of guaranteeing solution optimality when combined with B&B. For large-scale

instances, whether CG–PLA or CG–ECO was used, the gap between the reliability ob-

tained from solving the JSM–RAP as a BIP problem and that obtained from the relaxed

problem was rather small, indicating that the solutions obtained were very close to the

unknown optimal solution. The proposed algorithms were found to be efficient and able

to solve a problem with more than double the number of components in the previous

largest JSM–RAP instance solved. Additionally, the stabilization scheme was found to be

effective in accelerating the convergence of the CG algorithm for large-scale systems with

multiple maintenance levels.

Under Theme 3 in Chapter 4, we proposed an alternative approach for solving JSM–

RAPs by implementing the piecewise linear approximation approach directly into the

JSM–RAP BIP formulation. A distributionally robust chance-constrained program with

a Wasserstein ambiguity set was then proposed along with the developed PLA-based for-

mulation to deal with uncertain maintenance durations in the JSM–RAP.

Three sets of numerical experiments were carried out and they showed the capability of

the proposed approaches to deal with large-scale JSM–RAPs with uncertain maintenance

duration. The developed data-driven distributionally robust chance constraint formu-

lation ensured that effective maintenance plans could be determined with a high prob-

ability of completion. In addition, the computation times of the proposed PLA-based

approach were significantly less than the computation times of the 2-phase approach
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presented in Diallo et al. (2019b). The efficiency of the proposed methods was such that

it was at least an order of magnitude faster than (Ikonen et al., 2020) in solving its largest

JSM-RAP instance (700 components).

Theme 4 introduced the optimization of the JSM–RAP when the quality of main-

tenance actions is uncertain, thus leading to uncertain post-maintenance reliability of

system components. A robust optimization framework was employed to represent this

uncertainty through non-symmetric budget uncertainty sets, giving decision-makers the

ability to manage their level of conservatism. Both the nominal and robust problems are

reformulated as MIECPs that can be solved using off-the-shelf solvers. Through Fenchel

duality, the proposed MIECP-based formulation enabled robust optimization to be im-

plemented easily, leading to a tractable reformulation of the same class of the nominal

problem and having the same number of discrete variables.

Three sets of numerical experiments have been performed to show the benefits of the

proposed reformulations in terms of computational time and solution quality. In par-

ticular, the use of the MIECP formulation allowed us to solve the nominal problem with

high accuracy and efficiency compared to the two-phase approach of Diallo et al. (2019b).

Furthermore, it was demonstrated how the robust formulation can be used to achieve per-

formance guarantees, enhance the average and worst-case out-of-sample performance,

and decrease variability with a suitable uncertainty budget. The effects of utilizing the

available uncertainty budget on the set of maintenance actions were also examined.

In summary, for large-scale systems, the PLA-based approaches (CG–PLA, PLA) are

recommended if a short computational time with less emphasis on optimality is desired.

On the other hand, if exact optimality and/or consideration of uncertainty in SMP pa-

rameters is a priority, the ECO-based approaches (CG–ECO, ECO) are recommended.

When it comes to whether column generation shall be utilized or not, it depends on the

problem size. The obtained numerical results indicate that for problems with up to sev-

eral hundred components, employing direct methods like PLA and ECO without column

generation is recommended. However, for larger-scale problems encompassing around a

thousand components or more, it is preferable to utilize column generation-based tech-

niques, including CG-PLA and CG-ECO.
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The area of the SMP offers numerous opportunities for further exploration and inves-

tigation. The examination of research gaps and the proposal of a 10-point road map to

guide the advancement of SMP research were emphasized in Theme 1 of the dissertation.

In this dissertation, the joint repairperson assignment extension (JSM–RAP) has been

investigated, and the added value of the proposed advancements in handling large-scale

systems under uncertainty has been demonstrated. Future research for JSM–RAP should

aim to improve the JSM–RAP model by incorporating new ideas such as accounting for

asynchronous break periods, handling complex reliability structures (i.e., weighted or

consecutive k − out of − n configurations), considering fleet-level selective maintenance,

and incorporating stochastic and economic dependencies. The JSM-RAP currently as-

sumes that all repairs can take place without repair persons colliding. Future research

could explore the impact of space constraints, work interruption and resumption, repair

prioritization, sequence-dependent maintenance duration, etc. Relaxing the determin-

istic assumption for other parameters and incorporating the operational performance of

components into the model are also areas for future study.

Throughout this dissertation, PLA andMIECP were implemented in conjunction with

a DRCC program and a RO program to address the uncertainties of maintenance duration

and quality in the context of JSM-RAP. As a prospective research extension, the adoption

of the proposed column generation-based techniques (CG-PLA, CG-ECO) in combination

with the DRCC and RO programs should facilitate the effective resolution of larger JSM-

RAP instances that incorporate uncertainties in maintenance duration and/or quality.

In addition to reliability, future research should focus on optimizing system avail-

ability and evaluating trade-offs between availability and repairperson hiring. The joint

maintenance and crew scheduling problem, and methods to solve it, could also be ex-

plored. Robust-stochastic optimization and mixed-integer linear and second-order conic

approximations can be used to improve computational performance and reduce conser-

vatism in the results. By doing so, we can advance our understanding of selective mainte-

nance optimization and ultimately provide more reliable and efficient solutions for large-

scale systems under uncertainty.



162

Through these efforts, efficient and improved formulations that accurately reflect real-

world problems for large-scale systems facing uncertainty can be provided. This will en-

hance the ability of practitioners to apply these solutions to their various systems, closing

the divide between theoretical knowledge and actual real-world problems.



References

Agius, M., Absi, N., Feillet, D., and Garaix, T. (2022). A branch-and-price algorithm
for a routing problem with inbound and outbound requests. Computers & Operations
Research, 146:105896.

Ahadi, K. and Sullivan, K. M. (2019). Approximate dynamic programming for selective
maintenance in series–parallel systems. IEEE Transactions on Reliability, 69(3):1147–
1164.

Al-Jabouri, H., Saif, A., Diallo, C., and Khatab, A. (2023). Branch-and-price algorithms for
large-scale mission-oriented maintenance planning problems. Computers & Operations
Research, page 106191.

Al-Jabouri, H., Saif, A., Khatab, A., Diallo, C., and Venkatadri, U. (2022). Selective main-
tenance optimization: a condensed critical review and future research directions. IFAC-
PapersOnLine, 55(10):1213–1218.

Ali, I., Khan, M. F., Raghav, Y. S., Bari, A., et al. (2011a). Allocation of repairable and
replaceable components for a system availability using selective maintenance with
probabilistic maintenance time constraints. American Journal of Operations Research,
1(03):147.

Ali, I., Raghav, Y. S., and Bari, A. (2011b). Allocating repairable and replaceable com-
ponents for a system availability using selective maintenance: an integer solution. In
Safety and Reliability, volume 31, pages 9–18. Taylor & Francis.

Ali, I., Raghav, Y. S., Khan, M. F., and Bari, A. (2013). Selective maintenance in system
reliability with random costs of repairing and replacing the components. Communica-
tions in Statistics-Simulation and Computation, 42(9):2026–2039.

An, Y., Chen, X., Li, Y., Zhang, J., and Jiang, J. (2021). Flexible job-shop scheduling and
heterogeneous repairman assignment with maintenance time window and employee
timetable constraints. Expert Syst. Appl., 186:115693.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., and Vance, P. H.
(1998). Branch-and-price: Column generation for solving huge integer programs. Op-
erations research, 46(3):316–329.

Beale, E. and Forrest, J. J. (1976). Global optimization using special ordered sets. Mathe-
matical Programming, 10(1):52–69.

Ben-Daya, M., Duffuaa, S. O., Raouf, A., Knezevic, J., and Ait-Kadi, D. (2009). Handbook
of maintenance management and engineering, volume 7. Springer.

163



164

Ben-Tal, A., Den Hertog, D., and Vial, J.-P. (2015). Deriving robust counterparts of non-
linear uncertain inequalities. Mathematical programming, 149(1):265–299.

Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations research, 52(1):35–
53.

Bevilacqua, M. and Braglia, M. (2000). The analytic hierarchy process applied to mainte-
nance strategy selection. Reliability Engineering & System Safety, 70(1):71–83.

Birge, J. R. and Louveaux, F. (2011). Introduction to stochastic programming. Springer
Science & Business Media.

Brunner, J. O. and Stolletz, R. (2014). Stabilized branch and price with dynamic pa-
rameter updating for discontinuous tour scheduling. Computers & Operations Research,
44:137–145.

Bulhões, T., Sadykov, R., and Uchoa, E. (2018). A branch-and-price algorithm for the
minimum latency problem. Computers & Operations Research, 93:66–78.

Burke, E., Bykov, Y., Newall, J., and Petrovic, S. (2004). A time-predefined local search
approach to exam timetabling problems. Iie Transactions, 36(6):509–528.

Cacchiani, V., Iori, M., Locatelli, A., and Martello, S. (2022). Knapsack problems — an
overview of recent advances. part ii: Multiple, multidimensional, and quadratic knap-
sack problems. Computers & Operations Research, 143:105693.

Cao, H. and Duan, F. (2021a). Selective maintenance of the multi-component system with
considering stochastic maintenance quality. In 2021 IEEE International Conference on
Mechatronics and Automation (ICMA), pages 6–11. IEEE.

Cao, H. and Duan, F. (2021b). Selective maintenance policy of complex systems with
maintenance priority indexes. IEEE Access, 10:3512–3521.

Cao, W., Hu, Q., Song, W., and Wu, Y. (2016a). Mission-oriented maintenance optimiza-
tion subject to resources constraints. In 2016 International Conference on Intelligent
Networking and Collaborative Systems (INCoS), pages 237–243. IEEE.

Cao, W., Jia, X., Hu, Q., Song, W., and Ge, H. (2017). Selective maintenance for max-
imising system availability: a simulation approach. International Journal of Innovative
Computing and Applications, 8(1):12–20.

Cao, W., Jia, X., Hu, Q., Zhao, J., and Wu, Y. (2018a). A literature review on selective
maintenance for multi-unit systems. Quality and Reliability Engineering International,
34(5):824–845.

Cao, W., Jia, X., Liu, Y., and Hu, Q. (2018b). Selective maintenance optimization for fuzzy
multi-state systems. Journal of Intelligent & Fuzzy Systems, 34(1):105–121.



165

Cao, W., Song, W., Hu, Q., and Du, Y. (2016b). An exact method for solving selec-
tive maintenance problems considering imperfect maintenance. In 2016 International
Conference on Intelligent Networking and Collaborative Systems (INCoS), pages 522–526.
IEEE.

Cassady, C., Nachtmann, H. L., Schneider, K., Rainwater, C., Rieske, J., Stout, J., Johnson,
R., Judy, B., Carrasco, M., and Maillart, L. M. (2004). Multi-mission selective main-
tenance decisions. Technical report, Arkansas University, Fayetteville Department of
Industrial Engineering.

Cassady, C. R., Mason, S. J., Ormon, S., Schneider, K., Rainwater, C., Carrasco, M., and
Honeycutt, J. (2003). Fleet-level selective maintenance and aircraft scheduling. Tech-
nical report, Arkansas University, Fayetteville Department of Industrial Engineering.

Cassady, C. R., Murdock Jr, W. P., and Pohl, E. A. (2001a). Selective maintenance for
support equipment involving multiple maintenance actions. European Journal of Oper-
ational Research, 129(2):252–258.

Cassady, C. R., Nachtmann, H. L., Pohl, E. A., Mendoza, A., Pohl, L., and Rew, N. (2005a).
Maintenance decision-making under prognostic and diagnostic uncertainty. Technical
report, Arkansas University Fayetteville Department of Industrial Engineering.

Cassady, C. R., Pohl, E. A., Mason, S. J., and Yeung, T. G. (2005b). Multi-state selective
maintenance decisions. Technical report, Arkansas University Fayetteville Department
of Industrial Engineering.

Cassady, C. R., Pohl, E. A., and Murdock, W. P. (2001b). Selective maintenance modeling
for industrial systems. Journal of Quality in Maintenance Engineering.

Chaabane, K., Khatab, A., Aghezzaf, E.-H., Diallo, C., and Venkatadri, U. (2018). Out-
sourcing selective maintenance problem in failure prone multi-component systems.
IFAC-PapersOnLine, 51(11):525–530.

Chaabane, K., Khatab, A., Diallo, C., Aghezzaf, E.-H., and Venkatadri, U. (2020a). In-
tegrated imperfect multimission selective maintenance and repairpersons assignment
problem. Reliability Engineering & System Safety, 199:106895.

Chaabane, K., Khatab, A., Diallo, C., Venkatadri, U., and Aghezzaf, E.-H. (2020b). Se-
lective maintenance optimization problem in systems under repairpersons availability.
In 2020 7th International Conference on Control, Decision and Information Technologies
(CoDIT), volume 1, pages 687–692. IEEE.

Charnes, A. and Cooper, W. W. (1959). Chance-constrained programming. Management
science, 6(1):73–79.

Chen, C., Liu, Y., and Huang, H.-Z. (2012). Optimal load distribution for multi-state sys-
tems under selective maintenance strategy. In 2012 International Conference on Quality,
Reliability, Risk, Maintenance, and Safety Engineering, pages 436–442. IEEE.



166

Chen, T.-Y. and Wang, J.-C. (2001). Identification of λ-fuzzy measures using sampling
design and genetic algorithms. Fuzzy Sets and Systems, 123(3):321–341.

Chen, Y., Liu, Y., and Jiang, T. (2021). Optimal maintenance strategy for multi-state sys-
tems with single maintenance capacity and arbitrarily distributed maintenance time.
Reliability Engineering & System Safety, 211:107576.

Chen, Z., He, Y., Zhao, Y., Han, X., and He, Z. (2018a). Selective maintenance decision for
multistate manufacturing system based on extended state task network. In 2018 IEEE
International Conference on Industrial Engineering and Engineering Management (IEEM),
pages 1725–1729. IEEE.

Chen, Z., He, Y., Zhao, Y., Han, X., Liu, F., Zhou, D., and Wang, W. (2019). Mis-
sion reliability-oriented selective maintenance optimization for intelligent multistate
manufacturing systems with uncertain maintenance quality. IEEE Access, 7:109804–
109816.

Chen, Z., Kuhn, D., and Wiesemann, W. (2018b). Data-driven chance constrained pro-
grams over wasserstein balls. arXiv e-prints, pages arXiv–1809.

Dao, C. D. and Zuo, M. J. (2015). Selective maintenance for multistate series systems with
s-dependent components. IEEE Transactions on Reliability, 65(2):525–539.

Dao, C. D. and Zuo, M. J. (2017a). Optimal selective maintenance for multi-state systems
in variable loading conditions. Reliability Engineering & System Safety, 166:171–180.

Dao, C. D. and Zuo, M. J. (2017b). Selective maintenance of multi-state systems with
structural dependence. Reliability Engineering & System Safety, 159:184–195.

Dao, C. D., Zuo, M. J., and Pandey, M. (2014). Selective maintenance for multi-state
series–parallel systems under economic dependence. Reliability Engineering & System
Safety, 121:240–249.

Dell’Amico, M., Furini, F., and Iori, M. (2020). A branch-and-price algorithm for the
temporal bin packing problem. Computers & Operations Research, 114:104825.

Diallo, C., Khatab, A., and Venkatadri, U. (2019a). Developing a bi-objective imper-
fect selective maintenance optimization model for multicomponent systems. IFAC-
PapersOnLine, 52(13):1079–1084. 9th IFAC Conference on Manufacturing Modelling,
Management and Control MIM 2019.

Diallo, C., Khatab, A., Venkatadri, U., and Aghezzaf, E.-H. (2017). A joint selective
maintenance and multiple repair-person assignment problem. In International Con-
ference on Industrial Engineering and Systems Management-IESM 2017, pages 317–322.
Wirtschaftswissenschaften HTW SAAR.

Diallo, C., Venkatadri, U., Khatab, A., and Liu, Z. (2018). Optimal selective maintenance
decisions for large serial k-out-of-n: G systems under imperfect maintenance. Reliabil-
ity Engineering & System Safety, 175:234–245.



167

Diallo, C., Venkatadri, U., Khatab, A., Liu, Z., and Aghezzaf, E.-H. (2019b). Optimal
joint selective imperfect maintenance and multiple repairpersons assignment strat-
egy for complex multicomponent systems. International Journal of Production Research,
57(13):4098–4117.

Djelloul, I., Khatab, A., Aghezzaf, E.-H., and Sari, Z. (2015). Optimal selective mainte-
nance policy for series-parallel systems operating missions of random durations. In
International conference on Computers & Industrial Engineering (CIE 45). Metz France.

Do, P., Voisin, A., Levrat, E., and Iung, B. (2015). A proactive condition-based mainte-
nance strategy with both perfect and imperfect maintenance actions. Reliability Engi-
neering & System Safety, 133:22–32.

Du Merle, O., Villeneuve, D., Desrosiers, J., and Hansen, P. (1999). Stabilized column
generation. Discrete Mathematics, 194(1-3):229–237.

Duan, C., Deng, C., Gharaei, A., Wu, J., and Wang, B. (2018). Selective maintenance
scheduling under stochastic maintenance quality with multiple maintenance actions.
International Journal of Production Research, 56(23):7160–7178.

Erdoğan, E. and Iyengar, G. (2006). Ambiguous chance constrained problems and robust
optimization. Mathematical Programming, 107:37–61.

Faulin, J., Juan, A. A., Alsina, S. S. M., and Ramirez-Marquez, J. E. (2010). Simulation
methods for reliability and availability of complex systems. Springer Science & Business
Media.

Feng, Q., Bi, X., Zhao, X., Chen, Y., and Sun, B. (2017). Heuristic hybrid game approach
for fleet condition-basedmaintenance planning. Reliability Engineering & System Safety,
157:166–176.

Fisher, P. (1965). Selective maintenance concept. Electrical Construction and Maintenance,
64(1):98–100.

Galante, G. M., La Fata, C. M., Lupo, T., and Passannanti, G. (2020). Handling the epis-
temic uncertainty in the selective maintenance problem. Computers & Industrial Engi-
neering, 141:106293.

Gao, H., Zhang, X., Yang, X., and Zheng, B. (2021). Optimal selective maintenance
decision-making for consecutive-mission systems with variable durations and limited
maintenance time. Mathematical Problems in Engineering, 2021.

Ghorbani, M., Nourelfath, M., and Gendreau, M. (2022). A two-stage stochastic program-
ming model for selective maintenance optimization. Reliability Engineering & System
Safety, 223:108480.

Goh, J. and Sim, M. (2010). Distributionally robust optimization and its tractable approx-
imations. Operations research, 58(4-part-1):902–917.



168

Guo, L., Xu, Q., andWang, N. (2016). Selective maintenance model for multi-state system
under economic dependence. In 2016 Chinese Control and Decision Conference (CCDC),
pages 4796–4803. IEEE.

Gupta, N., Ali, I., and Bari, A. (2013). Fuzzy goal programming approach in selective
maintenance reliability model. Pakistan Journal of Statistics and Operation Research,
pages 321–331.

Gupta, N., Ali, I., and Bari, A. (2014). Selective maintenance & redundancy allocation
problem with interval coefficients. In ProbStat Forum, volume 7, pages 98–104.

Hanasusanto, G., Kuhn, D., and Wiesemann, W. A. (2016). computational complexity of
stochastic programming problems. Mathematical programming, 159:557–569.

Haseen, S., Gupta, N., and Bari, A. (2015). A fuzzy approach for a multiobjective selective
maintenance problem. International Journal of Operations Research, 12(3):91–101.

Hesabi, H., Nourelfath, M., and Hajji, A. (2022). A deep learning predictive model for se-
lective maintenance optimization. Reliability Engineering & System Safety, 219:108191.

Hoai, M. T. and Luong, H. T. (2006). Selective maintenance policy with time-window con-
straint. In Proceedings of the 7th Asia Pacific Industrial Engineering Management Systems
Conference, pages 17–20.

Holland, J. H. (1975). Adaptation in natural and artificial systems, university of michigan
press. Ann arbor, MI, 1(97):5.

Hou, J. and Qian, Y. (2015). Selective maintenance model based on different mission
duration time. In 2015 IEEE International Conference on Mechatronics and Automation
(ICMA), pages 2491–2495. IEEE.

Hou, J. and Qian, Y. (2016). Selective maintenance model for modular system. In 2016
IEEE International Conference on Mechatronics and Automation, pages 1845–1849. IEEE.

Ikonen, T. J., Mostafaei, H., Ye, Y., Bernal, D. E., Grossmann, I. E., and Harjunkoski, I.
(2020). Large-scale selective maintenance optimization using bathtub-shaped failure
rates. Computers & Chemical Engineering, 139:106876.

Iyoob, I. M., Cassady, C. R., and Pohl, E. A. (2006). Establishing maintenance resource
levels using selective maintenance. The Engineering Economist, 51(2):99–114.

Ji, R. and Lejeune, M. A. (2021). Data-driven distributionally robust chance-constrained
optimization with wasserstein metric. Journal of Global Optimization, 79(4):779–811.

Jiang, T. and Liu, Y. (2020a). Robust selective maintenance strategy under imperfect
observations: A multi-objective perspective. IISE Transactions, 52(7):751–768.



169

Jiang, T. and Liu, Y. (2020b). Selective maintenance strategy for systems executing mul-
tiple consecutive missions with uncertainty. Reliability Engineering & System Safety,
193:106632.

Jinxin, H. and Yanling, Q. (2017). Selective maintenance for complex system with multi-
level structure. In 2017 9th International Conference onMeasuring Technology andMecha-
tronics Automation (ICMTMA), pages 41–44. IEEE.

Kamal, M., Modibbo, U. M., AlArjani, A., and Ali, I. (2021). Neutrosophic fuzzy goal pro-
gramming approach in selective maintenance allocation of system reliability. Complex
& Intelligent Systems, 7(2):1045–1059.

Kammoun, M. A., Hajej, Z., and Rezg, N. (2022). A multi-level selective maintenance
strategy combined to data mining approach for multi-component system subject to
propagated failures. Journal of Systems Science and Systems Engineering, pages 1–25.

Kantorovich, L. V. and Rubinshtein, S. (1958). On a space of totally additive functions.
Vestnik of the St. Petersburg University: Mathematics, 13(7):52–59.

Khatab, A. and Aghezzaf, E. (2016a). Selective maintenance optimization for series-
parallel systems with continuously monitored stochastic degrading components sub-
ject to imperfect maintenance. IFAC-PapersOnLine, 49(28):256–261.

Khatab, A. and Aghezzaf, E.-H. (2016b). Selective maintenance optimization when qual-
ity of imperfect maintenance actions are stochastic. Reliability Engineering & System
Safety, 150:182–189.

Khatab, A., Aghezzaf, E.-H., Diallo, C., and Djelloul, I. (2017a). Selective maintenance op-
timisation for series-parallel systems alternating missions and scheduled breaks with
stochastic durations. International Journal of Production Research, 55(10):3008–3024.

Khatab, A., Aghezzaf, E.-H., Diallo, C., and Venkatadri, U. (2018a). Condition-based
selective maintenance for multicomponent systems under environmental and energy
considerations. In 2018 IEEE International Conference on Industrial Engineering and En-
gineering Management (IEEM), pages 212–216. IEEE.

Khatab, A., Aghezzaf, E.-H., Djelloul, I., and Sari, Z. (2016). Selective maintenance for
series-parallel systems when durations of missions and planned breaks are stochastic.
IFAC-PapersOnLine, 49(12):1222–1227.

Khatab, A., Aghezzaf, E.-H., Djelloul, I., and Sari, Z. (2017b). Selective maintenance
optimization for systems operating missions and scheduled breaks with stochastic du-
rations. Journal of Manufacturing Systems, 43:168–177.

Khatab, A. and Ait-Kadi, D. (2008). Selectivemaintenance policy for multi-missionmulti-
state series-parallel systems. In Proceedings of the 4th International Conference on Ad-
vances in Mechanical Engineering and Mechanics (ICAMEM).



170

Khatab, A., Ait-Kadi, D., and Artiba, A. (2008a). Optimization of selective maintenance
for multi-missions series-parallel systems. In Proceedings of the International Conference,
Paris, France, MOSIM’08.

Khatab, A., Ait-Kadi, D., and Artiba, A. (2008b). Simulated annealing method for the
selective maintenance optimization of multi-mission series-parallel systems. In Pro-
ceedings of the joint ESREL (European Safety and Reliability) and SRA-Europe (Society for
Risk Analysis Europe) conference, pages 641–7.

Khatab, A., Ait-Kadi, D., and Nourelfath, M. (2007). Heuristic-based methods for solving
the selective maintenance problem for series-parallel systems. In International Confer-
ence on Industrial Engineering and Systems Management, Beijing, China, pages 333–334.

Khatab, A., Ait-Kadi, D., and Rezg, N. (2012). Kronecker algebra for series–parallel
multi-state systems reliability evaluation. International Journal of Production Research,
50(13):3572–3578.

Khatab, A., Diallo, C., Aghezzaf, E.-H., and Venkatadri, U. (2018b). Condition-based se-
lective maintenance for stochastically degrading multi-component systems under peri-
odic inspection and imperfect maintenance. Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability, 232(4):447–463.

Khatab, A., Diallo, C., Aghezzaf, E.-H., and Venkatadri, U. (2019). Joint optimization of
the selective maintenance and repairperson assignment problem when using new and
remanufactured spare parts. IFAC-PapersOnLine, 52(13):1063–1068.

Khatab, A., Diallo, C., Aghezzaf, E.-H., and Venkatadri, U. (2020a). Optimization of the
integrated fleet-level imperfect selective maintenance and repairpersons assignment
problem. Journal of Intelligent Manufacturing, pages 1–16.

Khatab, A., Diallo, C., Venkatadri, U., and Aghezzaf, E.-H. (2020b). Optimal selective
maintenance for systems operating under random environments. In 2020 7th Interna-
tional Conference on Control, Decision and Information Technologies (CoDIT), volume 1,
pages 294–299. IEEE.

Khatab, A., Diallo, C., Venkatadri, U., Liu, Z., and Aghezzaf, E.-H. (2018c). Optimiza-
tion of the joint selective maintenance and repairperson assignment problem under
imperfect maintenance. Computers & Industrial Engineering, 125:413–422.

Lan, P., Lin, M., and Naichao, W. (2017). A fleet-level selective maintenance model for
long-distance highway transportation considering stochastic repair quality. In 2017
2nd International Conference on System Reliability and Safety (ICSRS), pages 348–353.
IEEE.

Li, X., Ran, Y., Zhang, G., and He, Y. (2020). A failure mode and risk assessment method
based on cloud model. Journal of Intelligent Manufacturing, 31(6):1339–1352.



171

Li, X., Ran, Y., Zhang, G., and Yu, H. (2021). Selective maintenance of multi-state series
systems considering maintenance quality uncertainty and failure effects. Proceedings of
the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,
235(5):1363–1374.

Liu, L., Yang, J., Kong, X., and Xiao, Y. (2022). Multi-mission selective maintenance and
repairpersons assignment problem with stochastic durations. Reliability Engineering &
System Safety, 219:108209.

Liu, Y., Chen, Y., and Jiang, T. (2018). On sequence planning for selective maintenance
of multi-state systems under stochastic maintenance durations. European Journal of
Operational Research, 268(1):113–127.

Liu, Y., Chen, Y., and Jiang, T. (2020). Dynamic selective maintenance optimization for
multi-state systems over a finite horizon: A deep reinforcement learning approach.
European Journal of Operational Research, 283(1):166–181.

Liu, Y. and Huang, H.-Z. (2010). Optimal selective maintenance strategy for multi-state
systems under imperfect maintenance. IEEE Transactions on Reliability, 59(2):356–367.

Liu, Y., Huang, H.-Z., and Zuo, M. J. (2009). Optimal selective maintenance for multi-
state systems under imperfect maintenance. In 2009 Annual Reliability and Maintain-
ability Symposium, pages 321–326. IEEE.

Liu, Y. and Jiang, T. (2018). Robust selective maintenance strategy under imperfect obser-
vations. In 2018 Annual Reliability and Maintainability Symposium (RAMS), pages 1–6.
IEEE.

Luedtke, J., Ahmed, S., and Nemhauser, G. L. (2010). An integer programming ap-
proach for linear programs with probabilistic constraints. Mathematical programming,
122(2):247–272.

Lust, T., Roux, O., and Riane, F. (2009). Exact and heuristic methods for the selective
maintenance problem. European Journal of Operational Research, 197(3):1166–1177.

Lv, X.-Z., Yu, Y.-L., Zhang, L., Liu, Y.-F., and Chen, L.-Y. (2011). Stochastic program
for selective maintenance decision considering diagnostics uncertainty of built-in test
equipment. In 2011 International Conference on Quality, Reliability, Risk, Maintenance,
and Safety Engineering, pages 584–589. IEEE.

Maaroufi, G., Chelbi, A., and Rezg, N. (2012). A selective maintenance policy for multi-
component systems with stochastic and economic dependence. In 2012 9th Interna-
tional Conference on Modeling, Optimization and SIMulation.

Maaroufi, G., Chelbi, A., and Rezg, N. (2013a). Optimal selective renewal policy for sys-
tems subject to propagated failures with global effect and failure isolation phenomena.
Reliability Engineering & System Safety, 114:61–70.



172

Maaroufi, G., Chelbi, A., and Rezg, N. (2013b). A selective maintenance policy for multi-
component systems involving replacement and imperfect preventive maintenance ac-
tions. In Proceedings of 2013 International Conference on Industrial Engineering and Sys-
tems Management (IESM), pages 1–8. IEEE.

Maillart, L. M., Cassady, C. R., Rainwater, C., and Schneider, K. (2009). Selective main-
tenance decision-making over extended planning horizons. IEEE Transactions on Relia-
bility, 58(3):462–469.

Malik, M. A. K. (1979). Reliable preventive maintenance scheduling. AIIE Transactions,
11(3):221–228.

Meng, M.-H., Zuo, M., et al. (1999). Selective maintenance optimization for multi-state
systems. In Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Con-
ference on Electrical and Computer Engineering (Cat. No. 99TH8411), volume 3, pages
1477–1482. IEEE.

Mohajerin Esfahani, P. and Kuhn, D. (2018). Data-driven distributionally robust opti-
mization using the wasserstein metric: Performance guarantees and tractable reformu-
lations. Mathematical Programming, 171(1):115–166.

Mosek ApS (2021). Mosek modeling cookbook. https://docs.mosek.com/

MOSEKModelingCookbook-a4paper.pdf. Online; accessed May 2, 2022.

Nemirovski, A. and Shapiro, A. (2007). Convex approximations of chance constrained
programs. SIAM Journal on Optimization, 17(4):969–996.

Noyan, N., Rudolf, G., and Lejeune, M. (2022). Distributionally robust optimization un-
der a decision-dependent ambiguity set with applications to machine scheduling and
humanitarian logistics. INFORMS Journal on Computing, 34(2):729–751.

O’Neil, R., Diallo, C., and Khatab, A. (2022a). A novel predictive selective maintenance
strategy using deep learning and mathematical programming. IFAC-PapersOnLine,
55(10):1207–1212.

O’Neil, R., Diallo, C., Khatab, A., and Aghezzaf, E.-H. (2022b). A hybrid column-
generation and genetic algorithm approach for solving large-scale multimission selec-
tive maintenance problems in serial k-out-of-n: G systems. International Journal of Pro-
duction Research, pages 1–17.

Ordoudis, C., Nguyen, V. A., Kuhn, D., and Pinson, P. (2021). Energy and reserve dis-
patch with distributionally robust joint chance constraints. Operations Research Letters,
49(3):291–299.

O’Neil, R., Khatab, A., Diallo, C., and Venkatadri, U. (2023a). Optimal joint maintenance
and orienteering strategy for complex mission-oriented systems: A case study in off-
shore wind energy. Computers & Operations Research, 149:106020.

https://docs.mosek.com/MOSEKModelingCookbook-a4paper.pdf
https://docs.mosek.com/MOSEKModelingCookbook-a4paper.pdf


173

O’Neil, R., Khatab, A., Diallo, C., and Venkatadri, U. (2023b). Optimal joint mainte-
nance and orienteering strategy for complex mission-oriented systems: A case study in
offshore wind energy. Computers & Operations Research, 149:106020.

Pandey, M. and Zuo, M. J. (2013). Selective preventive maintenance scheduling under
imperfect repair. In 2013 Proceedings Annual Reliability and Maintainability Symposium
(RAMS), pages 1–6. IEEE.

Pandey, M. and Zuo, M. J. (2014). Selective maintenance considering two types of failure
modes. International Journal of Strategic Engineering Asset Management 19, 2(1):37–62.

Pandey, M., Zuo, M. J., and Moghaddass, R. (2012). Selective maintenance for binary
systems using age-based imperfect repair model. In 2012 International Conference on
Quality, Reliability, Risk, Maintenance, and Safety Engineering, pages 385–389. IEEE.

Pandey, M., Zuo, M. J., and Moghaddass, R. (2013a). Selective maintenance modeling
for a multistate system with multistate components under imperfect maintenance. IIE
Transactions, 45(11):1221–1234.

Pandey, M., Zuo, M. J., and Moghaddass, R. (2016). Selective maintenance scheduling
over a finite planning horizon. Proceedings of the Institution of Mechanical Engineers,
Part O: Journal of Risk and Reliability, 230(2):162–177.

Pandey, M., Zuo, M. J., Moghaddass, R., and Tiwari, M. (2013b). Selectivemaintenance for
binary systems under imperfect repair. Reliability Engineering & System Safety, 113:42–
51.

Pflug, G. and Wozabal, D. (2007). Ambiguity in portfolio selection. Quantitative Finance,
7(4):435–442.

Postek, K., den Hertog, D., and Melenberg, B. (2016). Computationally tractable counter-
parts of distributionally robust constraints on risk measures. SIAM Review, 58(4):603–
650.

Rainwater, C., Honeycutt, J., Cassady, C. R., andMason, S. (2004). Solving selective main-
tenance problems for fleets of systems. In IIE Annual Conference. Proceedings, page 1.
Institute of Industrial and Systems Engineers (IISE).

Rajagopalan, R. and Cassady, R. (2004). Solving selective maintenance problems. In IIE
Annual Conference. Proceedings, page 1. Institute of Industrial and Systems Engineers
(IISE).

Rajagopalan, R. and Cassady, R. (2006). An improved selective maintenance solution
approach. Journal of Quality in Maintenance Engineering.

Rice, W., Cassady, C., and Nachlas, J. (1998). Optimal maintenance plans under limited
maintenance time. In Proceedings of the seventh industrial engineering research conference,
pages 1–3.



174

Rice, W. F. (1999). Optimal selective maintenance decisions for series systems. PhD thesis,
Mississippi State University. Department of Industrial Engineering.

Ruiz, C., Pohl, E. A., and Liao, H. (2020). Selective maintenance modeling and analysis of
a complex system with dependent failure modes. Quality Engineering, 32(3):509–520.

Saraswat, S. and Yadava, G. (2008). An overview on reliability, availability, maintainabil-
ity and supportability (rams) engineering. International Journal of Quality & Reliability
Management.

Schneider, K. and Cassady, C. R. (2015). Evaluation and comparison of alternative fleet-
level selective maintenance models. Reliability Engineering & System Safety, 134:178–
187.

Schneider, K. and Cassady, R. (2004). Fleet performance under selective maintenance. In
Annual Symposium Reliability and Maintainability, 2004-RAMS, pages 571–576. IEEE.

Schneider, K. R. (2006). Comparison of Alternative Fleet-level Selective Maintenance Models.
ProQuest.

Shahraki, A. F. and Yadav, O. P. (2018). Selectivemaintenance optimization for multi-state
systems operating in dynamic environments. In 2018 Annual Reliability and Maintain-
ability Symposium (RAMS), pages 1–6. IEEE.

Shahraki, A. F., Yadav, O. P., and Vogiatzis, C. (2020). Selective maintenance optimization
for multi-state systems considering stochastically dependent components and stochas-
tic imperfect maintenance actions. Reliability Engineering & System Safety, 196:106738.

Sharma, P., Kulkarni, M. S., and Yadav, V. (2017). A simulation based optimization ap-
proach for spare parts forecasting and selective maintenance. Reliability Engineering &
System Safety, 168:274–289.

Smith, J. E. andWinkler, R. L. (2006). The optimizer’s curse: Skepticism and postdecision
surprise in decision analysis. Management Science, 52(3):311–322.

Storn, R. (1995). Differrential evolution-a simple and efficient adaptive scheme for global
optimization over continuous spaces. Technical Report, International Computer Science
Institute, 11.

Su, C., Huang, K., and Wen, Z. (2022). Multi-objective imperfect selective maintenance
optimization for series-parallel systems with stochastic mission duration. Proceedings
of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, page
1748006X211066660.

Sun, Y. and Sun, Z. (2021). Selective maintenance on a multi-state transportation system
considering maintenance sequence arrangement. IEEE Access, 9:70048–70060.

Sun, Y., Sun, Z., and Zhou, J. (2021). Selective maintenance on a multi-state system
considering maintenance task assignment and operating cost. Systems Engineering.



175

Sun, Y., Sun, Z., and Zhou, J. (2022). Selective maintenance on a multi-state system
considering maintenance task assignment and operating cost. Systems Engineering,
25(2):157–172.

Tang, T., Jia, L., Hu, J., Wang, Y., and Ma, C. (2022). Reliability analysis and selective
maintenance for multistate queueing system. Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability, 236(1):3–17.

Thibaut, L. and Jacques, T. (2006). Multicriteria maintenance problem resolved by tabu
search. IFAC Proceedings Volumes, 39(3):481–486.

Wang, H. (2002). A survey of maintenance policies of deteriorating systems. European
Journal of Operational Research, 139(3):469–489.

Wang, Y., Elahi, E., and Xu, L. (2019). Selective maintenance optimization modelling
for multi-state deterioration systems considering imperfect maintenance. IEEE Access,
7:62759–62768.

Xia, T., Si, G., Shi, G., Zhang, K., and Xi, L. (2022). Optimal selective maintenance
scheduling for series–parallel systems based on energy efficiency optimization. Applied
Energy, 314:118927.

Xie, W. (2021). On distributionally robust chance constrained programs with wasserstein
distance. Mathematical Programming, 186(1):115–155.

Xu, E., Yang, M., Li, Y., Gao, X., Wang, Z., and Ren, L. (2021a). A multi-objective selective
maintenance optimization method for series-parallel systems using nsga-iii and nsga-ii
evolutionary algorithms. Reliability Engineering & System Safety, 144:83–94.

Xu, Q., Guo, L., and Wang, N. (2016a). Selective maintenance model and its solution
algorithm for multi-state series-parallel system under economic dependence. In 2016
Chinese Control and Decision Conference (CCDC), pages 4781–4788. IEEE.

Xu, Q., Guo, L., Wang, N., and Fei, R. (2015). Recent advances in selective maintenance
from 1998 to 2014. Journal of Donghua University: English Edition, 32(6):986–994.

Xu, Q.-z., Guo, L., Shi, H.-p., and Wang, N. (2016b). Selective maintenance problem for
series–parallel system under economic dependence. Defence Technology, 12(5):388–400.

Xu, Y., Pi, D., Wu, Z., Chen, J., and Zio, E. (2021b). Hybrid discrete differential evolu-
tion and deep q-network for multimission selective maintenance. IEEE Transactions on
Reliability.

Yahya, M. and Saka, M. (2014). Construction site layout planning using multi-objective
artificial bee colony algorithm with levy flights. Automation in Construction, 38:14–29.

Yang, B.-S., Tan, A. C. C., et al. (2009). Multi-step ahead direct prediction for the machine
condition prognosis using regression trees and neuro-fuzzy systems. Expert Syst. Appl.,
36(5):9378–9387.



176

Yang, D., Wang, H., Feng, Q., Ren, Y., Sun, B., and Wang, Z. (2018). Fleet-level selective
maintenance problem under a phased mission scheme with short breaks: A heuristic
sequential game approach. Computers & Industrial Engineering, 119:404–415.

Ye, Q. and Xie, W. (2021). Second-order conic and polyhedral approximations of the
exponential cone: Application to mixed-integer exponential conic programs. arXiv
preprint arXiv:2106.09123.

Yin, M., Liu, Y., Liu, S., Chen, Y., and Yan, Y. (2023). Scheduling heterogeneous repair
channels in selective maintenance of multi-state systems with maintenance duration
uncertainty. Reliability Engineering & System Safety, 231:108977.

Yu, P. and Schneider, K. (2003). Selective maintenance strategies for serial production
lines. In IIE Annual Conference. Proceedings, page 1. Institute of Industrial and Systems
Engineers (IISE).

Zhang, L., Zhang, L., Shan, H., and Shan, H. (2019a). Selective maintenance planning
considering team capability based on fuzzy integral and dynamic artificial bee colony
algorithm. IEEE Access, 7:66553–66566.

Zhang, L., Zhang, L., Shan, H., and Shan, H. (2020). Selective maintenance process op-
timization based on an improved gravitational search algorithm, from the perspective
of energy consumption. Engineering Optimization, 52(8):1401–1420.

Zhang, X., Chen, J., Han, B., and Li, J. (2019b). Multi-mission selective maintenance
modelling for multistate systems over a finite time horizon. Proceedings of the Institution
of Mechanical Engineers, Part O: Journal of Risk and Reliability, 233(6):1040–1059.

Zhao, C. and Guan, Y. (2018). Data-driven risk-averse stochastic optimization with
wasserstein metric. Operations Research Letters, 46(2):262–267.

Zhao, J., Liu, J., Zhao, Z., Xin, M., and Chen, Y. (2019a). A high-performancemaintenance
strategy for stochastic selective maintenance. Concurrency and Computation: Practice
and Experience, 31(12):e4840.

Zhao, Z., Xiao, B., Wang, N., Yan, X., andMa, L. (2019b). Selective maintenance optimiza-
tion for a multi-state systemwith degradation interaction. IEEE Access, 7:99191–99206.

Zhao, Z., Yan, X., Xiao, B., and Sun, X. (2018). Selective maintenance modeling for a
multi-state system considering human reliability. In 2018 3rd International Conference
on System Reliability and Safety (ICSRS), pages 346–352. IEEE.

Zhou, H., Gao, S., Qi, F., Luo, X., and Qian, Q. (2020). Selective maintenance policy for
a series-parallel system considering maintenance priority of components. IEEE Access,
8:23221–23231.

Zhu, H., Liu, F., Shao, X., Liu, Q., and Deng, Y. (2011). A cost-based selective mainte-
nance decision-making method for machining line. Quality and Reliability Engineering
International, 27(2):191–201.



177

Zia, L. and Coit, D. W. (2010). Redundancy allocation for series-parallel systems using a
column generation approach. IEEE Transactions on Reliability, 59(4):706–717.


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	Introduction
	Research themes
	Theme 1: A critical review of selective maintenance for mission-oriented systems: Challenges and a roadmap for novel contributions
	Theme 2: Branch-and-price algorithms for large-scale mission-oriented maintenance planning problems
	Theme 3: Distributionally-robust chance-constrained optimization of selective maintenance under uncertain repair duration
	Theme 4: Robust selective maintenance optimization under maintenance quality uncertainty

	Dissertation outline

	A critical review of selective maintenance for mission-oriented systems: Challenges and a roadmap for novel contributions
	Introduction
	Scope and review methodology
	Categorisation of SMP modelling and solution methods
	Categorisation of SMP modelling
	Categorisation of solution methods

	Selective maintenance models
	Generic formulation for SMP
	SMP with multiple repairpersons for complex reliability structures
	SMP for fleets of systems
	SMP under uncertain mission and maintenance break durations
	SMP for multistate systems (MSS)
	SMP with multiple objective functions

	Research gaps and future directions
	Conclusion

	Branch-and-price algorithms for large-scale mission-oriented maintenance planning problems
	Introduction
	Problem description
	System description
	Main working assumptions
	Notation
	Maintenance levels, costs, and duration
	System reliability during the next mission

	Mathematical formulation and pattern-based reformulation of the JSM-RAP
	Nonlinear BIP formulation
	Reformulation with full patterns enumeration

	Branch-and-price algorithms
	Column-generation
	Branch-and-bound

	Numerical experiments
	Set of experiments #1: Validation examples
	Set of experiments #2: The case of a moderate-size serial-parallel system
	Set of experiments #3: Large-scale series-parallel systems
	Set of experiments #4: Large-scale series-parallel systems with additional maintenance levels

	Conclusions

	Distributionally-robust chance-constrained optimization of selective maintenance under uncertain repair duration
	Introduction
	The nominal JSM-RAP
	System description
	Modelling assumptions
	Modelling maintenance costs and duration
	Next mission system reliability
	Mixed-integer nonlinear programming formulation
	Reformulation of the nominal problem through piecewise-linear approximation

	Distributionally-robust chance-constrained programming model
	Illustrative example
	Structure of the distributional ambiguity set
	Tractable approximation
	Calibrating the ambiguity set through cross-validation

	Numerical Experiments
	Computational results for the nominal problem
	Computational results for the DRSMP

	Conclusions

	Robust selective maintenance optimization under maintenance quality uncertainty
	Introduction
	The Nominal Problem
	System description
	Modelling notations and assumptions
	System reliability computations
	Maintenance levels, costs, and duration
	Mixed integer nonlinear programming formulation
	Exponential conic reformulation

	The robust problem formulation
	Numerical experiments
	Numerical results for the nominal problem
	Numerical results for the robust problem

	Conclusions

	Conclusions
	References

